WO2022099660A1 - 一种波束切换的方法及装置 - Google Patents

一种波束切换的方法及装置 Download PDF

Info

Publication number
WO2022099660A1
WO2022099660A1 PCT/CN2020/128858 CN2020128858W WO2022099660A1 WO 2022099660 A1 WO2022099660 A1 WO 2022099660A1 CN 2020128858 W CN2020128858 W CN 2020128858W WO 2022099660 A1 WO2022099660 A1 WO 2022099660A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
indication information
terminal device
quasi
Prior art date
Application number
PCT/CN2020/128858
Other languages
English (en)
French (fr)
Inventor
樊波
张希
管鹏
罗晓宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20961216.7A priority Critical patent/EP4224934A4/en
Priority to PCT/CN2020/128858 priority patent/WO2022099660A1/zh
Priority to CN202080106912.0A priority patent/CN116391392A/zh
Publication of WO2022099660A1 publication Critical patent/WO2022099660A1/zh
Priority to US18/305,394 priority patent/US20230268973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/347Path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and apparatus for beam switching.
  • the network device and the terminal device communicate through beams, and the network device and the terminal device can determine the optimal beam pair (ie, sending beam and receiving beam) for uplink and downlink transmission between the two to improve communication performance.
  • the transmit and receive beams in the optimal beam pair may change as the terminal device moves or for other reasons.
  • the sending beam used for uplink and downlink transmission can be switched (switching can also be referred to as updating) through signaling interaction between the network device and the terminal device.
  • switching can also be referred to as updating
  • the terminal device it is necessary to measure the timing, path loss and other information of the beam to be switched (the beam to be switched may also be referred to as the updated beam or the beam to be updated) before switching the beam. Since the measurement of timing and path loss takes a long time, the beam to be switched cannot be used for uplink and downlink transmission in time, which will result in loss of transmission performance.
  • the present application provides a method and apparatus for beam switching, which are used to solve the problem of transmission performance loss during beam switching.
  • a beam switching method is provided, which is applied to a terminal device or a chip in the terminal device.
  • first indication information from the network device is received, where the first indication information is used to indicate the first beam.
  • receiving second indication information from the network device where the second indication information is used to instruct switching to the first beam.
  • beam switching is performed according to the first beam.
  • the network device before sending the second indication information for beam switching to the terminal device, the network device first informs the terminal device of the first beam to be switched. Then, the terminal device can first measure the timing information and/or the path loss information of the first beam to be switched. Further, when the terminal device receives the second indication information for beam switching, it has performed the process of measuring the timing information and/or path loss information of the first beam, or has performed a part of measuring the timing information and/or path loss information of the first beam. or the process of path loss information. In this way, when switching to the first beam, the time delay required to measure the timing, path loss and other information of the first beam to be switched can be reduced or avoided, thereby avoiding the loss of transmission performance.
  • the downlink time offset information and/or the downlink frequency offset information corresponding to the first beam is measured according to one or more first resources.
  • the first resource and the first beam satisfy the quasi-colocation relationship of typeD; or, the first measurement resource and the quasi-colocation resource of typeD type corresponding to the first beam satisfy the quasi-colocation relationship of typeD.
  • the one or more first resources are configured by a network device or specified by a protocol. For example, information about one or more first resources from a network device is received, where the first resources are used to measure downlink time offset information and/or downlink frequency offset information corresponding to the first beam.
  • the first resource is a quasi-co-located resource of typeA, typeB or TypeC corresponding to the first beam.
  • the path loss information corresponding to the first beam is measured according to one or more second resources.
  • the second resource and the first beam satisfy the quasi-colocation relationship of typeD; or, the second resource and the quasi-colocated resource of typeD type corresponding to the first beam satisfy the quasi-colocation relationship of typeD.
  • the one or more second resources are configured by the network device or specified by the protocol. For example, information about one or more second resources from the network device is received, where the second resources are used to measure path loss information corresponding to the first beam.
  • the second resource is a quasi-co-located resource of typeA, typeB or TypeC corresponding to the first beam.
  • the second resource is included in the first resource. That is, the second resource reuses the first resource.
  • the second resource is part or all of the first resource.
  • the second resource is one of a plurality of the first resources.
  • the second resource is a plurality of the plurality of the first resources. The second resource reuses the first resource, which can improve resource utilization.
  • the path loss information corresponding to the first beam when the path loss information corresponding to the first beam is measured according to multiple second resources, the path loss information corresponding to the first beam may be measured according to each second resource first. , and obtain the corresponding measurement results of multiple path loss information. Then, an average value of the measurement results of the multiple path loss information may be determined, and the average value may be used as the finally obtained measurement result of the path loss information of the first beam. Or, perform filtering processing on multiple path loss information measurement results (filter processing can be understood as weighted average), and use the path loss information measurement result after filtering processing as the finally obtained path loss information measurement result of the first beam. Averaging and filtering can reduce measurement fluctuations.
  • the first indication information is also used to activate the first resource and/or the second resource, so that there is no need to separately send an activation instruction to activate the first resource and/or the second resource, Signaling overhead can be saved.
  • the signal used for uplink timing measurement when the signal used for uplink timing measurement is sent according to the first beam, the signal used for uplink timing measurement may be sent by using the first beam.
  • This implementation is applicable when the first beam is The case of the transmit beam on the terminal device side. It is also possible to use the receiving beam of the first beam (the receiving beam of the first beam can be understood as: the transmitting beam in the same direction as the receiving beam of the first beam) to transmit the signal used for uplink timing measurement. This implementation is applicable In the case where the first beam is the transmission beam on the network device side.
  • the first moment may be the moment at which the first indication information is received (or the time slot or symbol at which the moment is located), and the moment at which the acknowledgment ACK information corresponding to the first indication information is fed back (or the time slot or symbol at which the moment is located) ); the time when the first indication information is received (or the time slot or symbol where the time is located) plus a time interval; the time when the ACK information corresponding to the first indication information is fed back (or the time at which the time is located) slot or symbol) plus a time interval.
  • time instants may be replaced by time units, which may be at slot level or symbol level.
  • the second duration is greater than or equal to the first duration; wherein, the second duration is the moment (or time slot or symbol) at which the second indication information is received and the moment at which the first indication information is received (or duration of the interval between time slots or symbols), the first duration being used to perform one or more of the actions of the first aspect.
  • the first duration is greater than or equal to the duration required to perform one or more actions in the first aspect.
  • the network device sends the first indication information to the terminal device in a targeted manner, avoiding the problem that the terminal device does not have the ability to measure the beam to be switched before the beam is switched after the first indication information is sent, which wastes signaling overhead.
  • a beam switching method is provided, which is applied to a network device or a chip in the network device.
  • First send first indication information to the terminal device, where the first beam information is used to indicate the first beam, and the first indication information is used to instruct the terminal device to perform one or more of the following according to the first beam Behavior: measure the downlink time offset information corresponding to the first beam, measure the downlink frequency offset information corresponding to the first beam, measure the path loss information corresponding to the first beam, and send the information for uplink according to the first beam timing measurement signals, and receiving uplink timing adjustment information from the network device, where the uplink timing adjustment information is determined based on the first beam.
  • second indication information is sent to the terminal device, where the second indication information indicates switching to the first beam.
  • beam switching is performed according to the first beam.
  • the network device before sending the second indication information for beam switching to the terminal device, the network device first informs the terminal device of the first beam to be switched. Then, the terminal device can first measure the timing information and/or the path loss information of the first beam to be switched. Further, when the terminal device receives the second indication information for beam switching, it has performed the process of measuring the timing information and/or path loss information of the first beam, or has performed a part of measuring the timing information and/or path loss information of the first beam. or the process of path loss information. In this way, when switching to the first beam, the time delay required to measure the timing, path loss and other information of the first beam to be switched can be reduced or avoided, thereby avoiding the loss of transmission performance.
  • information about one or more first resources is sent to the terminal device, where the first resources are used to measure downlink time offset information and/or downlink frequency offset information corresponding to the first beam wherein, the first resource and the first beam satisfy the quasi-colocation relationship of typeD; or, the first resource and the quasi-colocated resource of typeD type corresponding to the first beam satisfy the quasi-colocation relationship of typeD.
  • the first resource is a quasi-co-located resource of typeA, typeB or TypeC corresponding to the first beam.
  • information of one or more second resources is sent to the terminal device, where the second resources are used to measure the path loss information corresponding to the first beam; wherein, the second resources It satisfies the quasi-colocation relationship of typeD with the first beam; or, the second resource and the quasi-colocated resource of the typeD type of the first beam satisfies the quasi-colocation relationship of typeD.
  • the second resource is a quasi-co-located resource of typeA, typeB or TypeC corresponding to the first beam.
  • the second resource is included in the first resource. That is, the second resource reuses the first resource.
  • the second resource is part or all of the first resource.
  • the second resource is one of a plurality of the first resources.
  • the second resource is a plurality of the plurality of the first resources. The second resource reuses the first resource, which can improve resource utilization.
  • the first indication information is also used to activate the first resource and/or the second resource, so that there is no need to separately send an activation instruction to activate the first resource and/or the second resource, Signaling overhead can be saved.
  • the second duration is greater than or equal to the first duration; wherein, the second duration is the moment (or time slot or symbol) at which the second indication information is received and the moment at which the first indication information is received (or duration of the interval between time slots or symbols), the first duration being used to perform one or more of the actions of the first aspect.
  • the first duration is greater than or equal to the duration required for the terminal device to perform one or more actions in the second aspect. In this way, it can be ensured that when the network device sends the second indication information to the terminal device, the terminal device has completed the measurement of the first beam, thereby realizing fast and direct switching to the first beam, improving beam switching efficiency and improving transmission performance.
  • the network device sends the first indication information to the terminal device in a targeted manner, avoiding the problem that the terminal device does not have the ability to measure the beam to be switched before the beam is switched after the first indication information is sent, which wastes signaling overhead. .
  • a communication device in a third aspect, has the functions of implementing the first aspect and any possible implementation of the first aspect, or implementing the second aspect and any possible implementation of the second aspect.
  • These functions can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more functional modules corresponding to the above-mentioned functions.
  • a communication device comprising a processor and a memory; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the computer programs or instructions in the memory, When some or all of the computer programs or instructions are executed, they are used to implement the functions of the terminal device in the method for any possible implementation of the first aspect and the first aspect, or to implement any of the second aspect and the second aspect.
  • the functionality of the network device in possible implementations.
  • the apparatus may further include a transceiver configured to transmit a signal processed by the processor or receive a signal input to the processor.
  • the transceiver may perform the sending action or the receiving action performed by the terminal device in the first aspect and any possible implementation of the first aspect; or, perform the transmission performed by the network device in the second aspect and any possible implementation of the second aspect Action or receive action.
  • a communication device including a processor; the processor is used to execute a computer program or instruction, and when the computer program or instruction is executed, it is used to implement the above-mentioned first aspect and the first aspect
  • the function of the terminal device in any possible implementation method, or the function of the network device in the above-mentioned second aspect and any possible implementation method of the second aspect.
  • the computer program or instructions may be stored in the processor or in a memory coupled to the processor.
  • the memory may or may not be located in the communication device.
  • the apparatus further includes: a communication interface, where the communication interface is configured to send a signal processed by the processor, or receive a signal input to the processor.
  • the communication interface may perform the sending action or the receiving action performed by the terminal device in the first aspect and any possible implementation of the first aspect, or perform the sending action performed by the network device in the second aspect and any possible implementation of the second aspect. or receive action.
  • the present application provides a chip system
  • the chip system includes one or more processors (which may also be referred to as processing circuits), and the processors are electrically coupled with a memory (which may also be referred to as a storage medium).
  • the memory may be located in the chip system or not in the chip system; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the memory
  • a computer program or instruction, when part or all of the computer program or instruction is executed, is used to realize the function of the terminal device in the above-mentioned first aspect and any possible implementation method of the first aspect, or realize the above-mentioned second aspect and The function of the network device in any possible implementation of the second aspect.
  • the chip system may further include an input-output interface, where the input-output interface is configured to output a signal processed by the processor, or receive a signal input to the processor.
  • the input/output interface may perform the sending action or the receiving action performed by the terminal device in the first aspect and any possible implementation of the first aspect; or, perform the second aspect and any possible implementation of the second aspect performed by the network device.
  • Send action or receive action Specifically, the output interface performs the sending action, and the input interface performs the receiving action.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a sixth aspect provides a computer-readable storage medium for storing a computer program, the computer program comprising instructions for implementing the functions in the first aspect and any possible implementation of the first aspect, or for implementing Instructions for functions in the second aspect and any possible implementation of the second aspect.
  • a computer-readable storage medium is used to store a computer program.
  • the computer program When the computer program is executed by a computer, it can cause the computer to execute the first aspect and any possible implementation method of the first aspect.
  • the terminal device executes method, or perform the method performed by the network device in the second aspect and any possible implementation of the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute the first aspect and any possible possibility of the first aspect.
  • a communication system in an eighth aspect, includes a terminal device that performs any possible implementation method of the first aspect and the first aspect, and performs any possible implementation of the second aspect and the second aspect.
  • a network device in the implemented method in the implemented method.
  • Fig. 1 is a kind of communication system architecture intention provided by this application;
  • FIG. 2 is a schematic diagram of a process of beam switching provided by the present application.
  • 3a is a schematic structural diagram of a TCI-state provided by the application.
  • FIG. 3b is a schematic structural diagram of a MAC CE for activating TCI-state provided by the application
  • FIG. 3c is a schematic structural diagram of a configuration spatial relation provided by the present application.
  • FIG. 4 is a schematic diagram of a beam switching process provided by the present application.
  • 5a is a schematic time diagram of a beam switching provided by the present application.
  • FIG. 5b is a schematic time diagram of a beam switching provided by the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for beam switching provided by the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for beam switching provided by the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for beam switching provided by the present application.
  • FIG. 9 is a schematic structural diagram of a terminal provided by the present application.
  • WLAN wireless local area network
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnection microwave access
  • the communication system shown in FIG. 1 includes network equipment and terminal equipment, and wireless communication is performed between the network equipment and the terminal equipment through beams.
  • the network device and the terminal device can respectively generate multiple different beams (different beams refer to different beam directions).
  • the transmit beam alignment here means that the transmit beam is directional, and the main lobe direction of the transmit beam points to the receiving device;
  • the receive beam alignment means that the receive beam is directional, and the main lobe direction of the receive beam points to the transmitting device.
  • the two beams can be referred to as the optimal beam pair.
  • the network device When performing beam switching, the network device sends signaling for beam switching to the terminal device.
  • the terminal device needs to measure the timing, path loss and other information of the beam to be switched (the beam to be switched may also be referred to as the updated beam or the beam to be updated) before performing beam switching.
  • the beam to be switched may be the transmission beam of the terminal device or the transmission beam of the network device.
  • a beam switching method is provided to reduce the loss of transmission performance.
  • a time delay T is specified, and after receiving the signaling for beam switching from the network device, the terminal device uses the beam to be switched (eg, beam 2) for transmission after the specified time delay T.
  • the original beam eg, beam 1
  • the time delay T measure the timing, path loss and other information of the beam to be switched (for example, beam 2).
  • the performance of the original beam eg, beam 1
  • the performance of the original beam may deteriorate, resulting in a loss of transmission performance during this period of time T.
  • the present application further provides a beam switching method.
  • the network device Before sending the signaling for beam switching to the terminal device, the network device first informs the terminal device which beam is to be switched, and the terminal device can measure it first. Information such as timing and path loss of the beam to be switched.
  • the terminal device receives the signaling for beam switching sent by the network device, it can perform beam switching in time to avoid or reduce transmission performance loss.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point ( transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations in the 5G system (including Multiple antenna panels) antenna panels, or, may also be network nodes that constitute a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • terminal devices can be: mobile phones (mobile phones), tablet computers, notebook computers, PDAs, mobile Internet devices (MIDs), wearable devices, virtual reality (virtual reality, VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals (eg, sensors, etc.) in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, intelligent A wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, or a wireless terminal in a smart home, or with a car-to-car ( Vehicle-to-Vehicle, V2V) public wireless terminals, etc.
  • MIDs mobile Internet devices
  • VR virtual reality
  • AR augmented reality
  • wireless terminals eg, sensors, etc.
  • a wireless terminal in a smart grid a wireless terminal in transportation safety, a wireless terminal in a smart city, or a wireless terminal in a smart home, or with a car-to-car ( Vehicle-to-Vehicle, V2V)
  • the embodiment of the beam can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, or a spatial setting. domain setting), spatial setting, or quasi-colocation (QCL) information, QCL assumption, QCL indication, etc.
  • a beam can be indicated by a transmission configuration index (number) state (transmission configuration index, TCI-state).
  • Beams can also be indicated by a spatial relation parameter. Therefore, in this application, beams can be replaced by spatial filters, spatial filters, spatial parameters, spatial parameters, spatial settings, spatial settings, QCL information, QCL assumptions, QCL indications, TCI-state (including DL TCI-state and/ or UL TCI-state), spatial relation, etc.
  • the above terms are also equivalent to each other.
  • the beam can also be replaced by other terms representing the beam, which is not limited in this application.
  • the beam used to transmit the signal can be called the transmission beam (transmission beam, Tx beam), also can be called the spatial domain transmission filter (spatial domain transmission filter), the spatial transmission filter (spatial transmission filter), the spatial domain transmission parameter (spatial domain) transmission parameter), spatial transmission parameter, spatial domain transmission setting, spatial transmission setting.
  • the spatial domain transmission filter spatial domain transmission filter
  • the spatial transmission filter spatial transmission filter
  • the spatial domain transmission parameter spatial domain transmission parameter
  • the beam used to receive the signal can be called the receive beam (reception beam, Rx beam), also can be called the spatial domain reception filter (spatial domain reception filter), the spatial reception filter (spatial reception filter), the spatial domain reception parameter (spatial domain) reception parameter), spatial reception parameter, spatial domain reception setting, spatial reception setting.
  • the spatial domain reception filter spatial domain reception filter
  • the spatial reception filter spatial reception filter
  • the spatial domain reception parameter spatial domain reception parameter
  • the transmission beam can refer to the distribution of signal strengths formed in different directions in space after the signal is transmitted through the antenna.
  • the receive beam can refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology.
  • a beam can correspond to one or more antenna ports and is used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports forming (corresponding to) a beam can also be regarded as an antenna port set or an antenna port group.
  • Beams generally correspond to resources.
  • network equipment configures multiple resources for terminal equipment, multiple resources are used for beam measurement, and each resource corresponds to a beam. If the network device uses different beams and sends reference signals on resources corresponding to the different beams, the network device sends multiple reference signals.
  • the terminal device measures the quality of the reference signals sent by different beams (that is, sent on different resources), and feeds back the quality of the reference signals to the network device, and the network device knows the quality of the corresponding beam, that is, the measurement of the beam is realized.
  • the resources may be uplink signal resources or downlink signal resources.
  • Uplink signals include but are not limited to: sounding reference signal (SRS), demodulation reference signal (DMRS), and physical random access channel (PRACH).
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell specific reference signal (CS-RS), UE specific reference signal (user equipment specific reference signal, US-RS), synchronization system/physical broadcast channel block (SS/PBCH block), SS/PBCH block can be abbreviated as synchronization signal block (SSB), tracking reference signal (tracking reference signal) reference signal, TRS).
  • CSI-RS channel state information reference signal
  • CS-RS cell specific reference signal
  • UE specific reference signal user equipment specific reference signal
  • SS/PBCH block synchronization system/physical broadcast channel block
  • SS/PBCH block can be abbreviated as synchronization signal block (SSB), tracking reference signal (tracking reference signal) reference signal, TRS).
  • SSB synchronization signal block
  • TRS tracking reference signal
  • the network device configures the terminal device with resources for beam measurement through radio resource control (radio resource control, RRC) signaling.
  • a resource is a data structure, including the relevant parameters of the uplink signal and the relevant parameters of the downlink signal corresponding to the resource.
  • the parameters are, for example, the type of the uplink signal or the type of the downlink signal, the resource element that carries the uplink signal, the resource element that carries the downlink signal, the transmission time and period of the uplink or downlink signal, the number of ports used for transmitting the uplink or downlink signal, etc.
  • Each uplink signal resource or downlink signal resource has a unique index to identify the uplink or downlink signal resource. It can be understood that the index of the resource may also be referred to as the identifier of the resource, which is not limited in this embodiment of the present application.
  • the network device indicates the transmission configuration number (index) state TCI-state to the terminal device.
  • TCI-state is a parameter set including multiple parameters related to the downlink transmission beam (transmission beam of the network device). Therefore, in this application, beam and TCI-state can be considered equivalent and can be replaced with each other.
  • the network device configures the TCI-state to the end device:
  • the network device configures multiple TCI-states to the terminal device through RRC signaling.
  • the structure of TCI-state is shown in Fig. 3a.
  • Each TCI-state includes an index tci-StateId field and two QCL-Info fields.
  • Each QCL-Info field includes a cell (cell) field, a bwp-Id (bandwidth part) field, a referenceSignal (reference signal) field, and a qcl-Type field.
  • the cell field is used to indicate that the TCI-state is applied to the cell indicated by the cell field. Different cells can be configured with different QCL-Infos, and different bwps of a cell can be configured with different QCL-Infos.
  • the bwp-Id field is used to indicate that the TCI-state applies to the bwp indicated by the bwp-Id field.
  • the referenceSignal field is used to indicate that the channel (for example, the physical downlink shared channel (PDSCH) and the physical downlink control channel (PDCCH) using the TCI-state for transmission uses the resource and the referenceSignal field indicates.
  • the reference signal resources form a quasi-co-location (QCL) relationship.
  • the QCL relationship refers to: two reference signal resources (two reference signal resources can also be replaced by two antenna ports, and the antenna ports and reference signal resources are also one-to-one Corresponding) have some of the same spatial parameters.
  • the qcl-Type field can have four values, namely typeA, typeB, typeC, and typeD.
  • typeA indicates two reference signals The resources have the same Doppler offset (ie frequency offset), Doppler spread (ie frequency offset range), average delay (ie average time offset), and delay spread (ie, the range of offset).
  • typeB represents two The reference signal resources have the same Doppler offset and Doppler spread.
  • typeC indicates that the two reference signal resources have the same Doppler offset and average delay.
  • TypeD indicates that the two reference signal resources have the same spatial reception The parameter can also be understood as two transmit beams with the same receive beam.
  • the two QCL-Infos included in the TCI-state configured by the network device to the terminal device at most one can be of TypeD type.
  • the TCI configured by the network device may also not include the QCL-info of the typeD type, and the TCI-state that does not include the QCL-info of the typeD type is not used to indicate the relevant information of the beam, so it will not be further elaborated here.
  • the network device activates the TCI-state to the end device:
  • the network device sends a medium access control-control element (MAC-CE) message to the terminal device, and activates 8 TCI-states among the configured multiple TCI-states.
  • MAC-CE medium access control-control element
  • the MAC CE structure used to activate the TCI-state is shown in Figure 3b.
  • the fields T0 to T(N-2)x8+7 correspond to the respective TCI-states with indices from 0 to (N-2)x8+7 (already configured), each field in T0 to T(N-2)x8+7 occupies 1 bit, and the field value is 0 or 1. For example, a value of 1 indicates that the TCI-state is activated, and a value of 0 indicates that the TCI-state is not activated.
  • a MAC CE can theoretically have 8 fields with a value of 1, and the rest are all 0.
  • the network device indicates the TCI-state to the terminal device:
  • the network device indicates a certain TCI-state through the TCI field in the downlink control information (DCI).
  • the TCI field occupies 3 bits and can represent 8 different field values (codepoints).
  • Each field value of the TCI field corresponds to an index of a TCI-state, and the TCI-state index uniquely identifies a TCI-state.
  • the 8 fields with the value of 1 in the MAC CE correspond to the TCI-state respectively, and the 8 different values of the TCI field in the DCI are in one-to-one correspondence.
  • the value of the TCI field in the DCI sent by the network device to the terminal device is 000, indicating that the downlink transmission beam of the network device corresponds to a TCI-state with an index of 000.
  • the referenceSignal included in the QCL-Info of type D in the TCI-state is: channel state information with index #1-reference signal CSI-RS (downlink reference signal), which indicates the receiving beam used by the terminal equipment is the receive beam corresponding to the CSI-RS with index #1.
  • the terminal device may determine the receive beam corresponding to the CSI-RS with index #1 through the beam measurement process. Therefore, through the specific value of the TCI field, the terminal device can determine the downlink receiving beam, and thus use the receiving beam to receive information from the network device.
  • the above manner of using DCI to indicate TCI-state can be applied to the physical downlink shared channel PDSCH.
  • the network device configures multiple TCI-stats to the terminal device through RRC. Then, the network device activates (indicates) a TCI-state to the terminal device through the MAC CE for PDCCH transmission, without the indication of the TCI field of the DCI.
  • the network device In uplink transmission, the network device indicates a spatial relation to the terminal device, and its function is similar to TCI-state, which is used to inform the terminal device which transmit beam to use for uplink transmission.
  • the network device configures the spatial relation for the terminal device:
  • the network device configures multiple spatial relationships to the terminal device through RRC signaling.
  • the structure of the spatial relationship is shown in Figure 3c.
  • the spatial relationship includes but is not limited to the spatial relationship id, cell id, reference signal resources, and path loss measurement reference signals. Power control parameters, etc.
  • Reference signal resources eg, SRS, SSB, CSI-RS, etc.
  • spatial relation #1 is used for uplink transmission, and the spatial relation #1 includes a reference signal resource #2.
  • the reference signal resource #2 is a resource used to transmit an uplink reference signal (eg SRS)
  • the transmission beam used for uplink transmission is the transmission beam of the uplink reference signal (eg SRS)
  • the transmission beam of the SRS is known
  • the reference signal resource #2 is a resource used to transmit downlink reference signals (such as SSB or CSI-RS)
  • it indicates that the direction of the transmit beam used for uplink transmission is the same as the direction of the receive beam of the downlink reference signal (the SSB or CSI-RS).
  • the receive beam of the CSI-RS is known).
  • the network device activates the spatial relation to the terminal device for uplink transmission.
  • Uplink transmission such as physical uplink shared channel (physical uplink control channel, PUCCH) transmission, SRS transmission, physical uplink shared channel (physical uplink shared channel, PUSCH) transmission, etc., all require corresponding spatial relations.
  • the spatial relation used for PUCCH transmission is activated through MAC-CE signaling.
  • the spatial relation used in SRS transmission is activated through MAC-CE signaling.
  • the PUSCH transmission is associated with a specific SRS, and the PUSCH transmission is performed using the spatial relation used in the SRS transmission.
  • TCI-state 2 In the PDCCH transmission of the physical downlink control channel, another TCI-state is indicated (activated) through the MAC CE again, and the beam update of the PDCCH transmission can be realized.
  • the network device sends a MAC CE indicated by the PDCCH transmission beam to the terminal device, indicating TCI-state 2, then the transmission beam of PDCCH transmission becomes TCI-state 2.
  • the beam of the SRS associated with the PUSCH is updated.
  • the update of the beam used for sending SRS can be realized by MAC CE (applicable to aperiodic/semi-static type of SRS), or can be reconfigured using RRC signaling (applicable to periodic type of SRS).
  • FIG. 4 a schematic diagram of a beam switching process is provided, including the following steps:
  • Step 401 The network device sends first indication information to the terminal device, and correspondingly, the terminal device receives the first indication information from the network device, where the first indication information is used to indicate the first beam.
  • the first indication information may indicate one first beam, or may indicate multiple first beams, and the multiple first beams are different (different can be understood as different directions).
  • the first beam may be a beam predicted by the network device and will replace the current sending beam as the sending beam in the future, and it may be understood that the first indication information is used to indicate that the switch to the first beam is about to be performed.
  • the first beam is the sending beam on the network device side (ie the downlink sending beam), or the first beam is the sending beam on the terminal device side (ie the uplink sending beam), or the first beam includes the sending beam on the network device side and the terminal
  • the transmit beam on the device side that is, the beam used for both uplink and downlink transmissions).
  • the first beam can be embodied as TCI-state, spatial relation, beam ID, unified TCI, UL-TCI, common beam, QCL information, QCL assumption, spatial filter, or other definitions of beams introduced above, It will not be repeated.
  • the first beam can also be referred to as the first TCI-state, the first spatial relation, the first Unified TCI, etc., that is to say, the "beam" in the first beam can be replaced with any of the above-mentioned parameters that can embody the "beam”. a definition.
  • the first beam may be used for transmission of a single channel, eg for PDCCH transmission, or PDSCH transmission, or PUCCH transmission, or PUSCH transmission.
  • the first beams corresponding to different channels may be indicated respectively.
  • the first beam may also be used for transmission of multiple channels, eg, for transmission of one or more of the following channels.
  • a data channel for example, a data channel includes, but is not limited to, one or more of PDSCH, PUSCH, and physical sidelink share channel (PSSCH)
  • control channels include, but are not limited to, one or more of PUCCH, PDCCH, and physical sidelink control channel (PSCCH)
  • uplink channels for example, uplink channels include, but are not limited to, one or more of PRACH, random access msg3, PUCCH, and PUSCH.
  • downlink channels for example, downlink channels include, but are not limited to, random access msg2, random access msg4, PDCCH, PDSCH, one or more of physical broadcast channels (PBCH)).
  • PBCH physical broadcast channels
  • the first beam may be used for transmission in a single cell, and corresponding first beams of different cells may be indicated respectively.
  • the first beam can be used for transmission in multiple cells, and the frequency bands corresponding to the multiple cells are the same.
  • the common beam is used for transmission of one or more of the following channels: for example, for uplink channel transmission, for example, for downlink channel transmission, for example, for control channel, for example, with For multiple data channels, for example, for channel transmission of one cell, for example, for uplink channel or downlink channel or control channel or data channel of multiple cells, etc.
  • the first beam can be used for transmission of single or multiple reference signals, for example, for transmission of downlink reference signals
  • downlink reference signals include but are not limited to SSB, DMRS, CSI-RS, for example, for uplink reference signals.
  • uplink reference signals include but are not limited to phase tracking reference signals (phase tracking reference signals, PTRS), SRS, etc.
  • the first indication information includes but is not limited to one or more of the following information, such as the index of the first beam, the TCI-state corresponding to the first beam, the index of the TCI-state corresponding to the first beam, and the spatial corresponding to the first beam. relation, the index of the spatial relation corresponding to the first beam, etc., the first beam is indicated by the information.
  • the first indication information may also include other information capable of indicating a beam to indicate the first beam.
  • the first indication information when the first indication information is carried in the RRC signaling, includes but is not limited to the TCI-state corresponding to the first beam, or the spatial relation corresponding to the first beam, which can be understood as the related information of the first beam It is configured by the network device through RRC signaling.
  • the first indication information when the first indication information is carried in the MAC-CE signaling, the first indication information includes but is not limited to the index of the first beam, or the index of the TCI-state, or the index of the spatial relation, and the like.
  • the first beam is the beam activated from the beam configured by RRC signaling (for example, the TCI-state corresponding to the beam, or the spatial relation corresponding to the beam), and the MAC-CE signaling is faster than the RRC signaling.
  • MAC-CE signaling can activate two beams, one of which is the transmit beam used for current transmission, and the other beam is the first beam (that is, the transmit beam used in future transmissions, that is, the beam that replaces the transmit beam used in current transmissions) ).
  • MAC CE signaling can activate multiple beams, for example, the first beam represents the transmit beam used for current transmission, and the second beam is used as the first beam. Alternatively, the last beam, or the penultimate beam, etc., is used as the first beam.
  • the first indication information when the first indication information is carried in the DCI signaling, the first indication information includes but is not limited to the index of the first beam, or the index of the TCI-state, or the index of the spatial relation, etc.
  • the first beam is a beam indicated by DCI from among the beams configured by RRC signaling (for example, the TCI-state corresponding to the beam, or the spatial relation corresponding to the beam).
  • the first indication information may be carried in MAC CE signaling, and the MAC CE signaling activates two spatial relations for transmitting SRS, where the second spatial relation corresponds to the first beam the spatial relation.
  • Step 402 After receiving the first indication information sent by the network device, the terminal device can determine the first beam, and then maintain the first beam, including but not limited to measuring the timing information corresponding to the first beam and/or or path loss information. If the first indication information indicates multiple first beams, the terminal device maintains each first beam separately. The following only takes a first beam as an example to introduce an example of maintaining the first beam.
  • the terminal device When the terminal device maintains the first beam, it includes but is not limited to performing one or more of the following actions:
  • Action 1 Measure the downlink time offset information corresponding to the first beam; the "downlink time offset information” may be referred to as “downlink timing information”.
  • Behavior 2 Measure downlink frequency offset information corresponding to the first beam; Behavior 1 and Behavior 2 may be collectively referred to as: measuring downlink time-frequency offset information corresponding to the first beam.
  • Action 3 Measure the path loss information corresponding to the first beam.
  • Action 4 Send a signal for uplink timing measurement according to the first beam.
  • Action 5 Receive uplink timing adjustment information from a network device, where the timing adjustment information is determined based on the first beam.
  • Behaviors 4 and 5 may also be collectively referred to as: measuring or determining uplink timing information corresponding to the first beam.
  • Behavior 1, Behavior 4, and Behavior 5 may also be collectively referred to as: measuring or determining timing information corresponding to the first beam.
  • the timing information includes uplink timing information and/or downlink timing information.
  • Behavior 6 Initiate random access, for example, use the PRACH resource corresponding to the first beam to perform random access.
  • the terminal device may perform one or more of the actions in the foregoing step 402 after receiving the first indication information.
  • the terminal device may also perform one or more of the actions in the foregoing step 402 after returning the ACK information for the first indication information to the network device.
  • a period of time may also be specified, and the terminal device performs one or more of the above-mentioned actions in step 402 after a period of time after receiving the first indication information or after a period of time after replying to the ACK information.
  • a first time can be specified, and the terminal device starts to perform step 402 from the first time.
  • the first moment may be at the slot level or the symbol level or the millisecond level.
  • “First moment” can also be replaced with "first time unit”.
  • the first moment may be the moment when the first indication information is received, for example, a time slot or a symbol in which the first indication information is received.
  • the first moment may be the moment when the ACK information corresponding to the first indication information is sent to the network device, for example, the time slot or symbol of the ACK information corresponding to the first indication information is fed back.
  • the first time may be the time at which the ACK information corresponding to the first indication information is sent to the network device (the time may be replaced by a symbol or a time slot) plus the corresponding time after a time interval (the time may be replaced by a time slot or a symbol) ), the time interval can be 3 milliseconds. That is, the first moment is the symbol or time slot of the ACK information corresponding to the first indication information fed back to the network device plus 3 milliseconds. Alternatively, the first moment may be the moment at which the first indication information is received (the moment may be replaced by a symbol or a time slot) plus a corresponding moment after a time interval (the moment may be replaced by a symbol or a time slot).
  • a first duration may also be specified, and it is specified that the terminal device needs to perform the completion step 402 within the first duration, that is, the first duration is used to perform the completion step 402 .
  • the first duration is greater than or equal to the duration required to perform one or more actions in the first aspect.
  • the first duration may be determined by the network device, and the network device is configured for the terminal device. or.
  • the first duration may be determined by the terminal device, and optionally, the terminal device reports the first duration to the network device.
  • the first duration may be specified by the agreement.
  • the value of the first duration includes but is not limited to the following examples:
  • the first duration may be T HARQ +3ms.
  • the first duration may be T HARQ +3ms+TO k *(T first-SSB +T SSB-proc ), where T HARQ is the ACK corresponding to the reception of the first indication information to the feedback of the first indication information
  • T HARQ is the ACK corresponding to the reception of the first indication information to the feedback of the first indication information
  • the duration of the information T first-SSB is the duration from the next SSB transmission
  • T SSB-proc is the duration of SSB measurement
  • T SSB-proc can be set to a fixed value, such as 2ms.
  • TO k can be 0 or a non-zero value.
  • the network device may further indicate: resources for performing one or more of the actions in step 402 above, for example, indicating one or more resource configurations or resource sets or resources or reporting configuration etc.
  • resources for performing one or more of the actions in step 402 above for example, indicating one or more resource configurations or resource sets or resources or reporting configuration etc.
  • a trigger state is indicated, and the trigger state is used to trigger an aperiodic measurement for measuring the first beam.
  • activation signaling indicating a semi-persistent (semi-persistent, SP) measurement report is used to activate an SP measurement for measuring the first beam.
  • the information of the resource for measuring the beam may be carried in the first indication information.
  • Step 403 The network device sends the second indication information to the terminal device, and correspondingly, the terminal device receives the second indication information from the network device.
  • the second indication information is used to instruct switching to the first beam.
  • step 402 when step 402 is executed at the first moment, it may take a period of time (ie, the first duration) to complete step 402.
  • step 403 When step 403 is executed, step 402 may or may not have been executed. If step 402 has not been executed yet, when step 403 is executed, step 402 can continue to be executed without stopping the execution.
  • Step 404 The network device and the terminal perform beam switching according to the first beam.
  • the second indication information may include, but is not limited to, one or more of the following: for example, the index of the first beam, the TCI-state corresponding to the first beam, the index of the TCI-state corresponding to the first beam, the spatial corresponding to the first beam relation, the index of the spatial relation corresponding to the first beam, etc., the first beam is indicated by the information.
  • the second indication information may also include other information capable of indicating a beam to indicate the first beam.
  • the second indication information sent by the network device to the terminal device may also instruct to switch to the second beam.
  • the first beam is different from the second beam, it means that the network device has again instructed the switch to be performed. beam.
  • the terminal device may perform path loss measurement and/or positioning measurement, etc. on the second beam.
  • the network device switches the sending beam of the network device to the first beam, and the terminal device switches the sending beam of the terminal device to the receiving beam corresponding to the first beam . If the first beam is the transmitting beam on the terminal device side, the network device switches the transmitting beam of the network device to the receiving beam corresponding to the first beam, and the terminal device switches the transmitting beam of the terminal device to the first beam.
  • the network device Before sending the second indication information for beam switching to the terminal device, the network device first informs the terminal device of the first beam to be switched. Then, the terminal device can first measure the timing information and/or the path loss information of the first beam to be switched. Further, when the terminal device receives the second indication information for beam switching, it has performed the process of measuring the timing information and/or path loss information of the first beam, or has performed a part of measuring the timing information and/or path loss information of the first beam. or the process of path loss information. In this way, when switching to the first beam, the time delay required to measure the timing, path loss and other information of the first beam to be switched can be reduced or avoided, thereby avoiding the loss of transmission performance.
  • the duration of the interval between the second indication information and the first indication information is defined as the second duration.
  • the second duration of the interval between the first indication information and the second indication information may refer to any of the following situations: it may be the time between the time when the network device sends the first indication information and the time when the network device sends the second indication information. difference. It may also be the difference between the time when the terminal device receives the first indication information and the time when the terminal device receives the second indication information. It may also be the difference between the time when the network device sends the first indication information and the time when the terminal device receives the second indication information. It may also be the difference between the time when the terminal device receives the first indication information and the time when the network device sends the second indication information. Times can be on the slot or symbol or millisecond level, and times can also be replaced by timeslots or symbols.
  • the second duration may be greater than or equal to the first duration, and the first duration is used to perform one or more actions in step 402, so as to ensure that when the terminal device receives the second indication information, it has completed the Measurement (maintenance) of a beam. Therefore, it is possible to achieve fast and direct switching to the first beam, improve the efficiency of beam switching, and improve transmission performance.
  • an additional condition may also be specified, that is, only when the second indication information indicates that the switched beam is the first beam, the second duration of the interval between the second indication information and the first indication information is greater than or equal to the first duration. . If the second indication information indicates that the switched beam is not the first beam, the second duration of the interval between the second indication information and the first indication information may not be limited.
  • the second duration of the interval between the first indication information and the second indication information may not be limited.
  • the second indication information may be sent at any time after the first indication information is sent. However, the time at which the second indication information is sent will determine the time at which the beam switching occurs.
  • the duration of the interval between when the terminal device receives the second indication information and when the beam switching is completed is defined as the effective duration t1 of the second indication information.
  • the duration of the interval between the first moment when the terminal device starts to perform step 402 and the completion of the beam switching is defined as the effective duration t1 of the second indication information.
  • t1 can be any value greater than or equal to 0.
  • t1 may be equal to 0, indicating that beam switching can be completed immediately.
  • t1 may also be equal to the duration from when the terminal device receives the second indication information to when the ACK for the second indication information is fed back.
  • t1 can also be the time from receiving the second indication information to feeding back the ACK for the second indication information plus 3 milliseconds, that is, T HARQ +3ms.
  • the duration from the second indication information to the feedback of the ACK for the second indication information may be the same as or different from the duration from the reception of the first indication information to the feedback of the ACK for the first indication information.
  • t1 can also be T HARQ +3ms+TO k *(T first-SSB +T SSB-proc ), it should be noted that the T HARQ here is from receiving the second indication information to the feedback for the second indication
  • the duration of the ACK of the information may be the same as or different from the duration from receiving the first indication information to feeding back the ACK for the first indication information.
  • t1 first duration-second duration.
  • t1 first duration-second duration+a time interval, for example, one time interval is 3ms, or T HARQ +3ms, or T HARQ +3ms+TO k *(T first-SSB +T SSB- proc ), where T HARQ is the duration from receiving the second indication information to feeding back the ACK information corresponding to the second indication information, T first-SSB is the duration from the next SSB transmission, T SSB-proc is the duration of SSB measurement, T SSB-proc can be set to a fixed value, such as 2ms. TO k can be 0 or a non-zero value.
  • t1 is the time interval between the first time and the second time after adding the first time.
  • the second time instant may be at the slot level or the symbol level or the millisecond level.
  • the second moment may be the moment when the second indication information is received, for example, a time slot or a symbol in which the second indication information is received.
  • the second time may be the time at which the acknowledgment ACK information corresponding to the second indication information is sent to the network device, for example, the time slot or symbol for feeding back the ACK information corresponding to the second indication information.
  • the second time may be the time (for example, a symbol or a time slot) at which the ACK information corresponding to the second indication information is sent to the network device plus a time interval, and the time interval may be 3 milliseconds. That is, the second moment is the symbol or time slot of the ACK information corresponding to the second indication information fed back to the network device plus 3 milliseconds.
  • the second time may be the time at which the second indication information is received (eg, a symbol or a time slot) plus a time interval.
  • t1 is 3ms, or T HARQ +3ms, or T HARQ +3ms+TO k *(T first-SSB +T SSB-proc ), where T HARQ is the time from receiving the second indication information to the feedback of the first Second, the duration of the ACK information corresponding to the indication information, T first-SSB is the duration from the next SSB transmission, T SSB-proc is the duration of SSB measurement, and T SSB-proc can be set to a fixed value, such as 2ms.
  • TO k can be 0 or a non-zero value.
  • t1 may be the maximum value or the minimum value or the average value among Ta and Tb, and so on.
  • Ta first duration-second duration.
  • Ta is the time interval between the first time and the second time when t1 is the first time plus the first time. The description of the second moment referring to the above example will not be repeated.
  • Tb T HARQ +3ms.
  • Tb T HARQ +3ms+TO k *(T first-SSB +T SSB-proc ), where T HARQ is the time period from receiving the second indication information to feeding back the ACK information corresponding to the second indication information, T first -SSB is the duration from the next SSB transmission, T SSB-proc is the duration of SSB measurement, and T SSB-proc can be set to a fixed value, such as 2ms.
  • TO k can be 0 or a non-zero value.
  • the premise for the value of t1 may be that the beam indicated by the second indication information is the first beam. If the second indication information indicates that the switched beam is not the first beam, the value of t1 is not limited, for example, t1 is 3ms, or T HARQ +3ms, or T HARQ +3ms+TO k *(T first-SSB +T SSB-proc ), where T HARQ is the duration from receiving the second indication information to feeding back the ACK information corresponding to the second indication information, T first-SSB is the duration from the next SSB transmission, and T SSB-proc is the SSB The measurement duration, T SSB-proc can be set to a fixed value, such as 2ms. TO k can be 0 or a non-zero value.
  • the terminal device Assuming that the second indication information for beam switching is received at slot n, the terminal device completes the beam within the duration T HARQ + 3ms (that is, the interval of 3ms after receiving the second indication information) For handover, when the time is n+T HARQ +3ms, the terminal equipment uses the second indication information to indicate the switched beam for transmission.
  • Behavior 1 is first introduced: measure downlink timing information (ie, downlink time offset information) corresponding to the first beam, and this behavior 1 is generally applicable to the scenario where the first beam includes the transmission beam (downlink transmission beam) on the network device side.
  • measure downlink timing information ie, downlink time offset information
  • the terminal device measures downlink time offset information corresponding to the first beam according to one or more first resources.
  • the first resource is used to measure downlink time offset information of the first beam, and the first resource may also be referred to as a first measurement resource, a downlink timing measurement resource, or a timing measurement resource, or the like.
  • the one or more first resources may also be referred to as a group of first resources, and a group of first resources includes one or more first resources.
  • Downlink timing information may be measured by downlink signals, such as synchronization signals-broadcast channel resource blocks SSB, channel state information reference signals CSI-RS, time-frequency tracking reference signals TRS, and the like.
  • the first resource is a resource for transmitting downlink signals, and the first resource may be called a downlink signal resource.
  • the first resource may be an SSB resource, a CSI-RS resource, or a TRS resource.
  • the set of first resources is a CSI-RS resource set (CSI-RS resource set) configured with a trs-Info parameter, and the CSI-RS resource set includes one or more CSI-RSs.
  • the set of first resources may be configured by the network device for the terminal device, or may be specified by a protocol.
  • the network device when indicating the first beam, may further indicate resources for measuring downlink timing information, and the first indication information may further include: information of one or more first resources.
  • the network device may also configure one or more first resources for the terminal device through other indication information or configuration information different from the first indication information.
  • the terminal device When the terminal device measures the downlink time offset information corresponding to the first beam according to one or more first resources, it may specifically be that the network device sends a downlink signal to the terminal device on the first resource, and the terminal device receives data from the network on the first resource.
  • the downlink signal of the device is measured to measure the downlink time offset information.
  • the network device sends the downlink signal for measuring downlink time offset information on the first resource, it can use the first beam to send, or use the beam in the same direction as the first beam to send, so that the measured downlink time offset information It is the downlink time offset information of the first beam. It can be understood that the network device does not need to additionally inform the terminal device of the beam used when sending the downlink signal on the first resource, which can save signaling overhead.
  • association relationship between the first beam and the first resource is as follows:
  • the first resource and the first beam satisfy the quasi-co-located QCL relationship of typeD type; that is, the receiving beam of the downlink signal used to measure the downlink time offset information is the same as the receiving beam of the first beam (this The beams in the application are the same, which can be understood as the same direction of the beams).
  • the first resource may be a quasi-co-located resource of typeA, typeB, or typeC in the first beam (corresponding TCI-state) (quasi-co-located resource, that is, a reference signal resource in the QCL information).
  • the first resource and the quasi-co-located resource of typeD type in the first beam (corresponding TCI-state) (the quasi-co-located resource, that is, the reference signal resource in the QCL information) satisfy the quasi-co-located QCL of typeD type relation.
  • the first resource can be a quasi-co-located resource of typeA, typeB or typeC in the first beam (corresponding TCI-state) (quasi-co-located resource, that is, the reference signal resource in the QCL information), that is, the first beam
  • the quasi-co-located resources of typeA, typeB, or typeC in the (corresponding TCI-state) quadsi-co-located resources, that is, the reference signal resources in the QCL information
  • the typeD type in the first beam corresponding TCI-state
  • the quasi-co-located resource (the quasi-co-located resource, that is, the reference signal resource in the QCL information) satisfies the quasi-co-located QCL relationship of the typeD type.
  • the TCI-state structure corresponding to the first beam is as follows:
  • RS#1 reference signal resources in QCL information of typeA type (QCL information, namely QCL-info)
  • RS#2 reference signal resources in QCL information of typeD type
  • the receive beam is the same as that of RS#2.
  • the first beam uses the downlink time offset information of the first resource (for example, RS#1 above) as the downlink time offset information of the first beam.
  • the first beam and the first resource eg, one or more resources in the set of first resources
  • the network device when the first beam is updated, the network device does not need to reconfigure the beam (corresponding TCI-state) or typeD-QCL information of the first resource through configuration information, because the first resource is always the same as the first resource.
  • the beam satisfies the QCL relation of typeD type.
  • the beam (corresponding TCI-state) or typeD-QCL information corresponding to the first resource is automatically updated following the update of the first beam, thereby reducing signaling overhead.
  • behavior 2 is introduced: measuring the downlink frequency offset information corresponding to the first beam; this behavior 2 is generally applicable to a scenario where the first beam includes a transmission beam (downlink transmission beam) on the network device side.
  • the terminal device measures downlink frequency offset information corresponding to the first beam according to the one or more third resources.
  • the third resource is used to measure downlink frequency offset information corresponding to the first beam, and the third resource may also be referred to as a third measurement resource, or a downlink frequency offset measurement resource, or the like.
  • the one or more third resources may also be referred to as a group of third resources, and a group of third resources includes one or more third resources.
  • the downlink frequency offset information can be measured by using a downlink signal, and the downlink signal can be any of the above-mentioned downlink signals, which will not be repeated.
  • the third resource may be configured by the network device for the terminal device, or may be specified by a protocol.
  • the network device when indicating the first beam, may also indicate resources for measuring downlink frequency offset information, and the first indication information may further include: information of one or more third resources.
  • the network device may also configure one or more third resources for the terminal device through other indication information or configuration information different from the first indication information.
  • the terminal device When the terminal device measures the downlink frequency offset information corresponding to the first beam according to one or more third resources, it may specifically be that the network device sends a downlink signal to the terminal device on the third resource, and the terminal device receives data from the network on the third resource.
  • the downlink signal of the device so as to measure the downlink frequency offset information.
  • the network device sends the downlink signal for measuring the downlink frequency offset information on the third resource, it can use the first beam to send, or use the beam in the same direction as the first beam to send, so that the measured downlink frequency offset information It is the downlink frequency offset information of the first beam. It can be understood that the network device does not need to additionally inform the terminal device of the beam used when sending the downlink signal on the third resource, which can save signaling overhead.
  • the association relationship between the first beam and the third resource may be any of the association relationships between the first resource and the first beam introduced above, and it is only necessary to replace the first resource with the third resource.
  • the third resource used for downlink frequency offset information and the first resource used for downlink time offset information measurement may be multiplexed with each other.
  • the first resource and the third resource may be completely identical (that is, the downlink frequency offset information corresponding to the first beam is measured according to one or more first resources), or may be partially or partially the same, or the first resource may be the third resource.
  • a part of the resource that is, the first resource is included in the third resource
  • the third resource may be a part of the first resource (that is, the third resource is included in the first resource).
  • behavior 3 is introduced: measuring the path loss information corresponding to the first beam.
  • This behavior 3 is generally applicable to a scenario in which the first beam includes a transmission beam (downlink transmission beam) on the network device side.
  • the specific details of measuring the downlink time offset information corresponding to the first beam in the behavior 1 introduced above are also applicable to measuring the path loss information corresponding to the first beam. Only the names of the resources and/or the signals used for measurement may be different, and the rest of the details can be referred to each other.
  • the terminal device measures the path loss information corresponding to the first beam according to the one or more second resources.
  • the second resource is used to measure path loss information corresponding to the first beam, and the second resource may also be referred to as a second measurement resource, or a path loss measurement resource, or the like.
  • the one or more second resources may also be referred to as a group of second resources, and a group of second resources includes one or more second resources.
  • the path loss information can be measured by the downlink signal, and the downlink signal can be any of the downlink signals described above, which will not be repeated.
  • the second resource may be configured by the network device for the terminal device, or may be specified by a protocol.
  • the network device when indicating the first beam, may further indicate resources for measuring path loss information, and the first indication information may further include: information of one or more second resources.
  • the network device may also configure one or more second resources for the terminal device through other indication information or configuration information different from the first indication information.
  • the terminal device When the terminal device measures the path loss information corresponding to the first beam according to one or more second resources, it may specifically be that the network device sends a downlink signal to the terminal device on the second resource, and the terminal device receives data from the network device on the second resource.
  • the downlink signal so as to measure the path loss information.
  • the network device sends the downlink signal for measuring the path loss information on the second resource, it can use the first beam to send, or use the beam in the same direction as the first beam to send, so that the measured path loss information is the Pathloss information of the first beam. It can be understood that the network device does not need to additionally inform the terminal device of the beam used when sending the downlink signal on the second resource, which can save signaling overhead.
  • the association between the first beam and the second resource may be any of the associations between the first resource and the first beam described above, and it is only necessary to replace the first resource with the second resource.
  • the second resource and the first beam satisfy the quasi-colocation relationship of typeD; or, the second resource and the quasi-colocated resource of typeD type corresponding to the first beam satisfy the quasi-colocation relationship of typeD.
  • the second resource for path loss information and the first resource for measuring downlink time offset information may be multiplexed with each other.
  • the first resource and the second resource may be completely identical, or partially or partially the same, the first resource may be a part of the second resource (that is, the first resource is included in the second resource), or the second resource may be A portion of the first resource (ie, the second resource is contained in the first resource).
  • the second resource and the third resource may also be multiplexed with each other.
  • the second resource for measuring path loss information multiplexes the first resource for measuring downlink timing information.
  • the second resource is the first resource; exemplary, the second resource is one of a plurality of the first resources; exemplary, the second resource is a plurality of the first resources multiple in the resource.
  • the one resource when the second resource is one of the first resources, the one resource may be the first resource, the last resource, or the one with the smallest index among the first resources , or the resource with the largest index.
  • the one resource when multiple first resources are located in multiple resource sets, the one resource may be the first resource in the nth resource set, or the last resource in the nth resource set, or the nth resource set.
  • the nth can be the first, it can be the last, it can be the second, the third, any one, etc.
  • the reference signal resource (ie, the first resource) in the QCL information of typeA, typeB, or typeC of the first beam is used as the second resource.
  • all resources in the resource set where the reference signal resource (that is, the first resource) in the QCL information of the typeA, typeB or typeC of the first beam is used as the second resource to measure the path loss information .
  • All resources in the resource set configured with trs-info where the reference signal resources in the QCL information of typeA, typeB or typeC of the first beam are located are used as the second resources.
  • the above-mentioned example is also applicable to the case of "the first resource is part or all of the second resource". It is only necessary to reverse the first resource and the second resource, that is, replace the first resource with the second resource, and replace the second resource with the second resource.
  • the resource can be replaced with the first resource.
  • Behavior 4 Send a signal for uplink timing measurement according to the first beam; correspondingly, the network device receives the signal for uplink timing measurement. Further, the network device sends uplink timing adjustment information to the terminal device, and the terminal device performs behavior 5: receives the uplink timing adjustment information from the network device, for example, the network device sends a timing adjustment (timing adjustment, TA) command to the terminal device, and the TA command It includes uplink timing adjustment information. Subsequently, the terminal device uses the uplink timing adjustment information for transmission.
  • TA timing adjustment
  • the terminal device measures uplink timing information corresponding to the first beam according to the one or more fourth resources.
  • the fourth resource is used to measure uplink timing information of the first beam, and the fourth resource may also be referred to as fourth measurement resource, or uplink timing measurement resource, or timing measurement resource, or the like.
  • the one or more fourth resources may also be referred to as a group of fourth resources, and a group of fourth resources includes one or more fourth resources.
  • the uplink timing information may be measured by an uplink signal, for example, the uplink signal may be SRS, PRACH, etc., that is, the reference signal sent in act 4 may be SRS or PRACH.
  • the fourth resource is a resource used for beam switching, and the fourth resource may also be called an uplink signal source.
  • the fourth resource may be an SRS resource or a PRACH resource.
  • the group of fourth resources may be configured by the network device for the terminal device, or may be specified by a protocol.
  • the network device when indicating the first beam, may further indicate a resource for measuring uplink timing information, and the first indication information may further include: information of one or more fourth resources.
  • the network device may also configure one or more fourth resources for the terminal device through other indication information or configuration information different from the first indication information.
  • the terminal device may send the uplink signal to the network device on the fourth resource, and the network device may receive the uplink signal from the terminal device on the fourth resource, thereby measuring the uplink timing information.
  • the specific process for the terminal device to send the signal for uplink timing measurement according to the first beam in Behavior 4 may be: using the receiving beam of the first beam (
  • the receiving beam of the first beam may also be understood as a transmitting beam in the same direction as the receiving beam of the first beam), and an uplink signal for measuring uplink timing information is sent. That is, the terminal device uses the receive beam A as the receive beam of the first beam, and then uses the transmit beam in the same direction as the receive beam A to transmit the uplink signal for measuring the uplink timing information.
  • the specific process of sending the signal for uplink timing measurement by the terminal device according to the first beam in Behavior 4 may be: using the first beam to send the signal for measurement
  • the uplink signal of the uplink timing information that is, the transmission beam of the uplink signal used to measure the uplink timing information is the first beam.
  • first resource, second resource, third resource, and fourth resource can be used after configuration, or can be used after activation.
  • the network device may send activation signaling to the terminal device for activating the resources used for the first beam measurement.
  • the first indication information can also be used to activate the resources used for the first beam measurement, that is, the first indication information can also be used to activate the first resource, the second resource, the third resource and the fourth resource. one or more. In this way, when the network device sends the first indication information, the resources associated with the first beam are automatically activated without additionally sending activation signaling.
  • the first indication information can also be used to deactivate or cancel the first beam. After the first beam is deactivated or canceled, the corresponding measurement resource is also deactivated or canceled.
  • the first indication information may be RRC signaling, or MAC CE signaling, or DCI signaling (or the first indication information is carried in RRC signaling, or MAC CE signaling, or DCI signaling).
  • the first indication information may indicate one or more first beams, where the first beams are uplink transmission beams or beams commonly used for uplink and downlink transmissions.
  • the first beam is the TCI-state used for uplink transmission (it can be understood that the first indication information indicates the index of the TCI-state used for uplink transmission, or the first indication information includes the TCI-state used for uplink transmission), the TCI-state The state includes a reference signal resource, and the terminal determines the uplink transmission beam (ie, the first beam) according to the reference signal resource. Specifically, if the reference signal resource is a downlink resource, the terminal uses the receive beam of the downlink resource as the uplink transmit beam (it can be understood that the transmit beam in the same direction as the receive beam of the downlink resource is used as the uplink transmit beam); If the reference signal resource is an uplink resource, the terminal uses the transmission beam of the uplink resource as the uplink transmission beam.
  • the reference signal resource is a downlink resource
  • the terminal uses the receive beam of the downlink resource as the uplink transmit beam (it can be understood that the transmit beam in the same direction as the receive beam of the downlink resource is used as the uplink transmit beam); If the reference signal
  • the first beam is the TCI-state used for uplink and downlink transmission (it can be understood that the first indication information indicates the index of the TCI-state used for uplink and downlink transmission, or the first indication information includes the TCI-state used for uplink and downlink transmission)
  • the TCI-state includes a reference signal resource
  • the terminal determines the uplink transmit beam and the downlink receive beam according to the reference signal resource.
  • the terminal uses the receive beam of the downlink resource as the downlink receive beam and the uplink transmit beam (it can be understood as using the transmit beam in the same direction as the receive beam of the downlink resource as the uplink transmit beam); if the reference signal resource is an uplink resource, the terminal adopts the transmit beam of the uplink resource as the uplink transmit beam and the downlink receive beam (it can be understood as using the receive beam in the same direction as the transmit beam of the uplink resource as downlink receive beam).
  • the terminal device After the first indication information indicates one or more first beams, the terminal device performs uplink timing adjustment and measures path loss information for each first beam through the following methods.
  • Timing measurements include the following implementations:
  • the first beam is associated with an uplink resource
  • the UE sends the uplink resource for the network device to determine the uplink timing information corresponding to the first beam; the uplink resource is sent by using the first beam.
  • the uplink resource may be a semi-static resource. When the first beam is not indicated, the uplink resource is in an inactive state; when the first beam is indicated, the uplink resource is automatically activated.
  • the configuration parameters corresponding to the first beam include uplink resources used to indicate uplink transmission beams.
  • the configuration parameters corresponding to the first beam are included in one TCI-state, and the TCI-state includes uplink resources used to indicate the uplink transmission beam.
  • the terminal device sends the uplink resource to the network device for the network device to determine the uplink timing information corresponding to the first beam; the uplink resource is sent by using the first beam.
  • the uplink resource may be a semi-static resource. When the first beam is not indicated, the uplink resource is in an inactive state; when the first beam is indicated, the uplink resource is automatically activated.
  • the path loss measurement includes the following implementations:
  • the first beam is associated with a downlink resource
  • the UE measures the downlink resource to determine the path loss information; the terminal uses the same beam direction of the first beam to receive the downlink resource.
  • the downlink resource may be a semi-static resource. When the first beam is not indicated, the downlink resource is in an inactive state; when the first beam is indicated, the downlink resource is automatically activated.
  • the configuration parameters corresponding to the first beam include downlink resources used to indicate uplink transmission beams.
  • the configuration parameter corresponding to the first beam is included in one TCI-state, and the TCI-state includes downlink resources used to indicate the uplink transmission beam.
  • the terminal device measures the downlink resources to determine the path loss information; uses the first beam to receive the downlink resources, that is, uses the same beam direction as the first beam to receive the downlink resources.
  • the downlink resource may be a semi-static resource. When the first beam is not indicated, the downlink resource is in an inactive state; when the first beam is indicated, the downlink resource is automatically activated.
  • the terminal device can report to the network device whether it supports the ability to maintain (measure) the beam to be switched (the beam to be switched can also be replaced with a future beam or the first beam) before the beam switching, maintenance ( measurement) is to measure information such as timing or path loss or frequency offset of future beams.
  • the network device receives from the terminal device whether it supports the ability to maintain the beam to be switched before the beam is switched. Therefore, according to the capability of the terminal, it is decided whether to send the first indication information to the terminal device.
  • the network device sends the first indication information to the terminal device in a targeted manner, avoiding the problem that the terminal device does not have the ability to measure the beam to be switched before the beam is switched after the first indication information is sent, which wastes signaling overhead. .
  • the solution introduced above is to first indicate a beam to be switched (first beam) through the first indication information, and then send the second indication information for beam switching to implement beam switching.
  • the network device sends the first indication information to the terminal device, which is used to indicate the first beam, and the network device may not send the second indication information.
  • the first indication information is regarded as a pre-handover command, and a fourth duration is specified, and the terminal device can perform beam switching after the fourth time interval is separated by the specified fourth duration.
  • the actions of the terminal device are:
  • the fifth moment the fourth moment + the fourth duration.
  • the fourth time may be the time at which the first indication information is received (it may be at the time slot or symbol level), that is, the terminal device starts timing after receiving the first indication information (for example, using a timer).
  • the fourth time is the time when the ACK information for the first indication information is fed back, or the fourth time is the time when the ACK information for the first indication information is fed back plus a transmission delay.
  • the fourth duration may be determined by the network device and indicated to the terminal device, for example, the fourth duration is indicated in the first indication information, or configured through RRC. Alternatively, the fourth duration may be a value specified by the protocol. Alternatively, the fourth duration may be determined by the terminal device and reported to the network device, for example, it may be reported to the network device through capability information.
  • the terminal device When performing beam switching according to the first beam, if the first beam is the transmit beam on the network device side, the terminal device switches the transmit beam of the terminal device to the receive beam corresponding to the first beam; if the first beam For the transmission beam on the side of the terminal device, the terminal device switches the transmission beam of the terminal device to the first beam.
  • the actions of the network device are:
  • the fourth time may be the time of sending the first indication information, the time of sending the first indication information plus the transmission delay, or the time of receiving the ACK information for the first indication information.
  • the network device When performing beam switching according to the first beam, if the first beam is the transmission beam on the network device side, the network device switches the transmission beam of the network device to the first beam, if the first beam is the terminal device the transmission beam on the side, the network device switches the transmission beam of the network device to the reception beam corresponding to the first beam.
  • the network device may send signaling to further extend the fourth duration. For example, this signaling can be used to clear a timer, or to restart timing, etc.
  • the network device may also send signaling to stop the timer or instruct to invalidate one or more of the first indication messages.
  • the network equipment predicts the beams that may be used in the future, and the predicted beams at different time points may be the same or different. If the predicted beams are different, there may be a situation that the network device can send one or more first indication information to the terminal device, and the first beams in each first indication information are different.
  • the fifth time (valid time) corresponding to the multiple pieces of first indication information may be the same or different, and the fifth time corresponding to the first indication information sent by the network device may be earlier than or later than or equal to the fifth moment corresponding to the first indication information sent later.
  • the preceding first indication information is valid (validation means that beam switching is performed according to the first beam indicated by the first indication information), then all the following first indication information is invalid.
  • the latter first indication information refers to other first indication information whose effective time is later than the effective first indication information.
  • the timer of the following first indication information is cleared, or restarts timing, or continues for a period of time above the current time.
  • the embodiments of the present application may divide the device into functional modules according to the foregoing method examples. For example, each function may be divided into each functional module, or two or more functions may be integrated into one module. These modules can be implemented either in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in specific implementation.
  • FIG. 6 a schematic structural diagram of an apparatus 600 for beam switching (the apparatus for beam switching can also be regarded as a communication apparatus) is provided.
  • the apparatus 600 may be a terminal device, or may be applied to Chip or functional unit in terminal equipment.
  • the apparatus 600 has any function of the terminal device in the above-mentioned method.
  • the apparatus 600 can execute each step performed by the terminal device in the above-mentioned method of FIG. 4 .
  • the apparatus 600 may include: a processing module 610, and optionally, a receiving module 620a, a sending module 620b, and a storage module 630.
  • the processing module 610 may be connected to the storage module 630, the receiving module 620a, and the sending module 620b, respectively, and the storage module 630 may also be connected to the receiving module 620a and the sending module 620b.
  • the receiving module 620a may perform the receiving actions performed by the terminal device in the foregoing method embodiments.
  • the sending module 620b may perform the sending action performed by the terminal device in the foregoing method embodiments.
  • the processing module 610 may perform other actions except the sending action and the receiving action among the actions performed by the terminal device in the foregoing method embodiments.
  • the receiving module 620a is configured to receive first indication information from a network device, where the first indication information is used to indicate the first beam;
  • a processing module 610 configured to perform one or more of the following actions according to the first beam: measuring downlink time offset information corresponding to the first beam, measuring downlink frequency offset information corresponding to the first beam, measuring the The path loss information corresponding to the first beam, the signal used for uplink timing measurement is sent by the sending module 620b according to the first beam, and the uplink timing adjustment information from the network device is received by the receiving module 620a, and the uplink timing adjustment information determined based on the first beam;
  • the receiving module 620a is further configured to receive second indication information from the network device, where the second indication information is used to instruct switching to the first beam.
  • the processing module 610 when used to measure the downlink time offset information and/or the downlink frequency offset information corresponding to the first beam, it is specifically configured to: according to one or more first resources, measure Downlink time offset information and/or downlink frequency offset information corresponding to the first beam; wherein, the first resource and the first beam satisfy a quasi-colocation relationship of typeD; or, the first resource and the first beam The quasi-co-located resources of typeD type corresponding to a beam satisfy the quasi-co-located relationship of typeD.
  • the processing module 610 when used to measure the path loss information corresponding to the first beam, it is specifically configured to: measure the path corresponding to the first beam according to one or more second resources loss information; wherein, the second resource and the first beam satisfy the quasi-colocation relationship of typeD; or, the quasi-colocation resource of typeD type corresponding to the second resource and the first beam satisfies the quasi-colocation relationship of typeD .
  • the processing module 610 when the processing module 610 is configured to measure the path loss information corresponding to the first beam according to multiple second resources, the processing module 610 is specifically configured to: measure the first beam according to each second resource.
  • the path loss information corresponding to a beam is obtained, and the corresponding multiple path loss information measurement results are obtained, and the average value of the multiple path loss information measurement results is determined; or, the path corresponding to the first beam is measured according to each second resource.
  • Loss information is obtained, a plurality of corresponding measurement results of path loss information are obtained, and filtering processing is performed on the measurement results of multiple path loss information to obtain a measurement result of path loss information.
  • the processing module 610 when the processing module 610 is configured to send the signal for uplink timing measurement according to the first beam, the processing module 610 is specifically configured to: use the first beam by the sending module 620b to send the signal for uplink timing measurement. The signal for timing measurement; or, by using the receiving beam of the first beam by the sending module 620b, the signal for uplink timing measurement is sent.
  • the processing module 610 when the processing module 610 is configured to perform the one or more actions according to the first beam, the processing module 610 is specifically configured to: at a first moment, start performing the execution of the one or more actions according to the first beam. one or more of the above actions; wherein, the first moment is any one of the following: the moment when the first indication information is received; the moment when the acknowledgment ACK information corresponding to the first indication information is fed back; The time after the first indication information is added with a time interval; the time after feeding back the ACK information corresponding to the first indication information is added with the time after a time interval.
  • the sending module 620b is configured to report to the network device whether the apparatus supports the capability of measuring the beam to be switched before the beam is switched.
  • the storage module 630 may store computer-executed instructions of the method executed by the terminal device, so that the processing module 610, the receiving module 620a and the sending module 620b can execute the method executed by the terminal device in the above example.
  • the above-mentioned receiving module 620a and transmitting module 620b can also be integrated together, which is defined as a transceiver module.
  • FIG. 7 a schematic structural diagram of a beam switching device 700 (the beam switching device can also be regarded as a communication device) is provided.
  • the device 700 can be a network device or an application Chips or functional units in network equipment.
  • the apparatus 700 has any function of the network device in the above-mentioned method. For example, the apparatus 700 can execute each step performed by the network device in the above-mentioned method of FIG. 4 .
  • the apparatus 700 may include: a processing module 710, and optionally, a receiving module 720a, a sending module 720b, and a storage module 730.
  • the processing module 710 may be connected to the storage module 730, the receiving module 720a, and the sending module 720b, respectively, and the storage module 730 may also be connected to the receiving module 720a and the sending module 720b.
  • the receiving module 720a may perform the receiving actions performed by the network device in the foregoing method embodiments.
  • the sending module 720b may perform the sending action performed by the network device in the foregoing method embodiments.
  • the processing module 710 may perform other actions except the sending action and the receiving action among the actions performed by the network device in the foregoing method embodiments.
  • the processing module 710 is used to generate first indication information; the sending module 720b is used to send the first indication information to the terminal device, the first beam information is used to indicate the first beam, the first indication The information is used to instruct the terminal device to perform one or more of the following actions according to the first beam: measure downlink time offset information corresponding to the first beam, measure downlink frequency offset information corresponding to the first beam, measure path loss information corresponding to the first beam, sending a signal for uplink timing measurement according to the first beam, and receiving uplink timing adjustment information from the device, where the uplink timing adjustment information is determined based on the first beam ; and send second indication information to the terminal device, where the second indication information indicates switching to the first beam.
  • the sending module 720b is configured to send information about one or more first resources to the terminal device, where the first resources are used to measure downlink time offset information and/or corresponding to the first beam or downlink frequency offset information; wherein, the first resource and the first beam satisfy the quasi-colocation relationship of typeD; Quasi-identical relationship.
  • the sending module 720b is configured to send information of one or more second resources to the terminal device, where the second resources are used to measure the path loss information corresponding to the first beam; wherein, The second resource and the first beam satisfy the quasi-colocation relationship of typeD; or, the second resource and the quasi-colocated resource of the typeD type of the first beam satisfy the quasi-colocation relationship of typeD.
  • the receiving module 720a is configured to receive a report from the terminal device whether the terminal device supports the ability to measure the beam to be switched before the beam is switched.
  • the storage module 730 can store computer-executed instructions for the method executed by the network device, so that the processing module 710, the receiving module 720a and the sending module 720b can execute the method executed by the network device in the above example.
  • the above-mentioned receiving module 720a and transmitting module 720b can also be integrated together, which is defined as a transceiver module.
  • the storage module may include one or more memories, and the memories may be devices in one or more devices or circuits for storing programs or data.
  • the storage module can be a register, a cache or a RAM, etc., and the storage module can be integrated with the processing module.
  • the storage module can be a ROM or other type of static storage device that can store static information and instructions, and the storage module can be independent of the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, or the like.
  • the device can be implemented by a general bus architecture.
  • FIG. 8 a schematic block diagram of an apparatus for beam switching (the apparatus for beam switching may also be regarded as a communication apparatus) 800 is provided.
  • the apparatus 800 may be a terminal device, or may be a chip applied in the terminal device. It should be understood that the apparatus has any function of the terminal device in the above method. For example, the apparatus 800 can execute each step performed by the terminal device in the above method in FIG. 4 .
  • the apparatus 800 may include: a processor 810 , and optionally, a transceiver 820 and a memory 830 .
  • the transceiver 820 may be used to receive programs or instructions and transmit them to the processor 810, or the transceiver 820 may be used for the apparatus 800 to communicate and interact with other communication devices, such as interactive control signaling and/or services data etc.
  • the transceiver 820 may be a code and/or data read/write transceiver, or the transceiver 820 may be a signal transmission transceiver between the processor and the transceiver.
  • the processor 810 and the memory 830 are electrically coupled.
  • the memory 830 is used to store computer programs; the processor 810 can be used to call the computer programs or instructions stored in the memory 830 to execute the method executed by the terminal device in the above example, or to use the The transceiver 820 performs the method performed by the terminal device in the above example.
  • the processing module 610 in FIG. 6 can be implemented by the processor 810 .
  • the receiving module 620a and the transmitting module 620b in FIG. 6 can be implemented by the transceiver 820 .
  • the transceiver 820 is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the transmitting module.
  • the storage module 630 in FIG. 6 may be implemented by the memory 830 .
  • the apparatus applied to the network device is similar in structure to the apparatus in FIG. 8 , and may also include a processor, optionally, a transceiver and a memory.
  • the apparatus applied to the second network device may be the network device, or may be a chip applied to the network device. It should be understood that the apparatus has any function of the network device in the above method, for example, the apparatus can execute each step performed by the network device in the method of FIG. 4 above.
  • the memory is used to store a computer program; the processor can be used to call the computer program or instruction stored in the memory to execute the method executed by the network device in the above example, or to execute the method through the transceiver. The method performed by the network device in the above example.
  • the processing module 710 in FIG. 7 may be implemented by the processor.
  • the receiving module 720a and the transmitting module 720b in FIG. 7 can be implemented by the transceiver.
  • the transceiver is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the transmitting module.
  • the storage module 730 in FIG. 7 may be implemented by the memory.
  • the apparatus may be implemented by a general-purpose processor (a general-purpose processor may also be referred to as a chip or a chip system).
  • a general-purpose processor may also be referred to as a chip or a chip system.
  • the general-purpose processor that implements the apparatus applied to the terminal device includes: a processing circuit (the processing circuit may also be referred to as a processor); An input/output interface, a storage medium (the storage medium may also be referred to as a memory), the storage medium is used to store the instructions executed by the processing circuit to execute the method executed by the terminal device in the above example.
  • the processing module 610 in FIG. 6 may be implemented by a processing circuit.
  • the receiving module 620a and the sending module 620b in FIG. 6 can be implemented through an input and output interface.
  • the input and output interface is divided into an input interface and an output interface, the input interface performs the function of the receiving module, and the output interface performs the function of the sending module.
  • the storage module 630 in FIG. 6 may be implemented by a storage medium.
  • the general-purpose processor that implements the apparatus applied to the network device includes: a processing circuit (the processing circuit may also be referred to as a processor); An input/output interface, a storage medium (the storage medium may also be referred to as a memory), the storage medium is used to store instructions executed by the processing circuit to execute the method executed by the network device in the above example.
  • the processing module 710 in FIG. 7 may be implemented by a processing circuit.
  • the receiving module 720a and the sending module 720b in FIG. 7 can be implemented through an input and output interface.
  • the input and output interface is divided into an input interface and an output interface, the input interface performs the function of the receiving module, and the output interface performs the function of the sending module.
  • the storage module 730 in FIG. 7 may be implemented by a storage medium.
  • the apparatus in this embodiment of the present application can also be implemented by using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal includes: at least one processor 1211 and at least one transceiver 1212 .
  • the terminal may further include: at least one memory 1213 , an output device 1214 , an input device 1215 and one or more antennas 1216 .
  • the processor 1211 , the memory 1213 and the transceiver 1212 are connected.
  • the antenna 1216 is connected to the transceiver 1212 , and the output device 1214 and the input device 1215 are connected to the processor 1211 .
  • the memory 1213 may exist independently and be connected to the processor 1211 . In another example, the memory 1213 can also be integrated with the processor 1211, for example, in one chip.
  • the memory 1213 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 1211 .
  • the processor 1211 is configured to execute the computer program codes stored in the memory 1213, thereby implementing the technical solutions in the embodiments of the present application.
  • the transceiver 1212 may be used to support the reception or transmission of radio frequency signals between the terminal and the terminal, or between the terminal and the network device, or between the terminal and other devices, and the transceiver 1212 may be connected to the antenna 1216 .
  • the transceiver 1212 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 1216 can receive radio frequency signals
  • the receiver Rx of the transceiver 1212 is configured to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital The baseband signal or digital intermediate frequency signal is provided to the processor 1211, so that the processor 1211 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1212 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1211, convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a The radio frequency signals are transmitted by the antenna or antennas 1216.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the processor 1211 can be used to implement various functions for the terminal, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data of software programs; or to assist in completing Computational processing tasks, such as graphic image processing or audio processing, etc.; or the processor 1211 is used to implement one or more of the above functions.
  • the output device 1214 is in communication with the processor 1211 and can display information in a variety of ways.
  • the output device 1214 may be a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display device, a Cathode Ray Tube (CRT) display device, or a projector (projector). )Wait.
  • the input device 1215 communicates with the processor 1211 and can receive user input in a variety of ways.
  • the input device 1215 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the hardware structure of the network device is similar to the hardware structure of the terminal shown in FIG. 9 , for example, the network device may include: at least one processor and at least one transceiver. In a possible example, the network device may further include: at least one memory and one or more antennas. In one possible example, the transceiver may include a transmitter Tx and a receiver Rx. Wherein, the processor, the memory and the transceiver are connected, and the antenna is connected with the transceiver.
  • Each device can be used to implement various functions for a network device, which is similar to that each device in FIG. 8 is used to implement various functions for a terminal, and will not be repeated.
  • Embodiments of the present application further provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a computer, the computer can be used to perform the above beam switching method.
  • the computer program includes instructions for implementing the above beam switching method.
  • Embodiments of the present application also provide a computer program product, including: computer program code, when the computer program code is run on a computer, the computer can execute the beam switching method provided above.
  • An embodiment of the present application further provides a communication system, where the communication system includes: a terminal device and a network device that perform the above beam switching method.
  • the processor mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), a baseband processor, and the baseband processor and the CPU may be integrated or separated, and may also be a network processor (network processor). processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips or other general purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) and other programmable logic devices. , discrete gate or transistor logic devices, discrete hardware components, etc., or any combination thereof.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the transceiver mentioned in the embodiments of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • the transceiver may operate under the direction of the corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer programs or instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束切换的方法及装置,用于解决在波束切换时,传输性能损失的问题。终端设备接收来自网络设备的第一指示信息,用于指示第一波束。然后,根据第一波束执行以下一项或多项行为:测量第一波束对应的下行时频偏信息、路损信息;根据第一波束发送用于上行定时测量的信号、接收来自网络设备的上行定时调整信息,定时调整信息基于第一波束确定。进而,接收来自网络设备的第二指示信息,第二指示信息用于指示切换至第一波束。终端先测量即将切换的第一波束的定时信息和/或路损信息。进而在接收到用于波束切换的第二指示信息时,已经执行完成或执行了一部分测量第一波束的定时信息和/或路损信息的过程,就可以及时切换到第一波束。

Description

一种波束切换的方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种波束切换的方法及装置。
背景技术
网络设备和终端设备之间通过波束进行通信,网络设备和终端设备可以确定出两者之间的用于上下行传输的最优波束对(即发送波束和接收波束),以提高通信性能。随着终端设备移动或其它原因,最优波束对中的发送波束和接收波束可能会发生变化。这种情况下,可以通过网络设备与终端设备之间的信令交互来切换(切换也可以称为更新)用于上下行传输的发送波束。对于终端设备来说,需要先测量即将切换的波束(即将切换的波束也可以称为更新后的波束或即将更新的波束)的定时、路损等信息,再进行波束切换。由于定时、路损的测量耗时较长,即将切换的波束不能及时用于上下行传输,会导致传输性能损失。
发明内容
本申请提供一种波束切换的方法及装置,用于解决在波束切换时,传输性能损失的问题。
第一方面,提供了一种波束切换的方法,应用于终端设备或终端设备中的芯片。首先,接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一波束。然后,根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、根据所述第一波束发送用于上行定时测量的信号、接收来自所述网络设备的上行定时调整信息,所述定时调整信息基于所述第一波束确定。进而,接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示切换至所述第一波束。可选的,根据所述第一波束进行波束切换。
在第一方面中,网络设备在向终端设备发送用于波束切换的第二指示信息之前,先告知终端设备即将切换的第一波束。则终端设备可以先测量即将切换的第一波束的定时信息和/或路损信息。进而,终端设备在接收到用于波束切换的第二指示信息时,已经执行完成测量第一波束的定时信息和/或路损信息的过程,或执行了一部分测量第一波束的定时信息和/或路损信息的过程。这样,可以减小或避免切换到第一波束时需要先测量即将切换的第一波束的定时、路损等信息所需要的时延,避免传输性能的损失。
在一种可能的实现中,根据一个或多个第一资源,测量所述第一波束对应的下行时偏信息和/或下行频偏信息。其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一测量资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。所述一个或多个第一资源为网络设备配置的,或协议规定的。例如,接收来自网络设备的一个或多个第一资源的信息,所述第一资源用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息。
在一种可能的实现中,所述第一资源为所述第一波束对应的typeA或typeB或TypeC 类型的准同位资源。
在一种可能的实现中,根据一个或多个第二资源,测量所述第一波束对应的路损信息。其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。所述一个或多个第二资源为网络设备配置的,或协议规定的。例如,接收来自网络设备的一个或多个第二资源的信息,所述第二资源用于测量所述第一波束对应的路损信息。
在一种可能的实现中,所述第二资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
在一种可能的实现中,所述第二资源包含在所述第一资源中。也就是第二资源复用第一资源。例如,所述第二资源为所述第一资源的部分或全部。例如,所述第二资源是多个所述第一资源中的一个。例如,所述第二资源是多个所述第一资源中的多个。第二资源复用第一资源,可以提高资源利用率。
在一种可能的实现中,在根据多个第二资源,测量所述第一波束对应的路损信息时,可以是先根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果。然后,可以确定多个路损信息的测量结果的平均值,将平均值作为最终得到的第一波束的路损信息测量结果。或者,将多个路损信息测量结果进行滤波处理(滤波处理可以理解为加权平均),将滤波处理后的路损信息测量结果作为最终得到的第一波束的路损信息测量结果。计算平均值和进行滤波处理可以减少测量的波动。
在一种可能的实现中,所述第一指示信息还用于激活所述第一资源和/或所述第二资源,这样无需单独发送激活指令来激活第一资源和/或第二资源,可以节省信令开销。
在一种可能的实现中,根据所述第一波束发送用于上行定时测量的信号时,可以是采用所述第一波束发送用于上行定时测量的信号,这种实现适用于第一波束为终端设备侧的发送波束的情况。还可以采用第一波束的接收波束(第一波束的接收波束可以理解为:与所述第一波束的接收波束的方向相同的发送波束),发送用于上行定时测量的信号,这种实现适用于第一波束为网络设备侧的发送波束的情况。
在一种可能的实现中,在根据第一波束进行第一方面中的第一项或多项行为时,可以是在第一时刻,根据所述第一波束进行第一方面中的一项或多项行为。第一时刻可以是接收到所述第一指示信息的时刻(或者时刻所在的时隙或符号),反馈所述第一指示信息对应的确认应答ACK信息的时刻(或者时刻所在的时隙或符号);接收到所述第一指示信息的时刻(或者时刻所在的时隙或符号)加上一个时间间隔后的时刻;反馈所述第一指示信息对应的ACK信息的时刻(或者时刻所在的时隙或符号)加上一个时间间隔后的时刻。在该可能的实现中,时刻可以替换为时间单元,时间单元可以是时隙级别或符号级别。
在一种可能的实现中,第二时长大于或等于第一时长;其中,所述第二时长为接收第二指示信息的时刻(或时隙或符号)与接收第一指示信息的时刻(或时隙或符号)之间间隔的时长,所述第一时长用于执行完成第一方面中的一项或多项行为。可选的,第一时长大于或等于执行完成第一方面中的一项或多项行为所需的时长。这样,可以保证网络设备向终端设备发送第二指示信息时,终端设备已经完成对第一波束的测量,从而可以实现快速直接切换到第一波束上,提高波束切换的效率,提高传输性能。
在一种可能的实现中,还可以提前向所述网络设备上报:是否支持在波束切换前,对即将切换的波束进行测量的能力。这样使得网络设备有针对性的向终端设备发送第一指示 信息,避免发送第一指示信息之后,终端设备不具备在波束切换前,对即将切换的波束进行测量的能力,浪费信令开销的问题。
第二方面,提供了一种波束切换的方法,应用于网络设备或网络设备中的芯片。首先,向终端设备发送第一指示信息,所述第一波束信息用于指示第一波束,所述第一指示信息用于指示所述终端设备根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、根据所述第一波束发送用于上行定时测量的信号、接收来自所述网络设备的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定。然后,向所述终端设备发送第二指示信息,所述第二指示信息指示切换至第一波束。可选的,根据所述第一波束进行波束切换。
在第二方面中,网络设备在向终端设备发送用于波束切换的第二指示信息之前,先告知终端设备即将切换的第一波束。则终端设备可以先测量即将切换的第一波束的定时信息和/或路损信息。进而,终端设备在接收到用于波束切换的第二指示信息时,已经执行完成测量第一波束的定时信息和/或路损信息的过程,或执行了一部分测量第一波束的定时信息和/或路损信息的过程。这样,可以减小或避免切换到第一波束时需要先测量即将切换的第一波束的定时、路损等信息所需要的时延,避免传输性能的损失。
在一种可能的实现中,向所述终端设备发送一个或多个第一资源的信息,所述第一资源用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息;其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
在一种可能的实现中,所述第一资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
在一种可能的实现中,向所述终端设备发送一个或多个第二资源的信息,所述第二资源用于测量所述第一波束对应的路损信息;其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束的typeD类型的准同位资源满足typeD的准同位关系。
在一种可能的实现中,所述第二资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
在一种可能的实现中,所述第二资源包含在所述第一资源中。也就是第二资源复用第一资源。例如,所述第二资源为所述第一资源的部分或全部。例如,所述第二资源是多个所述第一资源中的一个。例如,所述第二资源是多个所述第一资源中的多个。第二资源复用第一资源,可以提高资源利用率。
在一种可能的实现中,所述第一指示信息还用于激活所述第一资源和/或所述第二资源,这样无需单独发送激活指令来激活第一资源和/或第二资源,可以节省信令开销。
在一种可能的实现中,第二时长大于或等于第一时长;其中,所述第二时长为接收第二指示信息的时刻(或时隙或符号)与接收第一指示信息的时刻(或时隙或符号)之间间隔的时长,所述第一时长用于执行完成第一方面中的一项或多项行为。可选的,第一时长大于或等于终端设备执行完成第二方面中的一项或多项行为所需的时长。这样,可以保证网络设备向终端设备发送第二指示信息时,终端设备已经完成对第一波束的测量,从而可以实现快速直接切换到第一波束上,提高波束切换的效率,提高传输性能。
在一种可能的实现中,接收来自终端设备上报的所述终端设备是否支持在波束切换前,对即将切换的波束进行测量的能力。这样使得网络设备有针对性的向终端设备发送第一指示信息,避免发送第一指示信息之后,终端设备不具备在波束切换前,对即将切换的波束进行测量的能力,浪费信令开销的问题。
第三方面,提供了一种通信装置,所述装置具有实现上述第一方面及第一方面任一可能的实现中的功能,或实现上述第二方面及第二方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第四方面,提供了一种通信装置,包括处理器和存储器;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端设备的功能,或实现上述第二方面及第二方面任一可能的实现中网络设备的功能。
在一种可能的实现中,所述装置还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述收发器可以执行第一方面及第一方面任一可能的实现中终端设备执行的发送动作或接收动作;或者,执行第二方面及第二方面任一可能的实现中网络设备执行的发送动作或接收动作。
第四方面,提供了一种通信装置,包括处理器;所述处理器,用于执行计算机程序或指令,当所述计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端设备的功能,或者实现上述第二方面及第二方面任一可能的实现的方法中网络设备的功能。所述计算机程序或指令可以存储在所述处理器中,也可以存储在存储器中,所述存储器与所述处理器耦合。所述存储器可以位于所述通信装置中,也可以不位于所述通信装置中。
在一种可能的实现中,所述装置还包括:通信接口,所述通信接口,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述通信接口可以执行第一方面及第一方面任一可能的实现中终端设备执行的发送动作或接收动作,或者执行第二方面及第二方面任一可能的实现中网络设备执行的发送动作或接收动作。
第五方面,本申请提供了一种芯片系统,该芯片系统包括一个或多个处理器(也可以称为处理电路),所述处理器与存储器(也可以称为存储介质)之间电耦合;所述存储器可以位于所述芯片系统中,也可以不位于所述芯片系统中;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端设备的功能,或实现上述第二方面及第二方面任一可能的实现中网络设备的功能。
在一种可能的实现中,所述芯片系统还可以包括输入输出接口,所述输入输出接口,用于输出所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述输入输出接口可以执行第一方面及第一方面任一可能的实现中终端设备执行的发送动作或接收动作;或者,执行第二方面及第二方面任一可能的实现中网络设备执行的发送动作或接收动作。具体的,输出接口执行发送动作,输入接口执行接收动作。
在一种可能的实现中,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器 件。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于实现第一方面及第一方面任一可能的实现中的功能的指令,或用于实现第二方面及第二方面任一可能的实现中的功能的指令。
或者,一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被计算机执行时,可以使得所述计算机执行上述第一方面及第一方面任一可能的实现的方法中终端设备执行的方法,或执行上述第二方面及第二方面任一可能的实现中网络设备执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由终端设备执行的方法,或执行上述第二方面及第二方面任一可能的实现中由网络设备执行的方法。
第八方面,提供了一种通信系统,所述通信系统包括执行上述第一方面及第一方面任一可能的实现的方法中的终端设备和执行上述第二方面及第二方面任一可能的实现的方法中的网络设备。
上述第三方面至第八方面的技术效果可以参照第一方面至第二方面中的描述,重复之处不再赘述。
附图说明
图1为本申请提供的一种通信系统架构意图;
图2为本申请提供的一种波束切换的过程示意图;
图3a为本申请提供的一种TCI-state的结构示意图;
图3b为本申请提供的一种用于激活TCI-state的MAC CE结构示意图;
图3c为本申请提供的一种配置spatial relation的结构示意图;
图4为本申请提供的一种波束切换的过程示意图;
图5a为本申请提供的一种波束切换的时间示意图;
图5b为本申请提供的一种波束切换的时间示意图;
图6为本申请提供的一种波束切换的装置结构示意图;
图7为本申请提供的一种波束切换的装置结构示意图;
图8为本申请提供的一种波束切换的装置结构示意图;
图9为本申请提供的一种终端结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的方法的系统架构进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wireless local area network,WLAN)通信系统,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、 通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),第六代(6th generation,6G)系统,以及未来通信系统等。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示的通信系统,包括网络设备和终端设备,网络设备和终端设备之间通过波束进行无线通信。网络设备和终端设备分别可以生成多个不同的波束(波束不同是指波束的方向不同),当设备间的发送波束和接收波束在对准时,通信质量较好。此处的发送波束对准是指:发送波束具有方向性,发送波束的主瓣方向指向接收设备;接收波束对准是指:接收波束具有方向性,接收波束的主瓣方向指向发送设备。当发送波束和接收波束在对准时,可以将这个两个波束称为最优波束对。
在进行波束切换时,网络设备向终端设备发送用于波束切换的信令。终端设备需要先测量即将切换的波束(即将切换的波束也可以称为更新后的波束或即将更新的波束)的定时、路损等信息,再进行波束切换。即将切换的波束可以是终端设备的发送波束,也可以是网络设备的发送波束。
由于路损、定时的测量耗时较长,例如数百毫秒,导致即将切换的波束不能及时用于上下行传输,会导致传输性能损失。如图2所示,提供了一种波束切换的方式,来减少传输性能的损失。规定一个时延T,终端设备在接收到来自网络设备的用于波束切换的信令后,在该规定的时延T后,再采用即将切换的波束(例如波束2)进行传输。在时延T之内,仍然采用原先的波束(例如波束1)进行传输,从而提高传输性能。在时延T之内,测量即将切换的波束(例如波束2)的定时、路损等信息。在这段时间T内,原先的波束(例如波束1)的性能可能发生恶化,导致这段时间T内的传输性能仍然会有损失。
基于此,本申请又提供了一种波束切换的方式,网络设备在向终端设备发送用于波束切换的信令之前,先向终端设备告知即将切换的波束是哪个波束,终端设备可以先来测量即将切换的波束的定时、路损等信息。当终端设备接收到网络设备发送的用于波束切换的信令时,就可以及时进行波束切换,避免或减少传输性能损失。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备,具有能够为终端设备提供随机接入功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多 个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
2)终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端(例如,传感器等)、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端,或具有车与车(Vehicle-to-Vehicle,V2V就)公共的无线终端等。
3)在NR协议中,波束的体现可以是空域滤波器(spatial domain filter),或者空间滤波器(spatial filter),或空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准同位(quasi-colocation,QCL)信息,QCL假设,QCL指示等。波束可以通过传输配置索引(编号)状态(transmission configuration index,TCI-state)来指示。波束也可以通过空间关系(spatial relation)参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(包括DL TCI-state和/或UL TCI-state),空间关系(spatial relation)等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请不作限定。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),也可以称为空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter),空间发送参数(spatial transmission parameter),空域发送设置(spatial domain transmission setting),空间发送设置(spatial transmission setting)。
用于接收信号的波束可以称为接收波束(reception beam,Rx beam),也可以称为空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter),空间接收参数(spatial reception parameter),空域接收设置(spatial domain reception setting),空间接收设置(spatial reception setting)。
发送波束可以指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。接收波束可以指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
波束可以是宽波束,或者窄波束,或者其他类型波束。
形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术、或者混合数字/模拟波束赋形技术等。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束可以对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成(对应)一个波束的一个或多个天线端口也可以看作是一个天线端口集或一个天线端口组。
4)在协议中,不是直接采用波束这个词汇来表征波束,而是采用其他方式来隐式的描述波束。波束一般和资源对应,例如,在波束测量中,网络设备为终端设备配置多个资 源,多个资源用于波束测量,每个资源对应一个波束。网络设备采用不同波束、在不同的波束分别对应的资源上发送参考信号,则网络设备发送了多个参考信号。终端设备测量不同波束发送的(也即在不同资源上发送的)参考信号的质量,并向网络设备反馈参考信号的质量,网络设备就知道对应的波束的质量,即实现对该波束的测量。资源可以是上行信号资源,也可以是下行信号资源。上行信号包括但不限于:探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS),物理随机接入信道(physical random access channel,PRACH)。下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block),SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)、跟踪参考信号(tracking reference signal,TRS)。
网络设备通过无线资源控制(radio resource control,RRC)信令向终端设备配置用于波束测量的资源。在配置结构上,一个资源是一个数据结构,包括资源对应的上行信号的相关参数、下行信号的相关参数等。参数例如为:上行信号的类型或下行信号的类型,承载上行信号的资源粒、承载下行信号的资源粒,上行或下行信号的发送时间和周期,发送上行或下行信号所采用的端口数等。每一个上行信号的资源或下行信号的资源具有唯一的索引,以标识该上行或下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
5)接下来介绍在下行传输中,关于网络设备向终端设备指示波束的规定。
在下行传输中,网络设备向终端设备指示传输配置编号(索引)状态TCI-state,TCI-state是一个参数集,包括与下行发送波束(网络设备的发送波束)相关的多个参数。因此,本申请中,波束和TCI-state可以认为是等价的,可相互替换。
首先,网络设备向终端设备配置TCI-state:
网络设备通过RRC信令向终端设备配置多个TCI-state。TCI-state的结构如图3a所示。每个TCI-state包括一个索引tci-StateId字段和两个QCL-Info字段。每个QCL-Info字段包括一个cell(小区)字段、一个bwp-Id(带宽部分bandwidth part)字段、一个referenceSignal(参考信号)字段、一个qcl-Type字段。cell字段用于表示该TCI-state应用于cell字段所指示的cell。不同cell可以配置不同QCL-Info,一个cell的不同bwp可以配置不同QCL-Info。bwp-Id字段用于表示该TCI-state应用于bwp-Id字段所指示的bwp。referenceSignal字段用于表示采用该TCI-state进行传输的信道(例如物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)采用的资源与referenceSignal字段所指示的参考信号资源构成准同位(quasi-co-location,QCL)关系。QCL关系指:两个参考信号资源(两个参考信号资源也可以替换为两个天线端口,天线端口和参考信号资源也是一一对应的)之间具有某些相同的空间参数。两个参考信号资源之间的哪些空间参数相同,取决于该QCL-Info中的qcl-Type字段。另外,上述介绍了波束与(参考信号)资源对应,一个波束对应一个(参考信号)资源。因此,此处的“采用该TCI-state进行传输的信道采用的资源与referenceSignal字段所指示的参考信号资源构成QCL关系”,也就是指“采用该TCI-state进行传输的信道采用的波束与referenceSignal字段所指示的波束构成QCL关系”。qcl-Type字段可以有四种取值,分别为typeA,typeB, typeC,typeD。typeA表示两个参考信号资源具有相同的多普勒偏移(即频偏),多普勒扩展(即频偏的范围),平均时延(即平均时偏),时延扩展(即时偏的范围)。typeB表示两个参考信号资源具有相同的多普勒偏移,多普勒扩展。typeC表示两个参考信号资源具有相同的多普勒偏移,平均时延。typeD表示两个参考信号资源具有相同的空间接收参数,也可以理解为两个发送波束具有相同的接收波束。网络设备向终端设备配置的TCI-state包括的两个QCL-Info中,最多只能有一个是TypeD类型的。网络设备配置的TCI-state中也可以不包括typeD类型的QCL-info,不包括typeD类型的QCL-info的TCI-state不是用于指示波束的相关信息的,故此处不再进一步阐述。
接下来,网络设备向终端设备激活TCI-state:
网络设备向终端设备发送介质接入控制-控制单元(medium access control-control element,MAC-CE)消息,在配置的多个TCI-state中激活8个TCI-state。用于激活TCI-state的MAC CE结构如图3b所示,字段T0至T(N-2)x8+7分别对应索引分别为0至(N-2)x8+7的各个TCI-state(已配置的),T0至T(N-2)x8+7中的每个字段占用1bit,字段值为0或1。例如,取值为1表示激活该TCI-state,取值为0表示不激活该TCI-state。一个MAC CE理论上可以有8个取值为1的字段,其余全为0。MAC-CE的类型有很多,除了用于TCI-state激活的MAC-CE,还有其他用途的MAC-CE。本申请只涉及用于TCI-state/TCI-state组合激活的MAC-CE。因此,若无特别说明,本申请所述的MAC-CE均指用于TCI-state/TCI-state组合激活的MAC-CE。
然后,网络设备向终端设备指示TCI-state:
网络设备通过下行控制信息(downlink control information,DCI)中的TCI字段来指示某一个TCI-state。TCI字段占用3bit,可以表示8个不同的字段值(codepoint)。TCI字段的每个字段值对应一个TCI-state的索引,该TCI-state索引唯一标识一个TCI-state。在激活TCI-state过程中的MAC CE中的8个取值为1的字段分别对应的TCI-state,与DCI中的TCI字段的8个不同的取值是一一对应的。例如,网络设备发送给终端设备的DCI中的TCI字段的值为000,表示网络设备的下行发送波束对应索引为000的TCI-state。再例如,该TCI-state中的类型为typeD的QCL-Info所包含的referenceSignal是:索引为#1的信道状态信息-参考信号CSI-RS(下行参考信号),则表示终端设备采用的接收波束为索引为#1的CSI-RS对应的接收波束。终端设备可以通过波束测量流程来确定索引为#1的CSI-RS对应的接收波束。因此,通过TCI字段的具体取值,终端设备就可以确定下行接收波束,从而采用接收波束来接收来自网络设备的信息。
以上采用DCI指示TCI-state的方式可以适用于物理下行共享信道PDSCH。在物理下行控制信道PDCCH传输中,网络设备通过RRC向终端设备配置多个TCI-stat。然后,网络设备通过MAC CE向终端设备激活(指示)一个TCI-state用于PDCCH传输,无需DCI的TCI字段来指示。
6)接下来介绍在上行传输中,关于网络设备向终端设备指示上行传输的发送波束的规定。
在上行传输中,网络设备向终端设备指示空间关系(spatial relation),其功能类似于TCI-state,用于告知终端设备采用哪个发送波束来进行上行传输。
首先,网络设备为终端设备配置spatial relation:
网络设备通过RRC信令向终端设备配置多个spatial relation,spatial relation的结构如 图3c所示,spatial relation中包括但不限于spatial relation的id,小区id,参考信号资源,路损测量参考信号,功控参数等。参考信号资源(例如SRS、SSB、CSI-RS等)用于确定上行传输的发送波束。例如,上行传输采用spatial relation#1,该spatial relation#1中包括一个参考信号资源#2。例如,参考信号资源#2为用于发送上行参考信号(例如SRS)的资源时,表示上行传输采用的发送波束为上行参考信号(例如SRS)的发送波束(该SRS的发送波束是已知的)。又例如,参考信号资源#2为用于发送下行参考信号(例如SSB或CSI-RS)的资源时,表示上行传输采用的发送波束的方向与下行参考信号的接收波束的方向相同(该SSB或CSI-RS的接收波束是已知的)。
然后,网络设备向终端设备激活spatial relation,用于上行传输。
上行传输例如为物理上行共享信道(physical uplink control channel,PUCCH)传输,SRS传输,物理上行共享信道(physical uplink shared channel,PUSCH)传输等,均分别需要对应的spatial relation。PUCCH传输采用的spatial relation通过MAC-CE信令激活。SRS传输采用的spatial relation通过MAC-CE信令激活。PUSCH传输关联特定的SRS,并采用该SRS传输采用的spatial relation进行PUSCH传输。
7)接下来介绍PDCCH、PDSCH、PUCCH、PUSCH分别采用的波束更新(切换)方式:
在物理下行控制信道PDCCH传输中,重新通过MAC CE指示(激活)另一个TCI-state,即可实现对PDCCH传输的波束更新。例如,PDCCH传输原先采用的是TCI-state 1,当网络设备发送一个PDCCH传输波束指示的MAC CE给终端设备,指示TCI-state 2,那么PDCCH传输的发送波束变成TCI-state 2。
在物理下行共享信道PDSCH传输中,重新通过DCI指示另一个TCI-state,即可对PDSCH传输的发送波束进行更新。
在物理上行控制信道PUCCH传输中,重新通过MAC CE指示另一个spatial relation,即可实现对PUCCH传输的发送波束/spatial relation的更新。
在物理上行控制信道PUSCH传输中,为PUSCH传输指示其他的SRS,或者更新PUSCH关联的SRS的波束。用于发送SRS的波束的更新可以通过MAC CE实现(适用于非周期/半静态类型的SRS),也可以采用RRC信令进行重配(适用于周期性类型的SRS)。
接下来将结合附图对方案进行详细介绍。附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
图4所示,提供了一种波束切换的过程示意图,包括以下步骤:
步骤401:网络设备向终端设备发送第一指示信息,相应的,终端设备接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一波束。第一指示信息可以指示一个第一波束,也可以指示多个第一波束,多个第一波束不同(不同可以理解为方向不同)。
第一波束可以是网络设备预测的、未来会替代当前的发送波束作为发送波束的波束,则可以理解为,所述第一指示信息用于指示即将切换至第一波束。所述第一波束为网络设备侧的发送波束(即下行发送波束)、或第一波束为终端设备侧的发送波束(即上行发送波束)、或第一波束包括网络设备侧的发送波束和终端设备侧的发送波束(即同时用于上行传输和下行传输的波束)。
所述第一波束可以体现为TCI-state,spatial relation,beam ID,unified TCI,UL-TCI, common beam,QCL信息,QCL假设,空间滤波器,或上文介绍的其他可以体现波束的定义,不再重复赘述。例如,第一波束还可以称为第一TCI-state,第一spatial relation,第一Unified TCI等,也就是说第一波束中的“波束”可以替换为上述介绍的能够体现“波束”的任一定义。
所述第一波束可以用于单个信道的传输,例如用于PDCCH传输、或PDSCH传输、或PUCCH传输、或PUSCH传输。不同的信道对应的第一波束可以分别指示。
所述第一波束也可以用于多个信道的传输,例如,用于以下的一种或多种信道的传输。例如用于数据信道的传输(数据信道例如包括但不限于PDSCH,PUSCH,物理sidelink共享信道(physical sidelink share channel,PSSCH)中的一种或多种)。例如用于控制信道的传输(控制信道例如包括但不限于PUCCH,PDCCH,物理Sidelink控制信道(physical sidelink control channel,PSCCH)中的一种或多种)。例如,用于上行信道的传输(上行信道例如包括但不限于PRACH,随机接入msg3,PUCCH,PUSCH中的一种或多种)。例如,用于下行信道的传输(下行信道例如包括但不限于随机接入msg2,随机接入msg4,PDCCH,PDSCH,物理广播信道(physical broadcast channels channel,PBCH)中的一种或多种)。
所述第一波束可以用于单个小区的传输,不同小区的对应的第一波束可以分别指示。
所述第一波束可以用于多个小区的传输,所述多个小区对应的频段相同。
例如,第一波束为公共波束common beam时,该公共波束用于以下的一种或多种信道的传输:例如用于上行信道传输,例如用于下行信道传输,例如用于控制信道,例如用于多个数据信道,例如,用于一个小区的信道传输,例如用于多个小区的上行信道或下行信道或控制信道或数据信道等。
所述第一波束可以用于单个或多个参考信号的传输,例如,用于下行参考信号的传输,下行参考信号包括但不限于SSB、DMRS、CSI-RS,例如,用于上行参考信号的传输,上行参考信号包括但不限于相位跟踪参考信号(phase tracking reference signal,PTRS),SRS等。
第一指示信息包括但不限于以下的一项或多项信息,例如第一波束的索引,第一波束对应的TCI-state,第一波束对应的TCI-state的索引,第一波束对应的spatial relation,第一波束对应的spatial relation的索引等,通过这些信息来指示第一波束。第一指示信息中也可以包括其它的能够指示波束的信息,来指示第一波束。
例如,第一指示信息承载在RRC信令中时,第一指示信息包括但不限于第一波束对应的TCI-state,或,第一波束对应的spatial relation,可以理解为第一波束的相关信息是网络设备通过RRC信令配置的。
例如,第一指示信息承载在MAC-CE信令中时,第一指示信息包括但不限于第一波束的索引,或者,TCI-state的索引,或者,spatial relation的索引等。可以理解为第一波束是从RRC信令配置好的波束(例如波束对应的TCI-state、或波束对应的spatial relation)中激活的波束,MAC-CE信令相对于RRC信令,速度更快。例如,MAC-CE信令可以激活两个波束,其中一个波束为当前传输采用的发送波束,另一个波束为第一波束(即未来传输采用的发送波束,也就是替换当前传输采用发送波束的波束)。MAC CE信令可以激活多个波束,例如,第一个波束表示当前传输采用的发送波束,第二个波束作为所述第一波束。或者,最后一个波束、或倒数第二个波束等作为所述第一波束。
例如,第一指示信息承载在DCI信令中时,第一指示信息包括但不限于第一波束的索 引,或者,TCI-state的索引,或者,spatial relation的索引等。可以理解为第一波束是从RRC信令配置的波束中(例如波束对应的TCI-state、或波束对应的spatial relation)通过DCI指示的波束。
例如,第一波束用于传输SRS时,第一指示信息可以承载在MAC CE信令中,MAC CE信令为传输SRS激活两个spatial relation,其中第二个spatial relation为所述第一波束对应的spatial relation。
步骤402:终端设备在接收到网络设备发送的第一指示信息后,可以确定出第一波束,进而对第一波束进行维护,维护包括但不限于测量所述第一波束对应的定时信息和/或路损信息。如果第一指示信息指示了多个第一波束,终端设备对每个第一波束分别进行维护。以下仅是以一个第一波束为例,介绍了对第一波束维护的示例。
终端设备在对第一波束进行维护时,包括但不限于执行以下行为中的一种或多种:
行为1:测量第一波束对应的下行时偏信息;“下行时偏信息”可以称为“下行定时信息”。
行为2:测量第一波束对应的下行频偏信息;行为1和行为2可以合起来称为:测量第一波束对应的下行时频偏信息。
行为3:测量所述第一波束对应的路损信息。
行为4:根据所述第一波束发送用于上行定时测量的信号。
行为5:接收来自网络设备的上行定时调整信息,所述定时调整信息基于所述第一波束确定。行为4、行为5也可以合起来称为:测量或确定所述第一波束对应的上行定时信息。行为1、行为4和行为5也可以合起来称为:测量或确定所述第一波束对应的定时信息。定时信息包括上行定时信息和/或下行定时信息。
行为6:发起随机接入,例如采用所述第一波束对应的PRACH资源进行随机接入。
后续对这几种行为进行详细介绍。
终端设备可以在接收到第一指示信息后,执行上述步骤402中的行为中的一种或多种。终端设备也可以在向网络设备回复针对第一指示信息的ACK信息后,再执行上述步骤402中的行为中的一种或多种。也可以规定一段时间,终端设备在接收到第一指示信息后的一段时间后或者回复ACK信息的一段时间后,再执行上述步骤402行为中的一种或多种。
另外,可以规定第一时刻,终端设备从第一时刻,开始执行步骤402。第一时刻可以是时隙slot级别或符号级别或毫秒级别的。“第一时刻”也可以替换为“第一时间单元”。第一时刻可以是接收到第一指示信息的时刻,例如,接收到第一指示信息的时隙或符号。或者,第一时刻可以是向网络设备发送第一指示信息对应的确定应答ACK信息的时刻,例如,反馈第一指示信息对应的ACK信息的时隙或符号。或者,第一时刻可以是向网络设备发送第一指示信息对应的ACK信息的时刻(时刻可以替换为符号或时隙)再加上一个时间间隔后对应的时刻(时刻可以替换为时隙或符号),时间间隔可以是3毫秒。即第一时刻为向网络设备反馈第一指示信息对应的ACK信息的符号或时隙再加上3毫秒。或者,第一时刻可以是接收到第一指示信息的时刻(时刻可以替换为符号或时隙)再加上一个时间间隔后对应的时刻(时刻可以替换为符号或时隙)。
另外,还可以规定第一时长,规定终端设备需要在第一时长内执行完成步骤402,即第一时长用于执行完成步骤402。可选的,第一时长大于或等于执行完成第一方面中的一项或多项行为所需的时长。第一时长可以是网络设备确定的,网络设备为终端设备配置的。 或者。第一时长可以是终端设备确定的,可选的,终端设备向网络设备上报第一时长。或者,第一时长可以是协议规定的。第一时长的取值包括但不限于以下示例:
一种示例中,第一时长可以是T HARQ+3ms。一种示例中,第一时长可以为T HARQ+3ms+TO k*(T first-SSB+T SSB-proc),其中,T HARQ是接收到第一指示信息到反馈第一指示信息对应的ACK信息的时长,T first-SSB是距离下次SSB发送的时长,T SSB-proc是SSB测量的时长,T SSB-proc可以设为一个固定值,如2ms。TO k可以为0或非0值。
网络设备在指示第一波束时,还可以进一步指示:用于执行上述步骤402中的行为中的一种或多种行为的资源,例如,指示一个或多个资源配置或资源集或资源或上报配置等。或者,指示一个触发状态trigger state,所述trigger state用于触发一个非周期的测量,用于对所述第一波束进行测量。或者,指示一个半持续(semi-persistent,SP)测量上报的激活信令,用于激活一个SP测量,用于对所述第一波束进行测量。所述用于对波束进行测量的资源的信息可以携带在所述第一指示信息中。
步骤403:网络设备向终端设备发送第二指示信息,相应的,终端设备接收来自网络设备的第二指示信息。所述第二指示信息用于指示切换至第一波束。
需要注意的是,在第一时刻执行步骤402,执行完成步骤402可能需要一段时间(即第一时长),在执行步骤403时,步骤402可能已经执行完成,也可能还未执行完成。如果步骤402还未执行完成,在执行步骤403时,步骤402可以继续执行,而不会停止执行。
步骤404:所述网络设备和所述终端根据所述第一波束进行波束切换。
第二指示信息可以包括但不限于以下的一项或多项:例如第一波束的索引,第一波束对应的TCI-state,第一波束对应的TCI-state的索引,第一波束对应的spatial relation,第一波束对应的spatial relation的索引等,通过这些信息来指示第一波束。第二指示信息中也可以包括其它的能够指示波束的信息,来指示第一波束。
另外,网络设备向终端设备发送的第二指示信息,也可以指示切换至第二波束,在所述第一波束与所述第二波束不同的情况下,说明网络设备又重新指示了进行切换的波束。终端设备可以对第二波束执行路损测量和/或定位测量等。
如果所述第一波束为网络设备侧的发送波束,则网络设备将网络设备的发送波束切换至所述第一波束,终端设备将终端设备的发送波束切换至所述第一波束对应的接收波束。如果所述第一波束为终端设备侧的发送波束,则网络设备将网络设备的发送波束切换至所述第一波束对应的接收波束,终端设备将终端设备的发送波束切换所述第一波束。
网络设备在向终端设备发送用于波束切换的第二指示信息之前,先告知终端设备即将切换的第一波束。则终端设备可以先测量即将切换的第一波束的定时信息和/或路损信息。进而,终端设备在接收到用于波束切换的第二指示信息时,已经执行完成测量第一波束的定时信息和/或路损信息的过程,或执行了一部分测量第一波束的定时信息和/或路损信息的过程。这样,可以减小或避免切换到第一波束时需要先测量即将切换的第一波束的定时、路损等信息所需要的时延,避免传输性能的损失。
本申请中,将第二指示信息与第一指示信息之间间隔的时长定义为第二时长。可以理解的是,第一指示信息与第二指示信息之间间隔的第二时长可以指以下任一情况:可以是网络设备发送第一指示信息的时刻与网络设备发送第二指示信息的时刻的差值。也可以是终端设备接收到第一指示信息的时刻与终端设备接收到第二指示信息的时刻的差值。也可以是网络设备发送第一指示信息的时刻与终端设备接收到第二指示信息的时刻的差值。也 可以是终端设备接收到第一指示信息的时刻与网络设备发送第二指示信息的时刻的差值。时刻可以是时隙或符号或毫秒级别的,时刻也可以替换为时隙或符号。
第二时长可以大于或等于第一时长,所述第一时长用于执行完成步骤402中的一种或多种行为,这样才能保证终端设备在接收到第二指示信息时,已经完成了对第一波束的测量(维护)。从而可以实现快速直接切换到第一波束上,提高波束切换的效率,提高传输性能。可选的,也可以规定一个附加条件,即第二指示信息指示切换的波束为第一波束时,才满足第二指示信息与第一指示信息之间间隔的第二时长大于或等于第一时长。如果第二指示信息指示切换的波束不是第一波束时,则第二指示信息与第一指示信息之间间隔的第二时长可以不进行限制。可选的,不管第二指示信息指示切换的波束是否为第一波束,第一指示信息与第二指示信息之间间隔的第二时长可以不进行限制。第二指示信息可以在发送第一指示信息后的任意时刻发送。但第二指示信息发送的时刻会决定波束切换发生的时间。
将终端设备接收到第二指示信息到完成波束切换(完成波束切换可以理解为新的波束可以用于传输)之间间隔的时长,定义为第二指示信息的生效时长t1。或者将终端设备开始执行步骤402的第一时刻,到完成波束切换之间间隔的时长,定义为第二指示信息的生效时长t1。
如图5a所示,在第二指示信息与第一指示信息之间间隔的第二时长大于或等于第一时长的场景中,终端设备在接收到用于波束切换的第二指示信息时,已经完成了步骤402中对于波束的维护过程。t1的取值可以是大于或等于0任一值。例如,t1可以等于0,表示可以立即完成波束切换。例如,t1也可以等于从终端设备接收到第二指示信息到反馈针对第二指示信息的ACK的时长。例如,t1也可以是从接收到第二指示信息到反馈针对第二指示信息的ACK的时长再加上3毫秒,即T HARQ+3ms,需要注意的是此处的T HARQ是从接收到第二指示信息到反馈针对第二指示信息的ACK的时长,与从接收到第一指示信息到反馈针对第一指示信息的ACK的时长可以相同,也可以不同。例如,t1也可以是T HARQ+3ms+TO k*(T first-SSB+T SSB-proc),需要注意的是,此处的T HARQ是从接收到第二指示信息到反馈针对第二指示信息的ACK的时长,与从接收到第一指示信息到反馈针对第一指示信息的ACK的时长可以相同,也可以不同。
如图5b所示,在第二指示信息与第一指示信息之间间隔的第二时长小于第一时长的场景中,终端设备在接收到用于波束切换的第二指示信息时,可能还未完成步骤402中对于波束的维护过程。接下来对于t1的取值进行介绍:
一种示例中,t1=第一时长-第二时长。
一种示例中,t1=第一时长-第二时长+一个时间间隔,例如一个时间间隔为3ms,或T HARQ+3ms,或T HARQ+3ms+TO k*(T first-SSB+T SSB-proc),其中,T HARQ是接收到第二指示信息到反馈第二指示信息对应的ACK信息的时长,T first-SSB是距离下次SSB发送的时长,T SSB-proc是SSB测量的时长,T SSB-proc可以设为一个固定值,如2ms。TO k可以为0或非0值。
一种示例中,t1为第一时刻加上第一时长后的时刻、与第二时刻之间间隔的时长。第二时刻可以是时隙slot级别或符号级别或毫秒级别的。第二时刻可以是接收到第二指示信息的时刻,例如,接收到第二指示信息的时隙或符号。或者,第二时刻可以是向网络设备发送第二指示信息对应的确定应答ACK信息的时刻,例如,反馈第二指示信息对应的ACK 信息的时隙或符号。或者,第二时刻可以是向网络设备发送第二指示信息对应的ACK信息的时刻(例如符号或时隙)再加上一个时间间隔,时间间隔可以是3毫秒。即第二时刻为向网络设备反馈第二指示信息对应的ACK信息的符号或时隙再加上3毫秒。或者,第二时刻可以是接收到第二指示信息的时刻(例如符号或时隙)再加上一个时间间隔。
一种示例中,t1为3ms,或T HARQ+3ms,或T HARQ+3ms+TO k*(T first-SSB+T SSB-proc),其中,T HARQ是接收到第二指示信息到反馈第二指示信息对应的ACK信息的时长,T first-SSB是距离下次SSB发送的时长,T SSB-proc是SSB测量的时长,T SSB-proc可以设为一个固定值,如2ms。TO k可以为0或非0值。
一种示例中,t1可以是选择Ta和Tb中的最大值或最小值或平均值等。例如,Ta=第一时长-第二时长。例如,第一时长-第二时长+一个时间间隔。例如,Ta为t1为第一时刻加上第一时长后的时刻、与第二时刻之间间隔的时长。第二时刻参见上述示例的介绍不再重复。例如,Tb=T HARQ+3ms。例如,Tb=T HARQ+3ms+TO k*(T first-SSB+T SSB-proc),其中,T HARQ是接收到第二指示信息到反馈第二指示信息对应的ACK信息的时长,T first-SSB是距离下次SSB发送的时长,T SSB-proc是SSB测量的时长,T SSB-proc可以设为一个固定值,如2ms。TO k可以为0或非0值。
在第二指示信息与第一指示信息之间间隔的第二时长小于第一时长的场景中,对于t1的取值的前提可以是第二指示信息所指示的波束为第一波束。如果第二指示信息指示切换的波束不是第一波束时,则对于t1的取值不进行限制,例如t1为3ms,或T HARQ+3ms,或T HARQ+3ms+TO k*(T first-SSB+T SSB-proc),其中,T HARQ是接收到第二指示信息到反馈第二指示信息对应的ACK信息的时长,T first-SSB是距离下次SSB发送的时长,T SSB-proc是SSB测量的时长,T SSB-proc可以设为一个固定值,如2ms。TO k可以为0或非0值。
接下以一个具体的示例进行介绍:假设在slot n接收到用于波束切换的第二指示信息,终端设备在时长T HARQ+3ms(即接收到第二指示信息后再间隔3ms)内完成波束切换,终端设备在时间为n+T HARQ+3ms时,采用第二指示信息指示切换的波束进行传输。
接下来对上述步骤402中的几种行为进行详细介绍:
首先介绍行为1:测量第一波束对应的下行定时信息(即下行时偏信息),该行为1通常适用于第一波束包括网络设备侧的发送波束(下行发送波束)的场景。
终端设备根据一个或多个第一资源,测量第一波束对应的下行时偏信息。
所述第一资源用于测量所述第一波束的下行时偏信息,第一资源也可以称为第一测量资源、或下行定时测量资源、或定时测量资源等。
所述一个或多个第一资源也可以称为一组第一资源,则一组第一资源包括一个或多个第一资源。
下行定时信息可以通过下行信号进行测量,下行信号例如可以是同步信号-广播信道资源块SSB,信道状态信息参考信号CSI-RS,时频跟踪参考信号TRS等。第一资源为用于传输下行信号的资源,第一资源可以称为下行信号资源,例如第一资源可以是SSB资源,可以是CSI-RS资源,也可以是TRS资源。例如,所述一组第一资源为一个配置了trs-Info参数的CSI-RS资源组(CSI-RS resource set),CSI-RS资源组包括一个或多个CSI-RS。
所述一组第一资源可以是网络设备为终端设备配置的,也可以是协议规定的。可选的,网络设备在指示第一波束时,还可以进一步指示用于测量下行定时信息的资源,则所述第 一指示信息还可以包括:一个或多个第一资源的信息。网络设备也可以通过不同于第一指示信息的其它指示信息或配置信息,为终端设备配置一个或多个第一资源。
终端设备根据一个或多个第一资源,测量第一波束对应的下行时偏信息时,具体可以是网络设备在第一资源上向终端设备发送下行信号,终端设备在第一资源上接收来自网络设备的下行信号,从而测量出下行时偏信息。网络设备在第一资源上发送用于测量下行时偏信息的下行信号时,可以采用第一波束来发送,或者用与第一波束的方向相同的波束来发送,这样测得的下行时偏信息才是第一波束的下行时偏信息。可以理解的是,网络设备不需要额外向终端设备告知在第一资源上发送下行信号时采用的波束,这样可以节省信令开销。
在本申请中,第一波束与第一资源的关联关系如下示例:
一种示例1中,第一资源与所述第一波束满足typeD类型的准同位QCL关系;也就是用于测量下行时偏信息的下行信号的接收波束、与第一波束的接收波束相同(本申请中的波束相同,可以理解为波束的方向相同)。第一资源可以为第一波束(对应的TCI-state)中的typeA或typeB或typeC类型的准同位资源(准同位资源即QCL信息中的参考信号资源)。
一种示例2中,第一资源与所述第一波束(对应的TCI-state)中的typeD类型的准同位资源(准同位资源即QCL信息中的参考信号资源)满足typeD类型的准同位QCL关系。如果所述第一资源可以为第一波束(对应的TCI-state)中的typeA或typeB或typeC类型的准同位资源(准同位资源即QCL信息中的参考信号资源),即所述第一波束(对应的TCI-state)中的typeA或typeB或typeC类型的准同位资源(准同位资源即QCL信息中的参考信号资源)与所述第一波束(对应的TCI-state)中的typeD类型的准同位资源(准同位资源即QCL信息中的参考信号资源)满足typeD类型的准同位QCL关系。
例如,第一波束对应的TCI-state结构如下:
TCI-state{
QCL-info{typeA,RS#1}
QCL-info{typeD,RS#2}
}。
RS#1(typeA类型的QCL信息(QCL信息即QCL-info)中的参考信号资源)与RS#2(typeD类型的QCL信息中的参考信号资源)满足typeD类型的QCL关系,即RS#1的接收波束与RS#2的接收波束相同。
所述第一波束将所述第一资源(例如上文的RS#1)的下行时偏信息,作为第一波束的下行时偏信息。换句话说,所述第一波束与所述第一资源(例如,所述一组第一资源中的一个或多个资源)满足typeA或typeB或typeC类型的准同位QCL关系。
通过上述方法,当第一波束发生更新时,网络设备不需要通过配置信息重新配置第一资源的波束(对应的TCI-state)或typeD-QCL信息,因为第一资源总是与所述第一波束满足typeD类型的QCL关系。换句话说,第一资源对应的波束(对应的TCI-state)或typeD-QCL信息自动跟随第一波束的更新而更新,从而较少信令开销。
接下来介绍行为2:测量第一波束对应的下行频偏信息;该行为2通常适用于第一波束包括网络设备侧的发送波束(下行发送波束)的场景。
上述介绍的行为1测量第一波束对应的下行时偏信息的具体细节,也适用于测量第一波束对应的下行频偏信息。只是资源的名称和/或用于测量的信号可能会不同,其余细节之处均可以相互参考。
终端设备根据一个或多个第三资源,测量第一波束对应的下行频偏信息。
所述第三资源用于测量第一波束对应的下行频偏信息,第三资源也可以称为第三测量资源、或下行频偏测量资源等。
所述一个或多个第三资源也可以称为一组第三资源,则一组第三资源包括一个或多个第三资源。
下行频偏信息可以通过下行信号进行测量,下行信号可以是上文的介绍任一下行信号,不再重复赘述。
第三资源可以是网络设备为终端设备配置的,也可以是协议规定的。可选的,网络设备在指示第一波束时,还可以进行指示用于测量下行频偏信息的资源,则所述第一指示信息还可以包括:一个或多个第三资源的信息。网络设备也可以通过不同于第一指示信息的其它指示信息或配置信息,为终端设备配置一个或多个第三资源。
终端设备根据一个或多个第三资源,测量第一波束对应的下行频偏信息时,具体可以是网络设备在第三资源上向终端设备发送下行信号,终端设备在第三资源上接收来自网络设备的下行信号,从而测量出下行频偏信息。网络设备在第三资源上发送用于测量下行频偏信息的下行信号时,可以采用第一波束来发送,或者用与第一波束的方向相同的波束来发送,这样测得的下行频偏信息才是第一波束的下行频偏信息。可以理解的是,网络设备不需要额外向终端设备告知在第三资源上发送下行信号时采用的波束,这样可以节省信令开销。
在本申请中,第一波束与第三资源的关联关系可以是上述介绍的第一资源与第一波束的关联关系中的任一种,只需要将第一资源替换为第三资源即可。
另外,为了降低资源开销,提高资源利用率,用于下行频偏信息的第三资源与用于测量下行时偏信息的第一资源可以相互复用。第一资源第三资源可以完全相同(即根据一个或多个第一资源,测量所述第一波束对应的下行频偏信息),也可以部分相同、部分相同,可以是第一资源为第三资源的一部分(即第一资源包含在第三资源中),也可以是第三资源为第一资源的一部分(即第三资源包含在第一资源中)。
接下来介绍行为3:测量所述第一波束对应的路损信息。该行为3通常适用于第一波束包括网络设备侧的发送波束(下行发送波束)的场景。
上述介绍的行为1测量第一波束对应的下行时偏信息的具体细节,也适用于测量第一波束对应的路损信息。只是资源的名称和/或用于测量的信号可能会不同,其余细节之处均可以相互参考。
终端设备根据一个或多个第二资源,测量第一波束对应的路损信息。
所述第二资源用于测量第一波束对应的路损信息,第二资源也可以称为第二测量资源、或路损测量资源等。
所述一个或多个第二资源也可以称为一组第二资源,则一组第二资源包括一个或多个第二资源。
路损信息可以通过下行信号进行测量,下行信号可以是上文的介绍任一下行信号,不 再重复赘述。
第二资源可以是网络设备为终端设备配置的,也可以是协议规定的。可选的,网络设备在指示第一波束时,还可以进行指示用于测量路损信息的资源,则所述第一指示信息还可以包括:一个或多个第二资源的信息。网络设备也可以通过不同于第一指示信息的其它指示信息或配置信息,为终端设备配置一个或多个第二资源。
终端设备根据一个或多个第二资源,测量第一波束对应的路损信息时,具体可以是网络设备在第二资源上向终端设备发送下行信号,终端设备在第二资源上接收来自网络设备的下行信号,从而测量出路损信息。网络设备在第二资源上发送用于测量路损信息的下行信号时,可以采用第一波束来发送,或者用与第一波束的方向相同的波束来发送,这样测得的路损信息才是第一波束的路损信息。可以理解的是,网络设备不需要额外向终端设备告知在第二资源上发送下行信号时采用的波束,这样可以节省信令开销。
当根据多个第二资源,来测量第一波束对应的路损信息时,先根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果。然后,可以确定多个路损信息的测量结果的平均值或最大值或最小值,将平均值或最大值或最小值作为最终得到的第一波束的路损信息测量结果。或者,将多个路损信息测量结果进行滤波处理(滤波处理可以理解为加权平均),将滤波处理后的路损信息测量结果作为最终得到的第一波束的路损信息测量结果。计算平均值和进行滤波处理可以减少测量的波动。
在本申请中,第一波束与第二资源的关联关系可以是上述介绍的第一资源与第一波束的关联关系中的任一种,只需要将第一资源替换为第二资源即可。例如,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
另外,为了降低资源开销,用于路损信息的第二资源与用于测量下行时偏信息的第一资源可以相互复用。第一资源和第二资源可以完全相同,也可以部分相同、部分相同,可以是第一资源为第二资源的一部分(即第一资源包含在第二资源中),也可以是第二资源为第一资源的一部分(即第二资源包含在第一资源中)。另外,第二资源与第三资源也可以相互复用。
例如,用于测量路损信息的第二资源复用用于测量下行定时信息的第一资源。示例的,所述第二资源为所述第一资源;示例的,所述第二资源是多个所述第一资源中的一个;示例的,所述第二资源是多个所述第一资源中的多个。
接下来以第二资源复用第一资源为例,介绍几种示例:
一种示例中,当所述第二资源为所述第一资源中的一个资源时,所述一个资源可以是第一资源中的第一个资源、或最后一个资源、或索引最小的一个资源、或索引最大的一个资源。示例的,当多个第一资源位于多个resource set中时,所述一个资源可以是第n个resource set中的第一个资源、或第n个resource set中的最后一个资源、或第n个resource set中的索引最小的一个资源、或第n个resource set中的索引最大的一个资源。第n个可以是第一个,也可以是最后一个,也可以是第二个、第三个,任一个等等。
一种示例中,采用所述第一波束的typeA或typeB或typeC类型的QCL信息中的参考信号资源(即第一资源)作为第二资源。
一种示例中,采用所述第一波束的typeA或typeB或typeC类型的QCL信息中的参考信号资源(即第一资源)所在的resource set内的所有资源作为第二资源,来测量路损信息。 采用所述第一波束的typeA或typeB或typeC类型的QCL信息中的参考信号资源所在的配置了trs-info的resource set内的所有资源作为第二资源。
上述介绍的示例也适用于“第一资源为第二资源的部分或全部”的情况,只需要将第一资源和第二资源颠倒即可,即第一资源替换为第二资源,将第二资源替换为第一资源即可。
上述介绍的示例也适用于“第一资源为第三资源的部分或全部”的情况,只需要将第一资源替换为第三资源,将第二资源替换为第一资源即可。
上述介绍的示例也适用于“第三资源为第一资源的部分或全部”的情况,只需要将第二资源替换为第三资源即可。
接下来介绍:行为4:根据所述第一波束发送用于上行定时测量的信号;相应的,网络设备接收用于上行定时测量的信号。进一步地,网络设备向终端设备发送上行定时调整信息,终端设备执行行为5:接收来自网络设备的上行定时调整信息,例如,网络设备向终端设备发送定时调整(timing adjustment,TA)命令,TA命令中包括上行定时调整信息。后续,终端设备就采用该上行定时调整信息来进行传输。
终端设备根据一个或多个第四资源,测量第一波束对应的上行定时信息。
所述第四资源用于测量所述第一波束的上行定时信息,第四资源也可以称为第四测量资源,或上行定时测量资源,或定时测量资源等。
所述一个或多个第四资源也可以称为一组第四资源,则一组第四资源包括一个或多个第四资源。
上行定时信息可以通过上行信号进行测量,上行信号例如可以是SRS、PRACH等,也就是行为4中发送的参考信号可以是SRS或PRACH。第四资源为用于波束切换的资源,第四资源也可以称为上行信号源,例如第四资源可以是SRS资源,可以是PRACH资源。
所述一组第四资源可以是网络设备为终端设备配置的,也可以是协议规定的。可选的,网络设备在指示第一波束时,还可以进一步指示用于测量上行定时信息的资源,则所述第一指示信息还可以包括:一个或多个第四资源的信息。网络设备也可以通过不同于第一指示信息的其它指示信息或配置信息,为终端设备配置一个或多个第四资源。
在测量第一波束对应的上行定时信息时,可以是终端设备在第四资源上向网络设备发送上行信号,网络设备在第四资源上接收来自终端设备的上行信号,从而测量出上行定时信息。
当所述第一波束为网络设备侧的发送波束时,行为4中终端设备根据所述第一波束发送用于上行定时测量的信号的具体过程可以为:采用所述第一波束的接收波束(第一波束的接收波束也可以理解为与所述第一波束的接收波束的方向相同的发送波束),发送用于测量上行定时信息的上行信号。也就是终端设备采用接收波束A作为所述第一波束的接收波束,则采用与接收波束A的方向相同的发送波束来发送用于测量上行定时信息的上行信号。
当所述第一波束为终端设备侧的发送波束时,行为4中终端设备根据所述第一波束发送用于上行定时测量的信号的具体过程可以为:采用所述第一波束发送用于测量上行定时信息的上行信号,也就是用于测量上行定时信息的上行信号的发送波束为所述第一波束。
上述第一资源、第二资源、第三资源、第四资源的一种或多种可以是在配置就可以使 用,也可以是激活后才可以使用。网络设备可以向终端设备发送激活信令,用于激活用于第一波束测量的资源。为了节省信令开销,也可以是采用第一指示信息激活用于第一波束测量的资源,即第一指示信息还可以用于激活第一资源、第二资源、第三资源、第四资源的一种或多种。这样当网络设备发送了第一指示信息时,第一波束关联的资源自动激活,不用额外发送激活信令。第一指示信息还可以用于去激活或取消第一波束。当第一波束被去激活或取消后,对应的测量资源也被去激活或取消。
上文已经对波束切换的过程进行了介绍,接下来再对一下细节进行介绍。
所述第一指示信息可以是RRC信令,或MAC CE信令,或DCI信令(或者第一指示信息承载在RRC信令,或MAC CE信令,或DCI信令中)。所述第一指示信息可以指示一个或多个第一波束,所述第一波束为上行发送波束或者上下行传输共同采用的波束。
例如,第一波束为上行传输采用的TCI-state(可以理解为第一指示信息指示上行传输采用的TCI-state的索引,或第一指示信息包括上行传输采用的TCI-state),该TCI-state中包括一个参考信号资源,终端根据该参考信号资源来确定上行发送波束(即第一波束)。具体的,如果该参考信号资源为下行资源,终端采用该下行资源的接收波束来作为上行发送波束(可以理解为采用与该下行资源的接收波束的方向相同的发送波束来作为上行发送波束);如果该参考信号资源为上行资源,终端采用该上行资源的发送波束来作为上行发送波束。
又例如,第一波束为上下行传输采用的TCI-state(可以理解为第一指示信息指示上下行传输采用的TCI-state的索引,或第一指示信息包括上下行传输采用的TCI-state),该TCI-state中包括一个参考信号资源,终端根据该参考信号资源来确定上行发送波束和下行接收波束。具体的,如果该参考信号资源为下行资源,终端采用该下行资源的接收波束来作为下行接收波束和上行发送波束(可以理解为采用与该下行资源的接收波束的方向相同的发送波束来作为上行发送波束);如果该参考信号资源为上行资源,终端采用该上行资源的发送波束来作为上行发送波束和下行接收波束(可以理解为采用与该上行资源的发送波束的方向相同的接收波束来作为下行接收波束)。
第一指示信息指示一个或多个第一波束后,终端设备通过以下方法针对每个第一波束,进行上行定时调整和测量路损信息。
定时测量包括以下实现方式:
一种实施方式中,所述第一波束关联一个上行资源,UE发送该上行资源,用于网络设备确定第一波束对应的上行定时信息;所述上行资源采用所述第一波束进行发送。所述上行资源可以是半静态的资源,第一波束未指示时,所述上行资源处于非激活状态;第一波束被指示时,所述上行资源自动激活。
另一种实施方式中,所述第一波束对应的配置参数中包括用于指示上行发送波束的上行资源。例如,第一波束对应的配置参数包含在一个TCI-state中,所述TCI-state中包括用于指示上行发送波束的上行资源。终端设备发送该上行资源给网络设备,用于网络设备确定第一波束对应的上行定时信息;所述上行资源采用所述第一波束进行发送。所述上行资源可以是半静态的资源,第一波束未指示时,所述上行资源处于非激活状态;第一波束被指示时,所述上行资源自动激活。
路损测量包括以下实现方式:
一种实施方式中,所述第一波束关联一个下行资源,UE测量该下行资源来确定路损 信息;终端采用所述第一波束相同的波束方向接收所述下行资源。所述下行资源可以是半静态的资源,第一波束未指示时,所述下行资源处于非激活状态;第一波束被指示时,所述下行资源自动激活。
另一种实施方式中,所述第一波束对应的配置参数中包括用于指示上行发送波束的下行资源。例如,第一波束对应的配置参数包含在一个TCI-state中,所述TCI-state中包括用于指示上行发送波束的下行资源。终端设备测量该下行资源来确定路损信息;采用第一波束来接收所述下行资源,即采用第一波束相同的波束方向接收所述下行资源。所述下行资源可以是半静态的资源,第一波束未指示时,所述下行资源处于非激活状态;第一波束被指示时,所述下行资源自动激活。
在本申请中,终端设备可以向网络设备上报是否支持在波束切换前,对即将切换的波束(即将切换的波束也可以替换为未来波束或第一波束)进行维护(测量)的能力,维护(测量)即测量未来波束的定时或路损或频偏等信息。相应的,网络设备接收来自终端设备的是否支持在波束切换前,对即将切换的波束进行维护的能力。从而根据终端的能力,决定是否要向终端设备发送第一指示信息。这样使得网络设备有针对性的向终端设备发送第一指示信息,避免发送第一指示信息之后,终端设备不具备在波束切换前,对即将切换的波束进行测量的能力,浪费信令开销的问题。
上述介绍的方案是先通过第一指示信息指示一个即将切换的波束(第一波束),再发送用于波束切换的第二指示信息,来实现波束切换。再接下来介绍的方案中,网络设备向终端设备发送第一指示信息,用于指示第一波束,网络设备可以不发送第二指示信息。而是把第一指示信息看做是预切换命令,规定一个第四时长,终端设备在第四时刻后再间隔规定的第四时长后,就可以执行波束切换。
终端设备的动作为:
接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一波束;
根据所述第一波束执行上述行为1-行为5中的任一行为;执行过程可以参见上文介绍的过程,不再重复赘述。
在第五时刻,根据第一波束执行波束切换。所述第五时刻=第四时刻+第四时长。
所述第四时刻可以是接收到第一指示信息的时刻(可以是时隙、或符号级别的),即终端设备接收到第一指示信息后就开始计时(例如采用计时器计时)。或者,所述第四时刻为反馈针对第一指示信息的ACK信息的时刻,或者,所述第四时刻为反馈针对第一指示信息的ACK信息的时刻加传输时延。
所述第四时长可以是网络设备确定,并指示给终端设备的,例如第四时长在第一指示信息中指示,或通过RRC配置。或者,所述第四时长可以是协议规定的值。或者,所述第四时长可以是终端设备确定的,并上报给网络设备,例如可以通过能力信息上报给网络设备。
在根据第一波束执行波束切换时,如果所述第一波束为网络设备侧的发送波束,终端设备将终端设备的发送波束切换至所述第一波束对应的接收波束;如果所述第一波束为终端设备侧的发送波束,终端设备将终端设备的发送波束切换所述第一波束。
网络设备的动作为:
向终端设备发送第一指示信息,所述第一指示信息用于指示第一波束;所述第一指示信息用于指示终端设备根据所述第一波束执行上述行为1-行为5中的任一行为;执行过程可以参见上文介绍的过程,不再重复赘述。
在所述第五时刻,根据第一波束执行波束切换。所述第五时刻=第四时刻+第四时长。对于网络设备来说,所述第四时刻可以是发送第一指示信息的时刻,可以是发送第一指示信息的时刻加传输时延,可以是接收到针对第一指示信息的ACK信息的时刻。
在根据第一波束执行波束切换时,如果所述第一波束为网络设备侧的发送波束,则网络设备将网络设备的发送波束切换至所述第一波束,如果所述第一波束为终端设备侧的发送波束,则网络设备将网络设备的发送波束切换至所述第一波束对应的接收波束。
网络设备可以发送信令进一步延长所述第四时长。例如,该信令可以用于清空计时器,或用于重新开始计时等。网络设备也可以发送信令来停止所述计时器或者指示让一个或多个第一指示信息失效。
网络设备预测未来可能采用的波束,不同的时间点预测出的波束可能相同,也可能不同。如果预测的波束不同,则可能存在网络设备向终端设备可以发送一个或多个第一指示信息的情况,每个第一指示信息中的第一波束不同。当网络设备指示了多个第一指示信息,多个第一指示信息对应的第五时刻(生效时刻)可能相同或不相同,网络设备先发送的第一指示信息对应的第五时刻可能早于或晚于或等于后发送的第一指示信息对应的第五时刻。
另外,规定如果前面的第一指示信息生效(生效即根据第一指示信息指示的第一波束进行波束切换),则后面的第一指示信息全部失效。所述后面的第一指示信息指:生效时间晚于所述生效的第一指示信息的其他第一指示信息。或者,如果前面的第一指示信息生效,则后面的第一指示信息的计时器清空、或重新开始计时、或在当前时间之上再延续一段时间。
前文介绍了本申请实施例的方法,下文中将介绍本申请实施例中的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例可以根据上述方法示例,对装置进行功能模块的划分,例如,可以对应各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。这些模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,具体实现时可以有另外的划分方式。
基于与上述方法的同一技术构思,参见图6,提供了一种波束切换的装置600(波束切换的装置也可以看作为通信装置)结构示意图,该装置600可以为终端设备,也可以为应用于终端设备中的芯片或功能单元。该装置600具有上述方法中终端设备的任意功能,例如,该装置600能够执行上述图4的方法中由终端设备执行的各个步骤。
该装置600可以包括:处理模块610,可选的,还包括接收模块620a、发送模块620b,存储模块630。处理模块610可以分别与存储模块630和接收模块620a和发送模块620b相连,所述存储模块630也可以与接收模块620a和发送模块620b相连。
所述接收模块620a,可以执行上述方法实施例中终端设备执行的接收动作。
所述发送模块620b,可以执行上述方法实施例中终端设备执行的发送动作。
所述处理模块610,可以执行上述方法实施例中终端设备执行的动作中,除发送动作和接收动作外的其它动作。
在一种示例中,所述接收模块620a,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一波束;
处理模块610,用于根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、通过发送模块620b根据所述第一波束发送用于上行定时测量的信号、通过接收模块620a接收来自所述网络设备的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定;
所述接收模块620a,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示切换至所述第一波束。
在一种示例中,所述处理模块610,在用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息时,具体用于:根据一个或多个第一资源,测量所述第一波束对应的下行时偏信息和/或下行频偏信息;其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
在一种示例中,所述处理模块610,在用于测量所述第一波束对应的路损信息时,具体用于:根据一个或多个第二资源,测量所述第一波束对应的路损信息;其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
在一种示例中,所述处理模块610,在用于根据多个第二资源,测量所述第一波束对应的路损信息时,具体用于:根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果,并确定多个路损信息测量结果的平均值;或者,根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果,并将多个路损信息测量结果执行滤波处理,得到一个路损信息测量结果。
在一种示例中,所述处理模块610,在用于根据所述第一波束发送用于上行定时测量的信号时,具体用于:通过发送模块620b采用所述第一波束,发送用于上行定时测量的信号;或者,通过发送模块620b采用所述第一波束的接收波束,发送用于上行定时测量的信号。
在一种示例中,所述处理模块610在用于根据所述第一波束执行所述一项或多项行为时,具体用于:在第一时刻,开始执行根据所述第一波束执行所述一项或多项行为;其中,所述第一时刻为以下任一项:接收到所述第一指示信息的时刻;反馈所述第一指示信息对应的确认应答ACK信息的时刻;接收到所述第一指示信息的时刻加上一个时间间隔后的时刻;反馈所述第一指示信息对应的ACK信息的时刻加上一个时间间隔后的时刻。
在一种示例中,发送模块620b,用于向所述网络设备上报所述装置是否支持在波束切换前,对即将切换的波束进行测量的能力。
在一种示例中,所述存储模块630,可以存储终端设备执行的方法的计算机执行指令,以使处理模块610和接收模块620a和发送模块620b执行上述示例中终端设备执行的方法。
上述的接收模块620a和发送模块620b也可以集成在一起,定义为收发模块。
基于与上述方法的同一技术构思,参见图7,提供了一种波束切换的装置700(波束切换的装置也可以看作为通信装置)的结构示意图,该装置700可以为网络设备,也可以为应用于网络设备中的芯片或功能单元。该装置700具有上述方法中网络设备的任意功能,例如,该装置700能够执行上述图4的方法中由网络设备执行的各个步骤。
该装置700可以包括:处理模块710,可选的,还包括接收模块720a、发送模块720b,存储模块730。处理模块710可以分别与存储模块730和接收模块720a和发送模块720b相连,所述存储模块730也可以与接收模块720a和发送模块720b相连。
所述接收模块720a,可以执行上述方法实施例中网络设备执行的接收动作。
所述发送模块720b,可以执行上述方法实施例中网络设备执行的发送动作。
所述处理模块710,可以执行上述方法实施例中网络设备执行的动作中,除发送动作和接收动作外的其它动作。
一种示例中,处理模块710,用于生成第一指示信息;发送模块720b,用于向终端设备发送第一指示信息,所述第一波束信息用于指示第一波束,所述第一指示信息用于指示所述终端设备根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、根据所述第一波束发送用于上行定时测量的信号、接收来自所述装置的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定;以及向所述终端设备发送第二指示信息,所述第二指示信息指示切换至所述第一波束。
一种示例中,所述发送模块720b,用于向所述终端设备发送一个或多个第一资源的信息,所述第一资源用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息;其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
一种示例中,所述发送模块720b,用于向所述终端设备发送一个或多个第二资源的信息,所述第二资源用于测量所述第一波束对应的路损信息;其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束的typeD类型的准同位资源满足typeD的准同位关系。
一种示例中,接收模块720a,用于接收来自终端设备上报的所述终端设备是否支持在波束切换前,对即将切换的波束进行测量的能力。
一种示例中,所述存储模块730,可以存储网络设备执行的方法的计算机执行指令,以使处理模块710和接收模块720a和发送模块720b执行上述示例中网络设备执行的方法。
上述的接收模块720a和发送模块720b也可以集成在一起,定义为收发模块。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
以上介绍了本申请实施例的应用于终端设备的装置和应用于网络设备的装置,以下介绍所述应用于终端设备的装置和所述应用于网络设备的装置可能的产品形态。应理解,但凡具备上述图6所述的应用于终端设备的装置的特征的任何形态的产品,和但凡具备上述图7所述的应用于网络设备的装置的特征的任何形态的产品,都落入本申请的保护范围。还应理解,以下介绍仅为举例,不应限制本申请实施例的应用于终端设备的装置的产品形态,和应用于网络设备的装置的产品形态仅限于此。
作为一种可能的产品形态,装置可以由一般性的总线体系结构来实现。
如图8所示,提供了一种波束切换的装置(波束切换的装置也可以看作为通信装置)800的示意性框图。该装置800可以为终端设备,也可以为应用于终端设备中的芯片。应理解,该装置具有上述方法中终端设备的任意功能,例如,所述装置800能够执行上述图4的方法中由终端设备执行的各个步骤。
该装置800可以包括:处理器810,可选的,还包括收发器820、存储器830。该收发器820,可以用于接收程序或指令并传输至所述处理器810,或者,该收发器820可以用于该装置800与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器820可以为代码和/或数据读写收发器,或者,该收发器820可以为处理器与收发机之间的信号传输收发器。所述处理器810和所述存储器830之间电耦合。
示例的,所述存储器830,用于存储计算机程序;所述处理器810,可以用于调用所述存储器830中存储的计算机程序或指令,执行上述示例中终端设备执行的方法,或者通过所述收发器820执行上述示例中终端设备执行的方法。
图6中的处理模块610可以通过所述处理器810来实现。
图6中的接收模块620a和发送模块620b可以通过所述收发器820来实现。或者,收发器820分为接收器和发送器,接收器执行接收模块的功能,发送器执行发送模块的功能。
图6中的存储模块630可以通过所述存储器830来实现。
另外,一种可能的实现方式中,应用于网络设备的装置与图8的装置的结构类似,也可以包括处理器,可选的,还可以包括收发器、存储器。应用于第二网络设备的装置可以为网络设备,也可以为应用于网络设备中的芯片。应理解,该装置具有上述方法中网络设备的任意功能,例如,所述装置能够执行上述图4的方法中由网络设备执行的各个步骤。
示例的,所述存储器,用于存储计算机程序;所述处理器,可以用于调用所述存储器中存储的计算机程序或指令,执行上述示例中网络设备执行的方法,或者通过所述收发器执行上述示例中网络设备执行的方法。
图7中的处理模块710可以通过所述处理器来实现。
图7中的接收模块720a和发送模块720b可以通过所述收发器来实现。或者,收发器分为接收器和发送器,接收器执行接收模块的功能,发送器执行发送模块的功能。
图7中的存储模块730可以通过所述存储器来实现。
作为一种可能的产品形态,装置可以由通用处理器(通用处理器也可以称为芯片或芯片系统)来实现。
一种可能的实现方式中,实现应用于终端设备的装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出 接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中终端设备执行的方法。
图6中的处理模块610可以通过处理电路来实现。
图6中的接收模块620a和发送模块620b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。
图6中的存储模块630可以通过存储介质来实现。
一种可能的实现方式中,实现应用于网络设备的装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中网络设备执行的方法。
图7中的处理模块710可以通过处理电路来实现。
图7中的接收模块720a和发送模块720b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。
图7中的存储模块730可以通过存储介质来实现。
作为一种可能的产品形态,本申请实施例的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
图9为本申请实施例提供的一种终端的结构示意图。
终端包括:至少一个处理器1211、至少一个收发器1212。在一种可能的示例中,终端还可以包括:至少一个存储器1213、输出设备1214、输入设备1215和一个或多个天线1216。其中,处理器1211、存储器1213和收发器1212相连。天线1216与收发器1212相连,输出设备1214、输入设备1215与处理器1211相连。
存储器1213可以是独立存在,与处理器1211相连。在另一种示例中,存储器1213也可以和处理器1211集成在一起,例如集成在一个芯片之内。其中,存储器1213能够存储执行本申请实施例的技术方案的程序代码,并由处理器1211来控制执行,被执行的各类计算机程序代码也可被视为是处理器1211的驱动程序。例如,处理器1211用于执行存储器1213中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器1212可以用于支持终端与终端、或者终端与网络设备、或者终端与其它设备之间射频信号的接收或者发送,收发器1212可以与天线1216相连。收发器1212包括发射机Tx和接收机Rx。具体地,一个或多个天线1216可以接收射频信号,该收发器1212的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器1211,以便处理器1211对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1212中的发射机Tx还用于从处理器1211接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1216发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或 多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
处理器1211可以用于为终端实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器1211用于实现上述功能中的一种或者多种。
输出设备1214和处理器1211通信,可以以多种方式来显示信息。例如,输出设备1214可以是液晶显示器(Liquid Crystal Display,LCD就)、发光二级管(Light Emitting Diode,LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备1215和处理器1211通信,可以采用多种方式接收用户的输入。例如,输入设备1215可以是鼠标、键盘、触摸屏设备或传感设备等。
另外,网络设备的硬件结构与图9所示的终端的硬件结构类似,例如网络设备可以包括:至少一个处理器、至少一个收发器。在一种可能的示例中,网络设备还可以包括:至少一个存储器、一个或多个天线。在一种可能的示例中,收发器可以包括发射机Tx和接收机Rx。其中,处理器、存储器和收发器相连,天线与收发器相连。每个器件可以用于为网络设备实现各种功能,这与图8中每个器件用于为终端实现各种功能类似,不再重复赘述。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述波束切换的方法。或者说:所述计算机程序包括用于实现上述波束切换的方法的指令。
本申请实施例还提供了一种计算机程序产品,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述提供的波束切换的方法。
本申请实施例还提供了一种通信的系统,所述通信系统包括:执行上述波束切换的方法的终端设备和网络设备。
另外,本申请实施例中提及的处理器可以是中央处理器(central processing unit,CPU),基带处理器,基带处理器和CPU可以集成在一起,或者分开,还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器 (Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中提及的收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参见前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储 程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序或指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序或指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (43)

  1. 一种波束切换的方法,其特征在于,所述方法包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一波束;
    根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、根据所述第一波束发送用于上行定时测量的信号、接收来自所述网络设备的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定;
    接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示切换至所述第一波束。
  2. 根据权利要求1所述的方法,其特征在于,所述测量所述第一波束对应的下行时偏信息和/或下行频偏信息,包括:
    根据一个或多个第一资源,测量所述第一波束对应的下行时偏信息和/或下行频偏信息;
    其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
  4. 根据权利要求2或3所述的方法,其特征在于,所述测量所述第一波束对应的路损信息,包括:
    根据一个或多个第二资源,测量所述第一波束对应的路损信息;
    其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
  5. 根据权利要求4所述的方法,其特征在于,所述第二资源包含在所述第一资源中。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据多个第二资源,测量所述第一波束对应的路损信息,包括:
    根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果,并确定多个路损信息测量结果的平均值;或者,
    根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果,并将多个路损信息测量结果执行滤波处理,得到一个路损信息测量结果。
  7. 根据权利要求2至6任一项所述的方法,其特征在于,所述第一指示信息还用于激活所述第一资源和/或所述第二资源。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述第一波束发送用于上行定时测量的信号,包括:
    采用所述第一波束,发送用于上行定时测量的信号;或者,
    采用所述第一波束的接收波束,发送用于上行定时测量的信号。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,根据所述第一波束执行所述一项或多项行为,包括:
    在第一时刻,开始执行根据所述第一波束执行所述一项或多项行为;
    其中,所述第一时刻为以下任一项:接收到所述第一指示信息的时刻;反馈所述第一指示信息对应的确认应答ACK信息的时刻;接收到所述第一指示信息的时刻加上一个时 间间隔后的时刻;反馈所述第一指示信息对应的ACK信息的时刻加上一个时间间隔后的时刻。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,第二时长大于或等于第一时长;其中,所述第二时长为接收所述第二指示信息的时刻与接收所述第一指示信息的时刻之间间隔的时长,所述第一时长用于执行完成根据所述第一波束执行所述一项或多项行为。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备上报终端设备是否支持在波束切换前,对即将切换的波束进行测量的能力。
  12. 一种波束切换的方法,其特征在于,所述方法包括:
    向终端设备发送第一指示信息,所述第一波束信息用于指示第一波束,所述第一指示信息用于指示所述终端设备根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、根据所述第一波束发送用于上行定时测量的信号、接收来自所述网络设备的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定;
    向所述终端设备发送第二指示信息,所述第二指示信息指示切换至所述第一波束。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送一个或多个第一资源的信息,所述第一资源用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息;
    其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送一个或多个第二资源的信息,所述第二资源用于测量所述第一波束对应的路损信息;
    其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束的typeD类型的准同位资源满足typeD的准同位关系。
  16. 根据权利要求15所述的方法,其特征在于,所述第二资源包含在所述第一资源中。
  17. 根据权利要求13至16任一项所述的方法,其特征在于,所述第一指示信息还用于激活所述第一资源和/或所述第二资源。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,第二时长大于或等于第一时长;其中,所述第二时长为发送所述第二指示信息的时刻与发送所述第一指示信息的时刻之间间隔的时长,所述第一时长用于终端设备执行完成根据所述第一波束执行所述一项或多项行为。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,还包括:
    接收来自终端设备上报的所述终端设备是否支持在波束切换前,对即将切换的波束进行测量的能力。
  20. 一种波束切换装置,其特征在于,所述装置包括:
    接收模块,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一波束;
    处理模块,用于根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、通过发送模块根据所述第一波束发送用于上行定时测量的信号、通过接收模块接收来自所述网络设备的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定;
    所述接收模块,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示切换至所述第一波束。
  21. 根据权利要求20所述的装置,其特征在于,所述处理模块,在用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息时,具体用于:
    根据一个或多个第一资源,测量所述第一波束对应的下行时偏信息和/或下行频偏信息;其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
  22. 根据权利要求20或21所述的装置,其特征在于,所述第一资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
  23. 根据权利要求21或22所述的装置,其特征在于,所述处理模块,在用于测量所述第一波束对应的路损信息时,具体用于:
    根据一个或多个第二资源,测量所述第一波束对应的路损信息;其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
  24. 根据权利要求23所述的装置,其特征在于,所述第二资源包含在所述第一资源中。
  25. 根据权利要求23或24所述的装置,其特征在于,所述处理模块,在用于根据多个第二资源,测量所述第一波束对应的路损信息时,具体用于:
    根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果,并确定多个路损信息测量结果的平均值;或者,根据每个第二资源分别测量所述第一波束对应的路损信息,得到对应的多个路损信息测量结果,并将多个路损信息测量结果执行滤波处理,得到一个路损信息测量结果。
  26. 根据权利要求21至25任一项所述的装置,其特征在于,所述第一指示信息还用于激活所述第一资源和/或所述第二资源。
  27. 根据权利要求20所述的装置,其特征在于,所述处理模块,在用于根据所述第一波束发送用于上行定时测量的信号时,具体用于:
    通过发送模块采用所述第一波束,发送用于上行定时测量的信号;或者,
    通过发送模块采用所述第一波束的接收波束,发送用于上行定时测量的信号。
  28. 根据权利要求20至27任一项所述的装置,其特征在于,所述处理模块在用于根据所述第一波束执行所述一项或多项行为时,具体用于:
    在第一时刻,开始执行根据所述第一波束执行所述一项或多项行为;其中,所述第一时刻为以下任一项:接收到所述第一指示信息的时刻;反馈所述第一指示信息对应的确认应答ACK信息的时刻;接收到所述第一指示信息的时刻加上一个时间间隔后的时刻;反馈所述第一指示信息对应的ACK信息的时刻加上一个时间间隔后的时刻。
  29. 根据权利要求20至28任一项所述的装置,其特征在于,第二时长大于或等于第一时长;其中,所述第二时长为接收所述第二指示信息的时刻与接收所述第一指示信息的时刻之间间隔的时长,所述第一时长用于执行完成根据所述第一波束执行所述一项或多项行为。
  30. 根据权利要求20-29任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述网络设备上报所述装置是否支持在波束切换前,对即将切换的波束进行测量的能力。
  31. 一种波束切换装置,其特征在于,所述装置包括:
    处理模块,用于生成第一指示信息;
    发送模块,用于向终端设备发送第一指示信息,所述第一波束信息用于指示第一波束,所述第一指示信息用于指示所述终端设备根据所述第一波束执行以下一项或多项行为:测量所述第一波束对应的下行时偏信息、测量所述第一波束对应的下行频偏信息、测量所述第一波束对应的路损信息、根据所述第一波束发送用于上行定时测量的信号、接收来自所述装置的上行定时调整信息,所述上行定时调整信息基于所述第一波束确定;以及向所述终端设备发送第二指示信息,所述第二指示信息指示切换至所述第一波束。
  32. 根据权利要求31所述的装置,其特征在于,所述发送模块,用于向所述终端设备发送一个或多个第一资源的信息,所述第一资源用于测量所述第一波束对应的下行时偏信息和/或下行频偏信息;其中,所述第一资源与所述第一波束满足typeD的准同位关系;或者,所述第一资源与所述第一波束对应的typeD类型的准同位资源满足typeD的准同位关系。
  33. 根据权利要求31或32所述的装置,其特征在于,所述第一资源为所述第一波束对应的typeA或typeB或TypeC类型的准同位资源。
  34. 根据权利要求32或33所述的装置,其特征在于,所述发送模块,用于向所述终端设备发送一个或多个第二资源的信息,所述第二资源用于测量所述第一波束对应的路损信息;其中,所述第二资源与所述第一波束满足typeD的准同位关系;或者,所述第二资源与所述第一波束的typeD类型的准同位资源满足typeD的准同位关系。
  35. 根据权利要求34所述的装置,其特征在于,所述第二资源包含在所述第一资源中。
  36. 根据权利要求33至35任一项所述的装置,其特征在于,所述第一指示信息还用于激活所述第一资源和/或所述第二资源。
  37. 根据权利要求32至36任一项所述的装置,其特征在于,第二时长大于或等于第一时长;其中,所述第二时长为发送所述第二指示信息的时刻与发送所述第一指示信息的时刻之间间隔的时长,所述第一时长用于终端设备执行完成根据所述第一波束执行所述一项或多项行为。
  38. 根据权利要求32至37任一项所述的装置,其特征在于,还包括:
    接收模块,用于接收来自终端设备上报的所述终端设备是否支持在波束切换前,对即将切换的波束进行测量的能力。
  39. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分 或者全部计算机程序或指令被执行时,用于实现如权利要求1-19任一项所述的方法。
  40. 一种通信装置,其特征在于,包括处理器;所述处理器与存储器耦合;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-19任一项所述的方法。
  41. 一种芯片系统,其特征在于,所述芯片系统包括:处理电路;所述处理电路与存储介质耦合;
    所述处理电路,用于执行所述存储介质中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-19任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现权利要求1-19任一项所述的方法的指令。
  43. 一种计算机程序产品,其特征在于,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-19任一项所述的方法。
PCT/CN2020/128858 2020-11-13 2020-11-13 一种波束切换的方法及装置 WO2022099660A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20961216.7A EP4224934A4 (en) 2020-11-13 2020-11-13 METHOD AND DEVICE FOR BEAM SWITCHING
PCT/CN2020/128858 WO2022099660A1 (zh) 2020-11-13 2020-11-13 一种波束切换的方法及装置
CN202080106912.0A CN116391392A (zh) 2020-11-13 2020-11-13 一种波束切换的方法及装置
US18/305,394 US20230268973A1 (en) 2020-11-13 2023-04-24 Beam switching method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128858 WO2022099660A1 (zh) 2020-11-13 2020-11-13 一种波束切换的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/305,394 Continuation US20230268973A1 (en) 2020-11-13 2023-04-24 Beam switching method and apparatus

Publications (1)

Publication Number Publication Date
WO2022099660A1 true WO2022099660A1 (zh) 2022-05-19

Family

ID=81602063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128858 WO2022099660A1 (zh) 2020-11-13 2020-11-13 一种波束切换的方法及装置

Country Status (4)

Country Link
US (1) US20230268973A1 (zh)
EP (1) EP4224934A4 (zh)
CN (1) CN116391392A (zh)
WO (1) WO2022099660A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889174A (zh) * 2016-09-30 2018-04-06 中国移动通信有限公司研究院 一种切换方法、终端设备、基站及系统
WO2018137156A1 (zh) * 2017-01-24 2018-08-02 华为技术有限公司 一种模拟波束切换方法及装置
CN108886725A (zh) * 2016-04-01 2018-11-23 瑞典爱立信有限公司 用于促进终端设备的切换的网络设备、终端设备和方法
CN110536438A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种资源配置的方法、装置及信号的发送方法、装置
US20200053712A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Uplink timing adjustment in beamformed wireless communications
CN111492701A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 特定于波束的定时提前命令参数

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082105B2 (en) * 2017-03-17 2021-08-03 Qualcomm Incorporated RLM monitoring using signaled dynamic parameter
CN112702771B (zh) * 2017-07-25 2023-05-12 华为技术有限公司 测量方法、终端设备和接入网设备
WO2020041757A1 (en) * 2018-08-23 2020-02-27 Intel Corporation Uplink timing adjustment with beam switching
US10993236B2 (en) * 2018-12-05 2021-04-27 Qualcomm Incorporated Synchronization signal measurement for beam detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886725A (zh) * 2016-04-01 2018-11-23 瑞典爱立信有限公司 用于促进终端设备的切换的网络设备、终端设备和方法
CN107889174A (zh) * 2016-09-30 2018-04-06 中国移动通信有限公司研究院 一种切换方法、终端设备、基站及系统
WO2018137156A1 (zh) * 2017-01-24 2018-08-02 华为技术有限公司 一种模拟波束切换方法及装置
CN111492701A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 特定于波束的定时提前命令参数
US20200053712A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Uplink timing adjustment in beamformed wireless communications
CN110536438A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种资源配置的方法、装置及信号的发送方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224934A4 *

Also Published As

Publication number Publication date
US20230268973A1 (en) 2023-08-24
EP4224934A1 (en) 2023-08-09
CN116391392A (zh) 2023-07-04
EP4224934A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
CN110839290A (zh) 信号传输的方法和通信装置
US11985679B2 (en) Wireless communication method and device
WO2020164454A1 (zh) 信号传输方法和通信装置
CN111510267A (zh) 波束指示的方法和通信装置
WO2021254472A1 (zh) 传输配置指示状态TCI state切换的方法和装置
WO2018126882A1 (zh) 一种信号传输方法和网络设备以及终端设备
US20230239032A1 (en) Beam processing method and apparatus, and related device
WO2020057459A1 (zh) 指示波束的方法和装置
EP4087345A1 (en) Beam pair training method and communication apparatus
US20230198602A1 (en) Indicating a beam failure detection reference signal
WO2020164329A1 (zh) 通信方法和设备
WO2023051188A1 (zh) 分组管理方法和通信装置
US20230254030A1 (en) Beam-based communication method and related apparatus
US20240155371A1 (en) Communication method and communication apparatus
WO2020238991A1 (zh) 一种状态信息发送、接收方法及装置
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2020034969A1 (zh) 信号传输方法、波束确定方法及其装置
US20230140502A1 (en) Beam indication method and communications apparatus
WO2022099660A1 (zh) 一种波束切换的方法及装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2021088038A1 (zh) 一种参考信号测量方法、资源指示方法及装置
WO2023093621A1 (zh) 通信方法以及通信装置
US11956803B2 (en) Method and apparatus for determining transmission resource
WO2023241617A1 (zh) 频域资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020961216

Country of ref document: EP

Effective date: 20230509

NENP Non-entry into the national phase

Ref country code: DE