WO2018137156A1 - 一种模拟波束切换方法及装置 - Google Patents

一种模拟波束切换方法及装置 Download PDF

Info

Publication number
WO2018137156A1
WO2018137156A1 PCT/CN2017/072516 CN2017072516W WO2018137156A1 WO 2018137156 A1 WO2018137156 A1 WO 2018137156A1 CN 2017072516 W CN2017072516 W CN 2017072516W WO 2018137156 A1 WO2018137156 A1 WO 2018137156A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog beam
data channel
base station
reference signal
uplink
Prior art date
Application number
PCT/CN2017/072516
Other languages
English (en)
French (fr)
Inventor
黄禹淇
朱有团
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780083867.XA priority Critical patent/CN110313136B/zh
Priority to EP17894090.4A priority patent/EP3562054A4/en
Priority to PCT/CN2017/072516 priority patent/WO2018137156A1/zh
Publication of WO2018137156A1 publication Critical patent/WO2018137156A1/zh
Priority to US16/519,269 priority patent/US10944464B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an analog beam switching method and apparatus.
  • the beamforming (BF) scheme is applied to the base station and the terminal of the large antenna front scene, that is, the beamforming technology directed to the terminal is used to implement the transmission coverage of the corresponding terminal.
  • the beamforming scheme can be classified into a digital beamforming scheme and an analog beamforming scheme according to whether the weight vector, the weight matrix, or the precoding vector, the precoding matrix is used for baseband or radio frequency. If a conventional digital beamforming scheme is used to implement a large antenna array, not only the power consumption cost is high, but also the processing complexity of the baseband signal is high. Therefore, the antenna array is driven by the phase shifter, and a two-stage weighted connection method is used to implement the hybrid BF scheme.
  • the base station and the terminal communicate in order to adapt to the channel change with better channel quality, and the process of analog beam alignment needs to be performed, that is, the base station transmits the analog beam direction to the terminal and the simulation adopted by the terminal.
  • the beam direction is the same.
  • the base station and the terminal respectively perform analog beam scanning by using pilot signals, and respectively select analog beams with optimal channel quality.
  • the selection of the analog beam process of the base station and the terminal needs to be decoupled, that is, the base station does not need to know the terminal. Selected analog beam.
  • the terminal switches the analog beam during the position change process. Specifically, the terminal performs pilot measurement by beam scanning. Once the optimal analog beam is determined, the analog beam switching of the data channel, the sounding channel, and the control channel is performed. If the base station does not know the analog beam selected by the terminal, the terminal will not measure the uplink or downlink in a timely manner when the analog beam is switched. The communication quality is obviously degraded, the system reliability is reduced, and even the network terminal affects the performance of the system.
  • the present invention provides an analog beam switching method and device, which are used to solve the problem that the uplink and downlink measurements caused by the terminal switching the analog beam are inaccurate and the communication quality is degraded.
  • an analog beam switching method is provided.
  • the terminal is autonomously soft-switched, and the order and conditions for the analog beam switching of different signals or channels are changed to avoid the terminal going up and down when switching the terminal side analog beam.
  • the problem of inaccurate measurement leads to a decline in communication quality, which increases the robustness of the system and improves system reliability with fast and accurate beam scanning and tracking.
  • the second analog beam is determined to be the target beam of the handover, and the related signal of the data channel is transmitted by using the second analog beam, and If the set condition is satisfied, the first analog beam is switched to the second analog beam to transmit the data channel.
  • the correlation signal of the data channel is used to detect channel quality of the data channel.
  • the terminal if the terminal determines that the second analog beam is the target beam of the handover, and determines that the base station side analog beam does not need to be handed over, the terminal first switches to the second analog beam to send through the second analog beam.
  • An uplink reference signal and an uplink control channel where the uplink data channel is sent by the first analog beam during a measurement period of the uplink reference signal, and is switched by the first analog beam when a measurement period of the uplink reference signal is reached
  • the base station can correctly obtain the downlink channel information of the second analog beam according to the uplink control channel sent by the terminal, so that the terminal transmitting the signal with the second analog beam can be scheduled according to the correct downlink measurement.
  • the uplink reference signal includes a sounding reference signal SRS, and the measurement period of the uplink reference signal is a user frequency band.
  • the terminal transmits the relevant signal of the data channel through the second analog beam; Transmitting, by the terminal, the data channel by using the first analog beam, and transmitting the data channel by using the second analog beam when the setting condition is met, by: sending, by the terminal, the second analog beam And an uplink reference signal, and receiving, by the first analog beam, a downlink data channel during a measurement period of the uplink reference signal, and switching from the first analog beam to the measuring period when the measurement period of the uplink reference signal is reached The second analog beam receives the downlink data channel.
  • the uplink reference signal is SRS
  • the measurement period is a user frequency band.
  • the base station may be based on the terminal.
  • the sent SRS performs downlink DBF weight calculation to ensure that the terminal switches to the second analog beam connection.
  • PDSCH DBF right side of the base station using channel information matches the value sent PDSCH, thereby ensuring the communication quality.
  • the terminal receives the downlink reference signal by using the second analog beam, and receives the downlink data channel by using the first analog beam, and receives the downlink reference signal, and obtains the downlink reference signal according to the received downlink reference signal.
  • the first analog beam is switched to the second analog beam to receive the downlink data channel.
  • the downlink reference signal is a CSI-RS, so that After receiving the CSI-RS through the second analog beam, the terminal calculates and returns a parameter indicating the downlink channel quality to the base station according to the CSI-RS, and ensures that the base station can use the channel when the terminal switches to the second analog beam to receive the PDSCH.
  • the PMI weight of the information matching is sent to the PDSCH to ensure the communication quality.
  • the uplink reference signal includes a sounding reference signal SRS or an uplink beam scanning reference signal UL-BRS
  • the downlink reference signal includes a reference signal CSI-RS
  • the downlink data channel includes a physical downlink shared channel PDSCH .
  • the terminal determines that the base station side analog beam also needs to be switched, if the third analog beam needs to be switched to the fourth analog beam, the terminal transmits the relevant signal of the data channel through the second analog beam. And the terminal transmits the data channel through the first analog beam, and switches from the first analog beam to the second analog beam to transmit the data channel when the set condition is met, by: Terminal communication Transmitting, by the second analog beam, an uplink reference signal, and transmitting, by using the first analog beam, an uplink data channel and an uplink control channel, receiving, by using the first analog beam, a downlink data channel, and passing the first analog beam Receiving the indication information sent by the base station or after a set time period, switching, by the first analog beam, to the second analog beam, sending the uplink data channel and an uplink control channel, by using the second analog beam Receiving a downlink data channel, where the indication information is used to indicate that the base station switches the base station side analog beam, for example, by the third analog beam to the fourth analog beam.
  • the uplink reference signal includes a sounding reference signal SRS or a UL-BRS
  • the uplink control channel includes a physical uplink control channel PUCCH
  • the uplink data channel includes a physical uplink shared channel PUSCH.
  • an analog beam switching apparatus having a function of implementing terminal behavior in any of the first aspect and the first aspect of the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an analog beam switching device in a third aspect, includes a transceiver, a processor, a memory, and the processor and the memory are connected by a bus system, and the processor is configured to execute in the memory.
  • the code when executed, causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer storage medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect, or any of the possible embodiments of the first aspect.
  • FIG. 1 is a schematic structural diagram of an application system in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of analog beam switching in an embodiment of the present application.
  • FIG. 3 is a flowchart of an analog beam switching method in an embodiment of the present application.
  • FIG. 4 is a structural diagram of an analog beam switching device in an embodiment of the present application.
  • FIG. 5 is a second structural diagram of an analog beam switching device according to an embodiment of the present application.
  • the embodiment of the present application can be applied to the scenario where the BF is applied to the large antenna array, and can be applied to, but not limited to, the switching of the analog beam to the terminal and the switching of the selected antenna.
  • the methods can be applied to the switching of the terminal to the selected antenna.
  • the terminal autonomous soft handover method is used to change the sequence of the analog beam switching of the terminal to different signals or channels and the conditions that need to be met by the handover to avoid
  • the inaccurate uplink and downlink measurement leads to the degradation of communication quality, which increases the robustness of the system and improves system reliability with fast and accurate beam scanning and tracking.
  • the system architecture applied in the embodiment of the present application includes a network device 101 and a terminal 102.
  • the network device 101 may be a base station, and may also be another network device having a base station function. In particular, it may also be a terminal functioning as a base station in a device-to-device (D2D) communication.
  • a base station is a device deployed in a wireless access network to provide wireless communication functionality to terminal 102.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, etc., and the base station may be applied in a system of different radio access technologies, such as an LTE system, or , 5G communication systems, etc. in more possible communication systems.
  • the terminal 102 can include various handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), etc.
  • UE User Equipment
  • MS Mobile Station
  • analog beam alignment In the communication process between the terminal and the base station, in order to obtain better channel quality, analog beam alignment is required.
  • the analog beam used for transmitting signals by the base station and the terminal includes the base station side transmitting the analog beam and the base station side receiving the analog beam;
  • the analog beam used for transmitting the signal by the terminal and the base station includes the terminal side transmitting the analog beam and The terminal side receives the analog beam.
  • the analog beam alignment means that the base station side transmitting the signal by the base station transmits the analog beam and the terminal receiving the signal, and the terminal side receives the analog beam forming the optimal analog beam pair, and the terminal side transmitting the signal sends the analog beam and the base station side receiving the signal received by the base station.
  • the analog beam forms the optimal analog beam pair.
  • the base station side transmits the analog beam and the base station side receives the analog beam as the same analog beam
  • the terminal side transmits the analog beam and the terminal side receives the analog beam as the same analog beam.
  • the optimal analog beam pair is generally an analog beam with a uniform beamforming direction.
  • the base station can obtain the channel response by using the uplink reference signal sent by the terminal, and calculate the signal strength of the analog beam in each direction according to the weight of the analog beam in each beamforming direction, such as Reference Signal Received Power (RSRP).
  • RSRP Reference Signal Received Power
  • the analog beam with the highest signal strength is selected to transmit the analog beam to the base station side and the analog beam to the base station side.
  • the base station notifies the optimal base station side analog beam according to the terminal through the uplink control channel.
  • the terminal scans the pilot signal through the beam scanning subframe to determine an optimal terminal side analog beam.
  • the optimal analog beam pair of the terminal and the base station is the analog beam 1.
  • the terminal changes position or determines the optimal analog beam to become the analog beam 2 according to the beam gain result, the terminal will simulate the beam of the transmitted signal. Switched from analog beam 1 to analog beam 2.
  • the terminal autonomous soft handover is implemented, and the system reliability is improved.
  • the flow of the analog beam switching method is as follows.
  • Step 301 The terminal transmits the data channel by using the first analog beam.
  • the first analog beam is an optimal analog beam on the terminal side
  • the terminal transmits and receives a data channel through the first analog beam, and transmits and receives a signal related to the data channel through the first analog beam, where the data channel
  • the correlation signal can be used by the base station and the terminal to detect the channel quality of the data channel corresponding to the first analog beam.
  • Step 302 The terminal determines that the second analog beam is a target beam of the handover.
  • the terminal when the terminal scans through the beam scanning subframe, it determines the optimal terminal-side analog beam change, and changes from the current first analog beam to the second analog beam. In practical applications, the terminal should transmit and receive signals on the optimal terminal-side analog beam. When the optimal terminal-side analog beam is changed from the currently used analog beam to other target analog beams, the direction of the base-station signal should be adjusted and switched. To the target analog beam, the measurement channel, control channel and data channel are sent and received through the target analog beam. In the embodiment of the present application, instead of immediately switching the measurement channel, the control channel, and the data channel from the first analog beam to the second analog beam, the implementation of step 303 is adopted.
  • Step 303 The terminal transmits a correlation signal of the data channel by using the second analog beam, and if the setting condition is met, the first analog beam is switched to the second analog beam transmission data channel.
  • the correlation signal of the data channel is used to detect the channel quality of the data channel.
  • step 303 The switching method of step 303 will be described in detail below.
  • the terminal determines that the optimal analog beam on the base station side is unchanged, that is, the base station side analog beam does not need to be switched, for the uplink direction:
  • the terminal sends the relevant signal of the data channel through the second analog beam, that is, sends the uplink reference signal and the uplink control signal. And the terminal transmits the uplink data channel through the first analog beam during the measurement period of the uplink reference signal, and switches from the first analog beam to the second analog beam to send the uplink data channel when the measurement period of the uplink reference signal is reached.
  • the uplink reference signal is, for example, a Sounding Reference Signal (SRS)
  • the uplink control channel is, for example, a Physical Uplink Control Channel (PUCCH)
  • the uplink data channel is, for example, a physical uplink shared channel (Physical Uplink Shared Channel). , PUSCH).
  • the terminal when determining that the second analog beam is the target beam of the handover, the terminal first switches the analog beam that transmits the SRS and the PUCCH from the first analog beam to the second analog beam, and continues to use the first analog beam to transmit the PUSCH. After the terminal transmits a user frequency band SRS on the second analog beam, the first analog beam is switched to the second analog beam to transmit the PUSCH.
  • the base station may perform uplink 3I measurement on the second analog beam according to the SRS sent by the terminal, where the 3I includes a Precoding Matrix Indicator (Precoding Matrix Indicator, PMI), Channel Quality Indicator (CQI), and channel state information (RI), the base station obtains the correct PMI, RI, and MCS selection according to the 3I measurement result, and obtains a measurement corresponding to the second analog beam.
  • Precoding Matrix Indicator PMI
  • CQI Channel Quality Indicator
  • RI channel state information
  • the base station can correctly process the PUSCH by using the measurement result corresponding to the second analog beam, so that the channel quality of the PSCH and the MCS of the PUSCH and the second analog beam are obtained. Matching to ensure the quality of uplink communication.
  • the PUCCH is used to feed back the downlink channel information, and the CQI and the downlink RI in the following line, the base station can correctly obtain the downlink channel information of the second analog beam according to the PUCCH sent by the terminal, so that the second analog beam can be scheduled according to the correct downlink measurement.
  • the terminal that transmits the signal.
  • the terminal switches from the first analog beam to the second analog beam to send an uplink reference signal, such as an SRS; and the terminal continues to receive the downlink data channel through the first analog beam during the measurement period of the uplink reference signal, and receives the measurement of the uplink reference signal.
  • an uplink reference signal such as an SRS
  • the channel is switched from the first analog beam to the second analog beam to receive the downlink data channel; or the terminal is switched from the first analog beam to the second analog beam to receive the downlink reference signal, for example, the channel state information reference signal (Channel State Information-Reference) Signals, CSI-RS); and, the terminal continues to receive the downlink data channel through the first analog beam, and receives the downlink reference signal, obtains the downlink PMI according to the received downlink reference signal, and feeds back the downlink PMI, by the first analog beam Switching to the second analog beam receives the downlink data channel.
  • the downlink reference signal for example, the channel state information reference signal (Channel State Information-Reference) Signals, CSI-RS
  • the terminal when determining that the second analog beam is the target beam of the handover, the terminal first switches the analog beam that sends the SRS to the second analog beam, and sends the SRS through the second analog beam, and continues to use the An analog beam receives the PDSCH.
  • the terminal transmits a SRS in the second analog beam to complete a user frequency band the first analog beam is switched to the second analog beam to receive the PDSCH. That is, after the terminal transmits the SRS in the second analog beam to complete a user frequency band, the base station can perform the downlink DBF weight calculation according to the SRS sent by the terminal, and ensure that the base station side uses after the terminal switches to the second analog beam to receive the PDSCH.
  • the DBF weights matched by the channel information are transmitted to the PDSCH, thereby ensuring communication quality.
  • the terminal when determining that the second analog beam is the target beam of the handover, the terminal first switches the analog beam that receives the CSI-RS to the second analog beam, and receives the CSI-RS through the second analog beam. Then, according to the CSI-RS, the parameters indicating the downlink channel quality, such as the downlink PMI and the downlink CQI, are fed back to the base station, and then the first analog beam is switched to the second analog beam to receive the PDSCH, so that the terminal is ensured by the first simulation.
  • the base station can transmit the PDSCH using the PMI weight matching the channel information to ensure the communication quality.
  • the terminal determines that the base station side analog beam also needs to be switched, for example, switching from the third analog beam to the fourth analog beam, then:
  • the terminal When determining that the second analog beam is the target beam of the handover, the terminal firstly switches from the first analog beam to the second analog beam to send an uplink reference signal, such as an SRS, and an uplink beam scanning reference signal (Uplink-B eam-Reference Signals, UL- BRS); and, the terminal continues to transmit the uplink data channel and the uplink control channel through the first analog beam, receives the downlink data channel through the first analog beam, and receives the indication information sent by the base station through the first analog beam or after setting After the duration, the first analog beam is switched to the second analog beam to transmit the uplink data channel and the uplink control channel, and the first analog beam is switched to receive the downlink data channel by using the second analog beam, where the indication information is used to characterize the base station.
  • the base station side analog beam is switched, for example, by the third analog beam to the fourth analog beam.
  • the terminal can notify the base station of the latest optimal base station side analog beam in two ways. For example, the terminal first switches to the second analog beam to transmit the UL-BRS, the base station performs beam scanning, receives the UL-BRS by using different analog beams, acquires the channel response of each analog beam, and obtains the analog beam with the best channel quality, that is, the latest.
  • the optimal base station side analog beam that is, the fourth analog beam; or, when the terminal finds that the optimal base station side analog beam also needs to be switched, the terminal sends the PUCCH through the first analog beam to feed back the latest optimal base station side simulation to the base station.
  • the beam, that is, the fourth analog beam the base station receives the PUCCH sent by the terminal through the third analog beam, and obtains the latest optimal base station side analog beam, that is, the fourth analog beam.
  • the terminal When the terminal determines that the second analog beam is the target beam of the handover, and the optimal base station side analog beam also needs to be switched, the terminal first switches to the second analog beam to transmit the SRS, and continues to transmit the PUCCH through the first analog beam.
  • PUSCH the base station continues to receive PUCCH and PUSCH through the third analog beam.
  • the terminal SRS sends out a user frequency band
  • the base station may perform uplink 3I measurement or calculate downlink weights according to the received SRS and according to the obtained fourth analog beam. And transmitting, by using the third analog beam, a downlink control channel, such as ePDCCH, indicating to the terminal that the base station side has switched to the latest optimal analog beam. After receiving the indication, the terminal switches from the first analog beam to the second analog beam to transmit the PUSCH and the received PDSCH.
  • ePDCCH downlink control channel
  • the terminal may also switch from the first analog beam to the second analog beam to transmit the PUSCH and receive the PDSCH after the set time period elapses.
  • the embodiment of the present application further provides an analog beam switching apparatus 400, including a transmission unit 401 and a processing unit 402, where:
  • the transmitting unit 401 is configured to transmit the data channel by using the first analog beam.
  • the processing unit 402 determines that the second analog beam is the target beam of the handover.
  • the transmitting unit 401 is further configured to: when the processing unit 402 determines that the second analog beam is the target beam of the handover, transmit the correlation signal of the data channel by using the second analog beam; and, if the setting condition is met, switch from the first analog beam to the first The second analog beam transmits a data channel, wherein the associated signal of the data channel is used to detect the channel quality of the data channel.
  • the processing unit 402 is further configured to: determine that the analog beam of the base station side does not need to be switched, and the analog beam of the base station side is used for transmitting signals by the base station and the terminal;
  • the transmitting unit 401 is configured to: if the processing unit 402 determines that the base station side analog beam does not need to be switched, send the uplink reference signal and the uplink control channel by using the second analog beam; and send the first analog beam in the measurement period of the uplink reference signal. And an uplink data channel, and is switched from the first analog beam to the second analog beam to send the uplink data channel when the measurement period of the uplink reference signal is reached.
  • the processing unit 402 is further configured to: determine that the base station side analog beam does not need to be switched, and the base station side analog beam is used for The base station and the terminal transmit signals;
  • the transmitting unit 401 is configured to: if the processing unit 402 determines that the base station side analog beam does not need to be switched, send the uplink reference signal by using the second analog beam; and receive the downlink data channel by using the first analog beam during the measurement period of the uplink reference signal, And switching from the first analog beam to the second analog beam to receive the downlink data channel when the measurement period of the uplink reference signal is reached; or
  • the second analog beam Receiving, by the second analog beam, the downlink reference signal; and receiving, by the first analog beam, the downlink data channel, and receiving the downlink reference signal, and obtaining a parameter characterizing the downlink channel quality according to the received downlink reference signal, by the first simulation
  • the beam is switched to the second analog beam to receive the downlink data channel.
  • the uplink reference signal includes a sounding reference signal SRS or an uplink beam scanning reference signal UL-BRS
  • the downlink reference signal includes a reference signal CSI-RS
  • the downlink data channel includes a physical downlink shared channel PDSCH.
  • the processing unit 402 is further configured to: determine that the analog beam of the base station side needs to be switched, such as changing from a third analog beam to a fourth analog beam, where the base station side analog beam is used for transmitting signals by the base station and the device;
  • the transmitting unit 401 is further configured to: if the processing unit 402 determines that the base station side analog beam needs to be switched, for example, from the third analog beam to the fourth analog beam, send the uplink reference signal by using the second analog beam; and, by using the first
  • the analog beam transmits the uplink data channel and the uplink control channel, receives the downlink data channel through the first analog beam, and switches from the first analog beam to the first analog beam after receiving the indication information sent by the base station through the first analog beam or after a set duration
  • the second analog beam transmits the uplink data channel and the uplink control channel, and the first analog beam is switched to the second analog beam to receive the downlink data channel, and the indication information is used to indicate that the base station switches the base station side analog beam, for example, by the third analog beam switching. It is the fourth analog beam.
  • the uplink reference signal includes a sounding reference signal SRS or a UL-BRS
  • the uplink control channel includes a physical uplink control channel PUCCH
  • the uplink data channel includes a physical uplink shared channel PUSCH.
  • the embodiment of the present application further provides an analog beam switching apparatus 500, including a transceiver 501, a processor 502, a memory 503, and a bus 504.
  • the transceiver 501, the processor 502, and the memory 503 are all connected to the bus 504.
  • the memory 503 stores a set of programs.
  • the processor 502 is configured to call a program stored in the memory 503. When the program is executed, the processor 502 is caused. Do the following:
  • the processor 502 is further configured to: determine that the analog beam on the base station side does not need to be switched, and the analog beam on the base station side is used to transmit signals by the base station and the terminal;
  • the analog beam on the base station side is used for transmitting signals by the base station and the terminal, and then sending the uplink reference signal and the uplink control channel through the second analog beam; and passing the first in the measurement period of the uplink reference signal.
  • the analog beam transmits an uplink data channel, and switches from the first analog beam to the second analog beam to transmit the uplink data channel when the measurement period of the uplink reference signal is reached.
  • the processor 502 is further configured to: determine that the analog beam on the base station side does not need to be switched, and the analog beam on the base station side is used to transmit signals by the base station and the terminal;
  • the uplink reference signal is sent through the second analog beam; and the downlink is received through the first analog beam in the measurement period of the uplink reference signal.
  • a data channel and switching from the first analog beam to the second mode upon reaching the measurement period of the uplink reference signal The pseudo beam receives the downlink data channel; or,
  • the beam receives the downlink data channel.
  • the uplink reference signal includes a sounding reference signal SRS or an uplink beam scanning reference signal UL-BRS
  • the downlink reference signal includes a reference signal CSI-RS
  • the downlink data channel includes a physical downlink shared channel PDSCH.
  • the processor 502 is further configured to: determine that the base station side analog beam needs to be switched, for example, the third analog beam is switched to the fourth analog beam, and the base station side analog beam is used by the base station and the device to transmit the signal;
  • the transceiver 501 is further configured to: if the processor 502 determines that the base station side analog beam needs to be switched, for example, the third analog beam is switched to the fourth analog beam, the uplink reference signal is sent by using the second analog beam; and, by using the first simulation
  • the beam transmits the uplink data channel and the uplink control channel, receives the downlink data channel by using the first analog beam, and switches from the first analog beam to the first time after receiving the indication information sent by the base station through the first analog beam or after a set duration
  • the second analog beam transmits the uplink data channel and the uplink control channel, and the first analog beam is switched to the second analog beam to receive the downlink data channel, and the indication information is used to indicate that the base station switches the base station side analog beam, for example, by the third analog beam to The fourth analog beam.
  • the uplink reference signal includes a sounding reference signal SRS or a UL-BRS
  • the uplink control channel includes a physical uplink control channel PUCCH
  • the uplink data channel includes a physical uplink shared channel PUSCH.
  • the processor 502 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • Processor 502 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 503 may include a volatile memory such as a random-access memory (RAM); the memory 503 may also include a non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid-state drive (SSD); the memory 503 may also include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid-state drive (SSD)
  • the memory 503 may also include a combination of the above types of memories.
  • the analog beam switching device 400 shown in FIG. 4 and the analog beam switching device 500 shown in FIG. 5 are used to perform the analog beam switching method shown in FIG. 3, which can be deployed in a terminal, and the processing unit 402 in FIG.
  • the processor 502 in FIG. 4 is implemented, and the transmission unit 401 in FIG. 4 can be implemented by the transceiver 501 in FIG.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种模拟波束切换方法及装置,用于在终端切换模拟波束时保证系统通信可靠性。该方法为:终端通过第一模拟波束传输数据信道,确定第二模拟波束为切换的目标波束,所述终端通过所述第二模拟波束传输数据信道的相关信号;以及,所述终端通过所述第一模拟波束传输数据信道,并在满足设定条件时由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道。

Description

一种模拟波束切换方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种模拟波束切换方法及装置。
背景技术
随着智能终端的普及应用及移动新业务需求的持续增长,无线传输速率需求呈指数增长,且频谱资源也更为紧张。目前一种思路提出采用高频段的频谱资源,由于在较高的频段,电磁波的穿透能力较差,能量衰减较大,导致有较高的路损。为了对抗路损,基站和终端使用大天线阵面来提高功率和频谱效率。具体地,在基站覆盖区域内配置数十根甚至数百根以上天线,这些天线以大规模阵列方式集中放置。分布在基站覆盖区内的多个终端,在同一时频资源上,利用基站大规模天线配置所提供的空间自由度,与基站同时进行通信,大幅提升频谱资源的利用率。
波束成形(beamforming,BF)方案被应用于大天线阵面场景的基站和终端中,即采用指向终端的波束成形技术来实现对相应终端的传输覆盖。波束成形方案可以根据权重向量、权重矩阵、或者预编码向量、预编码矩阵是否被用于基带或射频而被分类成数字波束成形方案和模拟波束成形方案。若使用传统的数字波束成形方案来实现大天线阵面,不仅功耗成本高,而且基带对信号的处理复杂度也很高。因此,通过移相器驱动天线阵子,使用两级加权的连接方式,实现混合BF的方案。
在混合BF方案或者模拟波束成形方案中,基站和终端为了适应信道的变化以更好的信道质量进行通信,需要进行模拟波束对准的过程,即基站向终端传输模拟波束方向与终端采用的模拟波束方向一致。具体地,基站和终端分别通过导频信号进行模拟波束扫描,分别选择信道质量最优的模拟波束。目前在现有技术中,在模拟波束扫描的过程中,为了能更快更准确地获得基站和终端的模拟波束,基站和终端的选择模拟波束过程需要解耦,也就是说基站不需要知道终端选择的模拟波束。
但是,终端在位置变化过程中会切换模拟波束,具体地,终端通过波束扫描进行导频测量,一旦确定最优的模拟波束,便执行数据信道、sounding信道、控制信道的模拟波束切换。若基站侧不知道终端选择的模拟波束,会导致终端在切换模拟波束时,一段时间内上行或下行的测量不准确,通信质量明显下降,系统可靠性降低,甚至网络终端,影响系统的性能。
发明内容
本申请提供一种模拟波束切换方法及装置,用以解决终端在切换模拟波束时造成的上下行测量不准确、通信质量下降的问题。
第一方面,提供一种模拟波束切换方法,通过终端自主软切换的方法,改变终端对不同信号或信道的传输模拟波束切换的顺序和满足条件,来避免终端在切换终端侧模拟波束时上下行测量不准确导致通信质量下降的问题,增加了系统的鲁棒性,以快速和精准的波束扫描和跟踪,提高系统可靠性。
在一个可能的设计中,终端在使用第一模拟波束传输数据信道时,确定第二模拟波束为切换的目标波束,则通过所述第二模拟波束来传输所述数据信道的相关信号,并且,若设定条件满足,则由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道。其中,所述数据信道的相关信号用于对所述数据信道的信道质量进行检测。这样,通过先切换模拟波束来传输数据信道相关的信号,终端和基站都能够根据数据信道的相关信号做一些第二模拟波束的信道测量,获得与第二模拟波束信道质量相匹配的上下行数据信道,保证通信质量和系统的可靠性。
在一个可能的设计中,若终端确定第二模拟波束为切换的目标波束,且确定基站侧模拟波束不需要切换,则所述终端先切换到第二模拟波束来通过所述第二模拟波束发送上行参考信号和上行控制信道,在所述上行参考信号的测量周期内通过所述第一模拟波束发送上行数据信道,并在到达所述上行参考信号的测量周期时由所述第一模拟波束切换到所述第二模拟波束发送所述上行数据信道,其中,所述基站侧模拟波束用于基站与所述终端传输信号。这样,基站可以根据终端发送的上行控制信道正确获得第二模拟波束的下行信道信息,从而可以根据正确的下行测量来调度用第二模拟波束传输信号的终端。
在一个可能的设计中,所述上行参考信号包括探测参考信号SRS,所述上行参考信号的测量周期为一个用户频带。
在一个可能的设计中,若终端确定第二模拟波束为切换的目标波束,且确定基站侧模拟波束不需要切换,则所述终端通过所述第二模拟波束传输数据信道的相关信号;以及,所述终端通过所述第一模拟波束传输数据信道,并在满足设定条件时通过所述第二模拟波束传输所述数据信道,通过以下方式实现:所述终端通过所述第二模拟波束发送上行参考信号,以及在所述上行参考信号的测量周期内通过所述第一模拟波束接收下行数据信道,并在到达所述上行参考信号的测量周期时由所述第一模拟波束切换到所述第二模拟波束接收所述下行数据信道,一种可能的实施例中,上行参考信号为SRS,测量周期为一个用户频带,终端在第二模拟波束发送SRS完成一个用户频带后,基站可以根据终端发送的SRS进行下行的DBF权值计算,确保在终端切换到第二模拟波束接收PDSCH之后,基站侧使用与信道信息匹配的DBF权值发送PDSCH,从而保证通信质量。或者,所述终端通过所述第二模拟波束接收下行参考信号,以及通过所述第一模拟波束接收下行数据信道,并在接收到所述下行参考信号,根据接收到的所述下行参考信号获得表征下行信道质量的参数时,由所述第一模拟波束切换到所述第二模拟波束接收所述下行数据信道,一种可能的实施例中,所述下行参考信号为CSI-RS,这样,终端在通过第二模拟波束接收到CSI-RS后,根据CSI-RS计算并向基站反馈表征下行信道质量的参数,确保在终端在切换到第二模拟波束来接收PDSCH时,基站能够使用与信道信息匹配的PMI权值发送PDSCH,保证通信质量。
在一个可能的设计中,所述上行参考信号包括探测参考信号SRS或上行波束扫描参考信号UL-BRS,所述下行参考信号包括参考信号CSI-RS,所述下行数据信道包括物理下行共享信道PDSCH。
在一个可能的设计中,若终端确定基站侧模拟波束也需要发生切换,如需要由第三模拟波束切换为第四模拟波束,则所述终端通过所述第二模拟波束传输数据信道的相关信号;以及,所述终端通过所述第一模拟波束传输数据信道,并在满足设定条件时由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道,通过以下方式实现:所述终端通 过所述第二模拟波束发送上行参考信号,以及通过所述第一模拟波束发送上行数据信道和上行控制信道,通过所述第一模拟波束接收下行数据信道,并在通过所述第一模拟波束接收所述基站发送的指示信息时或在经过设定时长后,由所述第一模拟波束切换到所述第二模拟波束发送所述上行数据信道和上行控制信道,通过所述第二模拟波束接收下行数据信道,其中,所述指示信息用于表征所述基站将所述基站侧模拟波束进行切换,如由所述第三模拟波束切换为所述第四模拟波束。在一个可能的实施方式中,所述上行参考信号包括探测参考信号SRS或UL-BRS,所述上行控制信道包括物理上行链路控制信道PUCCH,所述上行数据信道包括物理上行共享信道PUSCH。
第二方面,提供一种模拟波束切换装置,该模拟波束切换装置具有实现上述第一方面和第一方面的任一种可能的实施方式中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,提供一种模拟波束切换装置,该模拟波束切换装置包括收发器,处理器,存储器,所述处理器以及存储器之间通过总线系统相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,该执行使得处理器执行第一方面或第一方面的任一可能的实施方式中的方法。
第四方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、或第一方面的任一可能的实施方式中的方法的指令。
附图说明
图1为本申请实施例中应用系统架构示意图;
图2为本申请实施例中模拟波束切换示意图;
图3为本申请实施例中模拟波束切换方法流程图;
图4为本申请实施例中模拟波束切换装置结构图之一;
图5为本申请实施例中模拟波束切换装置结构图之二。
具体实施方式
本申请实施例可以应用于大天线阵面应用BF的场景中,可以但不限于应用于终端对模拟波束的切换、对选择天线的切换,本申请实施例以模拟波束的切换为例进行介绍,但所述方法均可以应用于终端对选择天线的切换。本申请实施例中,在终端侧模拟波束对基站透明的应用场景下,通过终端自主软切换的方法,改变终端对不同信号或信道的传输模拟波束切换的顺序和切换需要满足的条件,来避免终端在切换终端侧模拟波束时上下行测量不准确导致通信质量下降的问题,增加了系统的鲁棒性,以快速和精准的波束扫描和跟踪,提高系统可靠性。
如图1所示,本申请实施例应用的系统架构中包括网络设备101和终端102。网络设备101可以是基站,还可以是其他具有基站功能的网络设备,特别地,还可以是终端对终端(Device-to-Device,D2D)通信中担任基站功能的终端。基站是一种部署在无线接入网中用以为终端102提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等,基站可以应用在不同的无线接入技术的系统中,例如LTE系统中,或 者,5G通信系统等等更多可能的通信系统中。终端102可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等。
下面将结合附图,对本申请实施例提供的模拟波束切换方法及装置作详细说明。
在终端和基站的通信过程中,为了获得更好的信道质量,需要进行模拟波束对准。对于基站来说,用于基站与终端传输信号的模拟波束包括基站侧发送模拟波束和基站侧接收模拟波束;对于终端来说,用于终端与基站传输信号的模拟波束包括终端侧发送模拟波束和终端侧接收模拟波束。模拟波束对准是指,基站发送信号的基站侧发送模拟波束与终端接收信号的终端侧接收模拟波束形成最优模拟波束对,终端发送信号的终端侧发送模拟波束和基站接收信号的基站侧接收模拟波束形成最优模拟波束对。一般来说,基站侧发送模拟波束和基站侧接收模拟波束为同一模拟波束,终端侧发送模拟波束和终端侧接收模拟波束为同一模拟波束。最优模拟波束对一般为波束成形方向一致的模拟波束。基站可以通过终端发送的上行参考信号获得信道响应,根据每一个波束成形方向的模拟波束的权值,计算终端在各个方向模拟波束的信号强度,如参考信号接收功率(Reference Signal Received Power,RSRP),选择信号强度最大的模拟波束为基站侧发送模拟波束和基站侧接收模拟波束。或者,基站根据终端通过上行控制信道通知最优的基站侧模拟波束。终端通过波束扫描子帧扫描导频信号,确定最优的终端侧模拟波束。
如图2所示,终端和基站的最优模拟波束对为模拟波束1,当终端发生位置变化或者根据波束增益结果确定最优模拟波束变为模拟波束2时,终端会将传输信号的模拟波束由模拟波束1切换为模拟波束2。本申请实施例通过调整各个信道或信号的切换顺序和对满足切换条件的设计,实现终端自主软切换,提高系统可靠性。
如图3所示,本申请实施例中,模拟波束切换方法的流程如下。
步骤301、终端使用第一模拟波束传输数据信道。
具体地,该第一模拟波束为终端侧最优的模拟波束,终端通过第一模拟波束来发送和接收数据信道,以及通过第一模拟波束来发送和接收与数据信道的相关信号,数据信道的相关信号可以用于基站和终端对第一模拟波束对应的数据信道的信道质量进行检测。
步骤302、终端确定第二模拟波束为切换的目标波束。
即,终端通过波束扫描子帧进行扫描时,确定最优的终端侧模拟波束发生变化,由当前的第一模拟波束变为第二模拟波束。实际应用中,终端应在最优的终端侧模拟波束上收发信号,当发现最优的终端侧模拟波束由当前使用的模拟波束变为其他目标模拟波束时,应该调整收发基站信号的方向,切换到目标模拟波束,通过目标模拟波束来收发测量信道、控制信道和数据信道。本申请实施例中,并不是立即将测量信道、控制信道和数据信道由第一模拟波束切换到第二模拟波束,而是采用步骤303的实现方式。
步骤303、终端通过第二模拟波束传输数据信道的相关信号,若满足设定条件,由第一模拟波束切换到第二模拟波束传输数据信道。其中,数据信道的相关信号用于对数据信道的信道质量进行检测。
下面对步骤303的切换方法进行详细说明。
若终端确定基站侧最优的模拟波束不变,也就是基站侧模拟波束不需要切换,对于上行方向:
终端通过第二模拟波束发送数据信道的相关信号,即发送上行参考信号和上行控制信 道;以及,终端在上行参考信号的测量周期内通过第一模拟波束发送上行数据信道,并在到达上行参考信号的测量周期时由第一模拟波束切换到第二模拟波束发送上行数据信道。上行参考信号例如为探测参考信号(Sounding Reference Signal,SRS),上行控制信道例如为物理上行链路控制信道(Physical Uplink Control Channel,PUCCH),上行数据信道例如为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
具体地,终端在确定第二模拟波束为切换的目标波束时,首先将发送SRS和PUCCH的模拟波束由第一模拟波束切换到第二模拟波束,而继续使用第一模拟波束发送PUSCH。当终端在第二模拟波束上发送完一个用户频带SRS后,再由第一模拟波束切换到第二模拟波束来发送PUSCH。也就是说,终端在第二模拟波束上发送完一个用户频带的SRS后,基站可以根据终端发送的SRS对第二模拟波束进行上行3I测量,其中,3I包括预编码矩阵指示(Precoding Matrix Indicator,PMI)、信道质量指示(Channel Quality Indicator,CQI)、信道状态秩信息(rank information,RI),基站根据3I测量结果获得正确的PMI、RI及MCS的选择,获得与第二模拟波束对应的测量结果,当终端由第一模拟波束切换到第二模拟波束发送PUSCH时,基站可以使用第二模拟波束对应的测量结果对PUSCH进行正确处理,使得PUSCH的PMI和MCS与第二模拟波束的信道质量相匹配,从而保证上行通信的质量。
PUCCH用于反馈下行的信道信息,如下行的CQI和下行的RI,基站可以根据终端发送的PUCCH正确获得第二模拟波束的下行信道信息,从而可以根据正确的下行测量来调度用第二模拟波束传输信号的终端。
对于下行方向:
终端由第一模拟波束切换到第二模拟波束发送上行参考信号,例如SRS;以及,终端在上行参考信号的测量周期内继续通过第一模拟波束接收下行数据信道,并在到达上行参考信号的测量周期时由第一模拟波束切换到第二模拟波束接收下行数据信道;或者,终端由第一模拟波束切换到第二模拟波束接收下行参考信号,例如接收信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS);以及,终端继续通过第一模拟波束接收下行数据信道,并在接收到下行参考信号,根据接收到的下行参考信号获得下行PMI并反馈下行PMI时,由第一模拟波束切换到第二模拟波束接收下行数据信道。
具体地,在下行BF模式下,终端在确定第二模拟波束为切换的目标波束时,首先将发送SRS的模拟波束切换到第二模拟波束,通过第二模拟波束来发送SRS,而继续使用第一模拟波束接收PDSCH,当终端在第二模拟波束发送SRS完成一个用户频带后,再由第一模拟波束切换到第二模拟波束来接收PDSCH。也就是说,终端在第二模拟波束发送SRS完成一个用户频带后,基站可以根据终端发送的SRS进行下行的DBF权值计算,确保在终端切换到第二模拟波束接收PDSCH之后,基站侧使用与信道信息匹配的DBF权值发送PDSCH,从而保证通信质量。
在下行闭环空间复用模式下,终端在确定第二模拟波束为切换的目标波束时,首先将接收CSI-RS的模拟波束切换到第二模拟波束,在通过第二模拟波束接收到CSI-RS后,根据CSI-RS计算并向基站反馈表征下行信道质量的参数,例如下行PMI、下行CQI,再由第一模拟波束切换到第二模拟波束来接收PDSCH,这样,确保终端在由第一模拟波束切换到第二模拟波束接收PDSCH时,基站能够使用与信道信息匹配的PMI权值发送PDSCH,保证通信质量。
若终端确定基站侧模拟波束也需要进行切换,例如,由第三模拟波束切换为第四模拟波束,则:
终端在确定第二模拟波束为切换的目标波束时,首先由第一模拟波束切换到第二模拟波束发送上行参考信号,例如SRS,上行波束扫描参考信号(Uplink-B eam-Reference Signals,UL-BRS);并且,终端继续通过第一模拟波束发送上行数据信道和上行控制信道,通过第一模拟波束接收下行数据信道,并在通过第一模拟波束接收基站发送的指示信息时或在经过设定时长后,由第一模拟波束切换到第二模拟波束发送上行数据信道和上行控制信道,以及由第一模拟波束切换到通过第二模拟波束接收下行数据信道,其中,指示信息用于表征基站已将基站侧模拟波束进行了切换,例如,由第三模拟波束切换为第四模拟波束。
具体地,终端在发现最优的基站侧模拟波束也需要发生切换时,终端可以通过两种方式来告知基站最新的最优基站侧模拟波束。例如,终端首先切换到第二模拟波束来发送UL-BRS,基站进行波束扫描,利用不同的模拟波束接收UL-BRS,获取各个模拟波束的信道响应,获取信道质量最好的模拟波束,即最新的最优基站侧模拟波束,也就是第四模拟波束;或者,终端在发现最优的基站侧模拟波束也需要发生切换时,通过第一模拟波束发送PUCCH向基站反馈最新的最优基站侧模拟波束,即第四模拟波束,基站通过第三模拟波束来接收终端发送的PUCCH,获得最新的最优基站侧模拟波束,即第四模拟波束。
终端在确定第二模拟波束为切换的目标波束,且最优的基站侧模拟波束也需要发生切换时,终端首先切换到第二模拟波束来发送SRS,且继续通过第一模拟波束来发送PUCCH和PUSCH,基站继续通过第三模拟波束来接收PUCCH和PUSCH。在终端SRS发完一个用户频带时,基站可以通过接收到的SRS以及根据获得的第四模拟波束,进行上行3I测量或计算下行权值。并通过第三模拟波束发送下行控制信道,如ePDCCH,向终端指示基站侧已经切换到最新的最优模拟波束。终端在接收到该指示后,由第一模拟波束切换到第二模拟波束发送PUSCH和接收PDSCH。
另外,终端也可以在经过设定时长后,由第一模拟波束切换到第二模拟波束发送PUSCH和接收PDSCH。
基于与图3所示的模拟波束切换方法同一发明构思,如图4所示,本申请实施例还提供了一种模拟波束切换装置400,包括传输单元401和处理单元402,其中:
传输单元401,用于使用第一模拟波束传输数据信道。
处理单元402,确定第二模拟波束为切换的目标波束。
传输单元401,还用于在处理单元402确定第二模拟波束为切换的目标波束时,通过第二模拟波束传输数据信道的相关信号;以及,若满足设定条件由第一模拟波束切换到第二模拟波束传输数据信道,其中,数据信道的相关信号用于对数据信道的信道质量进行检测。
可选的,处理单元402还用于确定基站侧模拟波束不需要切换,基站侧模拟波束用于基站与终端传输信号;
传输单元401用于:若处理单元402确定基站侧模拟波束不需要切换,则通过第二模拟波束发送上行参考信号和上行控制信道;以及,在上行参考信号的测量周期内通过第一模拟波束发送上行数据信道,并在到达上行参考信号的测量周期时由第一模拟波束切换到第二模拟波束发送上行数据信道。
可选的,处理单元402还用于确定基站侧模拟波束不需要切换,基站侧模拟波束用于 基站与终端传输信号;
传输单元401用于:若处理单元402确定基站侧模拟波束不需要切换,则通过第二模拟波束发送上行参考信号;以及,在上行参考信号的测量周期内通过第一模拟波束接收下行数据信道,并在到达上行参考信号的测量周期时由第一模拟波束切换到第二模拟波束接收下行数据信道;或者,
通过第二模拟波束接收下行参考信号;以及,通过第一模拟波束接收下行数据信道,并在接收到下行参考信号,根据接收到的下行参考信号获得表征下行信道质量的参数时,由第一模拟波束切换到第二模拟波束接收下行数据信道。
可选的,上行参考信号包括探测参考信号SRS或上行波束扫描参考信号UL-BRS,下行参考信号包括参考信号CSI-RS,下行数据信道包括物理下行共享信道PDSCH。
可选的,处理单元402还用于:确定基站侧模拟波束需要发生切换,如由第三模拟波束变为第四模拟波束,基站侧模拟波束用于基站与装置传输信号;
传输单元401还用于,若处理单元402确定基站侧模拟波束需要发生切换时,例如由第三模拟波束变为第四模拟波束,则通过第二模拟波束发送上行参考信号;以及,通过第一模拟波束发送上行数据信道和上行控制信道,通过第一模拟波束接收下行数据信道,并在通过第一模拟波束接收基站发送的指示信息时或在经过设定时长后,由第一模拟波束切换到第二模拟波束发送上行数据信道和上行控制信道,由第一模拟波束切换到第二模拟波束接收下行数据信道,指示信息用于表征基站将基站侧模拟波束进行切换,如由第三模拟波束切换为第四模拟波束。
可选的,上行参考信号包括探测参考信号SRS或UL-BRS,上行控制信道包括物理上行链路控制信道PUCCH,上行数据信道包括物理上行共享信道PUSCH。
基于与图3所示的模拟波束切换方法同一发明构思,如图5所示,本申请实施例还提供了一种模拟波束切换装置500,包括收发器501、处理器502、存储器503和总线504,收发器501、处理器502、存储器503均与总线504连接,其中,存储器503中存储一组程序,处理器502用于调用存储器503中存储的程序,当程序被执行时,使得处理器502执行以下操作:
使用第一模拟波束传输数据信道;确定第二模拟波束为切换的目标波束;
确定第二模拟波束为切换的目标波束时,通过第二模拟波束传输数据信道的相关信号;以及,若满足设定条件由第一模拟波束切换到第二模拟波束传输数据信道。
可选的,处理器502还用于确定基站侧模拟波束不需要切换,基站侧模拟波束用于基站与终端传输信号;
若确定基站侧模拟波束不需要切换,基站侧模拟波束用于基站与终端传输信号,则通过第二模拟波束发送上行参考信号和上行控制信道;以及,在上行参考信号的测量周期内通过第一模拟波束发送上行数据信道,并在到达上行参考信号的测量周期时由第一模拟波束切换到第二模拟波束发送上行数据信道。
可选的,处理器502还用于确定基站侧模拟波束不需要切换,基站侧模拟波束用于基站与终端传输信号;
若确定基站侧模拟波束不需要切换,基站侧模拟波束用于基站与终端传输信号,则通过第二模拟波束发送上行参考信号;以及,在上行参考信号的测量周期内通过第一模拟波束接收下行数据信道,并在到达上行参考信号的测量周期时由第一模拟波束切换到第二模 拟波束接收下行数据信道;或者,
通过第二模拟波束接收下行参考信号;以及,通过第一模拟波束接收下行数据信道,并在接收到下行参考信号,根据接收到的下行参考信号获得表征下行信道质量的参数时,通过第二模拟波束接收下行数据信道。
可选的,上行参考信号包括探测参考信号SRS或上行波束扫描参考信号UL-BRS,下行参考信号包括参考信号CSI-RS,下行数据信道包括物理下行共享信道PDSCH。
可选的,处理器502还用于:确定基站侧模拟波束需要发生切换,例如由第三模拟波束切换为第四模拟波束,基站侧模拟波束用于基站与装置传输信号;
收发器501还用于,若处理器502确定基站侧模拟波束需要发生切换,例如由第三模拟波束切换为第四模拟波束,则通过第二模拟波束发送上行参考信号;以及,通过第一模拟波束发送上行数据信道和上行控制信道,通过第一模拟波束接收下行数据信道,并在通过第一模拟波束接收基站发送的指示信息时或在经过设定时长后,由第一模拟波束切换到第二模拟波束发送上行数据信道和上行控制信道,由第一模拟波束切换到第二模拟波束接收下行数据信道,指示信息用于表征基站将基站侧模拟波束进行切换,例如由第三模拟波束切换为第四模拟波束。
可选的,上行参考信号包括探测参考信号SRS或UL-BRS,上行控制信道包括物理上行链路控制信道PUCCH,上行数据信道包括物理上行共享信道PUSCH。
处理器502可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器502还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器503可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器503也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器503还可以包括上述种类的存储器的组合。
图4所示的模拟波束切换装置400和图5所示的模拟波束切换装置500用于执行图3所示的模拟波束切换方法,可以在终端中部署,图4中的处理单元402可以用图5中的处理器502来实现,图4中的传输单元401可以用图5中的收发器501来实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种模拟波束切换方法,其特征在于,包括:
    终端使用第一模拟波束传输数据信道;
    所述终端确定第二模拟波束为切换的目标波束;
    所述终端通过所述第二模拟波束传输所述数据信道的相关信号,所述数据信道的相关信号用于对所述数据信道的信道质量进行检测;以及
    若设定条件满足,则所述终端由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道。
  2. 如权利要求1所述的方法,其特征在于,所述终端通过所述第二模拟波束传输数据信道的相关信号;以及,若设定条件满足,则所述终端由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道,包括:
    所述终端确定基站侧模拟波束不需要切换,所述基站侧模拟波束用于基站与所述终端传输信号;
    所述终端由所述第一模拟波束切换到所述第二模拟波束发送上行参考信号和上行控制信道;以及,
    所述终端在所述上行参考信号的测量周期内通过所述第一模拟波束发送上行数据信道,并在到达所述上行参考信号的测量周期时由所述第一模拟波束切换到所述第二模拟波束发送所述上行数据信道。
  3. 如权利要求1所述的方法,其特征在于,所述终端通过所述第二模拟波束传输数据信道的相关信号;以及,若设定条件满足,则所述终端由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道,包括:
    所述终端确定基站侧模拟波束不需要切换,所述基站侧模拟波束用于基站与所述终端传输信号;
    所述终端由所述第一模拟波束切换到所述第二模拟波束发送上行参考信号;以及,
    所述终端在所述上行参考信号的测量周期内通过所述第一模拟波束接收下行数据信道,并在到达所述上行参考信号的测量周期时由所述第一模拟波束切换到所述第二模拟波束接收所述下行数据信道;或者,
    所述终端由所述第一模拟波束切换到所述第二模拟波束接收下行参考信号;以及,
    所述终端通过所述第一模拟波束接收下行数据信道,并在接收到所述下行参考信号,根据接收到的所述下行参考信号获得表征下行信道质量的参数时,由所述第一模拟波束切换到所述第二模拟波束接收所述下行数据信道。
  4. 如权利要求3所述的方法,其特征在于,
    所述上行参考信号包括探测参考信号SRS或上行波束扫描参考信号UL-BRS,所述下行参考信号包括参考信号CSI-RS,所述下行数据信道包括物理下行共享信道PDSCH。
  5. 如权利要求1所述的方法,其特征在于,所述终端通过所述第二模拟波束传输数据信道的相关信号;以及,若设定条件满足,则所述终端由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道,包括:
    所述终端确定基站侧模拟波束需要发生切换,所述基站侧模拟波束用于基站与所述终端传输信号;
    所述终端通过所述第二模拟波束发送上行参考信号;以及,
    所述终端通过所述第一模拟波束发送上行数据信道和上行控制信道,通过所述第一模拟波束接收下行数据信道,并在通过所述第一模拟波束接收所述基站发送的指示信息时或在经过设定时长后,通过所述第二模拟波束发送所述上行数据信道和上行控制信道,通过所述第二模拟波束接收下行数据信道,所述指示信息用于表征所述基站将所述基站侧模拟波束进行切换。
  6. 如权利要求2或5所述的方法,其特征在于:
    所述上行参考信号包括探测参考信号SRS或UL-BRS,所述上行控制信道包括物理上行链路控制信道PUCCH,所述上行数据信道包括物理上行共享信道PUSCH。
  7. 一种模拟波束切换装置,其特征在于,包括:
    传输单元,用于使用第一模拟波束传输数据信道;
    处理单元,确定第二模拟波束为切换的目标波束;
    传输单元,还用于在所述处理单元确定第二模拟波束为切换的目标波束时,通过所述第二模拟波束传输所述数据信道的相关信号,所述数据信道的相关信号用于对所述数据信道的信道质量进行检测;以及,
    若设定条件满足,则由所述第一模拟波束切换到所述第二模拟波束传输所述数据信道。
  8. 如权利要求7所述的装置,其特征在于,所述处理单元还用于确定基站侧模拟波束不需要切换,所述基站侧模拟波束用于基站与所述终端传输信号;
    所述传输单元用于:若所述处理单元确定基站侧模拟波束不需要切换,则通过所述第二模拟波束发送上行参考信号和上行控制信道;以及,在所述上行参考信号的测量周期内通过所述第一模拟波束发送上行数据信道,并在到达所述上行参考信号的测量周期时由所述第一模拟波束切换到所述第二模拟波束发送所述上行数据信道。
  9. 如权利要求7所述的装置,其特征在于,所述处理单元还用于确定基站侧模拟波束不需要切换,所述基站侧模拟波束用于基站与所述终端传输信号;
    所述传输单元用于:若所述处理单元确定基站侧模拟波束不需要切换,则通过所述第二模拟波束发送上行参考信号;以及,在所述上行参考信号的测量周期内通过所述第一模拟波束接收下行数据信道,并在到达所述上行参考信号的测量周期时由所述第一模拟波束切换到所述第二模拟波束接收所述下行数据信道;或者,
    通过所述第二模拟波束接收下行参考信号;以及,通过所述第一模拟波束接收下行数据信道,并在接收到所述下行参考信号,根据接收到的所述下行参考信号获得表征下行信道质量的参数时,由所述第一模拟波束切换到所述第二模拟波束接收所述下行数据信道。
  10. 如权利要求9所述的装置,其特征在于,
    所述上行参考信号包括探测参考信号SRS或上行波束扫描参考信号UL-BRS,所述下行参考信号包括参考信号CSI-RS,所述下行数据信道包括物理下行共享信道PDSCH。
  11. 如权利要求7所述的装置,其特征在于,所述处理单元还用于:确定基站侧模拟波束需要发生切换,所述基站侧模拟波束用于基站与所述装置传输信号;
    所述传输单元还用于,若所述处理单元确定基站侧模拟波束需要发生切换,则通过所述第二模拟波束发送上行参考信号;以及,通过所述第一模拟波束发送上行数据信道和上行控制信道,通过所述第一模拟波束接收下行数据信道,并在通过所述第一模拟波束接收 所述基站发送的指示信息时或在经过设定时长后,由所述第一模拟波束切换到所述第二模拟波束发送所述上行数据信道和上行控制信道,通过所述第二模拟波束接收下行数据信道,所述指示信息用于表征所述基站将所述基站侧模拟波束进行切换。
  12. 如权利要求8或11所述的装置,其特征在于:
    所述上行参考信号包括探测参考信号SRS或UL-BRS,所述上行控制信道包括物理上行链路控制信道PUCCH,所述上行数据信道包括物理上行共享信道PUSCH。
PCT/CN2017/072516 2017-01-24 2017-01-24 一种模拟波束切换方法及装置 WO2018137156A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780083867.XA CN110313136B (zh) 2017-01-24 2017-01-24 一种模拟波束切换方法及装置
EP17894090.4A EP3562054A4 (en) 2017-01-24 2017-01-24 METHOD AND DEVICE FOR SWITCHING ANALOG RAYS
PCT/CN2017/072516 WO2018137156A1 (zh) 2017-01-24 2017-01-24 一种模拟波束切换方法及装置
US16/519,269 US10944464B2 (en) 2017-01-24 2019-07-23 Method and apparatus for switching analog beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072516 WO2018137156A1 (zh) 2017-01-24 2017-01-24 一种模拟波束切换方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/519,269 Continuation US10944464B2 (en) 2017-01-24 2019-07-23 Method and apparatus for switching analog beam

Publications (1)

Publication Number Publication Date
WO2018137156A1 true WO2018137156A1 (zh) 2018-08-02

Family

ID=62978833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072516 WO2018137156A1 (zh) 2017-01-24 2017-01-24 一种模拟波束切换方法及装置

Country Status (4)

Country Link
US (1) US10944464B2 (zh)
EP (1) EP3562054A4 (zh)
CN (1) CN110313136B (zh)
WO (1) WO2018137156A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022099660A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 一种波束切换的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116170045A (zh) * 2017-03-21 2023-05-26 三菱电机株式会社 通信系统
US11425650B2 (en) * 2019-04-26 2022-08-23 Qualcomm Incorporated Signaling for multi-panel UE activation
CN115550948B (zh) * 2022-11-25 2023-08-18 北京九天微星科技发展有限公司 一种上行探测参考信号传输方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493166A (zh) * 2000-12-29 2004-04-28 ���˹���Ѷ��� 正交频分复用数据通信的装置和方法
WO2014107012A1 (en) * 2013-01-02 2014-07-10 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105126A1 (en) * 2009-06-15 2011-05-05 The Aerospace Corportion Terminal initiated intrasatellite antenna handover method
US10264478B2 (en) * 2011-12-16 2019-04-16 Samsung Electronics Co., Ltd. Methods and apparatus to enhance reliability in millimeter wave wideband communications
CN103607233B (zh) * 2013-12-06 2017-05-17 北京邮电大学 一种波束切换方法
CN106063362B (zh) * 2014-01-29 2019-09-20 华为终端有限公司 通信连接建立方法及媒介设备
US9414285B2 (en) * 2014-06-30 2016-08-09 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
US11101851B2 (en) * 2015-11-23 2021-08-24 Nokia Solutions And Networks Oy User device beamforming training in wireless networks
US10270514B2 (en) * 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system
WO2017194094A1 (en) * 2016-05-10 2017-11-16 Nokia Solutions And Networks Oy Method, system and apparatus of beam selection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493166A (zh) * 2000-12-29 2004-04-28 ���˹���Ѷ��� 正交频分复用数据通信的装置和方法
WO2014107012A1 (en) * 2013-01-02 2014-07-10 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562054A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022099660A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 一种波束切换的方法及装置

Also Published As

Publication number Publication date
CN110313136A (zh) 2019-10-08
CN110313136B (zh) 2021-05-18
US10944464B2 (en) 2021-03-09
EP3562054A1 (en) 2019-10-30
US20190349064A1 (en) 2019-11-14
EP3562054A4 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
EP4027704B1 (en) Mobility measurements
CN106576272B (zh) 获得通信装置的准确测量结果的方法和设备
US20220376768A1 (en) Beam alignment verification for wireless networks
CN109155646B (zh) 通信方法和用户设备
US20190349868A1 (en) Uplink measurement reference signal power control method, network device, and terminal device
US20220239352A1 (en) Managing multiple antenna panels for user equipment within wireless networks
US20220159736A1 (en) Signal transmission method and apparatus
CN112425216B (zh) 用于无线通信的功率余量报告
CN110402548B (zh) 基于用户设备定位精度配置参考信号波束的设备
US10944464B2 (en) Method and apparatus for switching analog beam
WO2019112499A1 (en) Antenna beamforming based on position
US20230006713A1 (en) Precoding tracking for cell free massive mimo
US11626911B2 (en) Flexible beamforming control
WO2015187130A1 (en) Adaptive antenna response at the ue for lte-advanced and beyond
EP3586454B1 (en) Methods and apparatuses for receiving in a wireless communication system
EP3837773A1 (en) Method and system for managing interference in multi trp systems
EP4008127A1 (en) Determination of a beam in a rat with angular information provided by another rat for performing a handover
WO2023040796A1 (zh) 一种通道相位偏差预测方法及相关设备
US20240089885A1 (en) Beam time synchronization method, terminal device, and access network device
US20230362664A1 (en) Methods for pathloss reference signal activation
JP6542370B2 (ja) チャネル空間特性情報を取得するための方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894090

Country of ref document: EP

Effective date: 20190723