WO2021031041A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021031041A1
WO2021031041A1 PCT/CN2019/101217 CN2019101217W WO2021031041A1 WO 2021031041 A1 WO2021031041 A1 WO 2021031041A1 CN 2019101217 W CN2019101217 W CN 2019101217W WO 2021031041 A1 WO2021031041 A1 WO 2021031041A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
rbg
size
side device
communication device
Prior art date
Application number
PCT/CN2019/101217
Other languages
English (en)
French (fr)
Inventor
高飞
花梦
王轶
王婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/101217 priority Critical patent/WO2021031041A1/zh
Priority to CN201980099376.3A priority patent/CN114270978A/zh
Publication of WO2021031041A1 publication Critical patent/WO2021031041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • resource blocks can be divided into physical resource blocks (physical resource blocks, PRB) and virtual resource blocks (virtual resource blocks, VRB).
  • PRB physical resource blocks
  • VRB virtual resource blocks
  • the wireless communication system may support resource allocation based on resource block group (RBG).
  • RBG resource block group
  • the RBG may include one or more consecutive VRBs, and the size of the RBG indicates the number of VRBs contained in the RBG.
  • the size of the RBG can be a fixed size determined according to the bandwidth of the cell (or the bandwidth of the carrier). For example, when the bandwidth of the cell is less than or equal to 10 RBs, the size of the RBG can be One VRB, that is, one VRB is one RBG; when the bandwidth of the cell is 11 to 26 RBs, the size of the RBG is 2 VRBs, that is, two VRBs are one RBG.
  • the maximum bandwidth of a carrier can reach 400MHz, but the maximum bandwidth capability supported by terminal devices may not reach such a large bandwidth. Therefore, a bandwidth part (BWP) is introduced in the 5G communication system, and the BWP may include one or more PRBs in a carrier.
  • the network-side device can configure the RBG size for the BWP. Generally, the size of the RBG configured by the network-side device for the BWP is less than or equal to the size of the BWP. In this case, the network-side device can schedule the terminal-side device on the BWP with the RBG as the granularity Upstream data or downstream data.
  • the size of the RBG configured by the network side device for the BWP may be larger than the size of the BWP.
  • how the network side device schedules the uplink data or downlink data of the terminal side device on the BWP is still Need further research.
  • the purpose of the embodiments of the present application is to provide a communication method and device for implementing data transmission on the BWP by the network side device and the terminal side device in a scenario where the size of the RBG configured for the BWP is larger than the size of the BWP.
  • an embodiment of the present application provides a communication method, which includes:
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for the BWP, it determines that the BWP corresponds to the first RBG, and the size of the first RBG is equal to the size of the BWP; further, the communication device is in the first Data transmission is performed on the physical resource block PRB mapped by the virtual resource block VRB in an RBG.
  • the aforementioned communication device may be a network-side device.
  • the method may further include: the communication device sends first configuration information to the terminal-side device, where the first configuration information includes the size of the BWP; and The communication apparatus sends second configuration information to the terminal-side device, where the second configuration information includes the size of the RBG configured for the BWP.
  • the aforementioned communication device may be a terminal-side device.
  • the method may further include: the communication device receives first configuration information sent by the network-side device, where the first configuration information includes the size of the BWP; And, the communication apparatus receives the second configuration information sent by the network side device, where the second configuration information includes the size of the RBG configured for the BWP.
  • both the network side device and the terminal side device in the embodiment of this application can determine that the BWP corresponds to the first RBG, thereby ensuring the BWP understood by the network side device and the terminal side device
  • the sizes of the corresponding RBGs are the same, and because the size of the first RBG is equal to the size of the BWP, it can effectively prevent the PRB mapped by the VRB in the RBG scheduled by the network side device from including PRBs that are not BWP, ensuring the accuracy of data transmission .
  • determining that the BWP corresponds to the first RBG includes: if the communication device determines that the size of the BWP is smaller than The size of the RBG configured for the BWP, and the number of RBGs corresponding to the BWP is 1 according to the starting resource block index of the BWP, the size of the BWP, and the size of the configured RBG, then it is determined BWP corresponds to the first RBG.
  • the size of the first RBG corresponding to BWP and the last RBG corresponding to BWP can be calculated, and then the RBG corresponding to BWP includes the first one corresponding to BWP.
  • the last RBG corresponding to the RBG and the BWP, at this time, the size of the RBG corresponding to the BWP as understood by the network side device and the terminal side device will not be inconsistent.
  • the number of RBGs corresponding to the BWP is 1, it can be determined that the BWP corresponds to the first RBG, so as to avoid the size of the RBG corresponding to the BWP as understood by the network side device and the terminal side device. Inconsistent.
  • an embodiment of the present application provides a communication method, which includes:
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for the BWP, and obtains the number of RBGs corresponding to the BWP according to the start resource block index of the BWP, the size of the BWP, and the size of the configured RBG If the number is 1, it is determined that the BWP corresponds to the second RBG or the third RBG; further, the communication device performs data transmission on the PRB mapped by part or all of the VRB in the second RBG or the third RBG; wherein, the The size of the second RBG is obtained according to the starting resource block index of the BWP and the size of the configured RBG; the size of the third RBG is obtained according to the starting resource block index of the BWP and the size of the BWP Size and the size of the configured RBG.
  • the aforementioned communication device may be a network-side device.
  • the method may further include: the communication device sends first configuration information to the terminal-side device, where the first configuration information includes the size of the BWP; and The communication apparatus sends second configuration information to the terminal-side device, where the second configuration information includes the size of the RBG configured for the BWP.
  • the aforementioned communication device may be a terminal-side device.
  • the method may further include: the communication device receives first configuration information sent by the network-side device, where the first configuration information includes the size of the BWP; And, the communication apparatus receives the second configuration information sent by the network side device, where the second configuration information includes the size of the RBG configured for the BWP.
  • both the network side device and the terminal side device in the embodiment of this application can determine that the BWP corresponds to the second RBG (or third RBG), thereby ensuring that the network side device and the terminal
  • the size of the RBG corresponding to the BWP understood by the side device is the same; and taking the BWP corresponding to the second RBG as an example, when the second RBG is larger than the size of the BWP, the network side device and the terminal side device can map part of the VRB in the second RBG Data transmission is performed on the PRB of the second RBG (the PRB that does not belong to the BWP among the PRBs mapped by the VRB in the second RBG is discarded).
  • the network-side device and the terminal-side device can be all in the second RBG Data transmission is performed on the PRB mapped by the VRB.
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for the BWP, and according to the start resource block index of the BWP, the size of the BWP and the configured RBG size
  • the number of RBGs corresponding to the BWP is determined to be 1, and then determining that the BWP corresponds to the third RBG includes: if the communication device determines that the size of the BWP is smaller than the size of the RBG configured for the BWP, and the third RBG
  • the size of is greater than 0, and the number of RBGs corresponding to the BWP is 1 according to the starting resource block index of the BWP, the size of the BWP, and the size of the configured RBG, then it is determined that the BWP corresponds to the third RBG .
  • the communication device performs data transmission on PRBs mapped by part or all of the VRBs in the second RBG, including: the first N VRBs of the communication device in the second RBG Data transmission is performed on the mapped PRB; where N is the number of PRBs included in the BWP.
  • the communication device performs data transmission on PRBs mapped by part or all of the VRBs in the third RBG, including: the communication device performs data transmission on the last N VRBs in the third RBG Data transmission is performed on the mapped PRB; where N is the number of PRBs included in the BWP.
  • an embodiment of the present application provides a communication method, which includes:
  • the network side device configures the size of the BWP for the terminal side device; and, the network side device configures the size of the RBG for the BWP, and if it is determined that the size of the BWP is greater than or equal to the configured size of the RBG, it sends to the terminal side device Third configuration information, where the third configuration information includes the size of the RBG configured for the BWP.
  • the network side device can send the configured RBG size to the terminal side device only when it determines that the BWP size is greater than or equal to the configured RBG size, thereby ensuring that the size of the BWP received by the terminal side device is greater than or Equal to the size of the configured RBG.
  • the method further includes: if the network side device determines that the size of the BWP is smaller than the size of the configured RBG, increasing the size of the BWP, and/or adjusting the size of the BWP The size of the configured RBG is reduced; the size of the adjusted BWP is greater than or equal to the size of the adjusted RBG; and fourth configuration information is sent to the terminal side device, the fourth configuration information includes the adjusted BWP size and/ Or the size of the adjusted RBG.
  • an embodiment of the present application provides a device that has the function of implementing a method involved in any one of the possible designs of the first aspect to the third aspect.
  • the device includes executing the first The module or unit or means corresponding to the steps involved in any one of the possible designs from the aspect to the third aspect.
  • the function or unit or means can be realized by software, or by hardware, or by hardware. Software implementation.
  • the device includes a processing unit and a communication unit, and the functions performed by the processing unit and the communication unit may correspond to the steps involved in any possible design from the first aspect to the third aspect.
  • the device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to accomplish any of the above-mentioned first to third aspects.
  • the apparatus may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory stores necessary computer program instructions and/or data to implement the functions of the method involved in any one of the possible designs of the first aspect to the third aspect.
  • the processor can execute the computer program instructions stored in the memory to complete any possible design or implementation method of the first aspect to the third aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer is caused to execute the first Any one of the possible design methods from the aspect to the third aspect.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes any one of the possible design methods of the first to third aspects.
  • an embodiment of the present application provides a chip, which is connected to a memory, and is used to read and execute a software program stored in the memory, so as to realize any one of the above-mentioned first to third aspects. Method of design.
  • Figure 1a is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • Figure 1b is an example of three different BWPs configured in an embodiment of this application.
  • FIG. 1c is a schematic diagram of the relationship between the number of the PRB and the number of the CRB in the BWP i in an embodiment of the application;
  • Figure 1d is a schematic diagram of BWP1 and BWP2 in an embodiment of the application
  • Figure 1e is a schematic diagram of a scheduled PRB according to an embodiment of the application.
  • Figure 1f is a schematic diagram of yet another scheduled PRB provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of a flow corresponding to a communication method provided in Solution 1 of an embodiment of the application;
  • FIG. 3 is a schematic diagram of a flow corresponding to a communication method provided by the second embodiment of the application.
  • FIG. 4 is a schematic diagram of the interaction flow corresponding to the solution provided in the embodiment of the application.
  • FIG. 5 is a schematic diagram of a flow corresponding to a communication method provided in Solution 3 of the embodiment of the application;
  • Fig. 6 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a terminal-side device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a network side device provided by an embodiment of this application.
  • Terminal-side equipment It is a device with wireless transceiver function.
  • the terminal-side equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed In the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal side device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control Wireless terminal equipment in (industrial control), wireless terminal equipment in unmanned driving (self-driving), wireless terminal equipment in remote medical (remote medical), wireless terminal equipment in smart grid (smart grid), transportation safety ( Wireless terminal equipment in transportation safety, wireless terminal equipment in a smart city, wireless terminal equipment in a smart home (smart home), and may also include user equipment (UE), etc.
  • UE user equipment
  • the terminal side device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), and a wireless Communication function handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (PLMN) Terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Terminal-side equipment can sometimes be called terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote Terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal-side device can also be fixed or mobile. The embodiment of the application does not limit this.
  • the device used to implement the function of the terminal-side device may be a terminal-side device, or a device that can support the terminal-side device to implement the function, such as a chip system, which can be installed in the terminal-side device .
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for implementing the functions of the terminal is a terminal-side device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the access network equipment can be an access network equipment, which can also be called a radio access network (RAN) equipment, which is a device that provides wireless communication functions for terminal-side equipment.
  • the access network equipment includes, for example, but is not limited to: the next generation base station (gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit) , BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • gNB next generation base station
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit base
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the side device may be a relay station, an access point, a network side device in a future 5G network or a network side device in a future evolved PLMN network, etc.
  • the device used to implement the function of the network side device may be a network side device, or a device capable of supporting the network side device to implement the function, such as a chip system, which can be installed in the network side device .
  • the device for implementing the functions of the network-side equipment is the network-side equipment as an example to describe the technical solutions provided in the embodiments of the present application.
  • ordinal numbers such as "first" and "second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. degree.
  • first information and the second information are only used to distinguish different information, but do not indicate the difference in priority or importance of the two types of information.
  • FIG. 1a is a schematic diagram of a possible system architecture to which an embodiment of this application is applicable.
  • the system architecture shown in Figure 1a includes network side equipment and terminal side equipment.
  • the embodiments of the present application do not limit the number of network-side devices and the number of terminal-side devices in the system architecture, and the system architecture to which the embodiments of this application are applicable may also include network-side devices and terminal-side devices.
  • Other devices such as core network devices, wireless relay devices (also called wireless backhaul devices), etc., are not limited in the embodiment of the present application.
  • the network-side device in the embodiment of the present application may integrate all functions in one independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited in the embodiment of the present application.
  • the terminal-side device in the embodiment of the present application may be connected to the network-side device in a wireless manner.
  • the embodiment of the present application does not limit the number of network-side devices and the number of terminal-side devices in the system architecture, and the system architecture applicable to the embodiment of the present application includes the network side
  • the equipment and the terminal-side equipment it may also include other equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment, which is not limited in the embodiment of the present application.
  • the network-side device in the embodiment of the present application may integrate all functions in one independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited in the embodiment of the present application.
  • the terminal-side device in the embodiment of the present application may be connected to the network-side device in a wireless manner.
  • the system architecture shown above can be applied to various radio access technology (RAT) communication systems, such as 5G communication systems and communication systems that may appear in the future.
  • RAT radio access technology
  • the system architecture and business scenarios described in the embodiments of this application are intended to illustrate the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • Those of ordinary skill in the art will know that with communication With the evolution of the system architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are equally applicable to similar technical problems.
  • the frequency used for communication is divided into frequency range 1 (frequency range 1, FR1) and frequency range 2 (frequency range 2, FR2) according to their ranges.
  • the frequency range corresponding to FR1 is 450MHz to 6000MHz, corresponding to the low frequency band.
  • the frequency range corresponding to FR2 is 24250MHz to 52600MHz, corresponding to the high frequency band.
  • the channel bandwidth can be different.
  • the bandwidth of FR1 can be 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz and 100MHz
  • the bandwidth of FR2 can be 50MHz, 100MHz, 200MHz and 400MHz. Wait.
  • the BWP can be configured for the terminal-side device within the bandwidth supported by a carrier (which can be called carrier bandwidth, and the specific value can be 10MHz, 15MHz, 20MHz, 50MHz, 100MHz or 400MHz, etc.),
  • a carrier can be configured with multiple BWPs, for example, a carrier can be configured with 4 BWPs.
  • BWP may sometimes be called subband bandwidth, narrowband bandwidth, or other names. This application does not limit the name. For ease of description, the name is BWP as an example.
  • a BWP contains K (K>0) subcarriers; or, a BWP is a frequency domain resource where N non-overlapping RBs are located, and the subcarrier spacing of the RB can be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz Or other values; or, a BWP is the frequency domain resource where M non-overlapping RBGs are located.
  • an RBG includes P (P>0) consecutive RBs, and the subcarrier spacing (SCS) of the RB can be It is 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz or other values, such as integer multiples of 2.
  • a BWP can be expressed as BWP i in a designated carrier, where i represents the number of the BWP; the size of BWP i can refer to the number of PRBs contained in the BWP, which can be expressed as
  • the starting resource block index of BWP i refers to the offset of BWP i relative to CRB0, which can be expressed as For example, if the offset of BWP i relative to CRB0 is 25, then the starting resource block index of BWP i is 25. As shown in Figure 1b, there are three different BWP examples configured.
  • BWP1 has a bandwidth of 40MHz and subcarrier spacing of 15kHz
  • BWP2 has a bandwidth of 10MHz and subcarrier spacing of 15kHz
  • BWP3 has a bandwidth of 20MHz and subcarrier spacing of 60kHz.
  • VRB can be defined in a BWP (such as BWP i), and the VRB number ranges from 0 to Frequency domain resource allocation usually first allocates VRB, and then maps from VRB to PRB in a non-interleaving or interleaving manner.
  • PRB can be defined in a BWP (such as BWP i), the PRB number ranges from 0 to The CRB number starts from 0, and the center of subcarrier 0 of CRB 0 is consistent with Point A; where, Point A can be understood as a common reference point for the resource block grid of a cell.
  • the network-side device can send Point A in the system message of the cell to the terminal-side device that is accessing the cell. Accordingly, the terminal-side device can follow the system message The Point A of the cell is determined. Subsequently, the network side device can allocate resources (such as BWP) to the terminal side device based on Point A.
  • resources such as BWP
  • the subcarrier spacing parameter of BWP i is ⁇
  • CRB number represented as The relationship of
  • the RBG size can be further configured for one or more BWPs.
  • the network side device configures the RBG size for a certain BWP (such as BWP1) , Can be understood as the nominal RBG size, because even if the network-side device configures BWP1 with the RBG size equal to P, the actually determined RBG size corresponding to BWP1 may include the number of PRBs that may be less than P.
  • the size of the RBG configured for the BWP may be simply referred to as the size of the configured RBG.
  • the network-side device may send high-level signaling to the terminal-side device, and the high-level signaling may include the configuration parameter rbg-Size of BWP1, which is used to configure the size of the RBG for BWP1.
  • config1 there are two configurations of rbg-Size, namely config1 and config2. As shown in Table 1, they are the size of the RBG configured for the BWP under different configurations.
  • the configuration rbg-Size when the configuration rbg-Size is equal to config1, it means that the "Configuration 1" column in Table 1 can be selected, and when the configuration rbg-Size is equal to config2, it means that the "Configuration 2" column in Table 1 can be selected; and the terminal The side device can determine which row in Table 1 corresponds to according to the size of BWP1, so as to determine the size of the RBG configured for BWP1 in combination with the row and column.
  • the PDSCH-Config->rgb-Size configured for BWP1 is equal to config2, and the size of BWP1 is 20 PRBs.
  • the terminal-side device can determine that the size of the RBG configured for BWP1 is equal to 4.
  • the terminal-side device may further determine the number of RBGs corresponding to the BWP and the size of each RBG.
  • the terminal-side device can use the following formula to determine the number of RBGs corresponding to BWP i:
  • N RBG represents the number of RBGs corresponding to BWP i
  • P represents the size of the RBG configured by BWP i
  • the frequency domain resource allocation indication in the DCI can be 6, and each of the 6 bits is used to indicate whether the corresponding RBG is used for data transmission.
  • bit status of one of the bits is "1"
  • bit status is "0”
  • the bit status of one of the bits is "1”
  • the bit indicates that the bit corresponds to The RBG corresponding to the bit is used for data transmission (that is, the RBG corresponding to the bit is allocated to the terminal side device)
  • the bit status is "0" which means that the RBG corresponding to the bit is not used for data transmission (that is, the RBG corresponding to the bit is not allocated to the terminal Side equipment).
  • the first bit of the frequency domain resource allocation indicator field corresponds to the first RBG, the second bit corresponds to the second RBG, and so on; after the terminal side device receives the DCI, if the frequency domain resource allocation is determined
  • the indication field is 111000, which means that the first 3 RBGs in BWP1 are allocated to the terminal-side device for data transmission, and the last 3 RBGs are not allocated to the terminal-side device; furthermore, the terminal-side device can be in the VRB of the first 3 RBGs. Data transmission is performed on the mapped PRB.
  • the start position of BWP1 corresponds to CRB index 5
  • the end position corresponds to CRB index 24
  • the start position of BWP2 corresponds to index
  • the CRB of 10 corresponds to the CRB of index 24; therefore, in order to align the RBGs obtained by different BWPs in the same cell under the same nominal RBG size configuration as much as possible, the following formula 2 can be used to determine the first corresponding to BWP i RBG
  • the following formula 3 is used to determine the last RBG corresponding to BWP i
  • the size of the other RBGs corresponding to BWP i except the first RBG and the last RBG is equal to P.
  • PRG is introduced.
  • PRG can be understood as precoding granularity.
  • PRG is a continuous P′ BWP in the frequency domain
  • i RBs, P′ BWP, i can be 2, 4 or A value in the scheduling bandwidth (wideband).
  • the continuously allocated PRBs in one PRG of the terminal-side device use the same precoding matrix, which can be understood as the same linear transformation for the continuously allocated PRBs in one PRG.
  • 1P′ BWP.i wideband, which means that the terminal-side equipment does not expect to be scheduled for non-continuous PRBs, that is, the PRBs scheduled by the network-side equipment to the terminal-side equipment are continuous, and the terminal-side equipment assumes that these scheduled PRBs are all the same The precoding process.
  • 2P' BWP.i 2 or 4, which means that one PRG contains continuous P'BWP, i PRBs, and several PRGs divide BWPi into multiple segments.
  • the number of consecutive PRBs in a PRG may be one or more than one.
  • the method of determining the PRG corresponding to the BWPi is similar to the method of determining the RBG corresponding to the BWPi.
  • the size of the first PRG corresponding to BWPi is equal to in case Then the size of the last PRG corresponding to BWPi is equal to in case Then the size of the last PRG corresponding to BWPi is equal to P′ BWP,i .
  • the network side device can configure P′ BWP,i through high-level signaling. For example, for the PDSCH scheduled by DCI format 1_1 scrambled by the cell radio network temporary identifier (C-RNTI), when there is no PDSCH-Config When configuring prb-BundlingType, P′ BWP,i defaults to 2; when prb-BundlingType is set to'dynamicBundling', two value sets are configured in bundleSizeSet1 and bundleSizeSet2, and the first set can be in the set ⁇ 2,4,wideband ⁇ Takes 1 or 2 values, the second set can only take 1 value in the ⁇ 2,4,wideband ⁇ set.
  • C-RNTI cell radio network temporary identifier
  • the bit length of the PRB bundling size indicator field in DCI format 1_1 is 0 bits, that is, the PRG cannot be dynamically indicated.
  • the terminal-side device can use P′ BWP,i in the second set; the value is 1 and configured in the first set If a value is set, the terminal side device can use this value; the value is 1 and two values are configured in the first set,'n2-wideband' (this value corresponds to 2 and wideband) or'n4-wideband' (this value Corresponding to 4 and wideband), the terminal side device can use this value.
  • the network side device will configure a signaling that contains two meanings in this set, that is, it will configure'n4-wideband' instead of two values'n4' and 'wideband'.
  • P'BWP,i is equal to the scheduled bandwidth
  • P'BWP,i is equal to the configured 2 or 4 respectively.
  • the PRB used for data transmission or scheduled When the number of PRB) is different, the corresponding PRG is shown in Figure 1e and Figure 1f.
  • Figure 1e shows that the number of scheduled PRBs is greater than at this time Equal to the scheduled bandwidth, that is, the scheduled PRBs are all processed with the same precoding.
  • Figure 1f shows that the number of scheduled PRBs is less than At this time, P′ BWP,i is equal to 4, that is, the first 3 PRBs in BWP1 use the same precoding process, and the fourth to seventh PRBs use the same precoding process.
  • the network side device and the terminal side device can determine according to the above formula 1, formula 2 and formula 3.
  • the number of RBGs corresponding to the BWP and the size of each RBG, and the network side device can then schedule the uplink data or downlink data of the terminal side device on the BWP with the RBG as the granularity.
  • the size of the BWP configured by the network side device for the terminal side device may be smaller than the size of the RBG configured for the BWP.
  • the size of the BWP supported by the terminal-side device is smaller than the size of the RBG configured for the BWP.
  • the size of the BWP configured by the network-side device for the terminal-side device may be smaller than the size of the RBG configured for the BWP;
  • the size of the BWP configured by the network side device for the terminal side device may be It is smaller than the size of the RBG configured for BWP.
  • This embodiment of the application will mainly study how the network side device and the terminal side device perform data transmission on the BWP when the size of the BWP is smaller than the size of the RBG configured for the BWP.
  • an embodiment of the present application provides a possible idea that the network side device and the terminal side device determine the BWP according to the above formula 1, formula 2, and formula 3. The number of corresponding RBGs and the size of the RBGs, and the network side device can then schedule the uplink data and downlink data of the terminal side device on the BWP based on the RBG corresponding to the BWP.
  • the size of the BWP configured by the network side device for the terminal side device is smaller than the size of the RBG configured for the BWP, there may be a problem that the network side device and the terminal side device have inconsistent understanding of the size of the RBG corresponding to the BWP.
  • the number of RBGs corresponding to BWP i is calculated according to formula 1.
  • This RBG can be understood as BWP i corresponds to the first
  • One RBG can also be understood as BWP i corresponding to the last RBG. If the RBG can be understood as BWP i corresponds to the first RBG, then the size of the RBG is 4 according to the above formula 2, and if the RBG can be understood as BWP i corresponds to the last RBG, then the RBG can be obtained according to the above formula 3
  • the size is 1.
  • the network-side device understands the RBG corresponding to BWP i as the first RBG corresponding to BWP i, and the terminal-side device understands the corresponding RBG corresponding to BWP i as the last RBG corresponding to BWP i, the network-side device will appear This is the problem of inconsistent understanding of the size of the RBG corresponding to BWP i by the terminal-side device.
  • the size of the RBG configured by the network side device for BWP i can be 2 or 4, on this basis, the size of BWP i is smaller than the size of the RBG configured for BWP i may include:
  • BWP i can be calculated corresponding to 1 RBG, because with Are not 0, and with If they are not the same, the network side device and the terminal side device have inconsistent understanding of the size of the RBG. If The value of is 4n+2. According to formula 1, BWP i can be calculated corresponding to 1 RBG, because Equal to 0. At this time, the network side device and the terminal side device can use the calculated size of the first RBG as the size of the RBG corresponding to BWP i, so that the problem of inconsistent understanding will not occur. If The value of is 4n+3. According to formula 1, BWP i can be calculated corresponding to 2 RBGs, and then the size of the first RBG and the size of the last RBG can be obtained according to formula 2 and formula 3. Understand inconsistencies.
  • BWP i can be calculated corresponding to 1 RBG, because with Are not 0, and with Are not the same, so that the network side device and the terminal side device have inconsistent understanding of the size of the RBG corresponding to the BWP i. If The value of is 4n+1. According to formula 1, BWP i can be calculated corresponding to 1 RBG, because Equal to 0. At this time, the network side device and the terminal side device can use the calculated size of the first RBG as the size of the RBG corresponding to BWP i, so that the problem of inconsistent understanding will not occur. If The value of is 4n+2, 4n+3. According to formula 1, BWP i can be calculated corresponding to 2 RBGs, and then the size of the first RBG and the size of the last RBG can be obtained according to formula 2 and formula 3 respectively. There will be no inconsistencies in understanding.
  • the communication devices involved in the first and second solutions may be the first communication device or the second communication device.
  • the first communication device may be a network-side device or a communication device capable of supporting the network-side device to implement the functions required by the method, and of course, it may also be other communication devices, such as a chip or a chip system.
  • the second communication device may be a terminal-side device or a communication device capable of supporting the terminal-side device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip or a chip system.
  • Fig. 2 is a schematic diagram of a process corresponding to a communication method provided in Solution 1 of an embodiment of the application, as shown in Fig. 2, including:
  • Step 201 If the communication device determines that the size of the BWP is smaller than the size of the RBG configured for the BWP, it may determine that the BWP corresponds to the first RBG, or in other words, determine that the RBG corresponding to the BWP is the first RBG, and the size of the first RBG is equal to the size of the BWP .
  • Step 202 The communication device performs data transmission on the PRB mapped by the VRB in the first RBG.
  • the frequency domain resource allocation indication field in the DCI sent by the network-side device may include 1 bit.
  • the state can be 1, indicating that the first RBG is used for data transmission.
  • the communication device transmits data on the PRB mapped by the VRB in the first RBG. It can be understood that the communication device transmits data on all the PRBs mapped by the VRB in the first RBG. .
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for this BWP, it can directly determine that the BWP corresponds to the first RBG. In this implementation manner, after the communication device determines that the size of the BWP is smaller than the size of the configured RBG, it does not need to perform related calculations according to the above formula 1, formula 2 and formula 3, but directly determines that the BWP corresponds to the first RBG, which can reduce Processing complexity and improving processing efficiency.
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for this BWP, and calculates the last RBG corresponding to the BWP according to the above formula 3 (that is, ) Is greater than 0, it can be directly determined that the BWP corresponds to the first RBG.
  • the communication device determines that the size of the BWP is smaller than the size of the configured RBG, and calculates the last RBG corresponding to the BWP according to the above formula 3 (that is, ) Is equal to 0, then the size of the first RBG corresponding to the BWP can be calculated according to the above formula 2 (that is, ), and determine that the RBG corresponding to the BWP is the first RBG corresponding to the BWP (at this time, the size of the first RBG corresponding to the BWP is equal to the size of the BWP, that is, the first RBG corresponding to the BWP is the first RBG ).
  • the communication device After the communication device determines that the size of the BWP is smaller than the size of the RBG configured for this BWP, it can first calculate the size of the last RBG corresponding to the BWP according to the above formula 3. If the size of the last RBG corresponding to the BWP If greater than 0, the size of the first RBG corresponding to BWP can be obtained according to formula 2, and the RBG corresponding to BWP is determined to be the first RBG corresponding to BWP.
  • the communication device uses the size of the last RBG corresponding to the BWP as a reference.
  • the size of the last RBG corresponding to the BWP is equal to 0, the RBG corresponding to the BWP understood by the network side device and the terminal side device may not appear
  • the size of the BWP is inconsistent, you can continue to use the method described above to determine the RBG corresponding to the BWP; and when the size of the last RBG corresponding to the BWP is greater than 0, the network side device and the terminal side device may understand the BWP The size of the corresponding RBG is inconsistent.
  • the BWP corresponds to the first RBG, so as to ensure that the size of the RBG corresponding to the BWP understood by the network side device and the terminal side device is the same, and because there is no need to calculate the RBG corresponding to the BWP according to formula 1. Number, which can reduce processing complexity.
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for this BWP, and calculates that the BWP corresponds to one RBG according to the above formula 1, it can directly determine that the BWP corresponds to the first RBG. If the communication device determines that the size of the BWP is smaller than the size of the configured RBG, and the number of RBGs corresponding to the BWP is greater than or equal to 2, calculated according to the above formula 1, the size of the first RBG corresponding to the BWP can be calculated according to the above formula 2. And according to the above formula 3, the last RBG corresponding to the BWP is calculated, and then the RBG corresponding to the BWP includes the first RBG corresponding to the BWP and the last RBG corresponding to the BWP.
  • the communication device After the communication device determines that the size of the BWP is smaller than the size of the configured RBG, it can first calculate whether the BWP corresponds to one RBG according to Formula 1. If it is, there is no need to perform related calculations according to the above formula 2 and formula 3. , But directly determine that the BWP corresponds to the first RBG.
  • the communication device uses the number of RBGs corresponding to the BWP as a reference.
  • the number of RBGs corresponding to the BWP is greater than or equal to 2, the RBG corresponding to the BWP understood by the network side device and the terminal side device may not appear In this case, you can continue to use the method described above to determine the RBG corresponding to the BWP; and when the number of RBGs corresponding to the BWP is equal to 1, the network side device and the terminal side device may understand that the BWP corresponds to In this case, it can be determined that the BWP corresponds to the first RBG, so as to ensure that the size of the RBG corresponding to the BWP understood by the network side device and the terminal side device is the same, and because there is no need to calculate the BWP corresponding to formula 2 and formula 3.
  • the number of RBGs can reduce processing complexity.
  • the communication device determines that the size of the BWP is smaller than the size of the RBG configured for this BWP, and the BWP corresponds to 1 RBG calculated according to the above formula 1, and the last RBG corresponding to the BWP calculated according to the above formula 3 is greater than 0, it is determined BWP corresponds to the first RBG.
  • the size of the last RBG corresponding to the BWP is calculated according to the above formula 3 is equal to 0 (according to the above Table 2 to Table 5, it can be seen that the size of the last RBG corresponding to the BWP
  • the size of the first RBG corresponding to BWP can be calculated by the above formula 2, and the RBG corresponding to BWP is determined to be the first RBG corresponding to BWP (in this case, BWP corresponds to The size of the first RBG is equal to the size of the BWP, that is, the first RBG corresponding to the BWP is the first RBG).
  • the communication device uses the number of RBGs corresponding to the BWP and the size of the last RBG corresponding to the BWP as references, so that it can more accurately determine whether the current scene is the BWP understood by the network side device and the terminal side device.
  • the size of the corresponding RBG is inconsistent, if it is, it can be determined that the BWP corresponds to the first RBG to ensure that the size of the RBG corresponding to the BWP understood by the network side device and the terminal side device is consistent.
  • Fig. 3 is a schematic diagram of a process corresponding to a communication method provided by the second embodiment of the application, as shown in Fig. 3, including:
  • Step 301 If the communication device determines that the size of the BWP is smaller than the size of the RBG configured for this BWP, it can determine that the BWP corresponds to the second RBG or the third RBG, or in other words, determine that the RBG corresponding to the BWP is the second RBG or the third RBG.
  • the size of the second RBG can be obtained according to the starting resource block index of the BWP and the size of the configured RBG, for example, it can be calculated according to the above formula 2.
  • the second RBG can be understood as the first RBG corresponding to the BWP .
  • the size of the third RBG is obtained according to the starting resource block index of the BWP, the size of the BWP, and the size of the configured RBG. For example, it can be calculated according to the above formula 3.
  • the third RBG can be understood as the last RBG corresponding to the BWP .
  • the communication device determining that the BWP corresponds to the second RBG may include: if the communication device determines that the size of the BWP is smaller than the size of the configured RBG, and calculates that the BWP corresponds to one RBG according to the above formula 1, it may Determine that the BWP corresponds to the second RBG.
  • the communication device determining that the BWP corresponds to the third RBG may include: if the communication device determines that the size of the BWP is smaller than the size of the configured RBG, calculates the BWP corresponding to one RBG according to the above formula 1, and calculates the last corresponding to the BWP according to the above formula 3. If the size of one RBG is greater than 0, it can be determined that the BWP corresponds to the third RBG.
  • Step 302 The communication device performs data transmission on the PRB mapped by the VRB in the second RBG or the third RBG.
  • the frequency domain resource allocation indication field in the DCI sent by the network side device may include one Bit, the bit status of the bit can be 1, indicating that the second RBG (or the third RBG) is used for data transmission.
  • the communication device's data transmission on the PRB mapped by the VRB in the second RBG can be understood as a part or all of the VRB mapped by the communication device in the second RBG Data transmission on PRB.
  • the communication device may perform data transmission on PRBs mapped by the first N VRBs in the second RBG, where N is the number of PRBs included in the BWP.
  • the size of the third RBG may be greater than or equal to the size of the BWP
  • data transmission by the communication device on the PRB mapped by the VRB in the third RBG can be understood as that the communication device is mapped to part or all of the VRB in the third RBG.
  • Data transmission on PRB Exemplarily, the communication device may perform data transmission on the PRB mapped by the last N VRBs in the third RBG.
  • step 302 the communication device can perform data transmission on the PRB mapped by the VRB in the second RBG; if the communication device determines in step 301 that the BWP corresponds to The third RBG, in step 302, the communication device may perform data transmission on the PRB mapped by the VRB in the third RBG.
  • the communication device calculates the size of the second RBG (that is, 2) according to formula 2, and then performs data transmission on the PRB mapped by the first VRB in the second RBG, The PRB mapped by the second VRB in the second RBG is discarded or data transmission is not performed on the PRB mapped by the second VRB in the second RBG.
  • the communication device can calculate the size of the second RBG (that is, 4) according to formula 2, and then perform data transmission on the PRB mapped by the first VRB in the second RBG, and discard the last three in the second RBG.
  • the PRB mapped by the VRB or the PRB mapped by the last three VRBs in the second RBG does not perform data transmission.
  • the communication device can calculate the size of the second RBG (that is, 3) according to formula 2, and then perform data transmission on the PRB mapped by the first VRB in the second RBG, and discard the second RBG.
  • the mapped PRB or in other words, does not perform data transmission on the PRB mapped by the last two VRBs in the second RBG.
  • the communication device can calculate the size of the second RBG (that is, 2) according to formula 2, and then perform data transmission on the PRB mapped by the first VRB in the second RBG, and discard the second VRB in the second RBG.
  • the mapped PRB or in other words, does not perform data transmission on the PRB mapped by the second VRB in the second RBG.
  • the communication device can calculate the size of the second RBG (that is, 4) according to formula 2, and then perform data transmission on the PRB mapped by the first VRB and the second VRB in the second RBG, and discard the second RBG Data transmission is not performed on the PRBs mapped by the last two VRBs in the second RBG or the PRBs mapped by the last two VRBs in the second RBG.
  • the communication device can calculate the size of the second RBG (that is, 3) according to formula 2, and then perform data transmission on the PRB mapped by the first VRB and the second VRB in the second RBG, and discard the second RBG Data transmission is not performed on the PRB mapped by the last VRB in the second RBG or the PRB mapped by the last VRB in the second RBG.
  • the communication device can calculate the size of the second RBG (that is, 4) according to formula 2, and then perform data transmission on the PRB mapped by the first three VRBs in the second RBG, and discard the last VRB in the second RBG The mapped PRB, or in other words, does not perform data transmission on the PRB mapped by the last VRB in the second RBG.
  • solution 1 (or solution 2)
  • solution 2 the following describes a possible implementation process from the perspective of the interaction between the network side device and the terminal side device.
  • Fig. 4 is a schematic diagram of the interaction flow of a communication method provided by an embodiment of the application, as shown in Fig. 4, including:
  • Step 401 The network side device sends first configuration information to the terminal side device.
  • the first configuration information may include the size of the BWP configured by the network side device for the terminal side device.
  • the first configuration information may further include the start index of the resource block of the BWP.
  • the terminal side device receives the first configuration information from the network side device.
  • the network side device may send the first configuration information to the terminal side device, such as sending it through a broadcast message or RRC signaling, which is not specifically limited.
  • the size of the BWP and the start index of the resource block of the BWP may be sent by one piece of signaling, or may also be sent through multiple pieces of signaling, which are not specifically limited.
  • Step 403 The network side device sends second configuration information to the terminal side device.
  • the second configuration information includes the size of the RBG configured for the BWP.
  • the size of the RBG configured here is the nominal RBG size.
  • the terminal side device receives the second configuration information from the network side device.
  • the network side device may send the second configuration information to the terminal side device, such as sending it through a broadcast message or RRC signaling, which is not specifically limited.
  • first configuration information and second configuration information may be sent through the same signaling, or may also be sent through different signaling, which is not specifically limited.
  • Step 405 If the terminal-side device determines that the size of the BWP is smaller than the configured size of the RBG, it determines that the BWP corresponds to the first RBG.
  • Step 406 If the network side device determines that the size of the BWP is smaller than the configured size of the RBG, it determines that the BWP corresponds to the first RBG.
  • Step 407 The network side device and the terminal side device perform data transmission on the PRB mapped by the VRB in the first RBG.
  • both the network side device and the terminal side device in the embodiment of this application can determine that the BWP corresponds to the first RBG, thereby ensuring that the network side device and the terminal side device understand that the BWP corresponds
  • the sizes of the RBGs are the same, and because the size of the first RBG is equal to the size of the BWP, it can effectively prevent the PRB mapped by the VRB in the RBG scheduled by the network side device from including PRBs that do not belong to the BWP.
  • the above steps 401 to 407 are the interactive process corresponding to the plan one.
  • the interactive process corresponding to the plan two can refer to the interactive process of the plan one.
  • the difference between the interactive process and the plan one is: In a corresponding interaction process, the terminal-side device in step 405 and the network-side device in step 406 determine that the BWP corresponds to the first RBG, and then in step 407, the network-side device and the terminal-side device are on the PRB mapped by the VRB in the first RBG Perform data transmission; and in the interaction process corresponding to the second solution, the terminal side device in step 405 and the network side device in step 406 determine that the BWP corresponds to the second RBG (or third RBG), and then the network side device and the terminal in step 407 The side device performs data transmission on the PRB mapped by the VRB in the second RBG (or the third RBG).
  • step numbers involved in the above-mentioned Figure 4 are only a possible example of the execution process, and do not constitute a restriction on the order of execution of each step. In the embodiments of the present application, there is no strict execution sequence among steps that have no time sequence dependency relationship with each other.
  • the network side device In the third solution, some possible implementations of the network side device will be mainly studied in the case that the terminal side device does not expect the size of the configured BWP to be smaller than the size of the RBG configured for the BWP.
  • Fig. 5 is a schematic diagram of a process corresponding to a communication method provided by the third embodiment of the application, as shown in Fig. 5, including:
  • Step 501 The network side device configures the size of the BWP for the terminal side device.
  • Step 502 The network side device configures the size of the RBG for the BWP.
  • the network side device can configure the RBG size for the BWP based on the existing method.
  • Step 503 The network side device determines whether the size of the BWP is greater than or equal to the size of the configured RBG, if yes, execute step 504, and if not, execute step 505.
  • the network side device can determine whether the size of the BWP is greater than or equal to the size of the configured RBG.
  • the network can pre-store scenarios 1 to 4, and when determining the size of the BWP and the configured RBG When the size belongs to any one of the above scenarios 1 to 4, it can be determined that the size of the BWP is smaller than the size of the configured RBG; otherwise, it can be determined that the size of the BWP is greater than or equal to the size of the configured RBG.
  • Step 504 The network side device sends third configuration information to the terminal side device, where the third configuration information includes the size of the BWP and the size of the configured RBG.
  • Step 505 The network side device increases the size of the BWP, and/or decreases the size of the configured RBG; the size of the adjusted BWP is greater than or equal to the size of the adjusted RBG.
  • the network side device may increase the size of the BWP and/or decrease the size of the configured RBG.
  • the network side device may increase the size of the BWP according to a preset adjustment value (for example, 1) according to the size of the configured RBG. For example, if the configured RBG size is 4 and the BWP size is 2, the network side device can first adjust the BWP size to 3 (2+1). At this time, the BWP size is still smaller than the configured RBG size, you can do it again Adjust, that is, adjust the size of the BWP to 4 (3+1). At this time, the size of the BWP is equal to the size of the configured RBG, and the adjustment can be completed.
  • a preset adjustment value for example, 1
  • the network side device may increase the size of the BWP according to a preset adjustment value (for example, 1) according to the size of the configured RBG. For example, if the configured RBG size is 4 and the BWP size is 2, the network side device can first adjust the BWP size to 3 (2+1). At this time, the BWP size is still smaller than the configured RBG size, you can do it
  • the network-side device may increase the size of the BWP according to the size of the configured RBG. For example, if the configured RBG size is 4 and the BWP size is 2, the network side device can directly adjust the BWP size to be equal to the configured RBG size, that is, directly adjust the BWP size by 4.
  • the network-side device may adjust the size of the configured RBG to be smaller according to the size of the BWP. For example, if the size of the configured RBG is 4 and the size of the BWP is 2, the network side device can directly adjust the size of the configured RBG to be equal to the size of the BWP, that is, directly adjust the size of the configured RBG by 2.
  • Step 506 The network side device sends fourth configuration information to the terminal side device, where the fourth configuration information includes the adjusted BWP size and/or the adjusted RBG size.
  • the network-side device can send third configuration information to the terminal-side device when it determines that the size of the BWP is greater than or equal to the size of the configured RBG. If the network-side device determines that the size of the BWP is less than the size of the configured RBG, then The BWP and the configured RBG can be adjusted, and the adjusted BWP size and the adjusted RBG size can be sent to the terminal-side device, so as to ensure that the size of the BWP received by the terminal-side device is greater than or equal to the size of the RBG configured for the BWP The size meets the requirement that the terminal-side device does not expect the size of the configured BWP to be smaller than the size of the RBG configured for the BWP.
  • the above solution mainly describes the specific implementation when the size of the BWP is smaller than the size of the configured RBG.
  • the size of the BWP is greater than or equal to the size of the configured RBG
  • the number of RBGs corresponding to the BWP i, the size of the first RBG, and the size of the last RBG can be calculated according to the formula 1, formula 2, and formula 3, respectively.
  • To determine the RBG corresponding to the BWP reference can be made to the existing solution, and details are not repeated.
  • the size of the PRG configured by the network side device for BWP i can be 2 or 4.
  • the size of BWP i is smaller than BWP
  • the size of the PRG configured by i may include:
  • the embodiment of the present application also provides a fourth solution, including: if the communication device (which can be a network side device or a terminal side device) determines that the size of BWP i is smaller than the size of the PRG configured for BWP i, it can determine that BWP i corresponds to the first One PRG, the size of the first PRG is equal to the number of PRBs scheduled in the BWP i.
  • the number of scheduled PRBs can be equal to the number of PRBs included in BWP i (that is, all PRBs included in BWP i are scheduled), or it can be less than the number of PRBs included in BWP i (that is, BWP i includes All PRBs are scheduled).
  • the size of the first PRG may be equal to the size of BWP i.
  • BWP i can correspond to two RBGs.
  • the network-side device may only schedule one of the RBGs (for example, the first RBG is scheduled, but the second RBG is not scheduled). In this case, since the number of PRBs scheduled in BWP i is 1. Therefore, the size of the first PRG can be equal to 1.
  • the network-side device may schedule two RBGs. In this case, since the number of scheduled PRBs in BWP i is 2, the size of the first PRG may be equal to 2, which can effectively avoid targeting The two PRBs in the BWP i are processed by using different precodings to improve processing performance.
  • scheme 1, scheme 2, scheme 3 and scheme 4 can be implemented separately or in combination.
  • scheme one and scheme four can be implemented in combination, or scheme two and scheme four can be implemented in combination, and the specifics are not limited.
  • the network-side device or the terminal-side device may include corresponding hardware structures and/or software modules that perform each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 6 shows a possible exemplary block diagram of a device involved in an embodiment of the present application, and the device 600 may exist in the form of software.
  • the apparatus 600 may include: a processing unit 602 and a communication unit 603.
  • the processing unit 602 is used to control and manage the actions of the device 600.
  • the communication unit 603 is used to support communication between the device 600 and other network entities.
  • the communication unit 603 is also referred to as a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 600 may further include a storage unit 601 for storing program codes and/or data of the device 600.
  • the processing unit 602 may be a processor or a controller, which may implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the communication unit 603 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is a general term. In a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 601 may be a memory.
  • the device 600 may be the communication device (such as the terminal-side device or the network-side device) in the above-mentioned solution 1 and solution 2, or may also be a chip set in the terminal-side device or the network-side device.
  • the processing unit 602 may support the apparatus 600 to perform the actions of the terminal-side device in the foregoing method examples.
  • the processing unit 602 mainly executes the internal actions of the terminal-side device in the method example, and the communication unit 603 can support communication between the apparatus 600 and the network-side device.
  • the processing unit 602 may support the apparatus 600 to execute the actions of the network-side device in the foregoing method examples.
  • the processing unit 602 mainly executes the internal actions of the network-side device in the method example, and the communication unit 603 may support communication between the apparatus 600 and the network-side device.
  • the processing unit 602 is used to perform step 201 in FIG. 2 and step 301 in FIG. 3; the communication unit 602 is used to perform step 202 in FIG. 2 and step 302 in FIG. 3.
  • the processing unit 602 determines that the size of the BWP is smaller than the size of the RBG configured for the BWP, it determines that the BWP corresponds to a first RBG, and the size of the first RBG is equal to the BWP
  • the communication unit 603 is configured to perform data transmission on the physical resource block PRB mapped by the virtual resource block VRB in the first RBG.
  • the processing unit 602 is specifically configured to: if it is determined that the size of the BWP is smaller than the size of the RBG configured for the BWP, and according to the start resource block index of the BWP, the size and configuration of the BWP If the number of RBGs corresponding to the BWP is 1, it is determined that the BWP corresponds to the first RBG.
  • the processing unit 602 is configured to determine that the size of the BWP is smaller than the size of the RBG configured for the BWP, and according to the start resource block index of the BWP, the size and configuration of the BWP If the number of RBGs corresponding to the BWP is 1, it is determined that the BWP corresponds to the second RBG or the third RBG; the communication unit 603 is used for part of the second RBG or the third RBG Or all VRB-mapped PRBs for data transmission; wherein the size of the second RBG is obtained according to the start resource block index of the BWP and the size of the configured RBG; the size of the third RBG is It is obtained according to the starting resource block index of the BWP, the size of the BWP, and the size of the configured RBG.
  • the processing unit 602 is specifically configured to: if it is determined that the size of the BWP is smaller than the size of the RBG configured for the BWP, and the size of the third RBG is larger than 0, and according to the starting resource block of the BWP
  • the index, the size of the BWP, and the size of the configured RBG obtain that the number of RBGs corresponding to the BWP is 1, and it is determined that the BWP corresponds to the third RBG.
  • the communication unit 603 is specifically configured to: perform data transmission on PRBs mapped by the first N VRBs in the second RBG; where N is the number of PRBs included in the BWP.
  • the communication unit 603 is specifically configured to: perform data transmission on PRBs mapped by the last N VRBs in the third RBG; where N is the number of PRBs included in the BWP.
  • modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • a computer readable storage medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network side device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may be various mediums capable of storing program codes, such as a memory.
  • FIG. 7 shows a schematic structural diagram of an apparatus.
  • the apparatus 700 includes a processor 710, a memory 720, and a transceiver 730.
  • the apparatus 700 can implement the functions of the apparatus 600 illustrated in FIG. 6.
  • the functions of the communication unit 603 illustrated in FIG. 6 may be implemented by a transceiver, and the functions of the processing unit 602 may be implemented by a processor.
  • the function of the storage unit 601 can be implemented by a memory.
  • the apparatus 700 may be the terminal-side device in the foregoing method embodiment, and the apparatus 700 may be used to implement the method corresponding to the terminal-side device described in the foregoing method embodiment. For details, refer to the foregoing method embodiment instruction of.
  • the terminal-side device may be a terminal-side device 800 as shown in FIG. 8.
  • FIG. 8 only shows the main components of the terminal-side device.
  • the terminal-side device 800 includes a processor 801, a memory 802, a control circuit 803, an antenna 804, and an input and output device 805.
  • the terminal-side device 800 can be applied in the system architecture shown in FIG. 1a to perform the functions of the terminal-side device in the foregoing method embodiment.
  • the processor 801 is mainly used to process the communication protocol and communication data, and to control the entire terminal-side device, execute software programs, and process data of the software program, for example, to control the terminal-side device to execute the methods described in the above method embodiments action.
  • the memory 802 is mainly used to store software programs and data.
  • the control circuit 803 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit 803 and the antenna 804 together can also be called a transceiver, which is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device 805, such as a touch screen, a display screen, a keyboard, etc., is mainly used to receive data input by the user and output data to the user.
  • the processor 801 can read the software program in the memory 802, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 801 performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna 804.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 801.
  • the processor 801 converts the baseband signal into data and performs the data To process.
  • FIG. 8 only shows a memory 802 and a processor 801.
  • the memory 802 may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor 801 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal side device. , Execute the software program, and process the data of the software program.
  • the processor 801 in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, and are interconnected by technologies such as a bus.
  • the terminal-side device may include multiple baseband processors to adapt to different network standards, the terminal-side device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal-side device may use various Bus connection.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor 801, or may be stored in the memory 802 in the form of a software program, and the processor 801 executes the software program to realize the baseband processing function.
  • the terminal-side device 800 shown in FIG. 8 can implement various processes involving the terminal-side device in the method embodiments illustrated in FIG. 2, FIG. 3, and FIG. 4.
  • the operations and/or functions of each module in the terminal-side device 800 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the network-side device may be a network-side device 900 as shown in FIG. 9.
  • the network-side device 900 includes one or more radio frequency units, such as a remote radio unit (remote radio frequency unit).
  • the RRU 910 may be called a communication unit, which corresponds to the communication unit 603 in FIG. 6.
  • the communication unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 911 ⁇ RF unit 912.
  • the RRU 910 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal side devices.
  • the 910 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 910 and the BBU 920 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 920 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 602 in FIG. 6, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network side device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 920 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 920 further includes a memory 921 and a processor 922.
  • the memory 921 is used to store necessary instructions and data.
  • the processor 922 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network side device in the foregoing method embodiment.
  • the memory 921 and the processor 922 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal-side device.
  • the processor and the storage medium may also be provided in different components in the terminal-side device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种通信方法及装置,其中方法包括:通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,所述第一RBG的大小等于所述BWP的大小;进而,通信装置在所述第一RBG中的VRB映射的PRB上进行数据传输。采用上述方法,在BWP的大小小于为所述BWP配置的RBG的大小的场景下,网络侧设备和/或终端侧设备可以确定BWP对应第一RBG,从而在第一RBG中的VRB映射的PRB上进行数据传输;且由于第一RBG的大小等于BWP的大小,从而能够有效避免网络侧设备所调度的RBG中的VRB所映射的PRB包括不属于BWP的PRB,保证数据传输的准确性。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
无线通信系统中,资源块(resource block,RB)可以分为物理资源块(physical resource block,PRB)和虚拟资源块(virtual resource block,VRB),在进行下行(或者上行)数据传输时,下行(或者上行)传输资源是基于VRB进行分配,然后再将其映射到PRB上。进一步地,无线通信系统可以支持基于资源块组(resource block group,RBG)的资源分配。其中,RBG可以包括一个或多个连续的VRB,RBG的大小表示RBG中包含的VRB的个数。
长期演进(Long Term Evolution,LTE)通信系统中,RBG的大小可以是根据小区的带宽(或者载波的带宽)确定的固定大小,例如,小区的带宽小于等于10个RB时,RBG的大小可以为1个VRB,即一个VRB为一个RBG;小区的带宽的大小为11~26个RB时,RBG的大小为2个VRB,即两个VRB为一个RBG。
第五代(the 5th generation,5G)通信系统中,一个载波的最大带宽可以到400MHz,但是终端设备支持的最大带宽能力可能达不到如此大的带宽。因此,在5G通信系统中引入了带宽部分(band width part,BWP),BWP可以包括一个载波中的一个或多个PRB。网络侧设备可以为BWP配置RBG的大小,通常情况下,网络侧设备为BWP配置的RBG的大小小于或等于BWP的大小,此时,网络侧设备可以以RBG为粒度在BWP上调度终端侧设备的上行数据或下行数据。然而,在一些可能的场景中,网络侧设备为BWP配置的RBG的大小可能会大于BWP的大小,此种情形下,网络侧设备如何在BWP上调度终端侧设备的上行数据或下行数据,仍需进一步的研究。
发明内容
本申请实施方式的目的在于提供一种通信方法及装置,用于在为BWP配置的RBG的大小大于BWP的大小的场景下,实现网络侧设备和终端侧设备在BWP上进行数据传输。
第一方面,本申请实施例提供一种通信方法,该方法包括:
通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,所述第一RBG的大小等于所述BWP的大小;进而,通信装置在所述第一RBG中的虚拟资源块VRB映射的物理资源块PRB上进行数据传输。
在一种可能的设计中,上述通信装置可以为网络侧设备,此种情形下,该方法还可以包括:通信装置向终端侧设备发送第一配置信息,第一配置信息包括BWP的大小;以及,通信装置向终端侧设备发送第二配置信息,第二配置信息包括为BWP配置的RBG的大小。
在一种可能的设计中,上述通信装置可以为终端侧设备,此种情形下,该方法还可以包括:通信装置接收网络侧设备发送的第一配置信息,第一配置信息包括BWP的大小;以及,通信装置接收网络侧设备发送的发送第二配置信息,第二配置信息包括为BWP配置的RBG的大小。
采用上述方法,当确定BWP的大小小于配置的RBG的大小,本申请实施例中网络侧设备和终端侧设备均可确定BWP对应第一RBG,从而保证网络侧设备和终端侧设备所理解的BWP对应的RBG的大小一致,且由于第一RBG的大小等于BWP的大小,从而能够有效避免网络侧设备所调度的RBG中的VRB所映射的PRB包括不属于BWP的PRB,保证数据传输的准确性。
在一种可能的设计中,所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,包括:所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第一RBG。
考虑到BWP对应的RBG的个数大于或等于2时,可以计算得到BWP对应的第一个RBG的大小以及计算得到BWP对应的最后一个RBG,进而得到BWP对应的RBG包括BWP对应的第一个RBG和BWP对应的最后一个RBG,此时不会出现网络侧设备和终端侧设备所理解的BWP对应的RBG的大小不一致。因此,本申请实施例中可以在BWP对应的RBG的个数为1的情况下,确定所述BWP对应第一RBG,以避免出现网络侧设备和终端侧设备所理解的BWP对应的RBG的大小不一致。
第二方面,本申请实施例提供一种通信方法,该方法包括:
通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第二RBG或第三RBG;进而,通信装置在所述第二RBG或第三RBG中的部分或全部VRB映射的PRB上进行数据传输;其中,所述第二RBG的大小是根据所述BWP的起始资源块索引和所述配置的RBG的大小得到的;所述第三RBG的大小是根据所述BWP的起始资源块索引、所述BWP的大小和所述配置的RBG的大小得到的。
在一种可能的设计中,上述通信装置可以为网络侧设备,此种情形下,该方法还可以包括:通信装置向终端侧设备发送第一配置信息,第一配置信息包括BWP的大小;以及,通信装置向终端侧设备发送第二配置信息,第二配置信息包括为BWP配置的RBG的大小。
在一种可能的设计中,上述通信装置可以为终端侧设备,此种情形下,该方法还可以包括:通信装置接收网络侧设备发送的第一配置信息,第一配置信息包括BWP的大小;以及,通信装置接收网络侧设备发送的发送第二配置信息,第二配置信息包括为BWP配置的RBG的大小。
采用上述方法,当确定BWP的大小小于配置的RBG的大小,本申请实施例中网络侧设备和终端侧设备均可确定BWP对应第二RBG(或第三RBG),从而保证网络侧设备和终端侧设备所理解的BWP对应的RBG的大小一致;且以BWP对应第二RBG为例,当第二RBG大于BWP的大小时,网络侧设备和终端侧设备可以在第二RBG中的部分VRB映射的PRB上进行数据传输(丢弃第二RBG中的VRB映射的PRB中不属于BWP的PRB),当第二RBG等于BWP的大小时,网络侧设备和终端侧设备可以在第二RBG中的全部VRB映射的PRB上进行数据传输。
在一种可能的设计中,所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得 到所述BWP对应的RBG的个数为1,则确定所述BWP对应第三RBG,包括:所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且第三RBG的大小大于0,以及根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第三RBG。
在一种可能的设计中,所述通信装置在所述第二RBG中的部分或全部VRB映射的PRB上进行数据传输,包括:所述通信装置在所述第二RBG中的前N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
在一种可能的设计中,所述通信装置在所述第三RBG中的部分或全部VRB映射的PRB上进行数据传输,包括:所述通信装置在所述第三RBG中的后N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
第三方面,本申请实施例提供一种通信方法,该方法包括:
网络侧设备为终端侧设备配置BWP的大小;以及,网络侧设备为所述BWP配置RBG的大小,若确定所述BWP的大小大于或等于配置的RBG的大小,则向所述终端侧设备发送第三配置信息,所述第三配置信息包括为所述BWP配置的RBG的大小。
采用上述方法,网络侧设备在确定BWP的大小大于或等于配置的RBG的大小的情况下,方可向终端侧设备发送配置的RBG的大小,从而保证终端侧设备接收到的BWP的大小大于或等于配置的RBG的大小。
在一种可能的设计中,所述方法还包括:网络侧设备若确定所述BWP的大小小于所述配置的RBG的大小,则将所述BWP的大小调大,和/或,将所述配置的RBG的大小调小;调整后的BWP的大小大于或等于调整后的RBG的大小;并向终端侧设备发送第四配置信息,第四配置信息包括所述调整后的BWP的大小和/或所述调整后的RBG的大小。
第四方面,本申请实施例提供一种装置,所述装置具备实现上述第一方面至第三方面的任一种可能的设计所涉及的方法的功能,比如,所述装置包括执行上述第一方面至第三方面的任一种可能的设计所涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述装置包括处理单元、通信单元,处理单元、通信单元执行的功能可以和上述第一方面至第三方面的任一种可能的设计所涉及的步骤相对应。
在一种可能的设计中,所述装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面至第三方面中任意可能的设计或实现方式中的方法。
其中,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。
在一种可能的设计中,存储器保存实现上述第一方面至第三方面的任一种可能的设计所涉及的方法的功能的必要计算机程序指令和/或数据。所述处理器可执行所述存储器存储的计算机程序指令,完成上述第一方面至第三方面任意可能的设计或实现方式中的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第三方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第三方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第三方面的任一种可能的设计中的方法。
附图说明
图1a为适用于本申请实施例的系统架构示意图;
图1b为本申请实施例中配置的3种不同的BWP示例;
图1c为本申请实施例中BWP i内的PRB的编号与CRB的编号的关系示意图;
图1d为本申请实施例中BWP1和BWP2示意图;
图1e为本申请实施例提供的一种调度的PRB示意图;
图1f为本申请实施例提供的又一种调度的PRB示意图;
图2为本申请实施例方案一提供的一种通信方法所对应的流程示意图;
图3为本申请实施例方案二提供的一种通信方法所对应的流程示意图;
图4为本申请实施例提供的方案一对应的交互流程示意图;
图5为本申请实施例方案三提供的一种通信方法所对应的流程示意图;
图6为本申请实施例中所涉及的装置的可能的示例性框图;
图7为本申请实施例提供的一种装置的结构示意图;
图8为本申请实施例提供的一种终端侧设备的结构示意图;
图9为本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端侧设备:是一种具有无线收发功能的设备,终端侧设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端侧设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备,以及还可以包括用户设备(user equipment,UE)等。终端侧设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端侧设备有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移 动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端侧设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端侧设备的功能的装置可以是终端侧设备,也可以是能够支持终端侧设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端侧设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端侧设备为例,描述本申请实施例提供的技术方案。
(2)网络侧设备:可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端侧设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络侧设备可以为中继站、接入点以及未来5G网络中的网络侧设备或者未来演进的PLMN网络中的网络侧设备等。
本申请实施例中,用于实现网络侧设备的功能的装置可以是网络侧设备,也可以是能够支持网络侧设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络侧设备中。在本申请实施例提供的技术方案中,以用于实现网络侧设备的功能的装置是网络侧设备为例,描述本申请实施例提供的技术方案。
(3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有其它说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的优先级或者重要程度等的不同。
图1a为本申请实施例适用的一种可能的系统架构示意图。如图1a所示的系统架构包括网络侧设备和终端侧设备。应理解,本申请实施例对系统架构中网络侧设备的数量、终端侧设备的数量不作限定,而且本申请实施例所适用的系统架构中除了包括网络侧设备和终端侧设备以外,还可以包括其它设备,如核心网设备、无线中继设备(又称无线回传设备)等,对此本申请实施例也不作限定。以及,本申请实施例中的网络侧设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个 独立的物理设备上,对此本申请实施例也不作限定。此外,本申请实施例中的终端侧设备可以通过无线方式与网络侧设备连接。
针对于图1a所示意的系统架构,应理解,本申请实施例对系统架构中网络侧设备的数量、终端侧设备的数量不作限定,而且本申请实施例所适用的系统架构中除了包括网络侧设备和终端侧设备以外,还可以包括其它设备,如核心网设备、无线中继设备和无线回传设备等,对此本申请实施例也不作限定。以及,本申请实施例中的网络侧设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本申请实施例也不作限定。此外,本申请实施例中的终端侧设备可以通过无线方式与网络侧设备连接。
上述所示意的系统架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统中,例如5G通信系统以及未来可能出现的通信系统。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面对本申请实施例涉及的相关技术特征进行解释。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)BWP
5G通信系统中,将用于通信的频率按照其范围分为频率范围1(frequency range 1,FR1)和频率范围2(frequency range 2,FR2)。FR1对应的频率范围为450MHz至6000MHz,对应低频频段。FR2对应的频率范围为24250MHz至52600MHz,对应高频频段。位于不同FR时,信道带宽可以不同,比如FR1的带宽可以是5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz和100MHz,FR2的带宽可以是50MHz,100MHz,200MHz和400MHz等。
为适配终端侧设备的带宽能力,可以在一个载波支持的带宽(可称为载波带宽,具体取值可以为10MHz、15MHz、20MHz、50MHz、100MHz或400MHz等)内为终端侧设备配置BWP,一个载波中可配置多个BWP,例如一个载波可以配置4个BWP。BWP有时也可称为子带(subband)带宽、窄带(narrowband)带宽,或者其他的名称,本申请对名称并不做限定,为了便于描述,以名称是BWP为例说明。例如,一个BWP包含K(K>0)个子载波;或者,一个BWP为N个不重叠的RB所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M个不重叠的RBG所在的频域资源,例如,一个RBG包括P(P>0)个连续的RB,该RB的子载波间隔(subcarrier spacing,SCS)可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值,例如为2的整数倍。
示例性地,一个BWP可以表示为在指定的载波内的BWP i,其中i表示BWP的编号;BWP i的大小可以是指BWP中包含的PRB的个数,可以表示为
Figure PCTCN2019101217-appb-000001
BWP i的起始资源块索引是指BWP i相对于CRB0的偏移量,可以表示为
Figure PCTCN2019101217-appb-000002
比如,BWP i相对于CRB0的偏移量为25,则BWP i的起始资源块索引为25。如图1b所述,为配置的3种不同的BWP 示例,其中,BWP1带宽40MHz,子载波间隔15kHz;BWP2带宽10MHz,子载波间隔15kHz;BWP3带宽20MHz,子载波间隔60kHz。
(2)VRB、PRB和公共资源块(common resource block,CRB)
NR通信系统中,定义了VRB、PRB和CRB三种资源块概念。其中,VRB可以定义在一个BWP(比如BWP i)内,VRB编号从0到
Figure PCTCN2019101217-appb-000003
频域资源分配通常先是分配VRB,再通过非交织或交织的方式从VRB向PRB映射。PRB可以定义在一个BWP(比如BWP i)内,PRB编号从0到
Figure PCTCN2019101217-appb-000004
CRB编号从0开始,CRB 0的子载波0的中心与Point A一致;其中,Point A可以理解为针对于一个小区的资源块网格的公共参考点。示例性地,在终端侧设备的初始接入阶段,网络侧设备可以将Point A包含在小区的系统消息中发送给正在接入该小区的终端侧设备,相应地,终端侧设备可以根据系统消息确定该小区的Point A,后续,网络侧设备可以基于Point A来为终端侧设备分配资源(比如BWP)。
示例性地,如图1c所示,在BWP i内,BWP i的子载波间隔参数为μ,BWP i内的PRB的编号(表示为
Figure PCTCN2019101217-appb-000005
)与CRB的编号(表示为
Figure PCTCN2019101217-appb-000006
)的关系可以为:
Figure PCTCN2019101217-appb-000007
其中,
Figure PCTCN2019101217-appb-000008
表示以CRB 0作为参考的BWP i的起始资源块索引。
(3)名义上RBG的大小(nominal RBG size)
示例性地,网络侧设备为终端侧设备配置一个或多个BWP后,可以再进一步为一个或多个BWP分别配置RBG的大小,网络侧设备为某一BWP(比如BWP1)配置的RBG的大小,可以理解为名义上RBG的大小,因为即使网络侧设备为BWP1配置了RBG的大小等于P,但是实际确定出的BWP1对应的RBG的大小所包括的PRB个数可能小于P。
本申请实施例中,为BWP配置的RBG的大小可以简称为配置的RBG的大小。
在一个示例中,网络侧设备可以向终端侧设备发送高层信令,高层信令中可以包括BWP1的配置参数rbg-Size,用于为BWP1配置的RBG的大小。
如下所示,为高层信令的部分结构示例:
PDSCH-Config::=                       SEQUENCE{
rbg-Size                                ENUMERATED{config1,config2},
由此可以看出,rbg-Size有两种配置,分别为config1和config2,如表1所示,为不同配置下,为BWP配置的RBG的大小。
表1:为BWP配置的RBG的大小
BWP的大小 Configuration 1 Configuration 2
1–36 2 4
37–72 4 8
73–144 8 16
145–275 16 16
示例性地,当配置rbg-Size等于config1时,表示可以选取表1中的“Configuration 1”一列,当配置rbg-Size等于config2时,表示可以选取表1中的“Configuration 2”一列;进而终端侧设备可以根据BWP1的大小确定对应的为表1中的哪一行,从而结合行和列确定出为BWP1配置的RBG的大小。
举个例子,针对于BWP1配置的PDSCH-Config->rgb-Size等于config2,BWP1的大 小是20个PRB,则根据表1可知,BWP1大小为20个PRB时对应第一行,rgb-Size等于config2对应第二列,从而终端侧设备可以确定为BWP1配置的RBG的大小等于4。
(4)BWP对应的RBG的个数和各个RBG的大小
示例性地,终端侧设备确定出为BWP配置的RBG的大小后,可以进一步确定出BWP对应的RBG的个数和各个RBG的大小。
比如,终端侧设备可以采用如下公式确定BWP i对应的RBG的个数:
Figure PCTCN2019101217-appb-000009
其中,N RBG表示BWP i对应的RBG的个数,P表示为BWP i配置的RBG的大小,
Figure PCTCN2019101217-appb-000010
表示BWP i的大小,
Figure PCTCN2019101217-appb-000011
表示BWP i的起始资源块索引。
举个例子,参见图1d所示,BWP1的大小
Figure PCTCN2019101217-appb-000012
等于20个PRB,为BWP1配置的RBG的大小P等于4,BWP1的起始资源块索引
Figure PCTCN2019101217-appb-000013
为5,进而根据公式1可得到BWP1对应的RBG的个数为6。
此种情形下,若确定出BWP1对应的RBG的个数为6,则网络侧设备向终端侧设备发送DCI(假设采用的资源分配方式为type0)时,DCI中的频域资源分配指示(frequency domain resource assignment)域的比特长度可以为6,6个比特中的每一个比特用于指示对应的RBG是否用于数据传输,比如当其中一个比特的比特状态为“1”,则表示该比特对应的RBG用于数据传输(即该比特对应的RBG分配给了终端侧设备),比特状态为“0”,则表示该比特对应的RBG不用于数据传输(即该比特对应的RBG没有分配给终端侧设备)。例如,对于BWP1,频域资源分配指示域的第一个比特对应第一个RBG,第二个比特对应第二个RBG,以此类推;终端侧设备接收到DCI后,若确定频域资源分配指示域为111000,则表示BWP1中的前3个RBG分配给终端侧设备用于数据传输,而后3个RBG未分配给终端侧设备;进而,终端侧设备可以在前3个RBG中的VRB所映射的PRB上进行数据传输。
考虑到不同BWP的起始位置和终止位置可能不同,参见图1d所示,BWP1的起始位置对应索引为5的CRB,终止位置对应索引为24的CRB,而BWP2的起始位置对应索引为10的CRB,终止位置对应索引为24的CRB;因此,为了使同一小区内的不同BWP在相同的nominal RBG size配置下得到的RBG尽量对齐,可以采用如下公式2来确定BWP i对应的第一个RBG,以及采用如下公式3来确定BWP i对应的最后一个RBG,且BWP i对应的除第一个RBG和最后一个RBG以外的其它RBG的大小等于P。
Figure PCTCN2019101217-appb-000014
Figure PCTCN2019101217-appb-000015
其中,
Figure PCTCN2019101217-appb-000016
其中,
Figure PCTCN2019101217-appb-000017
表示BWP i对应的第一个RBG的大小,
Figure PCTCN2019101217-appb-000018
表示BWP i对应的最后一个RBG的大小。
参见图1d所示的BWP1和BWP2,对于BWP1来说:
Figure PCTCN2019101217-appb-000019
P=4,
Figure PCTCN2019101217-appb-000020
对于BWP1来说:
Figure PCTCN2019101217-appb-000021
P=4,
Figure PCTCN2019101217-appb-000022
(5)预编码资源块组(precoding resource block group,PRG)
NR通信系统中,引入了PRG,PRG可以理解为预编码粒度(precoding granularity),, 假设PRG为一个频域上连续的P′ BWP,i个RB,P′ BWP,i可以是2、4或者调度带宽(wideband)中的一个值。终端侧设备在一个PRG内的连续分配的PRB使用相同的预编码矩阵,可以理解为一个PRG内的连续分配的PRB使用相同的线性变换。
其中,P′ BWP,i的取值解释如下:
①P′ BWP.i=wideband,表示终端侧设备不期待被调度非连续的PRB,即网络侧设备给终端侧设备调度的PRB都是连续的,且终端侧设备假设这些调度的PRB都是用相同的预编码处理。
②P′ BWP.i=2 or 4,表示一个PRG内包含连续P′ BWP,i个PRB,若干个PRG划分BWPi为多段。1个PRG内的连续PRB个数可能是1或多于1。
确定BWPi对应的PRG的方法与确定BWPi对应的RBG的方法类似。比如,BWPi对应的第一个PRG的大小等于
Figure PCTCN2019101217-appb-000023
如果
Figure PCTCN2019101217-appb-000024
则BWPi对应的最后一个PRG的大小等于
Figure PCTCN2019101217-appb-000025
如果
Figure PCTCN2019101217-appb-000026
则BWPi对应的最后一个PRG的大小等于P′ BWP,i
网络侧设备可以通过高层信令配置P′ BWP,i,比如对于由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的DCI format 1_1调度的PDSCH,当PDSCH-Config中没有配置prb-BundlingType时,P′ BWP,i默认为2;当prb-BundlingType设置为'dynamicBundling'时,bundleSizeSet1和bundleSizeSet2中配置2个取值集合,第一个集合可以在集合{2,4,wideband}中取1个或2个值,第二个集合只能在{2,4,wideband}集合中取1个值。
进一步地,如果PDSCH-Config中没有配置prb-BundlingType时或配置为'staticBundling'时,DCI format 1_1中的PRB bundling size indicator域的比特长度为0比特,即不能动态指示PRG。
如果PDSCH-Config中配置prb-BundlingType为'dynamicBundling',则当取值为0时,终端侧设备可以使用第二个集合中的P′ BWP,i;取值为1且第一个集合中配置了一个值,终端侧设备可以使用这个值;取值为1且第一个集合中配置了两个值,'n2-wideband'(这个值对应2和wideband)或'n4-wideband'(这个值对应4和wideband),终端侧设备可以使用这个值。也就是说,配置两个值时,网络侧设备会在这个集合内配置一个包含两个含义的一个信令,即会配置'n4-wideband',而不会配置2个值'n4'和'wideband'。
本申请实施例中,如果调度的PRB是连续的且调度的PRB大于
Figure PCTCN2019101217-appb-000027
则P′ BWP,i等于调度带宽,否则P′ BWP,i分别等于配置的2或4。例如,BWP1的起始资源块索引
Figure PCTCN2019101217-appb-000028
大小为
Figure PCTCN2019101217-appb-000029
如果网络侧设备采用type 0来调度,则可以配置prb-BundlingType为'dynamicBundling=n4-wideband',DCI中的PRB bundling size indicator域等于'1',当用于数据传输的PRB(或者说调度的PRB)个数不同时,对应的PRG如图1e和图1f所示。其中,图1e表示,调度的PRB个数大于
Figure PCTCN2019101217-appb-000030
此时
Figure PCTCN2019101217-appb-000031
等于调度带宽,即调度的PRB都是用相同的预编码处理。图1f表示,调度的PRB个数小于
Figure PCTCN2019101217-appb-000032
此时P′ BWP,i等于4,即BWP1中前3个PRB使用相同的预编码处理,第四个至第七个PRB使用相同的预编码处理。
基于上述介绍,下面对本申请实施例进行描述。
根据上述内容可知,当网络侧设备为终端侧设备配置的BWP的大小大于或等于为BWP配置的RBG的大小时,网络侧设备和终端侧设备可以依据上述公式1、公式2和公式3确定出BWP对应的RBG的个数以及各个RBG的大小,进而网络侧设备可以以RBG为粒度在BWP上调度终端侧设备的上行数据或下行数据。
然而,在一些可能的场景中,网络侧设备为终端侧设备配置的BWP的大小可能小于为BWP配置的RBG的大小。比如场景1,终端侧设备的能力支持BWP的大小小于为BWP配置的RBG的大小,此种情形下,网络侧设备为终端侧设备配置的BWP的大小可能小于为BWP配置的RBG的大小;又比如场景2,在没有配置同步信号块(synchronous signal block,SSB)的载波上,且不存在BWP的大小大于或等于SSB带宽的限制,因此,网络侧设备为终端侧设备配置的BWP的大小可能小于为BWP配置的RBG的大小。
本申请实施例将主要研究当BWP的大小小于为BWP配置的RBG的大小时,网络侧设备和终端侧设备如何在BWP上进行数据传输。
示例性地,当BWP的大小小于为BWP配置的RBG的大小时,本申请实施例提供一种可能的思路为,网络侧设备和终端侧设备依据上述公式1、公式2和公式3来确定BWP对应的RBG的个数以及RBG的大小,进而网络侧设备可以基于BWP对应的RBG在BWP上调度终端侧设备的上行数据和下行数据。但,由于网络侧设备为终端侧设备配置的BWP的大小小于为BWP配置的RBG的大小,因此,可能出现网络侧设备和终端侧设备对BWP对应的RBG的大小理解不一致的问题。
举个例子,
Figure PCTCN2019101217-appb-000033
P=4,即BWP i的大小只有1个PRB,但是P=4,此种情况下,根据公式1计算得到BWP i对应的RBG的个数为1,该RBG可以理解为BWP i对应第一个RBG,也可以理解为BWP i对应最后一个RBG。若将该RBG可以理解为BWP i对应第一个RBG,则根据上述公式2可得RBG的大小为4,若将该RBG可以理解为BWP i对应最后一个RBG,则根据上述公式3可得RBG的大小为1。如此,若网络侧设备将BWP i对应的RBG理解为BWP i对应的第一个RBG,而终端侧设备将BWP i对的应RBG理解为BWP i对应的最后一个RBG,则会出现网络侧设备和终端侧设备对BWP i对应的RBG的大小理解不一致的问题。
考虑到目前网络侧设备为BWP i配置的RBG的大小可以为2或4,在此基础上,BWP i的大小小于为BWP i配置的RBG的大小的情形可以包括:
情形1,P=2,
Figure PCTCN2019101217-appb-000034
情形2,P=4,
Figure PCTCN2019101217-appb-000035
情形3,P=4,
Figure PCTCN2019101217-appb-000036
情形4,P=4,
Figure PCTCN2019101217-appb-000037
下面结合表2至表5对上述4种情形进行说明。
表2:P=2,
Figure PCTCN2019101217-appb-000038
Figure PCTCN2019101217-appb-000039
由表2可以看出,当P=2,
Figure PCTCN2019101217-appb-000040
时,根据公式1可计算得到BWP i对应1个RBG。其中,当
Figure PCTCN2019101217-appb-000041
的取值为2n(n=0、1、2……)时,
Figure PCTCN2019101217-appb-000042
Figure PCTCN2019101217-appb-000043
均不为0,且
Figure PCTCN2019101217-appb-000044
Figure PCTCN2019101217-appb-000045
不相同,从而会出现网络侧设备和终端侧设备对BWP i对应的RBG的大小理解不一致的问题。而当
Figure PCTCN2019101217-appb-000046
的取值为2n+1时,由于
Figure PCTCN2019101217-appb-000047
等于0,此时网络侧设备和终端侧设备可以以计算得到的第一个RBG的大小作为BWP i对应的RBG的大小,从而不会出现理解不一致的问题。
表3:P=4,
Figure PCTCN2019101217-appb-000048
Figure PCTCN2019101217-appb-000049
由表3可以看出,当P=4,
Figure PCTCN2019101217-appb-000050
时,根据公式1可计算得到BWP i对应1个RBG。其中,当
Figure PCTCN2019101217-appb-000051
的取值为4n、4n+1、4n+2(n=0、1、2……)时,
Figure PCTCN2019101217-appb-000052
Figure PCTCN2019101217-appb-000053
均不为0,且
Figure PCTCN2019101217-appb-000054
Figure PCTCN2019101217-appb-000055
不相同,从而会出现网络侧设备和终端侧设备对BWP i对应的RBG的大小理解不一致的问题。而当
Figure PCTCN2019101217-appb-000056
的取值为4n+3时,由于
Figure PCTCN2019101217-appb-000057
等于0,此时网络侧设备和终端侧设备可以以计算得到的第一个RBG的大小作为BWP i对应的RBG的大小,从而不会出现理解不一致的问题。
表4:P=4,
Figure PCTCN2019101217-appb-000058
Figure PCTCN2019101217-appb-000059
由表4可以看出,当P=4,
Figure PCTCN2019101217-appb-000060
时,若
Figure PCTCN2019101217-appb-000061
的取值为4n、4n+1(n=0、1、2……),根据公式1可计算得到BWP i对应1个RBG,由于
Figure PCTCN2019101217-appb-000062
Figure PCTCN2019101217-appb-000063
均不为0,且
Figure PCTCN2019101217-appb-000064
Figure PCTCN2019101217-appb-000065
不相同,从而会出现网络侧设备和终端侧设备对RBG的大小理解不一致的问题。若
Figure PCTCN2019101217-appb-000066
的取值为4n+2,根据公式1可计算得到BWP i对应1个RBG,由于
Figure PCTCN2019101217-appb-000067
等于0,此时网络侧设备和终端侧设备可以以计算得到的第一个RBG的大小作为BWP i对应的RBG的大小,从而不会出现理解不一致的问题。若
Figure PCTCN2019101217-appb-000068
的取值为4n+3,根据公式1可计算得到BWP i对应2个RBG,进而可分别根据公式2和公式3得到第一个RBG的大小和最后一个RBG的大小,此时也不会出现理解不一致的问题。
表5:P=4,
Figure PCTCN2019101217-appb-000069
Figure PCTCN2019101217-appb-000070
由表5可以看出,当P=4,
Figure PCTCN2019101217-appb-000071
时,若
Figure PCTCN2019101217-appb-000072
的取值为4n(n=0、1、2……),根据公式1可计算得到BWP i对应1个RBG,由于
Figure PCTCN2019101217-appb-000073
Figure PCTCN2019101217-appb-000074
均不为0,且
Figure PCTCN2019101217-appb-000075
Figure PCTCN2019101217-appb-000076
均不相同,从而会出现网络侧设备和终端侧设备对BWP i对应的RBG的大小理解不一致的问题。若
Figure PCTCN2019101217-appb-000077
的取值为4n+1,根据公式1可计算得到BWP i对应1个RBG,由于
Figure PCTCN2019101217-appb-000078
等于0,此时网络侧设备和终端侧设备可以以计算得到的第一个RBG的大小作为BWP i对应的RBG的大小,从而不会出现理解不一致的问题。若
Figure PCTCN2019101217-appb-000079
的取值为4n+2、4n+3,根据公式1可计算得到BWP i对应2个RBG,进而可分别根据公式2和公式3得到第一个RBG的大小和最后一个RBG的大小,此时也不会出现理解不一致的问题。
基于上述对情形1至情形4的分析,本申请实施例提供三种可能的方案,分别为方案一、方案二和方案三。
需要说明的是,方案一、方案二中所涉及的通信装置可以为第一通信装置或第二通信装置。其中,第一通信装置可以是网络侧设备或能够支持网络侧设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。第二通信装置可以是终端侧设备或能够支持终端侧设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。
方案一
图2为本申请实施例方案一提供的一种通信方法所对应的流程示意图,如图2所示,包括:
步骤201,通信装置若确定BWP的大小小于为BWP配置的RBG的大小,则可以确定BWP对应第一RBG,或者说,确定BWP对应的RBG为第一RBG,第一RBG的大小等于BWP的大小。
步骤202,通信装置在第一RBG中的VRB映射的PRB上进行数据传输。
本申请实施例中,由于确定BWP对应第一RBG,因此从网络侧设备的角度来看,网络侧设备所发送的DCI中的频域资源分配指示域中可以包括1个比特,该比特的比特状态可以为1,指示第一RBG用于数据传输。
由于第一RBG的大小等于BWP的大小,因此通信装置在第一RBG中的VRB映射的PRB上进行数据传输,可以理解为,通信装置在第一RBG中的全部VRB映射的PRB上进行数据传输。
本申请实施例中,通信装置确定BWP对应第一RBG的实现方式可以有多种,下面描述几种可能的实现方式。
实现方式1
通信装置若确定BWP的大小小于为这个BWP配置的RBG的大小,则可以直接确定BWP对应第一RBG。在该种实现方式中,通信装置确定BWP的大小小于配置的RBG的大小后,可以无需根据上述公式1、公式2和公式3来进行相关计算,而是直接确定BWP对应第一RBG,能够降低处理复杂度,提高处理效率。
实现方式2
通信装置若确定BWP的大小小于为这个BWP配置的RBG的大小,且根据上述公式3计算得到BWP对应的最后一个RBG(即为
Figure PCTCN2019101217-appb-000080
)的大小大于0,则可以直接确定BWP对应第一RBG。通信装置若确定BWP的大小小于配置的RBG的大小,且根据上述公式3计算得到BWP对应的最后一个RBG(即为
Figure PCTCN2019101217-appb-000081
)的大小等于0,则可以根据上述公式2计算得到BWP对应的第一个RBG的大小(即为
Figure PCTCN2019101217-appb-000082
),并确定BWP对应的RBG为BWP对应的第一个RBG(此时,BWP对应的第一个RBG的大小等于BWP的大小,也就是说,BWP对应的第一个RBG即是第一RBG)。
在该种实现方式中,通信装置确定BWP的大小小于为这个BWP配置的RBG的大小后,可以先根据上述公式3计算得到BWP对应的最后一个RBG的大小,若BWP对应的最后一个RBG的大小大于0,则可以根据公式2得到BWP对应的第一个RBG的大小,并确定BWP对应的RBG为BWP对应的第一个RBG,无需根据公式1计算BWP对应的RBG的个数;若BWP对应的最后一个RBG的大小等于0,则可以直接确定BWP对应第一RBG,而无需再根据公式2计算BWP对应的第一个RBG的大小,也无需根据公式1计算BWP对应的RBG的个数。
采用上述实现方式,通信装置将BWP对应的最后一个RBG的大小作为参考,由于当BWP对应的最后一个RBG的大小等于0时,可能不会出现网络侧设备和终端侧设备所理解BWP对应的RBG的大小不一致的问题,此时可以继续沿用前文所描述的方式来确定BWP对应的RBG;而当BWP对应的最后一个RBG的大小大于0时,可能会出现网络侧设备和终端侧设备所理解BWP对应的RBG的大小不一致的问题,此时可以确定BWP对应第一RBG,从而保证网络侧设备和终端侧设备所理解BWP对应的RBG的大小一致,且由于无需根据公式1计算BWP对应的RBG的个数,从而能够降低处理复杂度。
实现方式3
通信装置若确定BWP的大小小于为这个BWP配置的RBG的大小,且根据上述公式1计算得到BWP对应1个RBG,则可以直接确定BWP对应第一RBG。通信装置若确定BWP的大小小于配置的RBG的大小,且根据上述公式1计算得到BWP对应的RBG的个数大于或等于2,则可以根据上述公式2计算得到BWP对应的第一个RBG的大小以及根据上述公式3计算得到BWP对应的最后一个RBG,进而得到BWP对应的RBG包括BWP对应的第一个RBG和BWP对应的最后一个RBG。
在该种实现方式中,通信装置确定BWP的大小小于配置的RBG的大小后,可以先根据公式1计算得到BWP是否对应1个RBG,若是,则无需根据上述公式2和公式3来进行相关计算,而是直接确定BWP对应第一RBG。
采用上述实现方式,通信装置将BWP对应的RBG的个数作为参考,由于当BWP对应的RBG的个数大于或等于2时,可能不会出现网络侧设备和终端侧设备所理解BWP对应的RBG的大小不一致的问题,此时可以继续沿用前文所描述的方式来确定BWP对应的RBG;而当BWP对应的RBG的个数等于1时,可能会出现网络侧设备和终端侧设备所理 解BWP对应的RBG的大小不一致的问题,此时可以确定BWP对应第一RBG,从而保证网络侧设备和终端侧设备所理解BWP对应的RBG的大小一致,且由于无需根据公式2和公式3计算BWP对应的RBG的个数,从而能够降低处理复杂度。
实现方式4
通信装置若确定BWP的大小小于为这个BWP配置的RBG的大小,且根据上述公式1计算得到BWP对应1个RBG,以及根据上述公式3计算得到BWP对应的最后一个RBG的大小大于0,则确定BWP对应第一RBG。通信装置若确定BWP的大小小于配置的RBG的大小,且根据上述公式3计算得到BWP对应的最后一个RBG的大小等于0(根据上述表2至表5可以看出,BWP对应的最后一个RBG的大小等于0时,BWP只对应1个RBG),则可以上述公式2计算得到BWP对应的第一个RBG的大小,并确定BWP对应的RBG为BWP对应的第一个RBG(此时,BWP对应的第一个RBG的大小等于BWP的大小,也就是说,BWP对应的第一个RBG即是第一RBG)。
采用上述实现方式,通信装置将BWP对应的RBG的个数和BWP对应的最后一个RBG的大小作为参考,从而能够给更加准确地确定当前场景是否为会出现网络侧设备和终端侧设备所理解BWP对应的RBG的大小不一致的问题的场景,若是,则可以确定BWP对应第一RBG,以保证网络侧设备和终端侧设备所理解BWP对应的RBG的大小一致。
方案二
图3为本申请实施例方案二提供的一种通信方法所对应的流程示意图,如图3所示,包括:
步骤301,通信装置若确定BWP的大小小于为这个BWP配置的RBG的大小,则可以确定BWP对应第二RBG或第三RBG,或者说,确定BWP对应的RBG为第二RBG或第三RBG。
其中,第二RBG的大小可以是根据BWP的起始资源块索引和配置的RBG的大小得到的,比如可以根据上述公式2计算得到,此时第二RBG可以理解为BWP对应的第一个RBG。第三RBG的大小是根据BWP的起始资源块索引、BWP的大小和配置的RBG的大小得到的,比如可以根据上述公式3计算得到,此时第三RBG可以理解为BWP对应的最后一个RBG。
在一种可能的实现方式中,通信装置确定BWP对应第二RBG,可以包括:通信装置若确定BWP的大小小于配置的RBG的大小,且根据上述公式1计算得到BWP对应1个RBG,则可以确定BWP对应第二RBG。
通信装置确定BWP对应第三RBG,可以包括:通信装置若确定BWP的大小小于配置的RBG的大小,且根据上述公式1计算得到BWP对应1个RBG,以及根据上述公式3计算得到BWP对应的最后一个RBG的大小大于0,则可以确定BWP对应第三RBG。
步骤302,通信装置在第二RBG或第三RBG中的VRB映射的PRB上进行数据传输。
本申请实施例中,由于确定BWP对应第二RBG(或第三RBG),因此从网络侧设备的角度来看,网络侧设备所发送的DCI中的频域资源分配指示域中可以包括1个比特,该比特的比特状态可以为1,指示第二RBG(或第三RBG)用于数据传输。
由于第二RBG的大小可能大于或等于BWP的大小,因此,通信装置在第二RBG中的VRB映射的PRB上进行数据传输可以理解为,通信装置在第二RBG中的部分或全部VRB映射的PRB上进行数据传输。示例性地,通信装置可以在第二RBG中的前N个VRB 映射的PRB上进行数据传输,其中,N为BWP包括的PRB的个数。
由于第三RBG的大小可能大于或等于BWP的大小,因此,通信装置在第三RBG中的VRB映射的PRB上进行数据传输可以理解为,通信装置在第三RBG中的部分或全部VRB映射的PRB上进行数据传输。示例性地,通信装置可以在第三RBG中的后N个VRB映射的PRB上进行数据传输。
需要说明的是,若步骤301中通信装置确定BWP对应第二RBG,则在步骤302中通信装置可以在第二RBG中的VRB映射的PRB上进行数据传输;若步骤301中通信装置确定BWP对应第三RBG,则在步骤302中通信装置可以在第三RBG中的VRB映射的PRB上进行数据传输。
以通信装置确定BWP对应第二RBG,并在第二RBG中的VRB映射的PRB上进行数据传输为例,描述几种可能的示例。
示例1:BWP的大小
Figure PCTCN2019101217-appb-000083
为BWP配置的RBG的大小配置为P=2
当BWP的起始资源块索引为偶数时,通信装置根据公式2计算得到第二RBG的大小(即为2),进而在第二RBG中的第一个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的第二个VRB所映射的PRB或者说不在第二RBG中的第二个VRB所映射的PRB上进行数据传输。
示例2:BWP的大小为
Figure PCTCN2019101217-appb-000084
为BWP配置的RBG大小配置为P=4
当BWP的起始资源块索引为
Figure PCTCN2019101217-appb-000085
时,通信装置可以根据公式2计算得到第二RBG的大小(即为4),进而在第二RBG中的第一个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的后三个VRB所映射的PRB或者说不在第二RBG中的后三个VRB所映射的PRB上进行数据传输。
当BWP的起始资源块索引为
Figure PCTCN2019101217-appb-000086
通信装置可以根据公式2计算得到第二RBG的大小(即为3),进而在第二RBG中的第一个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的后两个VRB所映射的PRB或者说不在第二RBG中的后两个VRB所映射的PRB上进行数据传输。
当BWP的起始资源块索引为
Figure PCTCN2019101217-appb-000087
通信装置可以根据公式2计算得到第二RBG的大小(即为2),进而在第二RBG中的第一个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的第二个VRB所映射的PRB或者说不在第二RBG中的第二个VRB所映射的PRB上进行数据传输。
示例3:BWP的大小为
Figure PCTCN2019101217-appb-000088
为BWP配置的RBG大小配置为P=4
当BWP的起始资源块索引为
Figure PCTCN2019101217-appb-000089
时,通信装置可以根据公式2计算得到第二RBG的大小(即为4),进而在第二RBG中的第一个VRB和第二个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的后两个VRB所映射的PRB或者说不在第二RBG中的后两个VRB所映射的PRB上进行数据传输。
当BWP的起始资源块索引为
Figure PCTCN2019101217-appb-000090
时,通信装置可以根据公式2计算得到第二RBG的大小(即为3),进而在第二RBG中的第一个VRB和第二个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的最后一个VRB所映射的PRB或者说不在第二RBG中的最后一个VRB所映射的PRB上进行数据传输。
示例4:BWP的大小为
Figure PCTCN2019101217-appb-000091
为BWP配置的RBG大小配置为P=4
当BWP的起始资源块索引为
Figure PCTCN2019101217-appb-000092
时,通信装置可以根据公式2计算得到第二 RBG的大小(即为4),进而在第二RBG中的前三个VRB所映射的PRB上进行数据传输,丢弃第二RBG中的最后一个VRB所映射的PRB或者说不在第二RBG中的最后一个VRB所映射的PRB上进行数据传输。
针对于上述方案一(或方案二),下面从网络侧设备和终端侧设备交互的角度,描述一种可能的实现流程。
图4为本申请实施例提供的一种通信方法的交互流程示意图,如图4所示,包括:
步骤401,网络侧设备向终端侧设备发送第一配置信息,第一配置信息可以包括网络侧设备为终端侧设备配置的BWP的大小。示例性地,第一配置信息还可以包括所述BWP的资源块起始索引。
相应地,在步骤402中,终端侧设备接收来自网络侧设备的第一配置信息。
此处,网络侧设备向终端侧设备发送第一配置信息的方式可以有多种,比如通过广播消息或RRC信令来发送,具体不做限定。
需要说明的是,BWP的大小和所述BWP的资源块起始索引可以由一条信令来发送,或者,也可以通过多条信令来发送,具体不做限定。
步骤403,网络侧设备向终端侧设备发送第二配置信息,第二配置信息包括为BWP配置的RBG的大小,此处配置的RBG的大小即为名义上RBG的大小。
相应地,在步骤404中,终端侧设备接收来自网络侧设备的第二配置信息。
此处,网络侧设备向终端侧设备发送第二配置信息的方式可以有多种,比如通过广播消息或RRC信令来发送,具体不做限定。
需要说明的是,上述第一配置信息和第二配置信息可以通过同一条信令来发送,或者,也可以通过不同的信令来发送,具体不做限定。
步骤405,终端侧设备若确定BWP的大小小于配置的RBG的大小,则确定BWP对应第一RBG。
步骤406,网络侧设备若确定BWP的大小小于配置的RBG的大小,则确定BWP对应第一RBG。
步骤407,网络侧设备和终端侧设备在第一RBG中的VRB映射的PRB上进行数据传输。
采用上述方法,当确定BWP的大小小于配置的RBG的大小,本申请实施例中网络侧设备和终端侧设备均可确定BWP对应第一RBG,从而保证网络侧设备和终端侧设备所理解BWP对应的RBG的大小一致,且由于第一RBG的大小等于BWP的大小,从而能够有效避免网络侧设备所调度的RBG中的VRB所映射的PRB包括不属于BWP的PRB。
需要说明的是:(1)上述步骤401至步骤407为方案一对应的交互流程,方案二对应的交互流程可以参照方案一的交互流程,其与方案一的交互流程差异之处在于:在方案一对应的交互流程中,步骤405的终端侧设备和步骤406中的网络侧设备确定BWP对应第一RBG,进而步骤407中网络侧设备和终端侧设备在第一RBG中的VRB映射的PRB上进行数据传输;而在方案二对应的交互流程中,步骤405的终端侧设备和步骤406中的网络侧设备确定BWP对应第二RBG(或第三RBG),进而步骤407中网络侧设备和终端侧设备在第二RBG(或第三RBG)中的VRB映射的PRB上进行数据传输。
(2)上述图4中所涉及的步骤编号仅为执行流程的一种可能的示例,并不构成对各 个步骤的执行先后顺序的限制。本申请实施例中,相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。
(3)上述步骤401至步骤407仅是对交互流程进行描述,其中有些步骤(比如步骤405至步骤407)的具体实现可以参照上述方案一中的描述。
方案三
在方案三中,将主要研究在终端侧设备不期待被配置BWP的大小小于为BWP配置的RBG的大小的情形下,网络侧设备的一些可能的实现方式。
图5为本申请实施例方案三提供的一种通信方法所对应的流程示意图,如图5所示,包括:
步骤501,网络侧设备为终端侧设备配置BWP的大小。
步骤502,网络侧设备为BWP配置RBG的大小。
在该步骤中,网络侧设备可以基于现有方式为BWP配置RBG的大小。
步骤503,网络侧设备判断BWP的大小是否大于或等于配置的RBG的大小,若是,则执行步骤504,若否,则执行步骤505。
示例性地,网络侧设备判断BWP的大小是否大于或等于配置的RBG的大小的具体实现方式可以有多种,比如网络可以预先存储情形1至情形4,当确定BWP的大小和配置的RBG的大小属于上述情形1至情形4中的任一种情形时,则可以确定BWP的大小小于配置的RBG的大小,否则可以确定BWP的大小大于或等于配置的RBG的大小。
步骤504,网络侧设备向终端侧设备发送第三配置信息,所述第三配置信息包括BWP的大小和配置的RBG的大小。
步骤505,网络侧设备将BWP的大小调大,和/或,将配置的RBG的大小调小;调整后的BWP的大小大于或等于调整后的RBG的大小。
示例性地,网络侧设备将BWP的大小调大和/或将配置的RBG的大小调小的实现方式可以有多种。
在一种可能的实现方式中,网络侧设备可以根据配置的RBG的大小,按照预设调整值(比如1)将BWP的大小调大。比如,配置的RBG的大小为4,BWP的大小为2,网络侧设备可以先将BWP的大小调整为3(2+1),此时BWP的大小依旧小于配置的RBG的大小,则可以再次调整,即将BWP的大小调整为4(3+1),此时BWP的大小等于配置的RBG的大小,可以完成调整。
在又一种可能的实现方式中,网络侧设备可以根据配置的RBG的大小,将BWP的大小调大。比如,配置的RBG的大小为4,BWP的大小为2,网络侧设备可以直接将BWP的大小调整为等于配置的RBG的大小,即直接将BWP的大小调整4。
在又一种可能的实现方式中,网络侧设备可以根据BWP的大小,将配置的RBG的大小调小。比如,配置的RBG的大小为4,BWP的大小为2,网络侧设备可以直接将配置的RBG的大小调整为等于BWP的大小,即直接将配置的RBG的大小调整2。
步骤506,网络侧设备向终端侧设备发送第四配置信息,第四配置信息包括调整后的BWP的大小和/或调整后的RBG的大小。
采用上述方法,网络侧设备在确定BWP的大小大于或等于配置的RBG的大小的情况下,可向终端侧设备发送第三配置信息,网络侧设备若确定BWP的大小小于配置的RBG 的大小则可以对BWP和配置的RBG进行调整,并向终端侧设备发送调整后的BWP的大小和调整后的RBG的大小,从而保证终端侧设备接收到的BWP的大小大于或等于为BWP配置的RBG的大小,满足终端侧设备不期待被配置BWP的大小小于为BWP配置的RBG的大小的需求。
上述方案主要描述了当BWP的大小小于配置的RBG的大小的情况下的具体实施方案。当BWP的大小大于或等于配置的RBG的大小时,可以根据所述公式1、公式2和公式3分别计算得到BWP i对应RBG个数、第一个RBG的大小和最后一个RBG的大小,从而确定出BWP对应的RBG,可以参见现有方案,不再赘述。
方案四
上述主要是基于RBG进行描述的,对于PRG来说,也存在类似的问题,比如网络侧设备为BWP i配置的PRG的大小可以为2或4,在此基础上,BWP i的大小小于为BWP i配置的PRG的大小(表示为P′)的情形可以包括:
情形1,P′=2,
Figure PCTCN2019101217-appb-000093
情形2,P′=4,
Figure PCTCN2019101217-appb-000094
情形3,P′=4,
Figure PCTCN2019101217-appb-000095
情形4,P′=4,
Figure PCTCN2019101217-appb-000096
由于确定BWP i对应的PRG的方法与确定BWPi对应的RBG的方法类似,因此,针对PRG的情形1至情形4可以参照上述表2至表5。
基于此,本申请实施例还提供方案四,包括:通信装置(可以为网络侧设备或终端侧设备)若确定BWP i的大小小于为BWP i配置的PRG的大小,则可以确定BWP i对应第一PRG,第一PRG的大小等于BWP i中被调度的PRB的个数。其中,被调度的PRB的个数可以等于BWP i包括的PRB的个数(即BWP i包括的全部PRB均被调度),或者,也可以小于BWP i包括的PRB的个数(即BWP i包括的部分PRB均被调度)。
举个例子,若
Figure PCTCN2019101217-appb-000097
由于BWP i包括的1个PRB,该PRB即为被调度的PRB,此时,第一PRG的大小可以等于BWP i的大小。
再举个例子,若P=4,
Figure PCTCN2019101217-appb-000098
P′=4,此时,BWP i可以对应两个RBG。在一个示例中,网络侧设备可能只调度其中的一个RBG(比如调度第一个RBG,而未调度第二个RBG),此种情形下,由于BWP i中被调度的PRB的个数为1,因此,第一PRG的大小可以等于1。在又一个示例中,网络侧设备可能调度两个RBG,此种情形下,由于BWP i中被调度的PRB的个数为2,因此,第一PRG的大小可以等于2,从而能够有效避免针对BWP i中的两个PRB分别使用不同的预编码进行处理,提高处理性能。
需要说明的是:上述方案一、方案二、方案三和方案四可以分别单独实施,或者也可以结合实施。比如,可以将方案一和方案四结合实施,或者将方案二和方案四结合实施,具体不做限定。
上述主要从网络侧设备和终端侧设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络侧设备或终端侧设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施 例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图6示出了本申请实施例中所涉及的装置的可能的示例性框图,该装置600可以以软件的形式存在。装置600可以包括:处理单元602和通信单元603。处理单元602用于对装置600的动作进行控制管理。通信单元603用于支持装置600与其他网络实体的通信。可选地,通信单元603也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置600还可以包括存储单元601,用于存储装置600的程序代码和/或数据。
其中,处理单元602可以是处理器或控制器,其可以实现或执行结合本申请的实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。通信单元603可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元601可以是存储器。
该装置600可以为上述方案一和方案二中的通信装置(比如终端侧设备或网络侧设备),或者还可以为设置在终端侧设备或网络侧设备中的芯片。以装置600为终端侧设备为例,处理单元602可以支持装置600执行上文中各方法示例中终端侧设备的动作。或者,处理单元602主要执行方法示例中的终端侧设备的内部动作,通信单元603可以支持装置600与网络侧设备之间的通信。以装置600为网络侧设备为例,处理单元602可以支持装置600执行上文中各方法示例中网络侧设备的动作。或者,处理单元602主要执行方法示例中的网络侧设备的内部动作,通信单元603可以支持装置600与网络侧设备之间的通信。例如,处理单元602用于执行图2中的步骤201和图3中的步骤301;通信单元602用于执行图2中的步骤202和图3中的步骤302。
具体地,在一个实施例中,处理单元602,若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,所述第一RBG的大小等于所述BWP的大小;通信单元603,用于在所述第一RBG中的虚拟资源块VRB映射的物理资源块PRB上进行数据传输。
在一种可能的设计中,处理单元602具体用于:若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第一RBG。
具体地,在又一个实施例中,处理单元602用于若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第二RBG或第三RBG;通信单元603,用于在所述第二RBG或第三RBG中的部分或全部VRB映射的PRB上进行数据传输;其中,所述第二RBG的大小是根据所述BWP的起始资源块索引和所述配置的RBG的大小得到的;所述第三RBG的大小是根据所述BWP的起始资源块索引、所述BWP的大小和所述配置的RBG的大小得到的。
在一种可能的设计中,处理单元602具体用于:若确定BWP的大小小于为所述BWP配置的RBG的大小,且第三RBG的大小大于0,以及根据所述BWP的起始资源块索引、所述BWP的大小和配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所 述BWP对应第三RBG。
在一种可能的设计中,通信单元603具体用于:在所述第二RBG中的前N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
在一种可能的设计中,通信单元603具体用于:在所述第三RBG中的后N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
需要说明的是,本申请实施例中对单元(模块)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质可以为存储器等各种可以存储程序代码的介质。
图7给出了一种装置的结构示意图,该装置700包括处理器710、存储器720和收发器730。在一个示例中,该装置700可以实现图6所示意出的装置600的功能,具体来说,图6中所示意的通信单元603的功能可以由收发器实现,处理单元602的功能可由处理器实现,存储单元601的功能可以由存储器实现。在又一个示例中,该装置700可以是上述方法实施例中的终端侧设备,该装置700可用于实现上述方法实施例中描述的对应于终端侧设备的方法,具体可以参见上述方法实施例中的说明。
本申请实施例中的通信装置为终端侧设备时,该终端侧设备可以为如图8所示的终端侧设备800。为了便于说明,图8仅示出了终端侧设备的主要部件。如图8所示,终端侧设备800包括处理器801、存储器802、控制电路803、天线804以及输入输出装置805。该终端侧设备800可应用于如图1a所示的系统架构中,执行上述方法实施例中终端侧设备的功能。
处理器801主要用于对通信协议以及通信数据进行处理,以及对整个终端侧设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端侧设备执行上述方法实施例中所描述的动作。存储器802主要用于存储软件程序和数据。控制电路803主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路803和天线804一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置805,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端侧设备开机后,处理器801可以读取存储器802中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器801对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线804以电磁波的形式向外发送。当有数据发送到终端侧设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器801,处理器801将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器802和处理器801。在实际的终端侧设备中,可以存在多个处理器801和存储器802。存储器802也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器801可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端侧设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器801集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端侧设备可以包括多个基带处理器以适应不同的网络制式,终端侧设备可以包括多个中央处理器以增强其处理能力,终端侧设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器801中,也可以以软件程序的形式存储在存储器802中,由处理器801执行软件程序以实现基带处理功能。
图8所示的终端侧设备800能够实现图2、图3和图4所示意的方法实施例中涉及终端侧设备的各个过程。终端侧设备800中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例中的通信装置为网络侧设备时,该网络侧设备可以为如图9所示的网络侧设备900,网络侧设备900包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)910和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)920。所述RRU 910可以称为通信单元,与图6中的通信单元603对应,可选地,该通信单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线911和射频单元912。所述RRU 910部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端侧设备发送指示信息。所述BBU 910部分主要用于进行基带处理,对基站进行控制等。所述RRU 910与BBU 920可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 920为基站的控制中心,也可以称为处理模块,可以与图6中的处理单元602对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络侧设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 920可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 920还包括存储器921和处理器922。所述存储器921用以存储必要的指令和数据。所述处理器922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络侧设备的操作流程。所述存储器921和处理器922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒 介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端侧设备中。可选地,处理器和存储媒介也可以设置于终端侧设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (14)

  1. 一种通信方法,其特征在于,所述方法包括:
    通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,所述第一RBG的大小等于所述BWP的大小;
    所述通信装置在所述第一RBG中的虚拟资源块VRB映射的物理资源块PRB上进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,包括:
    所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第一RBG。
  3. 一种通信方法,其特征在于,所述方法包括:
    通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第二RBG或第三RBG;
    所述通信装置在所述第二RBG或第三RBG中的部分或全部VRB映射的PRB上进行数据传输;
    其中,所述第二RBG的大小是根据所述BWP的起始资源块索引和为所述BWP配置的RBG的大小得到的;所述第三RBG的大小是根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到的。
  4. [根据细则91更正 18.11.2019]
    根据权利要求3所述的方法,其特征在于,所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第三RBG,包括:
    所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且第三RBG的大小大于0,以及根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第三RBG。
  5. 根据权利要求3或4所述的方法,其特征在于,所述通信装置在所述第二RBG中的部分或全部VRB映射的PRB上进行数据传输,包括:
    所述通信装置在所述第二RBG中的前N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
  6. 根据权利要求3或4所述的方法,其特征在于,所述通信装置在所述第三RBG中的部分或全部VRB映射的PRB上进行数据传输,包括:
    所述通信装置在所述第三RBG中的后N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
  7. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于若确定BWP的大小小于为所述BWP配置的RBG的大小,则确定所述BWP对应第一RBG,所述第一RBG的大小等于所述BWP的大小;
    通信单元,用于在所述第一RBG中的虚拟资源块VRB映射的物理资源块PRB上进行数据传输。
  8. 根据权利要求7所述的装置,其特征在于,所述处理单元具体用于:
    所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第一RBG。
  9. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第二RBG或第三RBG;
    通信单元,用于在所述第二RBG或第三RBG中的部分或全部VRB映射的PRB上进行数据传输;
    其中,所述第二RBG的大小是根据所述BWP的起始资源块索引和为所述BWP配置的RBG的大小得到的;所述第三RBG的大小是根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到的。
  10. 根据权利要求9所述的装置,其特征在于,所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第三RBG,包括:
    所述通信装置若确定BWP的大小小于为所述BWP配置的RBG的大小,且第三RBG的大小大于0,以及根据所述BWP的起始资源块索引、所述BWP的大小和为所述BWP配置的RBG的大小得到所述BWP对应的RBG的个数为1,则确定所述BWP对应第三RBG。
  11. 根据权利要求9或10所述的装置,其特征在于,所述通信装置在所述第二RBG中的部分或全部VRB映射的PRB上进行数据传输,包括:
    所述通信装置在所述第二RBG中的前N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
  12. 根据权利要求9或10所述的装置,其特征在于,所述通信装置在所述第三RBG中的部分或全部VRB映射的PRB上进行数据传输,包括:
    所述通信装置在所述第三RBG中的后N个VRB映射的PRB上进行数据传输;其中,N为所述BWP包括的PRB的个数。
  13. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述处理器用于执行存储在所述存储器上的指令,当所述指令被运行时,使得所述装置执行如权利要求1至6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令被执行时,实现如权利要求1至6中任一项所述的方法。
PCT/CN2019/101217 2019-08-16 2019-08-16 一种通信方法及装置 WO2021031041A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/101217 WO2021031041A1 (zh) 2019-08-16 2019-08-16 一种通信方法及装置
CN201980099376.3A CN114270978A (zh) 2019-08-16 2019-08-16 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101217 WO2021031041A1 (zh) 2019-08-16 2019-08-16 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021031041A1 true WO2021031041A1 (zh) 2021-02-25

Family

ID=74659759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101217 WO2021031041A1 (zh) 2019-08-16 2019-08-16 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114270978A (zh)
WO (1) WO2021031041A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995497A (zh) * 2018-02-14 2019-07-09 华为技术有限公司 下行控制信息传输方法
US20190215807A1 (en) * 2018-01-11 2019-07-11 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
CN110035533A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源映射方法及设备
CN110034888A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种无线通信装置及无线通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215807A1 (en) * 2018-01-11 2019-07-11 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
CN110035533A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源映射方法及设备
CN110034888A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种无线通信装置及无线通信方法
CN109995497A (zh) * 2018-02-14 2019-07-09 华为技术有限公司 下行控制信息传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Resource Allocation and TBS", 3GPP DRAFT; R1-1719381, vol. RAN WG1, 18 November 2017 (2017-11-18), Reno, USA, pages 1 - 16, XP051369290 *

Also Published As

Publication number Publication date
CN114270978A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US11095408B2 (en) Generating reference signal(s) using Zadoff-Chu sequence(s)
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2020108275A1 (zh) 一种防护频带指示方法及装置
CN108633059A (zh) 资源配置、确定部分带宽及指示部分带宽的方法及设备
WO2017035762A1 (zh) 资源分配方法及装置
WO2018228416A1 (zh) 一种通信方法、网络设备及终端设备
WO2018082409A1 (zh) 一种功率控制方法和通信设备
WO2018202163A1 (zh) 一种资源指示方法及装置
JP7319363B2 (ja) データ伝送方法及び通信装置
WO2020238992A1 (zh) 一种通信方法及装置
WO2020221321A1 (zh) 通信方法以及通信装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2021160162A1 (zh) 发送物理上行共享信道的方法及装置
WO2021233217A1 (zh) 能力信息上报方法及其装置
WO2019029731A1 (zh) 一种资源配置方法及设备
WO2020029300A1 (zh) 一种tdd系统中的资源分配方法和设备
WO2019029741A1 (zh) 一种无线通信方法及装置
WO2019015445A1 (zh) 一种通信方法及装置
WO2021218920A1 (zh) 通信方法和装置
WO2019129253A1 (zh) 一种通信方法及装置
WO2021129229A1 (zh) 一种通信方法和装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2020097935A1 (zh) 一种通信方法及装置
WO2019223558A1 (zh) 一种通信方法、装置及系统
WO2019191998A1 (zh) 数据传输方法、通信装置、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941804

Country of ref document: EP

Kind code of ref document: A1