WO2020108275A1 - 一种防护频带指示方法及装置 - Google Patents

一种防护频带指示方法及装置 Download PDF

Info

Publication number
WO2020108275A1
WO2020108275A1 PCT/CN2019/116845 CN2019116845W WO2020108275A1 WO 2020108275 A1 WO2020108275 A1 WO 2020108275A1 CN 2019116845 W CN2019116845 W CN 2019116845W WO 2020108275 A1 WO2020108275 A1 WO 2020108275A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
indication
bandwidth
guardband
available bandwidth
Prior art date
Application number
PCT/CN2019/116845
Other languages
English (en)
French (fr)
Inventor
贾琼
张佳胤
吴霁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811451586.8A external-priority patent/CN111263440B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980090962.1A priority Critical patent/CN113678529A/zh
Priority to JP2021531101A priority patent/JP7197700B2/ja
Priority to KR1020217020433A priority patent/KR20210094076A/ko
Priority to CA3121404A priority patent/CA3121404A1/en
Priority to BR112021010349-0A priority patent/BR112021010349A2/pt
Priority to EP19888381.1A priority patent/EP3890419A4/en
Publication of WO2020108275A1 publication Critical patent/WO2020108275A1/zh
Priority to US17/334,418 priority patent/US20210288852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0066Interference mitigation or co-ordination of narrowband interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a guard band indication method, related equipment and system.
  • LBT Listen Before Talk
  • the technical problem to be solved by this application is to reduce channel interference on unlicensed spectrum, such as narrowband interference.
  • a guardband indication method in the unlicensed spectrum which includes: the network device generates one or any combination of the following four types of information in the unlicensed spectrum: an indication of configuration bandwidth information, an indication of available bandwidth information, An indication of unavailable bandwidth information or an indication of guardband guardband information; the network device sends one or any combination of the four types of information generated above; wherein one or any combination of the four types of information is used to determine Say guardband of the result of LBT. Further, it may be included within the available bandwidth in the bandwidth, and the data is sent within the actual resource location range outside the guardband.
  • a method for determining guardband in the unlicensed spectrum includes: the terminal receives one or any combination of the following four types of information in the unlicensed spectrum: indication of configuration bandwidth information, indication of available bandwidth information 2. An indication of unavailable bandwidth information or an indication of guardband guardband information; the terminal determines a guardband based on the result of listening first and then speaking LBT according to one or any combination of the four types of information. Further, it may be included within the available bandwidth in the bandwidth, and data reception is performed within the actual resource location range outside the guardband.
  • one or more of the indication of the configured bandwidth information, the indication of the available bandwidth information, the indication of the unavailable bandwidth information, or the guardband information of the guard band are carried in a system message or RRC or DCI .
  • the standard may specify the size and location of the possible available bandwidth or the unavailable bandwidth based on the result of listening first and then talking about LBT, or, based on the available bandwidth or the size and position of the guard bandwidth guardband A location and predefine resources corresponding to different values of the indication of the configured bandwidth information, the indication of the available bandwidth information, the indication of the unavailable bandwidth information, or the indication of the guard band information.
  • the present application also provides an apparatus, a computer-readable storage medium, and the like that can perform the foregoing methods.
  • the flexibility of uplink resource scheduling can be improved on the basis of meeting the OCB requirements of ESTI. Further, it can also improve resource utilization.
  • FIG. 2 is a schematic structural diagram of a wireless communication system involved in this application.
  • FIG. 3 is a schematic diagram of a hardware architecture of a terminal provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a hardware architecture of a base station provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • 7-12 are respectively schematic diagrams of resources of 80 MHz bandwidth provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an in-band guard provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an in-band guard provided by another embodiment of the present application.
  • 15 is a schematic diagram of an in-band guard provided by another embodiment of the present application.
  • 16 is a schematic diagram of an in-band guard provided by another embodiment of the present application.
  • FIG. 2 shows a wireless communication system 200 involved in this application.
  • the wireless communication system 200 can work in an authorized frequency band or an unlicensed frequency band. It is understandable that the use of unlicensed frequency bands can increase the system capacity of the wireless communication system 200.
  • the wireless communication system 200 includes one or more network devices 201, such as a base station, a NodeB, eNodeB, or WLAN access point, a wireless relay node, a wireless backhaul node, and one or more terminals (Terminal) 203, and core network 215. among them:
  • the network device 201 may be used to communicate with the terminal 203 under the control of a base station controller (not shown).
  • the base station controller may be part of the core network 230, or may be integrated into the base station 201.
  • the network device 201 may be used to transmit control information or user data to the core network 215 through a blackhaul interface (such as an S1 interface) 213.
  • a blackhaul interface such as an S1 interface
  • the network device 201 may perform wireless communication with the terminal 203 through one or more base station antennas. Each base station 201 can provide communication coverage for its corresponding coverage 207.
  • the coverage area 207 corresponding to the access point may be divided into multiple sectors, where one sector corresponds to a part of the coverage area (not shown).
  • the network device 201 and the base station 201 may also communicate with each other directly or indirectly through a blackhaul link 211.
  • the backhaul link 211 may be a wired communication connection or a wireless communication connection.
  • the network device 201 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device 201 may also be a network device in a 5G network or a network device in a future evolution network; it may also be a wearable device or a vehicle-mounted device.
  • the network device 201 may also be a small station, a transmission reference (transmission reference point, TRP), or the like. Of course not applying is not limited to this.
  • the network device 201 may include: a base transceiver station (Base Transceiver Station), a wireless transceiver, a basic service set (Basic Service Set, BSS), and an extended service set (Extended Service Set, ESS ), NodeB, eNodeB, etc.
  • the wireless communication system 200 may include several different types of base stations 201, such as a macro base station, a micro base station, and the like.
  • the base station 201 can apply different wireless technologies, such as cell wireless access technology or WLAN wireless access technology.
  • the terminal 203 may be distributed throughout the wireless communication system 200, and may be stationary or mobile. It can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, and satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control ( wireless terminal in industrial control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid (smart grid), transportation safety (transportation safety) Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • Terminal equipment may sometimes be called user equipment (user equipment (UE), access terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, Wireless communication equipment, UE agent or UE device, etc.
  • the terminal 203 may include: a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and so on.
  • the wireless communication system 200 may be an LTE communication system capable of operating in an unlicensed frequency band, such as LTE-U, or a communication system capable of operating in an unlicensed frequency band such as 5G and future new air interfaces.
  • the wireless communication system 200 may use a licensed auxiliary access (LAA) scheme to handle terminal access on unlicensed frequency bands.
  • LAA licensed auxiliary access
  • the primary cell (Primary) works in authorized frequency bands to transmit key messages and services that require service quality assurance
  • the secondary cell (Secondary) works in unlicensed frequency bands to improve data plane performance.
  • the wireless communication system 200 can support multi-carrier (waveform signals of different frequencies) operation.
  • Multi-carrier transmitters can simultaneously transmit modulated signals on multiple carriers.
  • each communication connection 205 can carry multi-carrier signals modulated with different wireless technologies.
  • Each modulated signal can be sent on a different carrier, and can also carry control information (such as reference signals, control channels, etc.), overhead information (Overhead Information), data, and so on.
  • the wireless communication system 200 may also include a WiFi network.
  • the wireless communication system 200 may adopt a listen before talk (LBT) mechanism.
  • LBT listen before talk
  • some terminals 203 can connect to the WiFi access point 209 through the WiFi communication connection 217 to use unlicensed spectrum resources, and some terminals 203 can also connect to the base station 201 through the mobile communication connection 205 to use unlicensed spectrum resources.
  • any device When using an unlicensed frequency band, any device must first monitor to see if the frequency band is occupied. If the frequency band is not busy, it can occupy and transmit data.
  • FIG. 3 shows a terminal 300 provided by some embodiments of the present application.
  • the terminal 300 may include: an input and output module (including an audio input and output module 318, a key input module 316, a display 320, etc.), a user interface 302, one or more terminal processors 304, a transmitter 306, a receiver 308, coupler 310, antenna 314 and memory 312. These components can be connected by a bus or other means.
  • Figure 3 takes the connection by a bus as an example. among them:
  • the communication interface 301 can be used for the terminal 300 to communicate with other communication devices, such as a base station.
  • the Jizihan may be the base station 400 shown in FIG. 4.
  • the communication interface 301 may include: a Global System for Mobile (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (Wideband Code Multiple Access, WCDMA) (3G) communication interface, and a long-term One or more of the evolution (Long Term Evolution, LTE) (4G) communication interface, etc., may also be a communication interface of 4.5G, 5G or future new air interface.
  • the terminal 300 may also be configured with a wired communication interface 301, such as a local access network (Local Access Network, LAN) interface.
  • a local access network Local Access Network, LAN
  • the antenna 314 may be used to convert electromagnetic energy in the transmission line into electromagnetic waves in free space, or convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
  • the coupler 310 is used to divide the mobile communication signal received by the antenna 314 into multiple channels and distribute it to multiple receivers 308.
  • the transmitter 306 may be used to transmit the signal output by the terminal processor 304, for example, modulating the signal in a licensed frequency band or modulating a signal in an unlicensed frequency band.
  • the transmitter 206 may include an unlicensed spectrum transmitter 3061 and an authorized spectrum transmitter 3063.
  • the unlicensed spectrum transmitter 3061 can support the terminal 300 to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter 3063 can support the terminal 300 to transmit signals on one or more licensed spectrums.
  • the receiver 308 may be used for receiving and processing the mobile communication signal received by the antenna 314. For example, the receiver 308 may demodulate the received signal that has been modulated on the unlicensed frequency band, or may demodulate the received signal that has been modulated on the authorized frequency band.
  • the receiver 308 may include an unlicensed spectrum receiver 3081 and an authorized spectrum receiver 3083.
  • the unlicensed spectrum receiver 3081 can support the terminal 300 to receive signals modulated on the unlicensed spectrum
  • the authorized spectrum receiver 3083 can support the terminal 300 to receive signals modulated on the licensed spectrum.
  • the transmitter 306 and the receiver 308 may be regarded as a wireless modem.
  • the number of the transmitter 306 and the receiver 308 may be one or more.
  • the terminal 300 may further include other communication components, such as a GPS module, a Bluetooth module, a wireless fidelity (Wi-Fi) module, and so on. Not limited to the wireless communication signals described above, the terminal 300 may also support other wireless communication signals, such as satellite signals, short wave signals, and so on. Not limited to wireless communication, the terminal 300 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wireless network interface such as a LAN interface
  • the input/output module may be used to implement interaction between the terminal 300 and the user or the external environment, and may mainly include an audio input/output module 318, a key input module 316, a display 320, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and so on. The input and output modules communicate with the terminal processor 304 through the user interface 302.
  • the memory 312 is coupled to the terminal processor 304 and is used to store various software programs and/or multiple sets of instructions.
  • the memory 312 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 312 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 312 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 312 can also store a user interface program, which can display the content of the application program vividly through a graphical operation interface, and receive user control operations on the application program through input controls such as menus, dialog boxes, and keys. .
  • the memory 312 may be used to store an implementation program of the resource allocation method provided by one or more embodiments of the present application on the terminal 300 side.
  • the implementation of the resource allocation method provided by one or more embodiments of this application please refer to the subsequent embodiments.
  • the terminal processor 304 may be used to read and execute computer-readable instructions. Specifically, the terminal processor 304 may be used to call a program stored in the memory 312, such as an implementation program on the terminal 300 side of the resource allocation method provided by one or more embodiments of the present application, and execute instructions contained in the program.
  • the terminal 300 may be the terminal 203 in the wireless communication system 200 shown in FIG. 2 and may be implemented as a mobile device, a mobile station (mobile station), a mobile unit (mobile unit), a wireless unit, a remote unit, or a user agent , Mobile client, etc.
  • the terminal 300 shown in FIG. 3 is only an implementation manner of the embodiment of the present application. In actual applications, the terminal 300 may further include more or fewer components, which is not limited herein.
  • FIG. 4 shows a base station 400 provided by some embodiments of the present application.
  • the base station 400 may include: a communication interface 403, one or more base station processors 401, a transmitter 407, a receiver 409, a coupler 411, an antenna 413, and a memory 405. These components can be connected by a bus or other means.
  • FIG. 4 takes the connection by a bus as an example. among them:
  • the communication interface 403 may be used for the base station 400 to communicate with other communication devices, such as terminal devices or other base stations.
  • the terminal device may be the terminal 300 shown in FIG. 3.
  • the communication interface 403 may include: a global mobile communication system (GSM) (2G) communication interface, a wideband code division multiple access (WCDMA) (3G) communication interface, and a long-term evolution (LTE) (4G) communication interface, etc.
  • GSM global mobile communication system
  • WCDMA wideband code division multiple access
  • LTE long-term evolution
  • the base station 400 may also be configured with a wired communication interface 403 to support wired communication.
  • the backhaul link between one base station 400 and other base stations 400 may be a wired communication connection.
  • the antenna 413 may be used to convert electromagnetic energy in the transmission line into electromagnetic waves in free space, or convert electromagnetic waves in free space into electromagnetic energy in transmission lines.
  • the coupler 411 can be used to divide the mobile communication signal into multiple channels and distribute it to multiple receivers 409.
  • the transmitter 407 may be used to transmit the signal output by the base station processor 401, for example, modulating the signal in a licensed frequency band or modulating a signal in an unlicensed frequency band.
  • the transmitter 407 may include an unlicensed spectrum transmitter 4071 and an authorized spectrum transmitter 4073.
  • the unlicensed spectrum transmitter 4071 can support the base station 400 to transmit signals on one or more unlicensed spectrums
  • the authorized spectrum transmitter 4073 can support the base station 400 to transmit signals on one or more licensed spectrums.
  • the receiver 409 may be used to receive and process the mobile communication signal received by the antenna 413.
  • the receiver 409 may demodulate the reception signal that has been modulated on the unlicensed frequency band, or may demodulate the reception signal that has been modulated on the authorized frequency band.
  • the receiver 409 may include an unlicensed spectrum receiver 4091 and an authorized spectrum receiver 4093.
  • the unlicensed spectrum receiver 4091 can support the base station 400 to receive signals modulated on the unlicensed spectrum
  • the authorized spectrum receiver 4093 can support the base station 400 to receive signals modulated on the licensed spectrum.
  • the transmitter 407 and the receiver 409 can be regarded as a wireless modem.
  • the number of the transmitter 407 and the receiver 409 may be one or more.
  • the memory 405 is coupled to the base station processor 401 and is used to store various software programs and/or multiple sets of instructions.
  • the memory 405 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 405 may store an operating system (hereinafter referred to as a system), such as embedded operating systems such as uCOS, VxWorks, RTLinux, and so on.
  • the memory 405 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the base station processor 401 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and control handoff of user equipment within the control area.
  • the base station processor 401 may include: an administration or communication module (Administration Module or Communication Module, AM or CM) (center for voice channel exchange and information exchange), and a basic module (Basic Module, BM) (for completion Call processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexer (Transcoder and SubMultiplexer, TCSM) (used to complete multiplexing and demultiplexing and code conversion functions) and many more.
  • an administration or communication module (Administration Module or Communication Module, AM or CM) (center for voice channel exchange and information exchange), and a basic module (Basic Module, BM) (for completion Call processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexer (Transcoder and SubMultiplexer, TCSM) (used to complete multiplexing and demultiplexing and
  • the base station processor 401 may be used to read and execute computer-readable instructions. Specifically, the base station processor 401 may be used to call a program stored in the memory 405, for example, an implementation program on the base station 400 side of the resource allocation method provided by one or more embodiments of the present application, and execute instructions contained in the program.
  • the base station 400 may be the base station 201 in the wireless communication system 200 shown in FIG. 2 and may be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), and NodeB , ENodeB, etc.
  • the base station 400 may be implemented as several different types of base stations, such as macro base stations and micro base stations.
  • the base station 400 may apply different wireless technologies, such as cell wireless access technology, or WLAN wireless access technology.
  • the base station 400 shown in FIG. 4 is only an implementation manner of the embodiment of the present application. In practical applications, the base station 400 may further include more or fewer components, which is not limited herein.
  • the present invention can be applied to the aforementioned 5G NR system.
  • the present invention can also be applied to other communication systems.
  • One entity in the communication system is pre-configured or sends guardband indication information, and the other entity presets the value or receives the indication information and The indication information determines the transmission bandwidth available in the broadband.
  • the base station (Base) and UE1 to UE6 form a communication system.
  • UE1 to UE6 can send uplink data to the base station, and the base station needs to receive the uplink data sent by UE1 to UE6 to UE1 to UE6.
  • UE4 to UE6 can also form a communication system.
  • the BS can send downlink information to UE1, UE2, UE5, etc.;
  • UE5 can also send downlink information to UE4, UE6.
  • a guardband indication method is provided.
  • the base station instructs the guardband configuration in different bandwidth scenarios through radio resource control RRC signaling.
  • RRC signaling For a certain broadband carrier/channel/BWP, according to different results of LBT, corresponding to different available bandwidth scenarios, different guardbands are respectively configured for the different available bandwidth scenarios. It is understandable that available bandwidth and unavailable bandwidth are relative concepts, and guardband configuration can also be configured based on unavailable bandwidth, and the two can be equivalent.
  • the base station indicates the different guardband configuration information to the UE through RRC signaling. According to the guardband configuration information, the UE can learn the bandwidth or resource information that is actually used for transmission in different available bandwidth scenarios.
  • the implementations of the broadband carrier, channel, or guardband indication in the BWP are similar in various embodiments.
  • the BWP is used as an example.
  • the related embodiments are also applicable to the guardband indication in the broadband channel and the guardband indication in the broadband carrier, and do not constitute a limitation.
  • the guardband indication is preset in the system, and the base station may notify the UE of the guardband information through system messages and/or radio resource control signaling.
  • the base station may also indicate bandwidth information configured for the UE (hereinafter referred to as configuration bandwidth information) in the system message. Specifically, such as BWP information.
  • the BWP information includes uplink BWP information and downlink BWP information, and according to the BWP information, the UE can obtain corresponding uplink and downlink configuration bandwidth information.
  • the actual bandwidth available for transmission depends on the result of LBT, so the base station needs to address the uncertainty caused by LBT
  • the corresponding guardband is indicated in all possible available bandwidth situations.
  • the UE can know the corresponding guardband information in all possible available bandwidth scenarios according to the corresponding guardband indication information.
  • the available bandwidth corresponds to the partial bandwidth through which LBT passes, and the unavailable bandwidth corresponds to the partial bandwidth through which LBT fails.
  • the available bandwidth may be less than the partial bandwidth passed by LBT.
  • the available bandwidth may be less than or equal to the configured bandwidth.
  • the sending device needs to notify the receiving device of the available bandwidth.
  • the receiving device According to the indicated configuration bandwidth information, available bandwidth information, and then according to the guardband instruction information, you can know the corresponding guardband resource location corresponding to the current available bandwidth scenario, and finally know which resources need to receive data .
  • the base station needs to indicate guardband information corresponding to all possible available bandwidth scenarios through system messages or RRC signaling.
  • the basic bandwidth of LBT is 20 MHz, that is, LBT is performed on four 20 MHz subbands, according to different results of LBT
  • the available bandwidth of the 80 MHz BWP has the following possible combinations: subband1 or subband2 or subband3 Or subband4 or subband1+2 or subband1+3 or subband1+4 or subband2+3 or subband2+3 or subband2+4 or subband3+4 or subband1+2+3 or subband1+2+4 or subband1+3+4 or subband2+3+4 Or subband1+2+3+4 (as shown in Figure 6, the figure shows that the available bandwidth is subband1+2+4, and the unavailable bandwidth is subband3, the indication for guardband can be based on
  • the base station needs to carry the guardband information corresponding to all the possible combinations described above in the system message/RRC signaling for indication. Understandably, for the transmission of system messages or RRC signaling on the unlicensed frequency band, LBT must also be performed first, and the base station can send the above message only after the successful LBT.
  • the embodiment of the present invention includes one or any combination of the following four types of indications: indication of configuration bandwidth information, indication of available bandwidth information, indication of unavailable bandwidth information, or indication of Guardband information.
  • the base station can indicate the configuration bandwidth information through the system message/RRC.
  • the configuration bandwidth information includes location information and/or subcarrier spacing of the configuration bandwidth.
  • the location information of the configuration bandwidth can directly define the subcarrier interval corresponding to the configuration bandwidth, the starting RB, the ending RB, and the corresponding configuration bandwidth
  • the UE can know the actual frequency domain position of the configured bandwidth according to the indication information, such as the subcarrier interval, the starting RB, and the total number of corresponding RBs.
  • the configuration bandwidth information may further include subband information corresponding to the BWP.
  • the configuration bandwidth indication information further includes the number of subbands divided by the BWP, such as NrofSubband, each subband Corresponding frequency domain position, the frequency domain position information of the subband may be absolute frequency domain position information, or may also be indicated by the starting RB and/or the number of RBs, that is, the UE according to the starting RB corresponding to the subband And the number of RBs included, the frequency domain position corresponding to the subband can be obtained.
  • the indication may also be made by indicating the starting RB and/or the ending RB.
  • the configuration bandwidth information includes multiple configuration bandwidth information, and the multiple configuration bandwidth information may be carried in the same indication information or in multiple indication information. That is, for the same UE, the base station can configure multiple different configuration bandwidth information for it, and the information corresponding to each configuration bandwidth can be implemented in any of the foregoing manners.
  • the base station configures a certain UE with 80MHz downlink BWP and the subcarrier interval is 60KHz.
  • the base station can indicate the 80MHz BWP subcarrier interval by configuring the bandwidth information to be 60KHz, frequency domain
  • the positions are RB#0 to RB#106, with a total of 107 RBs.
  • the base station may indicate the starting RB#0 (first one) and the number of RBs 107; or the base station may indicate that the starting RB is RB#0 (first one) and the ending RB is RB#106 (last one)
  • the UE can know the frequency domain position of the configured 80 MHz BWP.
  • the base station may also configure bandwidth information of multiple subbands in the 80MHz BWP, exemplarily indicating that the number of subbands included is 4, further indicating that the bandwidth information corresponding to subband1 is the starting RB#0, and
  • the number of RBs 26 indicates that the bandwidth information corresponding to subband 2 is the starting RB RB#26
  • the number of RBs 27 indicates the bandwidth information corresponding to subband 3 is the starting RB is RB#53
  • the number of RB 27 indicates the corresponding subband 3
  • the bandwidth information is that the starting RB is RB#80, and the number of RBs is 27; or optionally, indicating that the bandwidth information corresponding to subband1 is the starting RB is RB#0, and ending RB is RB#25, indicating the bandwidth corresponding to subband2
  • the information is that the starting RB is RB#26, the ending RB is RB#52, indicating that the bandwidth information corresponding to subband3 is the starting RB is RB#53,
  • the number of RBs and the division of subbands here are only used to describe the scheme, and do not constitute a limitation. Other schemes can also be used.
  • the number of RBs corresponding to 80MHz is 108, and each subband contains 27 RBs.
  • the corresponding RBs can be arranged in ascending or descending order.
  • the base station can also configure multiple BWPs for the UE at the same time.
  • the base station can include multiple BWP information in one configuration bandwidth information, or the base station sends multiple configuration bandwidth information, each configuration bandwidth information contains a BWP Information. For example, as shown in FIG. 8, while the base station configures 80 MHz BWP for the UE, it also configures four 20 MHz BWP.
  • the starting RB is RB#0 and the number of RBs 107; or that the starting RB is RB#0 and that the ending RB is RB#106; for 20MHz BWP1, it can indicate the starting RB Is RB#0 and the number of RBs 26; or indicates that the starting RB is RB#0 and the ending RB is RB#25; for 20MHz BWP2, it can indicate that the starting RB is RB#27 and the number of RBs 26; or Indicates that the starting RB is RB#27 and the ending RB is RB#52; for 20MHz BWP3, it can indicate that the starting RB is RB#54 and the number of RBs 26; or that the starting RB is RB#54 and ending RB is RB#79; for 20MHz BWP4, it can indicate that the starting RB is RB#81 and the number of RBs 26; or that the starting RB is RB#81 and the ending RB is
  • the BWP bandwidth size does not constitute a limit, but can also be other values, such as 40MHz, 60MHz, 100MHz, etc.; for 80MHz BWP corresponding RB number and each narrowband 20MHz BWP
  • the corresponding number of RBs is only used for scheme description, and does not constitute a limitation, and may also be other values, for example, each 20MHz BWP corresponds to 24 RBs, as shown in FIG. 8. For the number of RBs corresponding to each BWP, other corresponding solutions may also be used.
  • the indication of the configuration bandwidth information may be implicit.
  • the configuration bandwidth information may default to the initial access bandwidth, such as initial active BWP.
  • the UE After receiving the indication of the configured bandwidth information, the UE can obtain the range of the actual resource location corresponding to the downlink transmission according to the result of the LBT, and the indication of the available bandwidth or the indication of the guardband information, and then the availability in the bandwidth Within the bandwidth, the data reception is completed outside the guardband. Specifically, the data reception is completed on the allocated resources, which is not involved in the embodiment of the present invention and will not be described in detail.
  • the scheme can be analogized during the uplink transmission, which will not be elaborated here.
  • the base station When there is downlink data transmission, the base station first performs LBT, and then performs data transmission on the available bandwidth of the successful LBT.
  • the base station can indicate the information of the available bandwidth to facilitate the UE to receive the data correctly.
  • the downlink control information DCI directly indicates the available bandwidth information.
  • the available bandwidths are subband1, subband2, and subband4, and the base station indicates the information of 1, 2, and 4 in the DCI.
  • a bitmap bitmap is used to indicate the available bandwidth information. For example, for four subbands, a 4-bit bitmap is used; each bit corresponds to a subband, and the bit value is When "1", it indicates that the subband corresponding to the bit is available. For example, when the available bandwidth is subband1, subband2, and subband4, "1101" can be used for indication.
  • the indication of available bandwidth may be combined with RRC signaling.
  • the base station indexes all possible available bandwidth combinations in advance through RRC signaling.
  • the index of available bandwidth is identified by AvailableBW_ID, then for all available bandwidth combinations, one or more indications included in the following configuration information may be used:
  • AvailableBWConfig:: Sequence(size(1..MaxNrofAvailableBW)ofAvailableBW)
  • AvailableBW_ID indicates the index ID of available bandwidth
  • Subcarrierspacing indicates the subcarrier spacing corresponding to the available bandwidth corresponding to the ID
  • BandwidthInfo means the available bandwidth information corresponding to the ID ⁇
  • MaxNrofAvailableBW represents the maximum number of all available bandwidth combinations supported.
  • the base station can also directly indicate detailed resource information of the available bandwidth corresponding to the current available bandwidth ID in BandwidthInfo, such as one of the starting resource position, the ending resource position, the number of resources, the absolute position of the resources, the resource index, etc.
  • the resource may be an RB/subcarrier/subcarrier set, etc.
  • the UE does not learn the information about the subband through the configuration bandwidth information, it can still accurately obtain resource information corresponding to each available bandwidth.
  • the above format is only used to describe the scheme, and does not constitute a limitation, and all list-type indication methods are included in the scope of the present invention.
  • the indication is based on the subband method.
  • a similar solution may also indicate based on the narrowband BWP. For example, taking the situation described in FIG. 9 as an example, corresponding to available bandwidths of 20 MHz, BWP1, 20 MHz, BWP2, and 20 MHz BWP4, the base station indicates the information of 1, 2, and 4 in DCI;
  • the bitmap method indicates the available bandwidth information. For example, for four 20MHz BWP, a 4-bit bitmap is used, and each bit corresponds to a 20MHz BWP.
  • bit value When the bit value is "1", it means that the bit is Corresponding BWP is available, for example, when the available bandwidth is 20MHz, BWP1 and 20MHz, BWP2 and 20MHz, BWP4, "1101" can be used for indication; furthermore, the indication of available bandwidth needs to be combined with RRC signaling, for example, the base station Through RRC signaling, all possible available bandwidth combinations are numbered and indexed, the specific scheme is the same as before.
  • resources corresponding to multiple adjacent narrowband BWP may be discontinuous.
  • the RB corresponding to BWP1 is RB#0-RB#25
  • the RB corresponding to BWP2 is RB#27-RB#52, separated by 1 RB in the middle.
  • the number of separated RBs may also be other values.
  • the available bandwidth is corresponding to the indicated multiple available BWP
  • the union of resources for example, when the base station indicates that the available bandwidth is BWP1, BWP2, BWP4, the resources corresponding to the available bandwidth are RB#0-RB#25, RB#27-RB#52, RB#81-RB#106.
  • the unavailable BWP information can be obtained, then the available bandwidth corresponds to the total resources remaining after removing the portion of resources corresponding to the unavailable BWP, for example, when the base station indicates the available bandwidth
  • the resources corresponding to the available bandwidth are all resources except the resources RB#54-RB#79 corresponding to the unavailable BWP3.
  • the base station can indicate the index ID corresponding to the actual transmission bandwidth in the DCI when indicating the available bandwidth, and the UE can know the corresponding available bandwidth according to the index ID and the information indicated in the RRC signaling information.
  • the UE After the UE obtains the available bandwidth information through the aforementioned method (DCI direct indication, or RRC combined with DCI indication), it can combine the guardband information indication or the guardband determination principle stipulated in the standard, and the UE can obtain the corresponding guardband information in the current available bandwidth scenario. Combining the available bandwidth information and the guardband information, the UE can know the range of the actual resource location corresponding to the downlink transmission, and then complete the data reception outside the guardband within the available bandwidth in the bandwidth. (Specifically, the data reception is completed on the allocated resources, which is not involved in the embodiments of the present invention and will not be described in detail)
  • the base station directly displays the information indicating the guardband in the system message or RRC signaling.
  • the displayed guardband information may be implemented by indicating the size of the guardband, for example, X RBs or subcarriers or subcarrier sets.
  • Another example is to directly indicate that the bandwidth occupied by the guardband is XHz or XMHz, etc., and another example is to indicate that the guardband is a certain bandwidth or a percentage of a certain frequency domain unit size, and so on.
  • the UE can determine the guardband resource location based on the configured bandwidth information and available bandwidth information, combined with the guardband size. That is, the UE may determine the resource position of the guardband at one or more boundaries of the available bandwidth according to the foregoing information received.
  • the base station may directly indicate that the size of the guardband is 2 RBs.
  • the UE can know that each of the two RBs located at the boundary of the two available bandwidths (two RB#24 and RB#25 at the first boundary, and two RB#53 and RB#53 at the second boundary) RB#54) is the guardband. Understandably, when the guardband information only contains the size of the guardband, the criteria for the guardband to further confirm the location on the basis of the available bandwidth should be the default or the standard pre-specified, such as specifying that the guardband corresponds to one of the available bandwidth.
  • X RBs or sub-carriers or sub-carrier sets that are continuous along the direction of decreasing bandwidth, or ascending and/or descending directions are understandable, and may also be other rules prescribed in advance.
  • the implementation mode is not limited.
  • the explicit guardband information may be implemented by directly indicating the resource location corresponding to the guardband.
  • the base station needs to indicate its corresponding guardband resource location for all possible available bandwidths.
  • the resource location information may be obtained by starting and ending resource indexing, and/or starting resource and resource number, and/or directly indicating resource indexing, the resource may be a resource block RB/subcarrier/subcarrier Set etc.
  • the index of available bandwidth is identified by AvailableBW_ID, then for all guardbands corresponding to available bandwidth, one or more indications contained in the following configuration information may be used:
  • GuardbandConfig:: Sequence(size(1..MaxNrofAvailableBW) of Guardband)
  • AvailableBW_ID indicates the index ID of available bandwidth
  • Subcarrierspacing indicates the subcarrier spacing corresponding to the available bandwidth corresponding to the ID
  • GuardbandInfo means the guardband information corresponding to the available bandwidth corresponding to the ID ⁇
  • MaxNrofAvailableBW represents the maximum number of all available bandwidth combinations supported.
  • the corresponding GuardbandInfo is RB#24 and RB#25, and RB#53 and RB#54.
  • guardband information may also be included in the available bandwidth configuration information, such as adding a list of information to the available bandwidth configuration information, such as through one or more instructions included in the following configuration information
  • AvailableBWConfig:: Sequence(size(1..MaxNrofAvailableBW)ofAvailableBW)
  • AvailableBW_ID indicates the index ID of available bandwidth
  • BandwidthInfo indicates the available bandwidth information corresponding to the ID
  • Subcarrierspacing indicates the subcarrier spacing corresponding to the available bandwidth corresponding to the ID
  • GuardbandInfo means the guardband information corresponding to the available bandwidth corresponding to the ID ⁇
  • MaxNrofAvailableBW represents the maximum number of all available bandwidth combinations supported
  • the base station indirectly indicates guardband information corresponding to available bandwidth through RRC signaling, and optionally, indicates resource information that can be actually used for transmission in various available bandwidth scenarios. It can be understood that the actual resources available for transmission should be equal to the total resources included in the available bandwidth excluding the resources used for guardband; for example, one or more indications included in the following configuration information:
  • AvailableBWConfig:: Sequence(size(1..MaxNrofAvailableBW)ofAvailableBW)
  • AvailableBW_ID indicates the index ID of available bandwidth
  • Subcarrierspacing indicates the subcarrier spacing corresponding to the available bandwidth corresponding to the ID
  • BandwidthInfo means available bandwidth information
  • ResourceInfo represents the actual available resources corresponding to the available bandwidth corresponding to the ID (implicitly indicating guardband information) ⁇
  • MaxNrofAvailableBW represents the maximum number of all available bandwidth combinations supported
  • ResourceInfo implies guardband information.
  • indirectly indicating the guardband information corresponding to the available bandwidth can also be achieved by indicating resource information that is not available for transmission under various available bandwidth situations. It can be understood that the resources that are not available for transmission should be equal to the union of the total number of resources contained in the unavailable bandwidth and the guardband resources.
  • AvailableBWConfig:: Sequence(size(1..MaxNrofAvailableBW)ofAvailableBW)
  • AvailableBW_ID indicates the index ID of available bandwidth
  • Subcarrierspacing indicates the subcarrier spacing corresponding to the available bandwidth corresponding to the ID
  • UnavailableBandwidthInfo means unavailable bandwidth information
  • UnavailableResourceInfo indicates resources that are not available under the available bandwidth corresponding to the ID (impliedly indicates guardband information) ⁇
  • MaxNrofAvailableBW represents the maximum number of all available bandwidth combinations supported
  • the number of RBs corresponding to different subcarrier spacing scenarios can be other values, and the positional relationship between the RB corresponding to each subband and the RB corresponding to the broadband BWP can be other ways, the size of the guardband According to different requirements for signal energy leakage, other values may also be used, and for devices with different capabilities, the size of the guardband will also be different.
  • the values used in any of the above embodiments are for illustration only, and No limitation.
  • the base station may directly configure the configuration by configuring location information of the bandwidth through system messages or RRC signaling One or more of the subcarrier interval corresponding to the bandwidth, the starting RB, the ending RB, and the number of RBs corresponding to the configured bandwidth, etc.
  • the UE according to the indication information, such as the subcarrier interval, the starting RB and the corresponding The total number of RBs, you can know the actual frequency domain position of the configured bandwidth. Further, multiple subbands divided by BWP may also be indicated, by indicating the number of subbands, one or more combinations of starting RB, ending RB, RB number, etc. corresponding to each subband, according to the In the indication information, the UE can accurately know the frequency domain position corresponding to the BWP, the corresponding resource block position, the frequency domain position of each subband, and the corresponding resource block position. As shown in Figure 11, the 30KHz subcarrier interval can be notified by system message/RRC signaling.
  • the RB corresponding to the 80MHz bandwidth BWP is RB#0-RB#216, and it can further indicate that subband1 corresponds to RB#0-RB#54.
  • RB subband2 corresponds to RB#56-RB#108, a total of 54 RBs
  • subband3 corresponds to RB#109-RB#162
  • subband4 corresponds to RB#163-RB#216, a total of 54 RBs.
  • the division of the subband can also be in other ways, without limitation. For the detailed indication method, please refer to the previous embodiment, which will not be repeated here.
  • one or more BWPs can be configured on this basis.
  • the RBs corresponding to any two adjacent BWPs may be continuous or discontinuous, as shown in FIG. 12,
  • configure one or more BWP such as configuring one or more 20MHz BWP and/or one or more 40MHz BWP, of which four 20MHz BWP respectively correspond to RB is, RB#0 -RB#50, RB#55-RB#105, RB#111-RB#161, RB#166-RB#216, each 20MHz BWP corresponds to 51 RBs;
  • two 40MHz BWPs correspond to 106 RBs, respectively It is RB#0-RB#105, RB#111-RB#216;
  • the number of RBs corresponding to each BWP can also be other values, and the specific distribution can also be made by other schemes, which is not done in the embodiment of the present invention limited.
  • the similar scheme to that in the 60KHz sub-load scenario can be adopted, which will not be repeated here.
  • the indication for the 15KHz subcarrier is similar.
  • the resource indication may use RB as a basic unit, and optionally, may also use RB group (RBG), subcarriers, subcarrier set, etc. as basic units.
  • RBG RB group
  • subcarriers subcarrier set, etc.
  • the guardband information is predefined in the standard protocol, that is, it does not need to be indicated by signaling. However, it is necessary to clearly specify guardband information, such as size and position, in standard protocols such as 38.101 or 38.104.
  • the corresponding guardband information may be specified based on one or any combination of different configuration bandwidths, different subcarrier intervals, different device capabilities, or different available bandwidth scenarios. Exemplarily, as shown in Table 4.
  • unified guardband information can also be specified, that is, the same guardband principle is adopted in all scenarios.
  • the continuous multiple sub-bands can be regarded as a larger sub-band, or optionally, as independent multiple sub-bands.
  • different X values can be defined.
  • the in-band guardband at each subband is equal to 5% of the bandwidth of the subband, while for device capabilities
  • the in-band guardband is equal to 10% of the bandwidth of the subband to ensure maximum resource utilization while reducing interference.
  • the base station only needs to notify the UE of the configured bandwidth information and the available bandwidth information, and the UE can learn the resource location corresponding to the guardband according to the provisions in the standard protocol, and then can know which resources need to receive data.
  • the calculation needs to be based on the subcarrier interval; for example, continue to use FIG. 6 as an example to explain, for an 80MHz BWP, after LBT, the available bandwidth corresponds to subband 1 ,2,4.
  • subbands 1 and 2 can be regarded as a continuous 40MHz subband.
  • the guardband at the boundary of the corresponding subband needs to satisfy 10% of the subband, that is, 4MHz.
  • guardband corresponds to The resource of 4/0.72 should be rounded down or up, that is, 5 or 6 RBs, and then according to the subband division instructions, the actual RB corresponding to the guardband can be determined.
  • subbands 1 and 2 can also be regarded as two independent subbands. Since subbands 1 and 2 are continuous, it is optional that no guardband is required between subbands 1 and 2. For the boundary between subbands 2 and 3, guardband needs to satisfy 10% of subband 2, which is 2MHz. At this time, for 60KHz subcarrier spacing, the resources corresponding to guardband should be rounded down or up to 2/0.72, that is, For 2 or 3 RBs, the RB corresponding to the guardband can be determined according to the subband division instructions. For other bandwidths and other subcarrier spacing scenarios, the scheme is similar and will not be repeated here.
  • the sending end may not send the guardband indication, and the receiving end (such as the terminal) may be based on the received available
  • the bandwidth indication and the specified guardband information (X above) determine (this communication) the specific location and size of the guardband or determine the bandwidth to be used.
  • the above resource block distribution map includes the size and position of one or more resource blocks included in each subband subband or BWP under a certain bandwidth. For details, reference may be made to any one of FIG. 7-12 or a modified resource block distribution diagram.
  • resource block distribution when the bandwidth is 20 MHz, 40 MHz, 160 MHz, or 320 MHz may also be specified.
  • the distribution of resource blocks with a bandwidth of 40 MHz may be the first half or the second half of the aforementioned 80 MHz bandwidth.
  • the base station can also dynamically indicate guardband information through DCI information.
  • a direct indication method may be used to add a new field to the DCI or design a new DCI for guardband indication.
  • the resource position corresponding to the guardband may be directly indicated in the DCI, such as indicating one or more types of information such as a start resource index, an end resource index, a resource number, and all resource indexes corresponding to the guardband.
  • an implicit indication method can also be used in DCI. For example, by indicating the resource information actually used for transmission in the DCI, it can be understood that the actual resources available for transmission should be equal to the remaining resources after the available bandwidth excluding the resources corresponding to the guardband.
  • the implicit indication method can also indicate resource information that is not actually used for transmission. Understandably, the actual untransmitted resource information should be equal to the union of resources corresponding to the actual unavailable bandwidth and guardband resources. Specifically, it may indicate one or more types of information corresponding to the starting resource index, the ending resource index, the number of resources, and all resource indexes corresponding to the resources actually used for transmission.
  • the base station configures one or more LBT bandwidths for the UE, and configures one or more in-band guard bands.
  • the base station carries an indication indicating the location information of the one or more in-band guard bands in the system message or RRC signaling. In other words, the base station can also indicate the resource location of the one or more in-band guard bands information.
  • the LBT bandwidth can be understood as subband, or can also be expressed as sub-band.
  • the base station can perform LBT on the one or more LBT bandwidths, determine whether to send or receive data on the one or more in-band guard bands according to the LBT result, and display the indication (such as dynamic signaling) or implicit indication (such as (Preset rule)
  • the UE receives downlink data or sends uplink data on the one or more in-band guard bands.
  • the results of LBT can include LBT success (also known as LBT pass) and LBT failure.
  • the LBT bandwidth may also be a RB range, that is, the base station configures one or more RBs for the UE, or the LBT bandwidth may be RB set, that is, the base station configures one or more Multiple RB sets.
  • the resource location information of the in-band guard band can be expressed by the starting resource index and the ending resource index, and/or the starting resource and the number of resources, and/or directly indicating the resource index.
  • the resource may be a resource block RB, a subcarrier or a set of subcarriers, and so on.
  • the base station may indicate the starting RB index and end RB index of the in-band guard band to the UE, or the base station may indicate the starting RB index and the number of occupied RBs of the in-band guard band to the UE.
  • the base station configures a carrier or BWP for the UE, in which 4 LBT bandwidths are divided.
  • LBT bandwidth#0 ⁇ #3 is used.
  • An in-band guard band is configured between two adjacent LBT bandwidths, and three in-band guard bands are configured between the four LBT bandwidths.
  • "in-band guard band #1 ⁇ #3” is used.
  • the in-band guard can be configured with the number of RBs, the number of subcarriers, or the absolute bandwidth. Taking the sub-carrier spacing of 80 MHz and 60 kHz of BWP as an example, there are a total of 107 RBs, which are respectively numbered #0 ⁇ #106.
  • guard band#1 is RB#24 ⁇ RB#27
  • guard band#2 is RB#51 ⁇ #54
  • guard band#3 is RB# 78 ⁇ #81, this application does not limit this.
  • the base station configures an in-band guard band for some or all of the UE's serving cells (per cells). For example, configure the above in-band guard band indicator for a serving cell information.
  • the signaling for configuring the in-band guard for a serving cell can be carried in the serving cell configuration (ServingCellConfig) or the serving cell common configuration (ServingCellConfigCommon), that is, the above-in-band guard resource indication information is configured in ServingCellConfig or ServingCellConfigCommon .
  • a group of parameters or a parameter may be added to servingcellconfig or ServingCellConfigCommon to indicate the above resource location information, or a sequence method is used.
  • the upstream and downstream in-band guard bands can be the same or different.
  • the base station configures an in-band guard band for part or all of the BWP (per BWP) of the UE.
  • the above-in-band guard band indication information is configured for one BWP.
  • the signaling that configures in-band guard can be carried in Information Cell (IE) BWP, BWP Downlink Common (BWP-DownlinkCommon), BWP Downlink Common (BWP-DownlinkDedicated), BWP Uplink Common (BWP- UplinkCommon) or BWP-Downlink Dedicated.
  • IE Information Cell
  • BWP-DownlinkCommon BWP Downlink Common
  • BWP-DownlinkDedicated BWP Uplink Common
  • BWP- UplinkCommon BWP- Uplink Common
  • the upstream and downstream in-band guard bands may be the same or different.
  • the base station performs LBT on each LBT bandwidth before sending the downlink signal.
  • the base station successfully listens to LBT bandwidth#1 ⁇ #3 and can send a downlink signal.
  • the base station failed to listen to LBT bandwidth#0 and could not send a downlink signal.
  • the base station can send downlink data on in-band guard#2 and #3, but cannot send downlink signals on in-band guard#1.
  • the uplink if the UE is scheduled to send PUSCH on LBT bandwidths #1 ⁇ #3, the UE can send uplink data on in-band guard#2 and guard#3. However, upstream data cannot be sent on in-band guard#1.
  • the subbands where LBT fails or is not scheduled may be at the edge of the carrier or BWP (see FIG. 13), or in the middle of the carrier or BWP (see FIG. 14).
  • the base station can configure the rate matching mode (RMP) for the corresponding dynamically-schedulable in-band guard band through PDSCH-Config in RRC signaling, which can indicate the rate matching corresponding to the in-band guard band Mode, for example, RMP is used to configure the corresponding in-band RB on the guard band does not map PDSCH.
  • the dynamically-schedulable in-band guard band may be the carrier or the entire in-band guard band configured in the BWP, or it may be a carrier or part of the in-band guard band configured in the BWP.
  • rate matching mode #1 (RMP#1) is configured for in-band guard#1
  • rate matching mode #2 (RMP#2) is configured for in-band guard#band#2.
  • a rate matching pattern group may also be configured for the rate matching mode of the in-band guard band.
  • RMPG rate matching pattern group
  • RMP#1 corresponding to in-band guard#1 is added to RMPG#1
  • RMP#2 corresponding to in-band guard#band#2 is added to RMPG#2.
  • the base station indicates whether to map the PDSCH to the in-band guard band through RMI in downlink control information (DCI).
  • DCI downlink control information
  • RMI is used to indicate whether the base station uses RMPG.
  • the RB on the guard band corresponding to the RMP in the RMPG does not map the PDSCH; when the RMPG is not used, the base station corresponds to the RMP in the RMPG
  • the RB on the guard band maps PDSCH.
  • the UE determines whether to receive the PDSCH according to the RMI.
  • the RMI may be 2 bits in DCI format 1-1.
  • the most significant bit (MSB) in RMI is used to indicate whether the base station uses RMPG#1, and the least significant bit (LSB) in RMI is used to indicate whether the base station uses RMPG#2.
  • MSB most significant bit
  • LSB least significant bit
  • a bit value of "0" indicates that the corresponding in-band guard band resource can be mapped to PDSCH
  • a bit value of "1" indicates that the corresponding in-band guard band resource does not map the PDSCH
  • RMI "00”
  • indicating RMPG#1 PDSCH can be mapped to the in-band guard resources corresponding to the collection of RMPG#2, that is, both in-band guard band#1 and in-band guard band#2 can be mapped to PDSCH
  • RMI indicates that RMPG#1 corresponds
  • the in-band guard resources of the band do not map PDSCH
  • the in-band guard resources corresponding to RMPG#2 can map PDSCH, that is, the in-band guard band#1 does not map PDSCH
  • the in-band guard band#2 can map PDSCH
  • RMI 01 ", indicating that the in-band guard resources corresponding to RMPG#1 can map PDSCH
  • the in-band guard resources corresponding to RMPG#2 do not
  • the UE determines whether the base station has mapped the PDSCH in the in-band guard band by reading the RMI in the DCI of the PDSCH.
  • the PDSCH scheduled by DCI occupies 2 LBT bandwidths (LBT bandwidth #1 and #2) and 2 in-band guard bands (in-band guard bands #1 and #2), and the UE learns that the base station is in the band through RMI PDSCH is mapped on guard#2 (box A shown in the figure), and PDSCH is not mapped on guardband#1 (box B shown in the figure), so rate matching is required.
  • the number of RMPGs may be other values, and the RMP included in the RMPG may be other values.
  • the base station can increase the number of RMPGs configured in high-layer signaling, that is, increase the number of RMI bits carried in the DCI, and each bit corresponds to one RMPG. Therefore, in the prior art, the problem that the rate matching indication method indicates the limited number of in-band guard bands is solved, and the communication efficiency is improved.
  • the DCI may carry an in-band guard (intra-carrier guard band indicator (GBI)) to indicate whether the in-band guard band maps the PDSCH.
  • GBI is carried in DCI format 1-1.
  • the base station can configure whether to carry GBI in DCI format 1-1.
  • GBI occupies X bits in DCI, which respectively correspond to in-band gard bands, where each bit corresponds to a high-level configured in-band guard band.
  • bit it means that the frequency domain resource corresponding to the in-band guard band does not map PDSCH, if bit is 1, it means that the frequency domain resource corresponding to the in-band guard band maps PDSCH; or if bit is 1, it means that The frequency domain resource corresponding to the in-band guard band maps to PDSCH. If bit is 0, it indicates that the frequency domain resource corresponding to the in-band guard band maps to PDSCH.
  • the base station is configured with three in-band guard bands.
  • a “1” indicates that the corresponding in-band guard band cannot map PDSCH
  • the base station and the UE may agree on default rules through a protocol.
  • the UE is configured to receive a GC-PDCCH carrying an indication of available LBT bandwidth
  • the UE can determine whether gNB has mapped the PDSCH on the in-band guard band according to the available LBT bandwidth. For example, if the LBT bandwidths on both sides of the in-band guard band are available, the base station maps the PDSCH on the in-band guard band; otherwise, the base station does not map the PDSCH on the in-band guard band.
  • the UE detects that the available LBT bandwidth indicated by the base station is LBT bandwidth#1 and LBT bandwidth#2.
  • the base station When the UE receives the PDSCH scheduled by DCI and occupies LBT bandwidth#1 and #2, and LBT bandwidth#1 and #2 are available bandwidth, it is determined that PDSCH is mapped on the in-band guard#band#2 in the middle of LBT bandwidth#1 and #2 ; In-band guard#1, because LBT bandwidth#0 on one side is unavailable bandwidth, the base station does not map PDSCH on guard#1.
  • the base station sends a GC-PDCCH at the beginning of a downlink burst, where the available bandwidth indication carried is all "0" or all "1", to indicate the currently transmitted available bandwidth The indication is invalid.
  • the UE receives the bandwidth indication value, it can be considered that the PDSCH is not mapped on the in-band guard band.
  • the default is that all the configured in-band guard bands are unavailable.
  • the terminal detects the PDSCH scheduled using the fallback DCI, it can also be considered
  • the base station does not map the PDSCH on the in-band guard band, and its simplified signaling design can reduce system overhead.
  • the base station configures RMI or GBI in the DCI scheduling the PUSCH to indicate whether the UE maps the PUSCH on the in-band guard overlapping the allocated frequency domain resources.
  • the UE can send only when the LBTs on all the LBT bandwidths overlapping the scheduled PUSCH are successful, then DCI (DCI format 0-1) carries 1 bit to indicate whether the UE can map The PUSCH is mapped on the in-band guard PUSCH, for example, the 1 bit may be RMI or GBI.
  • the base station may configure whether to carry the 1 bit in (DCI format 0-1), for example, according to the capability of the UE. Further, the UE can determine the specific bands in which the PUSCH can be guard-band mapped in the frequency domain scheduling information carried by the base station in the uplink scheduling DCI. Exemplarily, referring to FIG. 16, DCI schedules the UE to send PUSCH on LBT bandwidth #1, #2 and #3 and in-band guard bands #2 and #3 (dashed boxes A and C), on guard #band #1 PUSCH is not sent (block B).
  • DCI schedules the UE to send PUSCH on LBT bandwidth #1, #2 and #3 and in-band guard bands #2 and #3 (dashed boxes A and C), on guard #band #1 PUSCH is not sent (block B).
  • the UE maps PUSCH on Guard#2 and guard#3. Since the LBT result of LBT bandwidth#0 is unknown, the UE cannot map PUSCH on guardband#1.
  • the UE can determine whether to map PUSCH on guard band#2 and guard band#3 according to the dynamic indication of the base station.
  • the base station may use the back-off DCI (DCI format 0-0) to schedule the PUSCH, and the UE may not map the PUSCH in the guard band overlapping the uplink frequency domain scheduling.
  • information such as configuration bandwidth, available bandwidth, or guardband is carried by means of RRC or standard presetting or DCI indication, etc., so as to indicate the in-band guardband information in the broadband scenario to the UE.
  • the terminal or UE can determine the guardband based on the indications of the configured bandwidth, available bandwidth, and or guardband. In this way, interference caused by signal leakage can be avoided; decoding probability can also be improved and system performance can be improved.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种非授权频谱中防护频带guardband的指示方法,其特征在于,包括:网络设备生成非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;所述网络设备发送上述生成的四种信息之一或者任意组合;其中,所述四种信息之一或者任意组合用于确定基于先听后说LBT的结果的guardband。

Description

一种防护频带指示方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种防护频带指示方法、相关设备及系统。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。对于非授权频段而言,支持大于20MHz的宽带传输。此外在非授权频谱上部署的通信系统通常采用竞争的方式来使用或者共享无线资源。一般地,站点在发送信号之前首先会监听非授权频谱是否空闲,比如通过非授权频谱上的接收功率的大小来判断其忙闲状态,如果接收功率小于一定门限,则认为非授权频谱处于空闲状态,可以在所述非授权频谱上发送信号,否则不发送信号。这种先监听后发送的机制被称作先监听后发送(Listen Before Talk,简称LBT)。由于LBT的结果的不确定性,对于某个宽带载波而言,可能在部分带宽上存在窄带干扰,即只有部分带宽处于空闲状态,因而设备只能在空闲的部分带宽上(图1中灰色的子带上)进行传输。如图1,空白的子带处有其他设备的传输形成窄带干扰,设备与宽带内的窄带干扰设备之间存在潜在的信号泄露,互相干扰的风险。
发明内容
本申请所要解决的技术问题在于减少非授权频谱上的信道干扰,例如窄带干扰。
一方面,提供一种非授权频谱中防护频带guardband的指示方法,包括:网络设备生成非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;所述网络设备发送上述生成的四种信息之一或者任意组合;其中,所述四种信息之一或者任意组合用于确定基于先听后说LBT的结果的guardband。进一步的,还可以包括在所述带宽中的可用带宽以内,在所述guardband以外的实际资源位置范围内进行数据发送。
相应的另一方面,一种确定非授权频谱中防护频带guardband的方法,包括:终端接收非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;所述终端根据所述四种信息之一或者任意组合,确定基于先听后说LBT的结果的guardband。进一步的,还可以包括在所述带宽中的可用带宽以内,在所述guardband以外的实际资源位置范围内进行数据接收。
可选的,所述配置带宽信息的指示、所述可用带宽信息的指示、所述不可用带宽信息的指示或所述防护频带guardband信息中的一个或者多个承载于系统消息或者 RRC或者DCI中。
另外,标准可以规定根据先听后说LBT的结果的可能的所述可用带宽或者所述不可用带宽的大小和位置,或,基于所述可用带宽或者所述不可用带宽防护频带guardband的大小和位置,并预定义所述配置带宽信息的指示、所述可用带宽信息的指示、所述不可用带宽信息的指示或所述防护频带guardband信息的指示的不同的值所对应的资源。通过上述定义,可以一定程度的减少相关的指示或者指示的复杂度,从而节省通信资源的开销。
在其他方面,本申请还提供可以执行前述各个方法的装置,计算机可读存储介质等等。
实施本申请实施例,针对非授权频段的使用,可实现在满足ESTI的OCB要求的基础上,提高上行资源调度的灵活性。进一步的,还可以提高资源利用率。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请涉及的一种现有资源分配方式的示意图;
图2是本申请涉及的一种无线通信系统的架构示意图;
图3是本申请的一个实施例提供的终端的硬件架构示意图;
图4是本申请的一个实施例提供的基站的硬件架构示意图;
图5是本申请的一个实施例提供的无线通信系统的架构示意图;
图6是本申请涉及的一种guardband位置的简单示意图;
图7-12分别是本申请的一个实施例提供的80MHz带宽的资源示意图;
图13是本申请的一个实施例提供的带内guard band的示意图;
图14是本申请的另一个实施例提供的带内guard band的示意图;
图15是本申请的又一个实施例提供的带内guard band的示意图;
图16是本申请的又一个实施例提供的带内guard band的示意图;。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为了方便后续描述,本文缩略语和关键术语可以参考下表:
Figure PCTCN2019116845-appb-000001
Figure PCTCN2019116845-appb-000002
Figure PCTCN2019116845-appb-000003
为了便于了解本申请实施,首先介绍本申请实施例涉及的无线通信系统。
参考图2,图2示出了本申请涉及的无线通信系统200。无线通信系统200可以工作在授权频段,也可以工作在非授权频段。可以理解的,非授权频段的使用可以提高无线通信系统200的系统容量。如图2所示,无线通信系统200包括:一个或多个网络设备201,例如基站,NodeB、eNodeB或者WLAN接入点、无线中继节点、无线回传节点,一个或多个终端(Terminal)203,以及核心网215。其中:
网络设备201可用于在基站控制器(未示出)的控制下与终端203通信。在一些实施例中,所述基站控制器可以是核心网230的一部分,也可以集成到基站201中。
网络设备201可用于通过回程(blackhaul)接口(如S1接口)213向核心网215传输控制信息(control information)或者用户数据(user data)。
网络设备201可以通过一个或多个基站天线来和终端203进行无线通信。各个基站201均可以为各自对应的覆盖范围207提供通信覆盖。接入点对应的覆盖范围207可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
网络设备201与基站201之间也可以通过回程(blackhaul)链接211,直接地或者间接地,相互通信。这里,所述回程链接211可以是有线通信连接,也可以是无线通信连接。
网络设备201,还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备201还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。网络设备201还可以是小站,传输节点(transmission reference point,TRP)等。当然不申请不限于此。
在本申请的一些实施例中,网络设备201可以包括:基站收发台(Base Transceiver Station),无线收发器,一个基本服务集(Basic Service Set,BSS),一个扩展服务集(Extended Service Set,ESS),NodeB,eNodeB等等。无线通信系统200可以包括几种不同类型的基站201,例如宏基站(macro base station)、微基站(micro base station)等。基站201可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
终端203可以分布在整个无线通信系统200中,可以是静止的,也可以是移动的。可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家 庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。在本申请的一些实施例中,终端203可以包括:移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
本申请实施例中,无线通信系统200可以是能够工作在非授权频段的LTE通信系统,例如LTE-U,也可以是能够工作在非授权频段的5G以及未来新空口等通信系统。无线通信系统200可以采用授权辅助接入(LAA)方案来处理终端在非授权频段上的接入。在LAA方案中,主小区(Primary Cell)工作在授权频段,传送关键的消息和需要服务质量保证的业务;辅小区(Secondary Cell)工作在非授权频段,用于实现数据平面性能的提升。
本申请实施例中,无线通信系统200可以支持多载波(multi-carrier)(不同频率的波形信号)操作。多载波发射器可以在多个载波上同时发射调制信号。例如,每一个通信连接205都可以承载利用不同无线技术调制的多载波信号。每一个调制信号均可以在不同的载波上发送,也可以承载控制信息(例如参考信号、控制信道等),开销信息(Overhead Information),数据等等。
另外,无线通信系统200还可以包括WiFi网络。为了实现运营商网络和WiFi网络(工作在非授权频谱)之间的和谐共存,无线通信系统200可采用先听后说(Listen before Talk,LBT)机制。例如,在无线通信系统200中,一些终端203可以通过WiFi通信连接217连接WiFi接入点209来使用非授权频谱资源,一些终端203也可以通过移动通信连接205连接基站201来使用非授权频谱资源。在使用非授权频段时,任何设备必须先监听,看看该频段是否被占用,如果该频段不忙,才可以占用并传输数据。
参考图3,图3示出了本申请的一些实施例提供的终端300。如图3所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其它方式连接,图3以通过总线连接为例。其中:
通信接口301可用于终端300与其他通信设备,例如基站,进行通信。具体的,所述纪姿含可以是图4所示的基站400。具体的,通信接口301可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,以及长期演进(Long Term Evolution,LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,终端300还可以配置有有线的通信接口301,例如局域接入网(Local Access Network,LAN)接口。
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器206可包括非授权频谱发射器3061和授权频谱发射器3063。其中,非授权频谱发射器3061可以支持终端300在一个或多个非授权频谱上发射信号,授权频谱发射器3063可以支持终端300在一个或多个授权频谱上发射信号。
接收器308可用于对天线314接收的移动通信信号进行接收处理。例如,接收器308可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器308可包括非授权频谱接收器3081和授权频谱接收器3083。其中,非授权频谱接收器3081可以支持终端300接收调制在非授权频谱上的信号,授权频谱接收器3083可以支持终端300接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
除了图3所示的发射器306和接收器308,终端300还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端300和用户或者外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口302与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和或者或多组指令。具体的,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器312可用于存储本申请的一个或多个实施例提供的资源分配方法在终端300侧的实现程序。关于本申请的一个或多个实施例提供的资源分配方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的资源分配方法在终端300侧的实现程序,并执行该程序包含的指令。
可以理解的,终端300可以是图2示出的无线通信系统200中的终端203,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程 单元,用户代理,移动客户端等等。
需要说明的,图3所示的终端300仅仅是本申请实施例的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图4,图4示出了本申请的一些实施例提供的基站400。如图4所示,基站400可包括:通信接口403、一个或多个基站处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其它方式连接,图4以通过总线连接为例。其中:
通信接口403可用于基站400与其他通信设备,例如终端设备或其他基站,进行通信。具体的,所述终端设备可以是图3所示的终端300。具体的,通信接口403可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,以及长期演进(LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,基站400还可以配置有有线的通信接口403来支持有线通信,例如一个基站400与其他基站400之间的回程链接可以是有线通信连接。
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对基站处理器401输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器407可包括非授权频谱发射器4071和授权频谱发射器4073。其中,非授权频谱发射器4071可以支持基站400在一个或多个非授权频谱上发射信号,授权频谱发射器4073可以支持基站400在一个或多个授权频谱上发射信号。
接收器409可用于对天线413接收的移动通信信号进行接收处理。例如,接收器409可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器409可包括非授权频谱接收器4091和授权频谱接收器4093。其中,非授权频谱接收器4091可以支持基站400接收调制在非授权频谱上的信号,授权频谱接收器4093可以支持基站400接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在基站400中,发射器407和接收器409的数量均可以是一个或者多个。
存储器405与基站处理器401耦合,用于存储各种软件程序和或者或多组指令。具体的,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
基站处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体的,基站处理器401可包括: 管理或者通信模块(Administration Module或者Communication Module,AM或者CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,基站处理器401可用于读取和执行计算机可读指令。具体的,基站处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的资源分配方法在基站400侧的实现程序,并执行该程序包含的指令。
可以理解的,基站400可以是图2示出的无线通信系统200中的基站201,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB等等。基站400可以实施为几种不同类型的基站,例如宏基站、微基站等。基站400可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
需要说明的,图4所示的基站400仅仅是本申请实施例的一种实现方式,实际应用中,基站400还可以包括更多或更少的部件,这里不作限制。
本发明可以应用于前述5G NR系统,本发明也可以应用于其它的通信系统,该通信系统中的一个实体预配置或者发送guardband指示信息,另一个实体预设值或者接收该指示信息,并根据该指示信息确定宽带内可用的传输带宽。
如图5所示,基站(Base station)和UE1~UE6组成一个通信系统。在该通信系统中,UE1~UE6可以发送上行数据给基站,基站需要接收UE1~UE6发送的上行数据给UE1~UE6。此外,UE4~UE6也可以组成一个通信系统。在该通信系统中,BS可以发送下行信息给UE1、UE2、UE5等;UE5也可以发送下行信息给UE4、UE6。
一个本发明实施方式中,提供一种guardband指示的方法。基站通过无线资源控制RRC信令指示不同带宽场景下的guardband配置。对于某个宽带载波/信道/BWP而言,根据LBT的不同结果,对应了不同的可用带宽场景,分别针对所述不同的可用带宽场景,配置不同的guardband。可以理解的,可用带宽和不可用带宽是相对的概念,guardband的配置也可以是基于不可用带宽进行配置,而这两者是可以进行等效的。基站通过RRC信令将所述不同的guardband配置信息指示给UE。根据所述guardband配置信息,UE可获知在不同的可用带宽场景下,真正用于传输的带宽或者资源信息。可以理解的,各个实施方式中对于宽带载波、信道或者BWP中guardband指示的方案具有类似性,为了便于描述,下文中,仅以BWP为例。但相关的实施例同样适用于宽带信道中guardband指示以及宽带载波中guardband的指示,并不构成限定。
在一种可能的实施方案中,所述guardband的指示是系统中预先设定的,基站可以通过系统消息和/或无线资源控制信令将guardband信息通知给UE。此外,基站在系统消息中还会指示配置给UE的带宽信息(下文简称配置带宽信息)。具体地,如BWP信息。可选的,所述BWP信息包括上行BWP信息以及下行BWP信息,根据该BWP信息,UE即可获知相应的上下行配置带宽信息。对于非授权频段而言,由于需要进行LBT,对于某个BWP而言,实际可用于传输的带宽(下文简称可用带宽)取决于LBT 的结果,所以基站需要针对由LBT的不确定性所导致的所有可能的可用带宽情形下对应的guardband进行指示。UE根据对应的guardband指示信息即可获知在所有可能的可用带宽场景下,对应的guardband信息。在一些实施方式中,可用带宽对应于LBT通过的部分带宽,不可用带宽对应于LBT失败的部分带宽。在其他一些实施方式中,可用带宽可以小于LBT通过的部分带宽。
当在进行数据传输前,需要进行LBT,可以理解的,由于LBT的不确定性,可用带宽可能小于或等于配置带宽,此时,发送设备需要将可用带宽通知给接收设备,对于接收设备而言,根据所述指示的配置带宽信息,可用带宽信息,再根据所述的guardband指示信息,即可获知当前可用带宽场景下对应的guardband所对应的资源位置,进而最终获知需要在哪些资源上接收数据。
具体地,以下行传输为例,假设基站配置的下行BWP为80MHz,基站需要通过系统消息或RRC信令,将所有可能的可用带宽场景下所对应的guardband信息进行指示。示例性地,假设LBT的基本带宽为20MHz,即在4个20MHz的子带上进行LBT,则根据LBT的不同结果,所述80MHz的BWP的可用带宽有如下可能的组合:subband1或subband2或subband3或subband4或subband1+2或subband1+3或subband1+4或subband2+3或subband2+4或subband3+4或subband1+2+3或subband1+2+4或subband1+3+4或subband2+3+4或subband1+2+3+4(如图6所示,图中表示的即为可用带宽为subband1+2+4,而不可用带宽为subband3,对于guardband的指示可以基于可用带宽进行,或者可选的也可以基于不可用带宽进行,具体地,如果基于可用带宽进行指示,则实际用于传输的资源小于或等于可用带宽对应的资源除去guardband对应的资源,而基于不可用带宽进行指示时,实际不用于传输的资源应大于或等于不可用带宽对应的资源加上guardband对应的资源。可选的,在后续的具体实施方案中,这两种方式可以相互等效)。此时,基站需要将上述所有可能组合所对应的guardband信息携带在系统消息/RRC信令中进行指示。可以理解的,对于非授权频段上系统消息或者RRC信令的发送,同样要先进行LBT,只有LBT成功之后,基站才可以发送上述消息。
可以看到,在本发明实施方式中,包括下面四类指示之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或Guardband信息的指示。
配置带宽信息的指示的实施方式
基站可以通过系统消息/RRC,对配置带宽信息进行指示。具体地,所述配置带宽信息中包含配置带宽的位置信息和/或者子载波间隔等。可以参考3GPP 38.331中BWP的描述,如BWP information element的定义,所述配置带宽的位置信息可以直接定义所述配置带宽对应的子载波间隔,起始RB,终止RB,以及所述配置带宽对应的RB数等中的一种或多种,UE根据所述指示信息,如根据子载波间隔,起始RB以及对应的RB总数,即可获知所述配置带宽的实际频域位置。进一步可选的,所述配置带宽 信息中还可以包含所述BWP对应的子带信息,示例性地,所述配置带宽指示信息中还包括,BWP划分的子带个数如NrofSubband,每个subband对应的频域位置,所述subband的频域位置信息可以是绝对的频域位置信息,或者也可以通过起始RB和/或RB个数的方式进行指示,即UE根据subband对应的起始RB以及所包含的RB个数,即可获知该subband对应的频域位置。可选的,还可以通过指示起始RB和/或终止RB的方式进行指示。
此外,一种可能的方式中,所述配置带宽信息中包括多个配置带宽的信息,所述多个配置带宽的信息可以携带在同一个指示信息中,或者在多个指示信息中。即对于同一个UE而言,基站可以为其配置多个不同的配置带宽信息,每一个配置带宽对应的信息均可按照上述任一种方式来实现。
下面进一步举例进行阐述,如图7所示,假设基站为某UE配置了80MHz的下行BWP,子载波间隔为60KHz,基站可以通过配置带宽信息指示所述80MHz BWP的子载波间隔为60KHz,频域位置为RB#0~RB#106,共107个RB。具体地,基站可以指示起始RB#0(第一个)以及RB个数107;或者基站可以指示起始RB为RB#0(第一个),以及终止RB为RB#106(最后一个),UE根据所述指示信息即可获知所述配置的80MHz BWP的频域位置。进一步地,基站还可以在所述80MHz BWP内配置多个子带的带宽信息,示例性地,指示包含的子带个数为4,进一步地指示subband1对应的带宽信息为起始RB#0,以及RB个数26,指示subband2对应的带宽信息为起始RB为RB#26,以及RB个数27,指示subband3对应的带宽信息为起始RB为RB#53,以及RB个数27,指示subband3对应的带宽信息为起始RB为RB#80,以及RB个数27;或者可选的,指示subband1对应的带宽信息为起始RB为RB#0,终止RB为RB#25,指示subband2对应的带宽信息为起始RB为RB#26,终止RB为RB#52,指示subband3对应的带宽信息为起始RB为RB#53,终止RB为RB#79,指示subband4对应的带宽信息为起始RB为RB#80,终止RB为RB#106。需要说明的是,这里的RB数以及子带的划分仅用于方案描述,并不构成限定,也可以采用其他方案,例如80MHz对应的RB数为108个,每个subband均包含27个RB等,其对应的RB可按照升序或降序依次排列。
此外,基站还可以同时为UE配置多个BWP,可选的,基站可以在一个配置带宽信息中包含多个BWP的信息,或者基站发送多个配置带宽信息,每个配置带宽信息中包含一个BWP的信息。例如,如图8所示,基站为UE配置了80MHz的BWP的同时,还配置了4个20MHz的BWP。对于80MHz BWP而言,可以指示起始RB是RB#0以及RB个数107;或者指示起始RB是RB#0,以及终止RB是RB#106;对于20MHz BWP1而言,可以指示起始RB是RB#0以及RB个数26;或者指示起始RB是RB#0,以及终止RB是RB#25;对于20MHz BWP2而言,可以指示起始RB是RB#27以及RB个数26;或者指示起始RB是RB#27,以及终止RB是RB#52;对于20MHz BWP3 而言,可以指示起始RB是RB#54以及RB个数26;或者指示起始RB是RB#54,以及终止RB是RB#79;对于20MHz BWP4而言,可以指示起始RB是RB#81以及RB个数26;或者指示起始RB是RB#81,以及终止RB是RB#106;所述信息可以包含在同一个配置带宽信息中进行指示,或者可选的,也可以分别在多个配置带宽信息中进行指示。同样需要说明的,这里对于60KHz子载波间隔场景下,BWP的带宽大小并不构成限定,也可是其他值,如40MHz,60MHz,100MHz等等;对于80MHz BWP对应的RB数以及每个窄带20MHz BWP对应的RB数仅用于方案描述,也并不构成限定,也可以为其他取值,如每个20MHz的BWP对应24个RB,如图8所示。对于每个BWP所对应的RB数也可以采用其他对应方案。
当然,在其他的实施方式中,上述配置带宽信息的指示可以是隐式的,例如,在一些实施方案中,配置带宽信息可以默认为初始接入的带宽,例如initial active BWP等。
UE接收所述配置带宽信息的指示后,可以根据LBT的结果,以及可以结合可用带宽的指示或者guardband信息的指示,获知下行传输对应的实际资源位置所在的范围,进而在所述带宽中的可用带宽以内,在所述guardband以外完成数据接收。具体的,在被分配的资源上完成数据接收,本发明实施方式不涉及,不再赘述。
可用带宽的指示\不可用带宽信息的指示的实施方式
以下行传输为例,上行传输时方案可以类推,这里不做详细阐述。当有下行数据传输时,基站首先进行LBT,然后在LBT成功的可用带宽上进行数据传输,基站可以将可用带宽的信息进行指示,以方便UE能够正确接收数据。
一种可能的方式中,在下行控制信息DCI中直接指示可用带宽的信息。例如,以图5中描述的情形为例,可用带宽为subband1以及subband2以及subband4,则基站在DCI中指示1,2,4的信息。或者,可选的,在DCI中采用位图bitmap的方式指示可用带宽的信息,例如对于四个subband而言,采用4bit的bitmap;其中每一个bit位则对应一个subband,其中bit位的值为“1”时,则表示该比特位所对应的subband可用,例如当可用带宽为subband1以及subband2以及subband4时,可以采用“1101”进行指示。
另一个例子中,可选的,对于可用带宽的指示,可以结合RRC信令进行指示。例如基站预先通过RRC信令,将所有可能的可用带宽组合进行编号索引。示例性地,通过AvailableBW_ID标识可用带宽的索引,则对于所有的可用带宽组合,可以通过如下配置信息中包含的一种或多种指示:
AvailableBWConfig::=Sequence(size(1..MaxNrofAvailableBW)of AvailableBW)
AvailableBW::=sequence{
AvailableBW_ID  表示可用带宽的索引ID
Subcarrierspacing  表示表示该ID对应的可用带宽对应的子载波间隔
BandwidthInfo  表示该ID对应的可用带宽信息}
其中MaxNrofAvailableBW表示最大支持的所有可用带宽组合的个数。
不难理解地,上述指示方式对应的是一种列表指示方式,即每一个可用带宽ID对应一个详细的带宽信息,例如,同样以80MHz BWP,60KHz子载波间隔,划分4个subband为例,则对应的MaxNrofAvailableBW=15,假设AvailableBW_ID=1对应的BandwidthInfo为subband1,即表示ID为1的可用带宽对应的是subband1。可选的,基站也可以在BandwidthInfo中直接指示当前可用带宽ID对应可用带宽的详细资源信息,如通过起始资源位置,终止资源位置,资源个数,资源绝对位置,资源索引等中的一种或多种进行指示,所述资源可以为RB/子载波/子载波集等,此时即使UE没有通过配置带宽信息中获知关于子带的信息,仍然可以准确得到各个可用带宽对应的资源信息。需要说明的是以上格式仅用于描述方案,并不构成限定,所有列表式的指示方式均包含在本发明范围内。
可以理解的,上述方案中基于subband方式进行指示,当基站同时配置了多个窄带BWP时,类似的方案也可以基于窄带BWP进行指示。例如,以图9中描述的情形为例,对应可用带宽为20MHz BWP1以及20MHz BWP2以及20MHz BWP4,则基站在DCI中指示1,2,4的信息;或者可选的,在DCI中采用位图bitmap的方式指示可用带宽的信息,例如对于四个20MHz BWP而言,采用4bit的bitmap,每一个bit位则对应一个20MHz BWP,其中bit位的值为“1”时,则表示该比特位所对应的BWP可用,例如当可用带宽为20MHz BWP1以及20MHz BWP2以及20MHz BWP4,可以采用“1101”进行指示;再者可选的,对于可用带宽的指示,需要结合RRC信令进行指示,例如基站预先通过RRC信令,将所有可能的可用带宽组合进行编号索引,具体方案同前。
需要说明的是,对于窄带BWP的配置,在一些实施方式中,多个相邻的窄带BWP所对应的资源可能不连续。如图9所示,BWP1对应的RB为RB#0-RB#25,BWP2对应的RB为RB#27-RB#52,中间相隔1个RB。在其他的实施方案中,相隔的RB数还可能为其他值,此时对于可用带宽的指示,有如下可能的实施方式:可选的,可用带宽即为所指示的多个可用BWP所对应的资源的并集,例如当基站指示可用带宽为BWP1,BWP2,BWP4时,可用带宽对应的资源即RB#0-RB#25,RB#27-RB#52,RB#81-RB#106。可选的,根据所指示的可用BWP的指示,可以获知不可用的BWP信息,则可用带宽对应着总的资源除去不可用BWP所对应的那部分资源后的剩余资源,例如当基站指示可用带宽为BWP1,BWP2,BWP4时,可用带宽对应的资源即为除去不可用BWP3所对应的资源RB#54-RB#79之外的所有资源。基于上述RRC信令,基站在进行可用带宽指示时,可以在DCI中指示实际传输带宽对应的索引ID,UE根据该索引ID以及RRC信令中所指示的信息,即可获知对应的可用带宽的信息。
UE通过前述方式(DCI直接指示,或者,RRC结合DCI指示)获得可用带宽信息后,可以结合guardband信息的指示或者标准规定的guardband确定原则,UE即可获知当前可用带宽场景下对应的guardband信息。结合可用带宽信息,以及guardband信息,UE即可获知下行传输对应的实际资源位置所在的范围,进而在所述带宽中的可用带宽以内,在所述guardband以外完成数据接收。(具体的,在被分配的资源上完成数据接收,本发明实施方式不涉及,不再赘述)
guardband信息的指示的实施方式
一种可能的方式中,基站在系统消息或RRC信令中,直接显示的指示guardband的信息。示例性地,所述显示的guardband的信息可以通过指示guardband的大小来实现,例如为X个RB或者子载波或者子载波集。又如直接指示guardband占用的带宽为为XHz或者XMHz等等,再如可以指示guardband为某一带宽或某频域单元大小的百分比等等。在这种方案下,UE可以根据配置带宽信息以及可用带宽信息,结合guardband的大小确定guardband的资源位置。即,UE根据接收到的前述信息,可以在可用带宽的一个或多个边界处确定guardband的资源位置。
示例性地,参考图10,同样以80MHz的BWP,60KHz子载波间隔为例,假设在4个20MHz的子带上进行LBT,可用带宽为subband1+3+4。沿用前面的假设,根据带宽配置信息以及可用带宽的指示,可以获知可用带宽对应的资源为subband1、subband3、subband4对应的频域资源,即RB#0~RB#25,以及RB#53~RB#106。此时,示例性地,基站可以直接显示的指示guardband的大小为2个RB。UE收到该信息后可以获知分别位于两个可用带宽边界处的各两个RB(第一个边界处的两个RB#24和RB#25,第二个边界处的两个RB#53和RB#54)为guardband。可以理解的,当guardband信息中只包含guardband的大小时,对于guardband在可用带宽的基础上进一步确认位置是所基于的准则应为默认的或者标准预先规定的,比如规定guardband对应着可用带宽的一个或多个边界处,沿着带宽减小的方向连续的X个RB或子载波或者子载波集,或者升序和/或降序的方向,可以理解的,也可以是预先规定的其他规则,本发明实施方式不做限制。
或者,可选的,所述显式的guardband的信息可以通过直接指示guardband所对应的资源位置来实现。此时,基站需要针对所有可能的可用带宽指示其对应的guardband的资源位置。所述资源位置信息可以通过起止资源索引的方式,和/或起始资源以及资源个数的方式,和/或直接指示资源索引的方式,所述资源可以为资源块RB/子载波/子载波集等。
示例性地,通过AvailableBW_ID标识可用带宽的索引,则对于所有的可用带宽所 对应的guardband,可以通过如下配置信息中包含的一种或多种指示:
GuardbandConfig::=Sequence(size(1..MaxNrofAvailableBW)of Guardband)
Guardband::=sequence{
AvailableBW_ID  表示可用带宽的索引ID
Subcarrierspacing  表示表示该ID对应的可用带宽对应的子载波间隔
GuardbandInfo  表示该ID对应的可用带宽对应的guardband信息}
其中MaxNrofAvailableBW表示最大支持的所有可用带宽组合的个数。
具体地,例如沿用前面的例子,假设可用带宽AvailableBW_ID=13对应的可用带宽为subband1+3+4,则相应的GuardbandInfo即为RB#24和RB#25,以及RB#53和RB#54。
可选的,上述guardband的信息也可以包含在可用带宽配置信息中,如在可用带宽的配置信息中增加一列信息,如通过如下配置信息中包含的一种或多种指示来实现
AvailableBWConfig::=Sequence(size(1..MaxNrofAvailableBW)of AvailableBW)
AvailableBW::=sequence{
AvailableBW_ID  表示可用带宽的索引ID
BandwidthInfo  表示该ID对应的可用带宽信息
Subcarrierspacing  表示表示该ID对应的可用带宽对应的子载波间隔
GuardbandInfo  表示该ID对应的可用带宽对应的guardband信息}
其中MaxNrofAvailableBW表示最大支持的所有可用带宽组合的个数;
不难理解的,上述配置信息对应的是如表1中包含的内容(表1中的取值仅用于说明方案,不构成限定)
表1
Figure PCTCN2019116845-appb-000004
Figure PCTCN2019116845-appb-000005
再一种可能的实施方式,基站通过RRC信令间接指示可用带宽对应的guardband信息,可选的,指示各种可用带宽场景下可实际用于传输的资源信息。可以理解的,所述实际可用于传输的资源应等于可用带宽所包含的总的资源除去用于guardband的资源之外的资源;例如通过如下配置信息中包含的一种或多种指示来实现:
AvailableBWConfig::=Sequence(size(1..MaxNrofAvailableBW)of AvailableBW)
AvailableBW::=sequence{
AvailableBW_ID  表示可用带宽的索引ID
Subcarrierspacing  表示表示该ID对应的可用带宽对应的子载波间隔
BandwidthInfo  表示可用带宽信息
ResourceInfo  表示该ID对应的可用带宽实际可用的资源(隐含指示guardband信息)}
其中MaxNrofAvailableBW表示最大支持的所有可用带宽组合的个数;
可以理解的,其中ResourceInfo是隐含了guardband信息在内的。
同样,不难理解的,上述配置信息对应的是如表2中包含的内容(表2中的取值仅用于说明方案,不构成限定)
表2
Figure PCTCN2019116845-appb-000006
Figure PCTCN2019116845-appb-000007
另一个例子中,可选的,间接指示可用带宽对应的guardband信息还可以通过指示各种可用带宽情形下不可用于传输的资源信息来实现。可以理解的,所述不可用于传输的资源应等于不可用带宽所包含的总的资源数与guardband资源的并集。
例如通过如下配置信息中包含的一种或多种指示来实现
AvailableBWConfig::=Sequence(size(1..MaxNrofAvailableBW)of AvailableBW)
AvailableBW::=sequence{
AvailableBW_ID  表示可用带宽的索引ID
Subcarrierspacing  表示表示该ID对应的可用带宽对应的子载波间隔
UnavailableBandwidthInfo  表示不可用带宽信息
UnavailableResourceInfo  表示该ID对应的可用带宽下不可用的资源(隐含指示guardband信息)}
其中MaxNrofAvailableBW表示最大支持的所有可用带宽组合的个数;
同样,不难理解的,上述配置信息对应的是如下表3中包含的内容(表3中的取值仅用于说明方案,不构成限定)
表3
Figure PCTCN2019116845-appb-000008
Figure PCTCN2019116845-appb-000009
可以理解的,对于不同带宽BWP,不同子载波间隔场景下所对应的RB个数可以为其他值,各个子带所对应的RB与宽带BWP所对应的RB位置关系可以为其他方式,guardband的大小根据对信号能量泄露的不同要求也可能为其他值,且对于具有不同能力的设备而言,guardband的大小也会有所差异,上述任意一种实施方案中用的数值仅用于举例说明,并不构成限定。
对于其他的子载波间隔场景,如30KHz子载波,15KHz子载波场景,均可以通过上述任一种指示方案实现。示例性地,参考图11,假设80MHz带宽的BWP,30KHz子载波间隔,对应217个RB,对于配置带宽的指示,基站可以通过系统消息或RRC信令配置带宽的位置信息,直接定义所述配置带宽对应的子载波间隔,起始RB,终止RB,以及所述配置带宽对应的RB数等中的一种或多种,UE根据所述指示信息,如根据子载波间隔,起始RB以及对应的RB总数,即可获知所述配置带宽的实际频域位置。进一步地,也可以对BWP划分的多个子带进行指示,通过指示子带的个数,每个子带对应的起始RB,终止RB,RB数等中的一种或多种组合,根据所述指示信息,UE可以准确获知BWP对应的频域位置,对应资源块位置,以及各个子带的频域位置,对应的资源块位置。如图11,可以通过系统消息/RRC信令,通知30KHz子载波间隔,80MHz带宽的BWP对应的RB为RB#0-RB#216,还可以进一步指示subband1对应RB#0-RB#54共55个RB,subband2对应RB#56-RB#108共54个RB,subband3对应RB#109-RB#162共54个RB,subband4对应RB#163-RB#216共54个RB。对于subband的划分也可以为其他方式,不做限定。详细的指示方式可以参照前面的实施方式,这里不再赘述。
进一步地,也可在此基础上再配置一个或多个BWP,可选的,任意两个相邻BWP所对应的RB之间可能为连续或非连续的,如图12所示,可以在配置了80MHz BWP的基础上,再配置一个或多个BWP,如配置一个或多个20MHz的BWP和/或一个或多个40MHz的BWP,其中四个20MHz的BWP分别对应的RB为,RB#0-RB#50,RB#55-RB#105,RB#111-RB#161,RB#166-RB#216,每个20MHz的BWP对应51个 RB;两个40MHz的BWP对应106个RB,分别是RB#0-RB#105,RB#111-RB#216;可以理解的,每个BWP所对应的RB数也可以为其他值,具体地分布也可以由其他方案,本发明实施方式不做限定。
相应的,对于可用带宽的指示,以及对于guardband信息的指示,均可采用与前述60KHz子载场景时类似的方案,这里不再赘述。同理对于15KHz子载波的指示也是类似的。
可选的,对于上述任意一种实施方案中,资源的指示可以以RB为基本单元,可选的,也可是以RB组(RBG)、子载波、子载波集等作为基本单元。
另一种可能的实施方式,guardband的信息为标准协议中预先定义,即无需通过信令指示。但是需要在标准协议中如38.101或38.104等协议中,明确规定guardband的信息,例如大小、位置等。可选的,可以基于不同配置带宽、不同的子载波间隔、不同设备能力或不同可用带宽场景之一或者任意组合,规定相对应的guardband的信息。示例性地,如表4所示。可选的,也可以规定统一的guardband信息,即在所有场景下均采用相同的guardband原则。示例性地,规定带内guardband需要满足以下条件:当可用带宽由一段或多段子带组成时,各个子带处的带内guardband等于该子带带宽的X%,例如X=10或其他数值;或者可选的,规定带内guardband的绝对大小,如X MHz等。另外,如前文指出的,guardband也可以是基于不可用带宽进行配置,guardband也可以是不可用带宽以外的与不可用带宽相连续的部分带宽,大小例如为不可用带宽的N%,例如N=5或者10等其他数值。
其中,对于连续的多个子带,可以被视作一个更大的子带,或者可选的,被视作独立的多个子带。特别的,对于不同能力的设备而言,可以定义不同的X值,例如对于能力较高的设备而言,所述各个子带处带内guardband等于该子带带宽的5%,而对设备能力稍差的设备而言,带内guardband等于该子带带宽的10%,以保证在降低干扰的同时尽可能最大化资源利用。此时,基站只需将配置带宽信息和可用带宽信息通知给UE,UE根据标准协议中的规定,即可获知guardband对应的资源位置,进而可以得知需要在那些资源上接收数据。可选的,在确定guardband资源位置时,需要根据子载波间隔进行计算;例如,继续以图6为例进行阐述,对于某一80MHz的BWP而言,经过LBT后,可用的带宽对应子带1,2,4。可选的,其中子带1和2可以看做一段连续的40MHz的子带,相应的子带边界处的guardband需满足该子带的10%,即4MHz,则对于60KHz子载波间隔,guardband对应的资源应为4/0.72进行向下或向上取整,即5或6个RB,则进一步根据子带的划分指示,可以确定guardband实际对应的RB。再者可选的,其中子带1和2也可被视作两个独立的子带,由于子带1,2连续,所以可选的在子带1和2之间无需guardband。对于子带2和3的边界处,guardband需满足子带2的10%,即2MHz,此时,对于60KHz子载波间隔,guardband对应的资源应为2/0.72进行向下或向上取整,即2或3个RB,则进一步根据子带的划分指示,可以确定guardband实际对应的RB。对于其他带宽,其他子载波间隔的场景,方案类似,不再赘述。
在上述实施例中,基于预定义的不同带宽下的资源块分布图,例如图7-12中的任意一个,发送端可以不发送guardband的指示,接收端(例如终端)可以根据接收到的可用带宽的指示以及规定的guardband信息(上述X),确定(本次通信)guardband具体的位置和大小或者确定将使用的带宽。上述资源块分布图包括某个带宽下各个子带subband或者BWP的包括的一个或者多个资源块的大小和位置。具体的可以参考图7-12中的任意一个或者其变形的资源块分布图,本实施方式仅以80MHz为例,还可规定带宽为20MHz、40MHz、160MHz或者320MHz时的资源块分布。例如,对于带宽40MHz的资源块分布可以是前述80MHz带宽中的前半部分或者后半部分。
表4
Figure PCTCN2019116845-appb-000010
另一种实施方式中,基站还可以通过DCI信息动态的指示guardband的信息。可选的,可以采用直接指示的方式,在DCI中增加新的字段或者设计新的DCI用于guardband指示。具体地,可以在DCI中直接指示guardband对应的资源位置,如指示guardband对应的起始资源索引、终止资源索引、资源个数、所有的资源索引等中的一种或多种信息。可选的,也可以在DCI中采用隐含指示的方式。例如通过在DCI中指示实际用于传输的资源信息,可以理解的,所述实际可用于传输的资源应等于可用带 宽除去guardband对应的资源之后的剩余资源。具体地,可以指示实际用于传输的资源对应的起始资源索引、终止资源索引、资源个数、所有的资源索引等中的一种或多种信息。可选的,隐含指示的方式,还可以通过指示实际未用于传输的资源信息,可以理解的,所述实际未传输的资源信息应等于实际不可用带宽对应的资源与guardband资源的并集,具体地,可以指示实际用于传输的资源对应的起始资源索引、终止资源索引、资源个数、所有的资源索引等中的一种或多种信息。
配置带内防护频带(intra carrier guard band)的指示的实施方式
一种可能的方式中,基站为UE配置一个或多个LBT带宽(bandwidth),并配置一个或多个带内guard band。基站在系统消息或RRC信令中携带用于指示该一个或多个带内guard band资源位置信息的指示,换句话说,基站还可以显示地指示该一个或多个带内guard band的资源位置信息。该LBT带宽可以理解为subband,或者也可以表示为sub-band。基站可以在该一个或多个LBT带宽进行LBT,根据LBT结果确定是否在该一个或多个带内防护频带上发送或接收数据,并通过显示指示(例如动态信令)或者隐式指示(例如预设规则)UE在该一个或多个带内防护频带上接收下行数据或者发送上行数据。LBT的结果可以包括LBT成功(也可以被称为LBT通过)和LBT失败。在不同的实施方式中,该LBT带宽还可以为RB范围(range),即基站为UE配置一个或多个RB range,或者该LBT带宽可以为RB set(集),即基站为UE配置一个或多个RB set。
带内guard band的资源位置信息可以采用起始资源索引和结束资源索引表示,和/或起始资源以及资源个数的方式,和/或直接指示资源索引的方式。所述资源可以为资源块RB,子载波或者子载波集等。例如,基站可以向UE指示带内guard band的起始RB索引(index)和结束RB索引,或者基站可以向UE指示带内guard band的起始RB索引和所占用的RB个数。
示例性地,参考图13和图14,基站为UE配置了载波或者BWP,其中划分4个LBT带宽,为便于说明,采用“LBT bandwidth#0~#3”表示。在相邻两个LBT带宽之间配置一个带内guard band,4个LBT带宽之间配置有3个带内guard band,为便于说明,采用“带内guard band#1~#3”表示。带内guard band可以采用RB个数、子载波个数或者绝对带宽进行配置。以BWP为80MHz且采用60kHz的子载波间隔为例,一共有107个RB,分别编号为#0~#106。示例性地,该3个带内guard band对应的频域资源为:guard band#1为RB#24~RB#27,guard band#2为RB#51~#54,guard band#3为RB#78~#81,本申请对此不做限定。
针对UE有一个或多个服务小区(serving cell)的情况,基站为UE的部分或者全部的serving cell(per cell)配置带内guard band,例如,针对一个serving cell配置上述带内guard band资源指示信息。示例性地,为一个serving cell配置带内guard band的信令可以携带于服务小区配置(ServingCellConfig)或者服务小区公共配置(ServingCellConfigCommon)中,即在ServingCellConfig或者ServingCellConfigCommon中配置上述带内guard band资源指示信息。示例性地,可以在servingcellconfig或者ServingCellConfigCommon增加一组参数(parameters)或 者一个参数(parameter),用于指示上述资源位置信息,或者采用序列(sequence)的方式。针对同一个服务小区而言,上下行的带内guard band可以相同,也可以不同。针对UE被配置有一个或多个BWP的情况,基站为UE的部分或者全部BWP(per BWP)配置带内guard band,例如,针对一个BWP配置上述带内guard band资源指示信息。示例性地,配置带内guard band的信令中可以携带于信元(Information element,IE)BWP,BWP下行公共(BWP-DownlinkCommon),BWP下行专用(BWP-DownlinkDedicated),BWP上行公共(BWP-UplinkCommon)或者BWP下行专用(BWP-UplinkDedicated)。针对同一个BWP而言,上下行的带内guard band可以相同也可以不相同。
对于下行链路,基站在发送下行信号之前会在每个LBT带宽上进行LBT。示例性地,请参照图13,基站在LBT bandwidth#1~#3侦听成功,可以发送下行信号。基站在LBT bandwidth#0侦听失败,无法发送下行信号。基站可以在带内guard band#2和#3上发送下行数据,无法在带内guard band#1上发送下行信号。对于上行链路,如果UE被调度在LBT带宽#1~#3上发送PUSCH,UE可以在带内guard band#2和guard band#3上发送上行数据。但是无法在带内guard band#1上发送上行数据。在不同的实施方式中,LBT失败或者未被调度的子带可以在载波或者BWP的边缘(如图13),也可以在载波或者BWP的中间(如图14)。
在下行传输时,基站可以通过RRC信令中的PDSCH-Config为对应的可动态调度的带内guard band配置速率匹配模式(rate match pattern,RMP),可指示对应于带内guard band的速率匹配模式,例如,RMP用于配置对应的带内guard band上的RB没有映射PDSCH。可动态调度的带内guard band可以是载波或者BWP中配置的全部的带内guard band,也可以是载波或者BWP中配置的部分带内guard band。示例性地,参照图15,针对带内guard band#1配置速率匹配模式#1(RMP#1),针对带内guard band#2配置速率匹配模式#2(RMP#2)。
在一些实施方式中,还可以为带内guard band的速率匹配模式配置速率匹配模式组(rate match pattern group,RMPG)。示例性地,参照图15,对应于带内guard band#1的RMP#1加入RMPG#1,对应于带内guard band#2的RMP#2加入RMPG#2。
进一步地,基站通过下行控制信息(downlink control information:DCI)中的RMI指示是否将PDSCH映射到带内guard band。例如,RMI用于指示基站是否使用RMPG,当使用RMPG的情况下,基站在RMPG中的RMP对应的guard band上的RB没有映射PDSCH;当不使用RMPG的情况下,基站在RMPG中的RMP对应的guard band上的RB映射PDSCH。UE根据RMI确定是否接收PDSCH。示例性地,该RMI可以为DCI format 1-1中的2bit。RMI中的最高位(most significant bit,MSB)用于表示基站是否使用RMPG#1,RMI中的最低位(least significant bit,LSB)用于表示基站是否使用RMPG#2。根据下行控制信息的指示确定RMPG包含的RMP对应的带内guard band的RB是否映射PDSCH。例如,以bit值为“0”表示对应的带内guard band资源可映射PDSCH,以bit值为“1”表示对应的带内guard band资源没有映射PDSCH,RMI=“00”,表示RMPG#1和RMPG#2的合集所对应的带内guard band资源均可映射PDSCH,即带内guard band#1和带内guard band#2均可以映射PDSCH;RMI=“10”, 表示RMPG#1所对应的带内guard band资源没有映射PDSCH,RMPG#2所对应的带内guard band资源可映射PDSCH,即带内guard band#1没有映射PDSCH,带内guard band#2可映射PDSCH;RMI=“01”,表示RMPG#1所对应的带内guard band资源可映射PDSCH,RMPG#2所对应的带内guard band资源没有映射PDSCH,即带内guard band#1可映射PDSCH,带内guard band#2没有映射PDSCH;RMI=“11”,表示RMPG#1和RMPG#2所对应的带内guard band资源合集不能映射PDSCH,即带内guard band#1和guard band#2均没有映射PDSCH。在其它的实施方式中,也可以bit值为“1”表示对应的带内guard band资源不可映射PDSCH,bit值为“0”表示对应的带内guard band资源可映射PDSCH。
UE通过读取PDSCH的DCI中的RMI来确定基站是否在带内guard band中映射了PDSCH。请参照图15,DCI调度的PDSCH占用2个LBT带宽(LBT带宽#1和#2)和2个带内guard band(带内guard band#1和#2),UE通过RMI获知基站在带内guard band#2(图中所示方框A)上映射了PDSCH,在带内guard band#1(图中所示方框B)上没有映射PDSCH,需要进行速率匹配。
可以理解的是,在其它的实施方式中,RMPG的数量可以为其它值,RMPG中所包含的RMP可以为其它值。相应地,基站可以增加高层信令中配置RMPG的个数,即增加DCI中携带的RMI的比特数,每一个bit对应一个RMPG。从而解决现有技术中,速率匹配指示方法指示带内guard band数量有限的问题,提高通讯效率。
在又一些实施方式中,DCI中可以携带带内guard band指示(intra carrier guard band indicator,GBI),用于指示带内guard band是否映射PDSCH。例如,GBI携带于DCI format 1-1中。针对不同的UE,基站可以配置是否在DCI format 1-1携带GBI。GBI占用DCI中的X bit,分别对应带内gard band,其中每一bit对应一个高层配置的带内guard band。示例性地,如果bit为0,表示该带内guard band对应的频域资源没有映射PDSCH,如果bit为1,表示该带内guard band对应的频域资源映射PDSCH;或者如果bit为1,表示该带内guard band对应的频域资源映射PDSCH,如果bit为0,表示该带内guard band对应的频域资源映射PDSCH。在UE被调度了与该带内guard band重叠的频域资源的情况下,则针对重叠的频域资源进行速率匹配。示例性地,GBI的bit数量可以根据带内guard band的数量进行调整,或者GBI的bit数量可以为系统可配置的最大的带内guard band的数量,采用X bit中N个LSB或者N个MSB为用于指示带内guard band的指示位(N<=X)。
以图13为例,基站配置了3个带内guard band,采用“1”表示对应的带内guard band不能映射PDSCH,“0”表示对应的带内guard band可以映射PDSCH,可以在DCI中指示GBI=“100”,其中第1~3位分别对应带内guard band#1~3,则UE可以获知guard band#1不能映射PDSCH。类似地,基站可以在DCI中指示GBI=“110”,对应图14的情况。可以理解的是,在需要增加/减少GBI指示的guard band的数量的情况下,可以增加/减少GBI的比特数。
在又一个实施方式中,基站和UE可以通过协议约定默认规则。当UE被配置接 收携带可用LBT带宽指示的GC-PDCCH时,当UE检测到有效的可用带宽后,UE可以根据可用LBT带宽确定gNB是否在带内guard band上映射了PDSCH。例如,带内guard band两侧的LBT带宽都为可用带宽,则基站在该带内guard band上映射了PDSCH,否则,基站在该带内guard band上没有映射PDSCH。请参照图15,UE检测到基站指示的可用LBT带宽为LBT bandwidth#1和LBT bandwidth#2。UE收到DCI调度的PDSCH占用LBT bandwidth#1和#2,且LBT bandwidth#1和#2为可用带宽时,则确定LBT bandwidth#1和#2中间的带内guard band#2上映射有PDSCH;而带内guard band#1,由于其一侧的LBT bandwidth#0为非可用带宽,因此基站没有在guard band#1上映射PDSCH。在一个示例性中,当基站在下行突发(burst)起始时发送GC-PDCCH,其中携带的可用带宽指示为全“0”或全“1”的情况下,以表示当前发送的可用带宽指示无效,UE收到该带宽指示值时,可以认为未在带内guard band上映射PDSCH。
在又一个示例中,基于NR中的回退DCI(DCI format 1-0),默认为全部被配的带内guard band不可用,当终端检测到使用回退DCI调度的PDSCH时,也可以认为基站未在带内guard band上映射PDSCH,其使用简化的信令设计可以降低系统开销。
前文对下行PDSCH的发送和接收进行了阐述,针对上行PUSCH的发送和接收,也可以采用与下行PDSCH的发送和接收类似的方法。例如,基站在调度PUSCH的DCI中配置RMI或者GBI,用于指示UE是否在与分配的频域资源重叠的带内guard band上映射PUSCH。在一些实施方式中,UE在与被调度PUSCH重叠的全部LBT带宽上的LBT都成功的情况下才可以发送,那么DCI(DCI format 0-1)中携带1bit的用于指示UE是否在可以映射PUSCH的带内guard band上映射PUSCH,例如该1bit可以为RMI或者GBI。可以理解的是,虽然都被称为RMI/GBI,但上行链路中的RMI/GBI和下行链路中的RMI/GBI机制上可以存在不同。示例性的,基站可以配置是否在(DCI format 0-1)中携带该1bit,例如,根据UE的能力配置。进一步地,UE可以通过基站在上行调度DCI中携带的频域调度信息确定具体可以在哪些带内guard band映射PUSCH。示例性地,请参照图16,DCI调度UE在LBT bandwidth#1,#2和#3以及带内guard band#2和#3(虚方框A和C)上发送PUSCH,在guard band#1上不发送PUSCH(方框B)。因此,UE在Guard band#2和guard band#3上映射PUSCH。由于LBT bandwidth#0的LBT结果未知,所以UE不能在guard band#1上映射PUSCH。UE可以根据基站的动态指示确定是否在guard band#2和guard band#3上映射PUSCH。在一个示例中,基站可以使用回退DCI(DCI format 0-0)调度PUSCH,UE可以不在与上行频域调度重叠的带内guard band内映射PUSCH。
本实施例的相关特征可以引用或结合前述实施例或下面实施例,因此,重复的部分没有赘述。另外,下属装置实施例或系统实施例中涉及网络设备或终端的(或相关模块、芯片、系统、计算机程序,存储介质),也可以用于执行本申请实施例所提供的方法。
前述各个实施方式中,通过RRC或者标准预设或者DCI指示等等的方式,承载配置带宽、可用带宽或者guardband等信息,以便于将宽带场景下的带内guardband信息指示给UE。
另外,在接收侧,终端或者UE基于对配置带宽、可用带宽以及或者guardband 的指示,可以确定guardband。这样,可以避免信号泄露造成干扰;也可以提高解码概率,提高系统性能。
以上所示例的具体实施方式,对本申请的目的和技术方案进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围。凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (14)

  1. 一种非授权频谱中防护频带guardband的指示方法,其特征在于,包括:
    网络设备生成非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;
    所述网络设备发送上述生成的四种信息之一或者任意组合;
    其中,所述四种信息之一或者任意组合用于确定基于先听后说LBT的结果的guardband。
  2. 一种确定非授权频谱中防护频带guardband的方法,其特征在于,包括:
    终端接收非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;
    所述终端根据所述四种信息之一或者任意组合,确定基于先听后说LBT的结果的guardband。
  3. 根据权利要求1所述的方法,还包括在所述带宽中的可用带宽以内,在所述guardband以外的实际资源位置范围内进行数据发送。
  4. 根据权利要求2所述的方法,还包括在所述带宽中的可用带宽以内,在所述guardband以外的实际资源位置范围内进行数据接收。
  5. 如权利要求1-4任一所述的方法,其特征在于,
    所述配置带宽信息的指示、所述可用带宽信息的指示、所述不可用带宽信息的指示或所述防护频带guardband信息中的一个或者多个承载于系统消息或者RRC或者DCI中。
  6. 如权利要求1-5任一所述的方法,其特征在于,
    标准规定了根据先听后说LBT的结果的可能的所述可用带宽或者所述不可用带宽的大小和位置,或,基于所述可用带宽或者所述不可用带宽防护频带guardband的大小和位置,并预定义了所述配置带宽信息的指示、所述可用带宽信息的指示、所述不可用带宽信息的指示或所述防护频带guardband信息的指示的不同的值所对应的资源。
  7. 一种通信装置,其特征在于,包括:
    第一模块,用于生成非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;
    第二模块,用于发送上述生成的四种信息之一或者任意组合;
    其中,所述四种信息之一或者任意组合用于确定基于先听后说LBT的结果的guardband(大小和位置)。
  8. 一种通信装置,其特征在于,包括:
    第一模块,用于接收非授权频谱中的下述四种信息之一或者任意组合:配置带宽信息的指示、可用带宽信息的指示、不可用带宽信息的指示或防护频带guardband信息的指示;
    第二模块,用于根据所述四种信息之一或者任意组合,确定基于先听后说LBT的结果的guardband(大小和位置)。
  9. 根据权利要求7所述的装置,所述第二模块还用于在所述带宽中的可用带宽以内,在所述guardband以外的实际资源位置范围内进行数据发送。
  10. 根据权利要求8所述的装置,所述第二模块还用于在所述带宽中的可用带宽以内,在所述guardband以外的实际资源位置范围内进行数据接收。
  11. 如权利要求7-10任一所述的装置,其特征在于,
    所述配置带宽信息的指示、所述可用带宽信息的指示、所述不可用带宽信息的指示或所述防护频带guardband信息中的一个或者多个承载于系统消息或者RRC或者DCI中。
  12. 如权利要求7-10任一所述的装置,其特征在于,
    标准规定了根据先听后说LBT的结果的可能的所述可用带宽或者所述不可用带宽的大小和位置,或,基于所述可用带宽或者所述不可用带宽防护频带guardband的大小和位置,并预定义了所述配置带宽信息的指示、所述可用带宽信息的指示、所述不可用带宽信息的指示或所述防护频带guardband信息的指示的不同的值所对应的资源。
  13. 一种计算机可读存储介质,所述存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述权利要求1-6任一项所述的方法。
  14. 一种通信装置,其特征在于,包括:处理器、存储器和通信接口;
    所述处理器控制所述通信接口的收发动作;
    所述存储器存储程序;
    所述处理器调用所述存储器存储的程序,以执行权利要求1-6中任一项所述的方法。
PCT/CN2019/116845 2018-11-30 2019-11-08 一种防护频带指示方法及装置 WO2020108275A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980090962.1A CN113678529A (zh) 2018-11-30 2019-11-08 一种防护频带指示方法及装置
JP2021531101A JP7197700B2 (ja) 2018-11-30 2019-11-08 ガード・バンド指示方法及び装置
KR1020217020433A KR20210094076A (ko) 2018-11-30 2019-11-08 가드 대역 지시 방법 및 장치
CA3121404A CA3121404A1 (en) 2018-11-30 2019-11-08 Guard band indication method and apparatus
BR112021010349-0A BR112021010349A2 (pt) 2018-11-30 2019-11-08 Método de indicação de banda de guarda e aparelho
EP19888381.1A EP3890419A4 (en) 2018-11-30 2019-11-08 GUARD BAND DISPLAY METHOD AND APPARATUS
US17/334,418 US20210288852A1 (en) 2018-11-30 2021-05-28 Guard band indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811451586.8A CN111263440B (zh) 2018-11-30 一种防护频带指示方法及装置
CN201811451586.8 2018-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/334,418 Continuation US20210288852A1 (en) 2018-11-30 2021-05-28 Guard band indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020108275A1 true WO2020108275A1 (zh) 2020-06-04

Family

ID=70852608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116845 WO2020108275A1 (zh) 2018-11-30 2019-11-08 一种防护频带指示方法及装置

Country Status (8)

Country Link
US (1) US20210288852A1 (zh)
EP (1) EP3890419A4 (zh)
JP (1) JP7197700B2 (zh)
KR (1) KR20210094076A (zh)
CN (1) CN113678529A (zh)
BR (1) BR112021010349A2 (zh)
CA (1) CA3121404A1 (zh)
WO (1) WO2020108275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4171145A4 (en) * 2020-07-14 2023-11-22 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR ALLOCATING FREQUENCY RESOURCES IN A WIRELESS COMMUNICATION SYSTEM

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925345A4 (en) * 2019-02-14 2022-09-14 Nokia Technologies Oy CONFIGURING RESOURCES FOR A PORTION OF BANDWIDTH FOR A WIRELESS NETWORK
EP3910828B1 (en) * 2019-02-15 2024-02-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining transmission bandwidth and device
CN113424634A (zh) * 2019-02-15 2021-09-21 韩国电子通信研究院 用于非授权带通信的信号发送和接收方法及其装置
WO2020204506A1 (en) * 2019-03-29 2020-10-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel in wireless communication system
WO2020221648A1 (en) * 2019-04-30 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting and receiving an indication
CN114080851A (zh) * 2019-08-14 2022-02-22 株式会社Kt 在非许可频段中收发数据的方法和设备
CN115884198A (zh) * 2021-09-28 2023-03-31 华为技术有限公司 通信方法和通信装置
US20230140287A1 (en) * 2021-10-28 2023-05-04 Qualcomm Incorporated Guard interval communications
WO2024035531A1 (en) * 2022-08-10 2024-02-15 Apple Inc. Bandwidth enhancements for sidelink in the unlicensed spectrum
WO2024067846A1 (en) * 2022-09-30 2024-04-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatuses and wireless communication methods of resource allocation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312482A (zh) * 2012-03-14 2013-09-18 中兴通讯股份有限公司 下行基带信号生成方法及装置、基站
CN107852720A (zh) * 2015-07-17 2018-03-27 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN108289336A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 干扰消除方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092852A1 (ja) * 2005-03-02 2006-09-08 Fujitsu Limited Ofdm通信システム及びofdm通信方法
US8625568B2 (en) * 2007-09-21 2014-01-07 Lg Electronics Inc. Method of mapping physical resource to logical resource in wireless communication system
CN105101458B (zh) * 2014-05-08 2021-05-07 夏普株式会社 D2d通信中的不同cp长度共存的配置
WO2017075829A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 一种上下行载频间隔指示、获得方法及装置
RU2695079C1 (ru) * 2016-02-04 2019-07-19 Телефонактиеболагет Лм Эрикссон (Пабл) Развертывание службы узкополосной передачи на широкополосной несущей в защитной полосе частот
WO2018021008A1 (ja) * 2016-07-29 2018-02-01 日本電気株式会社 通信装置、方法、システム、プログラム及び記録媒体
US20180049067A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Techniques for enabling flexible guard-bands for a radio access technology in new radio
US10959105B2 (en) * 2017-09-29 2021-03-23 Qualcomm Incorporated Methods, apparatuses and systems for configuring bandwidth parts in shared spectrum
US10750492B2 (en) * 2017-12-20 2020-08-18 Qualcomm Incorporated Resource assignment in NR-SS
JP7093839B2 (ja) * 2018-01-10 2022-06-30 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 免許が不要なスペクトルの効率的な使用のための方法
US11363630B2 (en) * 2018-03-01 2022-06-14 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
EP3858078A1 (en) * 2018-09-28 2021-08-04 Telefonaktiebolaget LM Ericsson (publ) Rate matching for wideband carrier operation in nr-u

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312482A (zh) * 2012-03-14 2013-09-18 中兴通讯股份有限公司 下行基带信号生成方法及装置、基站
CN107852720A (zh) * 2015-07-17 2018-03-27 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
CN108289336A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 干扰消除方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Release 14 Description; Summary of Rel-14 Work Items (Release 14)", 3GPP TR 21.914 V1.1.0, 28 February 2018 (2018-02-28), pages 1 - 104, XP051393021 *
See also references of EP3890419A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4171145A4 (en) * 2020-07-14 2023-11-22 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR ALLOCATING FREQUENCY RESOURCES IN A WIRELESS COMMUNICATION SYSTEM

Also Published As

Publication number Publication date
EP3890419A1 (en) 2021-10-06
KR20210094076A (ko) 2021-07-28
JP7197700B2 (ja) 2022-12-27
CN111263440A (zh) 2020-06-09
BR112021010349A2 (pt) 2021-08-24
JP2022509681A (ja) 2022-01-21
CA3121404A1 (en) 2020-06-04
EP3890419A4 (en) 2022-01-19
US20210288852A1 (en) 2021-09-16
CN113678529A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2020108275A1 (zh) 一种防护频带指示方法及装置
CA3066685C (en) Signal transmission method, related device, and system
US11218273B2 (en) Signal transmission method, related device, and system
US11564181B2 (en) Method and apparatus for reporting power headroom report, and method and apparatus for obtaining power headroom report
WO2019242776A1 (zh) 无线通信方法及装置
CN110831126A (zh) 一种通信方法、装置及系统
US20200374904A1 (en) Uplink data sending and receiving method, apparatus, and system
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
WO2019029269A1 (zh) 信息指示方法及相关设备
CN110999367A (zh) 数据传输方法、终端和基站
WO2018228537A1 (zh) 信息发送、接收方法及装置
EP3648518A1 (en) Communication method and apparatus
WO2018137697A1 (zh) 一种资源分配方法、相关设备及系统
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
WO2019095925A1 (zh) 一种通讯方法、网络设备及终端设备
WO2020030127A1 (zh) 一种资源分配方法、相关设备及装置
US11963143B2 (en) Communication method and communications apparatus
WO2022104650A1 (zh) 上报直流载波位置的方法、终端设备和网络设备
CN111263440B (zh) 一种防护频带指示方法及装置
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2021134382A1 (zh) 一种资源指示方法、装置和系统
WO2024031233A1 (zh) 通信方法及终端设备
WO2022110245A1 (zh) 一种资源指示方法及装置
WO2019157744A1 (zh) 一种数据传输方法及设备
WO2021134378A1 (zh) 一种业务处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3121404

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021531101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021010349

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217020433

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019888381

Country of ref document: EP

Effective date: 20210630

ENP Entry into the national phase

Ref document number: 112021010349

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210527