WO2018137697A1 - 一种资源分配方法、相关设备及系统 - Google Patents

一种资源分配方法、相关设备及系统 Download PDF

Info

Publication number
WO2018137697A1
WO2018137697A1 PCT/CN2018/074220 CN2018074220W WO2018137697A1 WO 2018137697 A1 WO2018137697 A1 WO 2018137697A1 CN 2018074220 W CN2018074220 W CN 2018074220W WO 2018137697 A1 WO2018137697 A1 WO 2018137697A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource blocks
blocks
indication information
frequency domain
Prior art date
Application number
PCT/CN2018/074220
Other languages
English (en)
French (fr)
Inventor
贾琼
朱俊
范巍巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710434527.9A external-priority patent/CN108366424B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18745342.8A priority Critical patent/EP3567955B1/en
Priority to JP2019540347A priority patent/JP6961001B2/ja
Publication of WO2018137697A1 publication Critical patent/WO2018137697A1/zh
Priority to US16/522,305 priority patent/US11303418B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a resource allocation method, related device, and system.
  • ETSI European Telecommunications Standards Institute
  • ETSI stipulates that in the 2.4 GHz and 5 GHz bands, the transmission bandwidth of the signal is required to occupy more than 80% of the system bandwidth, while for the 60 GHz band, the transmission bandwidth of the signal is required to occupy the system bandwidth. More than 70%.
  • ETSI requires a signal with a maximum power spectral density of 10 dBm/MHz in the 5150-5350 MHz band.
  • the base station can make full use of the spectrum resources to meet the requirements of ESTI.
  • the above-mentioned restrictions undoubtedly pose a huge challenge to the allocation of uplink resources.
  • the eLAA Enhanced Licensed Assisted Access
  • the eLAA adopts a resource interlace structure.
  • a resource interleave consists of an integer number of resource blocks evenly distributed over the system bandwidth.
  • the uplink resource allocation is based on resource interlace, and the resources allocated to each terminal are at least one resource interlace. As shown in FIG. 1, it is assumed that the system bandwidth is 20 MHz, the system bandwidth of 20 MHz corresponds to 100 RBs (RB0 to RB99), and each resource interlace is composed of 10 resource blocks (Resource Block, RB) uniformly distributed over the entire bandwidth.
  • Resource Block Resource Block
  • each resource interlace the RBs in each resource interlace are separated by 10 RBs. This ensures that the frequency domain span formed by each interlace (the bandwidth span between the two RBs at the beginning and the end) is 91 RBs, which is about 16.38 MHz, which is greater than 80% of the system bandwidth of 20 MHz.
  • the existing resource interlace structure is fixed by 10 RBs and is not flexible enough.
  • the number of RBs that need to be allocated to the terminal is not an integer multiple of 10, a waste of resources is caused.
  • the next-generation New Radio (NR) technology supports multiple system bandwidths, and the sub-carrier spacing is flexibly configured.
  • the system bandwidth corresponding to the total number of RBs may no longer be an integer multiple of 10.
  • the existing resource interlace scheme cannot achieve flexible scheduling of resources.
  • the technical problem to be solved by the embodiments of the present application is that the existing resource interlace scheme cannot implement flexible scheduling of resources, and provides a resource allocation method, related equipment and system, which realizes flexible scheduling of resources and can better adapt. Multi-bandwidth scenarios supported by next-generation new air interface technology.
  • a resource allocation method including: when performing uplink resource allocation, a resource group allocated by a base station to a terminal includes M (M ⁇ 2, M is a positive integer) first resource blocks, and the M first The frequency domain span formed by a resource block accounts for more than a preset threshold in the system bandwidth.
  • the resource group further includes N (N ⁇ 1, N is a positive integer) second resource blocks in any frequency domain location.
  • the base station may send resource indication information to the terminal, where the resource indication information is used to indicate the resource group allocated to the terminal, where the resource indication information includes The resource group information. It can be understood that, in order to avoid resource conflict, the N second resource blocks allocated to the terminal are distributed in any frequency domain location except the M first resource blocks.
  • the selection of the preset threshold may refer to the OCB specification of the ETSI to satisfy the OCB requirement of the ESTI.
  • the preset threshold may be set to ⁇ 80%.
  • the flexibility of uplink resource scheduling can be improved on the basis of meeting the OCB requirements of the ESTI.
  • the M first resource blocks allocated to the terminal may be one or more pairs of resource blocks from the first resource set, the first resource
  • the frequency domain span between each pair of resource blocks in the set is greater than the preset threshold in the system bandwidth.
  • the frequency domain span between each pair of resource blocks in the first resource set is greater than the preset threshold in the system bandwidth, and meets the OCB requirement of the ESTI.
  • multiple pairs of resource blocks in the first resource set may be allocated in pairs to multiple terminals that need to transmit uplink data in an unlicensed frequency band, so that the signal transmission bandwidth of each terminal satisfies the basic OCB.
  • the other N second resource blocks allocated to the terminal can be distributed in any frequency domain location, which can maximize the flexibility of resource allocation on the basis of ensuring that the basic requirements of the OCB are met.
  • the first resource set may be implemented by, but not limited to, the following manners:
  • the frequency domain span between each pair of resource blocks in the first resource set is the same, and the frequency domain span between each pair of resource blocks is greater than the ratio in the system bandwidth. Preset threshold.
  • the frequency span between the pairs of resource blocks in the first resource set decreases from large to small, and the proportion of the smallest frequency span in the system bandwidth is greater than the preset threshold.
  • first resource set may also be presented in other forms as long as the proportion of each pair of resource blocks in the system bandwidth is greater than the preset threshold.
  • the proportion of the frequency domain span formed by the N second resource blocks in the system bandwidth may be smaller than the preset threshold. That is, the N second resource blocks may be distributed in an intermediate frequency domain location of the system bandwidth. It can be understood that, since the number of resource blocks that can satisfy the OCB requirement at both ends of the system bandwidth is limited, the scheduling manner of distributing the N second resource blocks in the intermediate frequency domain position may be beneficial to the base station to be limited.
  • the resource blocks at both ends are allocated to more terminals that need to transmit uplink data on the unlicensed band.
  • the proportion of the frequency domain span formed by the N second resource blocks in the system bandwidth may be greater than the preset threshold. That is, at least two resource blocks of the N second resource blocks are distributed at both ends of the system bandwidth.
  • the resource indication information may be implemented by, but not limited to, the following manners:
  • the resource indication information may include: an index of the one or more pairs of resource blocks allocated to the terminal in the first resource set. For example, if the first pair of resource blocks are allocated to the terminal from the first resource set shown in FIG. 7, the resource indication information sent to the terminal may include: an index “1” of the first pair of resource blocks. .
  • the examples are only used to explain the embodiments of the present application and should not be construed as limiting.
  • the resource indication information further includes: one corresponding to the N second resource blocks An index of one or more pairs of resource blocks in the first set of resources. If the N second resource blocks allocated to the terminal are resource blocks other than the first resource set, the resource indication information further includes: a resource block number of the N second resource blocks.
  • the resource indication information may include: a resource block number of the M first resource blocks allocated to the terminal, and a resource block number of the N second resource blocks.
  • the resource blocks in the entire system bandwidth may be numbered, and the resource block number may be used to indicate a specific resource block.
  • the resource block number may also be referred to as a resource block index.
  • the base station when transmitting the resource indication information, may carry the resource indication information in downlink control information (DCI).
  • DCI downlink control information
  • the base station may carry the resource indication information in an uplink grant authorization (UL grant) returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the base station may further carry the resource indication information in other response messages for the scheduling request, or the base station may separately encapsulate the resource indication information into a message, and return the message to the terminal.
  • the manner in which the resource indication information is sent is not limited in this embodiment.
  • the M first resource blocks may constitute K (K ⁇ 1, K is a positive integer) resource interleave, and the frequency domain formed by the K resources interleaving The span of the span in the system bandwidth is greater than the preset threshold.
  • the N second resource blocks may be partial resource blocks in a resource interlace, and the resource interlaces to which the N second resource blocks belong are allocated to multiple terminals. It should be noted that the N second resource blocks may be from one resource interlace or may be interlaced from multiple resources.
  • the M first resource blocks allocated to the terminal constitute K resource interlaces, and the proportion of the frequency domain spans formed by the K resources interleaving in the system bandwidth is greater than the preset threshold, and is allocated to
  • the other N second resource blocks of the terminal are partial resource blocks in the resource interlace, and the resource interlaces to which the N second resource blocks belong are split into multiple parts and shared by multiple terminals. This can improve the flexibility of resource scheduling and improve resource utilization on the basis of meeting the OCB requirements of ESTI.
  • the resource indication information may be implemented by, but not limited to, the following manners:
  • the resource indication information may include any one or more of the following: an interlaced index of the K resource interlaces, and an interleaved index of resource interlaces to which the N second resource blocks belong, A resource block index of the N second resource blocks in the belonging resource interleave.
  • the base station may perform index numbering on resource interlaces included in the entire system bandwidth.
  • the base station may also perform index numbering on the resource blocks included in each resource interleave.
  • the resource block index numbers of the 10 resource blocks include: 0-9.
  • the resource indication information may further include: attribute indication information corresponding to a resource interleave (ie, a partial interlace) to which the N second resource blocks belong, and is used to indicate that the belonging resource is interleaved. Only a part of resource blocks are allocated to the terminal, and the belonging resource interleave is split into a plurality of parts, which are shared by a plurality of terminals.
  • attribute indication information corresponding to a resource interleave (ie, a partial interlace) to which the N second resource blocks belong, and is used to indicate that the belonging resource is interleaved. Only a part of resource blocks are allocated to the terminal, and the belonging resource interleave is split into a plurality of parts, which are shared by a plurality of terminals.
  • the resource indication information may further include: a resource block number of the M first resource blocks allocated to the terminal, and a resource block number of the N second resource blocks.
  • the resource blocks in the entire system bandwidth may be numbered, and the resource block number may be used to indicate a specific resource block.
  • the resource block number may also be referred to as a resource block index.
  • the resource indication information may include: an interlace index of the K resource interlaces, and a resource block number of the N second resource blocks.
  • the example is only one implementation manner of the embodiment of the present application, and may be different in actual application, and should not be construed as limiting.
  • the base station when transmitting the resource indication information, may carry the resource indication information in downlink control information (DCI).
  • DCI downlink control information
  • the base station may carry the resource indication information in an uplink grant authorization (UL grant) returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the base station may further carry the resource indication information in other response messages for the scheduling request, or the base station may separately encapsulate the resource indication information into a message, and return the message to the terminal.
  • the manner in which the resource indication information is sent is not limited in this embodiment.
  • the K resource interlaces may each include H resource blocks, H is a positive integer, and H can be corresponding to an unlicensed band. Diversified by the total number of resource blocks corresponding to each of the multiple transmission bandwidths.
  • a full resource interleave allocated to the terminal may be indicated by a resource indication value (RIV).
  • RIV resource indication value
  • the indication mode of the RIV can be mainly used to indicate the complete resource interleaving allocated to the terminal.
  • the resource indication manner mentioned in the foregoing content may be used to supplement the indication, and details are not described herein again.
  • a network device comprising a plurality of functional modules for respectively performing the method provided by any one of the first aspect or the possible embodiments of the first aspect.
  • a network device for performing the resource allocation method described in the first aspect.
  • the wireless network device can include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a mobile communication signal to another wireless network device, such as a terminal, The receiver is configured to receive the mobile communication signal sent by the another wireless network device, such as a terminal, the memory is used to store an implementation code of the resource allocation method described in the first aspect, and the processor is configured to perform the storage in the memory
  • the program code that is, the resource allocation method described in any one of the first aspect or the possible implementation of the first aspect.
  • a communication system comprising: a base station and a terminal, wherein:
  • the resource group allocated to the terminal includes M (M ⁇ 2, M is a positive integer) first resource blocks, and the frequency domain span formed by the M first resource blocks is in the system.
  • the proportion of the bandwidth is greater than a preset threshold; the resource group further includes N (N ⁇ 1, N is a positive integer) second resource blocks in any frequency domain location.
  • the base station is further configured to send resource indication information to the terminal, where the resource indication information is used to indicate the resource group allocated to the terminal, where the resource group information is included.
  • the terminal may perform signal processing according to the resource indication information, for example, modulating uplink data to be transmitted on a resource indicated by the resource indication information, and performing a transmission signal on the transmission signal. Frequency reuse, processing of resource sharing, and more.
  • the terminal is further configured to send the processed uplink data to the base station on the resource indicated by the resource indication information.
  • the base station may be the network device described in the second aspect or the third aspect.
  • the base station may also be the base station mentioned in the first aspect.
  • a fifth aspect a computer readable storage medium storing program code for implementing the resource allocation method described in the first aspect, the program code comprising the resource allocation method described in the first aspect Execute the instruction.
  • the flexibility of uplink resource scheduling can be improved on the basis of satisfying the OCB requirements of the ESTI. Further, resource utilization can also be improved.
  • FIG. 1 is a schematic diagram of an existing resource allocation manner according to the present application.
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to the present application.
  • FIG. 3 is a schematic diagram of a hardware architecture of a terminal provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a hardware architecture of a base station according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a resource allocation method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of resources in a system bandwidth scenario according to the present application.
  • FIG. 7 is a schematic diagram of resources of a first resource set (including 12 pairs of resource blocks) provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of resources of a first resource set (including 10 pairs of resource blocks) according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of resources of a first resource set (including 6 pairs of resource blocks) according to still another embodiment of the present application.
  • FIG. 10 is a schematic diagram of resources of a first resource set (including three pairs of resource blocks) according to still another embodiment of the present application.
  • FIG. 11 is a schematic flowchart diagram of a resource allocation method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of resource allocation with resource interleaving as a scheduling unit according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a resource set that can be used for PUSCH transmission defined in LTE;
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the wireless communication system 200 can operate in a licensed band or in an unlicensed band. As can be appreciated, the use of unlicensed frequency bands can increase the system capacity of the wireless communication system 200.
  • the wireless communication system 200 includes one or more base stations 201, such as a NodeB, an eNodeB, or a WLAN access point, one or more terminals (Terminal) 203, and a core network 215. among them:
  • Base station 201 can be used to communicate with terminal 203 under the control of a base station controller (not shown).
  • the base station controller may be part of the core network 230 or may be integrated into the base station 201.
  • the base station 201 can be configured to transmit control information or user data to the core network 215 via a blackhaul interface (e.g., S1 interface) 213.
  • a blackhaul interface e.g., S1 interface
  • the base station 201 can communicate wirelessly with the terminal 203 via one or more base station antennas. Each base station 201 can provide communication coverage for each respective coverage area 207.
  • the coverage area 207 corresponding to the access point may be divided into a plurality of sectors, wherein one sector corresponds to a part of coverage (not shown).
  • the base station 201 and the base station 201 may also communicate with each other directly or indirectly via a blackhaul link 211.
  • the backhaul link 211 may be a wired communication connection or a wireless communication connection.
  • the base station 201 may include: a base transceiver station (Base Transceiver Station), a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, etc.
  • the wireless communication system 200 can include several different types of base stations 201, such as a macro base station, a micro base station, and the like.
  • the base station 201 can apply different wireless technologies, such as a cell radio access technology, or a WLAN radio access technology.
  • Terminals 203 may be distributed throughout wireless communication system 200, either stationary or mobile.
  • the terminal 203 may include: a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • the wireless communication system 200 may be an LTE communication system capable of operating in an unlicensed frequency band, such as LTE-U, or a communication system capable of operating in an unlicensed frequency band of 5G and a future new air interface.
  • the wireless communication system 200 can employ a grant assisted access (LAA) scheme to handle terminal access on unlicensed frequency bands.
  • LAA grant assisted access
  • the primary cell operates in the licensed frequency band to transmit key messages and services that require quality of service guarantees.
  • the secondary cell operates in an unlicensed frequency band to improve data plane performance.
  • the wireless communication system 200 can support multi-carrier (waveform signals of different frequencies) operations.
  • a multi-carrier transmitter can simultaneously transmit modulated signals on multiple carriers.
  • each communication connection 205 can carry multi-carrier signals modulated with different wireless technologies.
  • Each modulated signal can be transmitted on different carriers, and can also carry control information (such as reference signals, control channels, etc.), overhead information, data, and the like.
  • the wireless communication system 200 can also include a WiFi network.
  • the wireless communication system 200 may employ a Listen before Talk (LBT) mechanism.
  • LBT Listen before Talk
  • some terminals 203 may connect to the WiFi access point 209 via the WiFi communication connection 217 to use unlicensed spectrum resources, and some terminals 203 may also connect to the base station 201 via the mobile communication connection 205 to use unlicensed spectrum resources.
  • any device When using an unlicensed band, any device must first listen to see if the band is occupied. If the band is not busy, it can occupy and transmit data.
  • the terminal 300 may include: an input and output module (including an audio input and output module 318, a key input module 316, and a display 320, etc.), a user interface 302, one or more terminal processors 304, a transmitter 306, and a receiving The 308, the coupler 310, the antenna 314, and the memory 312. These components can be connected by bus or other means, and FIG. 3 is exemplified by a bus connection. among them:
  • Communication interface 301 can be used by terminal 300 to communicate with other communication devices, such as base stations.
  • the gaze content may be the base station 400 shown in FIG. 4.
  • the communication interface 301 may include: a Global System for Mobile Communication (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and a long-term One or more of the Long Term Evolution (LTE) (4G) communication interfaces and the like may also be a communication interface of 4.5G, 5G or a future new air interface.
  • the terminal 300 may be configured with a wired communication interface 301, such as a Local Access Network (LAN) interface.
  • LAN Local Access Network
  • the antenna 314 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 310 is configured to divide the mobile communication signal received by the antenna 314 into multiple channels and distribute it to a plurality of receivers 308.
  • Transmitter 306 can be used to transmit signals to signals output by terminal processor 304, such as modulating the signal in a licensed band or modulating a signal in an unlicensed band.
  • the transmitter 206 may include an unlicensed spectrum transmitter 3061 and an authorized spectrum transmitter 3063.
  • the unlicensed spectrum transmitter 3061 can support the terminal 300 to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter 3063 can support the terminal 300 to transmit signals on one or more licensed spectrums.
  • Receiver 308 can be used to perform reception processing on the mobile communication signals received by antenna 314.
  • the receiver 308 can demodulate a received signal that has been modulated on an unlicensed band, and can also demodulate a received signal that is modulated on a licensed band.
  • the receiver 308 can include an unlicensed spectrum receiver 3081 and an authorized spectrum receiver 3083.
  • the unlicensed spectrum receiver 3081 can support the terminal 300 to receive signals modulated on the unlicensed spectrum
  • the authorized spectrum receiver 3083 can support the terminal 300 to receive signals modulated on the licensed spectrum.
  • transmitter 306 and receiver 308 can be viewed as a wireless modem.
  • the number of the transmitter 306 and the receiver 308 may each be one or more.
  • the terminal 300 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the above-described wireless communication signals, the terminal 300 can also support other wireless communication signals such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal 300 may be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement interaction between the terminal 300 and the user/external environment, and can mainly include an audio input and output module 318, a key input module 316, a display 320, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like.
  • the input and output modules communicate with the terminal processor 304 through the user interface 302.
  • Memory 312 is coupled to terminal processor 304 for storing various software programs and/or sets of instructions.
  • memory 312 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 312 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 312 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 312 can also store a user interface program, which can realistically display the content image of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 312 can be used to store an implementation program of the resource allocation method provided by one or more embodiments of the present application on the terminal 300 side.
  • the resource allocation method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • Terminal processor 304 can be used to read and execute computer readable instructions. Specifically, the terminal processor 304 can be used to invoke a program stored in the memory 312. For example, the resource allocation method provided by one or more embodiments of the present application implements the program on the terminal 300 side, and executes the instructions included in the program.
  • the terminal 300 can be the terminal 203 in the wireless communication system 200 shown in FIG. 2, and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, and a user agent. , mobile client and more.
  • the terminal 300 shown in FIG. 3 is only one implementation manner of the embodiment of the present application. In an actual application, the terminal 300 may further include more or fewer components, which are not limited herein.
  • base station 400 can include a communication interface 403, one or more base station processors 401, a transmitter 407, a receiver 409, a coupler 411, an antenna 413, and a memory 405. These components can be connected by bus or other means, and FIG. 4 is exemplified by a bus connection. among them:
  • Communication interface 403 can be used by base station 400 to communicate with other communication devices, such as terminal devices or other base stations.
  • the terminal device may be the terminal 300 shown in FIG. 3.
  • the communication interface 403 may include: a Global System for Mobile Communications (GSM) (2G) communication interface, a Wideband Code Division Multiple Access (WCDMA) (3G) communication interface, and a Long Term Evolution (LTE) (4G) communication interface, and the like.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the base station 400 may be configured with a wired communication interface 403 to support wired communication.
  • the backhaul link between one base station 400 and the other base stations 400 may be a wired communication connection.
  • the antenna 413 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 411 can be used to divide the mobile pass signal into multiple channels and distribute it to a plurality of receivers 409.
  • the transmitter 407 can be used to transmit a signal output by the base station processor 401, such as modulating the signal in a licensed band or modulating a signal in an unlicensed band.
  • the transmitter 407 can include an unlicensed spectrum transmitter 4071 and an authorized spectrum transmitter 4073.
  • the unlicensed spectrum transmitter 4071 can support the base station 400 to transmit signals on one or more unlicensed spectrums
  • the licensed spectrum transmitter 4073 can support the base station 400 to transmit signals on one or more licensed spectrums.
  • the receiver 409 can be used to perform reception processing on the mobile communication signal received by the antenna 413.
  • the receiver 409 can demodulate a received signal that has been modulated on an unlicensed band, and can also demodulate a received signal that is modulated on a licensed band.
  • the receiver 409 may include an unlicensed spectrum receiver 4091 and an authorized spectrum receiver 4093.
  • the unlicensed spectrum receiver 4091 can support the base station 400 to receive signals modulated on the unlicensed spectrum
  • the licensed spectrum receiver 4093 can support the base station 400 to receive signals modulated on the licensed spectrum.
  • transmitter 407 and receiver 409 can be viewed as a wireless modem.
  • the number of the transmitter 407 and the receiver 409 may each be one or more.
  • Memory 405 is coupled to base station processor 401 for storing various software programs and/or sets of instructions.
  • memory 405 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 405 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 405 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the base station processor 401 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and control the handoff of user equipment in the control area.
  • the base station processor 401 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM) (for completion) Call processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code transform and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) and many more.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code transform and sub-multiplexer
  • the base station processor 401 can be used to read and execute computer readable instructions. Specifically, the base station processor 401 can be used to invoke a program stored in the memory 405. For example, the resource allocation method provided by one or more embodiments of the present application implements a program on the base station 400 side, and executes instructions included in the program.
  • the base station 400 can be the base station 201 in the wireless communication system 200 shown in FIG. 2, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), and a NodeB. , eNodeB, etc.
  • the base station 400 can be implemented as several different types of base stations, such as macro base stations, micro base stations, and the like.
  • the base station 400 can apply different wireless technologies, such as a cell radio access technology, or a WLAN radio access technology.
  • the base station 400 shown in FIG. 4 is only one implementation of the embodiment of the present application. In actual applications, the base station 400 may further include more or fewer components, which are not limited herein.
  • the resource scheduling flexibility can be achieved when the uplink resource allocation is performed.
  • the embodiment of the present application provides a resource. Distribution method.
  • the main application principle of the present application may include: when performing uplink resource allocation, resources allocated by the base station to the terminal may be divided into two parts. A part of the resources may form a frequency domain span in which the proportion of the entire system bandwidth is greater than a preset threshold; another part of the resources may be flexibly distributed in any position in the system bandwidth. In this way, a certain frequency domain span can be guaranteed, and the flexibility of uplink resource allocation can also be improved.
  • the selection of the preset threshold may refer to the OCB specification of the ETSI to satisfy the OCB requirement of the ESTI. For example, in the 2.4 GHz and 5 GHz bands, if the transmission bandwidth of the ETSI requires the signal to occupy more than 80% of the system bandwidth, the preset threshold may be set to ⁇ 80%.
  • the part of resources includes M resource blocks (RBs), and the other part of resources includes N resource blocks (RBs).
  • M ⁇ 2, N ⁇ 1, M and N are positive integers.
  • the M resource blocks may be used to make the transmission bandwidth of the signal meet the OCB requirement, and is referred to as a first resource block.
  • the N resource blocks are used to flexibly use the transmission bandwidth of the signal when the transmission bandwidth of the signal satisfies the OCB, and is referred to as a second resource block.
  • the resources allocated to the signal include at least two first resource blocks, for example, at least one pair.
  • a resource block or at least one interlace the farther apart the two first resource blocks are in the frequency domain, the larger the transmission bandwidth of the signal.
  • FIG. 5 illustrates a resource allocation method provided by an embodiment of the present application.
  • the M first resource blocks allocated to the terminal are from one or more pairs of resource blocks in the first resource set, and each pair of resource blocks in the first resource set is between
  • the frequency domain span (Frequency Spacing) in the system bandwidth is greater than the preset threshold; the frequency domain locations of the other N second resource blocks allocated to the terminal are not limited, and the M first resources are not limited.
  • the library conflicts As shown in FIG. 5, the method can include:
  • the base station receives a scheduling request (SR) sent by the terminal.
  • the scheduling request is used to request the base station to allocate an uplink transmission resource.
  • the terminal may periodically send a scheduling request to the base station, for example, the terminal sends the scheduling request to the base station every other transmission time interval (TTI).
  • the terminal may also send the scheduling request to the base station under event driving. For example, when there is uplink data to be transmitted, the terminal sends the scheduling request to the base station.
  • the arrival of the uplink data is an event that drives the terminal to transmit the scheduling request.
  • the embodiment of the present application does not limit the trigger mechanism for the terminal to send the scheduling request.
  • the resource allocated by the base station to the terminal includes M first resource blocks and N second resource blocks in an arbitrary frequency domain location, where the M first resource blocks are in the first resource set.
  • the N second resource blocks allocated to the terminal are distributed in any frequency domain position except the M first resource blocks.
  • the resource block in the first resource set may be divided into two parts, and the two parts are respectively distributed at two ends or both ends of the system bandwidth.
  • the two resource blocks included in each pair of resource blocks in the first resource set are respectively derived from the two parts, such that the frequency domain span between each pair of resource blocks accounts for more than the system bandwidth.
  • the preset threshold satisfies the OCB requirement of ESTI.
  • the system bandwidth supported by the 5 GHz band is 20 MHz, and the subcarrier spacing is 15 kHz.
  • the 20MHz system bandwidth except for the guard band (about 10% of the system bandwidth), there are 100 RBs left as the system transmission bandwidth, and each RB contains 12 consecutive subcarriers (180KHz) in the frequency domain.
  • a pair of resource blocks formed by RB0 and RB88 enables the transmission bandwidth of the signal to meet the minimum requirement of the OCB, and the frequency domain span corresponding to the combination of other RBs (such as RB89, RB90, etc.) after RB0 and RB88 is larger. And obviously meet the OCB requirements.
  • a pair of resource blocks formed by RB99 and RB11 also make the transmission bandwidth of the signal just meet the minimum requirement of OCB, and the frequency domain span corresponding to the combination of other RBs (such as RB10, RB9, etc.) before RB99 and RB11 is larger. Obviously also meet the OCB requirements.
  • one of the two resource blocks included in each pair of resource blocks in the first resource set may come from one end of the system bandwidth: RB0-RB11
  • Another resource block can come from the other end of the system bandwidth: RB88-RB99.
  • the base station may arbitrarily select one resource block from one end of the system bandwidth, and arbitrarily select one resource block from the other end of the system bandwidth, so that the selected frequency domain span between the two resource blocks is in the system.
  • the percentage of the bandwidth will be greater than the preset threshold to meet the OCB requirements.
  • the frequency domain span between RB0 and RB89 is 16.20 MHz, which is greater than 80% in system bandwidth.
  • the frequency domain span between each pair of resource blocks in the first resource set is the same, and the frequency domain span between each pair of resource blocks is greater than the ratio in the system bandwidth. Preset threshold.
  • the first resource set includes 12 pairs of resource blocks, where: RB0 and RB88 form a first pair of resource blocks, RB1 and RB89 form a second pair of resource blocks, and RB2 and RB90 form a third pair of resource blocks, RB3 and RB91 form the 4th pair of resource blocks, and so on.
  • the frequency domain span between each pair of resource blocks is 16.02 MHz, and the proportion in the system bandwidth is slightly more than 80%, which satisfies the OCB requirement.
  • 12 pairs of resource blocks in the first resource set shown in FIG. 7 can be allocated in pairs to multiple terminals that need to transmit uplink data in an unlicensed frequency band.
  • the base station may process the remaining 76 resource blocks (RB12-RB87) except the 12 pairs of resource blocks according to an existing resource scheduling manner (such as an uplink resource scheduling manner in LTE), which can be implemented to ensure that the OCB is satisfied. Based on the basic requirements, maximize the flexibility of resource allocation and improve resource utilization.
  • FIG. 7 is only one embodiment of the first resource set.
  • the frequency domain span between a pair of resource blocks may be larger, not limited to 16.02 MHz.
  • the first resource set includes 10 pairs of resource blocks, where: RB0 and RB90 form a first pair of resource blocks, RB1 and RB91 form a second pair of resource blocks, and RB2 and RB92 form a third pair of resources. Block, and so on.
  • the frequency domain span between each pair of resource blocks is 16.38 MHz, and the proportion in the system bandwidth is greater than 80%.
  • the specific value of the frequency domain span between each pair of resource blocks in the first resource set is not limited in this embodiment.
  • the frequency span between the pairs of resource blocks in the first resource set decreases from large to small, and the proportion of the smallest frequency span in the system bandwidth is greater than the preset threshold.
  • the first resource set includes 6 pairs of resource blocks: RB0 and RB99 form a first pair of resource blocks, RB1 and RB98 form a second pair of resource blocks, and RB2 and RB97 form a third pair of resource blocks, RB3 and RB96 forms the fourth pair of resource blocks, and so on.
  • the frequency domain span between the first pair of resource blocks is 18 MHz
  • the frequency domain span between the second pair of resource blocks is 17.82 MHz
  • the frequency domain span between the third pair of resource blocks is 17.64 MHz, which is successively decreased.
  • the frequency domain span between the sixth pair of resource blocks is the smallest, which is 16.02 MHz
  • the proportion in the system bandwidth is slightly more than 80%, which satisfies the OCB requirement.
  • the 6 pairs of resource blocks shown in FIG. 9 can be allocated to a plurality of terminals that need to transmit uplink data in an unlicensed band.
  • the base station may process the remaining 88 resource blocks (RB6-RB93) except the 6 pairs of resource blocks according to an existing resource scheduling manner (such as an uplink resource scheduling manner in LTE), which can be implemented to ensure that the OCB is satisfied. Based on the basic requirements, maximize the flexibility of resource allocation and improve resource utilization.
  • the frequency domain spans of any two adjacent pairs of resource blocks are different by 2 RBs, for example, the frequency domain span between the first pair of resource blocks is 100 RBs.
  • the frequency domain span between the second pair of resource blocks is 98 RBs, and the frequency domain span between the third pair of resource blocks is 96 RBs.
  • FIG. 9 is only one embodiment of implementing the first resource set, which may be different in actual application and should not be construed as limiting.
  • the difference between the frequency domain spans of the adjacent two pairs of resource blocks may be different, and is not limited to a fixed difference, such as two RBs.
  • the first resource set includes three pairs of resource blocks: RB0 and RB99 form a first pair of resource blocks, RB2 and RB97 form a second pair of resource blocks, and RB3 and RB96 form a third pair of resource blocks.
  • the difference between the frequency domain spans corresponding to the first pair of resource blocks and the second pair of resource blocks is 4 RBs
  • the difference between the frequency domain spans of the second pair of resource blocks and the third pair of resource blocks is 2 RB.
  • the first resource set may also be presented in other forms as long as the proportion of each pair of resource blocks in the system bandwidth is greater than the preset threshold.
  • the first resource set includes the following pairs of resource blocks: a first pair of resource blocks composed of RB0 and RB89, a second pair of resource blocks composed of RB1 and RB88, and a third pair of resource blocks composed of RB3 and RB92. It can be seen that the first resource set including the three pairs of resource blocks does not meet the foregoing first implementation manner and the foregoing first implementation manner, but meets the OCB requirement.
  • the base station in order to avoid resource conflicts, the base station usually cannot carry uplink transmission signals of multiple terminals on the same pair of resource blocks.
  • multiple terminals need to share resources and be able to avoid signal interference on the shared resources, such that the one or more pairs of resource blocks allocated by the base station to different terminals may coincide.
  • the N second resource blocks are described. It can be understood that the one or more pairs of first resource blocks allocated to the terminal are used to satisfy the OCB requirement of the ESTI, and the location of the other N second resource blocks of the allocation terminal in the frequency domain may be unrestricted.
  • the proportion of the frequency domain span formed by the N second resource blocks in the system bandwidth may be greater than the preset threshold. That is, at least two resource blocks of the N second resource blocks are distributed at both ends of the system bandwidth.
  • the proportion of the frequency domain span formed by the N second resource blocks in the system bandwidth may be less than the preset threshold. That is, the N second resource blocks may be distributed in an intermediate frequency domain location of the system bandwidth. It can be understood that, since the number of resource blocks that can satisfy the OCB requirement at both ends of the system bandwidth is limited, the scheduling manner of distributing the N second resource blocks in the intermediate frequency domain position may be beneficial to the base station to be limited.
  • the resource blocks at both ends are allocated to more terminals that need to transmit uplink data on the unlicensed band.
  • the base station may perform scheduling processing on resources in the intermediate frequency domain location according to an existing resource scheduling manner, such as an uplink resource scheduling manner in LTE.
  • the base station returns resource indication information to the terminal, where the resource indication information is used to indicate resources allocated by the base station to the terminal, where the resource group information is included.
  • the base station may carry the resource indication information in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • a field may be added to the DCI, where the field is used to indicate the one or more pairs of resource blocks allocated to the terminal, and the content of the added field may be the one or more pairs of resource blocks.
  • Index For example, the index "1" indicates a pair of resource blocks formed by RB0 and RB99.
  • the base station may use an associated field for resource indication in the existing DCI format, such as a RB resource allocation (Resource block assignment) field, etc., to indicate.
  • RB resource allocation Resource block assignment
  • the base station may carry the resource indication information in an uplink scheduling grant (UL grant) that is returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the base station may further carry the resource indication information in other response messages for the scheduling request, or the base station may separately encapsulate the resource indication information into a message, and return the message to the terminal.
  • the manner in which the resource indication information is sent is not limited in this embodiment.
  • the resource indication information may include: an index of the one or more pairs of resource blocks allocated to the terminal in the first resource set. For example, if the first pair of resource blocks are allocated to the terminal from the first resource set shown in FIG. 7, the resource indication information sent to the terminal may include: an index “1” of the first pair of resource blocks. .
  • the examples are only used to explain the embodiments of the present application and should not be construed as limiting.
  • the resource indication information further includes: one corresponding to the N second resource blocks An index of one or more pairs of resource blocks in the first set of resources. If the N second resource blocks allocated to the terminal are resource blocks other than the first resource set, the resource indication information further includes: a resource block number of the N second resource blocks.
  • the resource indication information may include: a resource block number of the M first resource blocks allocated to the terminal, and a resource block number of the N second resource blocks.
  • the resource blocks in the entire system bandwidth may be numbered, and the resource block number may be used to indicate a specific resource block.
  • the resource block number may also be referred to as a resource block index.
  • the terminal may perform signal processing according to the resource indication information, for example, modulating uplink data to be transmitted on the resource indicated by the resource indication information, and performing frequency repetition on the transmission signal. Use, resource sharing processing, etc.
  • S106 The terminal sends the processed uplink data to the base station on the resource indicated by the resource indication information.
  • the M first resource blocks allocated to the terminal are from one or more pairs of resource blocks in the first resource set, and between each pair of resource blocks in the first resource set
  • the proportion of the frequency domain span in the system bandwidth is greater than the preset threshold, and the other N second resource blocks allocated to the terminal may be distributed in any frequency domain location. This can improve the flexibility of resource scheduling on the basis of meeting the OCB requirements of ESTI.
  • FIG. 11 illustrates a resource allocation method provided by another embodiment of the present application.
  • the method may include:
  • the base station receives a scheduling request (SR) sent by the terminal.
  • the scheduling request is used to request the base station to allocate an uplink transmission resource.
  • the terminal may periodically send a scheduling request to the base station, for example, the terminal sends the scheduling request to the base station every other transmission time interval (TTI).
  • the terminal may also send the scheduling request to the base station under event driving. For example, when there is uplink data to be transmitted, the terminal sends the scheduling request to the base station.
  • the arrival of the uplink data is an event that drives the terminal to transmit the scheduling request.
  • the embodiment of the present application does not limit the trigger mechanism for the terminal to send the scheduling request.
  • the resources allocated by the base station to the terminal include M first resource blocks and N second resource blocks in an arbitrary frequency domain location, where the M first resource blocks form a K (K ⁇ 1, K is a positive integer) resource interleave, the frequency domain span formed by the interleaving of the K resources is greater than the preset threshold in the system bandwidth, and the N second resource blocks are part of resources in resource interleaving.
  • Block, the resource interlace to which the N second resource blocks belong is allocated to multiple terminals.
  • the N second resource blocks are partial interlaces.
  • the number of resource blocks allocated by the base station to the terminal can be more flexible, and does not have to be an integer number of resource interleaving.
  • the resource interlaces to which the N second resource blocks belong can be shared for use by multiple terminals, which can improve resource utilization.
  • a system bandwidth of 20 MHz supported by a 5 GHz band (unlicensed band) and a subcarrier spacing of 15 kHz are taken as an example.
  • the system bandwidth of 20MHz except for the guard band (about 10% of the system bandwidth)
  • each interlace consists of 10 RBs
  • the transmission bandwidth contains 10 resource interlaces. It should be understood that the proportion of the frequency domain span corresponding to each resource interleave in the system bandwidth satisfies the OCB requirement of ESTI.
  • N RB a * 10 + b
  • a 1
  • the range of b is ⁇ 0, 2, 5, 6, 8 ⁇ , that is, the complete interlace can be split into two or more
  • the number of RBs in a partial interlace, partial interlace is ⁇ 0, 2, 5, 6, 8 ⁇ .
  • resource interleave 1 is assigned to terminal 1, and resource interleave 3 is assigned to the terminal.
  • the complete resource interleave 2 is split into two parts: the first part is ⁇ RB1, RB11, RB51, RB61, RB71 ⁇ , and the second part is ⁇ RB21, RB31, RB41, RB81, RB91 ⁇ , where the first part is allocated To the terminal 1, the second part is assigned to the terminal 2.
  • the resource interlace 1 and the resource interlace 3 can be used to ensure that the transmission bandwidth of the uplink signal of the terminal 1 and the terminal 2 respectively meets the OCB requirement of the ESTI, and the resource interleaving 2 is shared by the terminal 1 and the terminal 2, thereby improving resource utilization.
  • the M (actually 10) first resource blocks allocated to the terminal 1 constitute a resource interlace 1
  • the N (actually 5) second resource blocks allocated to the terminal 1 are resources. Part of the resource block in interlace 2, the first part.
  • the N second resource blocks may be from an interlace, and reference may be made to the terminal 1 in FIG.
  • the N second resource blocks may also come from multiple interlaces. For example, assuming that the number of RBs allocated to the terminal 3 is 18, the resource interlace 5 can be allocated to the terminal 3, and ⁇ RB3, RB13, RB23, RB33, RB43 ⁇ in the resource interlace 4 are allocated to the terminal 3, and ⁇ RB5, RB15, RB35 ⁇ in the resource interleave 6 is also allocated to the terminal 5. That is, the N (actually 8) second resource blocks allocated to the terminal 3 are derived from the resource interleave of the resource interleave 4 and the resource interleave 6.
  • the examples are only used to explain the embodiments of the present application and should not be construed as limiting.
  • the base station returns resource indication information to the terminal, where the resource indication information is used to indicate resources allocated by the base station to the terminal.
  • the base station may carry the resource indication information in downlink control information (DCI).
  • DCI downlink control information
  • a field may be added to the DCI, where the field is used to indicate the one or more pairs of resource blocks allocated to the terminal, and the content of the added field may be the one or more pairs of resource blocks.
  • Index For example, the index "1" indicates a pair of resource blocks formed by RB0 and RB99.
  • the base station may use an associated field for resource indication in the existing DCI format, such as a RB resource allocation (Resource block assignment) field, etc., to indicate.
  • RB resource allocation Resource block assignment
  • the base station may carry the resource indication information in an uplink grant authorization (UL grant) returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the base station may further carry the resource indication information in other response messages for the scheduling request, or the base station may separately encapsulate the resource indication information into a message, and return the message to the terminal.
  • the manner in which the resource indication information is sent is not limited in this embodiment.
  • the resource indication information may include any one or more of the following: an interlaced index of the K resource interlaces, and an interleaved index of resource interlaces to which the N second resource blocks belong, A resource block index of the N second resource blocks in the belonging resource interleave.
  • the base station may perform index numbering on the resource interlaces included in the entire system bandwidth.
  • the resource interlace 1 to the resource interlace 10 in FIG. 12 may have an index number of 1-10.
  • the base station may also perform index numbering on the resource blocks included in each resource interleave.
  • the 10 resource block indexes included in each resource interleaving in FIG. 12 are numbered as 0-9.
  • the resource allocated to the terminal 1 includes the first resource block in the resource interlace 1 and the resource interleave 2.
  • the resource indication information for the terminal 1 may include: resource interleaving. Interleaved index "1" of 1 , interleaved index "2" of resource interleave 2, and index of the first partial resource block in the resource interleave 2: "0" (ie, RB1), "1" (ie, RB11) , "6” (ie RB51), "7” (ie RB61), “8” (ie RB71).
  • the resource indication information may further include: attribute indication information corresponding to a resource interleave (ie, a partial interlace) to which the N second resource blocks belong, and is used to indicate that the belonging resource is interleaved. Only a part of resource blocks are allocated to the terminal, and the belonging resource interleave is split into a plurality of parts, which are shared by a plurality of terminals.
  • attribute indication information corresponding to a resource interleave (ie, a partial interlace) to which the N second resource blocks belong, and is used to indicate that the belonging resource is interleaved. Only a part of resource blocks are allocated to the terminal, and the belonging resource interleave is split into a plurality of parts, which are shared by a plurality of terminals.
  • the resource indication information may further include: a resource block number of the M first resource blocks allocated to the terminal, and a resource block number of the N second resource blocks.
  • the resource blocks in the entire system bandwidth may be numbered, and the resource block number may be used to indicate a specific resource block.
  • the resource block number may also be referred to as a resource block index.
  • the resource indication information may include: an interlace index of the K resource interlaces, and a resource block number of the N second resource blocks.
  • the example is only one implementation manner of the embodiment of the present application, and may be different in actual application, and should not be construed as limiting.
  • the terminal may perform signal processing according to the resource indication information, for example, modulating uplink data to be transmitted on the resource indicated by the resource indication information, and performing frequency repetition on the transmission signal. Use, resource sharing processing, etc.
  • the terminal sends the processed uplink data to the base station on the resource indicated by the resource indication information.
  • the M first resource blocks allocated to the terminal are composed of K resource interlaces, and the proportion of the frequency domain spans formed by the interleaving of the K resources in the system bandwidth is greater than the preset threshold.
  • the other N second resource blocks allocated to the terminal are partial resource blocks in the resource interleave, and the resource interlaces to which the N second resource blocks belong are split into multiple parts and shared by multiple terminals. This can improve the flexibility of resource scheduling and improve resource utilization on the basis of meeting the OCB requirements of ESTI.
  • the K resource interlaces may each include H resource blocks, H is a positive integer, and H can be corresponding to an unlicensed band. Diversified by the total number of resource blocks corresponding to each of the multiple transmission bandwidths. The following is an example to expand the description.
  • the system bandwidth that can be supported in the new air interface (NR) communication technology is 20 MHz, 40 MHz, 80 MHz, 160 MHz, etc.
  • the optional subcarrier spacing is 15 kHz, 60 kHz, and the like.
  • the transmission bandwidth corresponding to each of the above various system bandwidth scenarios may be 100 RBs, 200 RBs, 400 RBs, and 800 RBs, respectively.
  • the scenarios of the various system bandwidths respectively require that the signal occupied bandwidth be greater than 89 RBs, 178 RBs, 356 RBs, and 712 RBs, respectively. Since the resource blocks in the interlace are evenly distributed over the entire transmission bandwidth, the interlace structure of the scenarios compatible with the above various system bandwidths is as follows:
  • Each resource interleave consists of 10 RBs.
  • the bandwidth occupied by one resource interleave is 91 RBs, 181 RBs, 361 RBs, and 721 RBs, respectively.
  • Each resource interleave consists of 25 RBs.
  • the bandwidth occupied by one resource interleave is 97 RBs, 193 RBs, 385 RBs, and 769 RBs, respectively.
  • the number of resource blocks included in the (1) and (2) resource interleaving can be divisible by the total number of resource blocks corresponding to the various system bandwidths described above, so that the base station can interleave the resources as a basic Resource scheduling unit.
  • the transmission bandwidth corresponding to the above various system bandwidth scenarios may be 25 RBs, 50 RBs, 100 RBs, and 200 RBs, respectively.
  • the scenarios of the various system bandwidths respectively require that the signal occupied bandwidth be greater than 23 RBs, 45 RBs, 89 RBs, and 178 RBs, respectively.
  • the interlace structure of the scenario compatible with the various system bandwidths described above may be such that each resource interleave consists of 25 RBs.
  • the bandwidth occupied by one resource interlace is 25 RBs, 49 RBs, 97 RBs, and 193 RBs, respectively.
  • the K resource interlaces allocated to the terminal may include resource interleaving of a plurality of different structures, and the resource indication information may further include type information of resource interlaces of the plurality of different structures.
  • the system bandwidth that can be supported in the new air interface (NR) communication technology is 500 MHz, 1 GHz, 2 GHz, etc.
  • the optional subcarrier spacing is 480 kHz, 960 kHz (system bandwidth only 2 GHz support).
  • the corresponding transmission bandwidths of the above various system bandwidth scenarios may be 78 RBs, 156 RBs, and 312 RBs, respectively.
  • the scenarios of the various system bandwidths respectively require that the signal occupied bandwidth be greater than 61 RBs, 122 RBs, and 244 RBs, respectively.
  • the interlace structure of the scenarios compatible with the various system bandwidths described above may be as follows: each resource interleave is composed of 6 RBs. In the scenario of the above various system bandwidths, the bandwidth occupied by one resource interleave is 66 RBs, 131 RBs, and 261 RBs, respectively.
  • the transmission bandwidth corresponding to the 2 GHz system bandwidth may be 156 RBs.
  • the signal occupation bandwidth needs to be greater than 122 RBs. Since the resource blocks in the interlace are evenly distributed over the entire transmission bandwidth, the interlace structure adapting to the 2 GHz system bandwidth scenario may be as follows: each resource interleave is composed of 6 RBs. In a 2 GHz system bandwidth scenario, a resource interleaving consumes 131 RBs.
  • a scheme of 6 RB/interlace (that is, each resource interlace includes 6 RBs) can be fixed.
  • a resource indication value may be used to indicate a complete resource interleave allocated to the terminal.
  • the resource interleaving represented by the above set is the first resource interleaving in FIG.
  • the two resource interleaving indicated by the above two sets is the first resource interleaving and the second resource interleaving in FIG. 7 .
  • the indication mode of the RIV can be mainly used to indicate the complete resource interleaving allocated to the terminal.
  • the resource indication manner mentioned in the foregoing content may be used to supplement the indication, and details are not described herein again.
  • FIG. 14 is a network device according to an embodiment of the present application.
  • the network device 500 may be a base station in the foregoing method embodiment, and may be configured to receive a scheduling request of the terminal, and allocate an uplink signal transmission resource to the terminal on the unlicensed frequency band.
  • the network device 500 may include a resource allocation unit 501 and a transmitting unit 503. among them:
  • the resource allocation unit 501 is configured to: when performing uplink resource allocation, the resource group allocated to the terminal includes M first resource blocks, and the frequency domain span formed by the M first resource blocks is greater than the pre-prepared in the system bandwidth. a threshold is set; the resource group further includes N second resource blocks in an arbitrary frequency domain position; wherein, M ⁇ 2, N ⁇ 1, and M and N are positive integers;
  • the sending unit 503 is configured to send resource indication information to the terminal, where the resource indication information is used to indicate that the resource group information is included in the terminal.
  • the M first resource blocks are used to meet the OCB specification of the ESTI, and the N second resource blocks are used to implement flexible resource scheduling.
  • the resources allocated by the resource allocation unit 501 to the terminal may include the following two situations:
  • the M first resource blocks are one or more pairs of resource blocks in a first resource set, wherein a frequency domain span between each pair of resource blocks in the first resource set is in a system bandwidth.
  • the proportions in all are greater than the preset threshold.
  • the frequency domain span between each pair of resource blocks in the first resource set is the same, and the frequency domain span between each pair of resource blocks is greater in the system bandwidth than the pre-predetermined Set the threshold.
  • the frequency span between the pairs of resource blocks in the first resource set decreases from large to small, and the proportion of the smallest frequency span in the system bandwidth is greater than the preset threshold.
  • first resource set may also be presented in other forms as long as the proportion of each pair of resource blocks in the system bandwidth is greater than the preset threshold.
  • the one or more pairs of resource blocks allocated to the terminal are used to satisfy the OCB requirement of the ESTI, and the positions of the other N second resource blocks of the allocation terminal in the frequency domain are not limited.
  • the proportion of the frequency domain span formed by the N second resource blocks in the system bandwidth may be greater than the preset threshold. That is, at least two resource blocks of the N second resource blocks are distributed at both ends of the system bandwidth.
  • the proportion of the frequency domain span formed by the N second resource blocks in the system bandwidth may be less than the preset threshold. That is, the N second resource blocks may be distributed in an intermediate frequency domain location of the system bandwidth. It can be understood that, since the number of resource blocks that can satisfy the OCB requirement at both ends of the system bandwidth is limited, the scheduling manner of distributing the N second resource blocks in the intermediate frequency domain position may be beneficial to the base station to be limited.
  • the resource blocks at both ends are allocated to more terminals that need to transmit uplink data on the unlicensed band.
  • the M first resource blocks are composed of K (K ⁇ 1, K is a positive integer) resource interleave, and the frequency domain span formed by the K resources interleaving is larger than the pre-synthesis in the system bandwidth.
  • a threshold is set, the N second resource blocks are partial resource blocks in a resource interlace, and the resource interlaces to which the N second resource blocks belong are allocated to multiple terminals.
  • the N second resource blocks are partial interlaces.
  • the number of resource blocks allocated by the base station to the terminal can be more flexible, and does not have to be an integer number of resource interleaving.
  • the resource interlaces to which the N second resource blocks belong can be shared for use by multiple terminals, which can improve resource utilization.
  • the specific implementation of the resource indication information sent by the sending unit 503 may be as follows:
  • the resource indication information may include: an index of the one or more pairs of resource blocks allocated to the terminal in the first resource set. If the N second resource blocks allocated to the terminal are one or more pairs of the resource blocks in the first resource set, the resource indication information further includes: one corresponding to the N second resource blocks An index of one or more pairs of resource blocks in the first set of resources. If the N second resource blocks allocated to the terminal are resource blocks other than the first resource set, the resource indication information further includes: a resource block number of the N second resource blocks.
  • the resource indication information may further include: a resource block number of the M first resource blocks allocated to the terminal, and a resource block number of the N second resource blocks.
  • the resource indication information may include: an interlace index of the K resource interlaces, and an interleaved index of resource interlaces to which the N second resource blocks belong, where the N second resource blocks are The resource block index in the associated resource interleave.
  • the resource indication information may further include: attribute indication information corresponding to a resource interleave (ie, a partial interlace) to which the N second resource blocks belong, and is used to indicate that the belonging resource is interleaved. Only a part of resource blocks are allocated to the terminal, and the belonging resource interleave is split into a plurality of parts, which are shared by a plurality of terminals.
  • attribute indication information corresponding to a resource interleave (ie, a partial interlace) to which the N second resource blocks belong, and is used to indicate that the belonging resource is interleaved. Only a part of resource blocks are allocated to the terminal, and the belonging resource interleave is split into a plurality of parts, which are shared by a plurality of terminals.
  • the resource indication information may further include: a resource block number of the M first resource blocks allocated to the terminal, and a resource block number of the N second resource blocks.
  • the sending unit 503 may send the resource indication information by using the following implementation manners.
  • the sending unit 503 may carry the resource indication information in downlink control information (DCI). Specifically, the sending unit 503 may add a field in the DCI, where the field is used to indicate the one or more pairs of resource blocks allocated to the terminal, and the content of the added field may be the one or more pairs.
  • the sending unit 503 may perform an indication by using a related field for resource indication in the existing DCI format, such as a RB resource allocation (Resource block assignment) field.
  • the sending unit 503 can carry the resource indication information in an uplink scheduling grant (UL grant) returned to the terminal.
  • UL grant is a type of DCI, which uses DCI format0/0A/0B/4/4A/4B.
  • the sending unit 503 may further carry the resource indication information in other response messages for the scheduling request, or the sending unit 503 may separately encapsulate the resource indication information into a message, and return the message to the terminal.
  • the embodiment of the present application is not limited.
  • the embodiment of the present application further provides a wireless communication system, which may be the wireless communication system 200 shown in FIG. 2, and may include: a base station and a terminal.
  • the terminal may be the terminal in the method embodiment corresponding to FIG. 5 or FIG. 11 respectively, and the base station may be the base station in the method embodiment corresponding to FIG. 5 or FIG.
  • the terminal may be the terminal 300 shown in FIG. 3.
  • the base station may be the base station 400 shown in FIG. 4 or the network device 500 shown in FIG.
  • the implementation of the embodiment of the present application for the use of the unlicensed frequency band, can improve the flexibility of uplink resource scheduling on the basis of meeting the OCB requirements of the ESTI. Further, resource utilization can also be improved.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.
  • At least one complete interlace needs to be allocated to the terminal, that is, for the M first resource blocks, composed of K resource interlaces, and for the case where the system bandwidth is known.
  • the interlace structure in different transmission bandwidth scenarios and/or multiple subcarrier spacing scenarios must meet the following two conditions:
  • BW RB indicates the bandwidth occupied by each RB
  • BW indicates the system bandwidth
  • threshold indicates the OCB requirement.
  • the threshold is 80%
  • the threshold is 70%.
  • the first condition above It is used to determine the interlace structure in different transmission bandwidth scenarios, so that the entire transmission bandwidth can be divided into integer interlaces.
  • the second condition above Used to control the frequency domain span of the interlace, making the frequency domain span of the interlace The ratio to the system bandwidth BW meets the OCB requirements.
  • Table 1 to Table 2 are taken as an example to illustrate how to design a corresponding resource interleaving structure in a scenario of multiple system bandwidths and/or multiple subcarrier spacings.
  • Table 1 is an example of an interlace structure under different transmission bandwidths in a low frequency scenario
  • Table 2 is an example of an interlace structure under different transmission bandwidths in a high frequency scenario.
  • the system bandwidth is different.
  • the system bandwidth is set to include but is not limited to: 20MHz, 40MHz, or 80MHz.
  • the system bandwidth is set to include. But not limited to: 500MHz or 1GHz.
  • subcarrier spacing is also different in low frequency scenes and high frequency scenes.
  • the subcarrier spacing may be set to include, but is not limited to, 15 KHz or 60 KHz, etc.; in a high frequency scenario, the subcarrier spacing may be set to include, but is not limited to, 120 KHz or 240 KHz.
  • the RB number indicates the number of RBs corresponding to the transmission bandwidth.
  • the subcarrier number indicates the number of subcarriers, and the interlace structure indicates the number of RBs constituting each interlace.
  • the system bandwidth (BW) is 20 MHz
  • the subcarrier spacing (SCS) is 15 kHz
  • BW RB 0.18 MHz.
  • each interlace contains 5 RBs, wherein the interval between two adjacent RBs is equal to 22 RBs;
  • each interlace includes 10 RBs, wherein an interval between two adjacent RBs is equal to 11 RBs;
  • each interlace contains 11 RBs, wherein an interval between two adjacent RBs is equal to 10 RBs;
  • each interlace contains 22 RBs, wherein the interval between two adjacent RBs is equal to 5 RBs;
  • each interlace contains 55 RBs, wherein the interval between two adjacent RBs is equal to 2 RBs.
  • the above interlace can be directly obtained by querying Table 1.
  • one or more parameter values included in the third column (interlace structure) in Table 1 are sequentially corresponding to one or more parameter values included in the fourth column (RB spacing), and the corresponding two parameters are correspondingly
  • the RB number (interlace structure) and the interlace RB spacing (RB spacing) included in the interlace are respectively expressed.
  • the third column contains five parameter values: 5, 10, 11, 22, 55
  • the fourth column contains five parameter values: 22, 11,10,5,2.
  • the fifth column of 5 and the fourth column of 22 correspond to the first interlace structure; the third column 10 and the fourth column 11 correspond to the second interlace structure; the third column 11 and Corresponding to 10 in the fourth column is the third interlace structure described above; 22 in the third column corresponds to 5 in the fourth column, and is the fourth interlace structure; 55 in the third column corresponds to 2 in the fourth column, The fifth interlace structure described above.
  • the system bandwidth is 500 MHz
  • the subcarrier spacing is 240 kHz
  • the corresponding transmission bandwidth BW RB 2.88 MHz.
  • each interlace contains 6 RBs, wherein the interval between two adjacent RBs is equal to 26 RBs;
  • each interlace comprising 12 RBs, wherein an interval between two adjacent RBs is equal to 13 RBs;
  • each interlace contains 13 RBs, wherein the interval between two adjacent RBs is equal to 12 RBs;
  • each interlace contains 26 RBs, wherein the interval between two adjacent RBs is equal to 6 RBs;
  • each interlace comprising 39 RBs, wherein an interval between two adjacent RBs is equal to 4 RBs;
  • each interlace comprising 52 RBs, wherein an interval between two adjacent RBs is equal to 3 RBs;
  • each interlace contains 78 RBs, wherein the interval between two adjacent RBs is equal to 2 RBs.
  • the above interlace can be directly obtained through the query table 2.
  • one or more parameter values included in the third column (interlace structure) in Table 2 are sequentially corresponding to one or more parameter values included in the fourth column (RB spacing), and the corresponding two parameters are correspondingly
  • the RB number (interlace structure) and the interlace RB spacing (RB spacing) included in the interlace are respectively expressed.
  • the third column 6 and the fourth column 26 correspond to the first interlace structure; the third column 12 and the fourth column 13 correspond to the second interlace structure; the third column 13 and 12 of the fourth column corresponds to the third interlace structure; 26 of the third column corresponds to 6 of the fourth column, and is the fourth interlace structure; 39 of the third column corresponds to 4 of the fourth column, The fifth interlace structure described above; the third column 52 and the fourth column 3 correspond to the sixth interlace structure; the third column 78 and the fourth column 2 correspond to the seventh interlace structure described above.
  • the interlace structure satisfying the above two conditions cannot be found, that is, the case where the third column and the fourth column in the table are "null".
  • an interlace structure in a similar transmission bandwidth scenario can be used.
  • the interlace structure and the like in the scenario of multiple system bandwidths and/or subcarrier spacings may have other values.
  • the types of parameters involved in Table 1 or Table 2 may also have other types, such as bandwidth percent and the like.
  • the deletion, addition, equivalent replacement, improvement, etc. of the parameters are included in the scope of protection of the present application on the basis of the technical solutions of Table 1, Table 2 and the present application.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种资源分配方法、相关设备及系统。所述方法可包括:在进行上行资源分配时,分配给终端的资源组包括M个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值;所述资源组还包括N个处于任意频域位置的第二资源块;其中,M≥2,N≥1,M、N均是正整数;向所述终端发送资源指示信息,所述资源指示信息包括所述资源组信息。采用本申请实施例,针对非授权频段的使用,可实现在满足ESTI的OCB要求的基础上,提高上行资源调度的灵活性。

Description

一种资源分配方法、相关设备及系统
本申请要求于2017年1月26日提交中国专利局、申请号为201710062965.7、申请名称为“一种资源分配方法、相关设备及系统”的中国专利申请的优先权,以及要求于2017年6月9日提交中国专利局、申请号为201710434527.9、申请名称为“一种资源分配方法、相关设备及系统”,以上全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种资源分配方法、相关设备及系统。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。然而对于非授权频段的使用,有诸多法规限制。一方面,对非授权频段的信号的信道带宽占用率(Occupancy Channel Bandwidth,OCB)有所限制。欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)规定,在2.4GHz以及5GHz频段,要求信号的传输带宽要占用系统带宽的80%以上,而对于60GHz频段,则要求信号的传输带宽要占用系统带宽的70%以上。另一方面,对非授权频段的信号传输功率有所限制。例如,ETSI要求在5150-5350MHz频段,信号的最大功率谱密度为10dBm/MHz。
对于下行传输而言,基站可以充分利用频谱资源满足ESTI的规定。但是,对于上行传输,上述规定的限制无疑给上行资源的分配带来巨大挑战。
在LTE Release13版本中,在上行传输时引入了增强型授权辅助接入(Enhanced Licensed Assisted Access,eLAA)技术。为了能够充分利用非授权频段,又能满足ESTI的OCB规定,eLAA采用资源交错(interlace)结构。一个资源交错由均匀分布在系统带宽上的整数个资源块组成。上行资源分配以资源交错(interlace)为基本单位,分配给每个终端的资源至少为一个资源交错(interlace)。如图1所示,假设系统带宽是20MHz,20MHz的系统带宽对应100个RB(RB0~RB99),每个资源交错(interlace)由均匀分布在整个带宽上的10个资源块(Resource Block,RB)组成,而且每个资源交错(interlace)中的RB两两间隔10个RB。这样可以保证每个interlace形成的频域跨度(位于首尾的两个RB之间的带宽跨度)是91个RB,约16.38MHz,大于系统带宽20MHz的80%。
但是,现有的资源交错(interlace)的结构固定由10个RB构成,不够灵活。在一些应用场景中,当需要分配给终端的RB数量不是10的整数倍时,就会造成资源的浪费。尤其,下一代新空口(New Radio,NR)技术支持多种系统带宽,子载波间隔灵活配置,系统带宽对应RB总数数量可能不再是10的整数倍。现有的资源交错(interlace)方案不能实现资源的灵活调度。
发明内容
本申请实施例所要解决的技术问题在于现有的资源交错(interlace)方案不能实现资源的灵活调度,提供一种资源分配方法、相关设备及系统,实现了资源的灵活调度,能够更好的适应下一代新空口技术支持的多带宽场景。
第一方面,提供了一种资源分配方法,包括:在进行上行资源分配时,基站分配给终端的资源组包括M(M≥2,M是正整数)个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值。所述资源组还包括N(N≥1,N是正整数)个处于任意频域位置的第二资源块。在分配所述资源组给所述终端之后,所述基站可以向所述终端发送资源指示信息,所述资源指示信息用于指示分配给所述终端的所述资源组,所述资源指示信息包括所述资源组信息。可以理解的,为了避免资源冲突,分配给终端的所述N个第二资源块分布在除所述M个第一资源块之外的任意频域位置。
这里,所述预设阈值的选取可参考ETSI的OCB规定,从而满足ESTI的OCB要求。例如,在2.4GHz以及5GHz频段,ETSI要求信号的传输带宽要占用系统带宽的80%以上,则可以设定所述预设阈值≥80%。示例仅仅用于解释本申请实施例,不应构成限定。
实施第一方面描述的方法,可实现在满足ESTI的OCB要求的基础上,提高上行资源调度的灵活性。
结合第一方面,在本申请的第一个实施例中,分配给终端的所述M个第一资源块可以是来自第一资源集合中的一对或多对资源块,所述第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。具体的,所述第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值,满足ESTI的OCB要求。
可以理解的,所述第一资源集合中的多对资源块可以以成对的形式分配给多个需要在非授权频段传输上行数据的终端,使得每一个终端的信号传输带宽均满足OCB的基本要求。而且,分配给终端的另外所述N个第二资源块可以分布在任意频域位置上,可实现在保证满足OCB的基本要求的基础上,最大化资源分配的灵活性。
为了便于规律的索引所述第一资源集合中的每一对资源块,可以通过但不限于下述几种方式实现所述第一资源集合:
第一种方式,所述第一资源集合中的每一对资源块之间的频域跨度均相同,并且每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。
第二种方式,所述第一资源集合中的各对资源块之间的频域跨度从大到小递减,最小的频域跨度在系统带宽中的占比大于所述预设阈值。
需要说明的,不限于上述两种实现方式,所述第一资源集合还可以呈现为其他形式,只要其中每一对资源块在系统带宽中的占比都大于所述预设阈值即可。
在上述第一个实施例中,为了提高资源利用率,所述N个第二资源块形成的频域跨度在系统带宽中的占比可以小于所述预设阈值。即,所述N个第二资源块可以分布在系统带宽的中间频域位置。可以理解的,由于系统带宽的两端能够满足OCB要求的资源块的数量是有限的,因此,将所述N个第二资源块分布在中间频域位置这种调度 方式可有利于基站将有限的两端资源块分配给更多的需要在非授权频段上传输上行数据的终端。
可选的,所述N个第二资源块形成的频域跨度在系统带宽中的占比可以大于所述预设阈值。即,所述N个第二资源块中至少存在2个资源块分布在系统带宽的两端。
在上述第一个实施例中,可以通过但不限于下述几种方式实现所述资源指示信息:
第一种实现方式,所述资源指示信息可包括:分配给终端的所述一对或多对资源块在所述第一资源集合中的索引。例如,假设从图7所示的所述第一资源集合中分配第1对资源块给终端,那么,发送给该终端的所述资源指示信息可包括:第1对资源块的索引“1”。示例仅仅用于解释本申请实施例,不应构成限定。
如果分配给终端的所述N个第二资源块也是所述第一资源集合中的一对或多对资源块,则所述资源指示信息还包括:所述N个第二资源块对应的一对或多对资源块在所述第一资源集合中的索引。如果分配给终端的所述N个第二资源块是第一资源集合之外的资源块,则所述资源指示信息还包括:所述N个第二资源块的资源块编号。
第二种实现方式,所述资源指示信息可以包括:分配给终端的所述M个第一资源块的资源块编号以及所述N个第二资源块的资源块编号。
具体的,可以对整个系统带宽内的资源块进行编号,利用资源块编号即可指示出具体的资源块。这里,资源块编号也可以称为资源块索引。
在上述第一个实施例中,在发送所述资源指示信息时,基站可以将所述资源指示信息携带在下行控制信息(DCI)中。例如,基站可以将所述资源指示信息携带在返回给终端的上行调度授权(UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
需要说明,基站还可以在针对所述调度请求的其他应答消息中携带所述资源指示信息,或者基站还可以将所述资源指示信息独立封装成一个消息,返回该消息给终端。关于如何发送所述资源指示信息的方式,本申请实施例不作限制。
结合第一方面,在本申请的第二个实施例中,所述M个第一资源块可以组成K(K≥1,K是正整数)个资源交错,所述K个资源交错形成的频域跨度在系统带宽中的占比均大于所述预设阈值。所述N个第二资源块可以是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被分配给多个终端。需要说明的,所述N个第二资源块可以来自一个资源交错,也可以来自多个资源交错。
可以理解的,分配给终端的所述M个第一资源块组成K个资源交错,所述K个资源交错形成的频域跨度在系统带宽中的占比均大于所述预设阈值,分配给终端的另外N个第二资源块是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被拆分成多个部分,由多个终端所共享。这样可实现在满足ESTI的OCB要求的基础上,提高资源调度的灵活性,以及提高资源利用率。
在上述第一个实施例中,可以通过但不限于下述几种方式实现所述资源指示信息:
第一种实现方式,所述资源指示信息可包括以下任意一种或多种:所述K个资源交错的交错索引,以及所述N个第二资源块所属的资源交错的交错索引、所述N个第二资源块在所述所属资源交错中的资源块索引。
具体的,基站可以对整个系统带宽包含的资源交错进行索引编号。基站也可以对 每一个资源交错所包含的资源块进行索引编号,例如资源交错包含的10个资源块索引编号为:0-9。
在上述第一种实现方式中,所述资源指示信息还可以包括:所述N个第二资源块所属资源交错(即partial interlace)对应的属性指示信息,用于指示出所述所属资源交错中仅有部分资源块分配给了终端,所述所属资源交错被拆分为多个部分,所述多个部分为多个终端共享。
第二种实现方式,所述资源指示信息还可以包括:分配给终端的所述M个第一资源块的资源块编号以及所述N个第二资源块的资源块编号。
具体地,可以对整个系统带宽内的资源块进行编号,利用资源块编号即可指示出具体的资源块。这里,资源块编号也可以称为资源块索引。
需要说明的,基站和终端之间还可以约定更多的资源指示方式,不限于上述两种实现方式。例如,所述资源指示信息可以包括:所述K个资源交错的交错索引,以及所述N个第二资源块的资源块编号。示例仅仅是本申请实施例的一种实现方式,实际应用中还可以不同,不应构成限定。
在上述第二个实施例中,在发送所述资源指示信息时,基站可以将所述资源指示信息携带在下行控制信息(DCI)中。例如,基站可以将所述资源指示信息携带在返回给终端的上行调度授权(UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
需要说明,基站还可以在针对所述调度请求的其他应答消息中携带所述资源指示信息,或者基站还可以将所述资源指示信息独立封装成一个消息,返回该消息给终端。关于如何发送所述资源指示信息的方式,本申请实施例不作限制。
在本申请的一些实施例中,为了适应多种系统带宽和/或多种子载波间隔的场景,所述K个资源交错可以均包含H个资源块,H是正整数,H能够被非授权频段对应的多种传输带宽各自对应的资源块总数量整除。
可选的,在本申请实施例支持的多种系统带宽和/或多种子载波间隔的场景中,可以通过资源指示值(RIV)来指示分配给终端的完整资源交错。需要说明的,RIV这种指示方式可主要用于指示分配给终端的完整资源交错。对于分配给终端的另外所述N个第二资源块,可以采用前述内容中提及的资源指示方式来补充指示,此处不再赘述。
第二方面,提供了一种网络设备,包括多个功能模块,用于相应的执行第一方面或第一方面可能的实施方式中的任意一种所提供的方法。
第三方面,提供了一种网络设备,用于执行第一方面描述的资源分配方法。所述无线网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备,例如终端,发送移动通信信号,所述接收器用于接收所述另一无线网络设备,例如终端,发送的移动通信信号,所述存储器用于存储第一方面描述的资源分配方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面或第一方面可能的实施方式中的任意一种所描述的资源分配方法。
第四方面,提供了一种通信系统,所述通信系统包括:基站和终端,其中:
所述基站用于在进行上行资源分配时,分配给终端的资源组包括M(M≥2,M是正整数)个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值;所述资源组还包括N(N≥1,N是正整数)个处于任意频域位置的第二资源块。所述基站还用于向所述终端发送资源指示信息,所述资源指示信息用于指示分配给所述终端的所述资源组,其中包括所述资源组信息。
所述终端用于在接收到所述资源指示信息之后,可以根据所述资源指示信息进行信号处理,例如将待传输的上行数据调制在所述资源指示信息指示的资源上,以及对传输信号进行频率复用,资源共享的处理等等。所述终端还用于在所述资源指示信息所指示的资源上向基站发送处理后的上行数据。
结合第四方面,在一些可选的实施例中,所述基站可以是第二方面或第三方面描述的网络设备。所述基站也可以是第一方面中提及的基站。
第五方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有实现第一方面描述的资源分配方法的程序代码,该程序代码包含运行第一方面描述的资源分配方法的执行指令。
实施本申请实施例,针对非授权频段的使用,可实现在满足ESTI的OCB要求的基础上,提高上行资源调度的灵活性。进一步的,还可以提高资源利用率。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请涉及的一种现有资源分配方式的示意图;
图2是本申请涉及的一种无线通信系统的架构示意图;
图3是本申请的一个实施例提供的终端的硬件架构示意图;
图4是本申请的一个实施例提供的基站的硬件架构示意图;
图5是本申请的一个实施例提供的资源分配方法的流程示意图;
图6是本申请涉及的一种系统带宽场景下的资源示意图;
图7是本申请的一个实施例提供的第一资源集合(包括12对资源块)的资源示意图;
图8是本申请的另一个实施例提供的第一资源集合(包括10对资源块)的资源示意图;
图9是本申请的再一个实施例提供的第一资源集合(包括6对资源块)的资源示意图;
图10是本申请的再一个实施例提供的第一资源集合(包括3对资源块)的资源示意图;
图11是本申请的一个实施例提供的资源分配方法的流程示意图;
图12是本申请的一个实施例提供的以资源交错为调度单位的资源分配示意图;
图13是LTE中定义的可以用于PUSCH传输的资源集合的示意图;
图14是本申请的一个实施例提供的网络设备的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为了便于了解本申请实施,首先介绍本申请实施例涉及的无线通信系统。
参考图2,图2示出了本申请涉及的无线通信系统200。无线通信系统200可以工作在授权频段,也可以工作在非授权频段。可以理解的,非授权频段的使用可以提高无线通信系统200的系统容量。如图2所示,无线通信系统200包括:一个或多个基站(Base Station)201,例如NodeB、eNodeB或者WLAN接入点,一个或多个终端(Terminal)203,以及核心网215。其中:
基站201可用于在基站控制器(未示出)的控制下与终端203通信。在一些实施例中,所述基站控制器可以是核心网230的一部分,也可以集成到基站201中。
基站201可用于通过回程(blackhaul)接口(如S1接口)213向核心网215传输控制信息(control information)或者用户数据(user data)。
基站201可以通过一个或多个基站天线来和终端203进行无线通信。各个基站201均可以为各自对应的覆盖范围207提供通信覆盖。接入点对应的覆盖范围207可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
基站201与基站201之间也可以通过回程(blackhaul)链接211,直接地或者间接地,相互通信。这里,所述回程链接211可以是有线通信连接,也可以是无线通信连接。
在本申请的一些实施例中,基站201可以包括:基站收发台(Base Transceiver Station),无线收发器,一个基本服务集(Basic Service Set,BSS),一个扩展服务集(Extended Service Set,ESS),NodeB,eNodeB等等。无线通信系统200可以包括几种不同类型的基站201,例如宏基站(macro base station)、微基站(micro base station)等。基站201可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
终端203可以分布在整个无线通信系统200中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端203可以包括:移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
本申请实施例中,无线通信系统200可以是能够工作在非授权频段的LTE通信系统,例如LTE-U,也可以是能够工作在非授权频段的5G以及未来新空口等通信系统。无线通信系统200可以采用授权辅助接入(LAA)方案来处理终端在非授权频段上的接入。在LAA方案中,主小区(Primary Cell)工作在授权频段,传送关键的消息和需要服务质量保证的业务;辅小区(Secondary Cell)工作在非授权频段,用于实现数据平面性能的提升。
本申请实施例中,无线通信系统200可以支持多载波(multi-carrier)(不同频率的波形信号)操作。多载波发射器可以在多个载波上同时发射调制信号。例如,每一个通信连接205都可以承载利用不同无线技术调制的多载波信号。每一个调制信号均可以在不同的载波上发送,也可以承载控制信息(例如参考信号、控制信道等),开销信息(Overhead Information),数据等等。
另外,无线通信系统200还可以包括WiFi网络。为了实现运营商网络和WiFi网络(工作在非授权频谱)之间的和谐共存,无线通信系统200可采用先听后说(Listen before Talk,LBT)机制。例如,在无线通信系统200中,一些终端203可以通过WiFi通信连接217 连接WiFi接入点209来使用非授权频谱资源,一些终端203也可以通过移动通信连接205连接基站201来使用非授权频谱资源。在使用非授权频段时,任何设备必须先监听,看看该频段是否被占用,如果该频段不忙,才可以占用并传输数据。
参考图3,图3示出了本申请的一些实施例提供的终端300。如图3所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其它方式连接,图3以通过总线连接为例。其中:
通信接口301可用于终端300与其他通信设备,例如基站,进行通信。具体的,所述纪姿含可以是图4所示的基站400。具体的,通信接口301可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,以及长期演进(Long Term Evolution,LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,终端300还可以配置有有线的通信接口301,例如局域接入网(Local Access Network,LAN)接口。
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器206可包括非授权频谱发射器3061和授权频谱发射器3063。其中,非授权频谱发射器3061可以支持终端300在一个或多个非授权频谱上发射信号,授权频谱发射器3063可以支持终端300在一个或多个授权频谱上发射信号。
接收器308可用于对天线314接收的移动通信信号进行接收处理。例如,接收器308可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器308可包括非授权频谱接收器3081和授权频谱接收器3083。其中,非授权频谱接收器3081可以支持终端300接收调制在非授权频谱上的信号,授权频谱接收器3083可以支持终端300接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
除了图3所示的发射器306和接收器308,终端300还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端300和用户/外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口302 与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和/或多组指令。具体的,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器312可用于存储本申请的一个或多个实施例提供的资源分配方法在终端300侧的实现程序。关于本申请的一个或多个实施例提供的资源分配方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的资源分配方法在终端300侧的实现程序,并执行该程序包含的指令。
可以理解的,终端300可以是图2示出的无线通信系统200中的终端203,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图3所示的终端300仅仅是本申请实施例的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图4,图4示出了本申请的一些实施例提供的基站400。如图4所示,基站400可包括:通信接口403、一个或多个基站处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其它方式连接,图4以通过总线连接为例。其中:
通信接口403可用于基站400与其他通信设备,例如终端设备或其他基站,进行通信。具体的,所述终端设备可以是图3所示的终端300。具体的,通信接口403可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,以及长期演进(LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,基站400还可以配置有有线的通信接口403来支持有线通信,例如一个基站400与其他基站400之间的回程链接可以是有线通信连接。
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对基站处理器401输出的信号进行发射处理,例如将该信号调制在授权频段的信号,或者调制在非授权频段的信号。在本申请的一些实施例中,发射器407可包括非授权频谱发射器4071和授权频谱发射器4073。其中,非授权频谱发射器4071可以支持基站400在一个或多个非授权频谱上发射信号,授权频谱发射器4073可以支持基站400在一个或多个授权频谱上发射信号。
接收器409可用于对天线413接收的移动通信信号进行接收处理。例如,接收器409可以解调已被调制在非授权频段上的接收信号,也可以解调调制在授权频段上的接收信号。在本申请的一些实施例中,接收器409可包括非授权频谱接收器4091和授权频谱接收器4093。其中,非授权频谱接收器4091可以支持基站400接收调制在非授权频谱上的信号,授权频谱接收器4093可以支持基站400接收调制在授权频谱上的信号。
在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在基站400中,发射器407和接收器409的数量均可以是一个或者多个。
存储器405与基站处理器401耦合,用于存储各种软件程序和/或多组指令。具体的,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
基站处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体的,基站处理器401可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,基站处理器401可用于读取和执行计算机可读指令。具体的,基站处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的资源分配方法在基站400侧的实现程序,并执行该程序包含的指令。
可以理解的,基站400可以是图2示出的无线通信系统200中的基站201,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB等等。基站400可以实施为几种不同类型的基站,例如宏基站、微基站等。基站400可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
需要说明的,图4所示的基站400仅仅是本申请实施例的一种实现方式,实际应用中,基站400还可以包括更多或更少的部件,这里不作限制。
基于前述无线通信系统200、终端300以及基站400分别对应的实施例,在进行上行资源分配时,为了满足ETSI的OCB规定,又能够实现资源调度的灵活性,本申请实施例提供了一种资源分配方法。
本申请的主要申请原理可包括:在进行上行资源分配时,基站分配给终端的资源可划分为两部分。其中,一部分资源可以形成在整个系统带宽中的占比大于预设阈值的频域跨度;另一部分资源则可以灵活的分布在系统带宽中的任意位置。这样,既可以保证一定的频域跨度,也可以提高上行资源分配的灵活性。这里,所述预设阈值的选取可参考ETSI的OCB规定,从而满足ESTI的OCB要求。例如,在2.4GHz以及5GHz频段,ETSI要求信号的传输带宽要占用系统带宽的80%以上,则可以设定所述预设阈值≥80%。
需要说明的,示例仅仅用于解释本申请实施例,不应构成限定。对于未来以及其他针 对信号传输带宽在系统带宽中的占比存在规定和要求的场景,本申请实施例同样适用,不限于ESTI的OCB规定。
为了简化后续说明,先假设所述一部分资源包括M个资源块(Resource Block,RB),所述另一部分资源包括N个资源块(RB)。其中,M≥2,N≥1,M、N均是正整数。在本申请实施例中,M个资源块可用于使得信号的传输带宽满足OCB要求,被称为第一资源块。N个资源块用于在信号的传输带宽满足OCB时,对信号的传输带宽进行灵活地使用,被称为第二资源块。关于M、N取值的选定,可以理解的,由于信号的传输带宽需要在系统带宽内形成一个频域跨度,因此分配给该信号的资源至少包括2个第一资源块,例如至少一对资源块或至少一个interlace,这2个第一资源块在频域上间隔越远,该信号的传输带宽越大。
参考图5,图5示出了本申请的一个实施例提供的资源分配方法。在图5实施例中,分配给终端的所述M个第一资源块是来自第一资源集合中的一对或多对资源块,所述第一资源集合中的每一对资源块之间的频域跨度(Frequency Spacing)在系统带宽中的占比均大于所述预设阈值;分配给终端的另外N个第二资源块的频域位置不作限制,不和所述M个第一资源库冲突即可。如图5所示,该方法可包括:
S102,基站接收终端发送的调度请求(Scheduling Request,SR)。所述调度请求用于请求基站分配上行传输资源。
可参考图5中的步骤S101,终端可以周期性的向基站发送调度请求,例如终端每隔一个传输时间间隔(Transmission Time Interval,TTI)向基站发送一次所述调度请求。或者,终端也可以在事件驱动下向基站发送所述调度请求。例如,当有上行数据需要传输时,终端会向基站发送所述调度请求。这里,上行数据的到来即驱动终端发送所述调度请求的事件。关于终端发送所述调度请求的触发机制,本申请实施例不作限制。
S103,响应所述调度请求,基站分配给终端的资源包括M个第一资源块和N个处于任意频域位置的第二资源块,所述M个第一资源块是第一资源集合中的一对或多对资源块,其中,第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。为了避免资源冲突,分配给终端的所述N个第二资源块分布在除所述M个第一资源块之外的任意频域位置。
具体地,所述第一资源集合中的资源块可被划分为两个部分,这两个部分分别分布在系统带宽的两端或两端附近。所述第一资源集合中的每一对资源块所包括的两个资源块分别来自这两个部分,使得所述每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值,满足ESTI的OCB要求。
参考图6,以5GHz频段(非授权频段)支持的系统带宽20MHz,子载波间隔15KHz为例。在20MHz的系统带宽下,除开保护频段(约10%的系统带宽),还剩下100个RB作为系统传输带宽,每个RB包含频域上的12个连续子载波(180KHz)。此时,如果要满足OCB要求,则要求信号的传输带宽占用系统带宽的80%以上,至少需要约89个RB(89*180KHz=16.02MHz)。
如图6所示,RB0和RB88构成的一对资源块使得信号的传输带宽刚好可以满足OCB的最低要求,RB0和RB88之后的其他RB(如RB89、RB90等)组合对应的频域跨度更大了,显然也满足OCB要求。同样的,RB99和RB11构成的一对资源块也使得信号的传 输带宽刚好可以满足OCB的最低要求,RB99和RB11之前的其他RB(如RB10、RB9等)组合对应的频域跨度更大了,显然也满足OCB要求。
概括的说,在图6所示的实施例中,在所述第一资源集合中的每一对资源块所包括的两个资源块中,一个资源块可以来自系统带宽的一端:RB0-RB11,另一个资源块可以来自系统带宽的另一端:RB88-RB99。示例性地,基站可以从系统带宽的一端中任意选取出一个资源块,从系统带宽的另一端中任意选取出一个资源块,使得选取出的这两个资源块之间的频域跨度在系统带宽中的占比都会大于所述预设阈值,满足OCB要求。例如,RB0和RB89之间的频域跨度为16.20MHz,在系统带宽中的占比大于80%。示例仅仅用于解释本申请实施例,不应构成限定。
为了便于规律的索引所述第一资源集合中的每一对资源块,下面介绍所述第一资源集合的两种实现方式。
第一种方式,所述第一资源集合中的每一对资源块之间的频域跨度均相同,并且每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。
如图7所示,所述第一资源集合包括12对资源块,其中:RB0和RB88组成第1对资源块,RB1和RB89组成第2对资源块,RB2和RB90组成第3对资源块,RB3和RB91组成第4对资源块,依此类推。其中,每一对资源块之间的频域跨度均是16.02MHz,在系统带宽中的占比略大于80%,满足OCB要求。
可以理解的,图7所示的所述第一资源集合中的12对资源块可以以成对的形式分配给多个需要在非授权频段传输上行数据的终端。可选的,基站可以按照现有的资源调度方式(如LTE中的上行资源调度方式)处理这12对资源块之外的剩余76个资源块(RB12-RB87),可实现在保证满足OCB的基本要求的基础上,最大化资源分配的灵活性,提高资源利用率。
需要说明的,图7仅仅是所述第一资源集合的一个实施例,在一些可选的实施例中,一对资源块之间的频域跨度还可以更大,不限于16.02MHz。例如,如图8所示,所述第一资源集合包括10对资源块,其中:RB0和RB90组成第1对资源块,RB1和RB91组成第2对资源块,RB2和RB92组成第3对资源块,依此类推。其中,每一对资源块之间的频域跨度均是16.38MHz,在系统带宽中的占比大于80%。关于所述第一资源集合中的每一对资源块之间的频域跨度的具体取值,本申请实施例不作限制。
在其他系统带宽和/或其他子载波间隔的场景中,上述第一种实现方式的实施类似上述过程,此处不再赘述。
第二种方式,所述第一资源集合中的各对资源块之间的频域跨度从大到小递减,最小的频域跨度在系统带宽中的占比大于所述预设阈值。
如图9所示,所述第一资源集合包括6对资源块:RB0和RB99组成第1对资源块,RB1和RB98组成第2对资源块,RB2和RB97组成第3对资源块,RB3和RB96组成第4对资源块,依此类推。其中,第1对资源块之间的频域跨度是18MHz,第2对资源块之间的频域跨度是17.82MHz,第3对资源块之间的频域跨度是17.64MHz,依次递减。其中,第6对资源块之间的频域跨度最小,是16.02MHz,在系统带宽中的占比略大于80%,满足OCB要求。
可以理解的,图9所示的6对资源块可以分配给多个需要在非授权频段传输上行数据 的终端。可选的,基站可以按照现有的资源调度方式(如LTE中的上行资源调度方式)处理这6对资源块之外的剩余88个资源块(RB6-RB93),可实现在保证满足OCB的基本要求的基础上,最大化资源分配的灵活性,提高资源利用率。
在图9所示的所述第一资源集合中,任意相邻2对资源块各自对应的频域跨度都相差2个RB,例如第1对资源块之间的频域跨度是100个RB,第2对资源块之间的频域跨度是98个RB,第3对资源块之间的频域跨度是96个RB。图9仅仅是实现所述第一资源集合的一个实施例,实际应用中可以不同,不应构成限定。
需要说明的,在所述第一资源集合中,相邻2对资源块各自对应的频域跨度的差值可以差异化,不限于固定的差值,如2个RB。例如,如图10所示,所述第一资源集合包括3对资源块:RB0和RB99组成第1对资源块,RB2和RB97组成第2对资源块,RB3和RB96组成第3对资源块。这样,第1对资源块和第2对资源块各自对应的频域跨度的差值是4个RB,第2对资源块和第3对资源块各自对应的频域跨度的差值是2个RB。
在其他系统带宽和/或其他子载波间隔的场景中,上述第二种实现方式的实施类似上述过程,此处不再赘述。
需要说明的,不限于上述两种实现方式,所述第一资源集合还可以呈现为其他形式,只要其中每一对资源块在系统带宽中的占比都大于所述预设阈值即可。例如,所述第一资源集合包括以下几对资源块:RB0和RB89组成的第1对资源块,RB1和RB88组成的第2对资源块,RB3和RB92组成的第3对资源块。可以看出,包括这3对资源块的所述第一资源集合并不符合上述第一种实现方式和上述第一种实现方式,但是满足OCB要求。
另外,需要说明的,通常为了避免资源冲突,基站通常不可以在同一对资源块上承载多个终端的上行传输信号。但是,在一些可能的实施例中,多个终端需要共享资源,并且能够在共享的资源上避免信号干扰,这样,基站分配给不同终端的所述一对或多对资源块可以重合。
以下,对所述N个第二资源块进行描述。可以理解的,分配给终端的所述一对或多对第一资源块用于满足ESTI的OCB要求,分配终端的另外N个第二资源块在频域上的位置可以不受限制。
可选的,所述N个第二资源块形成的频域跨度在系统带宽中的占比可以大于所述预设阈值。即,所述N个第二资源块中至少存在2个资源块分布在系统带宽的两端。
可选的,所述N个第二资源块形成的频域跨度在系统带宽中的占比可以小于所述预设阈值。即,所述N个第二资源块可以分布在系统带宽的中间频域位置。可以理解的,由于系统带宽的两端能够满足OCB要求的资源块的数量是有限的,因此,将所述N个第二资源块分布在中间频域位置这种调度方式可有利于基站将有限的两端资源块分配给更多的需要在非授权频段上传输上行数据的终端。具体的,基站还可以按照现有的资源调度方式(如LTE中的上行资源调度方式)对中间频域位置处的资源进行调度处理。
S104,基站向终端返回资源指示信息,所述资源指示信息用于指示基站分配给终端的资源,其中包括所述资源组信息。
在本申请的一个实施例中,基站可以将所述资源指示信息携带在下行控制信息(Downlink Control Information,DCI)中。具体的,可以在DCI中新增一个字段,该字段用于指示分配给终端的所述一对或多对资源块,该新增的字段的内容可以是所述一对或多 对资源块的索引(index)。例如索引“1”表示RB0和RB99形成的一对资源块。示例仅仅用于解释本申请实施例,不应构成限定。对于所述N个第二资源块,基站可以采用现有DCI格式中的用于资源指示的相关字段,如RB资源分配(Resource block assignment)字段等,进行指示。
例如,基站可以将所述资源指示信息携带在返回给终端的上行调度授权(简称UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
需要说明,基站还可以在针对所述调度请求的其他应答消息中携带所述资源指示信息,或者基站还可以将所述资源指示信息独立封装成一个消息,返回该消息给终端。关于如何发送所述资源指示信息的方式,本申请实施例不作限制。
下面展开描述所述资源指示信息的具体实现。
第一种实现方式,所述资源指示信息可包括:分配给终端的所述一对或多对资源块在所述第一资源集合中的索引。例如,假设从图7所示的所述第一资源集合中分配第1对资源块给终端,那么,发送给该终端的所述资源指示信息可包括:第1对资源块的索引“1”。示例仅仅用于解释本申请实施例,不应构成限定。
如果分配给终端的所述N个第二资源块也是所述第一资源集合中的一对或多对资源块,则所述资源指示信息还包括:所述N个第二资源块对应的一对或多对资源块在所述第一资源集合中的索引。如果分配给终端的所述N个第二资源块是第一资源集合之外的资源块,则所述资源指示信息还包括:所述N个第二资源块的资源块编号。
第二种实现方式,所述资源指示信息可以包括:分配给终端的所述M个第一资源块的资源块编号以及所述N个第二资源块的资源块编号。
具体的,可以对整个系统带宽内的资源块进行编号,利用资源块编号即可指示出具体的资源块。这里,资源块编号也可以称为资源块索引。
需要说明的,基站和终端之间还可以约定更多的资源指示方式,不限于上述两种实现方式。
S105,在接收到所述资源指示信息之后,终端可以根据所述资源指示信息进行信号处理,例如将待传输的上行数据调制在所述资源指示信息指示的资源上,以及对传输信号进行频率复用,资源共享的处理等等。
S106,终端在所述资源指示信息所指示的资源上向基站发送处理后的上行数据。
实施图5实施例,分配给终端的所述M个第一资源块是来自第一资源集合中的一对或多对资源块,所述第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值,而且,分配给终端的另外N个第二资源块可以分布在任意频域位置上。这样可实现在满足ESTI的OCB要求的基础上,提高资源调度的灵活性。
参考图11,图11示出了本申请的另一个实施例提供的资源分配方法。在图11实施例中,在至少分配给终端一个完整资源交错(interlace)的基础上,可以将一个(或一些)资源交错拆分,使得多个终端共享一个完整资源交错,从而提高资源配置的灵活性,同时提高资源利用率。如图11所示,该方法可包括:
S202,基站接收终端发送的调度请求(SR)。所述调度请求用于请求基站分配上行传输资源。
可参考S201,终端可以周期性的向基站发送调度请求,例如终端每隔一个传输时间间隔(TTI)向基站发送一次所述调度请求。或者,终端也可以在事件驱动下向基站发送所述调度请求。例如,当有上行数据需要传输时,终端会向基站发送所述调度请求。这里,上行数据的到来即驱动终端发送所述调度请求的事件。关于终端发送所述调度请求的触发机制,本申请实施例不作限制。
S203,响应所述调度请求,基站分配给终端的资源包括M个第一资源块和N个处于任意频域位置的第二资源块,其中,所述M个第一资源块组成K(K≥1,K是正整数)个资源交错,所述K个资源交错形成的频域跨度在系统带宽中占比均大于所述预设阈值,所述N个第二资源块是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被分配给多个终端。
可以理解的,所述N个第二资源块是部分资源交错(partial interlace)。这样,基站分配给终端的资源块个数可以更灵活,不必是整数个资源交错。而且,所述N个第二资源块所属的资源交错可以共享给多个终端使用,可提高资源利用率。
参考图12,以5GHz频段(非授权频段)支持的系统带宽20MHz,子载波间隔15KHz为例。在20MHz的系统带宽下,除开保护频段(约10%的系统带宽),还剩下100个RB作为系统传输带宽。假设每个interlace由10个RB构成,则传输带宽包含10个资源交错(interlace)。应理解的,每一个资源交错对应的频域跨度在系统带宽中的占比均满足ESTI的OCB要求。
在LTE通信系统中,上行物理共享信号(Physical Uplink Shared Channel,PUSCH)的资源分配有个原则:分配给终端的RB总数N RB需为2,3,5的乘积,即要求:N RB=2 x*3 y*5 z,其中x、y和z必须为非负整数。因此分配给终端的用于PUSCH传输的RB个数(N RB)必须属于图13所示的集合。若令N RB=a*10+b,则当a=1时,b的取值范围为{0,2,5,6,8},即:可以将完整的interlace拆分成两个或多个partial interlace,partial interlace中RB的个数可选值为{0,2,5,6,8}。
如图12所示,资源交错1分配给了终端1,资源交错3分配给了终端。完整的资源交错2被拆分成了2个部分:第一部分为{RB1,RB11,RB51,RB61,RB71},第二部分为{RB21,RB31,RB41,RB81,RB91},其中,第一部分分配给终端1,第二部分分配给终端2。这样,资源交错1和资源交错3可用于分别保证终端1、终端2的上行信号的传输带宽满足ESTI的OCB规定,而且,资源交错2分享给终端1和终端2使用,提高了资源利用率。
对于终端1来说,分配给终端1的所述M(实际为10)个第一资源块组成了资源交错1,分配给终端1的所述N(实际为5)个第二资源块是资源交错2中的部分资源块,即所述第一部分。
需要说明的,对于单个终端,所述N个第二资源块可以来自一个interlace,可参考图12中终端1。对于单个终端,所述N个第二资源块也可以来自多个interlace。例如,假设分配给终端3的RB个数为18,则可以将资源交错5分配给终端3,并将资源交错4中的{RB3,RB13,RB23,RB33,RB43}分配给终端3,以及将资源交错6中的{RB5,RB15,RB35}也分配给终端5。即,分配给终端3的所述N(实际为8)个第二资源块来自资源交错4和资源交错6这两个资源交错。示例仅仅用于解释本申请实施例,不应构成限定。
可以理解的,在图12所示的场景中,当需要分配给终端的RB个数为非10的整数倍 时,可以采用完整资源交错(interlace)和部分资源交错(partial interlace)组合的方式进行资源分配。当分配给终端的RB数为10的整数倍时,可以仅分配完整资源交错(interlace)给终端,也可以采用完整资源交错(interlace)和部分资源交错(partial interlace)组合的方式进行资源分配。
S205,基站向终端返回资源指示信息,所述资源指示信息用于指示基站分配给终端的资源。
在本申请的一个实施例中,基站可以将所述资源指示信息携带在下行控制信息(DCI)中。具体的,可以在DCI中新增一个字段,该字段用于指示分配给终端的所述一对或多对资源块,该新增的字段的内容可以是所述一对或多对资源块的索引(index)。例如索引“1”表示RB0和RB99形成的一对资源块。示例仅仅用于解释本申请实施例,不应构成限定。对于所述N个第二资源块,基站可以采用现有DCI格式中的用于资源指示的相关字段,如RB资源分配(Resource block assignment)字段等,进行指示。
例如,基站可以将所述资源指示信息携带在返回给终端的上行调度授权(UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
需要说明,基站还可以在针对所述调度请求的其他应答消息中携带所述资源指示信息,或者基站还可以将所述资源指示信息独立封装成一个消息,返回该消息给终端。关于如何发送所述资源指示信息的方式,本申请实施例不作限制。
下面展开描述图12所示方法中所述资源指示信息的示例性实现方式。
第一种实现方式,所述资源指示信息可包括以下任意一种或多种:所述K个资源交错的交错索引,以及所述N个第二资源块所属的资源交错的交错索引、所述N个第二资源块在所述所属资源交错中的资源块索引。
具体的,基站可以对整个系统带宽包含的资源交错进行索引编号,例如图12中的资源交错1至资源交错10可以索引编号为:1-10。基站也可以对每一个资源交错所包含的资源块进行索引编号,例如将图12中的每一个资源交错包含的10个资源块索引编号为:0-9。
以图12中的终端1为例进行说明,分配给终端1的资源包括资源交错1和资源交错2中的所述第一部分资源块,则针对终端1的所述资源指示信息可包括:资源交错1的交错索引“1”、资源交错2的交错索引“2”,以及所述第一部分资源块在所述资源交错2中的索引:“0”(即RB1)、“1”(即RB11)、“6”(即RB51)、“7”(即RB61)、“8”(即RB71)。
在上述第一种实现方式中,所述资源指示信息还可以包括:所述N个第二资源块所属资源交错(即partial interlace)对应的属性指示信息,用于指示出所述所属资源交错中仅有部分资源块分配给了终端,所述所属资源交错被拆分为多个部分,所述多个部分为多个终端共享。
第二种实现方式,所述资源指示信息还可以包括:分配给终端的所述M个第一资源块的资源块编号以及所述N个第二资源块的资源块编号。
具体地,可以对整个系统带宽内的资源块进行编号,利用资源块编号即可指示出具体的资源块。这里,资源块编号也可以称为资源块索引。
需要说明的,基站和终端之间还可以约定更多的资源指示方式,不限于上述两种实现方式。例如,所述资源指示信息可以包括:所述K个资源交错的交错索引,以及所述N个第二资源块的资源块编号。示例仅仅是本申请实施例的一种实现方式,实际应用中还可以 不同,不应构成限定。
S205,在接收到所述资源指示信息之后,终端可以根据所述资源指示信息进行信号处理,例如将待传输的上行数据调制在所述资源指示信息指示的资源上,以及对传输信号进行频率复用,资源共享的处理等等。
S206,终端在所述资源指示信息所指示的资源上向基站发送处理后的上行数据。
实施图11实施例,分配给终端的所述M个第一资源块组成K个资源交错,所述K个资源交错形成的频域跨度在系统带宽中的占比均大于所述预设阈值,分配给终端的另外N个第二资源块是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被拆分成多个部分,由多个终端所共享。这样可实现在满足ESTI的OCB要求的基础上,可提高资源调度的灵活性,以及提高资源利用率。
在本申请的一些实施例中,为了适应多种系统带宽和/或多种子载波间隔的场景,所述K个资源交错可以均包含H个资源块,H是正整数,H能够被非授权频段对应的多种传输带宽各自对应的资源块总数量整除。下面通过举例来展开说明。
首先,以5GHz频段为例,未来新空口(NR)通信技术中可支持的系统带宽有20MHz,40MHz,80MHz,160MHz等,可选的子载波间隔有15KHz,60KHz等。
(一)对于15KHz子载波间隔,上述各种系统带宽场景各自对应的传输带宽可能分别为100个RB,200个RB,400个RB,800个RB。在满足ESTI的OCB要求(占用系统带宽的80%)的基础上,上述各种系统带宽的场景各自要求信号占用带宽需要分别大于89个RB,178个RB,356个RB,712个RB。由于资源交错(interlace)中的资源块均匀分布在整个传输带宽上,因此,兼容上述各种系统带宽的场景的资源交错(interlace)的结构有如下几种:
(1)每个资源交错由10个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为91个RB,181个RB,361个RB,721个RB。
(2)每个资源交错由25个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为97个RB,193个RB,385个RB,769个RB。
可以理解的,对于15KHz子载波间隔,(1)和(2)两种资源交错包含的资源块个数都可以被上述各种系统带宽对应的资源块总数整除,便于基站把资源交错作为基本的资源调度单元。
(二)对于60KHz子载波间隔,上述各种系统带宽场景对应的传输带宽可能分别为25个RB,50个RB,100个RB,200个RB。在满足ESTI的OCB要求(占用系统带宽的80%)的基础上,上述各种系统带宽的场景各自要求信号占用带宽需要分别大于23个RB,45个RB,89个RB,178个RB。由于资源交错(interlace)中的资源块均匀分布在整个传输带宽上,因此,兼容上述各种系统带宽的场景的资源交错(interlace)的结构可为:每个资源交错由25个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为25个RB,49个RB,97个RB,193个RB。
综上,对于5GHz频段的上行资源分配,可存在如下两种方案:
(1)为了兼容所有的场景(15KHz或60KHz子载波间隔),可以固定采用25RB/interlace(即每一个资源交错包含25个RB)的方案。
(2)为了适应多种业务需求,可以同时支持10RB/interlace和25RB/interlace这两种 类型。在进行资源分配指示时,还需要将interlace的类型信息(10RB/interlace或25RB/interlace)携带在所述资源指示信息中。
也即是说,在5GHz频段上,分配给终端的所述K个资源交错可包括多种不同结构的资源交错,所述资源指示信息还可以包括所述多种不同结构的资源交错的类型信息。
需要说明的,上述关于5GHz频段的举例分析仅仅用于解释本申请实施例,上述各种系统带宽场景中的传输带宽、子载波间隔等具体参数的实际取值均以未来标准中的定义为准。
其次,以60GHz频段为例,未来新空口(NR)通信技术中可支持的系统带宽有500MHz,1GHz,2GHz等,可选的子载波间隔有480kHz,960kHz(仅系统带宽2GHz支持)等。
(一)对于480kHz子载波间隔,上述各种系统带宽场景各自对应的传输带宽可能分别为78个RB,156个RB,312个RB。在满足ESTI的OCB要求(占用系统带宽的70%以上)的基础上,上述各种系统带宽的场景各自要求信号占用带宽需要分别大于61个RB,122个RB,244个RB。由于资源交错(interlace)中的资源块均匀分布在整个传输带宽上,因此,兼容上述各种系统带宽的场景的资源交错(interlace)的结构可如下:每个资源交错由6个RB构成。在上述各种系统带宽的场景,一个资源交错占用的带宽分别为66个RB,131个RB,261个RB。
(二)对于960kHz子载波间隔,2GHz系统带宽对应的传输带宽可为156个RB。在满足ESTI的OCB要求(占用系统带宽的70%以上)的基础上,信号占用带宽需要大于122个RB。由于资源交错(interlace)中的资源块均匀分布在整个传输带宽上,因此,适应2GHz系统带宽场景的资源交错(interlace)的结构可如下:每个资源交错由6个RB构成。在2GHz系统带宽场景中,一个资源交错占用的带宽为131个RB。
综上,对于60GHz频段的上行资源分配可以固定采用6RB/interlace(即每一个资源交错包含6个RB)的方案。
需要说明的,上述关于60GHz频段的举例分析仅仅用于解释本申请实施例,上述各种系统带宽场景中的传输带宽、子载波间隔等具体参数的实际取值均以未来标准中的定义为准。
可选的,在本申请实施例支持的多种系统带宽和/或多种子载波间隔的场景中,可以通过资源指示值(Resource Indication Value,RIV)来指示分配给终端的完整资源交错。
具体的,假设
Figure PCTCN2018074220-appb-000001
为系统传输带宽,分配给终端的RB集合可以表示为:RB START+l+i·N,其中,RB START表示分配给终端起始RB;l=0,1,…L-1,L为分配给终端的完整资源交错的个数;
Figure PCTCN2018074220-appb-000002
g是单个资源交错包含的RB个数。下面举例来说明:
示例一,如图7所示,假设资源分配从RB0开始(即RB start=0),系统带宽(100个RB)相当于10个资源交错(即N=10),终端被分配了1个资源交错(即L=1)。那么,分配给终端的RB集合为:
0+{(1-0)}+{0,1,…,9}*10={0,10,20,30…,90}
上面这个集合表示的资源交错即图7中的第1个资源交错。
示例二,如图7所示,假设RB分配从RB0开始(即RB start=0),系统带宽(100个RB)相当于10个资源交错(即N=10),终端被分配了2个资源交错(即L=2)。那么, 分配给终端的RB集合为:
0+{(1-0),(2-1)}+{0,1,…,9}*10={0,10,20,30…,90}&{1,11,21,31…,91}
上面2个集合表示的2个资源交错即图7中的第1个资源交错、第2个资源交错。
需要说明的,上述示例仅仅用于解释本申请实施例,不应构成限定。
参考3GPP 36.213中关于RIV的现有计算算法可知,当
Figure PCTCN2018074220-appb-000003
时,RIV=N(L-1)+RB START,否则RIV=N(N-L+1)+(N-1-RB START)。
需要说明的,RIV这种指示方式可主要用于指示分配给终端的完整资源交错。对于分配给终端的另外所述N个第二资源块,可以采用前述内容中提及的资源指示方式来补充指示,此处不再赘述。
参见图14,图14是本申请的一个实施例提供的网络设备。网络设备500可以是前述方法实施例中的基站,可用于接收终端的调度请求,在非授权频段上为终端分配上行信号传输资源。如图14所示,网络设备500可包括:资源分配单元501和发送单元503。其中:
资源分配单元501,可用于在进行上行资源分配时,分配给终端的资源组包括M个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值;所述资源组还包括N个处于任意频域位置的第二资源块;其中,M≥2,N≥1,M、N均是正整数;
发送单元503,可用于向所述终端发送资源指示信息,所述资源指示信息用于指示分配给所述终端的,其中包括所述资源组信息。
本申请实施例中,所述M个第一资源块用于满足ESTI的OCB规定,所述N个第二资源块用于实现灵活的资源调度。
本申请实施例中,资源分配单元501分配给终端的资源可包括如下两种情形:
第一种情形,所述M个第一资源块是第一资源集合中的一对或多对资源块,其中,第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。
可选的,所述第一资源集合中的每一对资源块之间的频域跨度均相同,并且每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。可选的,所述第一资源集合中的各对资源块之间的频域跨度从大到小递减,最小的频域跨度在系统带宽中的占比大于所述预设阈值。
需要说明的,不限于上述两种实现方式,所述第一资源集合还可以呈现为其他形式,只要其中每一对资源块在系统带宽中的占比都大于所述预设阈值即可。
可以理解的,分配给终端的所述一对或多对资源块用于满足ESTI的OCB要求,分配终端的另外N个第二资源块在频域上的位置则不受限制。
可选的,所述N个第二资源块形成的频域跨度在系统带宽中的占比可以大于所述预设阈值。即,所述N个第二资源块中至少存在2个资源块分布在系统带宽的两端。
可选的,所述N个第二资源块形成的频域跨度在系统带宽中的占比可以小于所述预设阈值。即,所述N个第二资源块可以分布在系统带宽的中间频域位置。可以理解的,由于系统带宽的两端能够满足OCB要求的资源块的数量是有限的,因此,将所述N个第二资源块分布在中间频域位置这种调度方式可有利于基站将有限的两端资源块分配给更多的需要在非授权频段上传输上行数据的终端。
第二种情形,所述M个第一资源块组成K(K≥1,K是正整数)个资源交错,所述K 个资源交错形成的频域跨度在系统带宽中占比均大于所述预设阈值,所述N个第二资源块是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被分配给多个终端。
可以理解的,所述N个第二资源块是部分资源交错(partial interlace)。这样,基站分配给终端的资源块个数可以更灵活,不必是整数个资源交错。而且,所述N个第二资源块所属的资源交错可以共享给多个终端使用,可提高资源利用率。
本申请实施例中,发送单元503发送的所述资源指示信息的具体实现可如下:
针对前述第一种资源分配情形:
第一种实现方式,所述资源指示信息可包括:分配给终端的所述一对或多对资源块在所述第一资源集合中的索引。如果分配给终端的所述N个第二资源块也是所述第一资源集合中的一对或多对资源块,则所述资源指示信息还包括:所述N个第二资源块对应的一对或多对资源块在所述第一资源集合中的索引。如果分配给终端的所述N个第二资源块是第一资源集合之外的资源块,则所述资源指示信息还包括:所述N个第二资源块的资源块编号。
第二种实现方式,所述资源指示信息还可以包括:分配给终端的所述M个第一资源块的资源块编号以及所述N个第二资源块的资源块编号。
针对前述第二种资源分配情形:
第一种实现方式,所述资源指示信息可包括:所述K个资源交错的交错索引,以及所述N个第二资源块所属的资源交错的交错索引、所述N个第二资源块在所述所属资源交错中的资源块索引。
在上述第一种实现方式中,所述资源指示信息还可以包括:所述N个第二资源块所属资源交错(即partial interlace)对应的属性指示信息,用于指示出所述所属资源交错中仅有部分资源块分配给了终端,所述所属资源交错被拆分为多个部分,所述多个部分为多个终端共享。
第二种实现方式,所述资源指示信息还可以包括:分配给终端的所述M个第一资源块的资源块编号以及所述N个第二资源块的资源块编号。
本申请实施例中,发送单元503可以通过下述几种实现方式发送所述资源指示信息。
在一种实现方式中,发送单元503可以将所述资源指示信息携带在下行控制信息(DCI)中。具体的,发送单元503可以在DCI中新增一个字段,该字段用于指示分配给终端的所述一对或多对资源块,该新增的字段的内容可以是所述一对或多对资源块的索引(index)。例如索引“1”表示RB0和RB99形成的一对资源块。示例仅仅用于解释本申请实施例,不应构成限定。对于所述N个第二资源块,发送单元503可以采用现有DCI格式中的用于资源指示的相关字段,如RB资源分配(Resource block assignment)字段等,进行指示。
例如,发送单元503可以将所述资源指示信息携带在返回给终端的上行调度授权(UL grant)中。这里,UL grant即DCI的一种,采用DCI format0/0A/0B/4/4A/4B。
需要说明,发送单元503还可以在针对所述调度请求的其他应答消息中携带所述资源指示信息,或者发送单元503还可以将所述资源指示信息独立封装成一个消息,返回该消息给终端。关于发送单元503如何发送所述资源指示信息的方式,本申请实施例不作限制。
可以理解的,关于网络设备500包括的各个功能单元的具体实现可参考图5或图11分别对应的方法实施例,这里不再赘述。
另外,本申请实施例还提供了一种无线通信系统,所述无线通信系统可以是图2所示的无线通信系统200,可包括:基站和终端。其中,所述终端可以是图5或图11分别对应的方法实施例中的终端,所述基站可以是图5或图11分别对应的方法实施例中的基站。
具体的,所述终端可以是图3所示的终端300。所述基站可以是图4所示的基站400,也可以是图14所示的网络设备500。
关于所述基站和所述终端的具体实现可参考图5或图11分别对应的方法实施例,这里不再赘述。
综上,实施本申请实施例,针对非授权频段的使用,可实现在满足ESTI的OCB要求的基础上,提高上行资源调度的灵活性。进一步的,还可以提高资源利用率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
参照图11所示的实施例,需要至少分配给终端一个完整的interlace,即对于所述M个第一资源块,由K个资源交错(interlace)构成,而对于系统带宽已知的情况而言,不同的传输带宽场景和/或多种子载波间隔的场景下的interlace结构需满足以下两个条件:
Figure PCTCN2018074220-appb-000004
Figure PCTCN2018074220-appb-000005
其中,
Figure PCTCN2018074220-appb-000006
表示传输带宽对应的RB个数,
Figure PCTCN2018074220-appb-000007
表示构成每个interlace的RB个数
Figure PCTCN2018074220-appb-000008
Figure PCTCN2018074220-appb-000009
表示每个interlace中相邻2个RB之间的间隔,BW RB表示每个RB所占的带宽,BW表示系统带宽,threshold表示OCB要求。示例性地,对于低频5GHz频段,threshold为80%,对于高频60GHz频段,threshold为70%。
具体地,上述第一个条件
Figure PCTCN2018074220-appb-000010
用于确定不同的传输带宽场景下的interlace结构,使得整个传输带宽能分成整数个interlace。上述第二个条件
Figure PCTCN2018074220-appb-000011
Figure PCTCN2018074220-appb-000012
用于控制interlace的频域跨度,使得interlace的频域跨度
Figure PCTCN2018074220-appb-000013
与系统带宽BW的比值满足OCB要求。
下面以表1至表2为例,说明在多种系统带宽和/或多种子载波间隔的场景下,如何设计相应的资源交错结构。其中,表1为低频场景下不同传输带宽下的interlace结构的示例,表2为高频场景下不同传输带宽下的interlace结构的示例。低频场景与高频场景下,系统带宽不同,例如,在低频场景下,系统带宽会设置为包括但不限于:20MHz,40MHz,或80MHz等;而在高频场景下,系统带宽会设置为包括但不限于:500MHz或1GHz等。另外,在低频场景与高频场景下,子载波间隔也存在不同。例如,在低频场景下,子载波间隔会设置为包括但不限于:15KHz或60KHz等;而在高频场景下,子载波间隔会设置为包括但不限于120KHz或240KHz。
以下,先对表1至表2所涉及的参数类型进行说明,这些参数类型符合上述两个条件,即
Figure PCTCN2018074220-appb-000014
以及
Figure PCTCN2018074220-appb-000015
其中,RB number表示传输带宽对应的RB个数
Figure PCTCN2018074220-appb-000016
subcarrier number表示子载波数量,interlace structure表示构成每个interlace的RB个数
Figure PCTCN2018074220-appb-000017
RB spacing表示每个interlace中相邻2个RB之间的间隔
Figure PCTCN2018074220-appb-000018
表1对应的是低频场景, 以threshold=80%作为示例;表2对应的是高频场景,以threshold=70%作为示例。
以低频场景下系统带宽(BW)为20MHz,子载波间隔(subcarrier spacing,SCS)为15kHz,符合OCB要求的threshold=80%为例。假设对应的传输带宽
Figure PCTCN2018074220-appb-000019
BW RB=0.18MHz。为了满足上述两个条件,可得到的interlace结构至少有以下五种,具体为:
第一种interlace结构:每个interlace包含5个RB,其中相邻两个RB之间间隔等于22个RB;
第二种interlace结构:每个interlace包含10个RB,其中相邻两个RB之间间隔等于11个RB;
第三种interlace结构:每个interlace包含11个RB,其中相邻两个RB之间间隔等于10个RB;
第四种interlace结构:每个interlace包含22个RB,其中相邻两个RB之间间隔等于5个RB;
第五种interlace结构:每个interlace包含55个RB,其中相邻两个RB之间间隔等于2个RB。
需要说明的是,请参见表1,上述interlace可以通过查询表1直接获得。具体而言,表1中第3列(interlace structure)中包括的一个或多个参数值与第4列(RB spacing)中包括的一个或多个参数值顺次对应,相对应的2个参数分别表述interlace所包含的RB个数(interlace structure)和interlace的RB间隔(RB spacing)。继续以RB number=110为例,表1中RB number=110的场景下,第3列包含5个参数值:5,10,11,22,55,第4列包含5个参数值:22,11,10,5,2。其中,第3列的5和第4列的22对应,为上述第一种interlace结构;第3列的10和第4列的11对应,为上述第二种interlace结构;第3列的11和第4列的10对应,为上述第三种interlace结构;第3列的22和第4列的5对应,为上述第四种interlace结构;第3列的55和第4列的2对应,为上述第五种interlace结构。
又,以高频场景下系统带宽为500MHz,子载波间隔为240kHz,符合OCB要求的threshold=70%为例。假设对应的传输带宽
Figure PCTCN2018074220-appb-000020
BW RB=2.88MHz。为了满足上述两个条件,可得到interlace的结构至少有以下七种,具体为:
第一种interlace结构:每个interlace包含6个RB,其中相邻两个RB之间间隔等于26个RB;
第二种interlace结构,每个interlace包含12个RB,其中相邻两个RB之间间隔等于13个RB;
第三种interlace结构,每个interlace包含13个RB,其中相邻两个RB之间间隔等于12个RB;
第四种interlace结构,每个interlace包含26个RB,其中相邻两个RB之间间隔等于6个RB;
第五种interlace结构,每个interlace包含39个RB,其中相邻两个RB之间间隔等于4个RB;
第六种interlace结构,每个interlace包含52个RB,其中相邻两个RB之间间隔等于3个RB;
第七种interlace结构,每个interlace包含78个RB,其中相邻两个RB之间间隔等于2个RB。
需要说明的是,请参见表2,上述interlace可以通过查询表2直接获得。具体而言,表2中第3列(interlace structure)中包括的一个或多个参数值与第4列(RB spacing)中包括的一个或多个参数值顺次对应,相对应的2个参数分别表述interlace所包含的RB个数(interlace structure)和interlace的RB间隔(RB spacing)。继续以RB number=156为例,表2中RB number=156的场景下,第3列包含7个参数值:6,12,13,26,39,52,78,第4列包含7个参数值:26,13,12,6,4,3,2。其中,第3列的6和第4列的26对应,为上述第一种interlace结构;第3列的12和第4列的13对应,为上述第二种interlace结构;第3列的13和第4列的12对应,为上述第三种interlace结构;第3列的26和第4列的6对应,为上述第四种interlace结构;第3列的39和第4列的4对应,为上述第五种interlace结构;第3列的52和第4列的3对应,为上述第六种interlace结构;第3列的78和第4列的2对应,为上述第七种Interlace结构。
上述示例仅仅用于解释本申请,不应构成限定。如表1以及表2,还示出了多种传输带宽和/或多种子载波间隔场景下的interlace结构。
另外,从表1及表2中可以看出,在一些传输带宽的场景中,无法找到满足上述两个条件的interlace结构,即表中第3列及第4列中为“null”的情况。例如,表1中RB number=53、RB number=101等场景,表2中RB number=41、RB number=43等场景,这是由于整个传输带宽难以分成整数个interlace。针对这些场景,可以采用相近的传输带宽场景下的interlace结构。
需要说明的是,不限于表1及表2中所示,多种系统带宽和/或子载波间隔的场景下的interlace结构等还可以有其它取值。表1或表2中涉及的参数类型还可以有其它类型,例如带宽占比(bandwidth percent)等。凡在表1、表2及本申请的技术方案的基础之上,所做的参数的删除、增加、等同替换、改进等,均应包括在本申请的保护范围之内。
表1
Figure PCTCN2018074220-appb-000021
Figure PCTCN2018074220-appb-000022
Figure PCTCN2018074220-appb-000023
表2
Figure PCTCN2018074220-appb-000024
Figure PCTCN2018074220-appb-000025
Figure PCTCN2018074220-appb-000026
Figure PCTCN2018074220-appb-000027
以上所示例的具体实施方式,对本申请的目的和技术方案进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围。凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算 机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (22)

  1. 一种资源分配方法,其特征在于,包括:
    在进行上行资源分配时,分配给终端的资源组包括M个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值;所述资源组还包括N个处于任意频域位置的第二资源块;其中,M≥2,N≥1,M、N均是正整数;
    向所述终端发送资源指示信息,所述资源指示信息包括所述资源组信息。
  2. 如权利要求1所述的方法,其特征在于,所述M个第一资源块是第一资源集合中的一对或多对资源块,其中,所述第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值;所述N个第二资源块之间的频域跨度在系统带宽中的占比大于或者小于所述预设阈值。
  3. 如权利要求2所述的方法,其特征在于,所述第一资源集合中的每一对资源块之间的频域跨度均相同,并且每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。
  4. 如权利要求2所述的方法,其特征在于,所述第一资源集合中的各对资源块之间的频域跨度从大到小递减,最小的频域跨度在系统带宽中的占比大于所述预设阈值。
  5. 如权利要求1所述的方法,其特征在于,所述M个第一资源块组成K个资源交错,所述K个资源交错形成的频域跨度在系统带宽中的占比均大于所述预设阈值;K≥1,K是正整数;所述N个第二资源块是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被分配给多个终端。
  6. 如权利要求5所述的方法,其特征在于,所述K个资源交错均包含H个资源块,H是正整数,H能够被非授权频段对应的多种传输带宽各自对应的资源块总数量整除。
  7. 如权利要求2-4中任一项所述的方法,其特征在于,所述资源指示信息包括所述一对或多对资源块在所述第一资源集合中的索引;
    如果所述N个第二资源块是所述第一资源集合中的一对或多对资源块,则所述资源指示信息还包括:所述N个第二资源块对应的一对或多对资源块在所述第一资源集合中的索引;
    如果所述N个第二资源块是非所述第一资源集合中的资源块,则所述资源指示信息还包括:所述N个第二资源块的资源块编号。
  8. 如权利要求5或6所述的方法,其特征在于,所述资源指示信息包括:所述K个资源交错的资源交错索引,以及所述N个第二资源块所属的资源交错的资源交错索引、所述N个第二资源块在所述所属资源交错中的索引。
  9. 如权利要求8所述的方法,其特征在于,所述资源指示信息还包括:所述所属资源交错对应的属性指示信息,用于指示出所述所属资源交错被拆分为多个部分,所述多个部分为多个终端共享。
  10. 如权利要求1-6中任一项所述的方法,其特征在于,所述资源指示信息包括所述M个第一资源块的编号以及所述N个第二资源块的编号。
  11. 一种网络设备,其特征在于,包括:
    资源分配单元,用于在进行上行资源分配时,分配给终端的资源组包括M个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值;所述资源组还包括N个处于任意频域位置的第二资源块;其中,M≥2,N≥1,M、N均是正整数;
    发送单元,用于向所述终端发送资源指示信息,所述资源指示信息包括所述资源组信息。
  12. 如权利要求11所述的网络设备,其特征在于,所述M个第一资源块是第一资源集合中的一对或多对资源块,其中,所述第一资源集合中的每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值;所述N个第二资源块之间的频域跨度在系统带宽中的占比大于或者小于所述预设阈值。
  13. 如权利要求12所述的网络设备,其特征在于,所述第一资源集合中的每一对资源块之间的频域跨度均相同,并且每一对资源块之间的频域跨度在系统带宽中的占比均大于所述预设阈值。
  14. 如权利要求12所述的网络设备,其特征在于,所述第一资源集合中的各对资源块之间的频域跨度从大到小递减,最小的频域跨度在系统带宽中的占比大于所述预设阈值。
  15. 如权利要求11所述的网络设备,其特征在于,所述M个第一资源块组成K个资源交错,所述K个资源交错形成的频域跨度在系统带宽中的占比均大于所述预设阈值;K≥1,K是正整数;所述N个第二资源块是资源交错中的部分资源块,所述N个第二资源块所属的资源交错被分配给多个终端。
  16. 如权利要求15所述的网络设备,其特征在于,所述K个资源交错均包含H个资源块,H是正整数,H能够被非授权频段对应的多种传输带宽各自对应的资源块总数量整除。
  17. 如权利要求12-14中任一项所述的网络设备,其特征在于,所述资源指示信息包括所述一对或多对资源块在所述第一资源集合中的索引;
    如果所述N个第二资源块是所述第一资源集合中的一对或多对资源块,则所述资源指 示信息还包括:所述N个第二资源块对应的一对或多对资源块在所述第一资源集合中的索引;
    如果所述N个第二资源块是非所述第一资源集合中的资源块,则所述资源指示信息还包括:所述N个第二资源块的资源块编号。
  18. 如权利要求15或16所述的网络设备,其特征在于,所述资源指示信息包括:所述K个资源交错的资源交错索引,以及所述N个第二资源块所属的资源交错的资源交错索引、所述N个第二资源块在所述所属资源交错中的索引。
  19. 如权利要求11-16中任一项所述的网络设备,其特征在于,所述资源指示信息还包括:所述所属资源交错对应的属性指示信息,用于指示出所述所属资源交错被拆分为多个部分,所述多个部分为多个终端共享。
  20. 如权利要求18所述的网络设备,其特征在于,所述资源指示信息包括所述M个第一资源块的编号以及所述N个第二资源块的编号。
  21. 一种网络设备,其特征在于,包括:处理器和发射器,其中:
    所述处理器用于在进行上行资源分配时,分配给终端的资源组包括M个第一资源块,所述M个第一资源块形成的频域跨度在系统带宽中的占比大于预设阈值;所述资源组还包括N个处于任意频域位置的第二资源块;其中,M≥2,N≥1,M、N均是正整数;
    所述发射器用于向所述终端发送资源指示信息,所述资源指示信息包括所述资源组信息。
  22. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-10任意一项所述的方法。
PCT/CN2018/074220 2017-01-26 2018-01-26 一种资源分配方法、相关设备及系统 WO2018137697A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18745342.8A EP3567955B1 (en) 2017-01-26 2018-01-26 Resource allocation method, relevant device and system
JP2019540347A JP6961001B2 (ja) 2017-01-26 2018-01-26 リソース割振り方法ならびに関係するデバイスおよびシステム
US16/522,305 US11303418B2 (en) 2017-01-26 2019-07-25 Resource allocation method and related device and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710062965 2017-01-26
CN201710062965.7 2017-01-26
CN201710434527.9A CN108366424B (zh) 2017-01-26 2017-06-09 一种资源分配方法、相关设备及系统
CN201710434527.9 2017-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/522,305 Continuation US11303418B2 (en) 2017-01-26 2019-07-25 Resource allocation method and related device and system

Publications (1)

Publication Number Publication Date
WO2018137697A1 true WO2018137697A1 (zh) 2018-08-02

Family

ID=62978956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074220 WO2018137697A1 (zh) 2017-01-26 2018-01-26 一种资源分配方法、相关设备及系统

Country Status (1)

Country Link
WO (1) WO2018137697A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831182A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种资源分配方法、相关设备及装置
CN111263440A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 一种防护频带指示方法及装置
CN113015250A (zh) * 2019-12-20 2021-06-22 维沃移动通信有限公司 一种上行资源分配方法及设备
JP2021534687A (ja) * 2018-09-18 2021-12-09 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. リソース割り当て方法、端末装置及びネットワーク装置
US20220086907A1 (en) * 2019-02-15 2022-03-17 Apple Inc. Wideband interlace design for physical uplink channel in nr-unlicensed
CN114731665A (zh) * 2020-02-14 2022-07-08 Oppo广东移动通信有限公司 资源分配方法、装置及可读存储介质
CN115380595A (zh) * 2020-05-11 2022-11-22 Oppo广东移动通信有限公司 数据传输方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016019243A1 (en) * 2014-07-31 2016-02-04 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
WO2016022305A1 (en) * 2014-08-04 2016-02-11 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band
CN105557050A (zh) * 2013-09-20 2016-05-04 高通股份有限公司 无执照频谱上的上行链路资源分配和传输块大小确定
CN105814829A (zh) * 2013-12-03 2016-07-27 高通股份有限公司 无线通信系统中的参考信号生成

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557050A (zh) * 2013-09-20 2016-05-04 高通股份有限公司 无执照频谱上的上行链路资源分配和传输块大小确定
CN105814829A (zh) * 2013-12-03 2016-07-27 高通股份有限公司 无线通信系统中的参考信号生成
WO2016019243A1 (en) * 2014-07-31 2016-02-04 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band
WO2016022305A1 (en) * 2014-08-04 2016-02-11 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Status Report to TSG:Work Item on Enhanced LAA for LTE", 3GPP TSG RAN MEETING #72 RP-160876, 6 June 2016 (2016-06-06), XP051103717 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831182B (zh) * 2018-08-10 2023-09-26 华为技术有限公司 一种资源分配方法、相关设备及装置
CN110831182A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种资源分配方法、相关设备及装置
US11811704B2 (en) 2018-09-18 2023-11-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method, terminal device, and network device
JP2021534687A (ja) * 2018-09-18 2021-12-09 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. リソース割り当て方法、端末装置及びネットワーク装置
JP7191203B2 (ja) 2018-09-18 2022-12-16 オッポ広東移動通信有限公司 リソース割り当て方法、端末装置及びネットワーク装置
US11956177B2 (en) 2018-09-18 2024-04-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method, terminal device, and network device
CN111263440A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 一种防护频带指示方法及装置
CN111263440B (zh) * 2018-11-30 2024-06-04 华为技术有限公司 一种防护频带指示方法及装置
US12028197B2 (en) 2018-11-30 2024-07-02 Huawei Technologies Co., Ltd. Guard band indication method and apparatus
US20220086907A1 (en) * 2019-02-15 2022-03-17 Apple Inc. Wideband interlace design for physical uplink channel in nr-unlicensed
US12058737B2 (en) * 2019-02-15 2024-08-06 Apple Inc. Wideband interlace design for physical uplink channel in NR-unlicensed
CN113015250A (zh) * 2019-12-20 2021-06-22 维沃移动通信有限公司 一种上行资源分配方法及设备
CN113015250B (zh) * 2019-12-20 2023-12-05 维沃移动通信有限公司 一种上行资源分配方法及设备
CN114731665A (zh) * 2020-02-14 2022-07-08 Oppo广东移动通信有限公司 资源分配方法、装置及可读存储介质
CN115380595A (zh) * 2020-05-11 2022-11-22 Oppo广东移动通信有限公司 数据传输方法及相关装置

Similar Documents

Publication Publication Date Title
CN108366424B (zh) 一种资源分配方法、相关设备及系统
CN109039556B (zh) 一种信号传输方法、相关设备及系统
WO2018137697A1 (zh) 一种资源分配方法、相关设备及系统
CN111066256B (zh) 一种信号传输方法及相关设备
US12028197B2 (en) Guard band indication method and apparatus
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
EP3737191A1 (en) Method, apparatus and system for sending and receiving uplink data
CN109275190B (zh) 一种通信方法及装置
WO2021218920A1 (zh) 通信方法和装置
CN110831182B (zh) 一种资源分配方法、相关设备及装置
WO2024055235A1 (zh) 用于侧行通信的方法、第一设备以及终端设备
WO2021219059A1 (zh) 通信方法和装置
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2023205954A1 (zh) 侧行通信方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018745342

Country of ref document: EP

Effective date: 20190808