WO2021134378A1 - 一种业务处理方法及相关设备 - Google Patents

一种业务处理方法及相关设备 Download PDF

Info

Publication number
WO2021134378A1
WO2021134378A1 PCT/CN2019/130220 CN2019130220W WO2021134378A1 WO 2021134378 A1 WO2021134378 A1 WO 2021134378A1 CN 2019130220 W CN2019130220 W CN 2019130220W WO 2021134378 A1 WO2021134378 A1 WO 2021134378A1
Authority
WO
WIPO (PCT)
Prior art keywords
different
modulation
service
modulation scheme
modulation schemes
Prior art date
Application number
PCT/CN2019/130220
Other languages
English (en)
French (fr)
Inventor
贾琼
张菁菁
尤肖虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/130220 priority Critical patent/WO2021134378A1/zh
Publication of WO2021134378A1 publication Critical patent/WO2021134378A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a service processing method and related equipment.
  • the Internet of Things is a network concept that connects any item to the Internet for information exchange and communication to realize intelligent identification, positioning, tracking, monitoring and management.
  • the "Internet of Things concept” is a network concept based on the "Internet concept” that extends and expands its user end to any item and item for information exchange and communication.
  • the general IoT network is a hybrid network.
  • massive IoT massive IoT
  • mission critical IoT devices transmission critical IoT devices
  • Mission critical IoT devices are different from massive IoT in that the data transmission frequency of these devices is extremely low and accidental, and they pay more attention to delay and reliability.
  • the services carried by Mission critical IoT devices are called URLLC (Ultra-Reliable Low-Latency Communication) services.
  • service isolation is generally used to protect the short delay and high reliability of URLLC services.
  • One way of service isolation is to divide spectrum resources into multiple channels, and different types of services use different channels for transmission. But this kind of service isolation design scheme cannot guarantee the system spectrum utilization rate. If a dedicated channel is allocated for the URLLC service, the spectrum efficiency of the URLLC dedicated channel for emergency tasks is very low. Ordinary services cannot be offloaded to dedicated channels when the ordinary channels are very busy, resulting in very low trunking efficiency of the system. In addition, when an emergency occurs, there may be multiple IoT devices carrying URLLC services that need to be transmitted in a system.
  • URLLC IoT devices cannot occupy other common channels, so they will collide on the dedicated channel, which will affect the low latency and high reliability of URLLC services.
  • Another service isolation method is to set a higher priority for URLLC to give priority to access to the channel.
  • URLLC services occur, other traditional services need to be suspended to avoid them.
  • business isolation is performed by allowing traditional businesses to avoid URLLC businesses, it will significantly affect the performance of traditional businesses.
  • the embodiments of the present application provide a service processing method and related equipment, which can ensure low-latency and reliable transmission of different services without reducing the system spectrum utilization rate.
  • the present application provides a service processing method, including: a network device receives a request message sent by a first device, the request message includes the service type requested by the first device to send, or the request message is related to the request message sent by the first device.
  • the service type requested to be sent by the first device corresponds; the network device allocates a modulation scheme for the service type requested to be sent; wherein, different service types correspond to different modulation schemes; the network device sends the allocated modulation scheme to The first device; the network device receives a service from the first device on a spectrum resource, and the service is modulated by the allocated modulation scheme; wherein, services of different service types share the spectrum resource.
  • the network device receives a request message sent by the first device, and the request message characterizes the service type requested by the first device to send, and the network device allocates a modulation scheme for the service type, where different service types are Corresponding to different modulation schemes, then the network device sends the assigned modulation scheme to the first device.
  • the first device modulates the service using the modulation scheme, and sends the modulated service to the network device, where: Services of different service types share the same spectrum resource.
  • the different modulation schemes corresponding to different service types include one or more of the following: one service type corresponds to one or more modulation schemes; different service types have priority, and the service The priority of the type corresponds to one or more modulation schemes; different service types correspond to different equipment types, and one type of equipment corresponds to one or more modulation schemes; different service types have different spreading factors, one The spreading factor corresponds to a modulation scheme.
  • This implementation provides the service type, priority, device type, and the correspondence between the spreading factor and the modulation scheme, that is to say, the modulation of the service can be determined by factors such as service type, priority, device type, and spreading factor.
  • the scheme enables different modulation schemes adopted by different services, and different service types can share the same spectrum resources, which improves the utilization rate of spectrum resources.
  • the sending, by the network device, the assigned modulation scheme to the first device includes: the network device sending the assigned modulation scheme to the first device through DCI and/or RRC signaling.
  • This implementation provides usable signaling for the network device to send the allocated modulation scheme to the first device.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance loss of the modulation signals of any two modulation schemes in different modulation schemes due to mutual interference Below the threshold.
  • This implementation describes the standard of non-interference between modulated signals of different modulation schemes.
  • the correlation coefficient of the two modulated signals is lower than the threshold or the performance loss due to mutual interference is lower than the threshold, it can be considered The two modulated signals do not interfere with each other, which provides a prerequisite for supporting different service types to share the same spectrum resources.
  • the spectrum resources include unlicensed spectrum resources.
  • the unlicensed spectrum resources need to be monitored before sending.
  • the device monitors that the channel is idle, the device will send service information.
  • different modulation schemes are used.
  • the service types can share the same spectrum resources without the need to monitor before sending, which improves the sending efficiency and saves resources.
  • the service type includes one or more of the following: URLLC, IOT, eMBB, mMTC.
  • URLLC Ultra-Reliable and Low Latency Communication
  • IOT IOT
  • eMBB eMBB
  • mMTC mMTC
  • this application provides yet another service processing method, including: a first terminal device receives a first message sent by a second terminal device, the first message is used to characterize the spectrum resource of the second terminal device The first modulation scheme used by the transmitted service; the first terminal device selects a second modulation scheme according to the first message; wherein, the second modulation scheme is different from the first modulation scheme; the first The terminal device transmits the service modulated by the second modulation scheme on the spectrum resource.
  • the second terminal device broadcasts and transmits the first modulation scheme used when transmitting services on the spectrum resource.
  • the first terminal device selects the first modulation scheme.
  • Two modulation schemes and then transmit the service modulated by the second modulation scheme on the same spectrum resource, where the second modulation scheme is different from the first modulation scheme.
  • different service types correspond to different modulation schemes
  • the different modulation schemes corresponding to different service types include one or more of the following: one service type corresponds to one or more modulation schemes; different The service type of has priority, and the priority of the service type corresponds to one or more modulation schemes; different service types correspond to different device types, and one device type corresponds to one or more modulation schemes; different The service types have different spreading factors, and one of the spreading factors corresponds to one modulation scheme.
  • This implementation provides the service type, priority, device type, and the correspondence between the spreading factor and the modulation scheme, that is to say, the modulation of the service can be determined by factors such as service type, priority, device type, and spreading factor.
  • the scheme enables different modulation schemes adopted by different services, and different service types can share the same spectrum resources, which improves the utilization rate of spectrum resources.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance loss of the modulation signals of any two modulation schemes in different modulation schemes due to mutual interference Below the threshold.
  • This implementation describes the standard of non-interference between modulated signals of different modulation schemes.
  • the correlation coefficient of the two modulated signals is lower than the threshold or the performance loss due to mutual interference is lower than the threshold, it can be considered The two modulated signals do not interfere with each other, which provides a prerequisite for supporting different service types to share the same spectrum resources.
  • the spectrum resources include unlicensed spectrum resources.
  • the unlicensed spectrum resources need to be monitored before sending.
  • the device monitors that the channel is idle, the device will send service information.
  • different modulation schemes are used.
  • the service types can share the same spectrum resources without the need to monitor before sending, which improves the sending efficiency and saves resources.
  • the service type includes one or more of the following: URLLC, IOT, eMBB, mMTC.
  • URLLC Ultra-Reliable and Low Latency Communication
  • IOT IOT
  • eMBB eMBB
  • mMTC mMTC
  • an embodiment of the present application provides a network device, which may include multiple functional modules or units for correspondingly executing the service processing method provided in the first aspect.
  • the receiving unit For example, the receiving unit, the distribution unit, and the sending unit.
  • a receiving unit configured to receive a request message sent by the first device, where the request message includes the service type requested by the first device to be sent, or the request message corresponds to the service type requested by the first device to send;
  • An allocation unit configured to allocate a modulation scheme for the service type requested to be sent; wherein, different service types correspond to different modulation schemes;
  • a sending unit configured to send the allocated modulation scheme to the first device
  • the receiving unit is further configured to receive a service from the first device on a spectrum resource, where the service is modulated by the allocated modulation scheme; wherein, services of different service types share the spectrum resource.
  • the different modulation schemes corresponding to different service types include one or more of the following: one service type corresponds to one or more modulation schemes; different service types have priority, and the service The priority of the type corresponds to one or more modulation schemes; different service types correspond to different equipment types, and one type of equipment corresponds to one or more modulation schemes; different service types have different spreading factors, one The spreading factor corresponds to a modulation scheme.
  • the allocation unit is specifically configured to send the allocated modulation scheme to the first device through DCI and/or RRC signaling.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance loss of the modulation signals of any two modulation schemes in different modulation schemes due to mutual interference Below the threshold.
  • the spectrum resources include unlicensed spectrum resources.
  • the service type includes one or more of the following: URLLC, IOT, eMBB, mMTC.
  • an embodiment of the present application provides a terminal device, which may include multiple functional modules or units for correspondingly executing the service processing method provided in the second aspect.
  • the receiving unit For example, the receiving unit, the selecting unit, and the sending unit.
  • a receiving unit configured to receive a first message sent by a second terminal device, where the first message is used to characterize the first modulation scheme used by the service sent by the second terminal device on the spectrum resource;
  • a selection unit configured to select a second modulation scheme according to the first message; wherein the second modulation scheme is different from the first modulation scheme;
  • the sending unit is configured to send the service modulated by the second modulation scheme on the spectrum resource.
  • different service types correspond to different modulation schemes
  • the different modulation schemes corresponding to different service types include one or more of the following: one service type corresponds to one or more modulation schemes; different The service type of has priority, and the priority of the service type corresponds to one or more modulation schemes; different service types correspond to different device types, and one device type corresponds to one or more modulation schemes; different The service types have different spreading factors, and one of the spreading factors corresponds to one modulation scheme.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance loss of the modulation signals of any two modulation schemes in different modulation schemes due to mutual interference Below the threshold.
  • the spectrum resources include unlicensed spectrum resources.
  • the service type includes one or more of the following: URLLC, IOT, eMBB, mMTC.
  • an embodiment of the present application provides a network device for executing the service processing method provided in the first aspect.
  • the network device may include: a memory, a processor, a transmitter, and a receiver, where the transmitter and the receiver are used to communicate with other communication devices (such as the first device).
  • the memory is used to store the implementation code of the service processing method provided in the first aspect
  • the processor is used to execute the program code stored in the memory, that is, to execute the service processing method provided in the first aspect.
  • an embodiment of the present application provides a terminal device for executing the service processing method provided in the second aspect.
  • the network device may include: a memory, a processor, a transmitter, and a receiver, where the transmitter and the receiver are used to communicate with other communication devices (such as a second terminal device).
  • the memory is used to store the implementation code of the service processing method provided in the second aspect
  • the processor is used to execute the program code stored in the memory, that is, to execute the service processing method provided in the second aspect.
  • the present application provides a chip.
  • the chip may include a processor and one or more interfaces coupled to the processor.
  • the processor can be used to call the implementation program of the service processing method provided by the first aspect or the second aspect from the memory, and execute the instructions contained in the program.
  • the interface can be used to output the data processing result of the processor.
  • an embodiment of the present application provides a computer-readable storage medium with instructions stored on the readable storage medium, which when run on a processor, cause the processor to execute the description in the first or second aspect above Business processing methods.
  • embodiments of the present application provide a computer program product containing instructions, which when run on a processor, cause the processor to execute the service processing method described in the first or second aspect.
  • FIG. 1 is a schematic diagram of the prior art application of a service processing method provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a business processing system architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a service processing method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another service processing method provided by an embodiment of the present application.
  • FIGS 5 to 11 are schematic diagrams of interference situations between two modulation schemes provided by embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of a service processing apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another service processing apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a service processing terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a service processing network device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip system provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as implying or implying relative importance or implicitly specifying the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, “multiple” The meaning is two or more.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or execution threads, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • One of the service isolation methods is to divide spectrum resources so that different services are transmitted on different channels. As shown in Figure 1, there are 5 frequency bands in the system, channel 1 to channel 5. Channel 1 to channel 4 are used for common business types; channel 5 is reserved for emergency business types. Similar to emergency corridors in expressways, traditional services must not occupy the red emergency corridors. This method ensures that when an emergency service type occurs, the channel can be accessed at any time, and it is free from interference of ordinary service types.
  • this kind of service isolation design cannot guarantee the system spectrum utilization. If a dedicated channel is allocated for emergency services, the spectrum efficiency of the dedicated channel 5 for emergency services is very low. Ordinary services cannot be offloaded to channel 5 when the other four channels to channel 4 are very busy, resulting in a very low trunking efficiency of the system. Moreover, this service transmission method needs to monitor whether the channel is idle first, and if it is idle, the service can be sent on the channel, which is inefficient. In addition, when an emergency occurs, there may be multiple IoT devices carrying emergency services that need to be transmitted in a system. For example, in the power grid system, some line failures will cause multiple faulty devices to send alarm messages at the same time. At this time, emergency IoT devices cannot occupy other common channels channel 1 to channel 4, so a collision will occur on the emergency channel channel 5, which affects the low latency and high reliability of emergency services.
  • Another service isolation method is to set a higher priority for the emergency service type to give priority to access to the channel.
  • an emergency service occurs, other ordinary services need to be suspended for avoidance.
  • this kind of business isolation by allowing ordinary businesses to avoid emergency businesses will significantly affect the performance of ordinary businesses.
  • the main problem to be solved by this application is to provide a service processing method.
  • different modulation and/or coding schemes are used to isolate different service types and support different service types at the same time.
  • Access on the basis of not reducing the spectrum utilization rate, guarantees the reliable transmission of different service types.
  • Fig. 2 shows a network architecture of a communication system 100 involved in an embodiment of the present application.
  • the communication system 100 may include: a radio (Radio) access network (access network, AN) device 101, and user equipment (UE) 102-107. among them:
  • Radio radio
  • AN access network
  • UE user equipment
  • the base station may be the Base Transceiver Station (BTS) in the Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or it can be the Long Term Evolution (LTE) system Evolutional Node B (eNB), as well as gNB in 5G system and New Radio (NR) system.
  • BTS Base Transceiver Station
  • LTE Long Term Evolution
  • eNB Long Term Evolutional Node B
  • gNB 5G system and New Radio
  • NR New Radio
  • the base station may also be a transmitting and receiving point (English: Transmission Receive Point, TRP for short), a central unit (Central Unit, CU), or other network entities.
  • the network equipment can be a baseband processing unit (Baseband Unit, BBU) and a radio unit (Remote Radio Unit, RRU).
  • BBU Baseband Unit
  • RRU Remote Radio Unit
  • a cloud radio access network Cloud Radio Access Network, CRAN
  • it can be It is the baseband pool BBU pool and the radio unit RRU.
  • (R)AN 101 can also be a network composed of multiple (R)AN 101 nodes, which can implement functions such as wireless physical layer functions, resource scheduling, and wireless resource management.
  • the UEs 102 to 107 may be distributed in the entire communication system 100, and may be stationary or mobile.
  • UEs 102 to 107 may be servers or terminal devices.
  • Servers may include but are not limited to background servers, component servers, data processing servers, storage servers, or computing servers, etc.
  • the servers may communicate with multiple devices via the Internet.
  • Terminal equipment can be communication terminals, mobile equipment, user terminals, mobile terminals, wireless communication equipment, portable terminals, user agents, user devices, service equipment, or user equipment (User Equipment, UE) and other computer networks that are at the periphery of the network , Is mainly used for data input and processing result output or display, etc., and can also be a software client, application, etc.
  • the terminal can be a mobile phone, a cordless phone, a smart watch, a wearable device, a tablet device, a handheld device with wireless communication function, a computing device, an in-vehicle communication module, a smart meter, or other processing devices connected to a wireless modem.
  • UE 102-107 can send uplink information to (R)AN 101, (R)AN 101 needs to receive uplink information sent by UE 102-107, and (R)AN 101 can also send downlink information to UE 102-107, UEs 102-107 need to receive the downlink information sent by (R)AN 101.
  • UEs 105-107 can also form a communication system. In this communication system, UE 105-107 can send and receive each other.
  • the service processing modes between the network equipment (R) AN 101 and the terminal equipment UE 102-107, and the terminal equipment UE 105-107 are different.
  • the network device receives the requested service type sent by the terminal device, and the network device assigns a modulation scheme to the received service type, where different service types correspond to different modulation schemes, and then the network device The assigned modulation scheme is sent to the terminal device.
  • the terminal device modulates the service using the modulation scheme, and sends the modulated service to the network device, where services of different service types share the same spectrum resource.
  • the second terminal device broadcasts the first modulation scheme used when sending services on the spectrum resource. After receiving the first modulation scheme adopted by the second terminal device, the first terminal device selects the first modulation scheme. Two modulation schemes, and then transmit the service modulated by the second modulation scheme on the same spectrum resource, where the second modulation scheme is different from the first modulation scheme.
  • Fig. 3 is a schematic flowchart of a service processing method provided by an embodiment of the present application.
  • the service processing method provided by the embodiment of the present application includes but is not limited to steps S301-S304.
  • the method embodiment is applied to the communication process between the network device and the terminal device, and the network device base station is used as an example of the execution subject. The possible implementation of the method embodiment will be further described below.
  • S301 The first device sends a request message to the base station.
  • the first device when it wants to transmit a service, it sends a request message to the base station to characterize the type of service it wants to send.
  • the service type may include eMBB, URLLC, mMTC, and IoT.
  • the base station receives the request message sent by the first device, where the request message may include the service type requested by the first device to send, or the request message corresponds to the service type requested by the first device to send. That is to say, the request message may include the type of service you want to send, for example, the request message includes information such as the URLLC type of the service type you want to send; the request message may not include the type of service you want to send, and It is that the request message has a corresponding relationship with the service type.
  • the request message is a message with a preset identifier. After receiving the request message, the base station recognizes the preset identifier of the request message. The corresponding relationship determines the service type characterized by the request message.
  • S302 The base station allocates a modulation scheme for the service type in the request message.
  • the base station After receiving the request message sent by the first device, the base station obtains the service type that the first device wants to send, and the base station allocates a modulation scheme for the service type in the request message, where different service types correspond to different modulation schemes.
  • the difference in modulation schemes may refer to different modulation schemes, and may also be the configuration of different parameters under the same modulation scheme.
  • the modulation method can be chirp spread spectrum modulation, MFSK modulation, etc.
  • the configuration of different parameters under the same modulation method can be chirp spread signal modulation with a spreading factor of 5, chirp spreading signal modulation with a spreading factor of 7, and Chirp spread spectrum signal modulation with a spreading factor of 8 and so on.
  • the correspondence between service types and modulation schemes can be as shown in Table 1:
  • the base station After the base station receives the request message sent by the first device, the base station allocates a modulation scheme for the service type in the request message, and determines the modulation scheme according to the correspondence between the service type and the modulation scheme in the above table.
  • one service type can correspond to one or more modulation schemes, that is, one service type can correspond to modulation scheme 1, modulation scheme 2, ..., modulation scheme N, etc., where N Is a positive integer.
  • the modulation scheme 1 is occupied by other services
  • the modulation scheme 2 can be selected; when the modulation scheme 2 is occupied by other services, the modulation scheme 3 can be selected; and so on.
  • the correspondence between service types and modulation schemes can be as shown in Table 2:
  • the base station After the base station receives the request message sent by the first device, the base station allocates a modulation scheme for the service type in the request message, and determines a modulation scheme according to the correspondence between the service type and the modulation scheme in the above table. If the modulation scheme has been used by other services Occupied, the modulation scheme cannot be selected.
  • different service types correspond to different modulation schemes.
  • different service types have priorities, and the priority of the service types corresponds to one or more modulation schemes.
  • different service types are preset with different priorities. If you need to change the modulation scheme corresponding to the service type, you can change the modulation scheme by changing the priority corresponding to the service type.
  • the corresponding relationship between the priority and the modulation scheme can be as follows: Table 3 shows:
  • the base station After the base station receives the request message sent by the first device, the base station allocates a modulation scheme for the service type in the request message.
  • the base station first determines the priority of the service type, and then determines a modulation scheme according to the corresponding relationship between the priority and the modulation scheme in the above table.
  • different service types correspond to different modulation schemes.
  • different service types correspond to different device types, and one device type corresponds to one or more modulation schemes.
  • a device can transmit one or more service types, and the device corresponds to one or more modulation schemes.
  • the base station allocates the modulation scheme for the service type in the request message.
  • the base station first determines the equipment corresponding to the service type, and then determines a modulation scheme according to the correspondence between the equipment type and the modulation scheme.
  • different service types correspond to different modulation schemes.
  • different service types have different spreading factors.
  • One modulation scheme corresponds.
  • different service types preset different spreading factors. After the base station obtains the service type in the request message, it first determines the spreading factor of the service type, and then determines a modulation based on the correspondence between the spreading factor and the modulation scheme. Program.
  • the modulation scheme may include a modulation and coding scheme, that is, a modulation scheme may include a modulation method and a coding method.
  • a modulation scheme may include a modulation method and a coding method.
  • Table 4 the correspondence between service types and modulation schemes can be as shown in Table 4:
  • the base station After the base station receives the request message sent by the first device, the base station allocates a modulation scheme for the service type in the request message, and determines the modulation scheme according to the correspondence between the service type and the modulation scheme in the above table.
  • S303 The base station sends the allocated modulation scheme to the first device.
  • the base station After the base station allocates a modulation scheme for the service type in the request message, it sends the allocated modulation scheme to the first device to instruct the first device to use the allocated modulation scheme to modulate the service.
  • the sending method can be broadcast sending, point-to-point sending, group sending and so on.
  • the network device may send the allocated modulation scheme to the first device through DCI and/or RRC signaling.
  • S304 The first device sends a service on the spectrum resource, where services of different service types share the spectrum resource.
  • the first device modulates the sent service using the allocated modulation scheme, and then sends it to the base station, and the base station receives the service from the first device on spectrum resources.
  • services of different service types share spectrum resources. That is to say, on the same spectrum resource, the first device does not need to monitor whether the spectrum resource is free, and when other services are being transmitted on the spectrum resource, the first device may also send a service modulated by the allocated modulation scheme.
  • the above-mentioned spectrum resources include unlicensed spectrum resources.
  • the unlicensed spectrum resources need to be monitored first and then sent.
  • the device detects that the channel is idle, the device will send service information.
  • different service types due to different modulation schemes adopted by different service types, different service types can share the same spectrum resources without the need to monitor before sending, which improves sending efficiency and saves resources.
  • the embodiments of this application are also applicable.
  • the network equipment base station receives the service type requested to be sent by the terminal equipment, and the base station assigns a modulation scheme to the received service type, where different service types correspond to different modulation schemes, and then the base station assigns The modulation scheme is sent to the terminal device.
  • the terminal device modulates the service using the modulation scheme, and sends the modulated service to the base station, where services of different service types share the same spectrum resource.
  • the service processing method provided by the embodiment of the present application includes but is not limited to steps S301-S304.
  • the embodiment of the present application also provides a service processing method.
  • the method embodiment is applied to the communication between the terminal device and the terminal device.
  • the first terminal device is used as an example of the execution subject. The following is the possibility of the method embodiment The implementation method will be further described.
  • S401 The first terminal device receives the first message sent by the second terminal device.
  • the first terminal device receives the first message sent by the second terminal device, where the first message is used to characterize the first modulation scheme adopted by the service sent by the second terminal device on the spectrum resource.
  • the first terminal device and the second terminal device share the same spectrum resource.
  • the second terminal device wants to transmit a service, it can broadcast and send the first message to characterize the first modulation scheme of the sent service, so that after receiving the information of this modulation scheme, the first device selects the first modulation scheme used by the second terminal device. Different modulation schemes for one modulation scheme.
  • the first message also includes the occupation time of the team for the first modulation scheme, so that other devices can choose to use the first modulation scheme to modulate the service after the occupation time.
  • the first terminal device selects a second modulation scheme according to the first message; where the second modulation scheme is different from the first modulation scheme.
  • the first terminal device selects the second modulation scheme according to the first message; wherein the second modulation scheme is different from the first modulation scheme.
  • the first terminal device receives the first modulation scheme used by the second terminal device, if the first terminal device wants to send a service within the time occupied by the second terminal device on the first modulation scheme, it will be based on the service it wants to send.
  • the modulation scheme corresponding to the type selection if the modulation scheme corresponding to the service type that the first terminal device wants to send is the first modulation scheme, the first modulation scheme cannot be selected. You can choose to wait or choose another modulation scheme.
  • the difference in modulation schemes may refer to different modulation schemes, and may also be the configuration of different parameters under the same modulation scheme.
  • the modulation method can be chirp spread spectrum modulation, MFSK modulation, etc.
  • the configuration of different parameters under the same modulation method can be chirp spread signal modulation with a spreading factor of 5, chirp spreading signal modulation with a spreading factor of 7, and Chirp spread spectrum signal modulation with a spreading factor of 8 and so on.
  • one service type can correspond to one or more modulation schemes, that is, one service type can correspond to modulation scheme 1, modulation scheme 2, ..., modulation scheme N, etc., where N Is a positive integer.
  • the modulation scheme 1 is occupied by other services
  • the modulation scheme 2 can be selected; when the modulation scheme 2 is occupied by other services, the modulation scheme 3 can be selected; and so on.
  • the correspondence between service types and modulation schemes can be as shown in Table 5.
  • the first terminal device After the first terminal device receives the first message sent by the second terminal device, the first terminal device allocates a modulation scheme for the service it wants to send, and determines a modulation scheme based on the correspondence between the service type and the modulation scheme. If the modulation scheme is If the scheme is already occupied by the second terminal device, the modulation scheme cannot be selected.
  • different service types correspond to different modulation schemes.
  • different service types have priorities, and the priority of the service types corresponds to one or more modulation schemes.
  • different service types are preset with different priorities. If you need to change the modulation scheme corresponding to the service type, you can change the modulation scheme by changing the priority corresponding to the service type.
  • the corresponding relationship between the priority and the modulation scheme can be as follows: Table 6 shows:
  • the first terminal device After the first terminal device receives the first message sent by the second terminal device, the first terminal device allocates a modulation scheme for the service that it wants to send.
  • the first terminal device first determines the priority of the service type, and then determines a modulation scheme according to the corresponding relationship between the priority and the modulation scheme in the above table.
  • the modulation scheme of the first terminal device is different from the modulation scheme of the second terminal device.
  • different service types correspond to different modulation schemes.
  • different service types correspond to different device types, and one device type corresponds to one or more modulation schemes.
  • a device can transmit one or more service types, and the device corresponds to one or more modulation schemes.
  • the base station assigns the service type in the request message For the modulation scheme, the base station first determines the equipment corresponding to the service type, and then determines a modulation scheme according to the correspondence between the equipment type and the modulation scheme.
  • different service types correspond to different modulation schemes.
  • different service types have different spreading factors.
  • One modulation scheme corresponds.
  • different service types are preset with different spreading factors.
  • the terminal equipment first determines the spreading factor of the service type, and then determines a modulation scheme according to the correspondence between the spreading factor and the modulation scheme.
  • the modulation scheme of the first terminal device is different from the modulation scheme of the second terminal device.
  • the modulation scheme may include a modulation and coding scheme, that is, a modulation scheme may include a modulation method and a coding method.
  • a modulation scheme may include a modulation method and a coding method.
  • Table 7 the correspondence between service types and modulation schemes can be as shown in Table 7:
  • the first terminal device After the first terminal device receives the first message sent by the second terminal device, the first terminal device allocates a modulation scheme for the service it wants to send, and determines the modulation scheme according to the correspondence between the service type and the modulation scheme in the above table.
  • the modulation scheme of the first terminal device is different from the modulation scheme of the second terminal device.
  • the first terminal device transmits the service modulated by the second modulation scheme on the spectrum resource.
  • the first terminal device transmits the service modulated by the second modulation scheme on the spectrum resource.
  • the first terminal device and the second terminal device share the same spectrum resource. That is to say, on the same spectrum resource, the first terminal device does not need to monitor whether the spectrum resource is free.
  • the first device can also send a modulation scheme that is different from other services. Business.
  • the above-mentioned spectrum resources include unlicensed spectrum resources.
  • the unlicensed spectrum resources need to be monitored first and then sent.
  • the device detects that the channel is idle, the device will send service information.
  • different service types due to different modulation schemes adopted by different service types, different service types can share the same spectrum resources without the need to monitor before sending, which improves sending efficiency and saves resources.
  • the embodiments of this application are also applicable.
  • the first terminal device after selecting the second modulation scheme according to the first message, transmits the service modulated by the second modulation scheme on the spectrum resource.
  • a message is broadcasted to characterize the second modulation scheme of the sent service, so that other devices can select a modulation scheme different from the second modulation scheme adopted by the first terminal device after receiving the information of this second modulation scheme.
  • the broadcast message also includes the occupation time of the second modulation scheme by the first terminal device, so that other devices can choose to use the second modulation scheme to modulate services after the occupation time.
  • the second terminal device broadcasts the first modulation scheme used when transmitting services on the spectrum resource.
  • the first terminal device selects the second modulation scheme. Scheme, and then send the service modulated by the second modulation scheme on the same spectrum resource, where the second modulation scheme is different from the first modulation scheme.
  • the modulation signals between different modulation schemes do not interfere with each other, that is, the receiving end can correctly receive the modulation by the different modulation schemes, and the same spectrum resource Business on the transfer.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance of the modulation signals of any two modulation schemes in the different modulation schemes due to mutual interference
  • the loss is lower than the threshold; it can be considered that the two modulated signals do not interfere with each other.
  • the correlation coefficient of the modulated signals of the two modulation schemes is lower than the threshold.
  • the threshold may be in dB, for example, the threshold may be -15dB, as detailed below Explain the correlation between these two signals.
  • the chirp spread spectrum modulated signals with different spreading factors SF have low cross-correlation, that is, strong anti-interference ability.
  • the chirp spread spectrum modulation signal has the following form:
  • T s is the sampling period
  • SF is the spreading factor of the chirp spread spectrum modulated signal.
  • There are 128 correlators in the correlator group corresponding to the chirp spread spectrum modulated signal with SF 7.
  • the abscissa is the normalized correlation value
  • the abscissa is the normalized correlation value
  • the ordinate is the cumulative probability.
  • the larger the SF the smaller the relative interference value of the chirp spread spectrum modulated signal. Therefore, it can fight against greater interference and match the setting with the larger the SF, the lower the signal-to-noise ratio.
  • Figure 9 depicts the spectrum of chirp spread spectrum modulation signals of different SFs. The smaller the SF, the worse the spectrum localization/frequency localization of the chirp spread spectrum modulation symbol, or the spectrum is out of band. Leakage (out-of-band emissions) is more serious. Therefore, in order to ensure that the chirp spread spectrum modulated signal has less distortion after passing through the actual system filter and increase the signal's anti-interference ability, a relatively large SF can be selected.
  • Method 2 The performance loss of the modulation signals of the two modulation schemes due to mutual interference is lower than the threshold.
  • the threshold may be in dB, for example, the threshold may be 0.5dB, as shown in FIG. 10, the chirp spread signal and the MFSK signal are compared in the time domain. The transmission time is crossed, and the MFSK signal is demodulated into a DFT (or FFT) receiver.
  • the chirp spread spectrum modulation as the interference signal is dispersed on all frequency points after FFT, and the energy of the MFSK signal is concentrated at a certain frequency point after FFT.
  • the gain is proportional to the value M of the MFSK signal.
  • Chirp spread spectrum modulation is a spread spectrum signal that occupies the entire system bandwidth; while the MFSK signal is a single frequency signal. Narrowband signal. That is to say, in the frequency domain, if the MFSK signal gathers energy into a single subcarrier and carries information through the position of this subcarrier, the chirp spread spectrum modulation signal disperses the energy in the entire bandwidth. Therefore, the two types of signals are sent at the same time without interfering with each other, which can improve resource utilization. In particular, in the unlicensed spectrum, the mechanism of monitoring before sending can be avoided, saving overhead.
  • the ratio of the power of the MFSK signal to the power of the chirp spread spectrum modulation signal is 0dB, -3dB, and -6dB, respectively.
  • the performance loss of 0.1dB is less than the threshold 0.5dB, it can be considered that the two modulation schemes do not interfere with each other, that is, when the signal power of the traditional IoT service is close to the signal power of the URLLC service, the simultaneous transmission of the two has almost no impact on the URLLC service.
  • any two modulation schemes in the embodiments of the present application do not interfere with each other.
  • multiple different services can be transmitted in the same spectrum resource at the same time without affecting the correct reception of the receiving end.
  • the business processing device may be an electronic device in the form of a portable accessory that has partial computing functions and can be connected to a smart terminal or various terminal devices.
  • FIG. 12 is a schematic diagram of a service processing device provided by an embodiment of the present application.
  • the service processing device 120 includes a receiving unit 1201, a distribution unit 1202, and a sending unit 1203, wherein,
  • the receiving unit 1201 is configured to receive a request message sent by a first device, where the request message includes the service type requested by the first device to be sent, or the request message corresponds to the service type requested by the first device to send;
  • the allocation unit 1202 is configured to allocate a modulation scheme for the service type requested to be sent; wherein, different service types correspond to different modulation schemes;
  • the sending unit 1203 is configured to send the allocated modulation scheme to the first device
  • the receiving unit 1201 is further configured to receive a service from the first device on a spectrum resource, where the service is modulated by the allocated modulation scheme; wherein, services of different service types share the spectrum resource.
  • the different modulation schemes corresponding to different service types include one or more of the following: one service type corresponds to one or more modulation schemes; different service types have priority, and the service The priority of the type corresponds to one or more modulation schemes; different service types correspond to different equipment types, and one type of equipment corresponds to one or more modulation schemes; different service types have different spreading factors, one The spreading factor corresponds to a modulation scheme.
  • the allocating unit 1202 is specifically configured to send the allocated modulation scheme to the first device through DCI and/or RRC signaling.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance loss of the modulation signals of any two modulation schemes in different modulation schemes due to mutual interference Below the threshold.
  • the spectrum resources include unlicensed spectrum resources.
  • the service type includes one or more of the following: URLLC, IOT, eMBB, mMTC.
  • FIG. 13 is a schematic diagram of another service processing apparatus provided by an embodiment of the present application.
  • the service processing apparatus 130 includes a receiving unit 1301, a selecting unit 1302, and a sending unit 1303, wherein,
  • the receiving unit 1301 is configured to receive a first message sent by a second terminal device, where the first message is used to characterize the first modulation scheme adopted by the service sent by the second terminal device on the spectrum resource;
  • the selecting unit 1302 is configured to select a second modulation scheme according to the first message; wherein, the second modulation scheme is different from the first modulation scheme;
  • the sending unit 1303 is configured to send the service modulated by the second modulation scheme on the spectrum resource.
  • different service types correspond to different modulation schemes
  • the different modulation schemes corresponding to different service types include one or more of the following: one service type corresponds to one or more modulation schemes; different The service type of has priority, and the priority of the service type corresponds to one or more modulation schemes; different service types correspond to different device types, and one device type corresponds to one or more modulation schemes; different The service types have different spreading factors, and one of the spreading factors corresponds to one modulation scheme.
  • the correlation coefficient of the modulation signals of any two modulation schemes in different modulation schemes is lower than the threshold; or the performance loss of the modulation signals of any two modulation schemes in different modulation schemes due to mutual interference Below the threshold.
  • the spectrum resources include unlicensed spectrum resources.
  • the service type includes one or more of the following: URLLC, IOT, eMBB, mMTC.
  • FIG. 14 shows a terminal device 400 provided by an embodiment of the present application.
  • the terminal device 400 may include: one or more terminal device processors 401, a memory 402, a communication interface 403, a receiver 405, a transmitter 406, a coupler 407, an antenna 408, and a terminal device interface 409. These components can be connected through the bus 404 or in other ways.
  • FIG. 14 takes the connection through the bus as an example. among them:
  • the communication interface 403 can be used for the terminal device 400 to communicate with other communication devices, such as network devices.
  • the network device may be the network device 400 shown in FIG. 14.
  • the communication interface 403 may be a 5G communication interface, or a communication interface of a new air interface in the future.
  • the terminal device 400 may also be configured with a wired communication interface 403, such as a local access network (LAN) interface.
  • the transmitter 406 can be used to transmit and process the signal output by the terminal device processor 401.
  • the receiver 405 can be used to receive and process the mobile communication signal received by the antenna 408.
  • the transmitter 406 and the receiver 405 can be regarded as a wireless modem.
  • the number of the transmitter 406 and the receiver 405 may each be one or more.
  • the antenna 408 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 407 is used to divide the mobile communication signal received by the antenna 408 into multiple channels and distribute them to multiple receivers 405.
  • the terminal device 400 may also include other communication components, such as a GPS module, a Bluetooth (bluetooth) module, and a wireless fidelity (Wi-Fi) module. Not limited to wireless communication, the terminal device 400 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • the terminal device 400 may also include an input and output module.
  • the input and output module can be used to realize the interaction between the terminal device 400 and the terminal device/external environment, and can mainly include an audio input and output module, a key input module, a display, etc.
  • the input and output modules may also include: cameras, touch screens, sensors, and so on. Among them, the input and output modules all communicate with the terminal device processor 401 through the terminal device interface 409.
  • the memory 402 is coupled with the terminal device processor 401, and is used to store various software programs and/or multiple sets of instructions.
  • the memory 402 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 402 may store an operating system (hereinafter referred to as the system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 402 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 402 may be used to store the implementation program of the service processing method provided by one or more embodiments of the present application on the terminal device 400 side.
  • the implementation of the service processing method provided by one or more embodiments of the present application please refer to the above-mentioned embodiments.
  • the terminal device processor 401 can be used to read and execute computer-readable instructions. Specifically, the terminal device processor 401 may be used to call a program stored in the memory 402, for example, the implementation program of the service processing method provided by one or more embodiments of the present application on the terminal device 400 side, and execute the instructions contained in the program. .
  • the terminal device 400 may be the terminal device 101 in the communication system 100 shown in FIG. 1, and may be implemented as a handheld device, a vehicle-mounted device, a wearable device, a computing device, and various forms of terminal devices and mobile stations ( English: Mobile Station, referred to as MS) and terminal, etc.
  • MS Mobile Station
  • terminal device 400 shown in FIG. 14 is only an implementation manner of the embodiment of the present application. In actual applications, the terminal device 400 may also include more or fewer components, which is not limited here.
  • FIG. 15 shows a network device 500 provided by an embodiment of the present application.
  • the network device 500 may include: one or more network device processors 501, a memory 502, and a communication interface 503. These components can be connected via a bus 504 or other types.
  • FIG. 15 uses a bus connection as an example. among them:
  • the communication interface 503 can be used for the network device 500 to communicate with other communication devices, such as terminal devices or other network devices.
  • the communication interface 503 may be a 5G communication interface, or a communication interface of a new air interface in the future.
  • the network device 500 may also be configured with a wired communication interface 503 to support wired communication.
  • the backhaul link between one network device 500 and another network device 500 may be a wired communication connection.
  • the memory 502 is coupled with the network device processor 501, and is used to store various software programs and/or multiple sets of instructions.
  • the memory 502 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 502 can store an operating system (hereinafter referred to as system), such as embedded operating systems such as uCOS, VxWorks, and RTLinux.
  • system such as embedded operating systems such as uCOS, VxWorks, and RTLinux.
  • the memory 502 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the network device processor 501 may be used to read and execute computer-readable instructions. Specifically, the network device processor 501 may be used to call a program stored in the memory 502, for example, the implementation program of the service processing method provided by one or more embodiments of the present application on the network device 500 side, and execute the instructions contained in the program .
  • the network device 500 may be a core network entity in the communication system 100 shown in FIG. 1, such as UPF 104, AMF 105, SMF 106, AUSF 107, NSSF 108, NEF 109, NRF 110, PCF 111, or UDM 112 It can also be a functional entity in a slice architecture, such as CSMF 201, NSMF 201, or NSSMF 203.
  • the network device 500 shown in FIG. 15 is only an implementation manner of the embodiment of the present application. In actual applications, the network device 500 may also include more or fewer components, which is not limited here.
  • FIG. 16 shows a chip system 600 provided by an embodiment of the present application.
  • the chip system 600 may include one or more processors 601 and an interface circuit 602, and the processor 601 and the interface circuit 602 are connected. among them:
  • the processor 601 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 601 or instructions in the form of software.
  • the aforementioned processor 601 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware Components. The methods and steps disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the interface circuit 602 can complete the sending or receiving of data, instructions or information.
  • the processor 601 can use the data, instructions or other information received by the interface circuit 602 to perform processing, and can send processing completion information through the interface circuit 602.
  • the chip system further includes a memory 603, which may include a read-only memory and a random access memory, and provides operation instructions and data to the processor.
  • a part of the memory 603 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 603 stores executable software modules or data structures, and the processor 603 can execute corresponding operations by calling operation instructions stored in the memory (the operation instructions may be stored in the operating system).
  • the chip system may be used in the terminal device or the network device involved in the embodiment of the present application.
  • the interface circuit 602 is configured to perform the receiving and sending steps of the network device and the first device in the embodiment shown in FIG. 3.
  • the interface circuit 602 is further configured to perform the receiving and sending steps of the first terminal device and the second terminal device in the embodiment shown in FIG. 4.
  • the processor 601 is configured to execute processing steps of the network device, the first device, the first terminal device, or the second terminal device in the embodiment shown in FIG. 3 or FIG. 4.
  • the memory 603 is used to store data and instructions of the network device, the first device, the first terminal device, or the second terminal device in the embodiment shown in FIG. 3 or FIG. 4.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the methods described in the foregoing method embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functions can be stored on a computer-readable medium or transmitted on a computer-readable medium as one or more instructions or codes.
  • Computer-readable media may include computer storage media and communication media, and may also include any media that can transfer a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • the computer-readable storage medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or carry instructions or data.
  • the structured form stores the required program code and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) or wireless technology (such as infrared, radio and microwave) to transmit software from a website, server or other remote source, then coaxial cable, fiber optic cable , Twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the medium.
  • DSL digital subscriber line
  • wireless technology such as infrared, radio and microwave
  • Magnetic disks and optical disks as used herein include compact disks (CDs), laser disks, optical disks, digital versatile disks (DVD), floppy disks, and blu-ray disks, where disks usually reproduce data magnetically, while optical disks reproduce data optically using lasers. Combinations of the above should also be included in the scope of computer-readable media.
  • the embodiment of the present application also provides a computer program product.
  • the methods described in the foregoing method embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If it is implemented in software, it can be fully or partially implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on the computer, the procedures or functions described in the above method embodiments are generated in whole or in part.
  • the above-mentioned computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种业务处理方法及相关设备,包括:网络设备接收到终端设备发送的请求发送的业务类型,网络设备为该接收到的业务类型分配调制方案,其中不同的业务类型对应不同的调制方案,然后网络设备将分配的调制方案发送给该终端设备,终端设备接收到调制方案后,采用该调制方案调制业务,将该调制后的业务发送给网络设备,其中,不同业务类型的业务共享同一段频谱资源。通过对不同的业务分配调制方案,使多个业务可以在同一段频谱资源上传输,并且接收端能够正确接收,提高了频谱资源的利用率。

Description

一种业务处理方法及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及一种业务处理方法及相关设备。
背景技术
物联网IoT(Internet of Things),是把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。换言之,“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。一般的IoT网络是一个混合网络。例如智能电网中,存在大量的传感以及信息采集类的海量IoT(massive IoT)设备,如电表;也存在任务紧急的IoT设备(mission critical IoT设备),用于警示和故障汇报,来避免大规模的停电时间造成不可挽回的经济损失和重大事故。Mission critical IoT这类设备与massive IoT不同,这类设备数据发送频率极低,具有偶然性,更注重时延与可靠性。在一些系统或应用场景中,Mission critical IoT设备所承载的业务被称为URLLC(Ultra-Reliable Low-Latency Communication)业务。
在传统IoT业务(非URLLC)与URLLC业务共存的系统中,一般会通过业务隔离的方式,保护URLLC业务的短时延以及高可靠性能。一种业务隔离方式是对频谱资源划分为多个信道,不同类型的业务使用不同的信道传输。但是这种业务隔离型的设计方案无法保证系统频谱利用率。如果为URLLC业务划分专用的信道,则紧急任务URLLC专用通道的频谱效率非常低。普通业务在普通信道非常繁忙时,也无法卸载到专用通道,导致系统的集群效率trunking efficiency非常低。此外,当紧急情况发生时,一个系统中可能会有多个承载URLLC业务的IoT的设备需要进行传输。比如电网系统中,某些线路故障,会导致多个故障设备同时发送报警信息。此时URLLC IoT的设备无法占用其他的普通信道,因此会在专用通道上发生碰撞,影响URLLC业务的低时延和高可靠性能。
另一种业务隔离方式是通过对URLLC设置更高的优先级,可以优先接入信道,URLLC业务发生时,其他传统业务需要暂停进行避让。但是如果是通过让传统业务避让URLLC业务的方式进行业务隔离,则会显著影响传统业务的性能。
因此在不降低系统频谱利用率的前提下,如何保证不同业务的低时延可靠传输,是本领域技术人员正在研究的问题。
发明内容
本申请实施例提供了一种业务处理方法及相关设备,可以在不降低系统频谱利用率的前提下,保证不同业务的低时延可靠传输。
第一方面,本申请提供了一种业务处理方法,包括:网络设备接收第一设备发送的请求消息,所述请求消息包括所述第一设备请求发送的业务类型,或者所述请求消息与所述第一设备请求发送的业务类型对应;所述网络设备为所述请求发送的业务类型分配调制方案;其中,不同的业务类型对应不同的调制方案;所述网络设备将分配的调制方案发送给所述第一设备;所述网络设备在频谱资源上接收来自所述第一设备的业务,所述业务采用 所述分配的调制方案调制;其中,不同业务类型的业务共享所述频谱资源。
实施第一方面所描述的方法,网络设备接收到第一设备发送的请求消息,该请求消息表征了第一设备请求发送的业务类型,网络设备为该业务类型分配调制方案,其中不同的业务类型对应不同的调制方案,然后网络设备将分配的调制方案发送给该第一设备,第一设备接收到调制方案后,采用该调制方案调制业务,将该调制后的业务发送给网络设备,其中,不同业务类型的业务共享同一段频谱资源。通过对不同的业务分配调制方案,使多个业务可以在同一段频谱资源上传输,并且接收端能够正确接收,提高了频谱资源的利用率。
在一种实现方式中,所述不同的业务类型对应不同的调制方案包括以下一种或多种:一种业务类型与一个或多个调制方案对应;不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。这种实现方式提供了业务类型、优先级、设备类型以及扩频因子与调制方案的对应关系,也就是说可以通过业务类型、优先级、设备类型、扩频因子等因素来确定对业务的调制方案,以使不同的业务采用的不同调制方案,不同的业务类型可以共享相同的频谱资源,提高了频谱资源的利用率。
在一种实现方式中,所述网络设备将分配的调制方案发送给所述第一设备包括:所述网络设备通过DCI和/或RRC信令将分配的调制方案发送给所述第一设备。这种实现方式提供了网络设备将分配的调制方案发送给第一设备的可以采用的信令。
在一种实现方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。这种实现方式描述了不同的调制方案的调制信号之间的互不干扰的标准,当两个调制信号的相关性系数低于阈值或者由于互相干扰而导致的性能损失低于阈值,则可以认为这两个调制信号互不干扰,为支持不同的业务类型共享相同的频谱资源提供了前提。
在一种实现方式中,所述频谱资源包括非授权频谱资源。在非授权频谱资源上需要采用先监听后发送的方式,当设备监听到信道空闲时,设备才会发送业务信息,在本申请实施例中,由于不同的业务类型采用的不同调制方案,不同的业务类型可以共享相同的频谱资源,无需采用先监听后发送的方式,提高发送效率,并且节约了资源。
在一种实现方式中,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。这种实现方式提供了多种不同的业务类型,可以支持不同的业务类型共享相同的频谱资源。
第二方面,本申请提供了又一种业务处理方法,包括:第一终端设备接收第二终端设备发送的第一消息,所述第一消息用于表征所述第二终端设备在频谱资源上发送的业务所采用的第一调制方案;所述第一终端设备根据所述第一消息选择第二调制方案;其中,所述第二调制方案与所述第一调制方案不同;所述第一终端设备在所述频谱资源上发送通过所述第二调制方案调制后的业务。
实施第二方面所描述的方法,第二终端设备在频谱资源上发送业务时将采用的第一调制方案广播发送,第一终端设备接收到了第二终端设备采用的第一调制方案后,选择第二 调制方案,然后在相同的频谱资源上发送通过第二调制方案调制后的业务,其中第二调制方案与第一调制方案不同。通过对不同的业务分配调制方案,使多个业务可以在同一段频谱资源上传输,并且接收端能够正确接收,无需采用先监听后发送的方式,提高发送效率,并且节约了资源,提高了频谱资源的利用率。
在一种实现方式中,不同的业务类型对应不同的调制方案,所述不同的业务类型对应不同的调制方案包括以下一种或多种:一种业务类型与一个或多个调制方案对应;不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。这种实现方式提供了业务类型、优先级、设备类型以及扩频因子与调制方案的对应关系,也就是说可以通过业务类型、优先级、设备类型、扩频因子等因素来确定对业务的调制方案,以使不同的业务采用的不同调制方案,不同的业务类型可以共享相同的频谱资源,提高了频谱资源的利用率。
在一种实现方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。这种实现方式描述了不同的调制方案的调制信号之间的互不干扰的标准,当两个调制信号的相关性系数低于阈值或者由于互相干扰而导致的性能损失低于阈值,则可以认为这两个调制信号互不干扰,为支持不同的业务类型共享相同的频谱资源提供了前提。
在一种实现方式中,所述频谱资源包括非授权频谱资源。在非授权频谱资源上需要采用先监听后发送的方式,当设备监听到信道空闲时,设备才会发送业务信息,在本申请实施例中,由于不同的业务类型采用的不同调制方案,不同的业务类型可以共享相同的频谱资源,无需采用先监听后发送的方式,提高发送效率,并且节约了资源。
在一种实现方式中,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。这种实现方式提供了多种不同的业务类型,可以支持不同的业务类型共享相同的频谱资源。
第三方面,本申请实施例提供了一种网络设备,该网络设备可包括多个功能模块或单元,用于相应的执行第一方面所提供的业务处理方法。
例如,接收单元、分配单元、发送单元。
接收单元,用于接收第一设备发送的请求消息,所述请求消息包括所述第一设备请求发送的业务类型,或者所述请求消息与所述第一设备请求发送的业务类型对应;
分配单元,用于为所述请求发送的业务类型分配调制方案;其中,不同的业务类型对应不同的调制方案;
发送单元,用于将分配的调制方案发送给所述第一设备;
所述接收单元,还用于在频谱资源上接收来自所述第一设备的业务,所述业务采用所述分配的调制方案调制;其中,不同业务类型的业务共享所述频谱资源。
在一种实现方式中,所述不同的业务类型对应不同的调制方案包括以下一种或多种:一种业务类型与一个或多个调制方案对应;不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;不同的业务类型具有不同的扩频因子,一种所述扩频因 子与一个调制方案对应。
在一种实现方式中,所述分配单元具体用于,通过DCI和/或RRC信令将分配的调制方案发送给所述第一设备。
在一种实现方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。
在一种实现方式中,所述频谱资源包括非授权频谱资源。
在一种实现方式中,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。
第四方面,本申请实施例提供了一种终端设备,该终端设备可包括多个功能模块或单元,用于相应的执行第二方面所提供的业务处理方法。
例如,接收单元、选择单元和发送单元。
接收单元,用于接收第二终端设备发送的第一消息,所述第一消息用于表征所述第二终端设备在频谱资源上发送的业务所采用的第一调制方案;
选择单元,用于根据所述第一消息选择第二调制方案;其中,所述第二调制方案与所述第一调制方案不同;
发送单元,用于在所述频谱资源上发送通过所述第二调制方案调制后的业务。
在一种实现方式中,不同的业务类型对应不同的调制方案,所述不同的业务类型对应不同的调制方案包括以下一种或多种:一种业务类型与一个或多个调制方案对应;不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
在一种实现方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。
在一种实现方式中,所述频谱资源包括非授权频谱资源。
在一种实现方式中,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。
第五方面,本申请实施例提供了一种网络设备,用于执行第一方面所提供的业务处理方法。网络设备可包括:存储器、处理器、发射器、接收器,其中:发射器和接收器用于与其他通信设备(如第一设备)通信。存储器用于存储第一方面所提供的业务处理方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面所提供的业务处理方法。
第六方面,本申请实施例提供了一种终端设备,用于执行第二方面所提供的业务处理方法。网络设备可包括:存储器、处理器、发射器、接收器,其中:发射器和接收器用于与其他通信设备(如第二终端设备)通信。存储器用于存储第二方面所提供的业务处理方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第二方面所提供的业务处理方法。
第七方面,本申请提供了一种芯片,该芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第一方面或第二方面所提供 的业务处理方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的数据处理结果。
第八方面,本申请实施例提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在处理器上运行时,使得处理器执行上述第一方面或第二方面描述的业务处理方法。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在处理器上运行时,使得处理器执行上述第一方面或第二方面描述的业务处理方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种业务处理方法的现有技术的应用示意图。
图2是本申请实施例提供的一种业务处理的系统构架示意图。
图3是本申请实施例提供的一种业务处理方法的流程示意图。
图4是本申请实施例提供的又一种业务处理方法的流程示意图。
图5-图11是本申请实施例提供的两种调制方案之间的干扰情况示意图。
图12是本申请实施例提供的一种业务处理装置的结构示意图。
图13是本申请实施例提供的又一种业务处理装置的结构示意图。
图14是本申请实施例提供的一种业务处理终端设备的结构示意图。
图15是本申请实施例提供的一种业务处理网络设备的结构示意图。
图16是本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清除、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执 行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
首先,为了便于理解本申请实施例,以下具体分析本申请实施例所需要解决的技术问题以及对应的应用场景。在不同的业务类型共存的通信系统中,如果多个业务同时在同一个频谱资源上传输,业务之间会互相干扰,产生性能损失导致接收端无法正确接收,这时一般会通过业务隔离的方式,保护不同的业务类型能够可靠传输。
其中一种业务隔离方式是通过对频谱资源进行划分,使不同的业务在不同的信道上传输,如图1所示,系统中有5个频段,channel 1到channel 5。channel 1到channel 4用于普通业务类型;channel 5专门预留给紧急业务类型。类似于高速公路中的紧急通道,传统业务不得占据红色紧急通道。这种方式保障了紧急业务类型发生时,可以随时接入信道,并且免于普通业务类型的干扰。
然而,这种业务隔离型的设计方案无法保证系统频谱利用率。如果为紧急业务划分专用的信道,则紧急业务专用通道channel 5的频谱效率非常低。普通业务在其他四个channel到channel 4非常繁忙时,也无法卸载到channel 5,导致系统的集群效率trunking efficiency很低。并且,这种业务传输方式需要先监听信道是否空闲,如果空闲才能在该信道上发送业务,效率较低。此外,当紧急情况发生时,一个系统中可能会有多个承载紧急业务的IoT的设备需要进行传输。比如电网系统中,某些线路故障,会导致多个故障设备同时发送报警信息。此时紧急IoT的设备无法占用其他的普通信道channel 1到channel 4,因此会在紧急通道channel 5上发生碰撞,影响紧急业务的低时延和高可靠性能。
另一种业务隔离方式是通过对紧急业务类型设置更高的优先级,可以优先接入信道,紧急业务发生时,其他普通业务需要暂停进行避让。然而这种通过让普通业务避让紧急业务的方式进行业务隔离,则会显著影响普通业务的性能。
因此,针对上述技术问题,本申请主要解决的问题为提供了一种业务处理方法,通过信号隔离的方式,采用不同的调制和/或编码方案将不同业务类型进行隔离,支持不同业务类型的同时接入,在不降低频谱利用率的基础上,保证不同业务类型的可靠传输。
图2示出了本申请实施例涉及的一种通信系统100的网络架构。如图2所示,通信系统100可以包括:无线(Radio)接入网(access network,AN)设备101、用户设备(user equipment,UE)102~107。其中:
(R)AN 101可以为5G基站、NR基站等,UE 102~107通过(R)AN 101可以接入通信系统100。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B, eNB),以及5G系统、新空口(New Radio,NR)系统中的gNB。另外,基站也可以为收发点(英文:Transmission Receive Point,简称:TRP)、中心单元(Central Unit,CU)或其他网络实体。另外,在分布式基站场景中,网络设备可以是基带处理单元(Baseband Unit,BBU)和射频单元(Remote Radio Unit,RRU),在云无线接入网(Cloud Radio Access Network,CRAN)场景下可以是基带池BBU pool和射频单元RRU。(R)AN 101也可以为由多个(R)AN 101节点组成的网络,可以实现无线物理层功能、资源调度和无线资源管理等功能。
UE 102~107可以分布在整个通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,UE102~107可以是服务器或终端设备,服务器可以包括但不限于后台服务器、组件服务器、数据处理服务器、存储服务器或计算服务器等,服务器可以通过互联网与多个设备进行通信。终端设备可以是通信终端、移动设备、用户终端、移动终端、无线通信设备、便携式终端、用户代理、用户装置、服务设备或用户设备(User Equipment,UE)等计算机网络中处于网络最外围的设备,主要用于数据的输入以及处理结果的输出或显示等,也可以是安装于或运行于上述任意一个设备上的软件客户端、应用程序等。例如,终端可以是移动电话、无绳电话、智能手表、可穿戴设备、平板设备、具备无线通信功能的手持设备、计算设备、车载通信模块、智能电表或连接到无线调制解调器的其它处理设备等。
在该通信系统100中,UE 102~107可以发送上行信息给(R)AN 101,(R)AN 101需要接收UE 102~107发送的上行信息,(R)AN 101也可以发送下行信息给UE 102~107,UE 102~107需要接收(R)AN 101发送的下行信息,此外,UE 105~107也可以组成一个通信系统。在该通信系统中,UE 105~107之间可以进行互相收发。
在本申请实施例中,网络设备(R)AN 101和终端设备UE 102~107之间,终端设备UE 105~107之间的业务处理方式是不同的。
在网络设备和终端设备之间,网络设备接收到终端设备发送的请求发送的业务类型,网络设备为该接收到的业务类型分配调制方案,其中不同的业务类型对应不同的调制方案,然后网络设备将分配的调制方案发送给该终端设备,终端设备接收到调制方案后,采用该调制方案调制业务,将该调制后的业务发送给网络设备,其中,不同业务类型的业务共享同一段频谱资源。
在终端设备和终端设备之间,第二终端设备在频谱资源上发送业务时将采用的第一调制方案广播发送,第一终端设备接收到了第二终端设备采用的第一调制方案后,选择第二调制方案,然后在相同的频谱资源上发送通过第二调制方案调制后的业务,其中第二调制方案与第一调制方案不同。
为解决上述问题,本申请实施例提供了一种业务处理方法。图3是本申请实施例提供的业务处理方法的示意性流程图。如图3所示,本申请实施例提供的业务处理方法包括但不限于步骤S301-S304。该方法实施例应用于网络设备与终端设备的通信过程,示例性的以网络设备基站为执行主体,下面对该方法实施例的可能实现方式做进一步的描述。
S301:第一设备向基站发送请求消息。
具体的,当第一设备想要传输业务时,向基站发送请求消息,表征想要发送的业务类 型,其中业务类型可以包括eMBB、URLLC、mMTC和IoT等类型。基站接收第一设备发送的请求消息,该请求消息可以包括第一设备请求发送的业务类型,或者该请求消息与第一设备请求发送的业务类型对应。也即是说,请求消息中可以包括想要发送的业务类型,例如该请求消息中包括想要发送的业务类型为URLLC类型等信息;请求消息中也可以不包括想要发送的业务类型,而是请求消息与业务类型具有对应关系,举例来说,该请求消息为带有预设标识的消息,基站接收到该请求消息后,识别出请求消息的预设标识,根据请求消息与业务类型的对应关系,确定该请求消息表征的业务类型。
S302:基站为请求消息中的业务类型分配调制方案。
具体地,基站接收到第一设备发送的请求消息后,获取到第一设备想要发送的业务类型,基站为请求消息中的业务类型分配调制方案,其中不同的业务类型对应不同的调制方案。
可以理解的,调制方案的不同可以是指调制方式的不同,还可以是相同的调制方式下的不同参数的配置。例如调制方式可以是chirp扩频调制、MFSK调制等,相同的调制方式下的不同参数的配置可以是扩频因子为5的chirp扩频信号调制、扩频因子为7的chirp扩频信号调制、扩频因子为8的chirp扩频信号调制等等。举例来说,业务类型与调制方案的对应关系可以如表1所示:
表1
业务类型 调制方案
URLLC业务 SF=5的chirp扩频调制
eMBB业务 SF=7的chirp扩频调制
IoT业务 MFSK调制
其他业务类型 其他调制方案
基站接收到第一设备发送的请求消息后,基站为请求消息中的业务类型分配调制方案,根据上表中业务类型与调制方案的对应关系确定出调制方案。
在其中一种实施方式中,一种业务类型可以与一个或多个调制方案对应,也即是说,一种业务类型可以对应调制方案①、调制方案②、…、调制方案N等,其中N为正整数。在调制方案①被其他业务占用的情况下,可以选择调制方案②;在调制方案②被其他业务占用的情况下,可以选择调制方案③;依次类推。举例来说,业务类型与调制方案的对应关系可以如表2所示:
表2
Figure PCTCN2019130220-appb-000001
基站接收到第一设备发送的请求消息后,基站为请求消息中的业务类型分配调制方案,根 据上表中业务类型与调制方案的对应关系确定出一个调制方案,若该调制方案已经被其他业务占用,则不能选择该调制方案。
在其中一种实施方式中,不同的业务类型对应不同的调制方案,具体的,不同的业务类型具有优先级,业务类型的优先级与一个或多个调制方案对应。举例来说,不同的业务类型预设不同的优先级,如果需要改变业务类型对应的调制方案,可以通过改变业务类型对应的优先级来改变调制方案,其中优先级与调制方案的对应关系可以如表3所示:
表3
优先级 调制方案
优先级1 SF=5的chirp扩频调制
优先级2 SF=7的chirp扩频调制
优先级3 MFSK调制
优先级N 其他调制方案
基站接收到第一设备发送的请求消息后,基站为请求消息中的业务类型分配调制方案。基站首先确定业务类型的优先级,然后根据上表中优先级与调制方案的对应关系确定出一个调制方案。
在其中一种实施方式中,不同的业务类型对应不同的调制方案,具体的,不同的业务类型对应不同的设备类型,一种设备类型与一个或多个调制方案对应。举例来说,一个设备可以传输一种或多种业务类型,设备与一个或多个调制方案对应,基站接收到第一设备发送的请求消息后,基站为请求消息中的业务类型分配调制方案,基站首先确定该业务类型对应的设备,然后根据设备类型与调制方案的对应关系确定出一个调制方案。
在其中一种实施方式中,不同的业务类型对应不同的调制方案,具体的,针对同一种调制方式,例如chirp扩频调制,不同的业务类型具有不同的扩频因子,一种扩频因子与一个调制方案对应。举例来说,不同的业务类型预设不同的扩频因子,基站获取请求消息中的业务类型后,首先确定业务类型的扩频因子,然后根据扩频因子与调制方案的对应关系确定出一个调制方案。
在其中一种实施方式中,调制方案可以包括调制编码方案,即一个调制方案可以包括调制方式和编码方式。举例来说,业务类型与调制方案的对应关系可以如表4所示:
表4
业务类型 调制方案
URLLC业务 SF=5的chirp扩频调制;LDPC编码
eMBB业务 SF=7的chirp扩频调制;Turbo编码
IoT业务 MFSK调制;Polar编码
其他业务类型 其他调制方式;其他编码方式
基站接收到第一设备发送的请求消息后,基站为请求消息中的业务类型分配调制方案,根据上表中业务类型与调制方案的对应关系确定出调制方案。
S303:基站将分配的调制方案发送给第一设备。
具体地,基站为请求消息中的业务类型分配调制方案后,将分配的调制方案发送给第 一设备,以指示第一设备使用该分配的调制方案调制业务。其中发送的方式可以是广播发送,也可以是点对点发送、组发送等等。
在其中一种实施方式中,网络设备可以通过DCI和/或RRC信令将分配的调制方案发送给第一设备。
S304:第一设备在频谱资源上发送业务,其中,不同业务类型的业务共享频谱资源。
具体地,基站将分配的调制方案发送给第一设备后,第一设备将发送的业务采用分配的调制方案调制,然后发送给基站,基站在频谱资源上接收来自第一设备的业务。其中,不同业务类型的业务共享频谱资源。也即是说,在同一段频谱资源上,第一设备无需监听频谱资源是否空闲,在频谱资源上正在传输其他业务的情况下,第一设备也可以发送采用分配的调制方案调制的业务。
在其中一种实施方式中,上述频谱资源包括非授权频谱资源,现有技术中在非授权频谱资源上需要采用先监听后发送的方式,当设备监听到信道空闲时,设备才会发送业务信息,在本申请实施例中,由于不同的业务类型采用的不同调制方案,不同的业务类型可以共享相同的频谱资源,无需采用先监听后发送的方式,提高发送效率,并且节约了资源。在授权频谱中,本申请实施例同样适用。
在本申请实施例中,网络设备基站接收到终端设备发送的请求发送的业务类型,基站为该接收到的业务类型分配调制方案,其中不同的业务类型对应不同的调制方案,然后基站将分配的调制方案发送给该终端设备,终端设备接收到调制方案后,采用该调制方案调制业务,将该调制后的业务发送给基站,其中,不同业务类型的业务共享同一段频谱资源。通过对业务分配不同的调制方案,使多个业务可以在同一段频谱资源上传输,并能够正确接收,无需采用先监听后发送的方式,提高发送效率,并且节约了资源,提高了频谱资源的利用率。
如图4所示,本申请实施例提供的业务处理方法包括但不限于步骤S301-S304。本申请实施例还提供了一种业务处理方法,该方法实施例应用于终端设备与终端设备之间的通信,示例性的以第一终端设备为执行主体,下面对该方法实施例的可能实现方式做进一步的描述。
S401:第一终端设备接收第二终端设备发送的第一消息。
具体的,第一终端设备接收第二终端设备发送的第一消息,第一消息用于表征第二终端设备在频谱资源上发送的业务所采用的第一调制方案。其中,第一终端设备和第二终端设备共享同一段频谱资源。当第二终端设备想要传输业务时,可以广播发送第一消息表征发送的业务的第一调制方案,以使第一设备接收到这个调制方案的信息后,选取与第二终端设备采用的第一调制方案的不同的调制方案。该第一消息还包括队对于第一调制方案的占用时间,以使在该占用时间之后其他设备能够选择使用第一调制方案来调制业务。
S402:第一终端设备根据第一消息选择第二调制方案;其中,第二调制方案与第一调制方案不同。
具体的,第一终端设备接收第二终端设备发送的第一消息后,根据第一消息选择第二调制方案;其中,第二调制方案与第一调制方案不同。第一终端设备接收到第二终端设备使用的第一调制方案后,若在第二终端设备对第一调制方案的占用时间内,第一终端设备想要发送业务,则根据想要发送的业务类型选择对应的调制方案,若第一终端设备想要发送的业务类型对应的调制方案为第一调制方案,则不能选择第一调制方案。可以选择等待或者选择其他的调制方案。
可以理解的,调制方案的不同可以是指调制方式的不同,还可以是相同的调制方式下的不同参数的配置。例如调制方式可以是chirp扩频调制、MFSK调制等,相同的调制方式下的不同参数的配置可以是扩频因子为5的chirp扩频信号调制、扩频因子为7的chirp扩频信号调制、扩频因子为8的chirp扩频信号调制等等。
在其中一种实施方式中,一种业务类型可以与一个或多个调制方案对应,也即是说,一种业务类型可以对应调制方案①、调制方案②、…、调制方案N等,其中N为正整数。在调制方案①被其他业务占用的情况下,可以选择调制方案②;在调制方案②被其他业务占用的情况下,可以选择调制方案③;依次类推。举例来说,业务类型与调制方案的对应关系可以如表5所示:
表5
Figure PCTCN2019130220-appb-000002
第一终端设备接收到第二终端设备发送的第一消息后,第一终端设备为自身想要发送的业务分配调制方案,根据业务类型与调制方案的对应关系确定出一个调制方案,若该调制方案已经被第二终端设备占用,则不能选择该调制方案。
在其中一种实施方式中,不同的业务类型对应不同的调制方案,具体的,不同的业务类型具有优先级,业务类型的优先级与一个或多个调制方案对应。举例来说,不同的业务类型预设不同的优先级,如果需要改变业务类型对应的调制方案,可以通过改变业务类型对应的优先级来改变调制方案,其中优先级与调制方案的对应关系可以如表6所示:
表6
优先级 调制方案
优先级1 SF=5的chirp扩频调制
优先级2 SF=7的chirp扩频调制
优先级3 MFSK
优先级N 其他调制方案
第一终端设备接收到第二终端设备发送的第一消息后,第一终端设备为自身想要发送的业务分配调制方案。第一终端设备首先确定业务类型的优先级,然后根据上表中优先级与调制方案的对应关系确定出一个调制方案。第一终端设备的调制方案与第二终端设备的调制 方案不同。
在其中一种实施方式中,不同的业务类型对应不同的调制方案,具体的,不同的业务类型对应不同的设备类型,一种设备类型与一个或多个调制方案对应。举例来说,一个设备可以传输一种或多种业务类型,设备与一个或多个调制方案对应,第一终端设备接收到第一设备发送的请求消息后,基站为请求消息中的业务类型分配调制方案,基站首先确定该业务类型对应的设备,然后根据设备类型与调制方案的对应关系确定出一个调制方案。
在其中一种实施方式中,不同的业务类型对应不同的调制方案,具体的,针对同一种调制方式,例如chirp扩频调制,不同的业务类型具有不同的扩频因子,一种扩频因子与一个调制方案对应。举例来说,不同的业务类型预设不同的扩频因子,第一终端设备接收到第二终端设备发送的第一消息后,第一终端设备为自身想要发送的业务分配调制方案,第一终端设备首先确定业务类型的扩频因子,然后根据扩频因子与调制方案的对应关系确定出一个调制方案。第一终端设备的调制方案与第二终端设备的调制方案不同。
在其中一种实施方式中,调制方案可以包括调制编码方案,即一个调制方案可以包括调制方式和编码方式。举例来说,业务类型与调制方案的对应关系可以如表7所示:
表7
业务类型 调制方案
URLLC业务 SF=5的chirp扩频调制;LDPC编码
eMBB业务 SF=7的chirp扩频调制;Turbo编码
IoT业务 MFSK调制;Polar编码
其他业务类型 其他调制方式;其他编码方式
第一终端设备接收到第二终端设备发送的第一消息后,第一终端设备为自身想要发送的业务分配调制方案,根据上表中业务类型与调制方案的对应关系确定出调制方案。第一终端设备的调制方案与第二终端设备的调制方案不同。
S403:第一终端设备在频谱资源上发送通过第二调制方案调制后的业务。
具体地,第一终端设备根据第一消息选择了第二调制方案后,在频谱资源上发送通过该第二调制方案调制后的业务。其中,第一终端设备和第二终端设备共享同一段频谱资源。也即是说,在同一段频谱资源上,第一终端设备无需监听频谱资源是否空闲,在频谱资源上正在传输其他业务的情况下,第一设备也可以发送采用与其他业务不同的调制方案调制的业务。
在其中一种实施方式中,上述频谱资源包括非授权频谱资源,现有技术中在非授权频谱资源上需要采用先监听后发送的方式,当设备监听到信道空闲时,设备才会发送业务信息,在本申请实施例中,由于不同的业务类型采用的不同调制方案,不同的业务类型可以共享相同的频谱资源,无需采用先监听后发送的方式,提高发送效率,并且节约了资源。在授权频谱中,本申请实施例同样适用。
在其中一种实施方式中,第一终端设备根据第一消息选择了第二调制方案后,在频谱资源上发送通过该第二调制方案调制后的业务。同时广播发送消息以表征发送的业务的第二调制方案,以使其他设备接收到这个第二调制方案的信息后,选取与第一终端设备采用 的第二调制方案的不同的调制方案。该广播发送的消息还包括第一终端设备对于第二调制方案的占用时间,以使在该占用时间之后其他设备能够选择使用第二调制方案来调制业务。
在本申请实施例中,第二终端设备在频谱资源上发送业务时将采用的第一调制方案广播发送,第一终端设备接收到了第二终端设备采用的第一调制方案后,选择第二调制方案,然后在相同的频谱资源上发送通过第二调制方案调制后的业务,其中第二调制方案与第一调制方案不同。通过对不同的业务分配调制方案,使多个业务可以在同一段频谱资源上传输,并能够正确接收,无需采用先监听后发送的方式,提高发送效率,并且节约了资源,提高了频谱资源的利用率。
在上述图3和图4的申请实施例中,不同的调制方案之间的调制信号之间是互不干扰的,即接收端可以正确接收通过不同的调制方案进行调制后,在相同的频谱资源上进行传输的业务。
在其中一种实施方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值;就可以认为两个调制信号之间互不干扰。下面分别以这两种方式说明不同的调制信号之间的互不干扰性。
方式一、两个调制方案的调制信号的相关性系数低于阈值。示例性的,以扩频因子SF=7的chirp扩频信号和扩频因子SF=8的chirp扩频信号为例,该阈值可以是以dB为单位,如该阈值可以为-15dB,下面详细说明这两个信号之间的相关性。
不同扩频因子SF的chirp扩频调制信号之间具有低互相关性,即较强的抗干扰能力。其中,chirp扩频调制信号具有如下形式:
Figure PCTCN2019130220-appb-000003
其中T s为采样周期,SF为chirp扩频调制信号的扩频因子。
如图5所示,图5描述了在时域上,SF=8的扩频调制信号对于SF=7的chirp扩频调制信号的干扰。在时域上SF=8的扩频调制信号和SF=7的chirp扩频调制信号发送时间交叉,其中k表示SF=8的chirp扩频调制符号于SF=7的chirp扩频调制符号之间的相对时间偏移,SF=7的chirp扩频调制信号对应的相关器组有128个相关器。互相关性能可通过SF=8的chirp扩频调制信号经过SF=7的chirp扩频调制信号的相关器组后的相关值判定。SF=7的滤波器组中第L(L=0,…,127)个相关器的形式可以为:
Figure PCTCN2019130220-appb-000004
干扰信号SF=8的chirp扩频调制符号的完整表达为:
Figure PCTCN2019130220-appb-000005
其中m表示选用的SF=8的chirp扩频调制符号。定义归一化的相关值为SF=8的干扰信号相关值/正确信号(SF=7)的相关值γ i,得到
Figure PCTCN2019130220-appb-000006
相关值γ i的绝对值为
Figure PCTCN2019130220-appb-000007
其中
Figure PCTCN2019130220-appb-000008
由于
Figure PCTCN2019130220-appb-000009
是周期为256的序列,因此遍历κ=0,1,…,255,将得到所有的相关值‖γ i‖。根据上述公式可以得到数值分析如图6和图7所示,
在图6中,横坐标为时间偏移k,纵坐标为归一化的相关值,可以发现,扩频因子SF=8的chirp扩频调制符号对于扩频因子SF=7的chirp扩频调制符号的最大干扰为-17dB,在一些场景下可以等效理解为,当扩频因子SF=8和SF=7的chirp扩频调制信号同时发送时,噪声只要不超过17dB,信号可以被正确接收。随着时间偏移K的改变,SF=8的chirp扩频调制信号于SF=7的chirp扩频调制信号造成的干扰始终在约-20dB以下。在图7中,横坐标为归一化的相关值,纵坐标为累计概率,显示了SF=8的chirp扩频调制信号于SF=7的chirp扩频调制信号所造成所有可能的不同大小的干扰值对应的累积分布概率。可以看出,在-17dB以下,SF=7的chirp扩频调制信号受到的干扰累积分布概率始终不超过1。因此,SF=8的chirp扩频调制信号和SF=7的chirp扩频调制信号相关性系数-17dB不超过阈值-15dB,则可以认为这两个调制方案互不干扰。
同理可以得到SF=10的chirp扩频调制信号于SF=9的chirp扩频调制信号造成的干扰 数值分析,如图8所示,横坐标为归一化的相关值,纵坐标为累计概率,显示了SF=10的chirp扩频调制信号于SF=9的chirp扩频调制信号所造成所有可能的不同大小的干扰值对应的累积分布概率。可以看出,在-27dB以下,SF=7的chirp扩频调制信号受到的干扰累积分布概率始终不超过1。因此,SF=10的chirp扩频调制信号和SF=8的chirp扩频调制信号相关性系数-27dB不超过阈值-15dB,则可以认为这两个调制方案互不干扰。
结合图表可知,SF越大的chirp扩频调制信号,受到的相对干扰值越小。因此可以对抗更大的干扰,与SF越大工作的信噪比越低的设置匹配。而且根据图9可见,图9描述了不同SF的chirp扩频调制信号的频谱,SF越小,chirp扩频调制符号的频谱局部化/频谱能量集中(frequency localization)越差,或者说频谱带外泄露(out-of-band emissions)越严重,因此为了保证chirp扩频调制信号经过实际系统滤波器后失真较小以及增加信号的抗干扰能力,可以选择相对较大的SF。
方式二、两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。示例性地,以chirp扩频信号和MFSK信号为例,该阈值可以是以dB为单位,例如该阈值可以为0.5dB,如图10所示,在时域上chirp扩频信号和MFSK信号的发送时间交叉,MFSK信号解调为DFT(or FFT)接收机,作为干扰信号的chirp扩频调制经过FFT能量分散在所有频点上,而MFSK信号经过FFT后能量聚集于某一频点,处理增益与MFSK信号的数值M成正比。
尽管MFSK信号和Chirp扩频调制信号都是宽带信号,但是将观察窗口限制到一个symbol来说,chirp扩频调制是扩频信号,占满整个系统带宽;而MFSK信号则是单频信号,是窄带信号。也就是说,在频域上来看,若MFSK信号将能量聚集到单个子载波,并通过这个子载波的位置携带信息,而chirp扩频调制信号将能量分散在整个带宽里。因此两类信号同时发送互不干扰,可以提高资源利用率。特别地,在非授权频谱,可以避免进行先监听后发送的机制,节约开销。
进一步地,通过仿真阐述有益效果,假设IoT业务采用chirp扩频调制,其扩频因子SF在7,8,9,10,11,12中随机出现。URLLC业务采用MFSK调制,图中M=256(符号长度与SF=8的chirp扩频调制符号相同)。MFSK信号的功率与chirp扩频调制信号的功率比分别为0dB,-3dB,-6dB。如图11所示,相对于没有IoT业务同时接入的情况下,在干扰比SIR=0dB的干扰下,MFSK的性能损失约为0.1dB。由于性能损失0.1dB小于阈值0.5dB,则可以认为这两个调制方案互不干扰,即传统IoT业务的信号功率接近URLLC业务的信号功率时,二者同时发送对于URLLC业务几乎无影响。
综上所述,以上使用两种方式详细描述了本申请实施例中任意两种调制方案之间是互不干扰的。正是由于调制方案之间互不干扰,则多个不同的业务可以同时在同一段频谱资源中传输而不影响接收端的正确接收。
上述详细阐述了本申请实施例的方法,下面提供了与本申请实施例的相关业务处理装置。业务处理装置可以是具备部分计算功能、可连接智能终端或各类终端设备的以便携式配件形式存在的电子设备。请参见附图12,图12是本申请实施例提供的一种业务处理装 置示意图,业务处理装置120包括接收单元1201、分配单元1202和发送单元1203,其中,
接收单元1201,用于接收第一设备发送的请求消息,所述请求消息包括所述第一设备请求发送的业务类型,或者所述请求消息与所述第一设备请求发送的业务类型对应;
分配单元1202,用于为所述请求发送的业务类型分配调制方案;其中,不同的业务类型对应不同的调制方案;
发送单元1203,用于将分配的调制方案发送给所述第一设备;
所述接收单元1201,还用于在频谱资源上接收来自所述第一设备的业务,所述业务采用所述分配的调制方案调制;其中,不同业务类型的业务共享所述频谱资源。
在一种实现方式中,所述不同的业务类型对应不同的调制方案包括以下一种或多种:一种业务类型与一个或多个调制方案对应;不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
在一种实现方式中,所述分配单元1202具体用于,通过DCI和/或RRC信令将分配的调制方案发送给所述第一设备。
在一种实现方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。
在一种实现方式中,所述频谱资源包括非授权频谱资源。
在一种实现方式中,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。
请参见附图13,图13是本申请实施例提供的又一种业务处理装置示意图,业务处理装置130包括接收单元1301、选择单元1302和发送单元1303,其中,
接收单元1301,用于接收第二终端设备发送的第一消息,所述第一消息用于表征所述第二终端设备在频谱资源上发送的业务所采用的第一调制方案;
选择单元1302,用于根据所述第一消息选择第二调制方案;其中,所述第二调制方案与所述第一调制方案不同;
发送单元1303,用于在所述频谱资源上发送通过所述第二调制方案调制后的业务。
在一种实现方式中,不同的业务类型对应不同的调制方案,所述不同的业务类型对应不同的调制方案包括以下一种或多种:一种业务类型与一个或多个调制方案对应;不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
在一种实现方式中,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。
在一种实现方式中,所述频谱资源包括非授权频谱资源。
在一种实现方式中,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。
参考图14,图14示出了本申请实施例提供的终端设备400。如图14所示,终端设备 400可包括:一个或多个终端设备处理器401、存储器402、通信接口403、接收器405、发射器406、耦合器407、天线408、终端设备接口409。这些部件可通过总线404或者其他方式连接,图14以通过总线连接为例。其中:
通信接口403可用于终端设备400与其他通信设备,例如网络设备,进行通信。具体的,网络设备可以是图14所示的网络设备400。具体的,通信接口403可以是5G通信接口,也可以是未来新空口的通信接口。不限于无线通信接口,终端设备400还可以配置有有线的通信接口403,例如局域接入网(local access network,LAN)接口。发射器406可用于对终端设备处理器401输出的信号进行发射处理。接收器405可用于对天线408接收的移动通信信号进行接收处理。
在本申请的一些实施例中,发射器406和接收器405可看作一个无线调制解调器。在终端设备400中,发射器406和接收器405的数量均可以是一个或者多个。天线408可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器407用于将天线408接收到的移动通信信号分成多路,分配给多个的接收器405。
除了图14所示的发射器406和接收器405,终端设备400还可包括其他通信部件,例如GPS模块、蓝牙(bluetooth)模块、无线高保真(wireless fidelity,Wi-Fi)模块等。不限于无线通信,终端设备400还可以配置有线网络接口(如LAN接口)来支持有线通信。
终端设备400还可包括输入输出模块。输入输出模块可用于实现终端设备400和终端设备/外部环境之间的交互,可主要包括音频输入输出模块、按键输入模块以及显示器等。具体的,输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块均通过终端设备接口409与终端设备处理器401进行通信。
存储器402与终端设备处理器401耦合,用于存储各种软件程序和/或多组指令。具体的,存储器402可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器402可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器402还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
在本申请的一些实施例中,存储器402可用于存储本申请的一个或多个实施例提供的业务处理方法在终端设备400侧的实现程序。关于本申请的一个或多个实施例提供的业务处理方法的实现,请参考上述实施例。
终端设备处理器401可用于读取和执行计算机可读指令。具体的,终端设备处理器401可用于调用存储于存储器402中的程序,例如本申请的一个或多个实施例提供的业务处理方法在终端设备400侧的实现程序,并执行该程序包含的指令。
可以理解的,终端设备400可以是图1示出的通信系统100中的终端设备101,可实施为手持设备、车载设备、可穿戴设备、计算设备,以及各种形式的终端设备、移动台(英文:Mobile Station,简称:MS)及终端(terminal)等。
需要说明的,图14所示的终端设备400仅仅是本申请实施例的一种实现方式,实际应用中,终端设备400还可以包括更多或更少的部件,这里不作限制。
参考图15,图15示出了本申请实施例提供的网络设备500。如图15所示,网络设备500可包括:一个或多个网络设备处理器501、存储器502、通信接口503。这些部件可通过总线504或者其他式连接,图15以通过总线连接为例。其中:
通信接口503可用于网络设备500与其他通信设备,例如终端设备或其他网络设备,进行通信。具体的,通信接口503可以是5G通信接口,也可以是未来新空口的通信接口。不限于无线通信接口,网络设备500还可以配置有有线的通信接口503来支持有线通信,例如一个网络设备500与其他网络设备500之间的回程链接可以是有线通信连接。
存储器502与网络设备处理器501耦合,用于存储各种软件程序和/或多组指令。具体的,存储器502可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器502可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器502还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
本申请实施例中,网络设备处理器501可用于读取和执行计算机可读指令。具体的,网络设备处理器501可用于调用存储于存储器502中的程序,例如本申请的一个或多个实施例提供的业务处理方法在网络设备500侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备500可以是图1示出的通信系统100中的核心网实体,例如UPF 104、AMF 105、SMF 106、AUSF 107、NSSF 108、NEF 109、NRF 110、PCF 111或UDM 112,也可以是切片架构中的功能实体,例如CSMF 201、NSMF 201或NSSMF 203。
需要说明的,图15所示的网络设备500仅仅是本申请实施例的一种实现方式,实际应用中,网络设备500还可以包括更多或更少的部件,这里不作限制。
参考图16,图16示出了本申请实施例提供的一种芯片系统600。如图15所示,芯片系统600可以包括一个或多个处理器601、接口电路602,处理器601和接口电路602相连。其中:
处理器601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器601可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路602可以完成数据、指令或者信息的发送或者接收,处理器601可以利用接口电路602接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路602发送出去。
可选的,芯片系统还包括存储器603,存储器603可以包括只读存储器和随机存取存储器,并向处理器提供操作指令和数据。存储器603的一部分还可以包括非易失性随机存取存储器(NVRAM)。
可选的,存储器603存储了可执行软件模块或者数据结构,处理器603可以通过调用存储器存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
可选的,芯片系统可以使用在本申请实施例涉及的终端设备或网络设备中。可选的,接口电路602用于执行图3所示的实施例中网络设备、第一设备的接收和发送的步骤。可选的,接口电路602还用于执行图4所示的实施例中第一终端设备、第二终端设备的接收和发送的步骤。处理器601用于执行图3或图4所示的实施例中的网络设备、第一设备、第一终端设备或第二终端设备等处理的步骤。存储器603用于存储图3或图4所示的实施例中的网络设备、第一设备、第一终端设备或第二终端设备等的数据和指令。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何可用介质。
作为一种可选的设计,计算机可读存储介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或可用于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述方法实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其它可编程装置。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种业务处理方法,其特征在于,包括:
    网络设备接收第一设备发送的请求消息,所述请求消息包括所述第一设备请求发送的业务类型,或者所述请求消息与所述第一设备请求发送的业务类型对应;
    所述网络设备为所述请求发送的业务类型分配调制方案;其中,不同的业务类型对应不同的调制方案;
    所述网络设备将分配的调制方案发送给所述第一设备;
    所述网络设备在频谱资源上接收来自所述第一设备的业务,所述业务采用所述分配的调制方案调制;其中,不同业务类型的业务共享所述频谱资源。
  2. 一种业务处理方法,其特征在于,包括:
    第一终端设备接收第二终端设备发送的第一消息,所述第一消息用于表征所述第二终端设备在频谱资源上发送的业务所采用的第一调制方案;
    所述第一终端设备根据所述第一消息选择第二调制方案;其中,所述第二调制方案与所述第一调制方案不同;
    所述第一终端设备在所述频谱资源上发送通过所述第二调制方案调制后的业务。
  3. 根据权利要求1所述的方法,其特征在于,所述不同的业务类型对应不同的调制方案包括以下一种或多种:
    一种业务类型与一个或多个调制方案对应;
    不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;
    不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;
    不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
  4. 根据权利要求1所述的方法,其特征在于,所述网络设备将分配的调制方案发送给所述第一设备包括:
    所述网络设备通过DCI和/或RRC信令将分配的调制方案发送给所述第一设备。
  5. 根据权利要求2所述的方法,其特征在于,不同的业务类型对应不同的调制方案,所述不同的业务类型对应不同的调制方案包括以下一种或多种:
    一种业务类型与一个或多个调制方案对应;
    不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;
    不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;
    不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
  6. 根据权利要求1或2所述的方法,其特征在于,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信 号由于互相干扰而导致的性能损失低于阈值。
  7. 根据权利要求1或2所述的方法,其特征在于,所述频谱资源包括非授权频谱资源。
  8. 根据权利要求1或2所述的方法,其特征在于,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。
  9. 一种网络设备,其特征在于,所述网络设备包括:
    接收单元,用于接收第一设备发送的请求消息,所述请求消息包括所述第一设备请求发送的业务类型,或者所述请求消息与所述第一设备请求发送的业务类型对应;
    分配单元,用于为所述请求发送的业务类型分配调制方案;其中,不同的业务类型对应不同的调制方案;
    发送单元,用于将分配的调制方案发送给所述第一设备;
    所述接收单元,还用于在频谱资源上接收来自所述第一设备的业务,所述业务采用所述分配的调制方案调制;其中,不同业务类型的业务共享所述频谱资源。
  10. 一种终端设备,其特征在于,所述终端设备包括:
    接收单元,用于接收第二终端设备发送的第一消息,所述第一消息用于表征所述第二终端设备在频谱资源上发送的业务所采用的第一调制方案;
    选择单元,用于根据所述第一消息选择第二调制方案;其中,所述第二调制方案与所述第一调制方案不同;
    发送单元,用于在所述频谱资源上发送通过所述第二调制方案调制后的业务。
  11. 根据权利要求9所述的网络设备,其特征在于,所述不同的业务类型对应不同的调制方案包括以下一种或多种:
    一种业务类型与一个或多个调制方案对应;
    不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;
    不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;
    不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
  12. 根据权利要求9所述的网络设备,其特征在于,所述分配单元具体用于,通过DCI和/或RRC信令将分配的调制方案发送给所述第一设备。
  13. 根据权利要求10所述的终端设备,其特征在于,不同的业务类型对应不同的调制方案,所述不同的业务类型对应不同的调制方案包括以下一种或多种:
    一种业务类型与一个或多个调制方案对应;
    不同的业务类型具有优先级,所述业务类型的优先级与一个或多个调制方案对应;
    不同的业务类型对应不同的设备类型,一种所述设备类型与一个或多个调制方案对应;
    不同的业务类型具有不同的扩频因子,一种所述扩频因子与一个调制方案对应。
  14. 根据权利要求9或10所述的网络设备或终端设备,其特征在于,不同的调制方案中任意两个调制方案的调制信号的相关性系数低于阈值;或者不同的调制方案中任意两个调制方案的调制信号由于互相干扰而导致的性能损失低于阈值。
  15. 根据权利要求9或10所述的网络设备或终端设备,其特征在于,所述频谱资源包括非授权频谱资源。
  16. 根据权利要求9或10所述的网络设备或终端设备,其特征在于,所述业务类型包括以下一种或多种:URLLC、IOT、eMBB、mMTC。
  17. 一种芯片,其特征在于,所述芯片包括至少一个处理器,存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,权利要求1-8中任意一项所述的方法得以实现。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现上述权利要求1-8任意一项所述的方法。
  19. 一种计算机程序产品,其特征在于,当所述计算机程序产品被计算机读取并执行时,如权利要求1至8任意一项所述的方法将被执行。
PCT/CN2019/130220 2019-12-30 2019-12-30 一种业务处理方法及相关设备 WO2021134378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130220 WO2021134378A1 (zh) 2019-12-30 2019-12-30 一种业务处理方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130220 WO2021134378A1 (zh) 2019-12-30 2019-12-30 一种业务处理方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021134378A1 true WO2021134378A1 (zh) 2021-07-08

Family

ID=76685837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130220 WO2021134378A1 (zh) 2019-12-30 2019-12-30 一种业务处理方法及相关设备

Country Status (1)

Country Link
WO (1) WO2021134378A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024360A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 免授权传输的方法、终端和网络设备
CN109152052A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 确定传输块大小的方法及装置
CN109803426A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 传输数据的方法和装置
CN110061805A (zh) * 2018-06-06 2019-07-26 中国信息通信研究院 一种上行数据信道多业务uci复用方法
WO2019160746A1 (en) * 2018-02-16 2019-08-22 At&T Intellectual Property I, L.P. Adaptive configuration of modulation and coding scheme tables for new radio
CN110536428A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置、网络设备和计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024360A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 免授权传输的方法、终端和网络设备
CN109152052A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 确定传输块大小的方法及装置
CN109803426A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 传输数据的方法和装置
WO2019160746A1 (en) * 2018-02-16 2019-08-22 At&T Intellectual Property I, L.P. Adaptive configuration of modulation and coding scheme tables for new radio
CN110061805A (zh) * 2018-06-06 2019-07-26 中国信息通信研究院 一种上行数据信道多业务uci复用方法
CN110536428A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 数据传输方法、装置、网络设备和计算机可读存储介质

Similar Documents

Publication Publication Date Title
US20220368507A1 (en) Signal transmission method, related device, and system
US11218273B2 (en) Signal transmission method, related device, and system
WO2020108275A1 (zh) 一种防护频带指示方法及装置
JP2020507966A (ja) リソース割振り方法ならびに関係するデバイスおよびシステム
WO2020088688A1 (zh) 资源配置方法及装置
US20200374904A1 (en) Uplink data sending and receiving method, apparatus, and system
WO2018188652A1 (zh) 随机接入及响应方法、终端设备、网络设备
US11528710B2 (en) Time domain resource indication method in relay network, network device, and user equipment
CN110278563A (zh) 确定频谱资源的方法及装置
US10897767B2 (en) Resource scheduling method, apparatus, and system
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN115589596A (zh) 侧行通信的方法及装置
CN103650564B (zh) 共小区的资源分配方法和设备
WO2021155604A1 (zh) 信息处理方法及设备
WO2020098715A1 (zh) 一种通信方法及装置
WO2021134378A1 (zh) 一种业务处理方法及相关设备
CN115103393B (zh) 物理信道监测方法和终端设备
WO2021134382A1 (zh) 一种资源指示方法、装置和系统
US12041638B2 (en) Method and device for sidelink communication
WO2019095396A1 (zh) 一种数据传输节点确定方法和装置
WO2023123315A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031533A1 (zh) 用于侧行定位的方法、终端设备及网络设备
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备
US20230180191A1 (en) Communication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958663

Country of ref document: EP

Kind code of ref document: A1