WO2017133306A1 - 传输导频信号的方法和装置 - Google Patents

传输导频信号的方法和装置 Download PDF

Info

Publication number
WO2017133306A1
WO2017133306A1 PCT/CN2016/107440 CN2016107440W WO2017133306A1 WO 2017133306 A1 WO2017133306 A1 WO 2017133306A1 CN 2016107440 W CN2016107440 W CN 2016107440W WO 2017133306 A1 WO2017133306 A1 WO 2017133306A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
target
transmitting
end device
layers
Prior art date
Application number
PCT/CN2016/107440
Other languages
English (en)
French (fr)
Inventor
施弘哲
刘瑾
陈大庚
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16889113.3A priority Critical patent/EP3396886B9/en
Publication of WO2017133306A1 publication Critical patent/WO2017133306A1/zh
Priority to US16/053,185 priority patent/US10680773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting pilot signals.
  • Large-scale antenna array is one of the key technologies to improve the throughput of wireless communication systems, and also provides a basis for higher-level data stream space division multiplexing.
  • the multi-antenna configuration has up to 8 layers of data stream space division multiplexing, in order to support simultaneous transmission of up to 8 layers of data streams, pilot signals, for example,
  • the structure of the Demodulation Reference Signal (DMRS) is also configured as a maximum of 8 antenna ports, and the DMRS of each antenna port is on the time-frequency resource of each resource block ("RB").
  • RB resource block
  • Discrete distribution In the existing LTE protocol, the resource element (Resource Element, referred to as “RE”) occupied by the DMRS on each RB pair is configured according to the maximum number of transmission layers (ie, 8 layers), and the DMRS is in each RB.
  • the overhead of the RE occupied on the pair is 14.3%.
  • the pilot resources pre-configured according to the maximum number of transport layers are reserved for the time-frequency resources of each layer, and therefore, these idle pilots are therefore reserved. Resources are a huge waste, resulting in extremely low resource utilization.
  • the number of transmission layers of data streams is bound to increase. If existing methods are still used to allocate time-frequency resources for pilot signals, the pilot signals occupy REs on each RB pair.
  • the overhead increases as the maximum number of transmission layers increases. For example, when the maximum transmission layer is 8 layers, the overhead of the RE occupied by the DMRS on each RB pair is 14.3%; when the maximum transmission layer is 16 layers, The overhead of the RE occupied by the DMRS on each RB pair is 28.6%. It can be seen that the more the maximum number of transmission layers, the more idle pilot resources are wasted.
  • the present application provides a method and apparatus for transmitting pilot signals to improve resource utilization.
  • the present application provides a method for transmitting a pilot signal, the method comprising: determining, by a source device, a target time-frequency resource for transmitting a pilot signal according to a pre-stored N pilot patterns, the target time-frequency resource and Corresponding to the total number of layers of the data stream to be transmitted, where N is a natural number greater than or equal to 1, and when N is greater than 1, the N pilot patterns are different from each other; the transmitting device sends indication information to the receiving device, the indication The information is used to instruct the receiving end device to transmit a pilot signal according to the target time-frequency resource and the transmitting end device.
  • the transmitting end device determines the time-frequency resource corresponding to the number of layers of the data stream to be transmitted according to the pre-stored one or more pilot patterns, so that the pilot resource used for transmitting the pilot signal can be transmitted according to the actual The number of layers of the data stream changes, so that the idle pilot resources in the pilot pattern configured according to the prior art are released for data transmission, thereby making the resource configuration more flexible and improving resource utilization. .
  • the sending end device may determine, from the pre-stored N types of pilot patterns, a target pilot pattern corresponding to a total number of layers of the data stream to be transmitted,
  • the target pilot pattern is used to indicate a target time-frequency resource for transmitting a pilot signal, where N is determined according to a maximum number of transmission layers L supported by the source device, and L is a natural number greater than or equal to 1.
  • the transmitting device prestores a one-to-one mapping relationship between the N layer arrays and the N kinds of pilot patterns, and the number of layers included in the ith layer array in the N layer arrays is greater than And less than or equal to Natural number, i ⁇ [1,N], among them, Indicates rounding up, C is the code length of the orthogonal mask used between the transport layers, C is 2 n , and n is a natural number greater than or equal to 1.
  • the sending end device determines a corresponding layer array according to the total number of layers of the data stream to be transmitted; the transmitting end device performs a one-to-one mapping relationship between the N layer arrays and the N kinds of pilot patterns, from the preset N kinds of pilot patterns. Medium, determining a target pilot pattern corresponding to the layer array.
  • the sending end device sends the indication information to the receiving end device, where the indication information is specifically used to indicate an antenna for transmitting the pilot signal.
  • the port number and the antenna port number are determined by the transmitting device according to the total number of layers of the data stream to be transmitted, so that the receiving device determines the target pilot pattern corresponding to the antenna port number, to determine the target time-frequency resource according to the target pilot pattern.
  • the transmitting device and the receiving device pre-store a one-to-one mapping relationship between the N types of pilot patterns and the N antenna port number groups, the i-th port Any antenna port number in the group Used to uniquely indicate the i-th pilot pattern, i ⁇ [1, N].
  • the indication information of the antenna port number is sent to the receiving end device, and can be used to indicate the spatial domain resource for transmitting the pilot signal, and the target pilot pattern is indicated by the antenna port number, and the time-frequency resource for transmitting the pilot signal can be determined, thereby The three dimensions of the time domain and the frequency domain determine the resources used to transmit the pilot signals.
  • the transmitting end device determines that the bit number M 1 of the antenna port number carrying the pilot signal for transmitting the pilot signal is: Indicates rounding up; the transmitting device sends indication information through M 1 bits, and the indication information is used to indicate an antenna port number for transmitting the pilot signal.
  • the optimized antenna port number can implicitly indicate the index number of the target pilot pattern, thereby determining the target pilot pattern, and the signaling overhead caused by the indication information is small, but can The idle pilot resources are released for data transmission, which realizes resource reuse and improves resource utilization and data transmission efficiency.
  • the sending end device sends the indication information to the receiving end device, where the indication information is specifically used to indicate an index number of the target pilot pattern
  • the index number of the target pilot pattern is determined by the transmitting end device according to the total number of layers of the data stream to be transmitted, so that the receiving end device determines the target pilot pattern corresponding to the index number of the target pilot pattern, according to the target pilot pattern, Determining a target time-frequency resource, and transmitting a pilot signal to the transmitting device according to the target time-frequency resource, wherein the transmitting device and the receiving device pre-store the index numbers of the N kinds of pilot patterns and the N pilot patterns. Mapping relations.
  • the indication information of the index number of the target pilot pattern is sent to the receiving end device, and may be used to indicate a target pilot pattern for transmitting the pilot signal, thereby determining a time-frequency resource for transmitting the pilot signal, and may also send the time-frequency resource to the receiving end device.
  • the indication information of the antenna port number is used to indicate the spatial domain resource for transmitting the pilot signal, thereby determining resources for transmitting the pilot signal from three dimensions of the spatial domain, the time domain, and the frequency domain.
  • the transmitting end device determines that the bit number M 2 of the index number of the bearer target pilot pattern is: Indicates rounding up; the transmitting device sends indication information by M 2 bits, and the indication information is used to indicate the index number of the target pilot pattern.
  • the target pilot pattern can be directly determined by directly transmitting the indication information of the index number of the target pilot pattern to the receiving device, and the signaling overhead caused by the indication information is small, but the idle pilot resource can be released. In the transmission of data, resource reuse is realized, and resource utilization and data transmission efficiency are improved.
  • the N pilot patterns include a first pilot pattern, where the first pilot pattern is used to indicate: to be transmitted
  • the pre-configured d ⁇ L resource units RE for transmitting L pilot signals where d is corresponding to each transport layer
  • the density of the pilot signal on each resource block RB pair, d is a natural number greater than or equal to 1
  • L is a natural number greater than or equal to 1
  • L n F ⁇ n T
  • n F is L pilot signals in each
  • n T is the number of REs used by the L pilot signals in the direction of the time domain resource on each RB pair
  • the indication information including the indication bit
  • the target time-frequency resource includes the target RE.
  • the transmitting end device determines, according to the pre-stored first pilot pattern, a target RE for transmitting a pilot signal, where the target RE corresponds to a total number of layers of the data stream to be transmitted; and the transmitting end device determines, according to the pre-stored first mapping relationship diagram.
  • the target RE of the transmission pilot signal is in a corresponding bit in the indication bitmap, where the first mapping relationship is used to indicate: d ⁇ L REs in the first pilot pattern and bits in the indication bitmap Corresponding relationship; the sending end device sends an indication bit map to the receiving end device, where the indication bit map is used to indicate that the receiving end device transmits the pilot signal according to the target RE and the transmitting end device, and the receiving end device pre-stores the first mapping relationship diagram.
  • the indication bitmap includes a one-dimensional indication bitmap
  • the transmitting device determines a one-dimensional indication bitmap, the one-dimensional indication bit
  • the figure is used to indicate the resource corresponding to the target RE in the first dimension direction, where the first dimension direction is along the direction of the frequency domain resource or along the direction of the time domain resource; the sending end device is in each RB pair according to the L pilot signals.
  • the target RE is indicated by the one-dimensional indication bitmap, so that the transmitting device can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and explicitly indicate the releasable resource by indicating the bit of the bitmap. It is not limited to a fixed pilot pattern, so the configuration of time-frequency resources is more flexible and convenient.
  • the indication bitmap includes a two-dimensional indication bitmap
  • the transmitting device determines a two-dimensional indication bitmap, the two-dimensional indication bit
  • the target RE is indicated by the two-dimensional indication bitmap, so that the transmitting device can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and explicitly indicate the releasable resource by indicating the bit of the bitmap. It is not limited to a fixed pilot pattern, so the configuration of time-frequency resources is more flexible and convenient.
  • the two-dimensional indication bitmap is used to indicate the idle pilot resource, and one or more other
  • the two-dimensional indication bitmap is used together to realize flexible switching of the density of the pilot signal in the time domain direction and the frequency domain direction, so that the resources used by the pilot signal are adjustable in the time domain resource and the frequency domain resource. Therefore, the flexibility of resource allocation is further improved.
  • the present application provides a method for transmitting a pilot signal, where the method includes: receiving, by a receiving device, indication information sent by a transmitting device; and determining, by the receiving device, a target time and frequency for transmitting a pilot signal according to the indication information.
  • the resource, the target time-frequency resource is determined by the transmitting device according to the pre-stored N kinds of pilot patterns, and the target time-frequency resource corresponds to the total number of layers of the data stream to be transmitted, where N is a natural number greater than or equal to 1, and when N is greater than 1
  • the N pilot patterns are different from each other; the receiving device transmits the pilot signal to the transmitting device according to the target time-frequency resource.
  • the transmitting end device determines the time-frequency resource corresponding to the number of layers of the data stream to be transmitted according to the pre-stored one or more pilot patterns, so that the pilot resource used for transmitting the pilot signal can be transmitted according to the actual The number of layers of the data stream changes, so that the idle pilot resources in the pilot pattern configured according to the prior art are released for data transmission, thereby making the resource configuration more flexible and improving resource utilization. .
  • the indication information is specifically used to indicate an antenna port number for transmitting a pilot signal, and the receiving end device determines the target pilot pattern according to the antenna port number.
  • the transmitting device and the receiving device pre-store N kinds of pilot patterns and N One-to-one mapping relationship of antenna port number groups, any one of the i-th port number groups is used to uniquely indicate the i-th pilot pattern, i ⁇ [1, N]; the receiving device is based on the target pilot Pattern to determine the target time-frequency resource.
  • the target pilot pattern is indicated by the antenna port number, so that the idle resources are released for transmission of data, thereby realizing resource reuse, improving resource utilization and data transmission efficiency.
  • the indication information is specifically used to indicate an index number of the target pilot pattern, and the receiving end device is configured according to the index of the target pilot pattern. No., the target pilot pattern is determined, and the transmitting device and the receiving device pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns; the receiving device determines the target time frequency according to the target pilot pattern. Resources.
  • the target pilot pattern is indicated by the index number of the target pilot pattern, so that the idle resources are released for transmission of data, thereby realizing resource reuse, improving resource utilization and data transmission efficiency.
  • the N pilot patterns include a first pilot pattern, where the first pilot pattern is used to indicate: to be transmitted
  • the pre-configured d ⁇ L resource units RE for transmitting L pilot signals, d is the corresponding guide for each transport layer.
  • the density of the frequency signal on each resource block RB pair, d is a natural number greater than or equal to 1
  • L is a natural number greater than or equal to 1
  • L n F ⁇ n T
  • n F is L pilot signals in each RB
  • the number of REs used in the direction of the upper frequency domain resource, n T is the number of REs used by the L pilot signals in the direction of the time domain resource on each RB pair
  • the indication information includes the indication bitmap
  • the time-frequency resource includes a target RE
  • the receiving device determines the target RE for transmitting the pilot signal according to the indication bitmap and the pre-stored first mapping relationship diagram, where the first mapping relationship diagram is used to indicate: the first pilot pattern
  • the correspondence between the d ⁇ L REs in the bit and the bit in the indication bitmap is sent A first device pre-stored mapping relation of FIG.
  • the indication bitmap includes a one-dimensional indication bitmap and a two-dimensional indication bitmap, the one-dimensional indication bitmap is used to indicate a resource corresponding to the target RE in the first dimension direction, and the two-dimensional indication bitmap is used to indicate the target.
  • a resource corresponding to the RE in the first dimension direction and the second dimension direction where the first dimension direction is a direction along the frequency domain resource, the second dimension direction is a direction along the time domain resource, or the first dimension direction is In the direction of the time domain resource, the second dimension direction is the direction along the frequency domain resource.
  • the target RE is indicated by the one-dimensional indication bitmap and the two-dimensional indication bitmap, so that the transmitting device can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and clear the bit indicating the bitmap.
  • the ground indicates the releasable resources, and is not limited to the fixed pilot pattern. Therefore, the configuration of the time-frequency resources is more flexible and convenient.
  • the idle pilot resource is indicated by the two-dimensional indication bitmap, and can be used together with one or more other two-dimensional indication bitmaps to realize flexible density of the pilot signal in the time domain direction and the frequency domain direction. Switching, so that the resources used by the pilot signals are adjustable in time domain resources and frequency domain resources. Therefore, the flexibility of resource allocation is further improved.
  • the present application provides an apparatus for transmitting a pilot signal for performing the method of the first aspect or any possible implementation of the first aspect.
  • the apparatus comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides an apparatus for transmitting a pilot signal for performing the method of any of the second aspect or the second aspect.
  • the apparatus comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides an apparatus for transmitting a pilot signal, the apparatus comprising: a transceiver, a memory, a processor, and a bus system.
  • the transceiver, the memory and the processor are connected by a bus system
  • the memory is for storing instructions for executing the instructions stored by the memory to control the transceiver to send and receive signals
  • the processor executes the instructions stored by the memory The execution causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • the present application provides an apparatus for transmitting a pilot signal, the apparatus comprising: a transceiver, a memory, a processor, and a bus system.
  • the transceiver, the memory and the processor are connected by a bus system
  • the memory is for storing instructions for executing the instructions stored by the memory to control the transceiver to send and receive signals
  • the processor executes the instructions stored by the memory The execution causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • the application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the sending end device is a network device
  • the receiving end device is a user equipment, or the sending end device is a user equipment, and the receiving end device is a network device.
  • the present application provides a method and apparatus for transmitting a pilot signal, which can release idle pilot resources for data transmission, thereby improving resource utilization.
  • FIG. 1 is a schematic diagram of a configuration pattern of a time-frequency resource for transmitting a DMRS in the prior art.
  • FIG. 2 is a schematic flowchart of a method for transmitting a pilot signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a first mapping relationship according to an embodiment of the present application.
  • 4a-4d are schematic diagrams of N kinds of pilot patterns according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a first mapping relationship according to an embodiment of the present application.
  • 6a-6f are another schematic diagrams of N kinds of pilot patterns according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a first mapping relationship according to another embodiment of the present application.
  • 8a-8d are schematic diagrams of N kinds of pilot patterns according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first mapping relationship diagram according to still another embodiment of the present application.
  • 10a through 10c are schematic diagrams of a one-dimensional indication bitmap for indicating a target RE according to still another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a first mapping relationship diagram according to still another embodiment of the present application.
  • 12a through 12c are schematic diagrams of a one-dimensional indication bitmap for indicating a target RE according to still another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a first mapping relationship diagram according to still another embodiment of the present application.
  • FIG. 14 is another schematic diagram of a first mapping relationship diagram according to still another embodiment of the present application.
  • FIG. 15 is a schematic diagram of resource usage rate according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of resource usage rate according to another embodiment of the present application.
  • FIG. 17 is a schematic block diagram of an apparatus for transmitting a pilot signal according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of an apparatus for transmitting a pilot signal according to another embodiment of the present application.
  • FIG. 19 is a schematic block diagram of an apparatus for transmitting a pilot signal according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of an apparatus for transmitting a pilot signal according to another embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • a terminal device may also be referred to as a User Equipment ("UE"), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • UE User Equipment
  • Device user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP”) phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant, Referred to as "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a terminal device in a future 5G network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device may be a device for communicating with the mobile device, such as a network side device, and the network side device may be Global System of Mobile communication ("GSM”) or Code Division Multiple Access (“Code Division Multiple Access”).
  • GSM Global System of Mobile communication
  • a Base Transceiver Station (BTS) in CDMA”) may also be a base station (NodeB, "NB” for short) in Wideband Code Division Multiple Access (WCDMA).
  • BTS Base Transceiver Station
  • NB base station
  • WCDMA Wideband Code Division Multiple Access
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (eg, a compact disk (CD), a digital versatile disk (Digital Versatile Disk) , referred to as "DVD”), etc., smart cards and flash memory devices (for example, Erasable Programmable Read-Only Memory (“EPROM”), cards, sticks or key drivers, etc.).
  • EPROM Erasable Programmable Read-Only Memory
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • MIMO multiple-input multiple-output
  • MIMO technology refers to using multiple transmitting antennas and receiving antennas at the transmitting end device and the receiving end device respectively, so that the signal passes through the transmitting end device and the receiving end.
  • Multiple antennas of the device transmit and receive, improving communication quality. It can make full use of space resources and achieve multiple transmission and reception through multiple antennas. It can multiply the system channel capacity without increasing spectrum resources and antenna transmission power.
  • the transmitting device performs bit mapping processing on the multi-layer information bits that need to be sent to the terminal device, and maps the modulated signal to one or more transport layers to generate one or more data streams (also referred to as , layer mapping), the transmitting device then maps the layer or layers of data streams to the antenna port, performs resource mapping on each antenna port, and generates Orthogonal Frequency Division Multiplexing (OFDM). ) The symbol is emitted and emitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each layer corresponds to at least one antenna port.
  • the antenna port mentioned herein can be understood as a logical port for transmission, and there is no one-to-one correspondence with the physical antenna.
  • the antenna port can be used by a pilot signal (for example, DMRS) for the antenna. definition.
  • DMRS pilot signal
  • the following describes the configuration method of the time-frequency resource used for transmitting the DMRS in the prior art by taking the maximum number of transmission layers as 8 layers as an example.
  • FIG. 1 is a schematic diagram of a configuration pattern of a time-frequency resource for transmitting a DMRS in the prior art.
  • the communication system supports up to 8 layers of data stream spatial multiplexing, in order to support 8 layers.
  • the data stream is transmitted at the same time, and the structure of the DMRS is also configured to be up to eight antenna ports.
  • the eight antenna ports are respectively recorded as #0 to #7, and each port number corresponds to one port.
  • the DMRS of each antenna port is discretely distributed on the time-frequency resources of a pair of RBs, so that the channel estimator of the receiver can resist the time-varying of the channel by time domain filtering, and solve the frequency selectivity of the channel by frequency domain filtering.
  • the DMRS between the antenna ports is orthogonal to each other by means of Frequency Division Multiplexing (FDM) and Code Division Multiplexing (CDM).
  • FDM Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • the DMRSs corresponding to the eight antenna ports are divided into two groups, and the DMRSs corresponding to #0, #1, #4, and #6 (for convenience of description, denoted as DMRS 0/1/4/6) and DMRS corresponding to #2, #3, #5, #7 (for convenience of explanation, recorded as DMRS 2/3/5/7)
  • Frequency division multiplexing between the two groups DMRS 0/1 within each group
  • Orthogonal Cover Code (“OCC”) code division multiplexing is used between the four antenna ports corresponding to /4/6 (ie, #0, #1, #4, #6).
  • the time-frequency resources used by DMRS 2/3/5/7 need to be reserved to avoid interference of data to DMRS; similarly, in On the transport layer corresponding to port numbers #2, #3, #5, and #7, the time-frequency resources used by DMRS 0/1/4/6 need to be reserved to avoid interference of data with DMRS.
  • the receiving device can only be based on the indication information of the transmitting device.
  • the antenna port indicated by the sender device transmits and receives data, but does not know whether other transmission layers have data transmission. Therefore, the time-frequency resources used by the eight antenna ports need to be reserved. It can be seen from FIG.
  • the occupancy rate of REs (or pilot resources) used for transmitting DMRS on each RB pair is Further, as the maximum number of transmission layers supported by the communication system increases, the pilot signal also increases, and the RE used for transmitting the DMRS is more and more occupied on each RB pair.
  • the present application provides a method for transmitting a pilot signal, which can determine a pilot resource according to the number of layers actually transmitted, thereby pre-configuring the pilot according to the maximum transmission layer number according to the prior art configuration method.
  • the resources are released for data transmission, making the resource configuration more flexible and improving the utilization of resources.
  • pilot signal may be, for example, an orthogonal pilot signal.
  • orthogonal pilot signal in order to avoid redundancy, the description of the same or similar cases will be omitted.
  • FIG. 2 is a schematic flowchart of a method 100 of transmitting a pilot signal according to an embodiment of the present application. Specifically, FIG. 2 depicts a method 100 of transmitting a pilot signal in an embodiment of the present application from the perspective of device interaction.
  • the sending end device is a network device
  • the receiving end device is a terminal device
  • the sending end device is a terminal device
  • the receiving end device is a network device
  • the sender device may be a network device (for example, a network side device such as a base station), and the receiver device may be a terminal device (for example, a user device), that is, the method 100 may be applied to the downlink. transmission.
  • a network device for example, a network side device such as a base station
  • the receiver device may be a terminal device (for example, a user device)
  • the method 100 may be applied to the downlink. transmission.
  • the sender device may also be a terminal device (for example, a user device), and the receiver device may be a network device (for example, a network side device such as a base station), that is, the method 100 may be applied to uplink transmission.
  • a terminal device for example, a user device
  • the receiver device may be a network device (for example, a network side device such as a base station), that is, the method 100 may be applied to uplink transmission.
  • the method 100 includes:
  • the sender device determines a total number of layers of the data stream to be transmitted.
  • MU-MIMO Multi-User Multiple Input Multiple Output
  • SSU single user
  • MU-MIMO Multiple-User Multiple Input Multiple Output
  • the number of transmission layers actually used varies, and the source device needs to determine the total number of layers of the current data stream to be transmitted.
  • the process in which the source device determines the total number of layers of the data stream to be transmitted may be the same as the prior art, and a detailed description thereof is omitted herein to avoid redundancy.
  • the source device determines a target time-frequency resource for transmitting a pilot signal according to the pre-stored N types of pilot patterns, where the target time-frequency resource corresponds to a total number of layers of the data stream to be transmitted.
  • the sending end device may determine a time-frequency resource used for transmitting the pilot signal from the preset N kinds of pilot patterns (for convenience of distinguishing and explaining, it is called The target time-frequency resource), or the transmitting device may also determine, from the preset N kinds of pilot patterns, a pilot pattern corresponding to the total number of layers of the data stream to be transmitted (for the purpose of distinguishing and explaining, the target is called a target) The pilot pattern), and then the target time-frequency resource is determined according to the target pilot pattern.
  • N is a natural number greater than or equal to 1
  • the N kinds of pilot patterns are different from each other.
  • the sending end device sends the indication information to the receiving end device, where the indication information is used to instruct the receiving end device to transmit the pilot signal according to the target time-frequency resource and the sending end device.
  • the sending end device may send indication information to the receiving end device, and instruct the receiving end device to receive the pilot signal according to the target time-frequency resource.
  • the transmitting end device may further send indication information for indicating the antenna port number to the receiving end device, to instruct the receiving end device to receive the pilot signal and the transmission data according to the antenna port number.
  • the sending end device may send one or more indication information to the receiving end device, where the one or more indication information is used to indicate the airspace, time domain and frequency domain used by the receiving end device and the transmitting end device. Resources of dimensions.
  • the sending end device sends a pilot signal to the receiving end device according to the target time-frequency resource.
  • the transmitting device can determine a sequence for transmitting a pilot signal, an antenna port number, and a target time-frequency resource according to the number of layers of the data stream to be transmitted, or determine an airspace and time for transmitting the pilot signal. Domain and frequency domain resources.
  • the transmitting end sends a sequence of the corresponding pilot signal to the receiving end device for the channel estimation on the target time-frequency resource according to the antenna port number.
  • the receiving end device transmits a pilot signal to the transmitting end device according to the indication information.
  • the receiving end device determines resources for transmitting the spatial, temporal, and frequency domains of the pilot signal, and according to the indicated antenna port, on the target time-frequency resource. Receiving a pilot signal sent by the transmitting device, and using channel estimation, for demodulating data transmitted from the transmitting device.
  • the configuration of the spatial domain resource for transmitting the pilot signal is the same as the specific process of the prior art, and a detailed description thereof is omitted herein to avoid redundancy.
  • S103 may be executed after S104 or simultaneously with S104.
  • the method for transmitting a pilot signal in the embodiment of the present application is pre-stored by the transmitting device.
  • a pilot pattern that determines a time-frequency resource corresponding to the number of layers of the transmitted data stream, such that pilot resources used to transmit the pilot signal can vary according to changes in the number of layers of the actually transmitted data stream to The resources are released for data transmission, making resource allocation more flexible and improving resource utilization.
  • the method 100 of transmitting a pilot signal is described in detail above with respect to FIG. 2 from the perspective of device interaction.
  • the specific process of determining the target time-frequency resource by the transmitting end device and indicating the target time-frequency resource of the receiving end device will be described in detail with reference to FIG. 3 to FIG. 14 .
  • the source device may determine the target time-frequency resource according to the pre-stored N (N ⁇ 1) pilot patterns, and indicate the target pilot pattern to the receiving device (method 1).
  • the target time-frequency resource may also be determined according to a pre-stored pilot pattern (eg, the first pilot pattern), and the target time-frequency resource is indicated to the receiving device (method 2).
  • a network device for example, a base station
  • a user device is used as a receiving device as an example.
  • a method for transmitting a pilot signal according to an embodiment of the present application is described in detail.
  • the transmitting end device may be a macro base station, or may be a small base station, or the macro base station and the small base station jointly complete the transmission of the pilot signal.
  • the transmitting end device may be a macro base station, where the macro base station configures a resource for transmitting a pilot signal, and transmits a pilot signal by using the resource; the transmitting end device may also be a small base station, and the small base station is configured for transmitting.
  • the transmitting device can also be jointly supported by the macro base station and the small base station, and the macro base station configures resources for the small base station, and the small base station is configured in the resource configured by the macro base station.
  • Each user equipment allocates resources, and the small base station transmits pilot signals by resources allocated for each user equipment. All methods for configuring a pilot resource by a transmitting device to transmit a pilot signal to a receiving device are all within the scope of the present application.
  • the transmitting device mentioned here can be understood as a device that transmits a pilot signal
  • the receiving device can be understood as a device that receives a pilot signal
  • the transmitting device can be used for transmitting and receiving a data stream
  • the receiving device is also It can be used for receiving and transmitting data streams, which is not specifically limited in this application.
  • the source device determines, from the pre-stored N pilot patterns, a target pilot pattern corresponding to the total number of layers of the data stream to be transmitted, where the target pilot pattern is used to indicate a target for transmitting the pilot signal.
  • Time-frequency resources where N is determined according to the maximum number of transmission layers L supported by the transmitting device, and L is a natural number greater than or equal to 1.
  • the base station determines N types of pilot patterns according to the maximum number of transmission layers L supported by the communication system.
  • L is 16, and the pilot pattern corresponding to the 16 transmission layers may be 16 types. , or 8 kinds, or 4 kinds, etc.
  • the N kinds of pilot patterns have a mapping relationship with the number of transmission layers actually used. According to the mapping relationship, the base station can determine a pilot pattern corresponding to the total number of layers of the data stream to be transmitted, that is, the target pilot pattern, and further determine a target for transmitting the pilot signal according to the target pilot pattern.
  • Time-frequency resources for example, RE.
  • N may be determined according to L.
  • N can also take a smaller value; when the maximum number of transmission layers is large, N should also take a larger value to ensure that when the maximum number of transmission layers is large and the actual number of transmission layers is small, Maximize the release of pilot resources.
  • the transmitting device pre-stores a one-to-one mapping relationship between the N layer arrays and the N kinds of pilot patterns, where the number of layers included in the ith layer array in the N layer arrays is greater than And less than or equal to Natural number, i ⁇ [1,N], among them, Indicates rounding up, C is the code length of the orthogonal mask used between the transport layers, C is 2 n , and n is a natural number greater than or equal to 1.
  • the one-to-one mapping relationship between the N layer arrays and the N types of pilot patterns is recorded as the first mapping relationship.
  • the first mapping relationship may be understood as a mapping relationship between the N types of pilot patterns and the number of transmission layers actually used, and the first mapping relationship includes but is not limited to N layer arrays and N types of pilot patterns.
  • the one-to-one mapping relationship may further be a one-to-one mapping relationship between the parameters determined according to the number of layers of the data stream to be transmitted and the N types of pilot patterns, for example, an antenna port number, etc., and the specific
  • the content is not particularly limited, and all methods that can be used to indicate the mapping relationship between the number of transmission layers and the pilot pattern fall within the protection scope of the present application.
  • the base station may divide the L transport layers into N groups (hereinafter referred to as layer arrays for convenience of explanation), each layer array corresponds to a pilot pattern, and the base station determines the number of layers of the data stream to be transmitted. Then, according to the first mapping relationship, the target pilot pattern is determined, thereby determining the target time-frequency resource.
  • layer arrays for convenience of explanation
  • each layer array contains a plurality of layer values, specifically, the value of the layer included in the i-th layer array is greater than And less than or equal to The natural number, where i ⁇ [1,N].
  • the base station can divide the 16 transmission layers into 4 groups, and each of the four adjacent layers is a group.
  • the value of N is 4.
  • the number of transmission layers actually used is 1 to 4 layers, corresponding to the first pilot pattern
  • the number of transmission layers actually used is 5 to 8 layers
  • the second pilot pattern when actually When the number of transmission layers used is 9 to 12 layers, corresponding to the third pilot pattern
  • the fourth pilot pattern is corresponding.
  • the value of the layer included in the second layer array is a value greater than 4 and less than or equal to 8, that is, the value of the layer included in the second layer array is 5-8. Floor.
  • the N kinds of pilot patterns are different from each other. That is to say, when the number of transmission layers actually used is small, the number of pilot signals is also small, and the REs of the corresponding pilot patterns for transmitting pilot signals (for example, DMRS) (for easy distinction and explanation) There is less, called the target RE). For example, when the number of transmission layers actually used is 1 to 4 layers, four pilot signals are required to correspond to the number of transmission layers (or antenna ports).
  • the ratio of the resources occupied by the target RE (ie, 12 REs) in each RB pair in the corresponding first pilot pattern is lower, only 7.14%.
  • the maximum number of transmission layers L supported by the communication system is 16, and the OCC code length C used between the transmission layers is 4, That is, four types of pilot patterns are arranged for the 16 transmission layers. Specifically, when the number of transmission layers actually used is 1 to 4 layers, corresponding to the first pilot pattern, when the number of transmission layers actually used is 5 to 8 layers, corresponding to the second pilot pattern, when actually When the number of transmission layers used is 9 to 12 layers, corresponding to the third pilot pattern, when the number of transmission layers actually used is 13 to 16 layers, the fourth pilot pattern is corresponding.
  • the base station may also configure one pilot pattern for each actually used transmission layer, or group the maximum transmission layer number into four or eight groups, corresponding to four or two pilots respectively. pattern.
  • the amount of storage used is also larger. Therefore, the base station can flexibly configure according to the maximum number of transmission layers L and the actual conditions of the system, so as to maximize the release of idle pilot resources.
  • the N types of pilot patterns configured by the base station and the rules of the grouping may be pre-agreed with the user equipment, and the mapping relationship between the N types of pilot patterns and the number of transmission layers actually used (for example, A mapping relationship is pre-existing in the base station and the user equipment; or the base station is configured according to the network usage of the system in different time periods before transmitting the pilot signal with the user equipment, and the mapping relationship is notified to the user equipment.
  • This application is not particularly limited.
  • the sending end device sends the indication information to the receiving end device, where the indication information is used to instruct the receiving end device to transmit the pilot signal according to the target time-frequency resource and the transmitting end device.
  • the base station sends the indication information to the user equipment to indicate the target time-frequency resource of the user equipment, and the user equipment can perform pilot signal and data transmission with the base station according to the target time-frequency resource.
  • the specific content that the base station sends the indication information to the user equipment may be information for indicating the target pilot pattern.
  • the target pilot pattern may be indicated by the antenna port number corresponding to the pilot pattern (method 1a), or may be The index number of the pilot pattern indicates the target pilot pattern (method 1b).
  • the base station may send the indication information to the user equipment by using the user-specific dynamic signaling, or may send the indication information to the user equipment by means of a public dynamic signaling broadcast, which is not specifically limited in this application.
  • the sending end device sends the indication information to the receiving end device, where the indication information is specifically used to indicate an antenna port number used for transmitting the pilot signal, where the antenna port number is determined by the sending end device according to the total number of layers of the data stream to be transmitted. Determining, so that the receiving end device determines a target pilot pattern corresponding to the antenna port number, to determine a target time-frequency resource according to the target pilot pattern, and transmitting a pilot signal to the transmitting device according to the target time-frequency resource, the transmitting end The device and the receiving device pre-store a one-to-one mapping relationship between the N types of pilot patterns and the N antenna port number groups, and any one of the i-th port number groups is used to uniquely indicate the ith pilot pattern. I ⁇ [1,N].
  • the base station after determining the number of layers of the data stream to be transmitted, the base station sends signaling to the user equipment to indicate an antenna port number for transmission, and the base station determines, according to the number of transmission layers, an antenna port number for transmission and a specific method of the prior art.
  • the antenna port number can be divided into N antenna port number groups according to the number of layers of the data stream to be transmitted, and each antenna port number group corresponds to one layer number. Groups, that is, the number of layers included in each layer array is the same as the number of port numbers contained in the corresponding antenna port number group.
  • the antenna port numbers in the N groups are different from each other, that is, one antenna port number appears only once in the N port number groups, and therefore, any port number in each antenna port number group can be used.
  • a unique pilot pattern is indicated.
  • the N antenna port number groups and the N kinds of pilot patterns have a one-to-one mapping relationship.
  • the N antenna port number groups and the index numbers of the N pilot patterns have a one-to-one mapping relationship, and the index numbers of the N pilot patterns have a one-to-one mapping relationship with the N types of pilot patterns.
  • the first mapping relationship may be characterized by a one-to-one mapping relationship between the antenna port number and the index number of the pilot pattern, and the pilot patterns corresponding to each index number are pre-stored in the base station and the user, respectively.
  • the first mapping relationship can be characterized by two mapping relationships (for example, mapping relationship A and mapping relationship B), wherein the mapping relationship A is used to indicate the antenna port number and the index number of the pilot pattern.
  • the mapping relationship is used to indicate a one-to-one mapping relationship between the pilot pattern and the index number, and the first mapping relationship is represented by two or more mapping relationships, which facilitates flexible configuration.
  • Table 1 shows a one-to-one mapping relationship between N antenna port number groups and index numbers of N pilot patterns (i.e., mapping relationship A).
  • Antenna port number The index number #0 ⁇ #3 1 #4 ⁇ #11 2 #12 ⁇ #23 3 #24 ⁇ #39 4
  • the antenna port numbers #0 to #3 can correspond to the index number 1
  • the antenna port numbers #4 to #11 can correspond to the index number 2
  • the antenna port numbers #12 to #23 can correspond to the index number. 3.
  • the antenna port numbers #24 to #39 may correspond to index number 4. It can be seen that the antenna port number between each two port number groups is not repeated. Any one of the port numbers is known, and the index number can be found correspondingly from Table 1, for example, the indication information sent by the base station to the user equipment is indicated.
  • the antenna port number used for transmitting the pilot signal is #3, and the user equipment can determine that the index number of the pilot pattern is 1 according to the mapping relationship A.
  • the first mapping relationship may also be characterized as a one-to-one mapping relationship between a layer array, a port number group, an index number, and a pilot pattern, or a one-to-one mapping relationship between a layer array, a port number group, and an index number. This application is not particularly limited.
  • the antenna port numbers #0 to #3 correspond to the index number 1
  • the index number 1 corresponds to the first pilot pattern (for example, FIG. 4a);
  • the antenna port numbers #4 to #11 correspond to the index.
  • No. 2 index number 2 corresponds to a second pilot pattern (for example, FIG.
  • antenna port numbers #12 to #23 correspond to index number 3, and index number 3 corresponds to a third pilot pattern (for example, graph 4c); antenna port numbers #24 to #39 correspond to index number 4, and index number 4 corresponds to a fourth pilot pattern (for example, FIG. 4d).
  • the corresponding pilot pattern can be determined.
  • the schematic diagram of the first mapping relationship shown in FIG. 3 is only one representation of the first mapping relationship, and should not be construed as limiting the present application. The application should not be limited thereto. All methods capable of characterizing the mapping relationship between the indication information (including the antenna port number, the index number, and the number of layers) and the target time-frequency resource fall within the protection scope of the present application.
  • the transmitting end device determines that the bit number M 1 of the antenna port number carrying the pilot signal for transmitting the pilot signal is:
  • the transmitting device sends indication information by using M 1 bits, and the indication information is used to indicate an antenna port number for transmitting the pilot signal.
  • the antenna port number is optimized.
  • the index number of the pilot pattern can be implicitly indicated, thereby finding a corresponding pilot pattern (ie, the first mapping relationship).
  • the base station needs to send the antenna port number to the user equipment by signaling, so as to transmit signals between the user equipment and the base station. Therefore, the antenna port number is optimized, so that each port number is not repeated, and each port number can uniquely indicate an index number of a pilot pattern, which not only saves signaling overhead, but also implements a pilot pattern indicating purpose.
  • 16 transport layers correspond to 16 antenna ports (for example, #0 to #15), that is, the configuration scheme based on the prior art is Each antenna port (or transport layer) is configured with a pilot signal, and the signaling overhead caused by the 16 antenna port numbers is Bit.
  • the antenna port number is not repeated in each layer array by optimizing the antenna port number. Therefore, the 16 transport layers correspond to each other.
  • the signaling overhead caused by the antenna port number is Bits, that is, in the embodiment of the present application, when the maximum number of transmission layers L is 16 layers, the OCC code is 4 bits, and the pilot density d is 3, the indication information used in the method 1a is larger than that used in the prior art configuration method.
  • the signaling overhead of the incoming signaling adds 2 bits of signaling overhead, but by adding the signaling overhead of 2 bits, the pilot pattern pre-configured for the 16 transport layers can be released a large amount of idle based on the prior art configuration method.
  • the pilot resources are used to transmit data, which greatly improves the utilization of resources.
  • FIG. 4a-4d are schematic diagrams of N kinds of pilot patterns according to an embodiment of the present application.
  • Figure 4a shows the corresponding pilot pattern if and only if the antenna port number used for transmission is one, two, three or all of #0 ⁇ #3.
  • the number of antenna port numbers #0 to #3 is the same as the number of layers of the transport layer, and is four. That is to say, how many antenna ports are corresponding to the number of transmission ports, for example, when the number of transmission layers is 1 layer, the antenna port number can be #0; when the number of transmission layers is 2 layers, the antenna port number can be used. For #0 and #1; when the number of transmission layers is 3, the antenna port number can be #0, #1, and #2; when the number of transmission layers is 4, the antenna port number can be #0, #1. #2 and #3.
  • the pilot pattern corresponding to the antenna port number in #0 to #3 may be used. Transmit DMRS.
  • the maximum number of transmission layers is 16 layers, when the number of layers to be used for the data stream to be transmitted is 1 to 4 layers, only four DMRSs need to be configured, and 16 antenna ports are pre-configured based on the prior art configuration method.
  • the REs for transmitting the other 12 DMRSs are all released for transmitting data. Therefore, when the maximum number of transmission layers L is as high as 16 layers, the OCC code is 4 bits, and the pilot density d is 3, the base station reduces the overhead of the pilot resources from 28.6% to 7.1% by increasing the signaling overhead of 2 bits. Therefore, resource utilization and data transmission efficiency are greatly improved.
  • FIG. 4b shows the corresponding pilot pattern if and only if one or more of the antenna port numbers used for transmission are #4 to #11.
  • the number of antenna port numbers #4 to #11 is the same as the number of layers of the transport layer, and both are eight. That is to say, how many antenna ports correspond to how many antenna ports, for example, when the number of transmission layers is 5, the antenna port numbers can be #4, #5, #6, #7, and #8; When the number of layers is 6 layers, the antenna port number can be #4.
  • the antenna port numbers can be #4, #5, #6, #7, #8, #9, and #10;
  • the antenna port numbers can be #4, #5, #6, #7, #8, #9, #10, and #11. It can be seen that the optimized antenna port number is not repeated in different port number groups, and the problem that the repeated port number cannot uniquely indicate the pilot pattern is avoided.
  • the pilot patterns corresponding to the antenna port numbers #4 to #11 may be used for transmission.
  • DMRS DMRS.
  • the pilot pattern REs for transmitting 8 DMRSs are configured, and each DMRS corresponds to one RE. That is, even if the maximum number of transmission layers is 16 layers, when the number of layers to be used for the data stream to be transmitted is 5 to 8 layers, only 8 DMRSs need to be configured, and 16 antenna ports are pre-configured based on the prior art configuration method.
  • the REs for transmitting the other 8 DMRSs are all released for transmitting data. Therefore, when the maximum number of transmission layers L is as high as 16 layers, the OCC code is 4 bits, and the pilot density d is 3, the base station reduces the overhead of the pilot resources from 28.6% to 14.3% by increasing the signaling overhead of 2 bits. Therefore, resource utilization and data transmission efficiency are greatly improved.
  • Figure 4c shows the corresponding pilot pattern if and only if the antenna port number used for transmission is one, more or all of #12 ⁇ #23. It can be seen that the number of antenna port numbers #12 to #23 is the same as the number of layers of the transport layer, and both are 12. That is to say, how many antenna port numbers correspond to the number of transmission ports, and the specific method for determining the antenna port number to be used according to the number of transmission layers is the same as the above method, and is not described here for brevity.
  • the pilot pattern corresponding to the antenna port numbers #12 to #23 may be used for transmission.
  • DMRS DMRS.
  • the pilot pattern REs for transmitting 12 DMRSs are configured, and each DMRS corresponds to one RE. That is, even if the maximum number of transmission layers is 16 layers, when the number of layers to be used for the data stream to be transmitted is 9 to 12, only 12 DMRSs need to be configured, and the 16 antenna ports are pre-configured based on the prior art configuration method. Of the 16 DMRSs, the REs used to transmit the other 4 DMRSs are all released for data transmission.
  • the base station reduces the overhead of the pilot resource from 28.6% to 21.4% by adding a 2-bit signaling overhead. Therefore, resource utilization and data transmission efficiency are improved to some extent.
  • Figure 4d shows the corresponding pilot pattern when and when the antenna port number used for transmission is one, more or all of #24 - #39. It can be seen that the number and transmission of antenna port numbers #24 to #39 The number of layers in the layer is the same, both are 16. In other words, how many transmission port layers correspond to how many antenna port numbers. In the embodiment of the present application, when the number of transmission layers actually used is any value of 13 to 16 layers, the pilot pattern corresponding to the antenna port numbers #24 to #39 (ie, FIG. 4d) may be used for transmission.
  • DMRS As can be seen from FIG. 4d, in the pilot pattern, REs for transmitting 16 DMRSs are configured, and each DMRS corresponds to one RE.
  • the embodiment of the present application determines the antenna port number actually used for transmission according to the number of transmission layers actually used by the data stream to be transmitted, and indicates the corresponding pilot pattern by the optimized antenna port number, which can be implemented.
  • the frequency resource is released in steps of 4, which realizes flexible configuration of pilot resources and improves resource utilization.
  • antenna port numbers #0 to #39 are merely illustrative and should not be construed as limiting the application.
  • the antenna port number may also be a value that is discontinuous and does not overlap.
  • the antenna port number of the first port number group may be #2, #4, #6, #8, and the application for the antenna port number is not particularly determined.
  • only one of the port numbers can be used to uniquely indicate a pilot pattern, which falls within the scope of protection of the present application.
  • the maximum transmission layer number L is 16 and the pilot density is 3 as an example.
  • the pilot density can be understood as the number of pilot signals (for example, DMRS) corresponding to each antenna port on each transport layer and each RB pair.
  • DMRS pilot signals
  • the pilot density is three.
  • the present application is not particularly limited to the pilot density, and the pilot density may be 3, 2, or 1.
  • the pilot density can be determined according to the channel environment. For example, with the introduction of higher order antenna arrays, narrower beams bring less interference, and the pilot density can be reduced with less channel selection. .
  • antenna port numbers #0 to #3 may correspond to a first type of pilot pattern (eg, FIG. 6a)
  • antenna port numbers #4 to #11 may correspond to a second type of pilot pattern (eg, , FIG. 6b)
  • antenna port numbers #12 to #23 may correspond to a third pilot pattern (eg, FIG. 6c)
  • antenna port numbers #24 to #39 may correspond to a fourth pilot pattern (eg, 6d)
  • antenna port numbers #40 to #59 may correspond to a fifth pilot pattern (eg, FIG. 6e)
  • antenna port numbers #60 to #83 may correspond to a sixth pilot pattern (eg, FIG. 6f) .
  • the optimized antenna port number is used to uniquely indicate a pilot pattern, so 24 layers correspond to
  • the signaling overhead caused by the antenna port number (for example, #0 to #83) is Bit. If the pilot signal is configured for each antenna port (or the transport layer) based on the prior art configuration method, the 24 transport layers correspond to 24 antenna port numbers (for example, #0 to #23),
  • the signaling overhead is Bit, that is, in the case where the maximum transmission layer number L is 24 layers, the OCC code is 4 bits, and the pilot density d is 1, the indication information used in the method 1a is higher than that of the prior art configuration method.
  • the overhead is increased by 2 bits, but by adding the signaling overhead of 2 bits, the pilot pattern pre-configured for the 24 transport layers based on the prior art configuration method can release a large amount of idle pilot resources for transmission. The data greatly improves the utilization of resources.
  • FIG. 6a-6f are another schematic diagrams of N kinds of pilot patterns according to an embodiment of the present application.
  • Figure 6a shows the corresponding pilot pattern if and only if the antenna port number used for transmission is one, two, three or all of #0 ⁇ #3. It can be seen that the number of antenna port numbers #0 to #3 is the same as the number of layers of the transport layer, and is four. In other words, how many transmission port layers correspond to how many antenna port numbers. In the embodiment of the present application, when the number of transmission layers actually used is any value of 1 to 4 layers, the pilot pattern corresponding to the antenna port number in #0 to #3 (ie, FIG. 6a) may be used. Transmit DMRS. As can be seen from FIG. 6a, only the REs for transmitting 4 DMRSs are configured in the pilot pattern, and each DMRS corresponds to one RE.
  • the maximum number of transmission layers is 24, when the number of layers to be used for the data stream to be transmitted is 1-4, only four DMRSs need to be configured, and the configuration method based on the prior art is 24 antenna ports. Used in the configured 24 DMRS The REs transmitting the other 20 DMRSs are all released for transmission of data. Therefore, when the maximum transmission layer number L is up to 24 layers, the OCC code is 4 bits, and the pilot density d is 1, the base station reduces the overhead of the pilot resource from 14.3% to 2.4% only by increasing the signaling overhead of 2 bits. Therefore, resource utilization and data transmission efficiency are greatly improved.
  • Figures 6b through 6f show the corresponding pilot patterns if and only if the antenna port number used for transmission is one, more or all of the port numbers in each port number group.
  • the specific analysis of the pilot pattern has been described in detail above, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the embodiment of the present application determines the antenna port number actually used for transmission according to the number of transmission layers actually used by the data stream to be transmitted, and indicates the corresponding pilot pattern by the optimized antenna port number, which can be implemented.
  • the frequency resource is released in steps of 4, which realizes flexible configuration of pilot resources and improves resource utilization.
  • L, N, d, and signaling overheads listed above are merely illustrative and should not be construed as limiting the application, and the application should not be limited thereto.
  • the values of L and d in the present application are not particularly limited.
  • antenna port numbers #0 to #83 are merely illustrative and should not be construed as limiting the application.
  • the antenna port number may also be a value that is discontinuous and does not overlap.
  • the antenna port number of the first port number group may be #2, #4, #6, #8, and the application for the antenna port number is not particularly determined.
  • only one of the port numbers can be used to uniquely indicate a pilot pattern, which falls within the scope of protection of the present application.
  • pilot density in the present application is not particularly limited.
  • the determination of the pilot density is the same as the specific process of the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the method for indicating the target time-frequency resource to the user equipment by using the indication information is not limited to indicating the optimized antenna port number, and the base station may directly directly use the number of layers of the transport layer actually used. Or the index number is sent to the user equipment, so that the user equipment determines the corresponding pilot pattern, but the antenna port number must be notified to the user equipment regardless of whether the indication information specifically indicates the number of layers or the index number, and the difference is that After the specific indicator layer number or index number, the pilot pattern can be determined according to the number of layers or the index number, without implicit indication by the antenna port number. Therefore, the antenna port number can be configured according to the prior art. Method allocation The antenna port number is the same and does not need to be optimized. It can be repeated in each layer array, which reduces the signaling overhead caused by the antenna port number, but increases the signaling caused by the index number or the number of layers. Overhead.
  • the sending end device sends the indication information to the receiving end device, where the indication information is specifically used to indicate an index number of the target pilot pattern, where the index number of the target pilot pattern is determined by the sending end device according to the total layer of the data stream to be transmitted.
  • the number is determined to enable the receiving end device to determine a target pilot pattern corresponding to the index number of the target pilot pattern, to determine the target time-frequency resource according to the target pilot pattern, and to transmit the guide with the transmitting device according to the target time-frequency resource.
  • the frequency signal wherein the transmitting end device and the receiving end device pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns.
  • each pilot pattern may correspond to an index number, that is, the N types of pilot patterns are in one-to-one correspondence with the index numbers of the N pilot patterns. Therefore, the corresponding pilot pattern may be indicated by an index number.
  • the base station and the user equipment may pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns.
  • the base station may send an index number of the target pilot pattern to the user equipment, and the user equipment may determine the target pilot pattern according to the index number.
  • the base station may also divide the number of transmission layers into N groups, and each layer array corresponds to one pilot pattern.
  • the 16 transmission layers are divided into 4 groups, each group corresponding to an index number of a pilot pattern, and the user equipment can determine the target pilot pattern according to the index number.
  • the antenna port numbers #0 to #3 correspond to the index number 1
  • the index number 1 corresponds to the first type of pilot pattern (for example, FIG. 8a);
  • the antenna port numbers #0 to #7 correspond to the index.
  • No. 2 index number 2 corresponds to a second pilot pattern (for example, FIG.
  • antenna port numbers #0 to #11 correspond to index number 3, and index number 3 corresponds to a third pilot pattern (for example, graph 8c); antenna port numbers #0 to #15 correspond to index number 4, and index number 4 corresponds to a fourth pilot pattern (for example, FIG. 8d).
  • the base station indicates the target pilot pattern by indicating the index number of the pilot pattern to the user equipment, and the antenna port number is not optimized, and each port number may be repeated in each port number group.
  • the sender device determines that the bit number M 2 of the index number of the bearer target pilot pattern is:
  • the transmitting device sends the indication information by using M 2 bits, and the indication information is used to indicate the index number of the target pilot pattern.
  • the signaling overhead caused by the antenna port number is the same as that in the prior art, and the newly added index number brings a certain signaling overhead.
  • the signaling overhead of the index number is Bit. That is to say, when the signaling overhead caused by the index number is s bits, it can be used for the indication of the pilot pattern when the maximum number of transmission layers is up to the C ⁇ 2 s layer.
  • the signaling overhead is 2 bits, and the OCC code length C is 4.
  • the signaling overhead of the 2 bits (that is, the indication information of the index number) can be used when the maximum transmission layer number is up to 16 layers. An indication of the pilot pattern.
  • the indication information used by the method 1b is higher than that of the prior art configuration method.
  • the overhead is increased by 2 bits, but by adding the signaling overhead of 2 bits, the pilot pattern pre-configured for the 16 transport layers based on the prior art configuration method can release a large amount of idle pilot resources for transmitting data. , greatly improving the utilization of resources.
  • Fig. 8a shows the pilot pattern corresponding to the index number 1. It can be seen that when the index number is 1, the number of corresponding antenna port numbers #0 to #3 and the number of layers of the transport layer are still the same, and all are four. That is to say, how many antenna ports are corresponding to the number of transmission ports, for example, when the number of transmission layers is 1 layer, the antenna port number can be #0; when the number of transmission layers is 2 layers, the antenna port number can be used. For #0 and #1; when the number of transmission layers is 3, the antenna port number can be #0, #1, and #2; when the number of transmission layers is 4, the antenna port number can be #0, #1. #2 and #3.
  • the pilot pattern corresponding to index number 1 may be used to transmit the DMRS.
  • FIG. 8a only the REs for transmitting 4 DMRSs are configured in the pilot pattern, and each DMRS corresponds to one RE. That is to say, even if the maximum number of transmission layers is 16 layers, when the number of layers to be used for the data stream to be transmitted is 1 to 4 layers, only 4 DMRSs need to be configured, and 16 antenna ports are pre-configured by the prior art configuration method. Among the 16 DMRSs configured, the REs for transmitting the other 12 DMRSs are all released for transmitting data.
  • the maximum number of transmission layers L is up to 16 layers, OCC code
  • the base station transmits the overhead of the pilot resource from 28.6% to 7.1% by increasing the signaling overhead of 2 bits. Therefore, the resource utilization and data transmission are greatly improved. effectiveness.
  • Fig. 8b shows the pilot pattern corresponding to the index number 2. It can be seen that when the index number is 2, the number of corresponding antenna port numbers #0 to #7 is still the same as the number of layers of the transport layer, and both are eight. That is to say, how many antenna ports correspond to how many antenna ports, for example, when the number of transmission layers is 5, the antenna port numbers can be #0, #1, #2, #3, and #4; When the number of layers is 6 layers, the antenna port number can be #0, #1, #2, #3, #4, and #5. When the number of transmission layers is 6 layers, the antenna port number can be #0, #1.
  • the antenna port number can be #0, #1, #2, #3, #4, #5, #6 And #7. It can be seen that, in the embodiment of the present application, the antenna port number does not need to avoid the antenna port number 0# to #3 corresponding to the index number 1, because the index number can be directly used to indicate the pilot pattern, without The antenna port number uniquely indicates the pilot pattern.
  • the specific analysis of the pilot pattern in FIG. 8b is similar to the specific analysis of the pilot pattern in FIG. 8a, and a detailed description thereof will be omitted herein to avoid redundancy.
  • Figures 8c and 8d show the pilot patterns corresponding to the index numbers 3 and 4, respectively.
  • the specific analysis of the pilot pattern is similar to the specific analysis of the pilot pattern in FIG. 8a, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the embodiment of the present application determines the index number of the target pilot pattern according to the number of transmission layers actually used by the data stream to be transmitted, and indicates the corresponding target pilot pattern by using the index number, so that the pilot resource can be implemented.
  • 4 is the step release, which realizes flexible configuration of pilot resources and improves resource utilization.
  • L, N, d, and signaling overheads listed in FIG. 7 are merely exemplary and should not be construed as limiting the application, and the application should not be limited thereto.
  • the values of L and d in the present application are not particularly limited.
  • the antenna port numbers #0 to #15 listed above are merely illustrative, and the present application should not be limited in any way.
  • the antenna port number may also be a discontinuous value, and may or may not be repeated in different antenna port number groups.
  • the antenna port number of the first port number group may be #2, #4, #6, #8,
  • the antenna port numbers of the second port number group may be #3, #4, #5, #6, #7, #8, #9, and #10.
  • the determination of the antenna port number in this application is not particularly limited, only The port number in each port number group must be equal to the number of layers in the layer array. Further, if the number of port numbers The amount is the same as the maximum number of transmission layers, and no additional signaling overhead is required. If the number of port numbers is greater than the maximum number of transmission layers, the method for transmitting pilot signals of the present application can still be used, but additional signaling overhead is added. .
  • the first mapping relationship is: antenna port numbers #0 to #3 correspond to index number 1, index number 1 Corresponding to the first pilot pattern; antenna port numbers #0 to #7 correspond to index number 2, index number 2 corresponds to the second pilot pattern; antenna port numbers #0 to #11 correspond to index number 3, index No. 3 corresponds to the third pilot pattern; antenna port numbers #0 to #15 correspond to index number 4, index number 4 corresponds to the fourth type of pilot pattern; antenna port numbers #0 to #19 correspond to index number 5 The index number 5 corresponds to the fifth pilot pattern; the antenna port numbers #0 to #23 correspond to the index number 6, and the index number 6 corresponds to the sixth pilot pattern.
  • the base station indicates the target pilot pattern by indicating the index number of the pilot pattern to the user equipment, without performing optimization processing on the antenna port number, and each port number may be repeated in each port number group.
  • the signaling overhead caused by the antenna port number is the same as that of the prior art configuration method, and the newly added index number brings a certain signaling overhead.
  • the signaling overhead of the index number is Bit.
  • the signaling overhead caused by the index number is 3 bits, it can be used for the indication of the pilot pattern when the maximum number of transmission layers is up to C ⁇ 2 3 layers.
  • the signaling overhead is 3 bits, and the OCC code length C is 4, and the signaling overhead of the 3 bits (that is, the indication information of the index number) can be used when the maximum transmission layer number is up to 32 layers.
  • An indication of the pilot pattern is described in the embodiment of the present application.
  • the indication information used in the method 1b is higher than that obtained by using the prior art configuration method.
  • the overhead is increased by 3 bits, but only by adding 3 bits of signaling overhead, the pilot pattern pre-configured for 24 transport layers can be released based on the prior art configuration method to release a large number of idle pilots. Resources are used to transfer data, greatly improving resource utilization.
  • the method for transmitting a pilot signal in the embodiment of the present application determines, by the transmitting end device, a time-frequency resource corresponding to the number of layers of the transport data stream according to the pre-stored pilot pattern, so as to be used for transmission.
  • the resources of the pilot signal can be determined according to the number of layers of the actually transmitted data stream, and the idle pilot resources are released for data transmission, which makes the resource configuration more flexible and improves the resource utilization.
  • DMRSs should not constitute any limitation to the present application, and the application should not be limited thereto.
  • Other pilot signals for example, Common Reference Signal (CRS), Channel State Information-Reference Signal (CRI-RS), etc.
  • CRS Common Reference Signal
  • CRI-RS Channel State Information-Reference Signal
  • the detection may be performed on the antenna port. Therefore, the method for transmitting the pilot signal in the embodiment of the present application is not limited to the transmission of other pilot signals.
  • the N types of pilot patterns include a first pilot pattern, where the first pilot pattern is used to indicate that the total number of layers of the data stream to be transmitted is the maximum number of transmission layers L supported by the source device.
  • Pre-configured d ⁇ L resource units RE for transmitting L pilot signals where d is a density of pilot signals corresponding to each transport layer on each resource block RB pair, and d is greater than or equal to 1
  • Natural number L is a natural number greater than or equal to 1
  • L n F ⁇ n T
  • n F is the number of target REs used by the L pilot signals in the direction of the frequency domain resource on each RB pair
  • n T is the number of target REs used by the L pilot signals in the direction of the time domain resource on each RB pair
  • the indication information includes an indication bitmap
  • the target time-frequency resource includes the target RE
  • the transmitting end device determines, according to the pre-stored first pilot pattern, a target RE for transmitting a pilot signal, where the target RE corresponds to a total number of layers of the data stream to be transmitted;
  • the transmitting device determines, according to the pre-stored first mapping relationship diagram, a corresponding bit of the target RE for transmitting the pilot signal in the indication bitmap, where the first mapping relationship diagram is used to indicate: in the first pilot pattern d ⁇ L REs correspond to the bits in the indication bitmap;
  • the sending end device sends an indication bit map to the receiving end device, where the indication bit map is used to indicate that the receiving end device transmits the pilot signal according to the target RE and the sending end device, and the receiving end device pre-stores the first mapping relationship diagram.
  • the base station may be multiple or multiple according to the pre-stored pilot pattern.
  • the pilot pattern may be a first pilot pattern, where the first pilot pattern is used to indicate that the total number of layers of the data stream to be transmitted is the maximum number of transmission layers supported by the transmitting device.
  • Time-frequency resources for transmitting pilot signals are pre-configured.
  • the first pilot pattern is used to indicate the time-frequency resource allocated to the pilot signal corresponding to each layer according to the maximum number of transmission layers designed by the system. That is to say, when the maximum transmission layer is L, there are L pilot signals, and the RE used is d ⁇ L, where d is the pilot density, and d is a natural number greater than or equal to 1.
  • the L pilot signals are repeated d times on each RB pair.
  • L pilot signals use L REs, and the L REs have different distributions along the frequency domain resource direction and the time domain resource direction on one RB pair, assuming each RB.
  • There are n F pilot signals in the direction of the upper edge frequency domain resource, and there are n T pilot signals in the direction of the time domain resource, or n F REs along the direction of the frequency domain resource are used to transmit the pilot signal, along The n T REs of the time domain resource direction are used to transmit the pilot signal, and therefore, L n F ⁇ n T . If d is greater than 1, the number of REs used for the L pilot signals is d ⁇ L, that is, d ⁇ n F ⁇ n T or n F ⁇ d ⁇ n T .
  • the base station may determine, according to the first pilot pattern, a pilot signal to be transmitted and a target time-frequency resource (for example, a target RE) for transmitting the pilot signal. .
  • a target time-frequency resource for example, a target RE
  • the base station and the user equipment may further store a common first mapping relationship diagram, where the first mapping relationship diagram is used to indicate d ⁇ L REs and the indication bitmap in the first pilot pattern.
  • the correspondence of the bits may be part of the first mapping relationship diagram, and the first pilot pattern and the first mapping relationship diagram may be a picture, that is, the first mapping relationship diagram, in the first mapping relationship diagram.
  • the first pilot pattern is included; the first pilot pattern and the first mapping relationship diagram may also be two separate diagrams, which is not specifically limited in this application.
  • the base station indicates the RE (ie, the target RE) corresponding to the time-frequency resource (ie, the target time-frequency resource) in the first pilot pattern by indicating the bit in the bitmap. For example, the bit position "1" corresponding to the used RE (ie, the target RE) and the bit position "0" corresponding to the unused RE may be used.
  • the base station determines the target RE for different transmission layers based on the number of transmission layers actually used, and then indicates by indicating the bitmap. REs that are used and not used.
  • the first mapping relationship map may be compared to determine the target RE, and then the DMRS is transmitted with the base station.
  • the target REs used by the 16 DMRSs (including DMRS 0 to DMRS 15) in each transport layer are as shown in FIG. 9.
  • the density d of DMRS 0 to DMRS 15 on one RB pair is 3. More specifically, DMRS 0 to DMRS 15 have a density of 3 in the frequency domain direction on one RB pair.
  • DMRS 0 to DMRS 15 always occupy pre-allocated OFDM symbols in the time domain (for example, the 5th OFDM symbol, the 6th OFDM symbol, the 12th OFDM symbol, and the 13th shown in FIG. 9) OFDM symbols), occupying the entire frequency band of the RB pair in the frequency domain.
  • the indication bitmap can also be used to indicate that the RE is occupied on each symbol.
  • bitmap indicates the use of the RE in the time domain resource, the frequency domain resource, or the time-frequency resource
  • the indication bitmap includes a one-dimensional indication bitmap
  • the sender device determines a one-dimensional indication bitmap, where the one-dimensional indication bitmap is used to indicate a resource corresponding to the target RE in the first dimension direction, and the first dimension direction is a direction along the frequency domain resource or a direction along the time domain resource;
  • the transmitting device transmits a one-dimensional indication bitmap through M 3 bits.
  • the use of the frequency domain resource or the time domain resource may be indicated by only the one-dimensional indication bitmap.
  • DMRS 0 to DMRS 15 always occupy pre-allocated time domain resources (or OFDM symbols) in the time domain, and occupy the entire frequency band of the RB pair in the frequency domain.
  • Each DMRS0 to DMRS 15 uses a frequency band of 1/3 of the RB pair (for convenience of explanation, it is recorded as a target frequency domain resource).
  • the four subcarriers are included in the frequency band corresponding to the target frequency domain resource, and the corresponding relationship with the DMRS is: the first subcarrier (referred to as subcarrier #1 for convenience of distinction and description) corresponds to DMRS 0, DMRS4, DMRS 8 and DMRS 12, the second subcarrier (referred to as subcarrier #2 for convenience of distinction and description) corresponds to DMRS 1, DMRS 5, DMRS 9 and DMRS 13, third subcarrier (for easy distinction and description, denoted as subcarrier # 3) Corresponding to DMRS 2, DMRS 6, DMRS 10 and DMRS 14, the fourth subcarrier (referred to as subcarrier #4 for ease of distinction and description) corresponds to DMRS 3, DMRS 7, DMRS 11 and DMRS 15.
  • each bit 9 may be set to “1111”, indicating that four subcarriers on the time domain resource are occupied, and each bit corresponds to
  • the OFDM symbols may be determined according to the four OFDM symbols that are occupied as shown in FIG. 9, each bit corresponding to one OFDM symbol. That is to say, by using the first mapping diagram, the time domain resources (for example, OFDM symbols) indicated by each bit in the one-dimensional indication bitmap may be determined.
  • the base station when the maximum transmission layer number L is 16 layers, the OCC code length is 4 bits, and the pilot density d is 3, the base station sends the one-dimensional indication bitmap to bring 4 bits of signaling overhead, but The 4-bit signaling overhead can release a large number of idle pilot resources for the 16 pilot layer pre-configured pilot patterns based on the prior art configuration method for transmitting data, thereby greatly improving resource utilization.
  • method 2 only needs to pre-store a picture (ie, a first mapping relationship diagram) in the receiving end device and the transmitting end device, and the resources occupied by the method 1 are reduced, and may be based on the current
  • the data transmission status is selected by the base station based on the amount of releasable resources, and the resources that are released are clearly indicated by the bits indicating the bitmap, without being constrained by a fixed pilot pattern, and therefore, the time-frequency resource
  • the configuration is more flexible and convenient.
  • 10a through 10c are schematic diagrams of a one-dimensional indication bitmap for indicating a target RE according to still another embodiment of the present application.
  • pilot patterns in FIG. 10 are for convenience of description only and should not be construed as limiting the application. In the actual implementation process of the embodiment of the present application, it is not necessary to generate different pilot patterns according to the change of the transport layer, and directly send the indication bitmap to the user equipment according to the pre-stored first mapping relationship diagram and the determined target RE.
  • FIG. 10a shows a schematic diagram of a one-dimensional indication bitmap for indicating a target RE when the number of transmission layers actually used is 1 to 4.
  • the target REs occupied by DMRS 0 to DMRS 3 are respectively distributed on subcarrier #1 of the target frequency band, and the REs on subcarrier #2, subcarrier #3, and subcarrier #4 are not occupied. That is, the frequency domain resources corresponding to the subcarrier #2, the subcarrier #3, and the subcarrier #4 are released for transmission of data. Therefore, the bit corresponding to the one-dimensional indication bitmap can be set to "1000".
  • the user equipment can determine to use for transmitting the DMRS. Time-frequency resources and time-frequency resources for transmitting data.
  • the OFC code length is 4 bits
  • the pilot density d is 3
  • the signaling overhead caused by the base station transmitting the one-dimensional indication bitmap is 4 bits
  • the pilot pattern pre-configured for the 16 transport layers is used to transmit a large amount of idle pilot resources for transmitting data according to the configuration overhead of the prior art.
  • the overhead of the pilot resources is reduced from 28.6%. It has reached 7.1%, thus greatly improving resource utilization and data transmission efficiency.
  • the method 2 only needs to pre-store a picture (ie, the first mapping relationship diagram) in the receiving end device and the transmitting end device, and the resources occupied by the method 1 are reduced, and can be
  • the current data transmission status is selected by the base station based on the amount of releasable resources, and the resources that are released are clearly indicated by the bits indicating the bitmap, without being constrained by the fixed pilot pattern, therefore, the time-frequency The configuration of resources is more flexible and convenient.
  • Fig. 10b shows a schematic diagram of a one-dimensional indication bitmap for indicating a target RE when the number of transmission layers actually used is 5 to 8.
  • the target REs occupied by DMRS 0 to DMRS 7 are respectively distributed on subcarrier #1 and subcarrier #3 of the target frequency band, and REs on subcarrier #2 and subcarrier #4 are not occupied, that is, The frequency domain resources corresponding to the subcarrier #2 and the subcarrier #4 are released for transmitting data. Therefore, the bit corresponding to the one-dimensional indication bitmap can be set to "1010".
  • the user equipment can determine a time-frequency resource for transmitting the DMRS and a time-frequency resource for transmitting the data.
  • the OFC code length is 4 bits
  • the pilot density d is 3
  • the signaling overhead caused by the base station transmitting the one-dimensional indication bitmap is 4 bits
  • the pilot pattern pre-configured for the 16 transport layers is used to transmit a large amount of idle pilot resources for transmitting data according to the configuration overhead of the prior art.
  • the overhead of the pilot resources is reduced from 28.6%. At 14.3%, the resource utilization and data transmission efficiency are greatly improved.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the base station can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and pass the indication.
  • the bits of the bitmap explicitly indicate the releasable resources without being tied to the fixed pilot pattern, so the configuration of the time-frequency resources is more flexible and convenient.
  • Fig. 10c shows a schematic diagram of a one-dimensional indication bitmap for indicating a target RE when the number of transmission layers actually used is 9-12 layers.
  • the target REs occupied by the DMRS 0 to the DMRS 11 are respectively distributed on the subcarrier #1, the subcarrier #2, and the subcarrier #3 of the target frequency band, and the REs on the subcarrier #4 are not occupied. That is, the frequency domain resources corresponding to the subcarrier #4 are released for transmission. according to. Therefore, the bit corresponding to the one-dimensional indication bitmap can be set to "1110".
  • the user equipment After receiving the one-dimensional indication bitmap, the user equipment can determine a time-frequency resource for transmitting the DMRS and a time-frequency resource for transmitting the data.
  • the OFC code length is 4 bits
  • the pilot density d is 3
  • the signaling overhead caused by the base station transmitting the one-dimensional indication bitmap is 4 bits
  • the pilot pattern pre-configured for the 16 transport layers is used to transmit a large amount of idle pilot resources for transmitting data according to the configuration overhead of the prior art.
  • the overhead of the pilot resources is reduced from 28.6%. It has reached 21.4%, so it has improved resource utilization and data transmission efficiency to some extent.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the base station can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and pass the indication.
  • the bits of the bitmap explicitly indicate the releasable resources without being tied to the fixed pilot pattern, so the configuration of the time-frequency resources is more flexible and convenient.
  • the target RE used when actually using the number of layers 13 to 16 corresponds to the pilot pattern shown in FIG. 9 (ie, the first pilot pattern or the first mapping relationship diagram), that is, when to be When the number of transmission layers actually used by the transport stream is 13 to 16 layers, 16 DMRSs are configured, which is the same as the pilot pattern for transmitting DMRS preconfigured based on the prior art configuration method. For the sake of brevity, it will not be repeated here.
  • the embodiment of the present application determines the target RE according to the number of transmission layers actually used, and indicates the used and unused time-frequency resources by indicating the bitmap, thereby implementing flexible configuration of the pilot resources and improving the configuration. Resource utilization.
  • the base station may flexibly configure the time-frequency resource for transmitting the DMRS and the data according to the actually used transmission layer according to the pre-stored first mapping pattern. This is not particularly limited.
  • the specific process of the one-dimensional indication bitmap for indicating the use of the RE in the frequency domain resource direction is described in detail above with reference to FIG. 9 to FIG. 10 (including FIG. 10a to FIG. 10c).
  • a specific procedure of the one-dimensional indication bitmap for indicating the use of the RE in the time domain resource direction will be described in detail with reference to FIGS. 11 to 12 (including FIGS. 12a to 12c).
  • DMRS0 to DMRS 23 always occupy the pre-allocated frequency band (or subcarrier) in the frequency domain, occupying 4 symbols in the time domain (for convenience, it is recorded as the target time domain). Resources).
  • DMRSs are respectively corresponding to six subcarriers: DMRS 0, DMRS 1, and DMRS 2 DMRS3, DMRS 4, and DMRS 5; on the time domain resources corresponding to the second symbol (for convenience of distinction and description, denoted as symbol #2), corresponding to 6 DMRSs on 6 subcarriers: DMRS 6.
  • Six sub-carriers correspond to six DMRSs: DMRS 18, DMRS 19, DMRS 20, DMRS 21, DMRS 22, and DMRS 23.
  • the frequency domain resources occupied by the DMRS 0 to the DMRS 23 on the RB pair are fixed, it is only necessary to indicate the DMRS in the time domain resource (ie, another example in the first dimension direction) by using the one-dimensional indication bitmap.
  • the subcarriers may be determined according to the six subcarriers that are occupied as shown in FIG. 11, that is, through the first mapping diagram, the frequency indicated by each bit in the first bit indication bitmap may be determined.
  • Domain resources for example, subcarriers).
  • the base station transmits the one-dimensional indication bitmap to bring 4 bits of signaling overhead, but
  • the pilot pattern pre-configured for the 24 transport layers can be used to transmit a large amount of idle pilot resources for transmitting data by using the 4-bit signaling overhead, which greatly improves the resource utilization.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the specific released resources can be selected by the base station based on the releasable resources according to the current data transmission status, without being restricted.
  • the fixed pilot pattern therefore, the configuration of time-frequency resources is more flexible and convenient.
  • 12a to 12c are diagrams showing a one-dimensional indication bitmap for indicating a target according to still another embodiment of the present application. Schematic diagram of RE.
  • pilot patterns in FIG. 12 are for convenience of description only and should not be construed as limiting the application. In the actual implementation process of the embodiment of the present application, it is not necessary to generate different pilot patterns according to the change of the transport layer, and directly send the indication bitmap to the user equipment according to the pre-stored first mapping relationship diagram and the determined target RE.
  • Fig. 12a shows a schematic diagram of a one-dimensional indication bitmap for indicating a target RE when the number of transmission layers actually used is 1 to 6.
  • DMRS 0 to DMRS 5 are distributed over pre-allocated frequency bands (or subcarriers) and occupy only one OFDM symbol, that is, symbol #2, and symbol #1, symbol #3, and symbol.
  • the RE corresponding to #4 is not occupied, that is, the time domain resources corresponding to symbol #1, symbol #3, and symbol #4 are released for data transmission. Therefore, the bit corresponding to the one-dimensional indication bitmap can be set to "0100".
  • the user equipment can determine a time-frequency resource for transmitting the DMRS and a time-frequency resource for transmitting the data.
  • the OFC code length is 4 bits
  • the pilot density d is 1
  • the signaling overhead caused by the base station transmitting the one-dimensional indication bitmap is 4 bits
  • the pilot pattern pre-configured for the 24 transport layers is used to transmit a large amount of idle pilot resources for transmitting data according to the configuration overhead of the prior art.
  • the overhead of the pilot resources is reduced from 14.3%. It has reached 3.6%, so it greatly improves resource utilization and data transmission efficiency.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the specific released resources can be selected by the base station based on the releasable resources according to the current data transmission status, without being restricted.
  • the fixed pilot pattern therefore, the configuration of time-frequency resources is more flexible and convenient.
  • Fig. 12b shows a schematic diagram of a one-dimensional indication bitmap for indicating a target RE when the number of transmission layers actually used is 7 to 12 layers.
  • DMRS 0 to DMRS 11 are distributed over pre-allocated frequency bands (or subcarriers) and occupy only two OFDM symbols, namely, symbol #2 and symbol #4, and symbol #1 and The RE corresponding to symbol #3 is not occupied, that is, the time domain resources corresponding to symbol #1 and symbol #3 are released for data transmission. Therefore, the bit corresponding to the one-dimensional indication bitmap can be set to "0101".
  • the user equipment can determine a time-frequency resource for transmitting the DMRS and a time-frequency resource for transmitting the data.
  • the configuration method based on the prior art can be pre-processed for 24 transport layers by using 4-bit signaling overhead.
  • the configured pilot pattern releases a large amount of idle pilot resources for transmitting data, and the overhead of pilot resources is reduced from 14.3% to 7.1%, thereby greatly improving resource utilization and data transmission efficiency.
  • Fig. 12c shows a schematic diagram of a one-dimensional indication bitmap for indicating a target RE when the number of transmission layers actually used is 13 to 18 layers.
  • DMRS 0 to DMRS 17 are distributed over pre-allocated frequency bands (or subcarriers) and occupy three OFDM symbols, namely, symbol #1, symbol #2, and symbol #4, and symbols.
  • the RE corresponding to #3 is not occupied, that is, the time domain resource corresponding to symbol #3 is released for transmitting data. Therefore, the bit corresponding to the one-dimensional indication bitmap can be set to "1101".
  • the user equipment can determine a time-frequency resource for transmitting the DMRS and a time-frequency resource for transmitting the data.
  • the OFC code length is 4 bits
  • the pilot density d is 1
  • the signaling overhead caused by the base station transmitting the one-dimensional indication bitmap is 4 bits, but 4-bit signaling overhead, which will release a large amount of idle pilot resources for transmitting data for the pilot pattern pre-configured by the 24 transport layers based on the prior art configuration method, and the overhead of the pilot resources is reduced from 14.3% to 10.7%, therefore, the resource utilization and data transmission efficiency are improved to some extent.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the base station can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and pass the indication.
  • the bits of the bitmap explicitly indicate the releasable resources without being tied to the fixed pilot pattern, so the configuration of the time-frequency resources is more flexible and convenient.
  • the target RE used corresponds to the pilot pattern shown in FIG. 11 (ie, the first pilot pattern or the first mapping relationship diagram), that is, when to be
  • 24 DMRSs are configured, which is the same as the pilot pattern for transmitting the DMRS preconfigured based on the prior art configuration method. For the sake of brevity, it will not be repeated here.
  • the embodiment of the present application determines the target RE according to the number of transmission layers actually used, and indicates the used and unused time-frequency resources by indicating the bitmap, thereby implementing flexible configuration of the pilot resources and improving the configuration. Resource utilization.
  • the distribution of 24 pilot signals shown in Figures 11 and 12 may be based on pre-allocated time domain resources (e.g., OFDM symbols) and flexible configuration in the frequency domain.
  • the usage of the 24 pilot signals in the frequency domain resource may be indicated by the one-dimensional indication bitmap, that is, the one-dimensional indication bitmap may be 6
  • the bit is used to indicate the usage of the six subcarriers that are occupied in the first mapping diagram (or the first pilot pattern), and each bit corresponds to one subcarrier.
  • the signaling overhead caused by the base station transmitting the one-dimensional indication bitmap is 6 bits, but can pass 6 bits.
  • the signaling overhead is based on the configuration method of the prior art, and a pilot pattern pre-configured for 24 transport layers releases a large amount of idle pilot resources for transmitting data, thereby greatly improving resource utilization.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the base station can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and pass the indication.
  • the bits of the bitmap explicitly indicate the releasable resources without being tied to the fixed pilot pattern, so the configuration of the time-frequency resources is more flexible and convenient.
  • the base station may flexibly configure the time-frequency resource for transmitting the DMRS and the data according to the actually used transmission layer according to the pre-stored first mapping relationship diagram.
  • the application is not specifically limited.
  • the specific process of the one-dimensional indication bitmap for indicating the usage of the RE in the frequency domain resource direction or the time domain resource direction is described in detail above with reference to FIG. 9 to FIG. 12 .
  • a specific procedure of the two-dimensional bitmap for indicating the use of the RE in the time domain resource direction and the frequency domain resource direction will be described in detail with reference to FIGS. 13 and 14.
  • the indication bitmap includes a two-dimensional indication bitmap, and,
  • the transmitting device determines a two-dimensional indication bitmap, where the two-dimensional indication bitmap is used to indicate a resource corresponding to the target RE in the first dimension direction and the second dimension direction, where the first dimension direction is a direction along the frequency domain resource, and the second The dimension direction is the direction along the time domain resource, or the first dimension direction is the direction along the time domain resource, and the second dimension direction is the direction along the frequency domain resource;
  • the transmitting device determines the bit for indicating the target RE according to the number of target REs used in the first dimension direction of each of the RB pairs and the number of target REs used in the second dimension direction according to the L pilot signals
  • the transmitting device transmits a two-dimensional indication bitmap through M 4 bits.
  • the embodiment of the present application can also indicate the usage of the target RE in the time domain resource direction and the frequency domain resource direction by using a two-dimensional indication bitmap.
  • DMRS 4/5/10/14 and DMRS 6/7/11/15 occupy one subcarrier on the frequency domain resource respectively, DMRS 0/2/4/6, DMRS 1/3/5/7, DMRS 8/9 /10/11 and DMRS 12/13/14/15 each occupy one symbol on the time domain resource, respectively, where the subcarriers occupied by DMRS0/1/8/12 and DMRS 2/3/9/13 are adjacent DMRS 4/5/10/14 is adjacent to the subcarriers occupied by DMRS6/7/11/15.
  • the two adjacent subcarriers can be regarded as one frequency domain unit, indicated by an indication; DMRS 0/
  • the symbols occupied by 2/4/6 and DMRS 1/3/5/7 are adjacent to each other, and the symbols occupied by DMRS 8/9/10/11 and DMRS 12/13/14/15 are adjacent to each other and can be adjacent.
  • the two symbols are regarded as a time domain unit, which is indicated by an indication bit, that is, the bit of the two-dimensional indication bitmap in FIG. 13 in the direction of the frequency domain resource can be set to "1111", the bit in the direction of the time domain resource. The bit can be set to "0101".
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the base station can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and pass the indication bit.
  • the bits of the figure clearly indicate the releasable resources, without being constrained by the fixed pilot pattern, so the configuration of the time-frequency resources is more flexible and convenient.
  • the two-dimensional indication bitmap has more signaling overhead than the one-dimensional indication bitmap
  • the two-dimensional indication bitmap indicates the idle pilot resource, and may be combined with one or more other two-dimensional indications.
  • a bitmap (eg, the two-dimensional indication bitmap shown in FIG. 14) is used in combination to achieve flexible switching of the density of the pilot signal in the time domain direction and the density in the frequency domain direction, so that the resources used by the pilot signal are in the time domain. Resources and frequency domain resources are adjustable. Therefore, the flexibility of resource allocation is further improved.
  • DMRS0/1/8/12, DMRS 2/3/9/13, DMRS 4/5/10/14 and DMRS 6/7/11/15 occupy one subcarrier on the frequency domain resources respectively
  • DMRS 0/2/4/6, DMRS 1/3/5/7, DMRS 8/ 9/10/11 and DMRS 12/13/14/15 each occupy one symbol on the time domain resource, respectively, where the subcarriers occupied by DMRS0/1/8/12 and DMRS 2/3/9/13 Neighbor, DMRS 4/5/10/14 and DMRS 6/7/11/15 occupy subcarriers adjacent to each other, and can treat two adjacent subcarriers as
  • the two symbols of the neighbor are regarded as a time domain unit, which is indicated by an indication bit, that is, the bit position of the two-dimensional indication bitmap in the frequency domain resource direction in FIG. 14 can be set to "1001" in the direction of the time domain resource.
  • the base station and the user equipment only need to pre-store the first mapping relationship diagram, and the occupied resources are reduced, and the base station can select the specifically released resource based on the releasable resource amount according to the current data transmission status, and pass the indication bit.
  • the bits of the figure clearly indicate the releasable resources, without being constrained by the fixed pilot pattern, so the configuration of the time-frequency resources is more flexible and convenient.
  • the two-dimensional indication bitmap has more signaling overhead than the one-dimensional indication bitmap
  • the two-dimensional indication bitmap indicates the idle pilot resource, and may be combined with one or more other two-dimensional indications.
  • a bitmap (for example, the two-dimensional indication bitmap shown in FIG. 13) is used in combination to achieve flexible switching of the density of the pilot signal in the time domain direction and the density in the frequency domain direction, so that the resources used by the pilot signal are in the time domain. Resources and frequency domain resources are adjustable. Therefore, the flexibility of resource allocation is further improved.
  • the idle pilot resource is indicated by the two-dimensional indication bitmap, and the density of the pilot signal in the time domain direction and the density in the frequency domain direction can be switched, so that the resources used by the pilot signal are in the time domain resource.
  • a transmitting device eg, a base station
  • the two-dimensional indication bitmap brings higher signaling overhead, on the basis of satisfying the flexible configuration that idle pilot resources can be released, dynamic switching of density in time and frequency domain can also be performed for the channel environment. This makes the resource configuration more flexible and further improves system performance.
  • the other pilot signals for example, CRS, CRI-RS, etc.
  • CRS CRI-RS
  • the method for transmitting pilot signals in the embodiments of the present application is for transmitting other pilot signals. This application is not particularly limited.
  • the method 2 has higher signaling overhead than the method 1, but on the basis of releasing the idle pilot resources, the number of pilot patterns can be reduced, the resource occupancy rate is reduced, and the resources are released according to the resources.
  • the flexible allocation of the specifically released resources and the indication of the idle pilot resources by the two-dimensional indication bitmap can realize the density switching of the pilot signals in the time domain direction and the frequency domain direction, so that the flexibility of resource configuration is greatly provided.
  • the percentage of frequency resources in a RB pair (for convenience, referred to as the second percentage).
  • the second percentage When the number of transmission layers actually used is 13 to 16 layers, the first percentage and the second percentage are on the same horizontal line, both being 28.6%; when the number of transmission layers actually used is reduced to At the 9th to 12th floors, the second percentage drops to 21.4%, the first percentage is still 28.6%; when the actual number of transport layers used is reduced to 5 to 8 layers, the second percentage drops to 14.3%. , the first percentage is still 28.6%; when the number of transmission layers actually used drops For the 0 to 4 layer, the second percentage drops to 7.1% and the first percentage is still 28.6%.
  • the percentage of frequency resources in a RB pair (for convenience, referred to as the second percentage).
  • the first percentage and the second percentage are on the same horizontal line, both being 14.3%; when the number of transmission layers actually used is reduced to At the 17th to 20th floors, the second percentage drops to 11.9%, the first percentage is still 14.3%; when the actual number of transport layers used is reduced to 13 to 16 layers, the second percentage drops to 9.5%.
  • the first percentage is still 14.3%; when the number of transmission layers actually used is reduced to 9 to 12 layers, the second percentage is reduced to 7.1%, and the first percentage is still 14.3%; When the number of transmission layers is reduced to 5 to 8 layers, the second percentage is reduced to 4.8%, and the first percentage is still 14.3%; when the number of transmission layers actually used is reduced to 0 to 4 layers, the second percentage The ratio fell to 2.4%, and the first percentage was still 14.3%. It can be clearly seen that the lower the number of transmission layers actually used, the larger the proportion of idle pilot resources released by the present application, and the pilot resources are released in four steps as a ladder, although an increase is made. 2 to 6 bits of signaling overhead, but greatly improve resource utilization and achieve flexible configuration of resources.
  • the method for transmitting a pilot signal in the embodiment of the present application determines, by the transmitting end device, a time-frequency resource corresponding to the number of layers of the transport data stream according to the pre-stored one or more pilot patterns, so that the method is used for the transmission guide.
  • the resources of the frequency signal can be determined according to the number of layers of the actually transmitted data stream, and the idle pilot resources are released for data transmission, which makes the resource configuration more flexible and improves the resource utilization.
  • FIG. 17 is a schematic block diagram of an apparatus 200 for transmitting pilot signals in accordance with an embodiment of the present application.
  • the apparatus 200 includes a determining module 210 and a transceiver module 220, where
  • the determining module 210 is configured to determine, according to the pre-stored N types of pilot patterns, a target time-frequency resource for transmitting a pilot signal, where the target time-frequency resource corresponds to a total number of layers of the data stream to be transmitted, where the N types of pilot patterns are used. Different from each other, N is a natural number greater than or equal to 1;
  • the transceiver module 220 is configured to send indication information to the receiving end device, where the indication information is used to instruct the receiving end device to transmit the pilot signal to the apparatus 200 according to the target time-frequency resource.
  • the determining module 210 is specifically configured to determine, from the pre-stored N types of pilot patterns, a target pilot pattern corresponding to a total number of layers of the data stream to be transmitted, where the target pilot pattern is used to indicate the target time-frequency resource.
  • N is determined according to the maximum number of transport layers L supported by the device 200, and L is a natural number greater than or equal to 1.
  • the determining module 210 is specifically configured to determine, according to a total number of layers of the data stream to be transmitted, a corresponding layer array, and determine a layer according to a one-to-one mapping relationship between the N types of pilot patterns and the N layer arrays.
  • the target pilot pattern corresponding to the array is specifically configured to determine, according to a total number of layers of the data stream to be transmitted, a corresponding layer array, and determine a layer according to a one-to-one mapping relationship between the N types of pilot patterns and the N layer arrays.
  • the device 200 prestores a one-to-one mapping relationship between N kinds of pilot patterns and N layer arrays, and the number of layers included in the ith layer array in the N layer arrays is greater than And less than or equal to Natural number, i ⁇ [1,N], Indicates rounding up, C is the code length of the orthogonal mask used between the transport layers, C is 2 n , and n is a natural number greater than or equal to 1.
  • the transceiver module 220 is specifically configured to send, to the receiving end device, indication information for indicating an antenna port number, where the antenna port number is a port number of an antenna port for transmitting a pilot signal, and the antenna port number is determined by the determining module. Determining, according to the total number of layers of the data stream to be transmitted, so that the receiving end device determines a target pilot pattern corresponding to the antenna port number, to determine the target time-frequency resource according to the target pilot pattern, and according to the target time-frequency resource, The device 200 transmits a pilot signal,
  • the device 200 and the receiving end device pre-store a one-to-one mapping relationship between the N types of pilot patterns and the N antenna port number groups, and any one of the i-th port number groups is used to uniquely indicate the ith type Pilot pattern, i ⁇ [1,N].
  • the determining module 210 is further configured to determine that the bit number M 1 of the bearer antenna port number is:
  • the transceiver module 220 is specifically configured to send indication information by using M 1 bits, where the indication information is used to indicate an antenna port number.
  • the transceiver module 220 is specifically configured to send indication information for indicating an index number of the target pilot pattern, where the index number of the target pilot pattern is determined by the apparatus 200 according to the total number of layers of the data stream to be transmitted, so as to be received.
  • End device determines a target pilot pattern corresponding to an index number of the target pilot pattern, determines a target time-frequency resource according to the target pilot pattern, and transmits a pilot signal to the apparatus 200 according to the target time-frequency resource,
  • the device 200 and the receiving end device pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns.
  • the determining module 210 is further configured to determine that the bit number M 2 of the index number of the bearer target pilot pattern is: Indicates rounding up;
  • the transceiver module 220 is specifically configured to send indication information by using M 2 bits, where the indication information is used to indicate an index number of the target pilot pattern.
  • the number of REs used, the indication information includes an indication bitmap, and the target time-frequency
  • the determining module 210 is specifically configured to determine, according to the pre-stored first mapping relationship diagram, a corresponding bit of the target RE in the indication bitmap, where the first mapping relationship diagram is used to indicate: d ⁇ L in the first pilot pattern The correspondence between the REs and the bits in the indication bitmap;
  • the transceiver module 220 is configured to send an indication bitmap to the receiving device, where the indication bitmap is used to instruct the receiving device to transmit a pilot signal according to the target RE and the device 200, and the receiving device prestores the first mapping relationship.
  • the transceiver module 220 is specifically configured to send a one-dimensional indication bitmap by using M 3 bits.
  • the determining module 210 is specifically configured to determine a two-dimensional indication bitmap, where the two-dimensional indication bitmap is used to indicate resources corresponding to the target RE in the first dimension direction and the second dimension direction, and according to the L pilots.
  • the transceiver module 220 is specifically configured to send a two-dimensional indication bitmap by using M 4 bits.
  • the device 200 is a network device, and the receiving device is a user device, or the device 200 is a user device, and the receiving device is a network device.
  • the apparatus 200 for transmitting a pilot signal according to an embodiment of the present application may correspond to a transmitting end device in a method of transmitting a pilot signal according to an embodiment of the present application, and each module in the apparatus 200 and the other operations described above
  • the functions of the respective methods in FIG. 2 to FIG. 16 are respectively implemented for the sake of brevity, and are not described herein again.
  • the apparatus for transmitting a pilot signal in the embodiment of the present application determines a time-frequency resource corresponding to the number of layers of the transport data stream according to the pre-stored one or more pilot patterns, so that the resource used for transmitting the pilot signal It can be determined according to the number of layers of the actually transmitted data stream, and the idle pilot resources are released for data transmission, which makes the resource configuration more flexible and improves the resource utilization.
  • FIG. 18 is a schematic block diagram of an apparatus 300 for transmitting a pilot signal in accordance with another embodiment of the present application. As shown in FIG. 18, the apparatus 300 includes a transceiver module 310 and a determining module 320, where
  • the transceiver module 310 is configured to receive indication information sent by the sending end device.
  • the determining module 320 is configured to determine, according to the indication information, a target time-frequency resource for transmitting a pilot signal, where the target time-frequency resource is determined by the source device according to the pre-stored N pilot patterns, the target time-frequency resource and the data to be transmitted.
  • the total number of layers of the stream corresponds, wherein the N kinds of pilot patterns are different from each other, and N is a natural number greater than or equal to 1;
  • the transceiver module 310 is further configured to transmit a pilot signal to the source device according to the target time-frequency resource.
  • the determining module 320 is specifically configured to determine a target pilot pattern according to an antenna port number of the transmitted pilot signal indicated by the indication information, and determine a target time-frequency resource according to the target pilot pattern,
  • the transmitting device and the device 300 pre-store N kinds of pilot patterns and N antenna ports.
  • a one-to-one mapping relationship of the number of groups, any one of the antenna port numbers in the i-th port number group is used to uniquely indicate the i-th pilot pattern, i ⁇ [1, N].
  • the determining module 320 is specifically configured to determine, according to an index number of the target pilot pattern indicated by the indication information, a target pilot pattern, and determine a target time-frequency resource according to the target pilot pattern,
  • the transmitting device and the device 300 pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns.
  • the determining module 320 is configured to determine, according to the indication bitmap indicated by the indication information and the pre-stored first mapping relationship diagram, a target resource unit RE for transmitting a pilot signal, where the target time-frequency resource includes a target RE,
  • the sending device is a network device, and the device 300 is a user device, or
  • the sender device is a user device, and the device 300 is a network device.
  • the apparatus 300 for transmitting a pilot signal according to an embodiment of the present application may correspond to a receiving end device in a method of transmitting a pilot signal according to an embodiment of the present application, and each module in the apparatus 300 and the above other operations and/or The functions are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 2 to FIG. 16. For brevity, details are not described herein again.
  • the apparatus for transmitting a pilot signal determines the time-frequency resource used for transmitting the pilot signal according to the indication information sent by the source device, so that the resource used for transmitting the pilot signal can be based on the actually transmitted data.
  • the number of layers of the stream is determined, and the idle pilot resources are released for data transmission, which makes the resource configuration more flexible and improves the resource utilization.
  • the apparatus for transmitting a pilot signal according to an embodiment of the present application is described in detail above with reference to FIG. 17 and FIG. 18.
  • an apparatus for transmitting a pilot signal according to an embodiment of the present application will be described in detail with reference to FIG. 19 and FIG.
  • FIG. 19 is a schematic block diagram of an apparatus 400 for transmitting pilot signals in accordance with an embodiment of the present application.
  • the device 400 includes a transceiver 410, a processor 420, a memory 430, and a bus system 440.
  • the transceiver 410, the processor 420, and the memory 430 are connected by a bus system 440 for storing instructions.
  • the processor 420 is configured to execute instructions stored by the memory 430 to control the transceiver 410 to transmit and receive signals.
  • the processor 420 is configured to determine, according to the pre-stored N types of pilot patterns, a target time-frequency resource for transmitting a pilot signal, where the target time-frequency resource corresponds to a total number of layers of the data stream to be transmitted, where The frequency patterns are different from each other, and N is a natural number greater than or equal to 1;
  • the transceiver 410 is configured to send indication information to the receiving end device, where the indication information is used to instruct the receiving end device to transmit the pilot signal to the device 400 according to the target time-frequency resource.
  • the processor 420 is specifically configured to determine, from the pre-stored N types of pilot patterns, a target pilot pattern corresponding to a total number of layers of the data stream to be transmitted, where the target pilot pattern is used to indicate the target time-frequency resource.
  • N is determined according to the maximum number of transmission layers L supported by the device 400, and L is a natural number greater than or equal to 1.
  • the processor 420 is specifically configured to determine a corresponding layer array according to a total number of layers of the data stream to be transmitted, and determine a layer according to a one-to-one mapping relationship between the N types of pilot patterns and the N layer arrays.
  • the target pilot pattern corresponding to the array is specifically configured to determine a corresponding layer array according to a total number of layers of the data stream to be transmitted, and determine a layer according to a one-to-one mapping relationship between the N types of pilot patterns and the N layer arrays.
  • the device 400 prestores a one-to-one mapping relationship between N kinds of pilot patterns and N layer arrays, and the number of layers included in the ith layer array in the N layer arrays is greater than And less than or equal to Natural number, i ⁇ [1,N], Indicates rounding up, C is the code length of the orthogonal mask used between the transport layers, C is 2 n , and n is a natural number greater than or equal to 1.
  • the transceiver 410 is specifically configured to send, to the receiving end device, indication information for indicating an antenna port number, where the antenna port number is a port number of an antenna port for transmitting a pilot signal, where the antenna port number is determined by the determining module. Determining a total number of layers of the data stream to be transmitted, so that the receiving end device determines a target pilot pattern corresponding to the antenna port number, to determine a target time-frequency resource according to the target pilot pattern, and according to the target time-frequency resource, The device 400 transmits a pilot signal,
  • the device 400 and the receiving end device pre-store a one-to-one mapping relationship between the N types of pilot patterns and the N antenna port number groups, and any one of the i-th port number groups is used to uniquely indicate the ith type Pilot pattern, i ⁇ [1,N].
  • the processor 420 is further configured to determine that the bit number M 1 of the bearer antenna port number is:
  • the transceiver 410 is specifically configured to send indication information by using M 1 bits, where the indication information is used to indicate an antenna port number.
  • the transceiver 410 is specifically configured to send indication information for indicating an index number of the target pilot pattern, where the index number of the target pilot pattern is determined by the device 400 according to a total number of layers of the data stream to be transmitted, so as to be received.
  • the end device determines a target pilot pattern corresponding to an index number of the target pilot pattern, to determine a target time-frequency resource according to the target pilot pattern, and transmits a pilot signal to the device 400 according to the target time-frequency resource,
  • the device 400 and the receiving end device pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns.
  • the processor 420 is further configured to determine that the bit number M 2 of the index number of the bearer target pilot pattern is: Indicates rounding up;
  • the transceiver 410 is specifically configured to send indication information by using M 2 bits, where the indication information is used to indicate an index number of the target pilot pattern.
  • the number of REs used, the indication information includes an indication bitmap, and the target time-frequency resource includes
  • the processor 420 is specifically configured to determine, according to the pre-stored first mapping relationship diagram, a corresponding bit of the target RE in the indication bitmap, where the first mapping relationship diagram is used to indicate: d ⁇ L in the first pilot pattern The correspondence between the REs and the bits in the indication bitmap;
  • the transceiver 410 is specifically configured to send an indication bitmap to the receiving end device, where the indication bitmap is used to indicate that the receiving end device transmits the pilot signal according to the target RE and the device 400, and the receiving end device pre-stores the first mapping relationship diagram.
  • the transceiver 410 is specifically configured to send a one-dimensional indication bitmap by using M 3 bits.
  • the processor 420 is specifically configured to determine a two-dimensional indication bitmap, where the two-dimensional indication bitmap is used to indicate resources corresponding to the target RE in the first dimension direction and the second dimension direction, and according to the L pilots.
  • the transceiver 410 is specifically configured to transmit a two-dimensional indication bitmap by M 4 bits.
  • the device 400 is a network device, and the receiving device is a user device, or the device 400 is a user device, and the receiving device is a network device.
  • the processor 420 may be a central processing unit (“CPU"), and the processor 420 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 420 can include read only memory and random access memory and provides instructions and data to the processor 420.
  • a portion of processor 420 may also include a non-volatile random access memory.
  • processor 420 can also store information of the type of device.
  • the bus system 440 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 440 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 420 or an instruction in a form of software.
  • the steps of the positioning method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 430, and the processor 420 reads the information in the memory 430 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the apparatus 400 for transmitting a pilot signal according to an embodiment of the present application may correspond to a transmitting end device in a method of transmitting a pilot signal according to an embodiment of the present application, and each module in the apparatus 400 and the above other operations and/or The functions are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 2 to FIG. 16. For brevity, details are not described herein again.
  • the apparatus for transmitting a pilot signal in the embodiment of the present application determines a time-frequency resource corresponding to the number of layers of the transport data stream according to the pre-stored one or more pilot patterns, so that the resource used for transmitting the pilot signal It can be determined according to the number of layers of the actually transmitted data stream, and the idle pilot resources are released for data transmission, which makes the resource configuration more flexible and improves the resource utilization.
  • FIG. 20 is a schematic block diagram of an apparatus 500 for transmitting a pilot signal according to another embodiment of the present application.
  • the device 500 includes a transceiver 510, a processor 520, a memory 530, and a bus system 540.
  • the transceiver 510, the processor 520, and the memory 530 are connected by a bus system 540 for storing instructions.
  • the processor 520 is configured to execute instructions stored by the memory 530 to control the transceiver 510 to transmit and receive signals.
  • the transceiver 510 is configured to receive indication information sent by the sending end device.
  • the processor 520 is configured to determine, according to the indication information, a target time-frequency resource for transmitting a pilot signal, where the target time-frequency resource is determined by the source device according to the pre-stored N pilot patterns, the target time-frequency resource and the to-be-transmitted data stream.
  • the N kinds of pilot patterns are different from each other, and N is a natural number greater than or equal to 1;
  • the transceiver 510 is further configured to transmit a pilot signal to the source device according to the target time-frequency resource.
  • the processor 520 is specifically configured to determine a target pilot pattern according to an antenna port number of the transmitted pilot signal indicated by the indication information, and determine a target time-frequency resource according to the target pilot pattern,
  • the transmitting device and the device 500 pre-store a one-to-one mapping relationship between the N types of pilot patterns and the N antenna port number groups, and any one of the i-th port number groups is used to uniquely indicate the ith type Pilot pattern, i ⁇ [1,N].
  • the processor 520 is specifically configured to determine, according to an index number of the target pilot pattern indicated by the indication information, a target pilot pattern, and determine a target time-frequency resource according to the target pilot pattern,
  • the transmitting device and the device 500 pre-store a one-to-one mapping relationship between the N pilot patterns and the index numbers of the N pilot patterns.
  • the processor 520 is specifically configured to determine, according to the indication bitmap indicated by the indication information and the pre-stored first mapping relationship diagram, a target resource unit RE for transmitting a pilot signal, where the target time-frequency resource includes a target RE,
  • the sending device is a network device, and the device 500 is a user device, or
  • the sender device is a user device, and the device 500 is a network device.
  • the apparatus 500 for transmitting a pilot signal according to an embodiment of the present application may correspond to a receiving end device in a method of transmitting a pilot signal according to an embodiment of the present application, and each module in the apparatus 500 and the above other operations and/or The functions are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 2 to FIG. 16. For brevity, details are not described herein again.
  • the device for transmitting a pilot signal determines the time-frequency resource used for transmitting the pilot signal according to the indication information sent by the source device, so that the resource used for transmitting the pilot signal can be based on the actually transmitted data.
  • the number of layers of the stream is determined, and the idle pilot resources are released for data transmission, which makes the resource configuration more flexible and improves the resource utilization.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the transceiver module or the sending unit or the transmitter in the above embodiment may be configured to send on the air interface, but may not be sent on the air interface, but sent to other devices to facilitate other devices to send on the air interface.
  • the receiving module or the receiving unit or the receiver in the above embodiment may refer to receiving on the air interface, or may not receive on the air interface, but receive through other devices that receive on the air interface.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输导频信号的方法和装置,能够使资源配置更灵活,以提高资源的利用率。该方法包括:发送端设备根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,目标时频资源与待传输数据流的总层数对应,其中,N种导频图案彼此相异,N为大于等于1的自然数;发送端设备向接收端设备发送指示信息,该指示信息用于指示接收端设备根据目标时频资源与发送端设备传输导频信号。该装置包括确定模块和收发模块,确定模块用于根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,该目标时频资源与待传输数据流的总层数对应;收发模块用于向接收端设备发送指示信息,以指示接收端设备根据目标时频资源与该装置传输导频信号。

Description

传输导频信号的方法和装置
本申请要求于2016年2月3日提交中国专利局、申请号为201610069267.5、发明名称为“传输导频信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及传输导频信号的方法和装置。
背景技术
大规模天线阵列是提升无线通信系统吞吐的关键技术之一,也为更高层数的数据流空分复用提供了基础。
在现有的长期演进(Long Term Evolution,简称“LTE”)系统中,多天线配置已高达8层数据流空分复用,为了支持高达8层的数据流同时传输,导频信号,例如,解调参考信号(Demodulation Reference Signal,简称“DMRS”)的结构也配置为最高8天线端口,每个天线端口的DMRS在每一个资源块(Resource Block,简称“RB”)对的时频资源上离散分布。在现有的LTE协议中,DMRS在每一RB对上所占用的资源单元(Resource Element,简称“RE”)是根据最大传输层数(即,8层)来配置的,DMRS在每个RB对上占用的RE的开销为14.3%。也就是说,即使实际传输数据流时只使用了一个传输层,仍然要为每个层的时频资源预留出根据最大传输层数预先配置好的导频资源,因此,这些闲置的导频资源是一种极大的浪费,造成资源使用率极其低下。
随着通信系统的发展,数据流的传输层数势必会越来越多,若仍沿用现有的方法来为导频信号分配时频资源,导频信号在每个RB对上占用的RE的开销会随着最大传输层数的增大而增加,例如,当最大传输层为8层时,DMRS在每个RB对上占用的RE的开销为14.3%;当最大传输层为16层时,DMRS在每个RB对上占用的RE的开销为28.6%。可以看出,最大传输层数越多,所浪费的闲置的导频资源也越多。
因此,如何提高闲置的导频资源的利用率,成为亟需解决的技术问题。
发明内容
本申请提供一种传输导频信号的方法和装置,以提高资源的利用率。
一方面,本申请提供一种传输导频信号的方法,该方法包括:发送端设备根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,该目标时频资源与待传输数据流的总层数对应,其中,N为大于等于1的自然数,且当N大于1时,该N种导频图案彼此相异;发送端设备向接收端设备发送指示信息,该指示信息用于指示接收端设备根据目标时频资源与发送端设备传输导频信号。
因此,通过发送端设备根据预存的一种或多种导频图案,确定与待传输数据流的层数量相对应的时频资源,使得用于传输导频信号的导频资源能够根据实际传输的数据流的层数的变化而变化,从而将基于现有技术所配置的导频图案中闲置的导频资源释放出来,以用于数据传输,进而使得资源配置更加灵活,提高了资源的利用率。
结合第一方面,在第一方面的第一种可能的实现方式中,发送端设备可以从预存的N种导频图案中,确定与待传输数据流的总层数对应的目标导频图案,该目标导频图案用于指示用于传输导频信号的目标时频资源,其中,N根据发送端设备所支持的最大传输层数L确定,L为大于等于1的自然数。
进一步地,发送端设备预存有N个层数组与N种导频图案的一一映射关系,该N个层数组中的第i个层数组所包含的层的数量为大于
Figure PCTCN2016107440-appb-000001
Figure PCTCN2016107440-appb-000002
且小于等于
Figure PCTCN2016107440-appb-000003
的自然数,i∈[1,N],
Figure PCTCN2016107440-appb-000004
其中,
Figure PCTCN2016107440-appb-000005
表示向上取整,C为各传输层之间所采用的正交掩码的码长,C取值为2n,n为大于等于1的自然数。发送端设备根据待传输数据流的总层数,确定对应的层数组;发送端设备根据N个层数组与N种导频图案的一一映射关系,从预设的N种导频图案中,确定与层数组对应的目标导频图案。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,发送端设备向接收端设备发送指示信息,指示信息具体用于指示用于发射导频信号的天线端口号,天线端口号由发送端设备根据待传输数据流的总层数确定,以使接收端设备确定与天线端口号对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与发送端设备传输导频信号,其中,发送端设备和接收端设备预存有N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号 用于唯一地指示第i种导频图案,i∈[1,N]。
通过向接收端设备发送天线端口号的指示信息,可以用于指示发送导频信号的空域资源,通过天线端口号来指示目标导频图案,可以确定发送导频信号的时频资源,从而从空域、时域、频域三个维度确定用于发送导频信号的资源。
进一步地,发送端设备确定承载用于发射导频信号的天线端口号的比特位数M1为:
Figure PCTCN2016107440-appb-000006
Figure PCTCN2016107440-appb-000007
表示向上取整;发送端设备通过M1个比特位发送指示信息,该指示信息用于指示发射导频信号的天线端口号。
通过将天线端口号进行优化处理,使得优化后的天线端口号可以隐性地指示目标导频图案的索引号,进而确定目标导频图案,该指示信息带来的信令开销很小,但是能够将闲置的导频资源释放出来用于传输数据,实现了资源复用,提高了资源利用率和数据传输效率。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,发送端设备向接收端设备发送指示信息,指示信息具体用于指示目标导频图案的索引号,目标导频图案的索引号由发送端设备根据待传输数据流的总层数确定,以使接收端设备确定与目标导频图案的索引号对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与发送端设备传输导频信号,其中,发送端设备和接收端设备预存有N种导频图案与N个导频图案的索引号的一一映射关系。
通过向接收端设备发送目标导频图案的索引号的指示信息,可以用于指示发送导频信号的目标导频图案,从而确定发送导频信号的时频资源,并且还可以向接收端设备发送天线端口号的指示信息,用于指示发送导频信号的空域资源,从而从空域、时域、频域三个维度确定用于发送导频信号的资源。
进一步地,发送端设备确定承载目标导频图案的索引号的比特位数M2为:
Figure PCTCN2016107440-appb-000008
Figure PCTCN2016107440-appb-000009
表示向上取整;发送端设备通过M2个比特位发送指示信息,指示信息用于指示目标导频图案的索引号。
通过向接收端设备直接发送目标导频图案的索引号的指示信息,直接可以确定目标导频图案,该指示信息所带来的信令开销很小,但是能够将闲置的导频资源释放出来用于传输数据,实现了资源复用,提高了资源利用率和数据传输效率。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,该N种导频图案包括第一导频图案,该第一导频图案用于指示:待传输数据流的总层数为发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个资源单元RE,其中,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,nT为L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,该指示信息包括指示位图,该目标时频资源包括目标RE。发送端设备根据预存的第一导频图案,确定用于传输导频信号的目标RE,目标RE与待传输数据流的总层数对应;发送端设备根据预存的第一映射关系图,确定用于传输导频信号的目标RE在指示位图中对应的比特位,其中,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系;发送端设备向接收端设备发送指示位图,指示位图用于指示接收端设备根据目标RE与发送端设备传输导频信号,接收端设备预存有第一映射关系图。
根据预存的第一映射关系表,确定用于传输L个导频信号的d·L个资源单元RE与指示位图的对应关系,进而在确定了用于传输导频信号的目标RE后,通过指示位图来指示目标RE在第一导频图案中的位置,从而确定目标时频资源,并且只需在接收端设备和发送端设备中预存一张共同的第一映射关系图,减少了资源的占用。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,指示位图包括一维指示位图,发送端设备确定一维指示位图,该一维指示位图用于指示目标RE在第一维度方向上所对应的资源,第一维度方向为沿频域资源的方向或者沿时域资源的方向;发送端设备根据L个导频信号在每个RB对上的第一维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数M3=L/nF或者M3=L/nT;发送端设备通过M3个比特位发送一维指示位图。
通过一维指示位图来指示目标RE,使得发送端设备可以根据当前的数据传输状况基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确地指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,指示位图包括二维指示位图,发送端设备确定二维指示位图,该二维指示位图用于指示目标RE在第一维度方向和第二维度方向上所对应的资源,第一维度方向为沿频域资源的方向,第二维度方向为沿时域资源的方向,或者,第一维度方向为沿时域资源的方向,第二维度方向为沿频域资源的方向;发送端设备根据L个导频信号在每个RB对中的第一维度方向上所使用的目标RE的数量和第二维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数为M4=L/nF+L/nT;发送端设备通过M4个比特位发送二维指示位图。
通过二维指示位图来指示目标RE,使得发送端设备可以根据当前的数据传输状况基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确地指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。并且,二维指示位图带来的信令开销虽然高于一维指示位图所带来的信令开销,但是通过二维指示位图来指示闲置的导频资源,可以和其他一个或多个二维指示位图配合使用,实现导频信号在时域方向和频域方向的密度的灵活切换,使得导频信号所使用的资源在时域资源和频域资源可调。因此,使得资源配置的灵活性进一步提高。
第二方面,本申请提供一种传输导频信号的方法,该方法包括:接收端设备接收发送端设备发送的指示信息;接收端设备根据指示信息,确定用于传输导频信号的目标时频资源,目标时频资源由发送端设备根据预存的N种导频图案确定,目标时频资源与待传输数据流的总层数对应,其中,N为大于等于1的自然数,且当N大于1时,该N种导频图案彼此相异;接收端设备根据目标时频资源,与发送端设备传输导频信号。
因此,通过发送端设备根据预存的一种或多种导频图案,确定与待传输数据流的层数量相对应的时频资源,使得用于传输导频信号的导频资源能够根据实际传输的数据流的层数的变化而变化,从而将基于现有技术所配置的导频图案中闲置的导频资源释放出来,以用于数据传输,进而使得资源配置更加灵活,提高了资源的利用率。
结合第二方面,在第二方面的第一种可能的实现方式中,该指示信息具体用于指示用于发射导频信号的天线端口号,接收端设备根据天线端口号,确定目标导频图案,发送端设备和接收端设备预存有N种导频图案与N个 天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N];接收端设备根据目标导频图案,确定目标时频资源。
根据天线端口号,确定发送导频信号的空域资源,并根据天线端口号所指示的目标导频图案,确定发送导频信号的时频资源,从而从空域、时域、频域三个维度确定用于发送导频信号的资源。通过天线端口号来指示目标导频图案,使得闲置的到你资源得以释放,以用于传输数据,从而实现了资源复用,提高了资源利用率和数据传输效率。
结合第二方面的上述可能的实现方式,在第二方面的第二种可能的实现方式中,该指示信息具体用于指示目标导频图案的索引号,接收端设备根据目标导频图案的索引号,确定目标导频图案,发送端设备和接收端设备预存有N种导频图案与N个导频图案的索引号的一一映射关系;接收端设备根据目标导频图案,确定目标时频资源。
通过目标导频图案的索引号来指示目标导频图案,使得闲置的到你资源得以释放,以用于传输数据,从而实现了资源复用,提高了资源利用率和数据传输效率。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,该N种导频图案包括第一导频图案,该第一导频图案用于指示:待传输数据流的总层数为发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个资源单元RE,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,nT为L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,指示信息包括指示位图,目标时频资源包括目标RE,接收端设备根据指示位图和预存的第一映射关系图,确定用于传输导频信号的目标RE,其中,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系,发送端设备预存有第一映射关系图。
根据预存的第一映射关系表,确定用传输L个导频信号的d·L个资源单元RE与指示位图的对应关系,进而在确定了用于传输导频信号的目标RE后,通过指示位图来指示目标RE在第一导频图案中的位置,从而确定目标 时频资源,并且只需在接收端设备和发送端设备中预存一张共同的第一映射关系图,减少了资源的占用。
进一步地,该指示位图包括一维指示位图和二维指示位图,一维指示位图用于指示目标RE在第一维度方向上所对应的资源,二维指示位图用于指示目标RE在第一维度方向和第二维度方向上所对应的资源,其中,第一维度方向为沿频域资源的方向,第二维度方向为沿时域资源的方向,或者,第一维度方向为沿时域资源的方向,第二维度方向为沿频域资源的方向。
通过一维指示位图和二维指示位图来指示目标RE,使得发送端设备可以根据当前的数据传输状况基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确地指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。并且,进一步地,通过二维指示位图来指示闲置的导频资源,可以和其他一个或多个二维指示位图配合使用,实现导频信号在时域方向和频域方向的密度的灵活切换,使得导频信号所使用的资源在时域资源和频域资源可调。因此,使得资源配置的灵活性进一步提高。
第三方面,本申请提供一种传输导频信号的装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,本申请提供一种传输导频信号的装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,本申请提供一种传输导频信号的设备,该设备包括:收发器、存储器、处理器和总线系统。其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器收发信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种传输导频信号的设备,该设备包括:收发器、存储器、处理器和总线系统。其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器收发信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
在某些实现方式中,发送端设备为网络设备,接收端设备为用户设备,或者,发送端设备为用户设备,接收端设备为网络设备。
本申请提供了一种传输导频信号的方法和装置,能够释放闲置的导频资源用于数据传输,从而提高资源的利用率。
附图说明
图1是现有技术中用于传输DMRS的时频资源的配置图案的示意图。
图2是根据本申请一实施例的传输导频信号的方法的示意性流程图。
图3是根据本申请一实施例的第一映射关系的示意图。
图4a至图4d是根据本申请一实施例的N种导频图案的示意图。
图5是根据本申请一实施例的第一映射关系的另一示意图。
图6a至图6f是根据本申请一实施例的N种导频图案的另一示意图。
图7是根据本申请另一实施例的第一映射关系的示意图。
图8a至图8d是根据本申请另一实施例的N种导频图案的示意图。
图9是根据本申请又一实施例的第一映射关系图的示意图。
图10a至图10c是根据本申请又一实施例的一维指示位图用于指示目标RE的示意图。
图11是根据本申请再一实施例的第一映射关系图的示意图。
图12a至图12c是根据本申请再一实施例的一维指示位图用于指示目标RE的示意图。
图13是根据本申请再一实施例的第一映射关系图的示意图。
图14是根据本申请再一实施例的第一映射关系图的另一示意图。
图15是根据本申请一实施例的资源使用率的示意图。
图16是根据本申请另一实施例的资源使用率的示意图。
图17是根据本申请一实施例的传输导频信号的装置的示意性框图。
图18是根据本申请另一实施例的传输导频信号的装置的示意性框图。
图19是根据本申请一实施例的传输导频信号的设备的示意性框图。
图20是根据本申请另一实施例的传输导频信号的设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本申请结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本申请结合网络设备描述了各个实施例。网络设备可以是网络侧设备等用于与移动设备通信的设备,网络侧设备可以是全球移动通讯(Global System of Mobile communication,简称“GSM”)或码分多址(Code Division Multiple Access,简称“CDMA”)中的基站(Base Transceiver Station,简称“BTS”),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)中的基站(NodeB,简称“NB”),还可以是LTE中的eNB 或演进型基站(Evolutional Node B,简称“eNodeB”),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,简称“CD”)、数字通用盘(Digital Versatile Disk,简称“DVD”)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,简称“EPROM”)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,多输入输出(Multiple-Input Multiple-Output,简称为“MIMO”)技术是指在发送端设备和接收端设备分别使用多个发射天线和接收天线,使信号通过发送端设备与接收端设备的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍地提高系统信道容量。
具体来说,发送端设备对需要发送给终端设备的多层信息比特,进行比特映射处理,将调制信号映射到一个或多个传输层上,生成一层或多层数据流(也可以称为,层映射),发送端设备再将这一层或多层数据流映射到天线端口上,在各个天线端口上进行资源映射,生成正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)符号并发射出去。
为了支持多层数据流的同时传输,为各层对应的天线端口,也就是说,每个层对应了至少一个天线端口。需要说明的是,这里所说的天线端口可以理解为用于传输的逻辑端口,与物理天线不存在一一对应的关系,天线端口可以由用于该天线的导频信号(例如,DMRS)来定义。换句话说,一个DMRS对应了一个天线端口。
以下结合图1,以最大传输层数为8层为例,对现有技术中用于传输DMRS的时频资源的配置方法进行详细说明。
图1是现有技术中用于传输DMRS的时频资源的配置图案的示意图。如图1所示,该通信系统支持最大8层的数据流空间复用,为了支持8层的 数据流同时传输,DMRS的结构也配置为最高8个天线端口,为便于说明和区分,将该8个天线端口分别记作#0~#7,每个端口号对应一个端口。每个天线端口的DMRS在一对RB的时频资源上呈离散分布,这样接收机的信道估计器可以通过时域滤波抵抗信道的时变性,而通过频域滤波解决信道的频率选择性。各天线端口之间的DMRS采用频分复用(Frequency Division Multiplexing,简称“FDM”)和码分复用(Code Division Multiplexing,简称“CDM”)的方式相互正交。如图1所示,8个天线端口对应的DMRS分为两组,与#0、#1、#4、#6对应的DMRS(为方便说明,记作DMRS 0/1/4/6)和与#2、#3、#5、#7对应的DMRS(为方便说明,记作DMRS 2/3/5/7)两组之间采用频分复用,每组之内的DMRS 0/1/4/6对应的4个天线端口(即,#0、#1、#4、#6)之间采用正交掩码(Orthogonal Cover Code,简称“OCC”)码分复用。在与端口号#0、#1、#4、#6对应的传输层上,DMRS 2/3/5/7所使用的时频资源需要预留出来避免数据对DMRS的干扰;同理,在与端口号#2、#3、#5、#7对应的传输层上,DMRS 0/1/4/6所使用的时频资源需要预留出来避免数据对DMRS的干扰。
由于在现有技术中,无论自适应调节后的实际发送层数多少,或者单用户和多用户透明切换后的实际发送层数为多少,接收端设备只能根据发送端设备的指示信息,在发送端设备所指示的天线端口收发数据,而并不知道其他传输层是否有数据传输,因此,8个天线端口所使用的时频资源都需要保留。由图1可以看出,当实际发送层数为1层至8层的任意层数时,用于传输DMRS的RE(或者说,导频资源)在每个RB对上的占用率为
Figure PCTCN2016107440-appb-000010
进一步地,随着通信系统所支持的最大传输层数的增加,导频信号也随之增加,用于传输DMRS的RE在每个RB对上的占用率会越来越大。
因此,当实际使用的传输层数量和通信系统所支持的最大传输层数不同时,实际使用的层数量与最大传输层数的差异越大,闲置的导频资源也就越多,浪费也就越大,资源利用率越低。
本申请提出一种传输导频信号的方法,能够根据实际传输的层数量确定导频资源,从而将基于现有技术的配置方法根据最大传输层数预配置的导频 资源释放出来,以用于传输数据,使得资源配置更灵活,提高了资源的利用率。
以下,结合图2至图14,详细说明根据本申请实施例的传输导频信号的方法。
另外,以下所述的“导频信号”可以为,例如正交导频信号。以下为了避免赘述,省略对相同或相似情况的说明。
图2是根据本申请实施例的传输导频信号的方法100的示意性流程图。具体来说,图2从设备交互的角度描述了本申请实施例的传输导频信号的方法100。
可选地,该发送端设备为网络设备,该接收端设备为终端设备,或者,该发送端设备为终端设备,该接收端设备为网络设备。
在本申请的所有的实施例中,发送端设备可以是网络设备(例如,基站等网络侧设备),接收端设备可以是终端设备(例如,用户设备),即,该方法100可以应用于下行传输。
或者,发送端设备可也可以是终端设备(例如,用户设备),接收端设备可以是网络设备(例如,基站等网络侧设备),即,该方法100可以应用于上行传输。
如图2所示,该方法100包括:
S101,发送端设备确定待传输数据流的总层数。
具体来说,在高阶的多用户多输入多输出(Multiple-User Multiple Input Multiple Output,简称“MU-MIMO”)的通信系统中,系统可支持的最大传输层数越高,秩自适应的范围越大。当自适应的实际发送数据流的层数低于最大传输层数时,或者,当信道环境变化时,或者,在单用户(Single User,简称“SU”)/MU-MIMO之间切换时,实际使用的传输层数都会发生变化,发送端设备需要确定当前待传输数据流的总层数。发送端设备确定待传输数据流的总层数的过程可以与现有技术相同,这里为了避免赘述,省略其详细说明。
需要说明的是,以上所述的“层数”用于表征层的数量,以下为了避免重复,省略对相同或相似情况的说明。
S102,发送端设备根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,所述目标时频资源与待传输数据流的总层数对应。
具体地,发送端设备在确定待传输数据流的总层数后,可以从预设的N种导频图案中,确定用于传输导频信号的时频资源(为便于区分和说明,称为目标时频资源),或者,发送端设备也可以从预设的N种导频图案中,确定与待传输数据流的总层数相对应的导频图案(为便于区分和说明,称为目标导频图案),进而根据目标导频图案确定目标时频资源。其中,N为大于等于1的自然数,并且,当N大于1时,N种导频图案彼此相异。
S103,发送端设备向接收端设备发送指示信息,该指示信息用于指示接收端设备根据目标时频资源与发送端设备传输导频信号。
具体地,发送端设备在确定目标时频资源后,可以向接收端设备发送指示信息,指示接收端设备根据目标时频资源接收导频信号。应注意,发送端设备还可以向接收端设备发送用于指示天线端口号的指示信息,以指示接收端设备根据天线端口号接收导频信号和传输数据。换句话说,发送端设备可以向接收端设备发送一个或多个指示信息,该一个或多个指示信息用于指示接收端设备与发送端设备传输时所使用的空域、时域和频域三个维度的资源。
S104,发送端设备根据该目标时频资源,向接收端设备发送导频信号。
具体地,发送端设备根据待传输数据流的层数,便可以确定用于传输导频信号的序列、天线端口号和目标时频资源,或者说,确定用于传输导频信号的空域、时域和频域的资源。发送端根据该天线端口号,在目标时频资源上,向接收端设备发送对应导频信号的序列,以用于接收端设备作信道估计。
S105,接收端设备根据该指示信息,与发送端设备传输导频信号。
具体地,接收端设备在接收到该一个或多个指示信息后,确定用于传输导频信号的空域、时域和频域的资源,并根据所指示的天线端口,在目标时频资源上接收发送端设备发送的导频信号,通过信道估计,用于解调从发送端设备传输的数据。
需要说明的是,在本申请实施例中,对于传输导频信号的空域资源的配置与现有技术的具体过程相同,这里为了避免赘述,省略其详细说明。
上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。例如,S103可以在S104之后执行,或者与S104同时执行。
因此,本申请实施例的传输导频信号的方法,通过发送端设备根据预存 的导频图案,确定与传输数据流的层数量相对应的时频资源,使得用于传输导频信号的导频资源能够根据实际传输的数据流的层数的变化而变化,以将更多的资源释放出来用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
以上,结合图2从设备交互的角度详细说明了根据本申请实施例的传输导频信号的方法100。以下,结合图3至图14,详细说明发送端设备确定目标时频资源,以及指示接收端设备目标时频资源的具体过程。
具体来说,在本申请实施例中,发送端设备可以根据预存的N(N≥1)种导频图案,确定目标时频资源,并向接收端设备指示目标导频图案(方法1),也可以根据预存的一种导频图案(例如,第一导频图案),确定目标时频资源,并向接收端设备指示该目标时频资源(方法2)。
以下,分别结合方法1和方法2详细说明根据本申请实施例的传输导频信号的方法。
为了便于理解和说明,以网络设备(例如,基站)作为发送端设备,用户设备作为接收端设备为例,详细说明根据本申请实施例的传输导频信号的方法。
应理解,这里所列举的基站和用户设备仅为示例性说明,不应对本申请构成任何限定,本申请也不应限于此。例如,发送端设备可以为宏基站,也可以为小基站,或者由宏基站和小基站共同完成导频信号的发送。具体来说,发送端设备可以为宏基站,由宏基站配置用于传输导频信号的资源,并通过该资源发送导频信号;发送端设备也可以为小基站,由小基站配置用于传输导频信号的资源,并通过该资源发送导频信号;发送端设备还可以为宏基站和小基站共同来承担,宏基站为小基站配置资源,小基站在宏基站为其配置的资源中为每个用户设备分配资源,小基站通过为每个用户设备分配的资源来发送导频信号。所有通过发送端设备配置导频资源,从而向接收端设备发送导频信号的方法均落入本申请的保护范围。
应注意,这里所说的发送端设备可以理解为发送导频信号的设备,接收端设备可以理解为接收导频信号的设备,发送端设备可以用于数据流的发送和接收,接收端设备也可以用于数据流的接收和发送,本申请对此并未特别限定。
方法1:
作为一个实施例,发送端设备从预存的N种导频图案中,确定与待传输数据流的总层数对应的目标导频图案,目标导频图案用于指示用于传输导频信号的目标时频资源,其中,N根据发送端设备所支持的最大传输层数L确定,L为大于等于1的自然数。
具体地,基站(即,网络设备的一例)根据通信系统所支持的最大传输层数L确定N种导频图案,例如,L为16,与16个传输层对应的导频图案可以为16种,或者8种,或者4种等等。该N种导频图案与实际使用的传输层数具有映射关系。基站根据该映射关系,便可以确定与待传输数据流的总层数相对应的导频图案,即,目标导频图案,并进一步根据该目标导频图案,确定用于传输导频信号的目标时频资源,例如,RE。
应理解,以上所列举的N的取值仅为示例性说明,N可以根据L而定。当最大传输层数较小时,N也可以取较小值;当最大传输层数较大时,N也应该取较大值,以保证在最大传输层数较大而实际传输层数较小时,最大限度地释放导频资源。
可选地,发送端设备预存有N个层数组与N种导频图案的一一映射关系,该N个层数组中的第i个层数组所包含的层的数量为大于
Figure PCTCN2016107440-appb-000011
且小于等于
Figure PCTCN2016107440-appb-000012
的自然数,i∈[1,N],
Figure PCTCN2016107440-appb-000013
其中,
Figure PCTCN2016107440-appb-000014
表示向上取整,C为各传输层之间所采用的正交掩码的码长,C取值为2n,n为大于等于1的自然数。
在本申请实施例中,为方便说明,将上述N个层数组与N种导频图案的一一映射关系记作第一映射关系。需要说明的是,该第一映射关系可以理解为N种导频图案与实际使用的传输层数的映射关系,该第一映射关系包括但不限于N个层数组与N种导频图案的一一映射关系,还可以为其他根据待传输数据流的层数量确定的参数与N种导频图案的一一映射关系,例如,天线端口号等,本申请对于第一映射关系所包括的具体内容并未特别限定,所有可以用于指示传输层数与导频图案的映射关系的方法,均落入本申请的保护范围内。
具体地,基站可以将L个传输层分成N个组(为方便说明,以下称为层数组),每个层数组对应一种导频图案,基站在确定了待传输数据流的层数量后,就可以根据该第一映射关系,确定目标导频图案,进而确定目标时频资源。
在本申请实施例中,每个层数组都包含有多个层的数值,具体来说,第i个层数组所包含的层的数值为大于
Figure PCTCN2016107440-appb-000015
且小于等于
Figure PCTCN2016107440-appb-000016
的自然数,其中,i∈[1,N]。
举例来说,当通信系统支持的最大传输层数L为16时,基站可以将16个传输层分为4组,每四个相邻的层数为一组,此时,N的取值为4。具体来说,当实际使用的传输层数为1至4层时,对应第一种导频图案,当实际使用的传输层数为5至8层时,对应第二种导频图案,当实际使用的传输层数为9至12层时,对应第三种导频图案,当实际使用的传输层数为13至16层时,对应第四种导频图案。以i=2为例,第2个层数组所包含的层的数值即为大于4,且小于等于8的值,即,第2个层数组所包含的的层的数值为5至8层。
进一步地,该N种导频图案彼此相异。也就是说,当实际使用的传输层数较少时,导频信号的数量也较少,所对应的导频图案中用于传输导频信号(例如,DMRS)的RE(为便于区分和说明,称为目标RE)也就少,例如,当实际使用的传输层数为1至4层时,就需要四个导频信号分别与传输层数(或者说,天线端口)相对应,此时,所对应的第一种导频图案中目标RE(即,12个RE)在每个RB对中所占用的资源的比例就较低,仅为7.14%。
在本申请实施例中,N可以根据最大传输层数L和各传输层之间所采用的正交掩码OCC的码长C确定,例如,C=2n(n为大于等于1的自然数)。具体来说,
Figure PCTCN2016107440-appb-000017
其中,
Figure PCTCN2016107440-appb-000018
表示向上取整。
举例来说,当通信系统支持的最大传输层数L为16,各传输层之间所采用的OCC码长C为4时,
Figure PCTCN2016107440-appb-000019
即,为16个传输层配置了4种导频图案。具体来说,当实际使用的传输层数为1至4层时,对应第一种导频图案,当实际使用的传输层数为5至8层时,对应第二种导频图案,当实际使用的传输层数为9至12层时,对应第三种导频图案,当实际使用的传输层数为13至16层时,对应第四种导频图案。
需要说明的是,以上列举的将最大传输层数分组的方法仅为示例性说明,不应对本申请构成任何限定。例如,基站也可以为每一个实际使用的传输层数配置一种导频图案,或者,将最大传输层数按四个或者八个为一组来分组,分别对应了四种或者两种导频图案。基站根据最大传输层数分的组越多,或者说,所配置的导频图案越多,配置就越灵活,但是对应的导频图案 所占用的存储量也越大,因此,基站可以根据最大传输层数L灵活配置以及系统的实际情况灵活配置,以实现最大限度的释放闲置的导频资源。
需要说明的是,基站所配置的N种导频图案,以及分组的规则可以是与用户设备预先约定好的,并将N种导频图案与实际使用的传输层数的映射关系(例如,第一映射关系)预存在基站和用户设备中;也可以是基站在与用户设备传输导频信号前根据系统在不同时段的网络使用情况来配置,再将该映射关系通知给用户设备。本申请对此并未特别限定。
其后,发送端设备向接收端设备发送指示信息,指示信息用于指示接收端设备根据目标时频资源与发送端设备传输导频信号。
具体地,基站向用户设备发送指示信息,以指示用户设备目标时频资源,用户设备根据该目标时频资源,便可以与基站进行导频信号和数据的传输。基站向用户设备发送指示信息的具体内容可以为用于指示目标导频图案的信息,例如,可以通过与导频图案相对应的天线端口号来指示目标导频图案(方法1a),也可以通过导频图案的索引号来指示目标导频图案(方法1b)。
需要说明的是,基站可以通过用户专用动态信令向用户设备发送该指示信息,也可以通过公共动态信令广播的方式向用户设备发送该指示信息,本申请对此并未特别限定。
以下,为方便说明,以DMRS作为导频信号的一例,结合图3至图8(包括图8a至图8d)详细说明方法1用于指示目标时频资源的具体过程。
方法1a
可选地,发送端设备向接收端设备发送指示信息,该指示信息具体用于指示用于发射导频信号的天线端口号,该天线端口号由发送端设备根据待传输数据流的总层数确定,以使接收端设备确定与天线端口号对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与发送端设备传输导频信号,发送端设备和接收端设备预存有N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
具体地,基站在确定待传输数据流的层数后,会向用户设备发送信令指示用于传输的天线端口号,基站根据传输层数确定用于传输的天线端口号与现有技术的具体过程相似。与现有技术不同的是,该天线端口号可以根据待传输数据流的层数分为N个天线端口号组,每个天线端口号组对应一个层数 组,也就是说,每个层数组内所包含的层的数量与所对应的天线端口号组内所包含的端口号的数量相同。且,N个组内的天线端口号彼此相异,也就是说,一个天线端口号在N个端口号组内只会出现一次,因此,每个天线端口号组内的任意一个端口号可以用于唯一地指示一种导频图案。换句话说,该N个天线端口号组和N种导频图案具有一一映射关系。
可选地,N个天线端口号组和N个导频图案的索引号具有一一映射关系,该N个导频图案的索引号与N种导频图案具有一一映射关系。
在本申请实施例中,该第一映射关系可以通过天线端口号和导频图案的索引号的一一映射关系来表征,并将每个索引号所对应的导频图案分别预存在基站和用户设备中。换句话说,该第一映射关系可以通过两个映射关系(例如,映射关系A和映射关系B)来表征,其中,映射关系A用于指示天线端口号与导频图案的索引号的一一映射关系,映射关系B用于指示导频图案与索引号的一一映射关系,将第一映射关系通过两个或者多个映射关系来表征,便于灵活配置。表1示出了N个天线端口号组与N个导频图案的索引号的一一映射关系(即,映射关系A)。
表1 (L=16,N=4)
天线端口号 索引号
#0~#3 1
#4~#11 2
#12~#23 3
#24~#39 4
由表1可以看出,天线端口号#0~#3可以对应于索引号1,天线端口号#4~#11可以对应于索引号2,天线端口号#12~#23可以对应于索引号3,天线端口号#24~#39可以对应于索引号4。可以看到,每两个端口号组之间的天线端口号都没有重复,已知任意一个端口号,就可以从表1中对应地找到索引号,例如,基站向用户设备发送的指示信息指示用于传输导频信号的天线端口号为#3,用户设备便可以根据映射关系A确定导频图案的索引号为1。
应理解,该第一映射关系还可以表征为层数组、端口号组、索引号、导频图案的一一映射关系,或者,层数组、端口号组、索引号的一一映射关系,本申请对此并未特别限定。
以下,结合图3和图4(包括图4a至图4d),以L=16,N=4,导频密度 d=3为例详细说明天线端口号用于指示导频图案的具体过程。
图3是根据本申请一实施例的第一映射关系的示意图。具体来说,图3示出的是L=16,N=4,d=3时第一映射关系的示意图。由图3可以看出,天线端口号#0~#3对应于索引号1,索引号1对应于第一种导频图案(例如,图4a);天线端口号#4~#11对应于索引号2,索引号2对应于第二种导频图案(例如,图4b);天线端口号#12~#23对应于索引号3,索引号3对应于第三种导频图案(例如,图4c);天线端口号#24~#39对应于索引号4,索引号4对应于第四种导频图案(例如,图4d)。
并且,由图3可以看出,当天线端口号、索引号或者层数量中的任意一项确定后,便可以确定对应的导频图案。应理解,图3所示的第一映射关系的示意图仅为第一映射关系的一种表现形式,不应对本申请构成任何限定,本申请也不应限于此。所有能够表征指示信息(包括天线端口号、索引号、层数量)与目标时频资源的映射关系的方法均落入本申请的保护范围内。
可选地,发送端设备确定承载用于发射导频信号的天线端口号的比特位数M1为:
Figure PCTCN2016107440-appb-000020
Figure PCTCN2016107440-appb-000021
表示向上取整;
发送端设备通过M1个比特位发送指示信息,该指示信息用于指示发射导频信号的天线端口号。
在本申请实施例中,将天线端口号作了优化处理,通过指示天线端口号的方式,可以隐性地指示导频图案的索引号,从而找到对应的导频图案(即,第一映射关系的一例)。具体来说,在现有技术中,基站在确定了发射导频信号的天线端口号后,需要将该天线端口号通过信令发送给用户设备,以便于用户设备与基站之间传输信号。因此,将该天线端口号作优化处理,使每个端口号不重复,每个端口号可以唯一地指示一个导频图案的索引号,既节省了信令开销,又实现了指示导频图案的目的。
举例来说,如图3所示的第一映射关系的示意图中,16个传输层对应了16个天线端口(例如,#0~#15),也就是说,基于现有技术的配置方案为每个天线端口(或者说,传输层)都配置导频信号,该16个天线端口号所带来的信令开销为
Figure PCTCN2016107440-appb-000022
比特。而本申请实施例通过对天线端口号的优化处理,使天线端口号在每一个层数组不重复出现,因此,16个传输层对应了
Figure PCTCN2016107440-appb-000023
个天线端口号(例如,#0~#39),所带来的信令开销为
Figure PCTCN2016107440-appb-000024
比特,也就是说,本申请实施例在最大传输层数L为16层,OCC码为4比特,导频密度d为3时,方法1a所用的指示信息比使用现有技术的配置方法所带来的信令开销增加了2比特的信令开销,但是仅通过增加2比特的信令开销,可以将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。
图4a至图4d是根据本申请一实施例的N种导频图案的示意图。具体来说,图4a至图4d所示出的导频图案可对应于图3中四个天线端口号组所对应的四种导频图案,其中,L=16,N=4,d=3。
图4a示出了当且仅当用于传输的天线端口号为#0~#3中的一个、两个、三个或全部时,所对应的导频图案。可以看出,天线端口号#0~#3的数量与传输层的层数量是一致的,都为4个。也就是说,有多少个传输层就对应了多少个天线端口号,例如,传输层数为1层时,使用天线端口号可以为#0;传输层数为2层时,使用天线端口号可以为#0和#1;传输层数为3层时,使用天线端口号可以为#0、#1和#2;传输层数为4层时,使用天线端口号可以为#0、#1、#2和#3。
在本申请实施例中,当实际使用的传输层数为1~4层中的任意值时,都可以采用天线端口号在#0~#3所对应的导频图案(即,图4a)来传输DMRS。由图4a可以看出,该导频图案中只配置了用于传输4个DMRS的RE,每个DMRS对应一个RE。也就是说,即便最大传输层数为16层,当待传输数据流实际使用的层数为1~4层时,只需配置4个DMRS,基于现有技术的配置方法为16个天线端口预配置的16个DMRS中,用于传输另12个DMRS的RE全部释放出来,用于传输数据。因此,在最大传输层数L高达16层,OCC码为4比特,导频密度d为3时,基站仅通过增加2比特的信令开销,使导频资源的开销从28.6%降低到了7.1%,因此,极大地提高了资源利用率和数据传输效率。
与此相似地,图4b示出了当且仅当用于传输的天线端口号为#4~#11中的一个、多个或全部时,所对应的导频图案。可以看出,天线端口号#4~#11的数量与传输层的层数量是一致的,都为8个。也就是说,有多少个传输层就对应了多少个天线端口号,例如,传输层数为5层时,使用天线端口号可以为#4、#5、#6、#7和#8;传输层数为6层时,使用天线端口号可以为#4、 #5、#6、#7、#8和#9;传输层数为7层时,使用天线端口号可以为#4、#5、#6、#7、#8、#9和#10;传输层数为8层时,使用天线端口号可以为#4、#5、#6、#7、#8、#9、#10和#11。可以看出,优化后的天线端口号在不同的端口号组内没有重复,避免了重复的端口号无法唯一地指示导频图案的问题。
在本申请实施例中,当实际使用的传输层数为5~8层中的任意值时,都可以采用天线端口号#4~#11所对应的导频图案(即,图4b)来传输DMRS。由图4b可以看出,该导频图案中至配置了用于传输8个DMRS的RE,每个DMRS对应一个RE。也就是说,即便最大传输层数为16层,当待传输数据流实际使用的层数为5~8层时,只需配置8个DMRS,基于现有技术的配置方法为16个天线端口预配置的16个DMRS中,用于传输另8个DMRS的RE全部释放出来,用于传输数据。因此,在最大传输层数L高达16层,OCC码为4比特,导频密度d为3时,基站仅通过增加2比特的信令开销,使导频资源的开销从28.6%降低到了14.3%,因此,极大地提高了资源利用率和数据传输效率。
图4c示出了当且仅当用于传输的天线端口号为#12~#23中的一个、多个或全部时,所对应的导频图案。可以看出,天线端口号#12~#23的数量与传输层的层数量是一致的,都为12个。也就是说,有多少个传输层就对应了多少个天线端口号,根据传输层数量确定使用的天线端口号的具体方法与上述方法相同,这里为了简洁,不再赘述。
在本申请实施例中,当实际使用的传输层数为9~12层中的任意值时,都可以采用天线端口号#12~#23所对应的导频图案(即,图4c)来传输DMRS。由图4c可以看出,该导频图案中至配置了用于传输12个DMRS的RE,每个DMRS对应一个RE。也就是说,即便最大传输层数为16层,当待传输数据流实际使用的层数为9~12时,只需配置12个DMRS,基于现有技术的配置方法为16个天线端口预配置的16个DMRS中,用于传输另4个DMRS的RE全部释放出来,用于传输数据。因此,在最大传输层数L高达16层,OCC码为4比特,导频密度d为3时,基站通过增加2比特的信令开销,使导频资源的开销从28.6%降低到了21.4%,因此,在一定程度上提高了资源利用率和数据传输效率。
图4d示出了当且当用于传输的天线端口号为#24~#39中的一个、多个或全部时,所对应的导频图案。可以看出,天线端口号#24~#39的数量与传输 层的层数量是一致的,都为16个。也就是说,有多少个传输层就对应了多少个天线端口号。在本申请实施例中,当实际使用的传输层数为13~16层中的任意值时,都可以采用天线端口号#24~#39所对应的导频图案(即,图4d)来传输DMRS。由图4d可以看出,该导频图案中至配置了用于传输16个DMRS的RE,每个DMRS对应一个RE。也就是说,当待传输数据流实际使用的传输层数为13~16层时,才配置16个DMRS,与现有技术的配置方法为16个天线端口预配置的用于传输DMRS的导频图案相同。为了简洁,这里不再赘述。
由此可以看出,本申请实施例根据待传输数据流实际使用的传输层数,确定实际用于传输的天线端口号,并通过优化后的天线端口号指示对应的导频图案,可实现导频资源以4为阶梯释放,实现了导频资源的灵活配置,提升了资源利用率。
需要说明的是,以上列举的传输层数以4层为一组来分组的方法仅为示例性说明,不应对本申请构成任何限定。分组越多,每组内层的数目越少,资源释放越灵活。
还需要说明的是,以上列举的天线端口号#0~#39仅为示例性说明,不应对本申请构成任何限定。天线端口号也可以为不连续且不重叠的数值,例如,第一端口号组的天线端口号可以为#2、#4、#6、#8,本申请对于天线端口号的确定并未特别限定,只需满足任意一个端口号可以用于唯一地指示一个导频图案,均落入本申请的保护范围内。
在本申请实施例中,是以最大传输层数L为16,导频密度为3为例来进行示例性说明的。导频密度可以理解为每一个天线端口所对应的导频信号(例如,DMRS)在每个传输层、每个RB对上的数量。例如,图4a中,DMRS 0/1/2/3在每个传输层的每个RB对上出现了3次,也就是导频密度为3。本申请对于导频密度并未特别限定,导频密度可以为3,也可以为2,或者为1。导频密度可以根据信道环境来确定,例如随着更高阶的天线阵列的引入,更窄的波束带来更小的干扰,在信道频选较小的前提下,导频密度可以随之下降。
以上,结合图3和图4(包括图4a至图4d),以L=16,N=4,d=3为例详细说明了天线端口号用于指示导频图案的具体过程。以下,结合图5和图6(包括图6a至图6f),以L=24,N=6,d=1为例详细说明天线端口号用于 指示导频图案的具体过程。
图5是根据本申请一实施例的第一映射关系的另一示意图。具体来说,图5示出了L=24,N=6,d=1时第一映射关系的示意图。由图5可以看出,天线端口号#0~#3可以对应于第一种导频图案(例如,图6a),天线端口号#4~#11可以对应于第二种导频图案(例如,图6b),天线端口号#12~#23可以对应于第三种导频图案(例如,图6c),天线端口号#24~#39可以对应于第四种导频图案(例如,图6d),天线端口号#40~#59可以对应于第五种导频图案(例如,图6e),天线端口号#60~#83可以对应于第六种导频图案(例如,图6f)。
在本申请实施例中,优化后的天线端口号用于唯一地指示一种导频图案,因此24层对应了
Figure PCTCN2016107440-appb-000025
个天线端口号(例如,#0~#83),所带来的信令开销为
Figure PCTCN2016107440-appb-000026
比特。如果基于现有技术的配置方法为每个天线端口(或者说,传输层)都配置导频信号,该24个传输层对应了24个天线端口号(例如,#0~#23),所带来的信令开销为
Figure PCTCN2016107440-appb-000027
比特,也就是说,在最大传输层数L为24层,OCC码为4比特,导频密度d为1的情况下,方法1a所用的指示信息比现有技术的配置方法所带来的信令开销增加了2比特,但是仅通过增加2比特的信令开销,可以将基于现有技术的配置方法为24个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。
图6a至图6f是根据本申请一实施例的N种导频图案的另一示意图。具体来说,图6a至图6f所示出的导频图案可对应于图5中六个天线端口号组所对应的六种导频图案,其中,L=24,N=6,d=1。
图6a示出了当且仅当用于传输的天线端口号为#0~#3中的一个、两个、三个或全部时,所对应的导频图案。可以看出,天线端口号#0~#3的数量与传输层的层数量是一致的,都为4个。也就是说,有多少个传输层就对应了多少个天线端口号。在本申请实施例中,当实际使用的传输层数为1~4层中的任意值时,都可以采用天线端口号在#0~#3所对应的导频图案(即,图6a)来传输DMRS。由图6a可以看出,该导频图案中只配置了用于传输4个DMRS的RE,每个DMRS对应一个RE。也就是说,即便最大传输层数为24层,当待传输数据流实际使用的层数为1~4层时,只需配置4个DMRS,基于现有技术的配置方法为24个天线端口预配置的24个DMRS中,用于 传输另20个DMRS的RE全部释放出来,用于传输数据。因此,在最大传输层数L高达24层,OCC码为4比特,导频密度d为1时,基站仅通过增加2比特的信令开销,使导频资源的开销从14.3%降低到了2.4%,因此,极大地提高了资源利用率和数据传输效率。
与此相似地,图6b至图6f示出了当且仅当用于传输的天线端口号为各端口号组中的一个、多个或全部端口号时,所对应的导频图案。对于导频图案的具体分析在上文中已经详细说明,这里为了避免赘述,省略其详细说明。
由此可以看出,本申请实施例根据待传输数据流实际使用的传输层数,确定实际用于传输的天线端口号,并通过优化后的天线端口号指示对应的导频图案,可实现导频资源以4为阶梯释放,实现了导频资源的灵活配置,提升了资源利用率。
应理解,以上列举的L、N、d以及信令开销仅为示例性说明,不应对本申请构成任何限定,本申请也不应限于此。本申请对于L和d的取值并未特别限定。
需要说明的是,以上列举的传输层数以4层为一组来分组的方法仅为示例性说明,不应对本申请构成任何限定。分组越多,每组内层的数目越少,资源释放越灵活。
还需要说明的是,以上列举的天线端口号#0~#83仅为示例性说明,不应对本申请构成任何限定。天线端口号也可以为不连续且不重叠的数值,例如,第一端口号组的天线端口号可以为#2、#4、#6、#8,本申请对于天线端口号的确定并未特别限定,只需满足任意一个端口号可以用于唯一地指示一个导频图案,均落入本申请的保护范围内。
还需要说明的是,本申请对于导频密度的确定并未特别限定。导频密度的确定与现有技术的具体过程相同,这里为了避免赘述,省略其详细说明。
还需要说明的是,在本申请实施例中,通过指示信息向用户设备指示目标时频资源的方法并不限于指示优化后的天线端口号,基站也可以直接将实际使用的传输层的层数量或者索引号发送给用户设备,以便于用户设备确定相对应的导频图案,但不管指示信息具体指示的是层数量还是索引号,天线端口号是必须要通知给用户设备的,不同的是,在具体指示层数量或者索引号后,就可以根据层数量或者索引号确定导频图案,而不需通过天线端口号去隐性的指示,因此,该天线端口号可以与基于现有技术的配置方法所分配 的天线端口号相同,不需优化处理,在各层数组内可以重复出现,从而减少了天线端口号所带来的信令开销的增加,但是增加了索引号或者层数量所带来的信令开销。
下面,结合方法1b对指示信息具体用于指示索引号的方法进行详细说明。
方法1b
可选地,发送端设备向接收端设备发送指示信息,该指示信息具体用于指示目标导频图案的索引号,该目标导频图案的索引号由发送端设备根据待传输数据流的总层数确定以使接收端设备确定与目标导频图案的索引号对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据该目标时频资源,与发送端设备传输导频信号,其中,发送端设备和接收端设备预存有N种导频图案与N个导频图案的索引号的一一映射关系。
具体地,每种导频图案可以对应一个索引号,即N种导频图案与N个导频图案的索引号一一对应,因此,可以通过索引号来指示所对应的导频图案。基站和用户设备可以预存该N种导频图案与N个导频图案的索引号的一一映射关系。基站可以向用户设备发送目标导频图案的索引号,用户设备根据该索引号,便可以确定目标导频图案。
进一步地,基站也可以将传输层数分为N个组,每个层数组对应一种导频图案。例如,将16个传输层分成4个组,每个组对应一个导频图案的索引号,用户设备根据该索引号,便可以确定目标导频图案。
以下,结合图7和图8(包括图8a至图8d),以L=16,N=4,d=3为例详细说明导频图案的索引号用于指示导频图案的具体过程。
图7是根据本申请另一实施例的第一映射关系的示意图。具体来说,图7示出了L=16,N=4,d=3时第一映射关系的示意图。由图7可以看出,天线端口号#0~#3对应于索引号1,索引号1对应于第一种导频图案(例如,图8a);天线端口号#0~#7对应于索引号2,索引号2对应于第二种导频图案(例如,图8b);天线端口号#0~#11对应于索引号3,索引号3对应于第三种导频图案(例如,图8c);天线端口号#0~#15对应于索引号4,索引号4对应于第四种导频图案(例如,图8d)。在本申请实施例中,基站通过向用户设备指示导频图案的索引号来指示目标导频图案,而未对天线端口号进行优化处理,每一个端口号可以重复在各端口号组中。
可选地,发送端设备确定承载目标导频图案的索引号的比特位数M2为:
Figure PCTCN2016107440-appb-000028
Figure PCTCN2016107440-appb-000029
表示向上取整;
发送端设备通过M2个比特位发送指示信息,指示信息用于指示目标导频图案的索引号。
具体地,天线端口号所带来的信令开销与现有技术相同,而新增加的索引号会带来一定的信令开销。在本申请实施例中,索引号的信令开销为
Figure PCTCN2016107440-appb-000030
比特。也就是说,当索引号所带来的信令开销为s比特时,可以用于在最大传输层数高达C·2s层时导频图案的指示。例如,本申请实施例中,信令开销为2比特,OCC码长C为4,该2比特的信令开销(即,索引号的指示信息)能用于在最大传输层数高达16层时导频图案的指示。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为3时,方法1b所用的指示信息比现有技术的配置方法所带来的信令开销增加了2比特,但是仅通过增加2比特的信令开销,可以将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。
图8a至图8d是根据本申请另一实施例的N种导频图案的示意图。具体来说,图8a至图8d所示出的导频图案可对应于图7中的四种导频图案,其中,L=16,N=4,d=3。
图8a示出了索引号为1时所对应的导频图案。可以看出,索引号为1时,所对应的天线端口号#0~#3的数量与传输层的层数量仍然是一致的,都为4个。也就是说,有多少个传输层就对应了多少个天线端口号,例如,传输层数为1层时,使用天线端口号可以为#0;传输层数为2层时,使用天线端口号可以为#0和#1;传输层数为3层时,使用天线端口号可以为#0、#1和#2;传输层数为4层时,使用天线端口号可以为#0、#1、#2和#3。
在本申请实施例中,当实际使用的传输层数为1~4层中的任意值时,都可以采用索引号1所对应的导频图案(即,图8a)来传输DMRS。由图8a可以看出,该导频图案中只配置了用于传输4个DMRS的RE,每个DMRS对应一个RE。也就是说,即便最大传输层数为16层,当待传输数据流实际使用的层数为1~4层时,只需配置4个DMRS,通过现有技术的配置方法为16个天线端口预配置的16个DMRS中,用于传输另12个DMRS的RE全部释放出来,用于传输数据。因此,在最大传输层数L高达16层,OCC码 为4比特,导频密度d为3时,基站发仅通过增加2比特的信令开销,使导频资源的开销从28.6%降低到了7.1%,因此,极大地提高了资源利用率和数据传输效率。
图8b示出了索引号为2时所对应的导频图案。可以看出,索引号为2时,所对应的天线端口号#0~#7的数量与传输层的层数量仍然是一致的,都为8个。也就是说,有多少个传输层就对应了多少个天线端口号,例如,传输层数为5层时,使用天线端口号可以为#0、#1、#2、#3和#4;传输层数为6层时,使用天线端口号可以为#0、#1、#2、#3、#4和#5;传输层数为6层时,使用天线端口号可以为#0、#1、#2、#3、#4、#5和#6;传输层数为8层时,使用天线端口号可以为#0、#1、#2、#3、#4、#5、#6和#7。可以看出,在本申请实施例中,天线端口号不用避开索引号1所对应的天线端口号0#~#3,这是因为,索引号可以直接用于指示导频图案,而不需要天线端口号唯一地指示导频图案。
对于图8b中导频图案的具体分析与图8a中导频图案的具体分析相似,这里为了避免赘述,省略其详细说明。
与此相似地,图8c和图8d示出了当索引号分别为3和4时所对应的导频图案。对于导频图案的具体分析与图8a中导频图案的具体分析相似,这里为了避免赘述,省略其详细说明。
由此可以看出,本申请实施例根据待传输数据流实际使用的传输层数,确定目标导频图案的索引号,并通过该索引号指示对应的目标导频图案,可实现导频资源以4为阶梯释放,实现了导频资源的灵活配置,提升了资源利用率。
应理解,图7列出的L、N、d以及信令开销仅为示例性说明,不应对本申请构成任何限定,本申请也不应限于此。本申请对于L和d的取值并未特别限定。
需要说明的是,以上列举的天线端口号#0~#15仅为示例性说明,不应对本申请构成任何限定。天线端口号也可以为不连续的数值,在不同的天线端口号组内可以重复或者不重复,例如,第一端口号组的天线端口号可以为#2、#4、#6、#8,而第二端口号组的天线端口号可以为#3、#4、#5、#6、#7、#8、#9和#10,本申请对于天线端口号的确定并未特别限定,只需满足每个端口号组内的端口号可以对应于层数组中的层数即可。进一步地,若端口号的数 量与最大传输层数相同,不需要增加额外的信令开销;若端口号的数量大于最大传输层数,仍然可以用于本申请的传输导频信号的方法,但会增加额外的信令开销。
以上,结合图7和图8(包括图8a至图8d),以L=16,N=4,d=3为例详细说明了索引号用于指示导频图案的具体过程。以下,以L=24,N=6,d=1为例,详细说明索引号用于指示导频图案的具体过程。
根据上文的详细说明可知,在本申请实施例中,L=24,N=6,d=1时第一映射关系为:天线端口号#0~#3对应于索引号1,索引号1对应于第一种导频图案;天线端口号#0~#7对应于索引号2,索引号2对应于第二种导频图案;天线端口号#0~#11对应于索引号3,索引号3对应于第三种导频图案;天线端口号#0~#15对应于索引号4,索引号4对应于第四种导频图案;天线端口号#0~#19对应于索引号5,索引号5对应于第五种导频图案;天线端口号#0~#23对应于索引号6,索引号6对应于第六种导频图案。在本申请实施例中,基站通过向用户设备指示导频图案的索引号来指示目标导频图案,而无需对天线端口号进行优化处理,每一个端口号可以重复在各端口号组中。
天线端口号所带来的信令开销与使用现有技术的配置方法所带来的信令开销相同,而新增加的索引号会带来一定的信令开销。在本申请实施例中,索引号的信令开销为
Figure PCTCN2016107440-appb-000031
比特。进一步地,当索引号所带来的信令开销为3比特时,可以用于在最大传输层数高达C·23层时导频图案的指示。例如,本申请实施例中,信令开销为3比特,OCC码长C为4,该3比特的信令开销(即,索引号的指示信息)能用于在最大传输层数高达32层时导频图案的指示。
因此,本申请实施例在最大传输层数L为24层,OCC码长为4比特,导频密度d为1时,方法1b所用的指示信息比使用现有技术的配置方法所带来的信令开销增加了3比特的信令开销,但是仅通过增加3比特的信令开销,可以将基于现有技术的配置方法为24个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。
L=24,N=6,d=1所对应的第一映射关系的示意图和N种导频图案的具体说明与上文中的分析相类似,这里为了简洁,省略其详细说明。
因此,本申请实施例的传输导频信号的方法,通过发送端设备根据预存的导频图案,确定与传输数据流的层数量相对应的时频资源,使得用于传输 导频信号的资源能够根据实际传输的数据流的层数而确定,将闲置的导频资源释放出来,用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
应理解,以上所列举的DMRS不应对本申请构成任何限定,本申请也不应限于此。其他导频信号,例如,公共参考信号(Common Reference Signal,简称“CRS”)、信道状态信息参考信号(Channel State Information-Reference Signal,简称“CRI-RS”)等均可以用于信道估计或者信道探测,都可以对应天线端口,因此,本申请实施例的传输导频信号的方法对于其他导频信号的传输,本申请对此并未特别限定。
以上,结合图3至图8详细说明了方法1的具体过程。以下,结合图9至图14详细说明方法2用于目标时频资源的具体过程。
方法2:
作为另一个实施例,N种导频图案包括第一导频图案,该第一导频图案用于指示:待传输数据流的总层数为发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个资源单元RE,其中,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为该L个导频信号在每个RB对上沿频域资源的方向所使用的目标RE的数量,nT为该L个导频信号在每个RB对上沿时域资源的方向所使用的目标RE的数量,该指示信息包括指示位图,该目标时频资源包括目标RE,以及,
发送端设备根据预存的第一导频图案,确定用于传输导频信号的目标RE,该目标RE与待传输数据流的总层数对应;
发送端设备根据预存的第一映射关系图,确定用于传输导频信号的目标RE在指示位图中对应的比特位,其中,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系;
发送端设备向接收端设备发送指示位图,该指示位图用于指示接收端设备根据目标RE与发送端设备传输导频信号,接收端设备预存有该第一映射关系图。
具体地,基站根据预存的导频图案可以为多种,也可以为一种。在本申请实施例中,该一种导频图案可以为第一导频图案,第一导频图案用于指示:待传输数据流的总层数为发送端设备所支持的最大传输层数L时,预先配置的用于传输导频信号的时频资源。换句话说,该第一导频图案用于指示的是 按照系统所设计的最大传输层数为各层所对应的导频信号所分配的时频资源。也就是说,最大传输层为L时,导频信号就有L个,所使用的RE就为d·L个,其中,d为导频密度,d为大于等于1的自然数。也就是说,L个导频信号在每个RB对上重复了d次。为方便说明,以d=1为例,L个导频信号使用了L个RE,该L个RE在一个RB对上沿频域资源方向和时域资源方向的分布不同,假设在每个RB对上沿频域资源方向有nF个导频信号,沿时域资源方向有nT个导频信号,或者说,沿频域资源方向的nF个RE被用于传输导频信号,沿时域资源方向的nT个RE被用于传输导频信号,因此,L=nF·nT。若d大于1,则该L个导频信号所使用的RE的数量即为d·L,也就是d·nF·nT或者nF·d·nT
基站在确定了待传输数据流实际使用的层数后,就可以根据该第一导频图案,确定需要发送的导频信号和用于传输导频信号的目标时频资源(例如,目标RE)。
在本申请实施例中,基站和用户设备还可以在预存一个共同的第一映射关系图,该第一映射关系图用于指示第一导频图案中的d·L个RE与指示位图中的比特位的对应关系。换句话说,第一导频图案可以为第一映射关系图的一部分,该第一导频图案和第一映射关系图可以为一个图,即,第一映射关系图,第一映射关系图中包含了第一导频图案;第一导频图案和第一映射关系图也可以为分开的两个图,本申请对此并未特别限定。
基站通过指示位图中的比特位来指示第一导频图案中时频资源(即,目标时频资源)所对应的RE(即,目标RE)。例如,可以在被使用的RE(即,目标RE)对应的比特位置“1”,在未被使用的RE对应的比特位置“0”。在确定了指示位图中的比特位与第一导频图案中的RE的对应关系后,基站基于实际使用的传输层数,为不同的传输层数确定目标RE,再通过指示位图来指示被使用和未被使用的RE。当用户设备接收到该指示位图时,可以对比第一映射关系图,确定目标RE,进而与基站传输DMRS。
图9是根据本申请又一实施例的第一映射关系图的示意图。具体来说,图9示出的是L=16,N=4,d=3时的第一映射关系图。16个DMRS(包括DMRS 0~DMRS 15)分别在各传输层使用的目标RE如图9中所示,由图9可以看到,DMRS 0~DMRS 15在一个RB对上的密度d为3,更具体地说,DMRS 0~DMRS 15在一个RB对上的频域方向上的密度为3。并且,进一步 可以看到DMRS 0~DMRS 15在时域上总是占满预分配的OFDM符号(例如,图9中所示的第5个OFDM符号、第6个OFDM符号、第12个OFDM符号和第13个OFDM个符号),在频域上占满该RB对的整个频段。
因此,可以通过指示位图指示该16个DMRS(包括DMRS 0~DMRS 15)所对应的目标RE是否被占用,位图指示为1即被占用,位图指示为0即未被占用。同理,在时频资源的方向上也可以通过指示位图来指示各符号上RE被占用的情况。
以下,结合图9至图14,详细说明指示位图指示RE在时域资源、频域资源或时频资源的使用情况的具体过程。
可选地,指示位图包括一维指示位图,以及,
发送端设备确定一维指示位图,一维指示位图用于指示目标RE在第一维度方向上所对应的资源,第一维度方向为沿频域资源的方向或者沿时域资源的方向;
发送端设备根据L个导频信号在每个RB对上的第一维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数M3=L/nF或者M3=L/nT
发送端设备通过M3个比特位发送一维指示位图。
具体地,在用于传输DMRS的导频信号在预分配的时域资源或者频域资源占满的情况下,可以仅通过一维指示位图来指示频域资源或者时域资源的使用情况。
以下,结合图9至图10(包括图10a至图10c)详细说明一维指示位图用于指示RE在频域资源方向的使用情况的具体过程。
如图9所示,DMRS 0~DMRS 15在时域上总是占满预分配的时域资源(或者说,OFDM符号),在频域上占满该RB对的整个频段。每一个DMRS0~DMRS 15使用了该RB对的1/3的频段(为方便说明,记作目标频域资源)。在该目标频域资源所对应的频段内包括4个子载波,与DMRS的对应关系为:第一子载波(为便于区分和说明,记作子载波#1)对应DMRS 0、DMRS4、DMRS 8和DMRS 12,第二子载波(为便于区分和说明,记作子载波#2)对应DMRS 1、DMRS 5、DMRS 9和DMRS 13,第三子载波(为便于区分和说明,记作子载波#3)对应DMRS 2、DMRS 6、DMRS 10和DMRS 14,第四子载波(为便于区分和说明,记作子载波#4)对应DMRS 3、DMRS 7、DMRS 11和DMRS 15。因此,该一维指示位图可以在频域方向上仅使用 12/3=4个比特来指示每个子载波所对应的RE是否被占用,其中,12表示一个RB对所包含的子载波为12个,3表示L个DMRS在频域资源方向的密度为3;或者说,该一维指示位图可以在频域方向上仅适用于16/4=4个比特来指示每个子载波所对应的RE是否被占用,16表示所支持的最大传输层数,4表示在时域方向上预分配4个OFDM符号被占满。图9所示出的导频图案所对应的一维指示位图中的各比特位可以置为“1111”,表示在该时域资源上的四个子载波都被占用,每个比特位所对应的OFDM符号可以根据图9中所示的被占满的四个OFDM符号来确定,每个比特位对应一个OFDM符号。也就是说,通过第一映射关系图,可以确定该一维指示位图中每个比特位所指示的时域资源(例如,OFDM符号)。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为3时,基站发送该一维指示位图带来4比特的信令开销,但是通过4比特的信令开销,可以将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。并且,与方法1不同的是,方法2只需在接收端设备和发送端设备中预存一个图(即,第一映射关系图),较方法1所占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
图10a至图10c是根据本申请又一实施例的一维指示位图用于指示目标RE的示意图。
应理解,作为示例性说明的图10(包括图10a至图10c)中的导频图案仅为了方便说明,不应对本申请构成任何限定。在本申请实施例的实际执行过程,可以不需要根据传输层的变化生成不同的导频图案,直接根据预存的第一映射关系图和确定的目标RE,向用户设备发送指示位图。
图10a示出了实际使用的传输层数为1~4层时一维指示位图用于指示目标RE的示意图。如图10a所示,DMRS 0~DMRS 3分别占用的目标RE均分布在目标频段的子载波#1上,而在子载波#2、子载波#3和子载波#4上的RE没有被占用,即,将子载波#2、子载波#3和子载波#4所对应的频域资源释放出来用于传输数据。因此,该一维指示位图所对应的比特位可以置为“1000”。用户设备在接收到该一维指示位图后,便可以确定用于传输DMRS 的时频资源和用于传输数据的时频资源。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为3时,基站发送一维指示位图带来的信令开销为4比特,但是可以通过4比特的信令开销,将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,导频资源的开销从28.6%降低到了7.1%,因此,极大地提高了资源利用率和数据传输效率。另一方面,与方法1不同的是,方法2只需在接收端设备和发送端设备中预存一个图(即,第一映射关系图),较方法1所占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
图10b示出了实际使用的传输层数为5~8层时一维指示位图用于指示目标RE的示意图。如图10b所示,DMRS 0~DMRS 7分别占用的目标RE均分布在目标频段的子载波#1和子载波#3上,而在子载波#2和子载波#4上的RE没有被占用,即,将子载波#2和子载波#4所对应的频域资源释放出来用于传输数据。因此,该一维指示位图所对应的比特位可以置为“1010”。用户设备在接收到该一维指示位图后,便可以确定用于传输DMRS的时频资源和用于传输数据的时频资源。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为3时,基站发送一维指示位图带来的信令开销为4比特,但是可以通过4比特的信令开销,将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,导频资源的开销从28.6%降低到了14.3%,因此,极大地提高了资源利用率和数据传输效率。另一方面,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
图10c示出了实际使用的传输层数为9~12层时一维指示位图用于指示目标RE的示意图。如图10c所示,DMRS 0~DMRS 11分别占用的目标RE均分布在目标频段的子载波#1、子载波#2和子载波#3上,而在子载波#4上的RE没有被占用,即,将子载波#4所对应的频域资源释放出来用于传输数 据。因此,该一维指示位图所对应的比特位可以置为“1110”。用户设备在接收到该一维指示位图后,便可以确定用于传输DMRS的时频资源和用于传输数据的时频资源。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为3时,基站发送一维指示位图带来的信令开销为4比特,但是可以通过4比特的信令开销,将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,导频资源的开销从28.6%降低到了21.4%,因此,在一定程度上提高了资源利用率和数据传输效率。另一方面,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
当实际使用层数为13~16层时所使用的目标RE与图9中所示的导频图案(即,第一导频图案或者第一映射关系图)相对应,也就是说,当待传输数据流实际使用的传输层数为13~16层时,才配置16个DMRS,与基于现有技术的配置方法预配置的用于传输DMRS的导频图案相同。为了简洁,这里不再赘述。
由此可以看出,本申请实施例根据实际使用的传输层数确定目标RE,并通过指示位图来指示被使用和未被使用的时频资源,实现了导频资源的灵活配置,提高了资源利用率。
需要说明的是,以上列举的传输层数与目标RE的对应关系仅为示例性说明,不应对本申请构成任何限定。在本申请实施例中,基站根据预存的第一映射关系图,在确定第一导频图案后,可以根据实际使用的传输层数,灵活地配置时频资源用于传输DMRS和数据,本申请对此并未特别限定。
以上,结合图9至图10(包括图10a至图10c)详细说明了一维指示位图用于指示RE在频域资源方向的使用情况的具体过程。以下,结合图11至图12(包括图12a至图12c)详细说明一维指示位图用于指示RE在时域资源方向的使用情况的具体过程。
图11是根据本申请再一实施例的第一映射关系图的示意图。具体来说,图11示出的是L=24,N=6,d=1时的第一映射关系图。如图11所示,DMRS0~DMRS 23在频域上总是占满预分配的频段(或者说,子载波)上,在时 域上占用了4个符号(为方便说明,记作目标时域资源)。在该目标时域资源所对应的符号中,每个符号上对应的6个目标RE分别对应了6个传输层,即,每个目标RE代表一个传输层的一个DMRS,即,密度d=1。具体来说,在第一个符号(为方便区分和说明,记作符号#1)所对应的时域资源上,分别在6个子载波上对应了6个DMRS:DMRS 0、DMRS 1、DMRS 2、DMRS3、DMRS 4和DMRS 5;在第二个符号(为方便区分和说明,记作符号#2)所对应的时域资源上,分别在6个子载波上对应了6个DMRS:DMRS 6、DMRS 7、DMRS 8、DMRS 9、DMRS 10和DMRS 11;在第三个符号(为方便区分和说明,记作符号#3)所对应的时域资源上,分别在6个子载波上对应了6个DMRS:DMRS 12、DMRS 13、DMRS 14、DMRS 15、DMRS 16和DMRS 17;在第四个符号(为方便区分和说明,记作符号#4)所对应的时域资源上,分别在6个子载波上对应了6个DMRS:DMRS 18、DMRS 19、DMRS 20、DMRS 21、DMRS 22和DMRS 23。由于DMRS 0~DMRS 23在该RB对上所占用的频域资源是固定的,因此仅需通过一维指示位图来指示DMRS在时域资源(即,第一维度方向的又一例)上所占用的RE。由图11可以看到,DMRS在时域资源上占用了4个符号,即M3=nT=4,或者,DMRS在频域资源中预分配的子载波数为6,故M3=L/nF=24/6=4。因此,可以通过4个比特位来指示DMRS在时域资源上的占用情况。图11所示出的导频图案所对应的一维指示位图中的各比特位可以置为“1111”,表示在该频域资源上的四个符号都被占用,每个比特位所对应的子载波可以根据图11中所示的被占满的六个子载波来确定,也就是说,通过第一映射关系图,可以确定该第一位指示位图中每个比特位所指示的频域资源(例如,子载波)。
因此,本申请实施例在最大传输层数L为24层,OCC码长为4比特,导频密度为d为1时,基站发送该一维指示位图带来4比特的信令开销,但是可以通过4比特的信令开销,将基于现有技术的配置方法为24个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。另一方面,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
图12a至图12c是根据本申请再一实施例的一维指示位图用于指示目标 RE的示意图。
应理解,作为示例性说明的图12(包括图12a至图12c)中的导频图案仅为了方便说明,不应对本申请构成任何限定。在本申请实施例的实际执行过程,可以不需要根据传输层的变化生成不同的导频图案,直接根据预存的第一映射关系图和确定的目标RE,向用户设备发送指示位图。
图12a示出了实际使用的传输层数为1~6层时一维指示位图用于指示目标RE的示意图。如图12a所示,DMRS 0~DMRS 5分布在预分配的频段(或者说,子载波)上,且仅占用了一个OFDM符号,即,符号#2,而符号#1、符号#3和符号#4所对应的RE没有被占用,即,将符号#1、符号#3和符号#4所对应的时域资源释放出来用于传输数据。因此,该一维指示位图所对应的比特位可以置为“0100”。用户设备在接收到该一维指示位图后,便可以确定用于传输DMRS的时频资源和用于传输数据的时频资源。
因此,本申请实施例在最大传输层数L为24层,OCC码长为4比特,导频密度d为1时,基站发送一维指示位图带来的信令开销为4比特,但是可以通过4比特的信令开销,将基于现有技术的配置方法为24个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,导频资源的开销从14.3%降低到了3.6%,因此,极大地提高了资源利用率和数据传输效率。另一方面,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
图12b示出了实际使用的传输层数为7~12层时一维指示位图用于指示目标RE的示意图。如图12b所示,DMRS 0~DMRS 11分布在预分配的频段(或者说,子载波)上,且仅占用了两个OFDM符号,即,符号#2和符号#4,而符号#1和符号#3所对应的RE没有被占用,即,将符号#1和符号#3所对应的时域资源释放出来用于传输数据。因此,该一维指示位图所对应的比特位可以置为“0101”。用户设备在接收到该一维指示位图后,便可以确定用于传输DMRS的时频资源和用于传输数据的时频资源。
因此,本申请实施例中在最大传输层数L为24层,OCC码长为4比特,导频密度d为1时,基站发送一维指示位图带来的信令开销为4比特,但是可以通过4比特的信令开销,将基于现有技术的配置方法为24个传输层预 配置的导频图案释放出大量的闲置的导频资源用于传输数据,导频资源的开销从14.3%降低到了7.1%,因此,极大地提高了资源利用率和数据传输效率。
图12c示出了实际使用的传输层数为13~18层时一维指示位图用于指示目标RE的示意图。如图12c所示,DMRS 0~DMRS 17分布在预分配的频段(或者说,子载波)上,且占用了三个OFDM符号,即,符号#1、符号#2和符号#4,而符号#3所对应的RE没有被占用,即,将符号#3所对应的时域资源释放出来用于传输数据。因此,该一维指示位图所对应的比特位可以置为“1101”。用户设备在接收到该一维指示位图后,便可以确定用于传输DMRS的时频资源和用于传输数据的时频资源。
因此,本申请实施例在最大传输层数L为24层,OCC码长为4比特,导频密度d为1时,基站发送一维指示位图带来的信令开销为4比特,但是通过4比特的信令开销,将基于现有技术的配置方法为24个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,导频资源的开销从14.3%降低到了10.7%,因此,在一定程度上提高了资源利用率和数据传输效率。另一方面,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
当实际使用层数为19~24层时所使用的目标RE与图11中所示的导频图案(即,第一导频图案或者第一映射关系图)相对应,也就是说,当待传输数据流实际使用的传输层数为19~24层时,才配置24个DMRS,与基于现有技术的配置方法预配置的用于传输DMRS的导频图案相同。为了简洁,这里不再赘述。
由此可以看出,本申请实施例根据实际使用的传输层数确定目标RE,并通过指示位图来指示被使用和未被使用的时频资源,实现了导频资源的灵活配置,提高了资源利用率。
需要说明的是,以上列举的传输层数与目标RE的对应关系仅为示例性说明,不应对本申请构成任何限定。例如,在图11和图12(包括图12a至图12c)中所示出的24个导频信号的分布可以基于预分配的时域资源(例如,OFDM符号),而在频域上灵活配置,在此情况下,可以通过一维指示位图来指示24个导频信号在频域资源的使用情况,即,该一维指示位图可以为6 个比特,用于指示第一映射关系图(或者第一导频图案)中被占满的六个子载波的使用情况,每一个比特位对应一个子载波。
因此,在最大传输层数L为24层,OCC码长为4比特,导频密度d为1时,基站发送一维指示位图带来的信令开销为6比特,但是可以通过6比特的信令开销,将基于现有技术的配置方法为24个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。另一方面,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。
在本申请实施例中,基站根据预存的第一映射关系图,在确定了第一导频图案后,可以根据实际使用的传输层数,灵活地配置时频资源用于传输DMRS和数据,本申请对此并未特别限定。以上,结合图9至图12详细说明了一维指示位图用于指示RE在频域资源方向或时域资源方向上的使用情况的具体过程。以下,结合图13和图14详细说明二维位图用于指示RE在时域资源方向和频域资源方向的使用情况的具体过程。
可选地,指示位图包括二维指示位图,以及,
发送端设备确定二维指示位图,二维指示位图用于指示目标RE在第一维度方向和第二维度方向上所对应的资源,第一维度方向为沿频域资源的方向,第二维度方向为沿时域资源的方向,或者,第一维度方向为沿时域资源的方向,第二维度方向为沿频域资源的方向;
发送端设备根据L个导频信号在每个RB对中的第一维度方向上所使用的目标RE的数量和第二维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数为M4=L/nF+L/nT
发送端设备通过M4个比特位发送二维指示位图。
具体地,本申请实施例还可以通过二维指示位图来指示目标RE在时域资源方向和频域资源方向上的使用情况。
图13是根据本申请再一实施例的第一映射关系图的示意图。具体来说,图13示出的是L=16,N=4,d=2时的第一映射关系图。如图13所示,DMRS0~DMRS 15在频域方向上密度dF=2,在时域方向上密度dT=1,DMRS0/1/8/12、DMRS 2/3/9/13、DMRS 4/5/10/14和DMRS 6/7/11/15分别在频域资 源上占用了一个子载波,DMRS 0/2/4/6、DMRS 1/3/5/7、DMRS 8/9/10/11和DMRS 12/13/14/15分别在时域资源上各占用了一个符号,其中,DMRS0/1/8/12和DMRS 2/3/9/13所占用的子载波相邻,DMRS 4/5/10/14和DMRS6/7/11/15所占用的子载波相邻,可以将相邻的两个子载波看成一个频域单元,通过一个指示为来指示;DMRS 0/2/4/6和DMRS 1/3/5/7所占用的符号相邻,DMRS 8/9/10/11和DMRS 12/13/14/15所占用的符号相邻,可以将相邻的两个符号看成一个时域单元,通过一个指示位来指示,即,图13中的二维指示位图在频域资源方向的比特位可以置为“1111”,在时域资源方向的比特位可以置为“0101”。也就是说,二维指示位图所占用的比特位M4=L/nF+L/nT=4+4=8比特,基站发送该二维指示位图需要8比特的信令开销。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为2时,基站发送二维指示位图带来的信令开销为8比特,但是可以通过8比特的信令开销,将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。进一步地,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。更进一步地,二维指示位图虽然比一维指示位图所带来的信令开销多,但是通过二维指示位图来指示闲置的导频资源,可以和其他一个或多个二维指示位图(例如,图14所示的二维指示位图)配合使用,实现导频信号在时域方向的密度和频域方向的密度的灵活切换,使得导频信号所使用的资源在时域资源和频域资源可调。因此,使得资源配置的灵活性进一步提高。
图14是根据本申请再一实施例的第一映射关系图的另一示意图。具体来说,图14示出的是L=16,N=4,d=2时的第一映射关系图。如图14所示,DMRS 0~DMRS 15在频域方向上密度dF=1,在时域方向上密度dT=2,DMRS0/1/8/12、DMRS 2/3/9/13、DMRS 4/5/10/14和DMRS 6/7/11/15分别在频域资源上占用了一个子载波,DMRS 0/2/4/6、DMRS 1/3/5/7、DMRS 8/9/10/11和DMRS 12/13/14/15分别在时域资源上各占用了一个符号,其中,DMRS0/1/8/12和DMRS 2/3/9/13所占用的子载波相邻,DMRS 4/5/10/14和DMRS 6/7/11/15所占用的子载波相邻,可以将相邻的两个子载波看成一个频域单元,通过一个指示为来指示;DMRS 0/2/4/6和DMRS 1/3/5/7所占用的符号相邻,DMRS 8/9/10/11和DMRS 12/13/14/15所占用的符号相邻,可以将相邻的两个符号看成一个时域单元,通过一个指示位来指示,即,图14中的二维指示位图在频域资源方向的比特位可以置为“1001”,在时域资源方向的比特位可以置为“1111”。也就是说,二维指示位图所占用的比特位M4=L/nF+L/nT=4+4=8比特,基站发送该二维指示位图需要8比特的信令开销。
因此,本申请实施例在最大传输层数L为16层,OCC码长为4比特,导频密度d为2时,基站发送二维指示位图带来的信令开销为8比特,但是可以通过8比特的信令开销,将基于现有技术的配置方法为16个传输层预配置的导频图案释放出大量的闲置的导频资源用于传输数据,大大提高了资源的利用率。进一步地,在基站和用户设备只需预存第一映射关系图,占用的资源减少了,并且可以根据当前的数据传输状况由基站基于可释放的资源量来选择具体释放的资源,并通过指示位图的比特位明确的指示可释放的资源,而不拘泥于固定的导频图案,因此,时频资源的配置更灵活方便。更进一步地,二维指示位图虽然比一维指示位图所带来的信令开销多,但是通过二维指示位图来指示闲置的导频资源,可以和其他一个或多个二维指示位图(例如,图13所示的二维指示位图)配合使用,实现导频信号在时域方向的密度和频域方向的密度的灵活切换,使得导频信号所使用的资源在时域资源和频域资源可调。因此,使得资源配置的灵活性进一步提高。
需要说明的是,图13和图14所示出的是在L=16,N=4,d=2时的两种不同的第一映射关系图,图13中所示出的第一映射关系图在频域方向上密度dF=2,在时域方向上密度dT=1,而在图14中所示出的第一映射关系图在频域方向上密度dF=1,在时域方向上密度dT=2。以上对于密度的列举仅为示例性说明,不应对本申请构成任何限定。本申请实施例通过二维指示位图来指示闲置的导频资源,可以实现导频信号在时域方向的密度和频域方向的密度的切换,使得导频信号所使用的资源在时域资源和频域资源灵活可调。例如,在频选较大的信道环境,可以加强DMRS在频域上的密度,例如,选用dF=2,dT=1;在时快变信道,可以加强DMRS在时域上的密度,例如,选用dF=2,dT=1。
应理解,上述列举的二维指示位图仅为示例性说明,不应对本申请构成任何限定,本申请也不应限于此。发送端设备(例如,基站)可以在两个或更多个二维指示位图之间实现时域资源方向和频域资源方向的密度切换,该两个或更多个二维指示位图只需满足所对应的第一映射关系图为相同的传输层数L、相同的OCC码长和相同的导频密度d即可。
因此,二维指示位图虽然带来了更高的信令开销,但是在满足闲置导频资源可释放的灵活配置的基础上,还能够针对信道环境在时、频域上进行密度的动态切换,使得资源配置更加灵活,进一步提高系统性能。
应理解,以上所列举的DMRS不应对本申请构成任何限定,本申请也不应限于此。其他导频信号,例如,CRS、CRI-RS等均可以用于信道估计或者信道探测,都可以对应天线端口,因此,本申请实施例的传输导频信号的方法对于其他导频信号的传输,本申请对此并未特别限定。
综上所述,方法2比方法1带来的信令开销更高一些,但是在释放闲置导频资源的基础上,能够减少导频图案数量,减少资源的占用率,并根据可释放的资源量灵活地选择具体释放的资源,且通过二维指示位图来指示闲置导频资源,可以实现导频信号在时域方向和频域方向的密度切换,使得资源配置的灵活性大大提供。
以上,结合图3至图14,详细说明了根据本申请实施例的传输导频信号的方法。以下,结合图15和图16详细说明根据本申请实施例的传输导频信号的方法所带来的资源利用率的变化。
图15是根据本申请一实施例的资源使用率的示意图。具体来说,图15示出了L=16,N=4,d=3时的通过本申请释放导频资源复用给数据传输的示意曲线。如图15所示,横坐标代表实际使用的传输层数,纵坐标代表目标RE(或者说,导频资源)占一个RB对的百分比。●代表基于现有技术的配置方法为最大传输层数预配置的导频资源占一个RB对的百分比(为方便说明,第一百分比),▲代表根据本申请实施例的实际使用的导频资源占一个RB对的百分比(为方便说明,简称第二百分比)。由图可以看出,当实际使用的传输层数为13至16层时,第一百分比和第二百分比处于同一水平线上,都为28.6%;当实际使用的传输层数降为9至12层时,第二百分比降至21.4%,第一百分比仍为28.6%;当实际使用的传输层数降为5至8层时,第二百分比降至14.3%,第一百分比仍为28.6%;当实际使用的传输层数降 为0至4层时,第二百分比降至7.1%,第一百分比仍为28.6%。由此可以很明显地看出,实际使用的传输层数越低,通过本申请所释放的闲置的导频资源的比例越大,并且导频资源以四层为一个阶梯地释放出来,虽然增加了2至4比特的信令开销,但是极大地提高了资源利用率,实现了资源的灵活配置。
图16是根据本申请另一实施例的资源使用率的示意图。具体来说,图16示出了L=24,N=6,d=1时通过本申请释放导频资源复用给数据传输的示意曲线。如图16所示,横坐标代表实际使用的传输层数,纵坐标代表目标RE(或者说,导频资源)占一个RB对的百分比。●代表基于现有技术的配置方法为最大传输层数预配置的导频资源占一个RB对的百分比(为方便说明,第一百分比),▲代表根据本申请实施例的实际使用的导频资源占一个RB对的百分比(为方便说明,简称第二百分比)。由图可以看出,当实际使用的传输层数为20至24层时,第一百分比和第二百分比处于同一水平线上,都为14.3%;当实际使用的传输层数降为17至20层时,第二百分比降至11.9%,第一百分比仍为14.3%;当实际使用的传输层数降为13至16层时,第二百分比降至9.5%,第一百分比仍为14.3%;当实际使用的传输层数降为9至12层时,第二百分比降至7.1%,第一百分比仍为14.3%;当实际使用的传输层数降为5至8层时,第二百分比降至4.8%,第一百分比仍为14.3%;当实际使用的传输层数降为0至4层时,第二百分比降至2.4%,第一百分比仍为14.3%。由此可以很明显地看出,实际使用的传输层数越低,通过本申请所释放的闲置的导频资源的比例越大,并且导频资源以四层为一个阶梯地释放出来,虽然增加了2至6比特的信令开销,但是极大地提高了资源利用率,实现了资源的灵活配置。
因此,本申请实施例的传输导频信号的方法,通过发送端设备根据预存的一种或多种导频图案,确定与传输数据流的层数量相对应的时频资源,使得用于传输导频信号的资源能够根据实际传输的数据流的层数而确定,将闲置的导频资源释放出来,用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
以上,结合图2至图16详细说明了根据本申请实施例的传输导频信号的方法,以下,结合图17和图18详细说明根据本申请实施例的传输导频信号的装置。
图17是根据本申请一实施例的传输导频信号的装置200的示意性框图。如图17所示,该装置200包括确定模块210和收发模块220,其中,
该确定模块210用于根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,目标时频资源与待传输数据流的总层数对应,其中,N种导频图案彼此相异,N为大于等于1的自然数;
该收发模块220用于向接收端设备发送指示信息,该指示信息用于指示接收端设备根据目标时频资源与该装置200传输导频信号。
可选地,该确定模块210具体用于从预存的N种导频图案中,确定与待传输数据流的总层数对应的目标导频图案,目标导频图案用于指示目标时频资源,其中,N根据该装置200所支持的最大传输层数L确定,L为大于等于1的自然数。
可选地,该确定模块210具体用于根据待传输数据流的总层数,确定对应的层数组,并根据N种导频图案与N个层数组的一一映射关系,确定与层数组对应的目标导频图案,
其中,该装置200预存有N种导频图案与N个层数组的一一映射关系,N个层数组中的第i个层数组所包含的层的数量为大于
Figure PCTCN2016107440-appb-000032
且小于等于
Figure PCTCN2016107440-appb-000033
的自然数,i∈[1,N],
Figure PCTCN2016107440-appb-000034
Figure PCTCN2016107440-appb-000035
表示向上取整,C为各传输层之间所采用的正交掩码的码长,C取值为2n,n为大于等于1的自然数。
可选地,该收发模块220具体用于向接收端设备发送用于指示天线端口号的指示信息,该天线端口号为用于发射导频信号的天线端口的端口号,天线端口号由确定模块根据待传输数据流的总层数确定,以使接收端设备确定与天线端口号相对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与该装置200传输导频信号,
其中,该装置200和接收端设备预存有N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
可选地,该确定模块210还用于确定承载天线端口号的比特位数M1为:
Figure PCTCN2016107440-appb-000036
Figure PCTCN2016107440-appb-000037
表示向上取整;
该收发模块220具体用于通过M1个比特位发送指示信息,指示信息用于指示天线端口号。
可选地,收发模块220具体用于发送用于指示目标导频图案的索引号的指示信息,目标导频图案的索引号由该装置200根据待传输数据流的总层数确定,以使接收端设备确定与目标导频图案的索引号对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与该装置200传输导频信号,
其中,该装置200和接收端设备预存有N种导频图案与N个导频图案的索引号的一一映射关系。
可选地,该确定模块210还用于确定承载目标导频图案的索引号的比特位数M2为:
Figure PCTCN2016107440-appb-000038
Figure PCTCN2016107440-appb-000039
表示向上取整;
该收发模块220具体用于通过M2个比特位发送指示信息,该指示信息用于指示目标导频图案的索引号。
可选地,该确定模块210具体用于根据预存的第一导频图案,确定用于传输导频信号的目标资源单元RE,目标时频资源包括目标RE,其中,N种导频图案包括第一导频图案,第一导频图案用于指示:待传输数据流的总层数为该装置200所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个RE,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,nT为L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,指示信息包括指示位图,目标时频资源包括目标RE;
该确定模块210具体用于根据预存的第一映射关系图,确定目标RE在指示位图中对应的比特位,其中,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系;
该收发模块220具体用于向接收端设备发送指示位图,指示位图用于指示接收端设备根据目标RE与该装置200传输导频信号,接收端设备预存有第一映射关系图。
可选地,该确定模块210具体用于确定一维指示位图,一维指示位图用于指示目标RE在第一维度方向上所对应的资源,并根据L个导频信号在每个RB对上的第一维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数M3=L/nF或者M3=L/nT,第一维度方向为沿频域资源的方向或者沿时域资源的方向;
该收发模块220具体用于通过M3个比特位发送一维指示位图。
可选地,该确定模块210具体用于确定二维指示位图,二维指示位图用于指示目标RE在第一维度方向和第二维度方向上所对应的资源,并根据L个导频信号在每个RB对中的第一维度方向上所使用的目标RE的数量和第二维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数为M4=L/nF+L/nT,第一维度方向为沿频域资源的方向,第二维度方向为沿时域资源的方向,或者,第一维度方向为沿时域资源的方向,第二维度方向为沿频域资源的方向;
该收发模块220具体用于通过M4个比特位发送二维指示位图。
可选地,该装置200为网络设备,接收端设备为用户设备,或者,该装置200为用户设备,接收端设备为网络设备。
根据本申请实施例的用于传输导频信号的装置200可对应于根据本申请实施例的传输导频信号的方法中的发送端设备,并且,该装置200中的各模块和上述其他操作和/或功能分别为了实现图2至图16中各个方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的传输导频信号的装置,根据预存的一种或多种导频图案,确定与传输数据流的层数量相对应的时频资源,使得用于传输导频信号的资源能够根据实际传输的数据流的层数而确定,将闲置的导频资源释放出来,用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
图18是根据本申请另一实施例的传输导频信号的装置300的示意性框图。如图18所示,该装置300包括收发模块310和确定模块320,其中,
该收发模块310,用于接收发送端设备发送的指示信息;
该确定模块320,用于根据指示信息,确定用于传输导频信号的目标时频资源,目标时频资源由发送端设备根据预存的N种导频图案确定,目标时频资源与待传输数据流的总层数对应,其中,N种导频图案彼此相异,N为大于等于1的自然数;
该收发模块310还用于根据目标时频资源与发送端设备传输导频信号。
可选地,该确定模块320具体用于根据指示信息所指示的发射导频信号的天线端口号,确定目标导频图案,并根据目标导频图案,确定目标时频资源,
其中,发送端设备和该装置300预存有N种导频图案与N个天线端口 号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
可选地,该确定模块320具体用于根据指示信息所指示的目标导频图案的索引号,确定目标导频图案,并根据目标导频图案,确定目标时频资源,
其中,发送端设备和该装置300预存有N种导频图案与N个导频图案的索引号的一一映射关系。
可选地,该确定模块320具体用于根据指示信息所指示的指示位图和预存的第一映射关系图,确定用于传输导频信号的目标资源单元RE,目标时频资源包括目标RE,
其中,N种导频图案包括第一导频图案,第一导频图案用于指示:待传输数据流的总层数为发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个RE,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系,其中,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,nT为L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量。
可选地,发送端设备为网络设备,该装置300为用户设备,或者,
发送端设备为用户设备,该装置300为网络设备。
根据本申请实施例的传输导频信号的装置300可对应于根据本申请实施例的传输导频信号的方法中的接收端设备,并且,该装置300中的各模块和上述其他操作和/或功能分别为了实现图2至图16中各个方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的传输导频信号的装置,根据发送端设备发送的指示信息,确定用于传输导频信号的时频资源,使得用于传输导频信号的资源能够根据实际传输的数据流的层数而确定,将闲置的导频资源释放出来,用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
以上,结合图17和图18详细说明了根据本申请实施例的传输导频信号的装置,以下,结合图19和图20详细说明根据本申请实施例的传输导频信号的设备。
图19是根据本申请一实施例的传输导频信号的设备400的示意性框图。 如图19所示,该设备400包括收发器410、处理器420、存储器430和总线系统440其中,收发器410、处理器420和存储器430通过总线系统440相连,该存储器430用于存储指令,该处理器420用于执行该存储器430存储的指令,以控制收发器410收发信号。
其中,该处理器420用于根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,目标时频资源与待传输数据流的总层数对应,其中,N种导频图案彼此相异,N为大于等于1的自然数;
该收发器410用于向接收端设备发送指示信息,指示信息用于指示接收端设备根据目标时频资源与该设备400传输导频信号。
可选地,该处理器420具体用于从预存的N种导频图案中,确定与待传输数据流的总层数对应的目标导频图案,目标导频图案用于指示目标时频资源,其中,N根据该设备400所支持的最大传输层数L确定,L为大于等于1的自然数。
可选地,该处理器420具体用于根据待传输数据流的总层数,确定对应的层数组,并根据N种导频图案与N个层数组的一一映射关系,确定与层数组对应的目标导频图案,
其中,该设备400预存有N种导频图案与N个层数组的一一映射关系,N个层数组中的第i个层数组所包含的层的数量为大于
Figure PCTCN2016107440-appb-000040
且小于等于
Figure PCTCN2016107440-appb-000041
的自然数,i∈[1,N],
Figure PCTCN2016107440-appb-000042
Figure PCTCN2016107440-appb-000043
表示向上取整,C为各传输层之间所采用的正交掩码的码长,C取值为2n,n为大于等于1的自然数。
可选地,该收发器410具体用于向接收端设备发送用于指示天线端口号的指示信息,天线端口号为用于发射导频信号的天线端口的端口号,天线端口号由确定模块根据待传输数据流的总层数确定,以使接收端设备确定与天线端口号相对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与该设备400传输导频信号,
其中,该设备400和接收端设备预存有N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
可选地,该处理器420还用于确定承载天线端口号的比特位数M1为:
Figure PCTCN2016107440-appb-000044
Figure PCTCN2016107440-appb-000045
表示向上取整;
该收发器410具体用于通过M1个比特位发送指示信息,指示信息用于指示天线端口号。
可选地,收发器410具体用于发送用于指示目标导频图案的索引号的指示信息,目标导频图案的索引号由该设备400根据待传输数据流的总层数确定,以使接收端设备确定与目标导频图案的索引号对应的目标导频图案,以根据目标导频图案,确定目标时频资源,并根据目标时频资源,与该设备400传输导频信号,
其中,该设备400和接收端设备预存有N种导频图案与N个导频图案的索引号的一一映射关系。
可选地,该处理器420还用于确定承载目标导频图案的索引号的比特位数M2为:
Figure PCTCN2016107440-appb-000046
Figure PCTCN2016107440-appb-000047
表示向上取整;
该收发器410具体用于通过M2个比特位发送指示信息,该指示信息用于指示目标导频图案的索引号。
可选地,该处理器420具体用于根据预存的第一导频图案,确定用于传输导频信号的目标资源单元RE,目标时频资源包括目标RE,其中,N种导频图案包括第一导频图案,第一导频图案用于指示:待传输数据流的总层数为该设备400所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个RE,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,nT为L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,指示信息包括指示位图,目标时频资源包括目标RE;
该处理器420具体用于根据预存的第一映射关系图,确定目标RE在指示位图中对应的比特位,其中,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系;
该收发器410具体用于向接收端设备发送指示位图,指示位图用于指示接收端设备根据目标RE与该设备400传输导频信号,接收端设备预存有第一映射关系图。
可选地,该处理器420具体用于确定一维指示位图,一维指示位图用于指示目标RE在第一维度方向上所对应的资源,并根据L个导频信号在每个RB对上的第一维度方向上所使用的目标RE的数量,确定用于指示目标RE 的比特位数M3=L/nF或者M3=L/nT,第一维度方向为沿频域资源的方向或者沿时域资源的方向;
该收发器410具体用于通过M3个比特位发送一维指示位图。
可选地,该处理器420具体用于确定二维指示位图,二维指示位图用于指示目标RE在第一维度方向和第二维度方向上所对应的资源,并根据L个导频信号在每个RB对中的第一维度方向上所使用的目标RE的数量和第二维度方向上所使用的目标RE的数量,确定用于指示目标RE的比特位数为M4=L/nF+L/nT,第一维度方向为沿频域资源的方向,第二维度方向为沿时域资源的方向,或者,第一维度方向为沿时域资源的方向,第二维度方向为沿频域资源的方向;
该收发器410具体用于通过M4个比特位发送二维指示位图。
可选地,该设备400为网络设备,接收端设备为用户设备,或者,该设备400为用户设备,接收端设备为网络设备。
应理解,在本申请实施例中,该处理器420可以是中央处理单元(central processing unit,简称为“CPU”),该处理器420还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该处理器420可以包括只读存储器和随机存取存储器,并向处理器420提供指令和数据。处理器420的一部分还可以包括非易失性随机存取存储器。例如,处理器420还可以存储设备类型的信息。
该总线系统440除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统440。
在实现过程中,上述方法的各步骤可以通过处理器420中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器430,处理器420读取存储器430中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的传输导频信号的设备400可对应于根据本申请实施例的传输导频信号的方法中的发送端设备,并且,该设备400中的各模块和上述其他操作和/或功能分别为了实现图2至图16中各个方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的传输导频信号的装置,根据预存的一种或多种导频图案,确定与传输数据流的层数量相对应的时频资源,使得用于传输导频信号的资源能够根据实际传输的数据流的层数而确定,将闲置的导频资源释放出来,用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
图20是根据本申请另一实施例的传输导频信号的设备500的示意性框图。如图20所示,该设备500包括收发器510、处理器520、存储器530和总线系统540其中,收发器510、处理器520和存储器530通过总线系统540相连,该存储器530用于存储指令,该处理器520用于执行该存储器530存储的指令,以控制收发器510收发信号。
其中,收发器510,用于接收发送端设备发送的指示信息;
处理器520,用于根据指示信息,确定用于传输导频信号的目标时频资源,目标时频资源由发送端设备根据预存的N种导频图案确定,目标时频资源与待传输数据流的总层数对应,其中,N种导频图案彼此相异,N为大于等于1的自然数;
收发器510还用于根据目标时频资源与发送端设备传输导频信号。
可选地,处理器520具体用于根据指示信息所指示的发射导频信号的天线端口号,确定目标导频图案,并根据目标导频图案,确定目标时频资源,
其中,发送端设备和该设备500预存有N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
可选地,处理器520具体用于根据指示信息所指示的目标导频图案的索引号,确定目标导频图案,并根据目标导频图案,确定目标时频资源,
其中,发送端设备和该设备500预存有N种导频图案与N个导频图案的索引号的一一映射关系。
可选地,处理器520具体用于根据指示信息所指示的指示位图和预存的第一映射关系图,确定用于传输导频信号的目标资源单元RE,目标时频资源包括目标RE,
其中,N种导频图案包括第一导频图案,第一导频图案用于指示:待传输数据流的总层数为发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个RE,第一映射关系图用于指示:第一导频图案中的d·L个RE与指示位图中的比特位的对应关系,其中,d为每个传输层所对应的导频信号在每个资源块RB对上的密度,d为大于等于1的自然数,L为大于等于1的自然数,且L=nF·nT,nF为L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,nT为L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量。
可选地,发送端设备为网络设备,该设备500为用户设备,或者,
发送端设备为用户设备,该设备500为网络设备。
根据本申请实施例的传输导频信号的设备500可对应于根据本申请实施例的传输导频信号的方法中的接收端设备,并且,该设备500中的各模块和上述其他操作和/或功能分别为了实现图2至图16中各个方法的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的传输导频信号的设备,根据发送端设备发送的指示信息,确定用于传输导频信号的时频资源,使得用于传输导频信号的资源能够根据实际传输的数据流的层数而确定,将闲置的导频资源释放出来,用于数据传输,使得资源配置更加灵活,提高了资源的利用率。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,比如方法实施例的技术特征可以适用于装置实施例或其他方法实施例,在其他实施例不再一一赘述。
以上实施例中的收发模块或发送单元或发送器可以指在空口上进行发送,可以不是空口上发送,而是发送给其他设备以便于其他设备在空口上发送。以上实施例中的接收模块或接收单元或接收器可以指在空口上进行接收,也可以不是空口上接收,而是通过在空口上进行接收的其他设备处进行接收。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领的技术人员在本申请揭露的技术范围内,可轻易想 到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种传输导频信号的方法,其特征在于,包括:
    发送端设备根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,所述目标时频资源与待传输数据流的总层数对应,其中,所述N种导频图案彼此相异,所述N为大于等于1的自然数;
    所述发送端设备向接收端设备发送指示信息,所述指示信息用于指示所述接收端设备根据所述目标时频资源与所述发送端设备传输所述导频信号。
  2. 根据权利要求1所述的方法,其特征在于,所述发送端设备根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,所述目标时频资源与待传输数据流的总层数对应,包括:
    所述发送端设备从预存的N种导频图案中,确定与所述待传输数据流的总层数对应的目标导频图案,所述目标导频图案用于指示用于传输所述导频信号的所述目标时频资源,其中,所述N根据所述发送端设备所支持的最大传输层数L确定,所述L为大于等于1的自然数。
  3. 根据权利要求2所述的方法,其特征在于,所述发送端设备预存有N个层数组与所述N种导频图案的一一映射关系,所述N个层数组中的第i个层数组所包含的层的数量为大于
    Figure PCTCN2016107440-appb-100001
    且小于等于
    Figure PCTCN2016107440-appb-100002
    的自然数,i∈[1,N],
    Figure PCTCN2016107440-appb-100003
    其中,
    Figure PCTCN2016107440-appb-100004
    表示向上取整,所述C为各传输层之间所采用的正交掩码的码长,所述C取值为2n,n为大于等于1的自然数,以及,
    所述发送端设备从预设的N种导频图案中,确定与所述待传输数据流的总层数对应的目标导频图案,包括:
    所述发送端设备根据所述待传输数据流的总层数,确定对应的层数组;
    所述发送端设备根据所述N个层数组与所述N种导频图案的一一映射关系,从所述预设的N种导频图案中,确定与所述层数组对应的所述目标导频图案。
  4. 根据权利要求2或3所述的方法,其特征在于,所述发送端设备向接收端设备发送指示信息,所述指示信息用于指示所述接收端设备根据所述目标时频资源与所述发送端设备传输所述导频信号,包括:
    所述发送端设备向所述接收端设备发送所述指示信息,所述指示信息具体用于指示用于发射所述导频信号的天线端口号,所述天线端口号由所述发 送端设备根据所述待传输数据流的总层数确定,以使所述接收端设备确定与所述天线端口号对应的所述目标导频图案,以根据所述目标导频图案,确定所述目标时频资源,并根据所述目标时频资源,与所述发送端设备传输所述导频信号,其中,所述发送端设备和所述接收端设备预存有所述N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
  5. 根据权利要求4所述的方法,其特征在于,所述发送端设备向所述接收端设备发送所述指示信息,所述指示信息具体用于指示用于发射所述导频信号的天线端口号,包括:
    所述发送端设备确定承载用于发射所述导频信号的天线端口号的比特位数M1为:
    Figure PCTCN2016107440-appb-100005
    Figure PCTCN2016107440-appb-100006
    表示向上取整;
    所述发送端设备通过所述M1个比特位发送所述指示信息,所述指示信息用于指示发射所述导频信号的天线端口号。
  6. 根据权利要求2或3所述的方法,其特征在于,所述发送端设备向接收端设备发送指示信息,所述指示信息用于指示所述接收端设备根据所述目标时频资源与所述发送端设备传输所述导频信号,包括:
    所述发送端设备向所述接收端设备发送所述指示信息,所述指示信息具体用于指示所述目标导频图案的索引号,所述目标导频图案的索引号由所述发送端设备根据所述待传输数据流的总层数确定,以使所述接收端设备确定与所述目标导频图案的索引号对应的所述目标导频图案,以根据所述目标导频图案,确定所述目标时频资源,并根据所述目标时频资源,与所述发送端设备传输所述导频信号,其中,所述发送端设备和所述接收端设备预存有所述N种导频图案与N个导频图案的索引号的一一映射关系。
  7. 根据权利要求4所述的方法,其特征在于,所述发送端设备向所述接收端设备发送所述指示信息,所述指示信息具体用于指示所述目标导频图案的索引号,包括:
    所述发送端设备确定承载所述目标导频图案的索引号的比特位数M2为:
    Figure PCTCN2016107440-appb-100007
    Figure PCTCN2016107440-appb-100008
    表示向上取整;
    所述发送端设备通过所述M2个比特位发送所述指示信息,所述指示信 息用于指示所述目标导频图案的索引号。
  8. 根据权利要求1所述的方法,其特征在于,所述N种导频图案包括第一导频图案,所述第一导频图案用于指示:待传输数据流的总层数为所述发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个资源单元RE,其中,所述d为每个传输层所对应的导频信号在每个资源块RB对上的密度,所述d为大于等于1的自然数,所述L为大于等于1的自然数,且L=nF·nT,所述nF为所述L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,所述nT为所述L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,所述指示信息包括指示位图,所述目标时频资源包括目标RE,以及,
    所述发送端设备根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,所述目标时频资源与待传输数据流的总层数对应,包括:
    所述发送端设备根据预存的所述第一导频图案,确定用于传输所述导频信号的所述目标RE,所述目标RE与所述待传输数据流的总层数对应;
    所述发送端设备向接收端设备发送指示信息,所述指示信息用于指示所述接收端设备根据所述目标时频资源与所述发送端设备传输所述导频信号,包括:
    所述发送端设备根据预存的第一映射关系图,确定用于传输所述导频信号的所述目标RE在所述指示位图中对应的比特位,其中,所述第一映射关系图用于指示:所述第一导频图案中的d·L个RE与所述指示位图中的比特位的对应关系;
    所述发送端设备向所述接收端设备发送所述指示位图,所述指示位图用于指示所述接收端设备根据所述目标RE与所述发送端设备传输所述导频信号,所述接收端设备预存有所述第一映射关系图。
  9. 根据权利要求8所述的方法,其特征在于,所述指示位图包括一维指示位图,以及,
    所述发送端设备向所述接收端设备发送所述指示位图,包括:
    所述发送端设备确定所述一维指示位图,所述一维指示位图用于指示所述目标RE在第一维度方向上所对应的资源,所述第一维度方向为沿频域资源的方向或者沿时域资源的方向;
    所述发送端设备根据所述L个导频信号在每个RB对上的第一维度方向 上所使用的目标RE的数量,确定用于指示所述目标RE的比特位数M3=L/nF或者M3=L/nT
    所述发送端设备通过所述M3个比特位发送所述一维指示位图。
  10. 根据权利要求8所述的方法,其特征在于,所述指示位图包括二维指示位图,以及,
    所述发送端设备向所述接收端设备发送所述指示位图,包括:
    所述发送端设备确定所述二维指示位图,二维指示位图用于指示所述目标RE在第一维度方向和第二维度方向上所对应的资源,所述第一维度方向为沿频域资源的方向,所述第二维度方向为沿时域资源的方向,或者,所述第一维度方向为沿时域资源的方向,所述第二维度方向为沿频域资源的方向;
    所述发送端设备根据所述L个导频信号在每个RB对中的第一维度方向上所使用的目标RE的数量和第二维度方向上所使用的目标RE的数量,确定用于指示所述目标RE的比特位数为M4=L/nF+L/nT
    所述发送端设备通过所述M4个比特位发送所述二维指示位图。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述发送端设备为网络设备,所述接收端设备为用户设备,或者,
    所述发送端设备为用户设备,所述接收端设备为网络设备。
  12. 一种传输导频信号的方法,其特征在于,包括:
    接收端设备接收发送端设备发送的指示信息;
    所述接收端设备根据所述指示信息,确定用于传输导频信号的目标时频资源,所述目标时频资源由所述发送端设备根据预存的N种导频图案确定,所述目标时频资源与待传输数据流的总层数对应,其中,所述N种导频图案彼此相异,所述N为大于等于1的自然数;
    所述接收端设备根据所述目标时频资源,与所述发送端设备传输所述导频信号。
  13. 根据权利要求12所述的方法,其特征在于,所述指示信息具体用于指示用于发射所述导频信号的天线端口号,以及,
    所述接收端设备根据所述指示信息,确定用于传输导频信号的目标时频资源,包括:
    所述接收端设备根据所述天线端口号,确定目标导频图案,所述发送端 设备和所述接收端设备预存有所述N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N];
    所述接收端设备根据所述目标导频图案,确定所述目标时频资源。
  14. 根据权利要求12所述的方法,其特征在于,所述指示信息具体用于指示目标导频图案的索引号,以及,
    所述接收端设备根据所述指示信息,确定用于传输导频信号的目标时频资源,包括:
    所述接收端设备根据目标导频图案的索引号,确定所述目标导频图案,所述发送端设备和所述接收端设备预存有所述N种导频图案与N个导频图案的索引号的一一映射关系;
    所述接收端设备根据所述目标导频图案,确定所述目标时频资源。
  15. 根据权利要求12所述的方法,其特征在于,所述N种导频图案包括第一导频图案,所述第一导频图案用于指示:待传输数据流的总层数为所述发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个资源单元RE,所述d为每个传输层所对应的导频信号在每个资源块RB对上的密度,所述d为大于等于1的自然数,所述L为大于等于1的自然数,且L=nF·nT,所述nF为所述L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,所述nT为所述L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,所述指示信息包括指示位图,所述目标时频资源包括目标RE,以及,
    所述接收端设备根据所述指示信息,确定用于传输导频信号的目标时频资源,包括:
    所述接收端设备根据所述指示位图和预存的第一映射关系图,确定用于传输所述导频信号的所述目标RE,其中,所述第一映射关系图用于指示:所述第一导频图案中的所述d·L个RE与所述指示位图中的比特位的对应关系,所述发送端设备预存有所述第一映射关系图。
  16. 根据权利要求15所述的方法,其特征在于,所述指示位图包括一维指示位图和二维指示位图,所述一维指示位图用于指示所述目标RE在第一维度方向上所对应的资源,所述二维指示位图用于指示所述目标RE在所述第一维度方向和第二维度方向上所对应的资源,其中,所述第一维度方向 为沿频域资源的方向,所述第二维度方向为沿时域资源的方向,或者,所述第一维度方向为沿时域资源的方向,所述第二维度方向为沿频域资源的方向。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述发送端设备为网络设备,所述接收端设备为用户设备,或者,
    所述发送端设备为用户设备,所述接收端设备为网络设备。
  18. 一种传输导频信号的装置,其特征在于,包括:
    确定模块,用于根据预存的N种导频图案,确定用于传输导频信号的目标时频资源,所述目标时频资源与待传输数据流的总层数对应,其中,所述N种导频图案彼此相异,所述N为大于等于1的自然数;
    收发模块,用于向接收端设备发送指示信息,所述指示信息用于指示所述接收端设备根据所述目标时频资源与所述装置传输所述导频信号。
  19. 根据权利要求18所述的装置,其特征在于,所述确定模块具体用于从所述预存的N种导频图案中,确定与所述待传输数据流的总层数对应的目标导频图案,所述目标导频图案用于指示所述目标时频资源,其中,所述N根据所述装置所支持的最大传输层数L确定,所述L为大于等于1的自然数。
  20. 根据权利要求19所述的装置,其特征在于,所述确定模块具体用于根据所述待传输数据流的总层数,确定对应的层数组,并根据所述N种导频图案与N个层数组的一一映射关系,确定与所述层数组对应的所述目标导频图案,
    其中,所述装置预存有所述N种导频图案与N个层数组的一一映射关系,所述N个层数组中的第i个层数组所包含的层的数量为大于
    Figure PCTCN2016107440-appb-100009
    Figure PCTCN2016107440-appb-100010
    且小于等于
    Figure PCTCN2016107440-appb-100011
    的自然数,i∈[1,N],
    Figure PCTCN2016107440-appb-100012
    Figure PCTCN2016107440-appb-100013
    表示向上取整,所述C为各传输层之间所采用的正交掩码的码长,所述C取值为2n,n为大于等于1的自然数。
  21. 根据权利要求19或20所述的装置,其特征在于,所述收发模块具体用于向所述接收端设备发送用于指示天线端口号的指示信息,所述天线端口号为用于发射所述导频信号的天线端口的端口号,所述天线端口号由所述确定模块根据所述待传输数据流的总层数确定,以使所述接收端设备确定与所述天线端口号相对应的所述目标导频图案,以根据所述目标导频图案,确 定所述目标时频资源,并根据所述目标时频资源,与所述装置传输所述导频信号,
    其中,所述装置和所述接收端设备预存有所述N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
  22. 根据权利要求21所述的装置,其特征在于,所述确定模块还用于确定承载所述天线端口号的比特位数M1为:
    Figure PCTCN2016107440-appb-100014
    Figure PCTCN2016107440-appb-100015
    表示向上取整;
    所述收发模块具体用于通过所述M1个比特位发送所述指示信息,所述指示信息用于指示所述天线端口号。
  23. 根据权利要求19或20所述的装置,其特征在于,所述收发模块具体用于发送用于指示所述目标导频图案的索引号的指示信息,所述目标导频图案的索引号由所述装置根据所述待传输数据流的总层数确定,以使所述接收端设备确定与所述目标导频图案的索引号对应的所述目标导频图案,以根据所述目标导频图案,确定所述目标时频资源,并根据所述目标时频资源,与所述装置传输所述导频信号,
    其中,所述装置和所述接收端设备预存有所述N种导频图案与N个导频图案的索引号的一一映射关系。
  24. 根据权利要求23所述的装置,其特征在于,所述确定模块还用于确定承载所述目标导频图案的索引号的比特位数M2为:
    Figure PCTCN2016107440-appb-100016
    Figure PCTCN2016107440-appb-100017
    表示向上取整;
    所述收发模块具体用于通过所述M2个比特位发送所述指示信息,所述指示信息用于指示所述目标导频图案的索引号。
  25. 根据权利要求18所述的装置,其特征在于,所述确定模块具体用于根据预存的第一导频图案,确定用于传输所述导频信号的目标资源单元RE,所述目标时频资源包括所述目标RE,其中,所述N种导频图案包括所述第一导频图案,所述第一导频图案用于指示:待传输数据流的总层数为所述装置所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个RE,所述d为每个传输层所对应的导频信号在每个资源块RB对上的密度,所述d为大于等于1的自然数,所述L为大于等于1的自然数,且L=nF·nT,所述nF为所述L个导频信号在每个RB对上沿频域资源的方向所 使用的RE的数量,所述nT为所述L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量,所述指示信息包括指示位图,所述目标时频资源包括目标RE;
    所述确定模块具体用于根据预存的第一映射关系图,确定所述目标RE在指示位图中对应的比特位,其中,所述第一映射关系图用于指示:所述第一导频图案中的所述d·L个RE与所述指示位图中的比特位的对应关系;
    所述收发模块具体用于向所述接收端设备发送所述指示位图,所述指示位图用于指示所述接收端设备根据所述目标RE与所述装置传输所述导频信号,所述接收端设备预存有所述第一映射关系图。
  26. 根据权利要求25所述的装置,其特征在于,所述确定模块具体用于确定一维指示位图,所述一维指示位图用于指示所述目标RE在第一维度方向上所对应的资源,并根据所述L个导频信号在每个RB对上的第一维度方向上所使用的目标RE的数量,确定用于指示所述目标RE的比特位数M3=L/nF或者M3=L/nT,所述第一维度方向为沿频域资源的方向或者沿时域资源的方向;
    所述收发模块具体用于通过所述M3个比特位发送所述一维指示位图。
  27. 根据权利要求25所述的装置,其特征在于,所述确定模块具体用于确定二维指示位图,所述二维指示位图用于指示所述目标RE在第一维度方向和第二维度方向上所对应的资源,并根据所述L个导频信号在每个RB对中的第一维度方向上所使用的目标RE的数量和第二维度方向上所使用的目标RE的数量,确定用于指示所述目标RE的比特位数为M4=L/nF+L/nT,所述第一维度方向为沿频域资源的方向,所述第二维度方向为沿时域资源的方向,或者,所述第一维度方向为沿时域资源的方向,所述第二维度方向为沿频域资源的方向;
    所述收发模块具体用于通过所述所述M4个比特位发送所述二维指示位图。
  28. 根据权利要求18至27中任一项所述的装置,其特征在于,所述装置为网络设备,所述接收端设备为用户设备,或者,
    所述装置为用户设备,所述接收端设备为网络设备。
  29. 一种传输导频信号的装置,其特征在于,包括:
    收发模块,用于接收发送端设备发送的指示信息;
    确定模块,用于根据所述指示信息,确定用于传输导频信号的目标时频资源,所述目标时频资源由所述发送端设备根据预存的N种导频图案确定,所述目标时频资源与待传输数据流的总层数对应,其中,所述N种导频图案彼此相异,所述N为大于等于1的自然数;
    所述收发模块还用于根据所述目标时频资源,与所述发送端设备传输所述导频信号。
  30. 根据权利要求29所述的装置,其特征在于,所述确定模块具体用于根据所述指示信息所指示的发射所述导频信号的天线端口号,确定目标导频图案,并根据所述目标导频图案,确定所述目标时频资源,
    其中,所述发送端设备和所述装置预存有所述N种导频图案与N个天线端口号组的一一映射关系,第i个端口号组中的任意一个天线端口号用于唯一地指示第i种导频图案,i∈[1,N]。
  31. 根据权利要求29所述的装置,其特征在于,所述确定模块具体用于根据所述指示信息所指示的目标导频图案的索引号,确定所述目标导频图案,并根据所述目标导频图案,确定所述目标时频资源,
    其中,所述发送端设备和所述装置预存有所述N种导频图案与N个导频图案的索引号的一一映射关系。
  32. 根据权利要求29所述的装置,其特征在于,所述确定模块具体用于根据所述指示信息所指示的指示位图和预存的第一映射关系图,确定用于传输所述导频信号的目标资源单元RE,所述目标时频资源包括所述目标RE,
    其中,所述N种导频图案包括第一导频图案,所述第一导频图案用于指示:待传输数据流的总层数为所述发送端设备所支持的最大传输层数L时,预先配置的用于传输L个导频信号的d·L个RE,所述第一映射关系图用于指示:所述第一导频图案中的所述d·L个RE与所述指示位图中的比特位的对应关系,其中,所述d为每个传输层所对应的导频信号在每个资源块RB对上的密度,所述d为大于等于1的自然数,所述L为大于等于1的自然数,且L=nF·nT,所述nF为所述L个导频信号在每个RB对上沿频域资源的方向所使用的RE的数量,所述nT为所述L个导频信号在每个RB对上沿时域资源的方向所使用的RE的数量。
  33. 根据权利要求29至32中的任一项所述的装置,其特征在于,所述 发送端设备为网络设备,所述装置为用户设备,或者,
    所述发送端设备为用户设备,所述装置为网络设备。
PCT/CN2016/107440 2016-02-03 2016-11-28 传输导频信号的方法和装置 WO2017133306A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16889113.3A EP3396886B9 (en) 2016-02-03 2016-11-28 Method and apparatus for transmitting pilot signal
US16/053,185 US10680773B2 (en) 2016-02-03 2018-08-02 Method and apparatus for transmitting pilot signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610069267.5 2016-02-03
CN201610069267.5A CN107040345B (zh) 2016-02-03 2016-02-03 传输导频信号的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/053,185 Continuation US10680773B2 (en) 2016-02-03 2018-08-02 Method and apparatus for transmitting pilot signal

Publications (1)

Publication Number Publication Date
WO2017133306A1 true WO2017133306A1 (zh) 2017-08-10

Family

ID=59499364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107440 WO2017133306A1 (zh) 2016-02-03 2016-11-28 传输导频信号的方法和装置

Country Status (4)

Country Link
US (1) US10680773B2 (zh)
EP (1) EP3396886B9 (zh)
CN (1) CN107040345B (zh)
WO (1) WO2017133306A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029338A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种信息传输方法及装置
US11374708B2 (en) * 2017-11-14 2022-06-28 Huawei Technologies Co., Ltd. Communication method and communications apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565433B (zh) * 2016-07-28 2021-01-08 Oppo广东移动通信有限公司 传输导频信号的方法、终端设备和网络侧设备
CN110690915B (zh) * 2016-11-01 2022-11-25 极光技术咨询有限责任公司 一种用于多天线系统的ue、基站中的方法和装置
CN108282308B (zh) * 2017-01-06 2022-10-14 中兴通讯股份有限公司 参考信号的处理方法及装置、设备
WO2018134850A1 (en) * 2017-01-20 2018-07-26 Wisig Networks Private Limited Method and system for providing code cover to ofdm symbols in multiple user system
US10009832B1 (en) * 2017-08-11 2018-06-26 At&T Intellectual Property I, L.P. Facilitating compact signaling design for reserved resource configuration in wireless communication systems
WO2019047090A1 (zh) * 2017-09-07 2019-03-14 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN114844617A (zh) * 2018-02-09 2022-08-02 大唐移动通信设备有限公司 一种资源指示、确定方法及装置
CN110166194B (zh) * 2018-02-12 2020-09-08 华为技术有限公司 一种导频信号生成方法及装置
CN110166204B (zh) * 2018-02-14 2022-01-14 成都华为技术有限公司 资源分配的方法和装置
CN110351008B (zh) * 2018-04-04 2020-10-02 北京紫光展锐通信技术有限公司 上行时频资源集合的配置、接收方法及装置
US11438115B2 (en) * 2019-08-16 2022-09-06 Qualcomm Incorporated Reference signals for narrowband communications
WO2021253210A1 (en) * 2020-06-16 2021-12-23 Qualcomm Incorporated Methods and apparatus for space-frequency-time diversity
CN113079118B (zh) * 2021-03-23 2023-01-24 展讯通信(上海)有限公司 基于occ序列分组的信道估计方法及装置、存储介质、计算机设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707511A (zh) * 2009-11-18 2010-05-12 中兴通讯股份有限公司 传输方式的指示方法及装置
CN101795189A (zh) * 2010-01-07 2010-08-04 中兴通讯股份有限公司 一种两层分配方法和基站
WO2015069180A1 (en) * 2013-11-08 2015-05-14 Telefonaktiebolaget L M Ericsson (Publ) Facilitating blind detection of pilot sequences in a wireless communication network

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090373A1 (en) * 2009-02-05 2010-08-12 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
CN101702638B (zh) * 2009-11-02 2015-06-03 中兴通讯股份有限公司 传输方式的指示方法及装置
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
US9001779B2 (en) * 2010-04-21 2015-04-07 Lg Electronics Inc. Method for transmitting pilot signal for machine to machine communication in wireless communication system and apparatus thereof
CN104702387B (zh) * 2013-12-05 2018-04-10 华为技术有限公司 导频信号发送、接收方法及装置
WO2015188355A1 (zh) 2014-06-12 2015-12-17 华为技术有限公司 一种资源分配方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707511A (zh) * 2009-11-18 2010-05-12 中兴通讯股份有限公司 传输方式的指示方法及装置
CN101795189A (zh) * 2010-01-07 2010-08-04 中兴通讯股份有限公司 一种两层分配方法和基站
WO2015069180A1 (en) * 2013-11-08 2015-05-14 Telefonaktiebolaget L M Ericsson (Publ) Facilitating blind detection of pilot sequences in a wireless communication network

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029338A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种信息传输方法及装置
CN109391448A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种信息传输方法及装置
US11343045B2 (en) 2017-08-11 2022-05-24 Huawei Technologies Co., Ltd. Information transmission method and apparatus
US11374708B2 (en) * 2017-11-14 2022-06-28 Huawei Technologies Co., Ltd. Communication method and communications apparatus

Also Published As

Publication number Publication date
EP3396886B1 (en) 2022-04-13
EP3396886A4 (en) 2018-12-05
CN107040345B (zh) 2020-12-18
EP3396886B9 (en) 2022-06-22
EP3396886A1 (en) 2018-10-31
CN107040345A (zh) 2017-08-11
US10680773B2 (en) 2020-06-09
US20180367274A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017133306A1 (zh) 传输导频信号的方法和装置
WO2019158005A1 (zh) 下行控制信息传输方法
KR102290270B1 (ko) 복조 참조 신호들의 밀도를 적응시키기 위한 방법들
JP7227297B2 (ja) データ通信方法、端末、および基地局
WO2016201739A1 (zh) 资源调度的方法、装置和设备
AU2021203293B2 (en) System and method for demodulation reference signal overhead reduction
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
WO2018127071A1 (zh) 一种发送参考信号的方法和通信设备
WO2018126870A1 (en) Resource block waveform transmission structures for uplink communications
WO2020029949A1 (zh) 时域资源配置方法
WO2018137460A1 (zh) 一种参考信号配置方法、基站和终端
WO2022082689A1 (zh) 一种传输信号的方法及装置
CN107733617B (zh) 参考信号映射方法及装置
WO2019015468A1 (zh) 数据传输方法、网络设备和终端设备
WO2017181996A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
CN107615852A (zh) 资源调度的方法、装置和设备
CN116530133A (zh) 处理下行信号的方法及装置
WO2019214737A1 (zh) 一种通信方法及装置
WO2018201830A1 (zh) 资源配置方法、装置、存储介质及处理器
WO2022252954A1 (zh) 资源配置的方法及装置
CN110166209B (zh) 下行控制信息传输方法
CN115913497A (zh) 传输解调参考信号的方法、节点和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016889113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889113

Country of ref document: EP

Effective date: 20180725

NENP Non-entry into the national phase

Ref country code: DE