WO2019047090A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019047090A1
WO2019047090A1 PCT/CN2017/100833 CN2017100833W WO2019047090A1 WO 2019047090 A1 WO2019047090 A1 WO 2019047090A1 CN 2017100833 W CN2017100833 W CN 2017100833W WO 2019047090 A1 WO2019047090 A1 WO 2019047090A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time
resource block
frequency resource
information
Prior art date
Application number
PCT/CN2017/100833
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201780093852.1A priority Critical patent/CN110999166B/zh
Priority to PCT/CN2017/100833 priority patent/WO2019047090A1/zh
Publication of WO2019047090A1 publication Critical patent/WO2019047090A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to a method and apparatus for transmitting wireless signals in a wireless communication system, and more particularly to a method and apparatus for transmitting wireless signals in a wireless communication system supporting a cellular network.
  • PTRS Phase-Tracking Reference Signal
  • DMRS Demodulation Reference Signal
  • one PTRS port is related to one DMRS port in one DMRS port group, and The PTRS port is carried on one subcarrier corresponding to the DMRS port in a given RB (Resource Block).
  • the number of uplink PTRS ports is related to the number of uplink DMRS port groups and the number of oscillators of the radio frequency channel used by the UE side to transmit the uplink DMRS.
  • the number of downlink PTRS ports is related to the number of downlink DMRS port groups and the number of oscillators of the radio frequency channel used by the base station side to transmit the downlink DMRS.
  • the PTRS is also related to the MCS (Modulation and Coding Scheme) and the scheduling bandwidth allocated for data transmission. Only when the value of the MCS and the scheduling bandwidth are within a certain range, the PTRS is sent, otherwise the PTRS is not sent.
  • MCS Modulation and Coding Scheme
  • the inventors have found through research that in the NR system, when the number of uplink DMRS port groups is 2, whether the two sets of DMRS ports can share one uplink PTRS port is related to the number of oscillators used by the UE side to transmit the two sets of DMRSs. At this time, if the base station cannot know whether the RF channel used by the two sets of DMRSs on the UE side is a common oscillator, in order to ensure For channel estimation performance, the base station needs to configure two uplink PTRS ports corresponding to the two sets of DMRS ports.
  • the phase noise corresponding to the two sets of DMRSs can be considered to be the same, so only one uplink PTRS port needs to be configured, thereby reducing pilot overhead and improving system performance. Therefore, how to get the base station to obtain the oscillator-related information on the UE side is a problem to be solved.
  • the NR system supports mini-slot, URL-LC (Ultra-Reliable and Low Latency Communications) services, unlicensed uplink transmission, and dynamic TDD, the interference changes are compared with the conventional one.
  • the LTE system may be faster, so for more accurate interference information, the pilots used for interference measurements need to be denser in the time domain and sparse in the frequency domain.
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment for wireless communication, which includes:
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; a pattern and a pattern of any one of the G sub-signals in the first time-frequency resource block
  • the phase tracking reference signal transmitted by the one antenna port has the same pattern in the first time-frequency resource block; the user equipment transmits only the first reference signal in the first time-frequency resource block and the first The number of subcarriers occupied by the reference signal in the first time-frequency resource block is greater than 1, or the user equipment sends only the first reference signal and the a first wireless signal; the first wireless signal is transmitted by K antenna ports, and any one of the G antenna ports is independent of any one of the K antenna ports;
  • the frequency resource block includes F consecutive subcarriers in the frequency domain, and includes L consecutive multicarrier symbols in the time domain, the F is a positive integer greater than or equal to 1, and the L is a positive integer greater than 1.
  • the G is a positive integer.
  • the above method has the advantage that it is associated with the phase tracking reference signal.
  • the DMRS is strongly correlated, and the first reference signal may not depend on the first wireless signal that is simultaneously transmitted in the first time-frequency resource block, and the first wireless signal may be at least in the ⁇ DMRS, data, sounding reference signal ⁇
  • the above method is characterized by comprising:
  • the second wireless signal includes at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is reception, or the second wireless signal includes a sounding reference signal and the operation is a transmission;
  • the resource particles occupied by the second wireless signal are outside the first time-frequency resource block;
  • the first information is used to determine that the first reference signal is spatially related to the second wireless signal;
  • the second information is used to determine a pattern of the G sub-signals in the first time-frequency resource block.
  • the above method is characterized by comprising:
  • the third information is used to determine H candidate patterns
  • the second information is used to determine G candidate patterns from the H candidate patterns
  • the G sub-signals at the first time-frequency are respectively the G candidate patterns
  • the H is a positive integer greater than the G
  • a pattern of any one of the H candidate patterns in the first time-frequency resource block The phase tracking reference signal transmitted by one antenna port has the same pattern in the first time-frequency resource block.
  • the above method is characterized in that the second information implicitly indicates a pattern of the G sub-signals in the first time-frequency resource block.
  • the above method is advantageous in that a method similar to the pattern of the phase tracking reference signal is used to implicitly indicate the pattern of the G sub-signals in the first time-frequency resource block, which can minimize the standard change.
  • the above method is characterized by comprising:
  • the fourth information is used to determine that a transmit antenna port of the first phase tracking reference signal is associated with a transmit antenna port of the first demodulation reference signal, and the first reference signal is used to determine the Fourth information.
  • the foregoing method is advantageous in that the base station can obtain the phase noise corresponding to the antenna ports of the G antenna ports by using the phase noise measurement of the G sub-signals respectively transmitted by the G antenna ports, that is, the oscillation.
  • the devices are identical, and this information is used to determine the PTRS antenna port corresponding to the antenna port of the DMRS.
  • another advantage of the above method is that the UE does not need to report the number of oscillators on the UE side to the base station, and the correspondence between the antenna port of the uplink wireless signal and the oscillator.
  • the above method is characterized in that the first reference signal is used for interference measurement.
  • the above method has the advantage that since the pattern of the PTRS has the characteristics of dense time domain and sparse frequency domain, it is suitable for being used for interference measurement under the condition of rapid interference change, thereby obtaining more accurate interference information, thereby Improve demodulation performance or link adaptation performance.
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; a pattern and a pattern of any one of the G sub-signals in the first time-frequency resource block
  • the phase tracking reference signal transmitted by the one antenna port has the same pattern in the first time-frequency resource block; the sender of the first reference signal transmits only the first reference in the first time-frequency resource block Signaling, and the number of subcarriers occupied by the first reference signal in the first time-frequency resource block is greater than 1, or the sender of the first reference signal is only in the first time-frequency resource block Transmitting the first reference signal and the first wireless signal;
  • the first wireless signal is sent by K antenna ports, any one of the G antenna ports and any one of the K antenna ports
  • An antenna port is independent;
  • the first time-frequency resource block includes F consecutive subcarriers in a frequency domain, and includes L consecutive multicarrier symbols in a time domain, where F is a positive integer greater than or equal to 1.
  • the L is a positive
  • the above method is characterized by comprising:
  • the second wireless signal includes at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is a transmission, or the second wireless signal includes a sounding reference signal and the operation is reception;
  • the resource particles occupied by the second wireless signal are outside the first time-frequency resource block;
  • the first information is used to determine that the first reference signal is spatially related to the second wireless signal;
  • the second information is used to determine a pattern of the G sub-signals in the first time-frequency resource block.
  • the above method is characterized by comprising:
  • the third information is used to determine H candidate patterns
  • the second information is used to determine G candidate patterns from the H candidate patterns
  • the G sub-signals at the first time-frequency are respectively the G candidate patterns
  • the H is a positive integer greater than the G
  • a pattern of any one of the H candidate patterns in the first time-frequency resource block The phase tracking reference signal transmitted by one antenna port has the same pattern in the first time-frequency resource block.
  • the above method is characterized in that the second information implicitly indicates a pattern of the G sub-signals in the first time-frequency resource block.
  • the above method is characterized by comprising:
  • the fourth information is used to determine that a transmit antenna port of the first phase tracking reference signal is associated with a transmit antenna port of the first demodulation reference signal, and the first reference signal is used to determine the Fourth information.
  • the above method is characterized in that the first reference signal is used for interference measurement.
  • the present application discloses a user equipment for wireless communication, which includes:
  • a first transmitter module transmitting at least the former of the ⁇ first reference signal, the first wireless signal ⁇ in the first time-frequency resource block;
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; a pattern and a pattern of any one of the G sub-signals in the first time-frequency resource block
  • the phase tracking reference signal transmitted by the one antenna port has the same pattern in the first time-frequency resource block; the user equipment transmits only the first reference signal in the first time-frequency resource block and the first The number of subcarriers occupied by the reference signal in the first time-frequency resource block is greater than 1, or the user equipment sends only the first reference signal and the a first wireless signal; the first wireless signal is transmitted by K antenna ports, and any one of the G antenna ports is independent of any one of the K antenna ports;
  • the frequency resource block includes F consecutive subcarriers in the frequency domain, and includes L consecutive multicarrier symbols in the time domain, the F is a positive integer greater than or equal to 1, and the L is a positive integer greater than 1.
  • the G is a positive integer.
  • the foregoing user equipment is characterized in that the user equipment includes:
  • a first transceiver module operable to operate the second wireless signal
  • a first receiver module receiving the first information and the second information
  • the second wireless signal includes at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is reception, or the second wireless signal includes a sounding reference signal and the operation is a transmission;
  • the resource particles occupied by the second wireless signal are outside the first time-frequency resource block;
  • the first information is used to determine that the first reference signal is spatially related to the second wireless signal;
  • the second information is used to determine a pattern of the G sub-signals in the first time-frequency resource block.
  • the user equipment is characterized in that the first receiver module further receives third information; the third information is used to determine H candidate patterns, and the second information is used to Among the H candidate patterns, G candidate patterns are determined, the patterns of the G sub-signals in the first time-frequency resource block are respectively the G candidate patterns, and the H is a positive integer greater than the G, The pattern of any one of the H candidate patterns in the first time-frequency resource block and the phase tracking reference signal transmitted by one antenna port are the same in the first time-frequency resource block.
  • the foregoing user equipment is characterized in that the second information is implicit a pattern indicating the G sub-signals in the first time-frequency resource block.
  • the foregoing user equipment is characterized in that the first receiver module further receives fourth information, and the first transmitter module further sends a first phase tracking reference signal and a second time in the second time-frequency resource block. Demodulating a reference signal; the fourth information is used to determine a transmit antenna port of the first phase tracking reference signal and a transmit antenna port of the first demodulation reference signal, the first reference signal being used The fourth information is determined.
  • the above user equipment is characterized in that the first reference signal is used for interference measurement.
  • the present application discloses a base station device for wireless communication, which includes:
  • a second receiver module receiving at least the former of the ⁇ first reference signal, the first wireless signal ⁇ in the first time-frequency resource block;
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; a pattern and a pattern of any one of the G sub-signals in the first time-frequency resource block
  • the phase tracking reference signal transmitted by the one antenna port has the same pattern in the first time-frequency resource block; the sender of the first reference signal transmits only the first reference in the first time-frequency resource block Signaling, and the number of subcarriers occupied by the first reference signal in the first time-frequency resource block is greater than 1, or the sender of the first reference signal is only in the first time-frequency resource block Transmitting the first reference signal and the first wireless signal;
  • the first wireless signal is sent by K antenna ports, any one of the G antenna ports and any one of the K antenna ports
  • An antenna port is independent;
  • the first time-frequency resource block includes F consecutive subcarriers in a frequency domain, and includes L consecutive multicarrier symbols in a time domain, where F is a positive integer greater than or equal to 1.
  • the L is a positive
  • the foregoing base station device is characterized in that:
  • a second transceiver module operable to operate the second wireless signal
  • a second transmitter module transmitting the first information and the second information
  • the second wireless signal includes at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is a transmission, or the second wireless signal includes a sounding reference signal and the operation is reception;
  • the resource particles occupied by the second wireless signal are in the Excluding the first time-frequency resource block;
  • the first information is used to determine that the first reference signal is spatially related to the second wireless signal;
  • the second information is used to determine that the G sub-signals are in The pattern in the first time-frequency resource block is described.
  • the foregoing base station device is characterized in that the second transmitter module further transmits third information; the third information is used to determine H candidate patterns, and the second information is used to Among the H candidate patterns, G candidate patterns are determined, the patterns of the G sub-signals in the first time-frequency resource block are respectively the G candidate patterns, and the H is a positive integer greater than the G, The pattern of any one of the H candidate patterns in the first time-frequency resource block and the phase tracking reference signal transmitted by one antenna port are the same in the first time-frequency resource block.
  • the foregoing base station device is characterized in that the second information implicitly indicates a pattern of the G sub-signals in the first time-frequency resource block.
  • the foregoing base station device is characterized in that the second transmitter module further sends fourth information, and the second receiver module further receives the first phase tracking reference signal and the second time in the second time-frequency resource block. Demodulating a reference signal; the fourth information is used to determine a transmit antenna port of the first phase tracking reference signal and a transmit antenna port of the first demodulation reference signal, the first reference signal being used The fourth information is determined.
  • the above base station device is characterized in that the first reference signal is used for interference measurement.
  • the present application has the following main technical advantages over the prior art:
  • the base station can obtain the phase noise measurement of the G sub-signals respectively transmitted by the G antenna ports, and know which antenna ports of the G antenna ports correspond to the same oscillator, and then use this information to determine the DMRS antenna.
  • the UE is not required to report the number of oscillators on the UE side to the base station, and the correspondence between the antenna port of the uplink wireless signal and the oscillator.
  • the pattern of PTRS has the characteristics of dense time domain and sparse frequency domain, it is suitable for interference measurement under the condition of fast interference variation, and can obtain more accurate interference information, thereby improving demodulation performance or link adaptation. performance.
  • FIG. 1 shows a flow chart of a first reference signal and a first wireless signal in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIGS. 7A-7J are schematic diagrams showing patterns of G sub-signals in a first time-frequency resource block, respectively, according to an embodiment of the present application.
  • FIGS. 8A-8B are schematic views respectively showing second information according to an embodiment of the present application.
  • 9A-9D respectively illustrate schematic diagrams of transmitting a first phase tracking reference signal and a first demodulation reference signal in a second time-frequency resource block, in accordance with an embodiment of the present application
  • FIG. 10 shows a schematic diagram of a first reference signal being used for interference measurement in accordance with an embodiment of the present application
  • FIG. 11 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • Figure 12 is a block diagram showing the structure of a processing device for use in a base station device in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first reference signal and a first wireless signal, as shown in FIG.
  • the user equipment in the application sends at least the former of the ⁇ first reference signal, the first wireless signal ⁇ in the first time-frequency resource block.
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; a pattern and a pattern of any one of the G sub-signals in the first time-frequency resource block
  • the phase tracking reference signal transmitted by the one antenna port has the same pattern in the first time-frequency resource block; the user equipment transmits only the first reference signal in the first time-frequency resource block and the first The number of subcarriers occupied by the reference signal in the first time-frequency resource block is greater than 1, or the user equipment sends only the first reference signal and the a first wireless signal; the first wireless signal is transmitted by K antenna ports, and any one of the G antenna ports is independent of any one of the K antenna ports;
  • the frequency resource block includes F consecutive subcarriers in the frequency domain, and includes L consecutive multicarrier symbols in the time domain, the F is a positive integer greater than or equal to 1, and the
  • all resource elements (REs) occupied by the user equipment in the first time interval belong to the first time-frequency resource block, and the first time interval is the The time domain resource occupied by the first time-frequency resource block.
  • the G is 1.
  • the G is configurable.
  • the phase tracking reference signal is a PTRS (Phase-Tracking Reference Signal).
  • any one of the G antenna ports and any one of the K antenna ports is independent of the wireless signal transmitted on any one of the K antenna ports.
  • the small-scale channel parameters experienced cannot be used to infer the small-scale channel parameters experienced by the wireless signals transmitted on any of the G antenna ports.
  • any one of the G antenna ports and any one of the K antenna ports is independent of a wireless signal sent by any one of the G antenna ports.
  • the wireless signal transmitted on any one of the K antenna ports is not spatially correlated.
  • any one of the G antenna ports and any one of the K antenna ports is independent of any one of the G antenna ports. It is intended that the transmit beam on one of the antenna ports and the one of the K antenna ports is different.
  • any one of the G antenna ports and any one of the K antenna ports is independent of any one of the G antenna ports and the K The precoding vector on any one of the antenna ports is different.
  • any one of the G antenna ports and any one of the K antenna ports is independent of any one of the G antenna ports and the K Any one of the antenna ports is considered not to be QCL (Quasi Co-Located).
  • the two antenna ports are considered to be QCL.
  • the two antenna ports are considered not to be QCL.
  • the large-scale fading parameter includes at least one of ⁇ Doppler spread, Doppler shift ⁇ .
  • the large scale fading parameter includes a maximum multipath delay.
  • the pattern of the G sub-signals in the first time-frequency resource block is composed of all resource particles occupied by the first reference signal in the first time-frequency resource block.
  • the G is greater than 1, and at least two sub-signals of the G sub-signals have different patterns in the first time-frequency resource block.
  • the pattern of the wireless signal in the first time-frequency resource block is a time-frequency position of all resource particles occupied by the wireless signal in the first time-frequency resource block.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single-Carrier Frequency-Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the multi-carrier symbol is FBMC (Filter Bank Multi Carrier, filter group multi-carrier) symbol.
  • the first wireless signal is at least one of ⁇ Demodulation Reference Signal (DMRS), data, Sounding Reference Signal (SRS).
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • the F is equal to 12N and the N is a positive integer.
  • the L is one of ⁇ 14, 13, 12, 11 ⁇ .
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, Wearable device, or any other similar feature device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, MP3 players
  • cameras game consoles, drones, aircraft, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, Wearable device, or any other similar feature device.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME 211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including at the P-GW 213 that terminates on the network side.
  • Network layer eg, IP layer
  • application layer terminated at the other end of the connection (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first reference signal in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the first information in the present application is generated by the PHY 301.
  • the first information in the present application is generated in the MAC sub-layer 302.
  • the first information in this application is generated in the RRC sublayer 306.
  • the second information in the present application is generated by the PHY 301.
  • the second information in the application is generated in the MAC sub- Layer 302.
  • the second information in this application is generated in the RRC sublayer 306.
  • the third information in the present application is generated in the MAC sublayer 302.
  • the third information in this application is generated in the RRC sublayer 306.
  • the fourth information in the present application is generated by the PHY 301.
  • the fourth information in the present application is generated in the MAC sub-layer 302.
  • the fourth information in this application is generated in the RRC sublayer 306.
  • the first phase tracking reference signal in the present application is generated by the PHY 301.
  • the first demodulation reference signal in the present application is generated by the PHY 301.
  • Embodiment 4 illustrates a schematic diagram of an evolved node and a UE, as shown in FIG.
  • DL Downlink
  • the upper layer packet from the core network is provided to controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • Signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM) mapping to signal clusters.
  • modulation schemes eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM) mapping to signal clusters.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • M-PSK M Phase shift keying
  • M-QAM M quadrature amplitude modulation
  • Multi-carrier streams are spatially pre-coded to produce multiple spatial streams. Each spatial stream is then provided to a different antenna 420 via a transmitter 418. Each transmitter 418 modulates the RF carrier with a respective spatial stream for transmission.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the RF carrier and provides the information to the receive processor 456.
  • Receive processor 456 implements various signal processing functions of the L1 layer. Receive processor 456 performs spatial processing on the information to recover any spatial streams destined for UE 450. If multiple spatial streams are destined for the UE 450, they may be combined by the receive processor 456 into a single multi-carrier symbol stream.
  • Receive processor 456 then converts the multicarrier symbol stream from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the frequency domain signal includes a separate multicarrier symbol stream for each subcarrier of the multicarrier signal.
  • the symbols on each subcarrier and the reference signal are recovered and demodulated by determining the most likely signal cluster point transmitted by gNB 410 and generate a soft decision.
  • the soft decision is then decoded and deinterleaved to recover the data and control signals originally transmitted by the gNB 410 on the physical channel.
  • the data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the L2 layer.
  • the controller/processor can be associated with a memory 460 that stores program codes and data.
  • Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover the upper layer packets from the core network.
  • the upper layer package is then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide the upper layer packet to controller/processor 459. Data source 467 represents all protocol layers above the L2 layer.
  • controller/processor 459 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels through gNB 410 based radio resource allocation. Use to implement the L2 layer for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the appropriate encoding and modulation scheme is selected by the transmit processor 468 and spatial processing is facilitated.
  • the spatial streams generated by transmit processor 468 are provided to different antennas 452 via separate transmitters 454. Each transmitter 454 modulates the RF carrier with a respective spatial stream for transmission.
  • Each receiver 418 receives a signal through its respective antenna 420.
  • Each receiver 418 recovers the information modulated onto the RF carrier and provides the information to the receive processor 470.
  • Receive processor 470 can implement the L1 layer.
  • the controller/processor 475 implements the L2 layer.
  • Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover the upper layer packets from the UE 450.
  • An upper layer packet from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: operating the Determining a second wireless signal, the second wireless signal comprising at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is receiving, or the second wireless signal includes a sounding reference signal and the The operation is to send; receive the first information in the application; receive the second information in the application; receive the third information in the application; and send the first reference signal in the application, At least the former of the first wireless signal ⁇ ; receiving the fourth information in the present application; transmitting the first phase tracking reference signal and the first demodulation reference signal in the present application.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: operating the Determining a second wireless signal, the second wireless signal comprising at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is transmitting, or the second wireless signal includes a sounding reference signal and the Operation is Receiving; transmitting the first information in the application; transmitting the second information in the application; transmitting the third information in the application; receiving the first reference signal in the application, At least the former of the first wireless signal ⁇ ; transmitting the fourth information in the present application; receiving the first phase tracking reference signal and the first demodulation reference signal in the present application.
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • the transmitter 454 (including the antenna 452), at least two of the transmit processor 468 and the controller/processor 459 are used to transmit ⁇ the first in the present application
  • the transmitter 454 (including the antenna 452), at least two of the transmit processor 468 and the controller/processor 459 are used to transmit ⁇ the first in the present application
  • the transmitter 454 (including the antenna 452), at least two of the transmit processor 468 and the controller/processor 459 are used to transmit the second wireless in the present application.
  • the transmitter 418 (including the antenna 420), at least two of the transmit processor 416 and the controller/processor 475 are used to transmit the second wireless in the present application.
  • Signal, the receiver 454 (including the antenna 452), at least two of the receive processor 456 and the controller/processor 459 are used to receive the second wireless signal in the present application.
  • the transmitter 418 (including the antenna 420), at least two of the transmit processor 416 and the controller/processor 475 are used to transmit the first information in the present application.
  • the receiver 454 (including the antenna 452), the receiving processor At least two of the 456 and the controller/processor 459 are used to receive the first information in the present application.
  • the transmitter 418 (including the antenna 420), at least two of the transmit processor 416 and the controller/processor 475 are used to transmit the second information in the present application.
  • the receiver 454 (including the antenna 452), at least two of the receiving processor 456 and the controller/processor 459 are used to receive the second information in the present application.
  • the transmitter 418 (including the antenna 420), at least two of the transmit processor 416 and the controller/processor 475 are used to transmit the third information in the present application.
  • the receiver 454 (including the antenna 452), at least two of the receiving processor 456 and the controller/processor 459 are used to receive the third information in the present application.
  • the transmitter 418 (including the antenna 420), at least two of the transmit processor 416 and the controller/processor 475 are used to transmit the fourth information in the present application.
  • the receiver 454 (including the antenna 452), at least two of the receiving processor 456 and the controller/processor 459 are used to receive the fourth information in the present application.
  • the transmitter 454 (including the antenna 452), at least two of the transmit processor 468 and the controller/processor 459 are used to transmit the first phase in the present application.
  • the transmitter 454 (including the antenna 452), at least two of the transmit processor 468 and the controller/processor 459 are used to transmit the first solution in the present application.
  • a reference signal the receiver 418 (including antenna 420), at least two of the receive processor 470 and the controller/processor 475 are used to receive the first demodulation in the present application Reference signal.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • block F1 and Box F2 is optional.
  • the second wireless signal is transmitted in step S10; the third information is transmitted in step S11; the first information and the second information are transmitted in step S12; and the first time-frequency resource block is received in step S13.
  • the second wireless signal is received in step S20; the third information is received in step S21; the first information and the second information are received in step S22; and the first time-frequency resource block is transmitted in step S23.
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; any one of the G sub-signals is in the first time-frequency resource block.
  • the pattern and the phase tracking reference signal transmitted by the one antenna port are the same in the first time-frequency resource block; the user equipment transmits only the first reference signal in the first time-frequency resource block And the number of the subcarriers occupied by the first reference signal in the first time-frequency resource block is greater than 1, or the user equipment sends only the first reference in the first time-frequency resource block.
  • the first time-frequency resource block includes F consecutive subcarriers in the frequency domain, and includes L consecutive multicarrier symbols in the time domain, where F is a positive integer greater than or equal to 1, and the L is greater than 1.
  • F is a positive integer greater than or equal to 1
  • L is greater than 1.
  • a positive integer, the G being a positive integer.
  • the second wireless signal includes at least one of ⁇ channel state information reference signal, synchronization signal ⁇ and the operation is reception, or the second wireless signal includes a sounding reference signal and the operation is transmission;
  • the resource particles occupied by the second wireless signal are outside the first time-frequency resource block;
  • the first information is used by the U2 to determine that the first reference signal is spatially related to the second wireless signal;
  • the second information is used by the U2 to determine a pattern of the G sub-signals in the first time-frequency resource block.
  • the third information is used by the U2 to determine H candidate patterns
  • the second information is used by the U2 to determine G candidate patterns from the H candidate patterns
  • the G sub-signals in the The patterns in the first time-frequency resource block are respectively the G candidate patterns
  • the H is a positive integer greater than the G
  • the H candidate patterns The pattern of any one of the candidate patterns in the first time-frequency resource block and the phase tracking reference signal transmitted by one antenna port are the same in the first time-frequency resource block.
  • the fourth information is used by the U2 to determine a transmit antenna port of the first phase tracking reference signal and a transmit antenna port of the first demodulation reference signal, where the first reference signal is used by the N1 The fourth information is determined.
  • all resource particles occupied by the user equipment in the first time interval of the wireless transmission belong to the first time-frequency resource block, and the first time interval is the first time-frequency resource block.
  • the G is 1.
  • the G is configurable.
  • the phase tracking reference signal is a PTRS (Phase-Tracking Reference Signal).
  • any one of the G antenna ports and any one of the K antenna ports is independent of the wireless signal transmitted on any one of the K antenna ports.
  • the small-scale channel parameters experienced cannot be used to infer the small-scale channel parameters experienced by the wireless signals transmitted on any of the G antenna ports.
  • any one of the G antenna ports and any one of the K antenna ports is independent of a wireless signal sent by any one of the G antenna ports.
  • the wireless signal transmitted on any one of the K antenna ports is not spatially correlated.
  • any one of the G antenna ports and any one of the K antenna ports is independent of any one of the G antenna ports and the K The transmit beam on any one of the antenna ports is different.
  • any one of the G antenna ports and any one of the K antenna ports is independent of any one of the G antenna ports and the K The precoding vector on any one of the antenna ports is different.
  • any one of the G antenna ports and any one of the K antenna ports is independent of any one of the G antenna ports. It is considered that one of the antenna ports and the K antenna ports is considered not to be QCL.
  • the two antenna ports are considered to be QCL.
  • the two antenna ports are considered not to be QCL.
  • the large-scale fading parameter includes at least one of ⁇ Doppler spread, Doppler shift ⁇ .
  • the large scale fading parameter includes a maximum multipath delay.
  • the pattern of the G sub-signals in the first time-frequency resource block is composed of all resource particles occupied by the first reference signal in the first time-frequency resource block.
  • the G is greater than 1, and at least two sub-signals of the G sub-signals have different patterns in the first time-frequency resource block.
  • the pattern of the wireless signal in the first time-frequency resource block is a time-frequency position of all resource particles occupied by the wireless signal in the first time-frequency resource block.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single-Carrier Frequency-Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the multi-carrier symbol is a FBMC (Filter Bank Multi Carrier) symbol.
  • the first wireless signal is at least one of ⁇ Demodulation Reference Signal (DMRS), data, Sounding Reference Signal (SRS).
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • spatially correlating the first reference signal with the second wireless signal means that any one of the antenna ports of the first reference signal and the at least one antenna port of the second wireless signal are considered to be QCL.
  • the first reference signal is spatially related to the second wireless signal It is meant that any one of the antenna ports of the first reference signal is the same as the transmit beam on at least one of the antenna ports of the second wireless signal.
  • the first reference signal is spatially correlated with the second wireless signal, and refers to a precoding vector on any one of the antenna ports of the first reference signal and the at least one antenna port of the second wireless signal. the same.
  • the first reference signal and the second wireless signal are spatially related to an analog beam assignment on any one of the antenna ports of the first reference signal and the at least one antenna port of the second wireless signal.
  • the type factor is the same.
  • the first information explicitly indicates that the first reference signal is spatially related to the second wireless signal.
  • the first information implicitly indicates that the first reference signal is spatially related to the second wireless signal.
  • the second information explicitly indicates a pattern of the G sub-signals in the first time-frequency resource block.
  • the second information implicitly indicates a pattern of the G sub-signals in the first time-frequency resource block.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information is all or a part of an IE (Information Element) in one RRC signaling.
  • the first information is carried by a MAC (Medium Access Control) CE (Control Element) signaling.
  • MAC Medium Access Control
  • CE Control Element
  • the first information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the first information is semi-statically configured.
  • the first information is carried by physical layer signaling.
  • the first information is carried by DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first information is a field in a DCI signaling, and the domain includes a positive integer number of bits.
  • the first information is dynamically configured.
  • the first information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first information is carried by a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information is carried by an sPDCCH (short PDCCH).
  • the first information is carried by an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the first information is carried by an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information is all or a part of an IE in one RRC signaling.
  • the second information is carried by MAC CE signaling.
  • the second information is transmitted in the SIB.
  • the second information is semi-statically configured.
  • the second information is carried by physical layer signaling.
  • the second information is carried by DCI signaling.
  • the second information is a domain in a DCI signaling, and the domain includes a positive integer number of bits.
  • the second information is dynamically configured.
  • the second information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the second information is carried by a PDCCH.
  • the second information is carried by the sPDCCH.
  • the second information is carried by the NR-PDCCH.
  • the second information is carried by the NB-PDCCH.
  • the first information and the second information are carried by the same physical layer signaling.
  • the first information and the second information are carried by the same DCI signaling.
  • the first information and the second information are respectively a first domain and a second domain in the same DCI signaling.
  • the first information and the second information are a first IE and a second IE in one RRC signaling.
  • the second information includes at least one of ⁇ time domain density, time domain start position, and number of multicarrier symbols ⁇ of each of the G sub-signals.
  • the second information includes at least one of ⁇ time domain density, time domain start position, time domain end position ⁇ of each of the G sub-signals.
  • the second information includes at least one of ⁇ frequency domain density, bandwidth, frequency domain start position ⁇ of each of the G sub-signals.
  • the second information includes at least one of ⁇ frequency domain density, frequency domain start position, and frequency domain termination position ⁇ of each of the G sub-signals.
  • the second information includes the G.
  • the third information is semi-statically configured.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC signaling.
  • the third information is all or a part of an IE in one RRC signaling.
  • the third information is carried by MAC CE signaling.
  • the third information is transmitted in the SIB.
  • the third information and the second information are respectively carried by RRC signaling and physical layer signaling.
  • the third information and the second information are respectively carried by RRC signaling and DCI signaling.
  • the third information and the second information are respectively carried by RRC signaling and MAC CE signaling.
  • the third information and the second information are respectively carried by MAC CE signaling and DCI signaling.
  • the fourth information is carried by higher layer signaling.
  • the fourth information is carried by RRC signaling.
  • the fourth information is all or a part of an IE in one RRC signaling.
  • the fourth information is carried by MAC CE signaling.
  • the fourth information is transmitted in the SIB.
  • the fourth information is semi-statically configured.
  • the fourth information is carried by physical layer signaling.
  • the fourth information is carried by DCI signaling.
  • the fourth information is a domain in a DCI signaling, and the domain includes a positive integer number of bits.
  • the fourth information is dynamically configured.
  • the fourth information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the fourth information is carried by a PDCCH.
  • the fourth information is carried by the sPDCCH.
  • the fourth information is carried by the NR-PDCCH.
  • the fourth information is carried by the NB-PDCCH.
  • Embodiment 6 illustrates a flow chart of another wireless transmission, as shown in FIG.
  • base station N3 is a serving cell maintenance base station of user equipment U4.
  • block F3 and block F4 are optional.
  • the second wireless signal is received in step S30; the third information is transmitted in step S31; the first information and the second information are transmitted in step S32; and the first time-frequency resource block is received in step S33.
  • the second wireless signal is transmitted in step S40; the third information is received in step S41; the first information and the second information are received in step S42; and the first time-frequency resource block is transmitted in step S43.
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; any one of the G sub-signals is in the first time-frequency resource block.
  • the pattern and the phase tracking reference signal transmitted by the one antenna port are the same in the first time-frequency resource block; the user equipment transmits only the first reference signal in the first time-frequency resource block And the number of the subcarriers occupied by the first reference signal in the first time-frequency resource block is greater than 1, or the user equipment sends only the first reference in the first time-frequency resource block.
  • the first time-frequency resource block includes F consecutive subcarriers in the frequency domain, and includes L consecutive multicarrier symbols in the time domain, where F is a positive integer greater than or equal to 1, and the L is greater than 1.
  • F is a positive integer greater than or equal to 1
  • L is greater than 1.
  • a positive integer, the G being a positive integer.
  • the second wireless signal includes at least one of ⁇ channel state information reference signal, synchronization signal ⁇ and the operation is reception, or the second wireless signal includes a sounding reference signal and the operation is transmission;
  • the resource particles occupied by the second wireless signal are outside the first time-frequency resource block;
  • the first information is used by the U4 to determine that the first reference signal is spatially related to the second wireless signal;
  • the second information is used by the U4 to determine a pattern of the G sub-signals in the first time-frequency resource block.
  • the third information is used by the U2 to determine H candidate patterns
  • the second information is used by the U4 to determine G candidate patterns from the H candidate patterns
  • the patterns in the first time-frequency resource block are respectively the G candidate patterns
  • the H is a positive integer greater than the G
  • any one of the H candidate patterns is in the first time-frequency resource block.
  • the pattern in and the phase tracking reference signal transmitted by one antenna port are the same in the pattern in the first time-frequency resource block.
  • the fourth information is used by the U4 to determine a transmit antenna port of the first phase tracking reference signal and a transmit antenna port of the first demodulation reference signal, where the first reference signal is used by the N3 The fourth information is determined.
  • Embodiments 7A to 7J respectively illustrate schematic diagrams of patterns of one G sub-signals in a first time-frequency resource block.
  • FIG. 7 is a schematic diagram showing the positions of the resource particles occupied by the G sub-signals in the first time-frequency resource block in the present application;
  • FIG. 7A to FIG. One square in Figure 7J corresponds to one resource particle.
  • the pattern of any one of the G sub-signals in the application in the first time-frequency resource block and the phase tracking reference signal transmitted by one antenna port are in the first time.
  • the pattern in the frequency resource block is the same; the first time-frequency resource block includes F consecutive sub-carriers in the frequency domain, and includes L consecutive multi-carrier symbols in the time domain, where the F is greater than or equal to 1.
  • the F is equal to 12N and the N is a positive integer.
  • the L is one of ⁇ 14, 13, 12, 11 ⁇ .
  • one of the G sub-signals occupies a plurality of evenly spaced resource particles on the same sub-carrier and The interval between adjacent resource particles is a, and the a is a positive integer.
  • one of the G sub-signals occupies a plurality of evenly spaced resources on the same multi-carrier symbol.
  • the particles and the spacing of adjacent resource particles are bU, the b is a positive integer, and the U is a positive integer.
  • one of the G sub-signals occupies a plurality of evenly spaced resources on the same multi-carrier symbol.
  • the spacing of the particles and adjacent resource particles is bU, the b is a positive integer and the U is equal to 12.
  • the embodiment 7A corresponds to a schematic diagram in which the F is 1, the L is 6, the G is 1, and the time domain density is 1.
  • the embodiment 7B corresponds to the fact that the F is 1, the L is 6, the G is 1, and the time-domain density of the G sub-signals is 1/2.
  • the embodiment 7C occupies consecutive subcarriers corresponding to the G sub-signals, the F is 2, the L is 14, the G is 2, and the time-domain densities of the G sub-signals are Schematic diagram of 1.
  • the embodiment 7D corresponds to the G sub-signals occupying consecutive sub-carriers, the F is 2, the L is 14, the G is 2, and the time-domain densities of the G sub-signals are 1/2 schematic.
  • the embodiment 7E corresponds to the G sub-signals occupying discontinuous sub-carriers, the F is 4, the L is 14, the G is 2, and the G sub-signal times A schematic diagram of a domain density of 1.
  • the embodiment 7F corresponds to the G sub-signals occupying discontinuous sub-carriers, the F is 4, the L is 14, the G is 2, and the time-domain density of the G sub-signals are A schematic diagram of 1/2.
  • the embodiment 7G corresponds to the G sub-signals occupying consecutive sub-carriers, the F is 24, the L is 14, the G is 2, and the time-domain densities of the G sub-signals are 1, the frequency domain density is 1, and the U is equal to 12 schematic.
  • the embodiment 7H occupies consecutive subcarriers corresponding to the G sub-signals, the F is 24, the L is 14, the G is 2, and the time-domain densities of the G sub-signals are 1/2, the frequency domain density is 1, and the U is equal to 12.
  • the embodiment 7I corresponds to the G sub-signals occupying discontinuous sub-carriers, the F is 24, the L is 14, the G is 2, and the time-domain density of the G sub-signals are For 1, the frequency domain density is 1, and the U is equal to 12.
  • the embodiment 7J corresponds to the G sub-signals occupying discontinuous sub-carriers, the F is 24, the L is 14, the G is 2, and the time-domain density of the G sub-signals are For 1/2, the frequency domain density is 1, and the U is equal to 12.
  • Embodiments 8A to 8B respectively illustrate a schematic diagram of a second information, and a schematic diagram of the second information is shown in FIG.
  • the second information in the present application implicitly indicates a pattern of the G sub-signals in the first time-frequency resource block.
  • the second information includes one MCS, and the MCS is used to determine a time domain density of a pattern of the G sub-signals in the first time-frequency resource block.
  • the second information includes a given bandwidth, and the given bandwidth is used to determine a frequency domain density of a pattern of the G sub-signals in the first time-frequency resource block.
  • the second information includes G MCSs, which are used to determine time domain densities of patterns of the G sub-signals in the first time-frequency resource block, respectively.
  • the second information includes G given bandwidths, the G given The bandwidth is used to determine a frequency domain density of the pattern of the G sub-signals in the first time-frequency resource block, respectively.
  • the embodiment 8A corresponds to a correspondence between a time domain density 1/a of a pattern of one MCS and one of the G sub-signals in the first time-frequency resource block.
  • the a Is equal to a 0 ;
  • Z 1 ⁇ Z ⁇ Z 2 the a is equal to a 1 ;
  • Z 2 ⁇ Z ⁇ Z 3 the a is equal to a 2 ;
  • Z 3 ⁇ Z ⁇ Z 4 a is equal to a 3 ;
  • the Z 0 , Z 1 , Z 2 , Z 3 and Z 4 are mutually different positive integers;
  • the a 0 , a 1 , a 2 and a 3 are mutually different positive integers;
  • the Z is an integer greater than or equal to zero.
  • the embodiment 8B corresponds to a frequency domain density 1/b of a pattern of a given bandwidth B and one of the G sub-signals in the first time-frequency resource block.
  • Schematic diagram When B ⁇ B 0 V, one of the G sub-signals does not occupy any resource particles in the first time-frequency resource block; when B 0 V ⁇ B ⁇ B 1 V, the b is equal to b 0 ; when B 1 V ⁇ B ⁇ B 2 V, the b is equal to b 1 ; when B 2 V ⁇ B ⁇ B 3 V, the b is equal to b 2 ; when B 3 V ⁇ B , b is equal to b 3 ; the B 0 , B 1 , B 2 and B 3 are positive integers different from each other; the b 0 , b 1 , b 2 and b 3 are positive integers different from each other; The V is a positive integer; the B is an integer greater than or equal to zero.
  • Embodiments 9A to 9D respectively illustrate a schematic diagram of transmitting a first phase tracking reference signal and a first demodulation reference signal in a second time-frequency resource block.
  • FIG. 9 is a schematic diagram showing the transmission of the first phase tracking reference signal and the first demodulation reference signal in the second time-frequency resource block; one of the squares in FIG. 9A to FIG. 9D corresponds to one resource. particle.
  • the fourth information in the present application is used to determine that a transmit antenna port of the first phase tracking reference signal is associated with a transmit antenna port of the first demodulation reference signal, the first A reference signal is used to determine the fourth information.
  • the first demodulation reference signal is transmitted by only one antenna port.
  • the transmitting antenna port of the first phase tracking reference signal and the transmitting antenna port of the first demodulation reference signal are transmitted by the same antenna and correspond to the same precoding vector.
  • the small-scale channel fading parameters experienced by the first phase tracking reference signal can be used to infer a small-scale channel fading parameter experienced by the first demodulation reference signal.
  • the first demodulation reference signal is transmitted by M antenna ports, the M is a positive integer greater than 1, and all or part of the antenna ports of the M antenna ports are considered to be QCL.
  • the first phase tracking reference signal can be used to compensate for phase noise of the associated first demodulation reference signal.
  • the fourth information explicitly indicates that a transmit antenna port of the first phase tracking reference signal is associated with a transmit antenna port of the first demodulation reference signal.
  • the fourth information implicitly indicates that a transmit antenna port of the first phase tracking reference signal is associated with a transmit antenna port of the first demodulation reference signal.
  • the first reference signal is used by a sender of the fourth information to generate the fourth information.
  • the second time-frequency resource block includes P consecutive subcarriers in the frequency domain, and includes Q consecutive multicarrier symbols in the time domain, where P is a positive integer greater than or equal to 1, and the Q is greater than A positive integer of 1.
  • the time domain resource occupied by the second time-frequency resource block is different from the time domain resource occupied by the first time-frequency resource block.
  • the time domain resource occupied by the second time-frequency resource block is after the time domain resource occupied by the first time-frequency resource block.
  • the first reference signal is used for phase noise measurement.
  • the first demodulation reference signal is sent by M antenna ports, and the M is a positive integer; the fourth information is used to determine that one antenna port corresponding to the first phase tracking reference signal is associated To the T antenna ports of the M antenna ports, the T is a positive integer and 1 ⁇ T ⁇ M.
  • the subcarrier occupied by one antenna port corresponding to the first phase tracking reference signal belongs to a subcarrier occupied by one of the T antenna ports of the M antenna ports that are associated. Carrier.
  • a subcarrier occupied by one antenna port corresponding to the first phase tracking reference signal belongs to T antenna ports of the M antenna ports that are associated The subcarrier occupied by the smallest antenna port in the medium.
  • the sender of the fourth information divides the G antenna ports into S antenna port groups; T antenna ports of the M antenna ports and the S antenna port groups One related.
  • the sender of the fourth information divides the G antenna ports into S antenna port groups; T antenna ports of the M antenna ports and the S antenna port groups respectively One of the antenna ports is considered to be QCL.
  • the wireless signals transmitted on all of the antenna port groups in any one of the S antenna port groups are from the same oscillator.
  • the embodiment 9A corresponds to the P being equal to 12, and the Q is equal to 14, an antenna port of the first demodulation reference signal occupies evenly spaced subcarriers, and the first demodulation reference signal Transmitted by 4 antenna ports i 0 , i 1 , i 2 and i 3 , the first phase tracking reference signal is transmitted by 1 antenna port j 0 , the antenna port j 0 and the antenna port i 0 , i 1 , i 2 and i 3 are associated with each other, and the subcarrier occupied by the antenna port j 0 belongs to a schematic diagram of the subcarrier occupied by the antenna port i 0 .
  • the first reference signal includes two sub-signals respectively transmitted by antenna ports k 0 and k 1 , and the S is equal to 1 , that is, antenna ports k 0 and k 1 belong to the same antenna port group, and antenna ports i 0 and i 1 are Antenna port k 0 is considered to be QCL, and antenna ports i 2 and i 3 and antenna port k 1 are considered to be QCL.
  • the embodiment 9B corresponds to the P being equal to 12, and the Q is equal to 14, an antenna port of the first demodulation reference signal occupies evenly spaced subcarriers, and the first demodulation reference signal Transmitted by 4 antenna ports I 0 , I 1 , I 2 and I 3 , the first phase tracking reference signal is transmitted by 2 antenna ports J 0 and J 1 , the antenna port J 0 and the antenna port I 0 and I 1 are associated, the antenna port and the antenna port J 1 I 2, and I 3 is associated, said antenna port 0 J occupied subcarriers belonging to the antenna port 0 I occupied subcarriers,
  • the subcarrier occupied by the antenna port J 1 belongs to a schematic diagram of the subcarrier occupied by the antenna port I 2 .
  • the first reference signal includes two sub-signals respectively transmitted by antenna ports K 0 and K 1 , and the S is equal to 2, that is, antenna ports K 0 and K 1 belong to different antenna port groups, and antenna ports I 0 and I 1 are Antenna port K 0 is considered to be QCL, and antenna ports I 2 and I 3 and antenna port K 1 are considered to be QCL.
  • the embodiment 9C corresponds to the P being equal to 12, and the Q is equal to 14, and one antenna port of the first demodulation reference signal occupies unevenly spaced subcarriers, and the first demodulation reference
  • the signal is transmitted by 4 antenna ports i 0 , i 1 , i 2 and i 3
  • the first phase tracking reference signal is transmitted by 1 antenna port j 0
  • the antenna port j 0 and the antenna port i 0 , i 1 , i 2 and i 3 are associated with each other
  • the subcarrier occupied by the antenna port j 0 belongs to a schematic diagram of the subcarrier occupied by the antenna port i 0 .
  • the first reference signal includes two sub-signals respectively transmitted by antenna ports k 0 and k 1 , and the S is equal to 1 , that is, antenna ports k 0 and k 1 belong to the same antenna port group, and antenna ports i 0 and i 1 are Antenna port k 0 is considered to be QCL, and antenna ports i 2 and i 3 and antenna port k 1 are considered to be QCL.
  • the embodiment 9D corresponds to the P being equal to 12, and the Q is equal to 14, an antenna port of the first demodulation reference signal occupies unevenly spaced subcarriers, and the first demodulation reference
  • the signal is transmitted by 4 antenna ports I 0 , I 1 , I 2 and I 3 , the first phase tracking reference signal being transmitted by 2 antenna ports J 0 and J 1 , the antenna port J 0 and the antenna port I 0 and I 1 are associated, the antenna port and the antenna port J 1 I 2 and I 3 are associated subcarrier, the antenna port J 0 occupied subcarriers belonging to the antenna port occupied by I 0
  • the subcarrier occupied by the antenna port J 1 belongs to a schematic diagram of the subcarrier occupied by the antenna port I 2 .
  • the first reference signal includes two sub-signals respectively transmitted by antenna ports K 0 and K 1 , and the S is equal to 2, that is, antenna ports K 0 and K 1 belong to different antenna port groups, and antenna ports I 0 and I 1 are Antenna port K 0 is considered to be QCL, and antenna ports I 2 and I 3 and antenna port K 1 are considered to be QCL.
  • Embodiment 10 exemplifies a schematic diagram in which a first reference signal is used for interference measurement.
  • a schematic diagram of the first reference signal being used for interference measurement is shown in FIG.
  • the first reference signal is a non-zero power reference signal.
  • the interference information estimated by the receiver of the first reference signal from the first reference signal is used to improve data demodulation performance.
  • the interference information estimated by the receiver of the first reference signal from the first reference signal is used for the determination of the MCS.
  • the interference measurement comprises a phase noise measurement.
  • Embodiment 11 exemplifies a structural block diagram of a processing device used in a user equipment, such as the drawing 11 is shown.
  • the processing device 1200 in the user equipment is mainly composed of a first transceiver module 1201, a first receiver module 1202, and a first transmitter module 1203.
  • the first transceiver module 1201 includes at least three of the transmitter/receiver 454 (including the antenna 452), the receiving processor 456, the transmitting processor 468, and the controller/processor 459 of FIG. 4 of the present application.
  • the first receiver module 1202 includes the transmitter/receiver 454 (including the antenna 452) of FIG. 4 of the present application, and receives at least two of the processor 456 and the controller/processor 459.
  • the first transmitter module 1203 includes the transmitter/receiver 454 (including the antenna 452) in FIG. 4 of the present application, at least the first two of the transmit processor 468 and the controller/processor 459.
  • the first transceiver module 1201 operates the second wireless signal
  • the first receiver module 1202 receives the first information, the second information, the third information, and the fourth information;
  • a first transmitter module 1203 transmitting at least a former one of the ⁇ first reference signal, the first wireless signal ⁇ in the first time-frequency resource block, transmitting the first phase tracking reference signal and the second in the second time-frequency resource block A demodulation reference signal.
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; any one of the G sub-signals is in the first time-frequency resource block.
  • the pattern and the phase tracking reference signal transmitted by the one antenna port are the same in the first time-frequency resource block; the user equipment transmits only the first reference signal in the first time-frequency resource block And the number of the subcarriers occupied by the first reference signal in the first time-frequency resource block is greater than 1, or the user equipment sends only the first reference in the first time-frequency resource block.
  • the first time-frequency resource block includes F consecutive subcarriers in the frequency domain, and includes L consecutive multicarrier symbols in the time domain, where F is a positive integer greater than or equal to 1, and the L is greater than 1.
  • F is a positive integer greater than or equal to 1
  • L is greater than 1.
  • a positive integer, the G being a positive integer.
  • the second wireless signal includes at least one of a ⁇ channel state information reference signal, a synchronization signal ⁇ and the operation is reception, or the second wireless signal includes a sounding reference signal and the operation Is to send; the resource particles occupied by the second wireless signal The child is outside the first time-frequency resource block; the first information is used to determine that the first reference signal is spatially related to the second wireless signal; the second information is used to determine the G A pattern of sub-signals in the first time-frequency resource block.
  • the third information is used to determine H candidate patterns
  • the second information is used to determine G candidate patterns from the H candidate patterns
  • the G sub-signals in the The patterns in the one-time resource block are respectively the G candidate patterns
  • the H is a positive integer greater than the G
  • any one of the H candidate patterns is in the first time-frequency resource block.
  • the pattern and the phase tracking reference signal transmitted by the one antenna port are the same in the pattern in the first time-frequency resource block.
  • the fourth information is used to determine a transmit antenna port of the first phase tracking reference signal and a transmit antenna port of the first demodulation reference signal, the first reference signal being used Determining the fourth information.
  • Embodiment 12 exemplifies a structural block diagram of a processing device used in a base station device, as shown in FIG.
  • the processing device 1300 in the base station device is mainly composed of a second transceiver module 1301, a second transmitter module 1302, and a second receiver module 1303.
  • the second transceiver module 1301 includes the transmitter/receiver 418 (including the antenna 420) of the FIG. 4 of the present application, the transmit processor 416, and at least the first three of the processor 470 and the controller/processor 475.
  • the second transmitter module 1302 includes at least two of the transmitter/receiver 418 (including the antenna 420), the transmit processor 416, and the controller/processor 475 of FIG. 4 of the present application.
  • the second receiver module 1303 includes the transmitter/receiver 418 (including the antenna 420) of FIG. 4 of the present application, and at least two of the receiver processor 470 and the controller/processor 475.
  • the second transceiver module 1301 operates the second wireless signal
  • the second transmitter module 1302 transmits the first information, the second information, the third information, and the fourth information;
  • the second receiver module 1303 receives at least the former of the ⁇ first reference signal, the first wireless signal ⁇ in the first time-frequency resource block, and receives the first phase tracking reference in the second time-frequency resource block Signal and first demodulation reference signal.
  • the first reference signal includes G sub-signals, and the G sub-signals are respectively sent by G antenna ports; any one of the G sub-signals is in the first time-frequency resource block.
  • the pattern and the phase tracking reference signal transmitted by the one antenna port are the same in the first time-frequency resource block; the sender of the first reference signal transmits only the first time-frequency resource block Describe a first reference signal and the number of subcarriers occupied by the first reference signal in the first time-frequency resource block is greater than 1, or the sender of the first reference signal is at the first time-frequency Transmitting only the first reference signal and the first wireless signal in a resource block; the first wireless signal is transmitted by K antenna ports, any one of the G antenna ports and the K antenna Any one of the port ports is independent; the first time-frequency resource block includes F consecutive sub-carriers in the frequency domain, and includes L consecutive multi-carrier symbols in the time domain, where the F is greater than or equal to 1 Positive integer, the L is greater than 1 Number, G is a positive
  • the second wireless signal includes at least one of ⁇ channel state information reference signal, synchronization signal ⁇ and the operation is transmission, or the second wireless signal includes a sounding reference signal and the operation Receiving; the resource particles occupied by the second wireless signal are outside the first time-frequency resource block; the first information is used to determine that the first reference signal is spatially related to the second wireless signal The second information is used to determine a pattern of the G sub-signals in the first time-frequency resource block.
  • the third information is used to determine H candidate patterns
  • the second information is used to determine G candidate patterns from the H candidate patterns
  • the G sub-signals in the The patterns in the one-time resource block are respectively the G candidate patterns
  • the H is a positive integer greater than the G
  • any one of the H candidate patterns is in the first time-frequency resource block.
  • the pattern and the phase tracking reference signal transmitted by the one antenna port are the same in the pattern in the first time-frequency resource block.
  • the fourth information is used to determine a transmit antenna port of the first phase tracking reference signal and a transmit antenna port of the first demodulation reference signal, the first reference signal being used Determining the fourth information.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, and the like.

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者。其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关。上述方法避免了用户设备上报振荡器数目和/或上行无线信号的天线端口与用户设备的振荡器的对应情况,还可以在干扰变化较快情况下测量得到精确的干扰信息。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的无线信号的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在无线通信系统中,参考信号一直是保证通信质量的必要手段之一。和传统的LTE(Long Term Evolution,长期演进)系统相比,NR(New Radio,新型无线电通信)系统既要支持低频段(<6GHz),也要支持高频段(>6GHz)传输。在高频段,相位噪声对信道估计性能的影响不容忽视,因此在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)NR讨论中已经同意发送PTRS(Phase-Tracking Reference Signal,相位跟踪参考信号)用于接收端进行相位跟踪,通过在信道估计中进行相位补偿来提升信道估计精度。
在3GPPNR讨论中已同意给UE(User Equipment,用户设备)配置一个或两个DMRS(Demodulation Reference Signal,解调参考信号)端口组,一个PTRS端口与一个DMRS端口组中的一个DMRS端口有关,并且在一个给定RB(Resource Block,资源块)内,该PTRS端口被承载在该DMRS端口对应的一个子载波上。上行PTRS端口数目与上行DMRS端口组的数量和UE侧发送上行DMRS所使用的射频通道的振荡器数量有关。下行PTRS端口数目与下行DMRS端口组的数量和基站侧发送下行DMRS所使用的射频通道的振荡器数量有关。此外,PTRS还与给数据传输分配的MCS(Modulation and Coding Scheme,调制编码方式)和调度带宽有关,只有MCS和调度带宽的取值在一定范围内时,才发送PTRS,否则不发送PTRS。
发明人通过研究发现,在NR系统中,当上行DMRS端口组的数量为2时,这两组DMRS端口是否可以共用一个上行PTRS端口与UE侧发送这两组DMRS所使用的振荡器数目有关。此时,如果基站无法获知UE侧发送这两组DMRS所使用的射频通道是否共振荡器,为了保证 信道估计性能,基站需要配置2个上行PTRS端口分别对应这两组DMRS端口。如果UE侧发送这两组DMRS只使用了一个振荡器,那么这两组DMRS对应的相位噪声可以认为是相同的,因此只需配置1个上行PTRS端口,从而减少导频开销,提升系统性能。因此,如何让基站获得UE侧的振荡器相关信息是一个需要解决的问题。此外,由于NR系统要支持小时隙(mini-slot),URLLC(Ultra-Reliable and Low Latency Communications,高可靠性低延时通信)业务,非授权上行传输以及动态TDD等,干扰的变化相比传统的LTE系统可能更快,因此为了更为精确的干扰信息,用于干扰测量的导频需要在时域上较密集,在频域上可以较稀疏。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
-在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者;
其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,上述方法的好处在于,与相位跟踪参考信号是与 DMRS强相关不同,所述第一参考信号可以不依赖于同时在所述第一时频资源块中发送的第一无线信号,第一无线信号可以是{DMRS,数据,探测参考信号}中至少之一,这样可以灵活地使用类似于相位跟踪参考信号的图案来实现更多功能,比如对UE侧发送天线端口与振荡器的对应关系的判断,干扰变化较快时的干扰测量等。
根据本申请的一个方面,上述方法的特征在于,包括:
-操作第二无线信号;
-接收第一信息;
-接收第二信息;
其中,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
根据本申请的一个方面,上述方法的特征在于,包括:
-接收第三信息;
其中,所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
根据本申请的一个方面,上述方法的特征在于,所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,上述方法的好处在于,使用和相位跟踪参考信号的图案类似的方法来隐式指示所述G个子信号在所述第一时频资源块中的图案,可以最小化对标准的改动。
根据本申请的一个方面,上述方法的特征在于,包括:
-接收第四信息;
-在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考 信号;
其中,所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
作为一个实施例,上述方法的好处在于,基站可以通过对分别被G个天线端口发送的G个子信号的相位噪声测量,获知这G个天线端口中的哪些天线端口对应的相位噪声相同,即振荡器是相同的,进而利用这一信息来确定DMRS的天线端口所对应的PTRS天线端口。
作为一个实施例,上述方法的另一个好处在于,不需要UE向基站报告UE侧的振荡器数目,以及上行无线信号的天线端口与振荡器的对应情况。
根据本申请的一个方面,上述方法的特征在于,所述第一参考信号被用于干扰测量。
作为一个实施例,上述方法的好处在于,由于PTRS的图案具有时域密集和频域稀疏的特点,适合被用于干扰变化较快情况下的干扰测量,可以获得更为精确的干扰信息,从而提高解调性能或链路自适应性能。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
-在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者;
其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整 数,所述G是正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
-操作第二无线信号;
-发送第一信息;
-发送第二信息;
其中,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是发送,或者,所述第二无线信号包括探测参考信号且所述操作是接收;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
根据本申请的一个方面,上述方法的特征在于,包括:
-发送第三信息;
其中,所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
根据本申请的一个方面,上述方法的特征在于,所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
根据本申请的一个方面,上述方法的特征在于,包括:
-发送第四信息;
-在第二时频资源块中接收第一相位跟踪参考信号和第一解调参考信号;
其中,所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
根据本申请的一个方面,上述方法的特征在于,所述第一参考信号被用于干扰测量。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
-第一发射机模块,在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者;
其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,上述用户设备的特征在于,所述用户设备包括:
-第一收发机模块,操作第二无线信号;
-第一接收机模块,接收第一信息和第二信息;
其中,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第三信息;所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
作为一个实施例,上述用户设备的特征在于,所述第二信息隐式 的指示所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第四信息,所述第一发射机模块还在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考信号;所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
作为一个实施例,上述用户设备的特征在于,所述第一参考信号被用于干扰测量。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
-第二接收机模块,在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者;
其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,上述基站设备的特征在于,所述基站设备包括:
-第二收发机模块,操作第二无线信号;
-第二发射机模块,发送第一信息和第二信息;
其中,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是发送,或者,所述第二无线信号包括探测参考信号且所述操作是接收;所述第二无线信号所占用的资源粒子在所述 第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,上述基站设备的特征在于,所述第二发射机模块还发送第三信息;所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
作为一个实施例,上述基站设备的特征在于,所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,上述基站设备的特征在于,所述第二发射机模块还发送第四信息,所述第二接收机模块还在第二时频资源块中接收第一相位跟踪参考信号和第一解调参考信号;所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
作为一个实施例,上述基站设备的特征在于,所述第一参考信号被用于干扰测量。
作为一个实施例,相比现有公开技术,本申请具有如下主要技术优势:
-.基站可以通过对分别被G个天线端口发送的G个子信号的相位噪声测量,获知这G个天线端口中的哪些天线端口对应的振荡器是相同的,进而利用这一信息来确定DMRS天线端口所对应的PTRS天线端口。
-.不需要UE向基站报告UE侧的振荡器数目,以及上行无线信号的天线端口与振荡器的对应情况。
-.由于PTRS的图案具有时域密集和频域稀疏的特点,适合被用于干扰变化较快情况下的干扰测量,可以获得更为精确的干扰信息,从而提高解调性能或链路自适应性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一参考信号和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7A-7J分别示出了根据本申请的一个实施例的G个子信号在第一时频资源块中的图案的示意图;
图8A-8B分别示出了根据本申请的一个实施例的第二信息的示意图;
图9A-9D分别示出了根据本申请的一个实施例的在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考信号的示意图;
图10示出了根据本申请的一个实施例的第一参考信号被用于干扰测量的示意图;
图11示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的用于基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一参考信号和第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者。其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,所述用户设备在第一时间间隔中的无线发送所占用的所有资源粒子(RE,Resource Element)都属于所述第一时频资源块,所述第一时间间隔是所述第一时频资源块所占用的时域资源。
作为一个实施例,所述G为1。
作为一个实施例,所述G是可配置的。
作为一个实施例,所述相位跟踪参考信号是PTRS(相位跟踪参考信号,Phase-Tracking Reference Signal)。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述K个天线端口中的任意一个天线端口上发送的无线信号所经历的小尺度信道参数不能被用于推断出所述G个天线端口中的任意一个天线端口上发送的无线信号所经历的小尺度信道参数。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任意一个天线端口上发送的无线信号和所述K个天线端口中的任意一个天线端口上发送的无线信号不是空间相关的。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任 意一个天线端口和所述K个天线端口中的任意一个天线端口上的发送波束不同。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口上的预编码向量不同。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口被认为不是QCL(Quasi Co-Located,准共址)。
作为一个实施例,如果一个天线端口发送的无线信号所经历的大尺度衰落参数能被用于推断出另一个天线端口发送的无线信号所经历的大尺度衰落参数,这两个天线端口被认为是QCL。
作为一个实施例,如果一个天线端口发送的无线信号所经历的大尺度衰落参数不能被用于推断出另一个天线端口发送的无线信号所经历的大尺度衰落参数,这两个天线端口被认为不是QCL。
作为一个实施例,所述大尺度衰落参数包括{多普勒(Doppler)扩展(Spread),多普勒滑动(shift)}中的至少之一。
作为一个实施例,所述大尺度衰落参数包括最大多径延时。
作为一个实施例,所述G个子信号在所述第一时频资源块中的图案是由所述第一参考信号在所述第一时频资源块中所占用的所有资源粒子组成。
作为一个实施例,所述G大于1,所述G个子信号中至少存在两个子信号在所述第一时频资源块中的图案不同。
作为一个实施例,无线信号在所述第一时频资源块中的图案是由所述无线信号在所述第一时频资源块中所占用的所有资源粒子的时频位置。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency-Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi  Carrier,滤波组多载波)符号。
作为一个实施例,所述第一无线信号是{解调参考信号(DMRS,Demodulation Reference Signal),数据,探测参考信号(SRS,Sounding Reference Signal)}中的至少之一。
作为一个实施例,所述F等于12N,所述N是正整数。
作为一个实施例,所述L是{14,13,12,11}中的一个值。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、 可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW213处 的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个子实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个子实施例,本申请中的所述第二信息生成于所述MAC子 层302。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第三信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301。
作为一个子实施例,本申请中的所述第四信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一相位跟踪参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一解调参考信号生成于所述PHY301。
实施例4
实施例4示例了演进节点和UE的示意图,如附图4所示。
附图4是在接入网络中与UE450通信的gNB410的框图。在DL(Downlink,下行)中,来自核心网络的上部层包提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416实施用于L1层(即,物理层)的各种信号处理功能。信号处理功能包括译码和交错以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))向信号群集的映射。随后将经译码和经调制符号分裂为并行流。随后将每一流映射到多载波副载波,在时域和/或频域中与参考信号(例如,导频)多路 复用,且随后使用快速傅立叶逆变换(IFFT)组合在一起以产生载运时域多载波符号流的物理信道。多载波流经空间预译码以产生多个空间流。每一空间流随后经由发射器418提供到不同天线420。每一发射器418以用于发射的相应空间流调制RF载波。在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到RF载波上的信息,且将信息提供到接收处理器456。接收处理器456实施L1层的各种信号处理功能。接收处理器456对信息执行空间处理以恢复以UE450为目的地的任何空间流。如果多个空间流以UE450为目的地,那么其可由接收处理器456组合到单一多载波符号流中。接收处理器456随后使用快速傅立叶变换(FFT)将多载波符号流从时域转换到频域。频域信号包括用于多载波信号的每一副载波的单独多载波符号流。每一副载波上的符号以及参考信号是通过确定由gNB410发射的最可能信号群集点来恢复和解调,并生成软决策。随后解码和解交错所述软决策以恢复在物理信道上由gNB410原始发射的数据和控制信号。随后将数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层。控制器/处理器可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上部层包。随后将上部层包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。在UL(Uplink,上行)中,使用数据源467来将上部层包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于结合gNB410的DL发射所描述的功能性,控制器/处理器459通过基于gNB410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,来实施用于用户平面和控制平面的L2层。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。由发射处理器468选择适当的编码和调制方案,且促进空间处理。由发射处理器468产生的空间流经由单独发射器454提供到不同天线452。每一发射器454以用于发射的相应空间流调制RF载波。以类似于结合UE450处的接收器功能描述的方式类似的方式在gNB410处 处理UL发射。每一接收器418通过其相应天线420接收信号。每一接收器418恢复调制到RF载波上的信息,且将信息提供到接收处理器470。接收处理器470可实施L1层。控制器/处理器475实施L2层。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上部层包。来自控制器/处理器475的上部层包可提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:操作本申请中的所述第二无线信号,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;接收本申请中的所述第一信息;接收本申请中的所述第二信息;接收本申请中的所述第三信息;发送本申请中的{所述第一参考信号,所述第一无线信号}中的至少前者;接收本申请中的所述第四信息;发送本申请中的所述第一相位跟踪参考信号和所述第一解调参考信号。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:操作本申请中的所述第二无线信号,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是发送,或者,所述第二无线信号包括探测参考信号且所述操作是 接收;发送本申请中的所述第一信息;发送本申请中的所述第二信息;发送本申请中的所述第三信息;接收本申请中的{所述第一参考信号,所述第一无线信号}中的至少前者;发送本申请中的所述第四信息;接收本申请中的所述第一相位跟踪参考信号和所述第一解调参考信号。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,所述发射器454(包括天线452),所述发射处理器468和所述控制器/处理器459中的至少之前两者被用于发送本申请中的{所述第一参考信号,所述第一无线信号}中的至少前者,所述接收器418(包括天线420),所述接收处理器470和所述控制器/处理器475中的至少之前两者被用于接收本申请中的{所述第一参考信号,所述第一无线信号}中的至少前者。
作为一个实施例,所述发射器454(包括天线452),所述发射处理器468和所述控制器/处理器459中的至少之前两者被用于发送本申请中的{所述第一参考信号,所述第一无线信号}中的至少前者,所述接收器418(包括天线420),所述接收处理器470和所述控制器/处理器475中的至少之前两者被用于接收本申请中的{所述第一参考信号,所述第一无线信号}中的至少前者。
作为一个实施例,所述发射器454(包括天线452),所述发射处理器468和所述控制器/处理器459中的至少之前两者被用于发送本申请中的所述第二无线信号,所述接收器418(包括天线420),所述接收处理器470和所述控制器/处理器475中的至少之前两者被用于接收本申请中的所述第二无线信号。
作为一个实施例,所述发射器418(包括天线420),所述发射处理器416和所述控制器/处理器475中的至少之前两者被用于发送本申请中的所述第二无线信号,所述接收器454(包括天线452),所述接收处理器456和所述控制器/处理器459中的至少之前两者被用于接收本申请中的第二无线信号。
作为一个实施例,所述发射器418(包括天线420),所述发射处理器416和所述控制器/处理器475中的至少之前两者被用于发送本申请中的所述第一信息,所述接收器454(包括天线452),所述接收处理器 456和所述控制器/处理器459中的至少之前两者被用于接收本申请中的第一信息。
作为一个实施例,所述发射器418(包括天线420),所述发射处理器416和所述控制器/处理器475中的至少之前两者被用于发送本申请中的所述第二信息,所述接收器454(包括天线452),所述接收处理器456和所述控制器/处理器459中的至少之前两者被用于接收本申请中的第二信息。
作为一个实施例,所述发射器418(包括天线420),所述发射处理器416和所述控制器/处理器475中的至少之前两者被用于发送本申请中的所述第三信息,所述接收器454(包括天线452),所述接收处理器456和所述控制器/处理器459中的至少之前两者被用于接收本申请中的第三信息。
作为一个实施例,所述发射器418(包括天线420),所述发射处理器416和所述控制器/处理器475中的至少之前两者被用于发送本申请中的所述第四信息,所述接收器454(包括天线452),所述接收处理器456和所述控制器/处理器459中的至少之前两者被用于接收本申请中的第四信息。
作为一个实施例,所述发射器454(包括天线452),所述发射处理器468和所述控制器/处理器459中的至少之前两者被用于发送本申请中的所述第一相位跟踪参考信号,所述接收器418(包括天线420),所述接收处理器470和所述控制器/处理器475中的至少之前两者被用于接收本申请中的所述第一相位跟踪参考信号。
作为一个实施例,所述发射器454(包括天线452),所述发射处理器468和所述控制器/处理器459中的至少之前两者被用于发送本申请中的所述第一解调参考信号,所述接收器418(包括天线420),所述接收处理器470和所述控制器/处理器475中的至少之前两者被用于接收本申请中的所述第一解调参考信号。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1和 方框F2是可选的。
对于N1,在步骤S10中发送第二无线信号;在步骤S11中发送第三信息;在步骤S12中发送第一信息和第二信息;在步骤S13中在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者;在步骤S14中发送第四信息;在步骤S15中在第二时频资源块中接收第一相位跟踪参考信号和第一解调参考信号。
对于U2,在步骤S20中接收第二无线信号;在步骤S21中接收第三信息;在步骤S22中接收第一信息和第二信息;在步骤S23中在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者;在步骤S24中接收第四信息;在步骤S15中在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考信号。
在实施例5中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被所述U2用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被所述U2用于确定所述G个子信号在所述第一时频资源块中的图案。所述第三信息被所述U2用于确定H个候选图案,所述第二信息被所述U2用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案 中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。所述第四信息被所述U2用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被所述N1用于确定所述第四信息。
作为一个实施例,所述用户设备在第一时间间隔中的无线发送所占用的所有资源粒子都属于所述第一时频资源块,所述第一时间间隔是所述第一时频资源块所占用的时域资源。
作为一个实施例,所述G为1。
作为一个实施例,所述G是可配置的。
作为一个实施例,所述相位跟踪参考信号是PTRS(相位跟踪参考信号,Phase-Tracking Reference Signal)。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述K个天线端口中的任意一个天线端口上发送的无线信号所经历的小尺度信道参数不能被用于推断出所述G个天线端口中的任意一个天线端口上发送的无线信号所经历的小尺度信道参数。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任意一个天线端口上发送的无线信号和所述K个天线端口中的任意一个天线端口上发送的无线信号不是空间相关的。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口上的发送波束不同。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口上的预编码向量不同。
作为一个实施例,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关是指所述G个天线端口中的任 意一个天线端口和所述K个天线端口中的任意一个天线端口被认为不是QCL。
作为一个实施例,如果一个天线端口发送的无线信号所经历的大尺度衰落参数能被用于推断出另一个天线端口发送的无线信号所经历的大尺度衰落参数,这两个天线端口被认为是QCL。
作为一个实施例,如果一个天线端口发送的无线信号所经历的大尺度衰落参数不能被用于推断出另一个天线端口发送的无线信号所经历的大尺度衰落参数,这两个天线端口被认为不是QCL。
作为一个实施例,所述大尺度衰落参数包括{多普勒(Doppler)扩展(Spread),多普勒滑动(shift)}中的至少之一。
作为一个实施例,所述大尺度衰落参数包括最大多径延时。
作为一个实施例,所述G个子信号在所述第一时频资源块中的图案是由所述第一参考信号在所述第一时频资源块中所占用的所有资源粒子组成。
作为一个实施例,所述G大于1,所述G个子信号中至少存在两个子信号在所述第一时频资源块中的图案不同。
作为一个实施例,无线信号在所述第一时频资源块中的图案是由所述无线信号在所述第一时频资源块中所占用的所有资源粒子的时频位置。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency-Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波组多载波)符号。
作为一个实施例,所述第一无线信号是{解调参考信号(DMRS,Demodulation Reference Signal),数据,探测参考信号(SRS,Sounding Reference Signal)}中的至少之一。
作为一个实施例,所述第一参考信号与所述第二无线信号空间相关是指所述第一参考信号的任意一个天线端口与所述第二无线信号的至少一个天线端口被认为是QCL。
作为一个实施例,所述第一参考信号与所述第二无线信号空间相关 是指所述第一参考信号的任意一个天线端口与所述第二无线信号的至少一个天线端口上的发送波束相同。
作为一个实施例,所述第一参考信号与所述第二无线信号空间相关是指所述第一参考信号的任意一个天线端口与所述第二无线信号的至少一个天线端口上的预编码向量相同。
作为一个实施例,所述第一参考信号与所述第二无线信号空间相关是指所述第一参考信号的任意一个天线端口与所述第二无线信号的至少一个天线端口上的模拟波束赋型系数相同。
作为一个实施例,所述第一信息显式的指示所述第一参考信号与所述第二无线信号空间相关。
作为一个实施例,所述第一信息隐式的指示所述第一参考信号与所述第二无线信号空间相关。
作为一个实施例,所述第二信息显式的指示所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线资源控制)信令承载。
作为一个实施例,所述第一信息是一个RRC信令中的一个IE(InformationElement,信息单元)的全部或一部分。
作为一个实施例,所述第一信息由MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)信令承载。
作为一个实施例,所述第一信息在SIB(SystemInformation Block,系统信息块)中传输。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息由DCI(下行控制信息,Downlink Control Information)信令承载。
作为一个实施例,所述第一信息是一个DCI信令中的一个域(field),所述域包括正整数个比特。
作为一个实施例,所述第一信息是动态配置的。
作为一个实施例,所述第一信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第一信息由PDCCH(Physical DownlinkControl Channel,物理下行控制信道)承载。
作为一个实施例,所述第一信息由sPDCCH(short PDCCH,短PDCCH)承载。
作为一个实施例,所述第一信息由NR-PDCCH(New Radio PDCCH,新无线PDCCH)承载。
作为一个实施例,所述第一信息由NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)承载。
作为一个实施例,所述第二信息由更高层信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息是一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息由MACCE信令承载。
作为一个实施例,所述第二信息在SIB中传输。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由物理层信令承载。
作为一个实施例,所述第二信息由DCI信令承载。
作为一个实施例,所述第二信息是一个DCI信令中的一个域,所述域包括正整数个比特。
作为一个实施例,所述第二信息是动态配置的。
作为一个实施例,所述第二信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第二信息由PDCCH承载。
作为一个实施例,所述第二信息由sPDCCH承载。
作为一个实施例,所述第二信息由NR-PDCCH承载。
作为一个实施例,所述第二信息由NB-PDCCH承载。
作为一个实施例,所述第一信息和所述第二信息由同一个物理层信令承载。
作为一个实施例,所述第一信息和所述第二信息由同一个DCI信令承载。
作为一个实施例,所述第一信息和所述第二信息分别是同一个DCI信令中的第一域和第二域。
作为一个实施例,所述第一信息和所述第二信息是一个RRC信令中的第一IE和第二IE。
作为一个实施例,所述第二信息包括所述G个子信号中的每一个子信号的{时域密度,时域起始位置,多载波符号个数}中至少之一。
作为一个实施例,所述第二信息包括所述G个子信号中的每一个子信号的{时域密度,时域起始位置,时域终止位置}中至少之一。
作为一个实施例,所述第二信息包括所述G个子信号中的每一个子信号的{频域密度,带宽,频域起始位置}中至少之一。
作为一个实施例,所述第二信息包括所述G个子信号中的每一个子信号的{频域密度,频域起始位置,频域终止位置}中至少之一。
作为一个实施例,所述第二信息包括所述G。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由更高层信令承载。
作为一个实施例,所述第三信息由RRC信令承载。
作为一个实施例,所述第三信息是一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第三信息由MACCE信令承载。
作为一个实施例,所述第三信息在SIB中传输。
作为一个实施例,所述第三信息和所述第二信息分别由RRC信令和物理层信令承载。
作为一个实施例,所述第三信息和所述第二信息分别由RRC信令和DCI信令承载。
作为一个实施例,所述第三信息和所述第二信息分别由RRC信令和MAC CE信令承载。
作为一个实施例,所述第三信息和所述第二信息分别由MAC CE信令和DCI信令承载。
作为一个实施例,所述第四信息由更高层信令承载。
作为一个实施例,所述第四信息由RRC信令承载。
作为一个实施例,所述第四信息是一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第四信息由MACCE信令承载。
作为一个实施例,所述第四信息在SIB中传输。
作为一个实施例,所述第四信息是半静态配置的。
作为一个实施例,所述第四信息由物理层信令承载。
作为一个实施例,所述第四信息由DCI信令承载。
作为一个实施例,所述第四信息是一个DCI信令中的一个域,所述域包括正整数个比特。
作为一个实施例,所述第四信息是动态配置的。
作为一个实施例,所述第四信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第四信息由PDCCH承载。
作为一个实施例,所述第四信息由sPDCCH承载。
作为一个实施例,所述第四信息由NR-PDCCH承载。
作为一个实施例,所述第四信息由NB-PDCCH承载。
实施例6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图6中,基站N3是用户设备U4的服务小区维持基站。附图6中,方框F3和方框F4是可选的。
对于N3,在步骤S30中接收第二无线信号;在步骤S31中发送第三信息;在步骤S32中发送第一信息和第二信息;在步骤S33中在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者;在步骤S34中发送第四信息;在步骤S35中在第二时频资源块中接收第一相位跟踪参考信号和第一解调参考信号。
对于U4,在步骤S40中发送第二无线信号;在步骤S41中接收第三信息;在步骤S42中接收第一信息和第二信息;在步骤S43中在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者;在步骤S44中接收第四信息;在步骤S45中在第二时频资源块中发送第一 相位跟踪参考信号和第一解调参考信号。
在实施例6中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被所述U4用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被所述U4用于确定所述G个子信号在所述第一时频资源块中的图案。所述第三信息被所述U2用于确定H个候选图案,所述第二信息被所述U4用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。所述第四信息被所述U4用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被所述N3用于确定所述第四信息。
实施例7
实施例7A至实施例7J分别示例了一个G个子信号在第一时频资源块中的图案的示意图。附图7中示出了所述G个子信号在本申请中所述第一时频资源块中所占用的资源粒子的位置的示意图;图7A至 图7J中一个方格对应一个资源粒子。
在实施例7中,本申请中的所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,所述F等于12N,所述N是正整数。
作为一个实施例,所述L是{14,13,12,11}中的一个值。
作为一个实施例,当所述G个子信号中的一个子信号的时域密度为1/a时,所述G个子信号中的一个子信号在同一个子载波上占用多个均匀间隔的资源粒子且相邻资源粒子的间隔为a,所述a是正整数。
作为一个实施例,当所述G个子信号中的一个子信号的频域密度为1/b时,所述G个子信号中的一个子信号在同一个多载波符号上占用多个均匀间隔的资源粒子且相邻资源粒子的间隔为bU,所述b是正整数,所述U是正整数。
作为一个实施例,当所述G个子信号中的一个子信号的频域密度为1/b时,所述G个子信号中的一个子信号在同一个多载波符号上占用多个均匀间隔的资源粒子且相邻资源粒子的间隔为bU,所述b是正整数,所述U等于12。
作为一个实施例,所述实施例7A对应所述F是1,所述L是6,所述G是1,时域密度为1的示意图。
作为一个实施例,所述实施例7B对应所述F是1,所述L是6,所述G是1,所述G个子信号时域密度为1/2的示意图。
作为一个实施例,所述实施例7C对应所述G个子信号占用连续的子载波,所述F是2,所述L是14,所述G是2,所述G个子信号时域密度均为1的示意图。
作为一个实施例,所述实施例7D对应所述G个子信号占用连续的子载波,所述F是2,所述L是14,所述G是2,所述G个子信号时域密度均为1/2的示意图。
作为一个实施例,所述实施例7E对应所述G个子信号占用不连续的子载波,所述F是4,所述L是14,所述G是2,所述G个子信号时 域密度均为1的示意图。
作为一个实施例,所述实施例7F对应所述G个子信号占用不连续的子载波,所述F是4,所述L是14,所述G是2,所述G个子信号时域密度均为1/2的示意图。
作为一个实施例,所述实施例7G对应所述G个子信号占用连续的子载波,所述F是24,所述L是14,所述G是2,所述G个子信号时域密度均为1,频域密度均为1,所述U等于12的示意图。
作为一个实施例,所述实施例7H对应所述G个子信号占用连续的子载波,所述F是24,所述L是14,所述G是2,所述G个子信号时域密度均为1/2,频域密度均为1,所述U等于12的示意图。
作为一个实施例,所述实施例7I对应所述G个子信号占用不连续的子载波,所述F是24,所述L是14,所述G是2,所述G个子信号时域密度均为1,频域密度均为1,所述U等于12的示意图。
作为一个实施例,所述实施例7J对应所述G个子信号占用不连续的子载波,所述F是24,所述L是14,所述G是2,所述G个子信号时域密度均为1/2,频域密度均为1,所述U等于12的示意图。
实施例8
实施例8A至实施例8B分别示例了一个第二信息的示意图,附图8中示出了所述第二信息的示意图。
在实施例8中,本申请中的所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,所述第二信息包括1个MCS,所述MCS被用于确定所述所述G个子信号在所述第一时频资源块中的图案的时域密度。
作为一个实施例,所述第二信息包括1个给定带宽,所述给定带宽被用于确定所述所述G个子信号在所述第一时频资源块中的图案的频域密度。
作为一个实施例,所述第二信息包括G个MCS,所述G个MCS被分别用于确定所述所述G个子信号在所述第一时频资源块中的图案的时域密度。
作为一个实施例,所述第二信息包括G个给定带宽,所述G个给定 带宽被分别用于确定所述所述G个子信号在所述第一时频资源块中的图案的频域密度。
作为一个实施例,所述实施例8A对应1个MCS与所述G个子信号中的一个子信号在所述第一时频资源块中的图案的时域密度1/a的对应关系的示意图。当0≤Z<Z0时,所述所述G个子信号中的一个子信号在所述第一时频资源块中不占用任何资源粒子;当Z0≤Z<Z1时,所述a等于a0;当Z1≤Z<Z2时,所述a等于a1;当Z2≤Z<Z3时,所述a等于a2;当Z3≤Z<Z4时,所述a等于a3;所述Z0,Z1,Z2,Z3和Z4是互不相同的正整数;所述a0,a1,a2和a3是互不相同的正整数;所述Z是大于或等于0的整数。
作为一个实施例,所述实施例8B对应1个给定带宽B与所述G个子信号中的一个子信号在所述第一时频资源块中的图案的频域密度1/b的对应关系的示意图。当B<B0V时,所述所述G个子信号中的一个子信号在所述第一时频资源块中不占用任何资源粒子;当B0V≤B<B1V时,所述b等于b0;当B1V≤B<B2V时,所述b等于b1;当B2V≤B<B3V时,所述b等于b2;当B3V≤B时,所述b等于b3;所述B0,B1,B2和B3是互不相同的正整数;所述b0,b1,b2和b3是互不相同的正整数;所述V是正整数;所述B是大于或等于0的整数。
实施例9
实施例9A至实施例9D分别示例了一个在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考信号的示意图。附图9中示出了在所述第二时频资源块中发送所述第一相位跟踪参考信号和所述第一解调参考信号的示意图;图9A至图9D中一个方格对应一个资源粒子。
在实施例9中,本申请中的所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
作为一个实施例,所述第一解调参考信号仅被1个天线端口发送。
作为一个实施例,相关的所述所述第一相位跟踪参考信号的发送天线端口和所述所述第一解调参考信号的发送天线端口被相同的天线发送,且对应相同的预编码向量。
作为一个实施例,所述第一相位跟踪参考信号所经历的小尺度信道衰落参数能被用于推断出所述第一解调参考信号所经历的小尺度信道衰落参数。
作为一个实施例,所述第一解调参考信号被M个天线端口发送,所述M是大于1的正整数,所述M个天线端口中的全部或部分天线端口被认为是QCL。
作为一个实施例,所述第一相位跟踪参考信号能被用于补偿相关的第一解调参考信号的相位噪声。
所述第四信息显式的指示所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关。
所述第四信息隐式的指示所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关。
作为一个实施例,所述第一参考信号被所述第四信息的发送者用于生成所述第四信息。
所述第二时频资源块在频域上包括P个连续的子载波,在时域上包括Q个连续的多载波符号,所述P是大于或等于1的正整数,所述Q是大于1的正整数。
作为一个实施例,所述第二时频资源块所占用的时域资源和所述第一时频资源块所占用的时域资源不同。
作为一个实施例,所述第二时频资源块所占用的时域资源在所述第一时频资源块所占用的时域资源之后。
作为一个实施例,所述第一参考信号被用于相位噪声测量。
作为一个实施例,所述第一解调参考信号被M个天线端口发送,所述M是正整数;所述第四信息被用于确定所述第一相位跟踪参考信号对应的一个天线端口被关联到了所述M个天线端口中的T个天线端口,所述T是正整数且1≤T≤M。
作为一个实施力,所述第一相位跟踪参考信号对应的一个天线端口所占用的子载波属于被关联的所述所述M个天线端口中的T个天线端口中的一个天线端口所占用的子载波。
作为一个实施力,所述第一相位跟踪参考信号对应的一个天线端口所占用的子载波属于被关联的所述所述M个天线端口中的T个天线端口 中的最小天线端口所占用的子载波。
作为一个实施例,所述第四信息的发送者将所述G个天线端口分成S个天线端口组;所述所述M个天线端口中的T个天线端口与所述S个天线端口组之一有关。
作为一个实施例,所述第四信息的发送者将所述G个天线端口分成S个天线端口组;所述所述M个天线端口中的T个天线端口分别与所述S个天线端口组之一中的一个天线端口被认为是QCL。
作为一个实施例,所述S个天线端口组中的任意一个天线端口组中的全部天线端口上发送的无线信号来自相同的振荡器。
作为一个实施例,所述实施例9A对应所述P等于12,所述Q等于14,所述第一解调参考信号的一个天线端口占用均匀间隔的子载波,所述第一解调参考信号被4个天线端口i0,i1,i2和i3发送,所述第一相位跟踪参考信号被1个天线端口j0发送,所述天线端口j0和所述天线端口i0,i1,i2和i3相关联,所述天线端口j0所占用的子载波属于所述天线端口i0所占用的子载波的示意图。所述第一参考信号包括分别被天线端口k0和k1发送的2个子信号,所述S等于1即天线端口k0和k1属于同一个天线端口组,天线端口i0和i1与天线端口k0被认为是QCL,天线端口i2和i3与天线端口k1被认为是QCL。
作为一个实施例,所述实施例9B对应所述P等于12,所述Q等于14,所述第一解调参考信号的一个天线端口占用均匀间隔的子载波,所述第一解调参考信号被4个天线端口I0,I1,I2和I3发送,所述第一相位跟踪参考信号被2个天线端口J0和J1发送,所述天线端口J0和所述天线端口I0和I1相关联,所述天线端口J1和所述天线端口I2和I3相关联,所述天线端口J0所占用的子载波属于所述天线端口I0所占用的子载波,所述天线端口J1所占用的子载波属于所述天线端口I2所占用的子载波的示意图。所述第一参考信号包括分别被天线端口K0和K1发送的2个子信号,所述S等于2即天线端口K0和K1属于不同的天线端口组,天线端口I0和I1与天线端口K0被认为是QCL,天线端口I2和I3与天线端口K1被认为是QCL。
作为一个实施例,所述实施例9C对应所述P等于12,所述Q等于14,所述第一解调参考信号的一个天线端口占用不均匀间隔的子载波, 所述第一解调参考信号被4个天线端口i0,i1,i2和i3发送,所述第一相位跟踪参考信号被1个天线端口j0发送,所述天线端口j0和所述天线端口i0,i1,i2和i3相关联,所述天线端口j0所占用的子载波属于所述天线端口i0所占用的子载波的示意图。所述第一参考信号包括分别被天线端口k0和k1发送的2个子信号,所述S等于1即天线端口k0和k1属于同一个天线端口组,天线端口i0和i1与天线端口k0被认为是QCL,天线端口i2和i3与天线端口k1被认为是QCL。
作为一个实施例,所述实施例9D对应所述P等于12,所述Q等于14,所述第一解调参考信号的一个天线端口占用不均匀间隔的子载波,所述第一解调参考信号被4个天线端口I0,I1,I2和I3发送,所述第一相位跟踪参考信号被2个天线端口J0和J1发送,所述天线端口J0和所述天线端口I0和I1相关联,所述天线端口J1和所述天线端口I2和I3相关联,所述天线端口J0所占用的子载波属于所述天线端口I0所占用的子载波,所述天线端口J1所占用的子载波属于所述天线端口I2所占用的子载波的示意图。所述第一参考信号包括分别被天线端口K0和K1发送的2个子信号,所述S等于2即天线端口K0和K1属于不同的天线端口组,天线端口I0和I1与天线端口K0被认为是QCL,天线端口I2和I3与天线端口K1被认为是QCL。
实施例10
实施例10示例了一个第一参考信号被用于干扰测量的示意图。附图10中示出了所述第一参考信号被用于干扰测量的示意图。
作为一个实施例,所述第一参考信号是非零功率参考信号。
作为一个实施例,所述第一参考信号的接收者从所述第一参考信号中估计出来的干扰信息被用于提升数据解调性能。
作为一个实施例,所述第一参考信号的接收者从所述第一参考信号中估计出来的干扰信息被用于MCS的确定。
作为一个实施例,所述干扰测量包括相位噪声测量。
实施例11
实施例11示例了用于用户设备中的处理装置的结构框图,如附图 11所示。在附图11中,用户设备中的处理装置1200主要由第一收发机模块1201,第一接收机模块1202和第一发射机模块1203组成。第一收发机模块1201包括本申请附图4中的发射器/接收器454(包括天线452),接收处理器456,发射处理器468和控制器/处理器459中的至少之前三者。第一接收机模块1202包括本申请附图4中的发射器/接收器454(包括天线452),接收处理器456和控制器/处理器459中的至少之前两者。第一发射机模块1203包括本申请附图4中的发射器/接收器454(包括天线452),发射处理器468和控制器/处理器459中的至少之前两者。
-第一收发机模块1201操作第二无线信号;
-第一接收机模块1202接收第一信息,第二信息,第三信息,第四信息;
-第一发射机模块1203,在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者,在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考信号。
在实施例11中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;所述第二无线信号所占用的资源粒 子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
作为一个实施例,所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
实施例12
实施例12示例了用于基站设备中的处理装置的结构框图,如附图12所示。在附图12中,基站设备中的处理装置1300主要由第二收发机模块1301,第二发射机模块1302和第二接收机模块1303组成。第二收发机模块1301包括本申请附图4中的发射器/接收器418(包括天线420),发射处理器416,接收处理器470和控制器/处理器475中的至少之前三者。第二发射机模块1302包括本申请附图4中的发射器/接收器418(包括天线420),发射处理器416和控制器/处理器475中的至少之前两者。第二接收机模块1303包括本申请附图4中的发射器/接收器418(包括天线420),接收处理器470和控制器/处理器475中的至少之前两者。
-第二收发机模块1301操作第二无线信号;
-第二发射机模块1302发送第一信息,第二信息,第三信息,第四信息;
-第二接收机模块1303在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者,在第二时频资源块中接收第一相位跟踪参考 信号和第一解调参考信号。
在实施例10中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
作为一个实施例,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是发送,或者,所述第二无线信号包括探测参考信号且所述操作是接收;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
作为一个实施例,所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
作为一个实施例,所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存 储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    -在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者;
    其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    -操作第二无线信号;
    -接收第一信息;
    -接收第二信息;
    其中,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是接收,或者,所述第二无线信号包括探测参考信号且所述操作是发送;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
  3. 根据权利要求2所述的方法,其特征在于,包括:
    -接收第三信息;
    其中,所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述L个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案 相同。
  4. 根据权利要求2所述的方法,其特征在于,所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,包括:
    -接收第四信息;
    -在第二时频资源块中发送第一相位跟踪参考信号和第一解调参考信号;
    其中,所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一参考信号被用于干扰测量。
  7. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    -在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者;
    其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
  8. 根据权利要求7所述的方法,其特征在于,包括:
    -操作第二无线信号;
    -发送第一信息;
    -发送第二信息;
    其中,所述第二无线信号包括{信道状态信息参考信号,同步信号}中的至少之一且所述操作是发送,或者,所述第二无线信号包括探测参考信号且所述操作是接收;所述第二无线信号所占用的资源粒子在所述第一时频资源块之外;所述第一信息被用于确定所述第一参考信号与所述第二无线信号空间相关;所述第二信息被用于确定所述G个子信号在所述第一时频资源块中的图案。
  9. 根据权利要求8所述的方法,其特征在于,包括:
    -发送第三信息;
    其中,所述第三信息被用于确定H个候选图案,所述第二信息被用于从所述H个候选图案中确定G个候选图案,所述G个子信号在所述第一时频资源块中的图案分别是所述G个候选图案,所述H是大于所述G的正整数,所述H个候选图案中任一候选图案在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同。
  10. 根据权利要求8所述的方法,其特征在于,所述第二信息隐式的指示所述G个子信号在所述第一时频资源块中的图案。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,包括:
    -发送第四信息;
    -在第二时频资源块中接收第一相位跟踪参考信号和第一解调参考信号;
    其中,所述第四信息被用于确定所述第一相位跟踪参考信号的发送天线端口和所述第一解调参考信号的发送天线端口相关,所述第一参考信号被用于确定所述第四信息。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,所述第一参考信号被用于干扰测量。
  13. 一种用于无线通信的用户设备,其特征在于,包括:
    -第一发射机模块,在第一时频资源块中发送{第一参考信号,第一无线信号}中的至少前者;
    其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中 的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述用户设备在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述用户设备在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
  14. 一种用于无线通信的基站设备,其特征在于,包括:
    -第二接收机模块,在第一时频资源块中接收{第一参考信号,第一无线信号}中的至少前者;
    其中,所述第一参考信号包括G个子信号,所述G个子信号分别被G个天线端口发送;所述G个子信号中任一子信号在所述第一时频资源块中的图案和被1个天线端口发送的相位跟踪参考信号在所述第一时频资源块中的图案相同;所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号且所述第一参考信号在所述第一时频资源块中所占用的子载波的数量大于1,或者,所述第一参考信号的发送者在所述第一时频资源块中仅发送所述第一参考信号和所述第一无线信号;所述第一无线信号被K个天线端口发送,所述G个天线端口中的任意一个天线端口和所述K个天线端口中的任意一个天线端口无关;所述第一时频资源块在频域上包括F个连续的子载波,在时域上包括L个连续的多载波符号,所述F是大于或等于1的正整数,所述L是大于1的正整数,所述G是正整数。
PCT/CN2017/100833 2017-09-07 2017-09-07 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019047090A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780093852.1A CN110999166B (zh) 2017-09-07 2017-09-07 一种被用于无线通信的用户设备、基站中的方法和装置
PCT/CN2017/100833 WO2019047090A1 (zh) 2017-09-07 2017-09-07 一种被用于无线通信的用户设备、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100833 WO2019047090A1 (zh) 2017-09-07 2017-09-07 一种被用于无线通信的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2019047090A1 true WO2019047090A1 (zh) 2019-03-14

Family

ID=65633323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100833 WO2019047090A1 (zh) 2017-09-07 2017-09-07 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (1) CN110999166B (zh)
WO (1) WO2019047090A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818639A (zh) * 2019-04-11 2020-10-23 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113891485A (zh) * 2020-07-02 2022-01-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20220077983A1 (en) * 2019-01-09 2022-03-10 Datang Mobile Communications Quipment Co., Ltd. Reference signal transmission method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825180A (zh) * 2020-06-19 2021-12-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707511A (zh) * 2009-11-18 2010-05-12 中兴通讯股份有限公司 传输方式的指示方法及装置
WO2014109622A1 (ko) * 2013-01-14 2014-07-17 엘지전자 주식회사 무선 통신 시스템에서 3-차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
CN107040345A (zh) * 2016-02-03 2017-08-11 华为技术有限公司 传输导频信号的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029647A1 (de) * 2009-09-21 2011-03-24 Man Diesel & Turbo Se Axial-Radial-Strömungsmaschine
CN104160766B (zh) * 2013-01-24 2019-04-05 华为技术有限公司 用于传输参考信号的方法、基站和用户设备
WO2014113971A1 (zh) * 2013-01-25 2014-07-31 华为技术有限公司 解调参考信号传输方法、用户设备和基站
CN110460417B (zh) * 2014-05-09 2020-10-27 华为技术有限公司 解调参考信号配置方法、装置、基站及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707511A (zh) * 2009-11-18 2010-05-12 中兴通讯股份有限公司 传输方式的指示方法及装置
WO2014109622A1 (ko) * 2013-01-14 2014-07-17 엘지전자 주식회사 무선 통신 시스템에서 3-차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
CN107040345A (zh) * 2016-02-03 2017-08-11 华为技术有限公司 传输导频信号的方法和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220077983A1 (en) * 2019-01-09 2022-03-10 Datang Mobile Communications Quipment Co., Ltd. Reference signal transmission method and device
CN111818639A (zh) * 2019-04-11 2020-10-23 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11424885B2 (en) 2019-04-11 2022-08-23 Shanghai Langbo Communication Technology Company Limited Method and device used in UE and base station for wireless communication
CN111818639B (zh) * 2019-04-11 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11652593B2 (en) 2019-04-11 2023-05-16 Shanghai Langbo Communication Technology Company Limited Method and device used in UE and base station for wireless communication
CN113891485A (zh) * 2020-07-02 2022-01-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113891485B (zh) * 2020-07-02 2024-01-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN110999166B (zh) 2022-07-01
CN110999166A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN109039555B (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020078272A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110892766B (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110870262B (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
CN110999166B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN109392115B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144264A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019109307A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信系统中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113497700B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN115314170B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032480A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134593A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115395992B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088610A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924721

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17924721

Country of ref document: EP

Kind code of ref document: A1