WO2024022344A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024022344A1
WO2024022344A1 PCT/CN2023/109136 CN2023109136W WO2024022344A1 WO 2024022344 A1 WO2024022344 A1 WO 2024022344A1 CN 2023109136 W CN2023109136 W CN 2023109136W WO 2024022344 A1 WO2024022344 A1 WO 2024022344A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink channel
frequency domain
target
domain resource
resource set
Prior art date
Application number
PCT/CN2023/109136
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024022344A1 publication Critical patent/WO2024022344A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • Network energy conservation is important for environmental sustainability, reducing environmental impact, and saving operating costs.
  • the use of more antennas, the utilization of larger bandwidth and more frequency bands, and the continuous improvement of transmission data rates, enhancing network energy saving has become an important aspect of 5G development; the use of Dynamically adjusting frequency domain resources is an effective solution to achieve network energy saving.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first information block is used to determine multiple uplink channel configurations
  • the first signaling is used to determine a target frequency domain resource set, the target frequency domain resource set All included frequency domain resources belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP;
  • the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and among the plurality of uplink channel configurations Any two uplink channel configurations are used to configure uplink physical channels of the same type; the target uplink channel configuration is which uplink channel configuration among the multiple uplink channel configurations is related to the target frequency domain resource set.
  • the benefits of the above method include: conducive to network energy saving.
  • the benefits of the above method include: conducive to energy saving of user equipment.
  • the benefits of the above method include: improving resource utilization.
  • the benefits of the above method include: reducing signaling overhead.
  • the advantages of the above method include: good compatibility.
  • the benefits of the above method include: small changes to existing 3GPP standards.
  • the above method is characterized by,
  • the target uplink physical channel is a dynamically scheduled PUSCH, and each of the multiple uplink channel configurations includes Includes configuration for dynamically scheduled PUSCH.
  • the benefits of the above method include: improving the flexibility of configuration for dynamically scheduled PUSCH.
  • the above method is characterized by,
  • the target frequency domain resource set is one of multiple frequency domain resource sets, the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations, and the target uplink channel configuration is the multiple uplink channel configurations.
  • the above method is characterized by,
  • the first signaling is used to indicate the validity of the target frequency domain resource set.
  • the above method is characterized by,
  • the above method is characterized by,
  • the target frequency domain resource set is used to determine the frequency domain resources occupied by the target uplink physical channel.
  • the above method is characterized by,
  • Each of the plurality of uplink channel configurations is a PUSCH-Config.
  • the benefits of the above method include: configuring multiple PUSCH-Config for multiple available frequency domain resource configurations of a BWP, which improves the flexibility of configuration or scheduling and is beneficial to ensuring the system when applying network energy-saving configuration. uplink transmission performance.
  • the above method is characterized by,
  • the name of each of the multiple uplink channel configurations includes PUSCH-Config.
  • the above method is characterized by,
  • Each of the plurality of uplink channel configurations is PUSCH-ConfigCommon.
  • the benefits of the above method include: configuring multiple PUSCH-ConfigCommons for multiple available frequency domain resource configurations of a BWP, which improves the flexibility of configuration or scheduling and is conducive to ensuring the system when applying network energy-saving configurations. uplink transmission performance.
  • the above method is characterized by,
  • Each of the plurality of uplink channel configurations is PUCCH-ConfigCommon.
  • the benefits of the above method include: configuring multiple PUCCH-ConfigCommons for multiple available frequency domain resource configurations of a BWP, which improves the flexibility of configuration or scheduling, and is beneficial to ensuring the system when applying network energy-saving configurations. uplink transmission performance.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first information block is used to determine multiple uplink channel configurations
  • the first signaling is used to determine a target frequency domain resource set
  • the target frequency domain resource set All included frequency domain resources belong to the first BWP
  • the plurality of uplink channel configurations are associated with the first BWP;
  • the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and among the plurality of uplink channel configurations Any two uplink channel configurations are used to configure uplink physical channels of the same type; the target uplink channel configuration is which uplink channel configuration among the multiple uplink channel configurations is related to the target frequency domain resource set.
  • the above method is characterized by,
  • the target uplink physical channel is a dynamically scheduled PUSCH, and each of the plurality of uplink channel configurations includes a configuration for the dynamically scheduled PUSCH.
  • the above method is characterized by,
  • the target frequency domain resource set is one of multiple frequency domain resource sets, the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations, and the target uplink channel configuration is the multiple uplink channel configurations.
  • the above method is characterized by,
  • the first signaling is used to indicate the validity of the target frequency domain resource set.
  • the above method is characterized by,
  • the above method is characterized by,
  • the target frequency domain resource set is used to determine the frequency domain resources occupied by the target uplink physical channel.
  • the above method is characterized by,
  • Each of the plurality of uplink channel configurations is a PUSCH-Config.
  • the above method is characterized by,
  • the name of each of the multiple uplink channel configurations includes PUSCH-Config.
  • the above method is characterized by,
  • Each of the plurality of uplink channel configurations is PUSCH-ConfigCommon.
  • the above method is characterized by,
  • Each of the plurality of uplink channel configurations is PUCCH-ConfigCommon.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives a first information block and first signaling, the first information block is used to determine multiple uplink channel configurations, the first signaling is used to determine a target frequency domain resource set, and the All frequency domain resources included in the target frequency domain resource set belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP;
  • the first transmitter sends the target uplink physical channel
  • the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and among the plurality of uplink channel configurations Any two uplink channel configurations are used to configure uplink physical channels of the same type; the target uplink channel configuration is which uplink channel configuration among the multiple uplink channel configurations is related to the target frequency domain resource set.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends a first information block and first signaling, the first information block is used to determine multiple uplink channel configurations, the first signaling is used to determine a target frequency domain resource set, and the All frequency domain resources included in the target frequency domain resource set belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP;
  • the second receiver receives the target uplink physical channel
  • the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and among the plurality of uplink channel configurations Any two uplink channel configurations are used to configure uplink physical channels of the same type; the target uplink channel configuration is which uplink channel configuration among the multiple uplink channel configurations is related to the target frequency domain resource set.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of the relationship between multiple frequency domain resource sets, a target frequency domain resource set, multiple uplink channel configurations and a target uplink channel configuration according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the relationship between first signaling and a target frequency domain resource set according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of the relationship between a target frequency domain resource set and a target uplink physical channel according to an embodiment of the present application
  • Figure 9 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application.
  • Figure 10 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first node in this application receives the first information block in step 101; receives the first signaling in step 102; and sends the target uplink physical channel in step 103.
  • the first information block is used to determine multiple uplink channel configurations
  • the first signaling is used to determine a target frequency domain resource set, and all frequencies included in the target frequency domain resource set are Domain resources belong to the first BWP, and the plurality of uplink channel configurations are all associated with the first BWP
  • the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used for Determine the time domain resources occupied by the target uplink physical channel, and any two uplink channel configurations among the multiple uplink channel configurations are used to configure uplink physical channels of the same type
  • the target uplink channel configuration is the multiple uplink channel configurations. Which uplink channel configuration among the uplink channel configurations is related to the target frequency domain resource set.
  • the first information block is physical layer signaling.
  • the first information block includes physical layer signaling.
  • the first information block is downlink control signaling.
  • the first information block is an uplink scheduling signaling (UpLink Grant Signalling).
  • UpLink Grant Signalling UpLink Grant Signalling
  • the first information block is dynamically configured.
  • the first information block includes layer 1 (L1) signaling.
  • the first information block includes control signaling of layer 1 (L1).
  • the first information block includes one or more fields (Field) in a physical layer signaling.
  • the first information block includes higher layer (Higher Layer) signaling.
  • the first information block includes one or more fields in a higher layer signaling.
  • the first information block includes RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the first information block includes MAC CE (Medium Access Control layer Control Element, media access control layer control element).
  • MAC CE Medium Access Control layer Control Element, media access control layer control element
  • the first information block includes one or more fields in an RRC signaling.
  • the first information block includes one or more fields in a MAC CE.
  • the first information block includes one or more fields in an IE (Information Element).
  • the first information block includes BWP-Uplink.
  • the first information block includes BWP-UplinkCommon.
  • the first information block includes BWP-UplinkDedicated.
  • the first information block is BWP-Uplink.
  • the first information block is BWP-UplinkCommon.
  • the first information block is BWP-UplinkDedicated.
  • the first signaling is physical layer signaling.
  • the first signaling includes physical layer signaling.
  • the first signaling is downlink control signaling.
  • the first signaling is a DCI (Downlink control information) format (DCI format).
  • DCI Downlink control information
  • the first signaling is a DCI signaling.
  • the first signaling is signaling in DCI format.
  • the first node receives the first signaling in a physical layer control channel.
  • the first node operates on a PDCCH (Physical downlink control channel, physical downlink control channel). channel) to receive the first signaling.
  • PDCCH Physical downlink control channel, physical downlink control channel. channel
  • the first signaling is DCI format 0_0.
  • the first signaling is DCI format 0_1.
  • the first signaling is DCI format 0_2.
  • the first signaling adopts one of DCI format 0_0, DCI format 0_1 or DCI format 0_2.
  • the first signaling adopts a DCI format other than DCI format 0_0, DCI format 0_1 or DCI format 0_2.
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling is dynamically configured.
  • the first signaling includes layer 1 (L1) signaling.
  • the first signaling includes layer 1 (L1) control signaling.
  • the first signaling includes one or more fields (Field) in a physical layer signaling.
  • the first signaling includes higher layer (Higher Layer) signaling.
  • the first signaling includes one or more fields in a higher layer signaling.
  • the first signaling includes RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first signaling includes MAC CE (Medium Access Control layer Control Element, media access control layer control element).
  • MAC CE Medium Access Control layer Control Element, media access control layer control element
  • the first signaling includes one or more fields in an RRC signaling.
  • the first signaling includes one or more domains in a MAC CE.
  • the first signaling includes one or more fields in an IE (Information Element).
  • the statement of sending a target uplink physical channel includes: sending a signal on the target uplink physical channel.
  • the description of sending the target uplink physical channel includes: sending a bit block on the target uplink physical channel.
  • This bit block is sequentially subjected to CRC attachment (CRC attachment), code block segmentation (Code block segmentation), and code block segmentation.
  • CRC attachment CRC attachment
  • Code block segmentation Code block segmentation
  • Block CRC attachment Channel coding, Rate matching, Code block concatenation, Scrambling, Modulation, Layer mapping, Transform precoding ( Transform precoding), precoding (Precoding), mapping to virtual resource blocks (Mapping to virtual resource blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from virtual to physical resource blocks), multi-carrier symbol generation, modulation upconversion At least part of is then sent on the target uplink physical channel.
  • the description of sending the target uplink physical channel includes: sending a bit block on the target uplink physical channel.
  • This bit block is sequentially subjected to CRC attachment (CRC attachment), code block segmentation (Code block segmentation), and code block segmentation.
  • CRC attachment CRC attachment
  • Code block segmentation Code block segmentation
  • Block CRC attachment Channel coding, Rate matching, Code block concatenation, Scrambling, Modulation, Layer mapping, Transform precoding ( Transform precoding), precoding (Precoding), mapping to virtual resource blocks (Mapping to virtual resource blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from virtual to physical resource blocks) at least part of the target after is sent on the uplink physical channel.
  • the first information block is used to indicate the multiple uplink channel configurations.
  • the first information block explicitly indicates at least one of the plurality of uplink channel configurations.
  • the first information block implicitly indicates at least one of the plurality of uplink channel configurations.
  • the first information block is used to configure the plurality of uplink channel configurations.
  • the first information block includes the plurality of uplink channel configurations.
  • each of the plurality of uplink channel configurations includes at least one domain in at least one IE.
  • each of the multiple uplink channel configurations is an IE.
  • each of the multiple uplink channel configurations includes a configuration for a PUCCH (Physical uplink control channel, physical uplink control channel).
  • PUCCH Physical uplink control channel, physical uplink control channel
  • each of the multiple uplink channel configurations includes a configuration for PUSCH (Physical uplink shared channel).
  • PUSCH Physical uplink shared channel
  • each of the multiple uplink channel configurations includes a configuration for a random access channel.
  • each of the multiple uplink channel configurations is used to configure the PUCCH.
  • each of the multiple uplink channel configurations is used to configure PUSCH.
  • each of the multiple uplink channel configurations is used to configure a random access channel.
  • each of the plurality of uplink channel configurations includes a configuration for dynamically scheduled PUSCH.
  • each of the multiple uplink channel configurations includes PUCCH-Config.
  • each of the multiple uplink channel configurations includes PUSCH-Config.
  • each of the multiple uplink channel configurations includes RACH-ConfigCommon.
  • each of the multiple uplink channel configurations includes PUSCH-ConfigCommon.
  • each of the multiple uplink channel configurations includes PUCCH-ConfigCommon.
  • each of the multiple uplink channel configurations is RACH-ConfigCommon.
  • each of the multiple uplink channel configurations is PUSCH-ConfigCommon.
  • each of the multiple uplink channel configurations is PUCCH-ConfigCommon.
  • the number of uplink channel configurations included in the multiple uplink channel configurations is equal to 2.
  • the number of uplink channel configurations included in the plurality of uplink channel configurations is greater than 2.
  • stating that the first signaling is used to determine the target frequency domain resource set includes: the first signaling is used to indicate the target frequency domain resource set.
  • stating that the first signaling is used to determine the target frequency domain resource set includes: the first domain in the first signaling is used to indicate the target frequency domain resource set.
  • stating that the first signaling is used to determine the target frequency domain resource set includes: the first signaling is used to activate the target frequency domain resource set.
  • stating that the first signaling is used to determine the target frequency domain resource set includes: the first domain in the first signaling is used to activate the target frequency domain resource set.
  • stating that the first signaling is used to determine the target frequency domain resource set includes: the first signaling is used to indicate the validity of the target frequency domain resource set.
  • stating that the first signaling is used to determine the target frequency domain resource set includes: the first field in the first signaling is used to indicate the validity of the target frequency domain resource set.
  • the frequency domain resources in the target frequency domain resource set are effective.
  • frequency domain resources outside the target frequency domain resource set in the first BWP are invalid.
  • the frequency domain resources in the target frequency domain resource set are available.
  • frequency domain resources outside the target frequency domain resource set are unavailable in the first BWP.
  • the frequency domain resources in the target frequency domain resource set can be used to transmit PUSCH.
  • frequency domain resources outside the target frequency domain resource set in the first BWP cannot be used to transmit PUSCH.
  • the first field in the first signaling includes at least one bit.
  • the name of the first domain in the first signaling includes RB.
  • the name of the first domain in the first signaling includes RB set.
  • the name of the first domain in the first signaling includes Switch.
  • the name of the first domain in the first signaling includes Switching.
  • the name of the first domain in the first signaling includes BWP.
  • the name of the first domain in the first signaling includes change.
  • the target frequency domain resource set includes at least one subcarrier.
  • the target frequency domain resource set includes at least one PRB (Physical resource block, physical resource block).
  • the target frequency domain resource set includes at least one RB (resource block).
  • the target frequency domain resource set includes at least one subband.
  • the frequency domain resources included in the target frequency domain resource set are continuous.
  • the frequency domain resources included in the target frequency domain resource set are discontinuous.
  • the first BWP is a BWP (bandwidth part, partial bandwidth).
  • the first BWP is an uplink (UL) BWP.
  • the first BWP includes consecutive common resource blocks.
  • this uplink The channel configuration is associated with the first BWP.
  • this uplink channel configuration is associated with the first BWP.
  • this uplink The channel configuration is associated with the first BWP.
  • this uplink channel configuration is associated with the first BWP.
  • stating that the plurality of uplink channel configurations are all associated with the first BWP includes: the plurality of uplink channel configurations are configured for the first BWP.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the plurality of uplink channel configurations are all used for PUSCH transmission on the first BWP.
  • the expression that the plurality of uplink channel configurations are all associated with the first BWP includes: the plurality of uplink channel configurations are used for dynamically scheduled PUSCH on the first BWP. transmission.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the plurality of uplink channel configurations are all for dynamically scheduled PUSCH transmission on the first BWP. Configuration.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the plurality of uplink channel configurations are all used for PUCCH transmission on the first BWP.
  • the expression that the plurality of uplink channel configurations are all associated with the first BWP includes: the plurality of uplink channel configurations are used for random access channels on the first BWP. transmission.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the first information block belongs to the BWP-Uplink IE corresponding to the first BWP.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the first information block belongs to the BWP-UplinkCommon IE corresponding to the first BWP.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the first information block belongs to the BWP-UplinkDedicated IE corresponding to the first BWP.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the first information block is the BWP-Uplink IE corresponding to the first BWP.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the first information block is the BWP-UplinkCommon IE corresponding to the first BWP.
  • the statement that the plurality of uplink channel configurations are all associated with the first BWP includes: the first information block is a BWP-UplinkDedicated IE corresponding to the first BWP.
  • the target uplink physical channel is PUSCH.
  • the target uplink physical channel is PUCCH.
  • the target uplink physical channel is a random access channel.
  • the target uplink channel configuration is used to indicate a time domain resource allocation table based on determining the time domain resources occupied by the target uplink physical channel.
  • the target uplink channel configuration is used to indicate the time domain resources occupied by the target uplink physical channel.
  • At least one domain in the target uplink channel configuration is used to indicate the time domain resources occupied by the target uplink physical channel.
  • the target uplink channel configuration is used to configure the time domain resources occupied by the target uplink physical channel.
  • At least one domain in the target uplink channel configuration is used to configure the time domain resources occupied by the target uplink physical channel.
  • the time domain resources occupied by the target uplink physical channel include time slots occupied by the target uplink physical channel.
  • the time domain resources occupied by the target uplink physical channel include the number of time slots occupied by the target uplink physical channel.
  • the time domain resources occupied by the target uplink physical channel include time slots occupied by multiple repeated transmissions of the target uplink physical channel.
  • the time domain resources occupied by the target uplink physical channel include symbols occupied by the target uplink physical channel.
  • the time domain resources occupied by the target uplink physical channel include all symbols occupied by multiple repeated transmissions of the target uplink physical channel in multiple time slots.
  • the time domain resources occupied by the target uplink physical channel include symbols in the time slot occupied by the target uplink physical channel.
  • the symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the symbols in this application are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • the symbols in this application are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the symbols in this application are FBMC (Filter Bank Multi Carrier) symbols.
  • the symbols in this application include CP (Cyclic Prefix, cyclic prefix).
  • the symbols in this application include continuous time domain resources.
  • the symbols in this application are symbols in a time slot.
  • the symbol in this application is an uplink symbol.
  • the symbol in this application is an uplink symbol or a flexible symbol.
  • the symbol in this application is one of an uplink symbol, a downlink symbol or a flexible symbol.
  • the target uplink channel configuration is also used to determine the precoding used by the target uplink physical channel.
  • the target uplink channel configuration is also used to indicate the precoding adopted by the target uplink physical channel.
  • At least one field in the target uplink channel configuration is used to indicate the precoding adopted by the target uplink physical channel.
  • the target uplink channel configuration is also used to configure the precoding used by the target uplink physical channel.
  • At least one field in the target uplink channel configuration is used to configure precoding used by the target uplink physical channel.
  • the target uplink channel configuration is also used to determine the transmit power used by the target uplink physical channel.
  • the target uplink channel configuration is also used to indicate the transmit power used by the target uplink physical channel.
  • At least one field in the target uplink channel configuration is used to indicate the transmit power used by the target uplink physical channel.
  • the target uplink channel configuration is also used to determine the size of the RBG (Resource block group, resource block group) for the target uplink physical channel.
  • the target uplink channel configuration is also used to indicate the size of the RBG for the target uplink physical channel. configuration.
  • At least one field in the target uplink channel configuration is used to indicate the configuration of the RBG size for the target uplink physical channel.
  • the target uplink channel configuration is also used to determine frequency hopping information of the target uplink physical channel.
  • the target uplink channel configuration is also used to indicate frequency hopping information of the target uplink physical channel.
  • At least one field in the target uplink channel configuration is used to indicate frequency hopping information of the target uplink physical channel.
  • the first signaling is used to schedule the target uplink physical channel.
  • a DCI other than the first signaling is used to schedule the target uplink physical channel.
  • a DCI other than the first signaling and later than the first signaling is used to schedule the target uplink physical channel.
  • the first signaling is used to determine which uplink channel configuration among the plurality of uplink channel configurations the target uplink channel configuration is.
  • the first signaling is used to indicate which uplink channel configuration among the plurality of uplink channel configurations the target uplink channel configuration is.
  • the target frequency domain resource set is used to determine which uplink channel configuration among the plurality of uplink channel configurations the target uplink channel configuration is.
  • which uplink channel configuration among the plurality of uplink channel configurations the target uplink channel configuration is depends on the target frequency domain resource set.
  • describing which uplink channel configuration among the plurality of uplink channel configurations the target uplink channel configuration is related to the target frequency domain resource set includes:
  • the target frequency domain resource set is one of multiple frequency domain resource sets, the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations, and the target uplink channel configuration is the multiple uplink channel configurations.
  • the expression of which uplink channel configuration among the plurality of uplink channel configurations the target uplink channel configuration is includes: the position of the target uplink channel configuration in the plurality of uplink channel configurations.
  • the position of the target uplink channel configuration in the multiple uplink channel configurations refers to a sorting index of the target uplink channel configuration in the multiple uplink channel configurations.
  • the multiple uplink channel configurations belong to an uplink channel configuration list
  • the position of the target uplink channel configuration in the multiple uplink channel configurations means: the target uplink channel configuration is in this uplink channel configuration list. Sorting index in the channel configuration list.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet service 230.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smartphones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global Positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband Internet of Things devices, machine type communications devices, land vehicles, automobiles, Wearable devices, or any other similarly functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global Positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband Internet of Things devices, machine type communications devices, land vehicles, automobiles, Wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is the control node that handles signaling between UE 201 and EPC/5G-CN 210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 corresponds to the second node in this application.
  • the UE201 is user equipment that supports network energy saving.
  • the gNB 203 corresponds to the first node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the first node and the second node in this application both correspond to the UE 201, for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between the communication node device (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining wireless Wire resources (ie radio bearers) and lower layers are configured using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • At least part of the first information block in this application is generated from the RRC sublayer 306.
  • At least part of the first information block in this application is generated in the MAC sublayer 302.
  • At least part of the first information block in this application is generated in the MAC sublayer 352.
  • At least part of the first information block in this application is generated by the PHY301.
  • At least part of the first information block in this application is generated by the PHY351.
  • At least part of the first signaling in this application is generated in the RRC sublayer 306.
  • At least part of the first signaling in this application is generated in the MAC sublayer 302.
  • At least part of the first signaling in this application is generated in the MAC sublayer 352.
  • At least part of the first signaling in this application is generated by the PHY301.
  • At least part of the first signaling in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the reception processor 456 and the multi-antenna reception processor 458 implement various signals of the L1 layer. number processing function.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is user equipment
  • the second node is user equipment
  • the first node is user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK). ) protocol performs error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one The memory includes computer program code; the at least one memory and the computer program code are configured for use with the at least one processor.
  • the second communication device 450 device at least: receives a first information block and first signaling, the first information block is used to determine multiple uplink channel configurations, and the first signaling is used to determine a target frequency domain Resource set, all frequency domain resources included in the target frequency domain resource set belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP; sending a target uplink physical channel; wherein, the target uplink channel The configuration is one of the plurality of uplink channel configurations.
  • the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel. Any two of the plurality of uplink channel configurations are The channel configuration is used to configure uplink physical channels of the same type; the target uplink channel configuration is which uplink channel configuration among the multiple uplink channel configurations is related to the target frequency domain resource set.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first An information block and first signaling, the first information block is used to determine multiple uplink channel configurations, the first signaling is used to determine a target frequency domain resource set, the target frequency domain resource set includes All frequency domain resources belong to the first BWP, and the multiple uplink channel configurations are associated with the first BWP; the target uplink physical channel is sent; wherein the target uplink channel configuration is one of the multiple uplink channel configurations , the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and any two uplink channel configurations among the plurality of uplink channel configurations are used to configure uplink physical channels of the same type ; The target uplink channel configuration is which uplink channel configuration among the plurality of uplink channel configurations is related to the target frequency domain resource set.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: sends a first information block and first signaling, the first information block is used to determine multiple uplink channel configurations, and the first signaling is used to determine a target frequency domain Resource set, all frequency domain resources included in the target frequency domain resource set belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP; receiving a target uplink physical channel; wherein, the target uplink channel The configuration is one of the plurality of uplink channel configurations.
  • the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel. Any two of the plurality of uplink channel configurations are The channel configuration is used to configure uplink physical channels of the same type; the target uplink channel configuration is which uplink channel configuration among the multiple uplink channel configurations is related to the target frequency domain resource set.
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first An information block and first signaling, the first information block is used to determine multiple uplink channel configurations, the first signaling is used to determine a target frequency domain resource set, the target frequency domain resource set includes All frequency domain resources belong to the first BWP, and the multiple uplink channel configurations are associated with the first BWP; a target uplink physical channel is received; wherein the target uplink channel configuration is one of the multiple uplink channel configurations , the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and any two uplink channel configurations among the plurality of uplink channel configurations are used to configure uplink physical channels of the same type ; The target uplink channel configuration is which uplink channel configuration among the plurality of uplink channel configurations is related to the target frequency domain resource set.
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the first information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the target uplink physical channel in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to receive the target uplink physical channel in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the first node U1 receives the first information block in step S511; receives the first signaling in step S512; and sends the target uplink physical channel in step S513.
  • the second node U2 sends the first information block in step S521; sends the first signaling in step S522; and receives the target uplink physical channel in step S523.
  • the first information block is used to determine multiple uplink channel configurations
  • the first signaling is used to determine a target frequency domain resource set, and all frequencies included in the target frequency domain resource set are Domain resources belong to the first BWP, and the plurality of uplink channel configurations are all associated with the first BWP
  • the target uplink channel configuration is one of the plurality of uplink channel configurations
  • the target uplink channel configuration is at least used for Determine the time domain resources occupied by the target uplink physical channel, and any two uplink channel configurations among the multiple uplink channel configurations are used to configure uplink physical channels of the same type
  • the target uplink channel configuration is the multiple uplink channel configurations.
  • the target frequency domain resource set is one of multiple frequency domain resource sets, and the multiple frequency domain resource sets respectively correspond to the The plurality of uplink channel configurations
  • the target uplink channel configuration is an uplink channel configuration corresponding to the target frequency domain resource set among the plurality of uplink channel configurations
  • any one of the plurality of frequency domain resource sets includes All frequency domain resources belong to the first BWP
  • the target uplink physical channel is PUSCH
  • the name of each uplink channel configuration in the multiple uplink channel configurations includes PUSCH-Config.
  • the description that the name of each of the multiple uplink channel configurations includes PUSCH-Config includes: the multiple uplink channel configurations are multiple PUSCH-Config. Config.
  • the first signaling is used to indicate the validity of the target frequency domain resource set.
  • the target frequency domain resource set becomes valid, the first signaling in the first BWP Frequency domain resources outside the target frequency domain resource set are not effective; the frequency domain resources occupied by the target uplink physical channel belong to the target frequency domain resource set.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between user equipment and user equipment.
  • the problem to be solved by this application includes: how to determine the target uplink channel configuration.
  • the problem to be solved by this application includes: how to determine the uplink channel configuration used to determine the time domain resources occupied by the target uplink physical channel.
  • the problem to be solved by this application includes: how to determine the applied uplink channel configuration according to the target frequency domain resource set.
  • the problems to be solved by this application include: how to determine relevant configurations for dynamically scheduled PUSCH according to available frequency domain resources.
  • the problems to be solved by this application include: how to ensure uplink transmission performance in a network energy-saving scenario.
  • the problems to be solved by this application include: how to ensure uplink transmission performance in non-network energy saving scenarios.
  • the problems to be solved by this application include: how to ensure uplink transmission performance in a scenario where user equipment energy is limited.
  • the problems to be solved by this application include: how to ensure uplink transmission performance in scenarios that support XR (Extended Reality, extended reality) services.
  • XR Extended Reality, extended reality
  • the problems to be solved by this application include: how to ensure uplink transmission performance in the Internet of Vehicles/V2X scenario.
  • the problems to be solved by this application include: how to improve the flexibility of uplink channel configuration.
  • the problems to be solved by this application include: how to enhance dynamic scheduling for PUSCH.
  • the problems to be solved by this application include: how to enhance the transmission of PUCCH.
  • the problems to be solved by this application include: how to enhance the transmission of the random access channel.
  • Embodiment 6 illustrates a schematic diagram of the relationship between multiple frequency domain resource sets, a target frequency domain resource set, multiple uplink channel configurations and a target uplink channel configuration according to an embodiment of the present application, as shown in FIG. 6 .
  • a blank box represents an uplink channel configuration among multiple uplink channel configurations
  • a blank box with a thick border represents a target uplink channel configuration
  • a gray filled box represents a set of multiple frequency domain resources.
  • the gray-filled box with a bold border represents the target frequency domain resource collection.
  • the target frequency domain resource set is one of multiple frequency domain resource sets, the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations, and the target uplink channel configuration is the The uplink channel configuration corresponding to the target frequency domain resource set among the multiple uplink channel configurations; all frequency domain resources included in any one of the multiple frequency domain resource sets belong to the first BWP.
  • the number of frequency domain resource sets included in the plurality of frequency domain resource sets is equal to 2.
  • the number of frequency domain resource sets included in the plurality of frequency domain resource sets is greater than 2.
  • each of the plurality of frequency domain resource sets includes at least one subcarrier.
  • each frequency domain resource set in the plurality of frequency domain resource sets includes at least one PRB (Physical resource block, physical resource block).
  • PRB Physical resource block, physical resource block
  • each of the plurality of frequency domain resource sets includes at least one RB (resource block).
  • each of the plurality of frequency domain resource sets includes at least one subband.
  • the frequency domain resources included in one frequency domain resource set among the plurality of frequency domain resource sets are continuous.
  • the frequency domain resources included in one frequency domain resource set among the plurality of frequency domain resource sets are discontinuous.
  • one of the plurality of frequency domain resource sets includes all frequency domain resources in the first BWP.
  • one of the plurality of frequency domain resource sets is the first BWP itself.
  • the multiple frequency domain resource sets there are two frequency domain resource sets that have no intersection with each other.
  • the multiple frequency domain resource sets there are two frequency domain resource sets that only partially overlap each other.
  • the first information block is used to determine the multiple frequency domain resource sets.
  • the first information block is used to indicate the multiple frequency domain resource sets.
  • the first information block explicitly indicates at least one of the plurality of frequency domain resource sets.
  • the first information block implicitly indicates at least one of the plurality of frequency domain resource sets.
  • the first information block is used to configure the multiple frequency domain resource sets.
  • the multiple frequency domain resource sets are configured in the BWP-Uplink IE corresponding to the first BWP.
  • the multiple frequency domain resource sets are configured in the BWP-UplinkCommon IE corresponding to the first BWP.
  • the multiple frequency domain resource sets are configured in the BWP-UplinkDedicated IE corresponding to the first BWP.
  • the first information block is used to determine that the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations.
  • the first information block is used to indicate that the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations.
  • the multiple uplink channel configurations are respectively configured for the multiple frequency domain resource sets.
  • this uplink channel configuration is application.
  • any two of the multiple uplink channel configurations are not applied simultaneously.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first signaling and the target frequency domain resource set according to an embodiment of the present application, as shown in FIG. 7 .
  • the first signaling is used to indicate the activation of the target frequency domain resource set.
  • the target frequency domain resource set takes effect from the end of the first signaling.
  • the target frequency domain resource set takes effect from the k1th symbol after the end of the first signaling.
  • k1 is default.
  • k1 is equal to 1.
  • k1 is equal to 2.
  • k1 is equal to 3.
  • k1 is equal to 4.
  • k1 is equal to 7.
  • k1 is equal to 14.
  • k1 is equal to 28.
  • k1 is equal to 42.
  • k1 is equal to 56.
  • k1 is not greater than 128.
  • k1 is configurable.
  • k1 is determined by UE capability.
  • k1 is indicated by the first signaling.
  • the first signaling is used to schedule a physical channel, and the target frequency domain resource set takes effect from the time slot to which this physical channel belongs in the time domain.
  • the target frequency domain resource set takes effect from the k2th time slot after the time slot to which the first signaling belongs in the time domain.
  • k2 is default.
  • k2 is equal to 1.
  • k2 is equal to 2.
  • k2 is equal to 3.
  • k2 is equal to 4.
  • k2 is equal to 5.
  • k2 is equal to 6.
  • k2 is equal to 7.
  • k2 is equal to 8.
  • k2 is not greater than 128.
  • k2 is configurable.
  • k2 is determined by UE capability.
  • the k2 is indicated by the first signaling.
  • the target frequency domain resource set takes effect from the k3th time slot after the transmission of HARQ-ACK (Hybrid automatic repeat request acknowledgment) information for the first signaling ends. .
  • HARQ-ACK Hybrid automatic repeat request acknowledgment
  • the target frequency domain resource set starts from the k3th time slot after the transmission of the HARQ-ACK information of the PDSCH (Physical downlink shared channel) scheduled for the first signaling ends. take effect.
  • the target frequency domain resource set takes effect from the k3th time slot after the transmission of ACK for the first signaling ends.
  • the target frequency domain resource set takes effect from the k3th time slot after the end of sending the ACK of the PDSCH scheduled for the first signaling.
  • k3 is default.
  • k3 is equal to 1.
  • k3 is equal to 2.
  • k3 is equal to 3.
  • k3 is equal to 4.
  • k3 is equal to 5.
  • k3 is equal to 6.
  • k3 is equal to 7.
  • k3 is equal to 8.
  • the k3 is not greater than 128.
  • the k3 is configurable.
  • k3 is determined by UE capability (capability).
  • the k3 is indicated by the first signaling.
  • k3 is related to the number of time slots in a subframe.
  • k3 is equal to 3N, and N is the number of time slots in a subframe.
  • k3 is equal to 3N+1, and N is the number of time slots in a subframe.
  • the target frequency domain resource set takes effect from the k4th time slot after the time slot occupied by the transmission of HARQ-ACK information for the first signaling.
  • the target frequency domain resource set takes effect from the k4th time slot after the time slot occupied by the transmission of HARQ-ACK information of the PDSCH scheduled for the first signaling.
  • the target frequency domain resource set takes effect from the k4th time slot after the time slot occupied by the transmission of ACK for the first signaling.
  • the target frequency domain resource set takes effect from the k4th time slot after the time slot occupied by the transmission of ACK of the PDSCH scheduled for the first signaling.
  • k4 is default.
  • k4 is equal to 1.
  • k4 is equal to 2.
  • k4 is equal to 3.
  • k4 is equal to 4.
  • k4 is equal to 5.
  • k4 is equal to 6.
  • k4 is equal to 7.
  • k4 is equal to 8.
  • the k4 is not greater than 128.
  • the k4 is configurable.
  • k4 is determined by UE capability (capability).
  • the k4 is indicated by the first signaling.
  • k4 is related to the number of time slots in a subframe.
  • k4 is equal to 3N, and N is the number of time slots in a subframe.
  • k4 is equal to 3N+1, and N is the number of time slots in a subframe.
  • Embodiment 8 illustrates a schematic diagram of the relationship between a target frequency domain resource set and a target uplink physical channel according to an embodiment of the present application, as shown in FIG. 8 .
  • the target frequency domain resource set is used to determine the frequency domain resources occupied by the target uplink physical channel.
  • the frequency domain resources occupied by the target uplink physical channel belong to the target frequency domain resource set.
  • the scheduling signaling of the target uplink physical channel indicates the frequency domain resources occupied by the target uplink physical channel from the target frequency domain resource set.
  • the size of the frequency domain resource assignment (Frequency domain resource assignment) field in the scheduling signaling of the target uplink physical channel is related to the target frequency domain resource set.
  • the target frequency domain resource set is used to determine the size of the frequency domain resource allocation domain in the scheduling signaling of the target uplink physical channel.
  • the number of resource blocks (RB(s)) included in the target frequency domain resource set is used to determine the frequency domain resources in the scheduling signaling of the target uplink physical channel.
  • the size of the allocation domain is used to determine the frequency domain resources in the scheduling signaling of the target uplink physical channel.
  • the number of Resource Block Groups (RBGs) included in the target frequency domain resource set is used to determine the size of the frequency domain resource allocation domain in the scheduling signaling of the target uplink physical channel. .
  • the target frequency domain resource set is used to indicate the size of the frequency domain resource allocation domain in the scheduling signaling of the target uplink physical channel.
  • the number of resource blocks (resource block(s), RB(s)) included in the target frequency domain resource set is used to indicate the frequency domain resources in the scheduling signaling of the target uplink physical channel.
  • the size of the allocation domain is used to indicate the frequency domain resources in the scheduling signaling of the target uplink physical channel.
  • the number of Resource Block Groups (RBGs) included in the target frequency domain resource set is used to indicate the size of the frequency domain resource allocation domain in the scheduling signaling of the target uplink physical channel.
  • the frequency domain resource allocation field in the scheduling signaling of the target uplink physical channel includes N RBG bits, and the N RBG is equal to the number of resource block groups included in the target frequency domain resource set.
  • the frequency domain resource allocation domain in the scheduling signaling of the target uplink physical channel includes bits
  • the N RBG is equal to the number of resource block groups included in the target frequency domain resource set
  • the Equal to the number of resource blocks included in the target frequency domain resource set.
  • the frequency domain resource allocation domain in the scheduling signaling of the target uplink physical channel includes bits, the Equal to the number of resource blocks included in the target frequency domain resource set.
  • Embodiment 9 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 9 .
  • the first node device processing device 900 includes a first receiver 901 and a first transmitter 902.
  • the first node device 900 is a base station.
  • the first node device 900 is user equipment.
  • the first node device 900 is a relay node.
  • the first node device 900 is a vehicle-mounted communication device.
  • the first node device 900 is a user equipment supporting V2X communication.
  • the first node device 900 is a relay node that supports V2X communication.
  • the first node device 900 is a user equipment supporting operations on a high-frequency spectrum.
  • the first node device 900 is a user equipment supporting operations on a shared spectrum.
  • the first node device 900 is a user equipment supporting XR services.
  • the first receiver 901 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least one of the sources 467.
  • the first receiver 901 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first five of source 467.
  • the first receiver 901 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first four of source 467.
  • the first receiver 901 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first three of source 467.
  • the first receiver 901 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. At least the first two in source 467.
  • the first transmitter 902 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the first transmitter 902 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of data sources 467.
  • the first transmitter 902 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of data sources 467.
  • the first transmitter 902 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of data sources 467.
  • the first transmitter 902 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of data sources 467.
  • the first receiver 901 receives a first information block and first signaling.
  • the first information block is used to determine multiple uplink channel configurations.
  • the first signaling is used to determine A target frequency domain resource set, all frequency domain resources included in the target frequency domain resource set belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP;
  • the first transmitter 902 Send a target uplink physical channel; wherein the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and the Any two uplink channel configurations among the plurality of uplink channel configurations are used to configure the same type of uplink physical channels; which uplink channel configuration among the plurality of uplink channel configurations is the target uplink channel configuration and the target frequency Related to domain resource collection.
  • the target uplink physical channel is a dynamically scheduled PUSCH
  • each of the plurality of uplink channel configurations includes a configuration for the dynamically scheduled PUSCH.
  • the target frequency domain resource set is one of multiple frequency domain resource sets, the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations, and the target uplink channel configuration is the An uplink channel configuration corresponding to the target frequency domain resource set among multiple uplink channel configurations; all frequency domain resources included in any one of the multiple frequency domain resource sets belong to the first BWP.
  • the first signaling is used to indicate the validity of the target frequency domain resource set.
  • frequency domain resources outside the target frequency domain resource set in the first BWP do not take effect.
  • the target frequency domain resource set is used to determine the frequency domain resources occupied by the target uplink physical channel.
  • each of the multiple uplink channel configurations is a PUSCH-Config.
  • each of the multiple uplink channel configurations is PUSCH-ConfigCommon.
  • each of the multiple uplink channel configurations is PUCCH-ConfigCommon.
  • the name of each of the multiple uplink channel configurations includes PUSCH-Config.
  • the name of each of the multiple uplink channel configurations includes PUSCH-ConfigCommon.
  • the name of each of the multiple uplink channel configurations includes PUCCH-ConfigCommon.
  • Embodiment 10 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 10 .
  • the second node device processing device 1000 includes a second transmitter 1001 and a second receiver 1002.
  • the second node device 1000 is user equipment.
  • the second node device 1000 is a base station.
  • the second node device 1000 is a satellite device.
  • the second node device 1000 is a relay node.
  • the second node device 1000 is a vehicle-mounted communication device.
  • the second node device 1000 is a user equipment supporting V2X communication.
  • the second node device 1000 is a device that supports operations on a high-frequency spectrum.
  • the second node device 1000 is a device that supports operations on a shared spectrum.
  • the second node device 1000 is a device that supports XR services.
  • the second node device 1000 is one of a test device, a test equipment, and a test instrument.
  • the second transmitter 1001 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second transmitter 1001 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second transmitter 1001 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second transmitter 1001 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second transmitter 1001 includes the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second receiver 1002 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least one.
  • the second receiver 1002 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first five.
  • the second receiver 1002 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first four.
  • the second receiver 1002 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first three.
  • the second receiver 1002 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of this application. At least the first two.
  • the second transmitter 1001 sends a first information block and first signaling.
  • the first information block is used to determine multiple uplink channel configurations.
  • the first signaling is used to determine A target frequency domain resource set, all frequency domain resources included in the target frequency domain resource set belong to the first BWP, and the plurality of uplink channel configurations are associated with the first BWP;
  • the second receiver 1002 Receive a target uplink physical channel; wherein the target uplink channel configuration is one of the plurality of uplink channel configurations, and the target uplink channel configuration is at least used to determine the time domain resources occupied by the target uplink physical channel, and the Any two uplink channel configurations among the plurality of uplink channel configurations are used to configure the same type of uplink physical channels; which uplink channel among the plurality of uplink channel configurations is the target uplink channel configuration? The configuration is related to the target frequency domain resource set.
  • the target uplink physical channel is a dynamically scheduled PUSCH
  • each of the plurality of uplink channel configurations includes a configuration for the dynamically scheduled PUSCH.
  • the target frequency domain resource set is one of multiple frequency domain resource sets, the multiple frequency domain resource sets respectively correspond to the multiple uplink channel configurations, and the target uplink channel configuration is the An uplink channel configuration corresponding to the target frequency domain resource set among multiple uplink channel configurations; all frequency domain resources included in any one of the multiple frequency domain resource sets belong to the first BWP.
  • the first signaling is used to indicate the validity of the target frequency domain resource set.
  • frequency domain resources outside the target frequency domain resource set in the first BWP do not take effect.
  • the target frequency domain resource set is used to determine the frequency domain resources occupied by the target uplink physical channel.
  • each of the multiple uplink channel configurations is a PUSCH-Config.
  • each of the multiple uplink channel configurations is PUSCH-ConfigCommon.
  • each of the multiple uplink channel configurations is PUCCH-ConfigCommon.
  • the name of each of the multiple uplink channel configurations includes PUSCH-Config.
  • the name of each of the multiple uplink channel configurations includes PUSCH-ConfigCommon.
  • the name of each of the multiple uplink channel configurations includes PUCCH-ConfigCommon.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment Second node devices in this application include but are not limited to mobile phones, tablets, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, notebooks, Internet cards, low-power devices, eMTC equipment, NB-IoT equipment, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;第一发射机,发送目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
网络节能对于环境的可持续性、减少环境影响以及节约运营成本都非常重要。随着5G网络更加密集的布局,更多天线的使用、更大的带宽和更多的频带的利用,以及传输数据速率的不断提高,增强网络节能成为5G发展的一个重要方面;对所使用的频域资源进行较为动态地调整是实现网络节能的一种有效方案。
发明内容
如何确定针对所使用的频域资源上行信道配置是一个需要解决的关键问题。需要说明的是,上述描述采用网络节能相关的场景作为例子;本申请也同样适用于其他场景,比如非网络节能的相关场景,eMBB(Enhance Mobile Broadband,增强型移动宽带),URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信),MBS(Multicast Broadcast Services,多播广播服务),IoT(Internet of Things,物联网),车联网,NTN(non-terrestrial networks,非地面网络),共享频谱(shared spectrum)等,并取得类似的技术效果。此外,不同场景(包括但不限于网络节能相关场景,非网络节能的相关场景,eMBB,URLLC,MBS,IoT,车联网,NTN,共享频谱)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
发送目标上行物理信道;
其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为一个实施例,上述方法的好处包括:有利于网络节能。
作为一个实施例,上述方法的好处包括:有利于用户设备节能。
作为一个实施例,上述方法的好处包括:提高了资源利用率。
作为一个实施例,上述方法的好处包括:降低了信令开销。
作为一个实施例,上述方法的好处包括:兼容性好。
作为一个实施例,上述方法的好处包括:对现有3GPP标准的改动小。
根据本申请的一个方面,上述方法的特征在于,
所述目标上行物理信道是被动态调度的PUSCH,所述多个上行信道配置中的每个上行信道配置都包 括用于被动态调度的PUSCH的配置。
作为一个实施例,上述方法的好处包括:提高了用于被动态调度的PUSCH的配置的灵活性。
根据本申请的一个方面,上述方法的特征在于,
所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令被用于指示所述目标频域资源集合的生效。
根据本申请的一个方面,上述方法的特征在于,
当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源不生效。
根据本申请的一个方面,上述方法的特征在于,
所述目标频域资源集合被用于确定所述目标上行物理信道所占用的频域资源。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置都是PUSCH-Config。
作为一个实施例,上述方法的好处包括:针对一个BWP的多种可用频域资源配置分别配置多个PUSCH-Config,提高了配置或调度的灵活性,有利于在应用网络节能的配置时保证系统的上行传输性能。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-Config。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置都是PUSCH-ConfigCommon。
作为一个实施例,上述方法的好处包括:针对一个BWP的多种可用频域资源配置分别配置多个PUSCH-ConfigCommon,提高了配置或调度的灵活性,有利于在应用网络节能的配置时保证系统的上行传输性能。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置都是PUCCH-ConfigCommon。
作为一个实施例,上述方法的好处包括:针对一个BWP的多种可用频域资源配置分别配置多个PUCCH-ConfigCommon,提高了配置或调度的灵活性,有利于在应用网络节能的配置时保证系统的上行传输性能。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
接收目标上行物理信道;
其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
根据本申请的一个方面,上述方法的特征在于,
所述目标上行物理信道是被动态调度的PUSCH,所述多个上行信道配置中的每个上行信道配置都包括用于被动态调度的PUSCH的配置。
根据本申请的一个方面,上述方法的特征在于,
所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令被用于指示所述目标频域资源集合的生效。
根据本申请的一个方面,上述方法的特征在于,
当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源不生效。
根据本申请的一个方面,上述方法的特征在于,
所述目标频域资源集合被用于确定所述目标上行物理信道所占用的频域资源。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置都是PUSCH-Config。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-Config。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置都是PUSCH-ConfigCommon。
根据本申请的一个方面,上述方法的特征在于,
所述多个上行信道配置中的每个上行信道配置都是PUCCH-ConfigCommon。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
第一发射机,发送目标上行物理信道;
其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
第二接收机,接收目标上行物理信道;
其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的多个频域资源集合,目标频域资源集合,多个上行信道配置以及目标上行信道配置之间关系的示意图;
图7示出了根据本申请的一个实施例的第一信令和目标频域资源集合之间关系的示意图;
图8示出了根据本申请的一个实施例的目标频域资源集合和目标上行物理信道之间关系的示意图;
图9示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点,在步骤101中接收第一信息块;在步骤102中接收第一信令;在步骤103中发送目标上行物理信道。
在实施例1中,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为一个实施例,所述第一信息块是物理层信令。
作为一个实施例,所述第一信息块包括物理层信令。
作为一个实施例,所述第一信息块是下行控制信令。
作为一个实施例,所述第一信息块是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信息块是动态配置的。
作为一个实施例,所述第一信息块包括层1(L1)的信令。
作为一个实施例,所述第一信息块包括层1(L1)的控制信令。
作为一个实施例,所述第一信息块包括一个物理层信令中的一个或多个域(Field)。
作为一个实施例,所述第一信息块包括更高层(Higher Layer)信令。
作为一个实施例,所述第一信息块包括一个更高层信令中的一个或多个域。
作为一个实施例,所述第一信息块包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信息块包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信息块包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信息块包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第一信息块包括一个IE(Information Element,信息元素)中的一个或多个域。
作为一个实施例,所述第一信息块包括BWP-Uplink。
作为一个实施例,所述第一信息块包括BWP-UplinkCommon。
作为一个实施例,所述第一信息块包括BWP-UplinkDedicated。
作为一个实施例,所述第一信息块是BWP-Uplink。
作为一个实施例,所述第一信息块是BWP-UplinkCommon。
作为一个实施例,所述第一信息块是BWP-UplinkDedicated。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令是下行控制信令。
作为一个实施例,所述第一信令是一个DCI(Downlink control information,下行控制信息)格式(DCI format)。
作为一个实施例,所述第一信令是一个DCI信令。
作为一个实施例,所述第一信令是采用DCI格式的信令。
作为一个实施例,所述第一节点在一个物理层控制信道中接收所述第一信令。
作为一个实施例,所述第一节点在一个PDCCH(Physical downlink control channel,物理下行控制信 道)中接收所述第一信令。
作为一个实施例,所述第一信令是DCI format 0_0。
作为一个实施例,所述第一信令是DCI format 0_1。
作为一个实施例,所述第一信令是DCI format 0_2。
作为一个实施例,所述第一信令采用DCI格式0_0,DCI格式0_1或DCI格式0_2中之一。
作为一个实施例,所述第一信令采用DCI格式0_0,DCI格式0_1或DCI格式0_2之外的DCI格式。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括层1(L1)的控制信令。
作为一个实施例,所述第一信令包括一个物理层信令中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括更高层(Higher Layer)信令。
作为一个实施例,所述第一信令包括一个更高层信令中的一个或多个域。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element)中的一个或多个域。
作为一个实施例,所述表述发送目标上行物理信道包括:在所述目标上行物理信道上发送信号。
作为一个实施例,所述表述发送目标上行物理信道包括:在所述目标上行物理信道上发送一个比特块,这个比特块依次经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transform precoding),预编码(Precoding),映射到虚拟资源块(Mapping to virtual resource blocks),从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks),多载波符号生成,调制上变频中的至少部分之后在所述目标上行物理信道上被发送。
作为一个实施例,所述表述发送目标上行物理信道包括:在所述目标上行物理信道上发送一个比特块,这个比特块依次经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transform precoding),预编码(Precoding),映射到虚拟资源块(Mapping to virtual resource blocks),从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks)中的至少部分之后在所述目标上行物理信道上被发送。
作为一个实施例,所述第一信息块被用于指示所述多个上行信道配置。
作为一个实施例,所述第一信息块显式指示所述多个上行信道配置中的至少之一。
作为一个实施例,所述第一信息块隐式指示所述多个上行信道配置中的至少之一。
作为一个实施例,所述第一信息块被用于配置所述多个上行信道配置。
作为一个实施例,所述第一信息块包括所述多个上行信道配置。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括至少一个IE中的至少一个域。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是一个IE。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括针对PUCCH(Physical uplink control channel,物理上行控制信道)的配置。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括针对PUSCH(Physical uplink shared channel,物理上行共享信道)的配置。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括针对随机接入信道的配置。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都被用于配置PUCCH。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都都被用于配置PUSCH。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都都被用于配置随机接入信道。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括用于被动态调度的PUSCH的配置。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括PUCCH-Config。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括PUSCH-Config。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括RACH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括PUSCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都包括PUCCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是RACH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUSCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUCCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置所包括的上行信道配置的数量等于2。
作为一个实施例,所述多个上行信道配置所包括的上行信道配置的数量大于2。
作为一个实施例,所述表述所述第一信令被用于确定目标频域资源集合包括:所述第一信令被用于指示所述目标频域资源集合。
作为一个实施例,所述表述所述第一信令被用于确定目标频域资源集合包括:所述第一信令中的第一域被用于指示所述目标频域资源集合。
作为一个实施例,所述表述所述第一信令被用于确定目标频域资源集合包括:所述第一信令被用于激活所述目标频域资源集合。
作为一个实施例,所述表述所述第一信令被用于确定目标频域资源集合包括:所述第一信令中的第一域被用于激活所述目标频域资源集合。
作为一个实施例,所述表述所述第一信令被用于确定目标频域资源集合包括:所述第一信令被用于指示所述目标频域资源集合的生效。
作为一个实施例,所述表述所述第一信令被用于确定目标频域资源集合包括:所述第一信令中的第一域被用于指示所述目标频域资源集合的生效。
作为一个实施例,当所述目标频域资源集合生效时,所述目标频域资源集合中的频域资源是有效的。
作为一个实施例,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源是无效的。
作为一个实施例,当所述目标频域资源集合生效时,所述目标频域资源集合中的频域资源是可用的。
作为一个实施例,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源是不可用的。
作为一个实施例,当所述目标频域资源集合生效时,所述目标频域资源集合中的频域资源是可以被用于发送PUSCH的。
作为一个实施例,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源是不可以被用于发送PUSCH的。
作为一个实施例,所述第一信令中的所述第一域包括至少一个比特。
作为一个实施例,所述第一信令中的所述第一域的名字中包括RB。
作为一个实施例,所述第一信令中的所述第一域的名字中包括RB set。
作为一个实施例,所述第一信令中的所述第一域的名字中包括Switch。
作为一个实施例,所述第一信令中的所述第一域的名字中包括Switching。
作为一个实施例,所述第一信令中的所述第一域的名字中包括BWP。
作为一个实施例,所述第一信令中的所述第一域的名字中包括change。
作为一个实施例,所述目标频域资源集合包括至少一个子载波(subcarrier)。
作为一个实施例,所述目标频域资源集合包括至少一个PRB(Physical resource block,物理资源块)。
作为一个实施例,所述目标频域资源集合包括至少一个RB(resource block,资源块)。
作为一个实施例,所述目标频域资源集合包括至少一个子频带(subband)。
作为一个实施例,所述目标频域资源集合所包括的频域资源是连续的。
作为一个实施例,所述目标频域资源集合所包括的频域资源是不连续的。
作为一个实施例,所述第一BWP是一个BWP(bandwidth part,部分带宽)。
作为一个实施例,所述第一BWP是一个上行(Uplink,UL)BWP。
作为一个实施例,所述第一BWP包括连续的公共资源块(common resource blocks)。
作为一个实施例,当一个上行信道配置在所述第一BWP所对应的BWP-UplinkDedicated IE中被用作设置和释放条目(setup and release entries)的参考数据类型(referenced data type)时,这个上行信道配置和所述第一BWP相关联。
作为一个实施例,当一个上行信道配置在所述第一BWP所对应的BWP-UplinkDedicated IE的一个域中被配置时,这个上行信道配置和所述第一BWP相关联。
作为一个实施例,当一个上行信道配置在所述第一BWP所对应的BWP-UplinkCommon IE中被用作设置和释放条目(setup and release entries)的参考数据类型(referenced data type)时,这个上行信道配置和所述第一BWP相关联。
作为一个实施例,当一个上行信道配置在所述第一BWP所对应的BWP-UplinkCommon IE的一个域中被配置时,这个上行信道配置和所述第一BWP相关联。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述多个上行信道配置都是针对所述第一BWP所配置的。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述多个上行信道配置都被用于在所述第一BWP上的PUSCH传输。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述多个上行信道配置都被用于在所述第一BWP上的被动态调度的PUSCH传输。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述多个上行信道配置都是针对在所述第一BWP上的被动态调度的PUSCH传输的配置。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述多个上行信道配置都被用于在所述第一BWP上的PUCCH传输。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述多个上行信道配置都被用于在所述第一BWP上的随机接入信道的传输。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述第一信息块属于所述第一BWP所对应的BWP-Uplink IE。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述第一信息块属于所述第一BWP所对应的BWP-UplinkCommon IE。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述第一信息块属于所述第一BWP所对应的BWP-UplinkDedicated IE。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述第一信息块是所述第一BWP所对应的BWP-Uplink IE。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述第一信息块是所述第一BWP所对应的BWP-UplinkCommon IE。
作为一个实施例,所述表述所述多个上行信道配置都和所述第一BWP相关联包括:所述第一信息块是所述第一BWP所对应的BWP-UplinkDedicated IE。
作为一个实施例,所述目标上行物理信道是PUSCH。
作为一个实施例,所述目标上行物理信道是PUCCH。
作为一个实施例,所述目标上行物理信道是随机接入信道。
作为一个实施例,所述目标上行信道配置被用于指示所述目标上行物理信道所占用的时域资源的确定所基于的时域资源分配(time domain resource allocation)表。
作为一个实施例,所述目标上行信道配置被用于指示所述目标上行物理信道所占用的时域资源。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于指示所述目标上行物理信道所占用的时域资源。
作为一个实施例,所述目标上行信道配置被用于配置所述目标上行物理信道所占用的时域资源。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于配置所述目标上行物理信道所占用的时域资源。
作为一个实施例,所述目标上行物理信道所占用的所述时域资源包括所述目标上行物理信道所占用的时隙(slot)。
作为一个实施例,所述目标上行物理信道所占用的所述时域资源包括所述目标上行物理信道所占用的时隙的数量。
作为一个实施例,所述目标上行物理信道所占用的所述时域资源包括所述目标上行物理信道的多次重复传输所占用的时隙(slot)。
作为一个实施例,所述目标上行物理信道所占用的所述时域资源包括所述目标上行物理信道所占用的符号。
作为一个实施例,所述目标上行物理信道所占用的所述时域资源包括所述目标上行物理信道的多次重复传输在多个时隙(slot)中所占用的全部符号。
作为一个实施例,所述目标上行物理信道所占用的所述时域资源包括所述目标上行物理信道所占用的时隙内的符号。
作为一个实施例,本申请中的所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,本申请中的所述符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,本申请中的所述符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,本申请中的所述符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,本申请中的所述符号包括连续的时域资源。
作为一个实施例,本申请中的所述符号是时隙中的符号。
作为一个实施例,本申请中的所述符号是上行符号(uplink symbol)。
作为一个实施例,本申请中的所述符号是上行符号(uplink symbol)或灵活符号(flexible symbol)。
作为一个实施例,本申请中的所述符号是上行符号(uplink symbol),下行符号(downlink symbol)或灵活符号(flexible symbol)中之一。
作为一个实施例,所述目标上行信道配置还被用于确定所述目标上行物理信道所采用的预编码。
作为一个实施例,所述目标上行信道配置还被用于指示所述目标上行物理信道所采用的预编码。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于指示所述目标上行物理信道所采用的预编码。
作为一个实施例,所述目标上行信道配置还被用于配置所述目标上行物理信道所采用的预编码。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于配置所述目标上行物理信道所采用的预编码。
作为一个实施例,所述目标上行信道配置还被用于确定所述目标上行物理信道所采用的发送功率。
作为一个实施例,所述目标上行信道配置还被用于指示所述目标上行物理信道所采用的发送功率。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于指示所述目标上行物理信道所采用的发送功率。
作为一个实施例,所述目标上行信道配置还被用于确定针对所述目标上行物理信道的RBG(Resource block group,资源块组)的大小。
作为一个实施例,所述目标上行信道配置还被用于指示针对所述目标上行物理信道的RBG的大小的 配置。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于指示针对所述目标上行物理信道的RBG的大小的配置。
作为一个实施例,所述目标上行信道配置还被用于确定所述目标上行物理信道的跳频信息。
作为一个实施例,所述目标上行信道配置还被用于指示所述目标上行物理信道的跳频信息。
作为一个实施例,所述目标上行信道配置中的至少一个域被用于指示所述目标上行物理信道的的跳频信息。
作为一个实施例,所述第一信令被用于调度所述目标上行物理信道。
作为一个实施例,所述第一信令之外的一个DCI被用于调度所述目标上行物理信道。
作为一个实施例,所述第一信令之外且晚于所述第一信令的一个DCI被用于调度所述目标上行物理信道。
作为一个实施例,所述第一信令被用于确定所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置。
作为一个实施例,所述第一信令被用于指示所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置。
作为一个实施例,所述目标频域资源集合被用于确定所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置。
作为一个实施例,所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置依赖于所述目标频域资源集合。
作为一个实施例,所述表述所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关包括:
所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
作为一个实施例,所述表述所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置包括:所述目标上行信道配置在所述多个上行信道配置中的位置。
作为一个实施例,所述目标上行信道配置在所述多个上行信道配置中的所述位置是指:所述目标上行信道配置在所述多个上行信道配置中的排序索引。
作为一个实施例,所述多个上行信道配置属于一个上行信道配置列表,所述目标上行信道配置在所述多个上行信道配置中的所述位置是指:所述目标上行信道配置在这个上行信道配置列表中的排序索引。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球 定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述UE201是支持网络节能的用户设备。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无 线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息块中的至少部分生成于所述PHY351。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令中的至少部分生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信 号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个 存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;发送目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;发送目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;接收目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;接收目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416, 所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述目标上行物理信道。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述目标上行物理信道。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。
第一节点U1,在步骤S511中接收第一信息块;在步骤S512中接收第一信令;在步骤S513中发送目标上行物理信道。
第二节点U2,在步骤S521中发送第一信息块;在步骤S522中发送第一信令;在步骤S523中接收目标上行物理信道。
在实施例5中,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关;所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP;所述目标上行物理信道是PUSCH,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-Config。
作为实施例5的一个子实施例,所述表述所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-Config包括:所述多个上行信道配置分别是多个PUSCH-Config。
作为实施例5的一个子实施例,所述第一信令被用于指示所述目标频域资源集合的生效,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源不生效;所述目标上行物理信道所占用的频域资源属于所述目标频域资源集合。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,本申请要解决的问题包括:如何确定所述目标上行信道配置。
作为一个实施例,本申请要解决的问题包括:如何确定被用于确定所述目标上行物理信道所占用的时域资源的上行信道配置。
作为一个实施例,本申请要解决的问题包括:如何根据所述目标频域资源集合确定所应用的上行信道配置。
作为一个实施例,本申请要解决的问题包括:如何根据可用频域资源来确定用于被动态调度的PUSCH的相关配置。
作为一个实施例,本申请要解决的问题包括:如何在网络节能的场景中保证上行传输性能。
作为一个实施例,本申请要解决的问题包括:如何在非网络节能的场景中保证上行传输性能。
作为一个实施例,本申请要解决的问题包括:如何在用户设备能量受限的场景中保证上行传输性能。
作为一个实施例,本申请要解决的问题包括:如何在支持XR(Extended Reality,扩展现实)业务的场景中保证上行传输性能。
作为一个实施例,本申请要解决的问题包括:如何在车联网/V2X场景中保证上行传输性能。
作为一个实施例,本申请要解决的问题包括:如何提高上行信道配置的灵活性。
作为一个实施例,本申请要解决的问题包括:如何增强针对PUSCH的动态调度。
作为一个实施例,本申请要解决的问题包括:如何增强PUCCH的传输。
作为一个实施例,本申请要解决的问题包括:如何增强随机接入信道的传输。
实施例6
实施例6示例了根据本申请的一个实施例的多个频域资源集合,目标频域资源集合,多个上行信道配置以及目标上行信道配置之间关系的示意图,如附图6所示。在附图6中,一个空白方框表示多个上行信道配置中的一个上行信道配置,加粗边线的空白方框表示目标上行信道配置;一个灰色填充方框表示多个频域资源集合中的一个频域资源集合,加粗边线的灰色填充方框表示目标频域资源集合。
在实施例6中,所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
作为一个实施例,所述多个频域资源集合所包括的频域资源集合的数量等于2。
作为一个实施例,所述多个频域资源集合所包括的频域资源集合的数量大于2。
作为一个实施例,所述多个频域资源集合中的每个频域资源集合包括至少一个子载波(subcarrier)。
作为一个实施例,所述多个频域资源集合中的每个频域资源集合包括至少一个PRB(Physical resource block,物理资源块)。
作为一个实施例,所述多个频域资源集合中的每个频域资源集合包括至少一个RB(resource block,资源块)。
作为一个实施例,所述多个频域资源集合中的每个频域资源集合包括至少一个子频带(subband)。
作为一个实施例,所述多个频域资源集合中的一个频域资源集合所包括的频域资源是连续的。
作为一个实施例,所述多个频域资源集合中的一个频域资源集合所包括的频域资源是不连续的。
作为一个实施例,所述多个频域资源集合中之一包括所述第一BWP中的全部频域资源。
作为一个实施例,所述多个频域资源集合中之一是所述第一BWP本身。
作为一个实施例,在所述多个频域资源集合中,存在一个频域资源集合是另一个频域资源集合的真子集。
作为一个实施例,在所述多个频域资源集合中,存在两个相互之间无交集的频域资源集合。
作为一个实施例,在所述多个频域资源集合中,存在两个相互之间仅有部分交叠的频域资源集合。
作为一个实施例,在所述多个频域资源集合中,存在两个包括不同数量PRB的频域资源集合。
作为一个实施例,在所述多个频域资源集合中,存在两个包括不同数量RB的频域资源集合。
作为一个实施例,在所述多个频域资源集合中,存在两个包括不同数量子载波的频域资源集合。
作为一个实施例,所述第一信息块被用于确定所述多个频域资源集合。
作为一个实施例,所述第一信息块被用于指示所述多个频域资源集合。
作为一个实施例,所述第一信息块显式指示所述多个频域资源集合中的至少之一。
作为一个实施例,所述第一信息块隐式指示所述多个频域资源集合中的至少之一。
作为一个实施例,所述第一信息块被用于配置所述多个频域资源集合。
作为一个实施例,所述多个频域资源集合都是在所述第一BWP所对应的BWP-Uplink IE中配置的。
作为一个实施例,所述多个频域资源集合都是在所述第一BWP所对应的BWP-UplinkCommon IE中配置的。
作为一个实施例,所述多个频域资源集合都是在所述第一BWP所对应的BWP-UplinkDedicated IE中配置的。
作为一个实施例,所述第一信息块被用于确定所述多个频域资源集合分别对应所述多个上行信道配置。
作为一个实施例,所述第一信息块被用于指示所述多个频域资源集合分别对应所述多个上行信道配置。
作为一个实施例,所述多个上行信道配置分别是针对所述多个频域资源集合所配置的。
作为一个实施例,对于所述多个上行信道配置中的一个上行信道配置:当这个上行信道配置在所述多个频域资源集合中所对应的频域资源集合生效时,这个上行信道配置被应用。
作为一个实施例,所述多个上行信道配置中的任意两者不被同时应用。
实施例7
实施例7示例了根据本申请的一个实施例的第一信令和目标频域资源集合之间关系的示意图,如附图7所示。
在实施例7中,所述第一信令被用于指示所述目标频域资源集合的生效。
作为一个实施例,所述目标频域资源集合从所述第一信令的结束开始生效。
作为一个实施例,所述目标频域资源集合从所述第一信令的结束之后的第k1个符号开始生效。
作为一个实施例,所述k1是缺省的。
作为一个实施例,所述k1等于1。
作为一个实施例,所述k1等于2。
作为一个实施例,所述k1等于3。
作为一个实施例,所述k1等于4。
作为一个实施例,所述k1等于7。
作为一个实施例,所述k1等于14。
作为一个实施例,所述k1等于28。
作为一个实施例,所述k1等于42。
作为一个实施例,所述k1等于56。
作为一个实施例,所述k1不大于128。
作为一个实施例,所述k1是可配置的。
作为一个实施例,所述k1是UE能力(capability)决定的。
作为一个实施例,所述k1是所述第一信令所指示的。
作为一个实施例,所述第一信令被用于调度一个物理信道,所述目标频域资源集合从这个物理信道在时域所属的时隙开始生效。
作为一个实施例,所述目标频域资源集合从所述第一信令在时域所属的时隙之后的第k2个时隙开始生效。
作为一个实施例,所述k2是缺省的。
作为一个实施例,所述k2等于1。
作为一个实施例,所述k2等于2。
作为一个实施例,所述k2等于3。
作为一个实施例,所述k2等于4。
作为一个实施例,所述k2等于5。
作为一个实施例,所述k2等于6。
作为一个实施例,所述k2等于7。
作为一个实施例,所述k2等于8。
作为一个实施例,所述k2不大于128。
作为一个实施例,所述k2是可配置的。
作为一个实施例,所述k2是UE能力(capability)决定的。
作为一个实施例,所述k2是所述第一信令所指示的。
作为一个实施例,所述目标频域资源集合从针对所述第一信令的HARQ-ACK(Hybrid automatic repeat request acknowledgement,混合自动重复请求确认)信息的发送结束之后的第k3个时隙开始生效。
作为一个实施例,所述目标频域资源集合从针对所述第一信令所调度的PDSCH(Physical downlink shared channel,物理下行共享信道)的HARQ-ACK信息的发送结束之后的第k3个时隙开始生效。
作为一个实施例,所述目标频域资源集合从针对所述第一信令的ACK的发送结束之后的第k3个时隙开始生效。
作为一个实施例,所述目标频域资源集合从针对所述第一信令所调度的PDSCH的ACK的发送结束之后的第k3个时隙开始生效。
作为一个实施例,所述k3是缺省的。
作为一个实施例,所述k3等于1。
作为一个实施例,所述k3等于2。
作为一个实施例,所述k3等于3。
作为一个实施例,所述k3等于4。
作为一个实施例,所述k3等于5。
作为一个实施例,所述k3等于6。
作为一个实施例,所述k3等于7。
作为一个实施例,所述k3等于8。
作为一个实施例,所述k3不大于128。
作为一个实施例,所述k3是可配置的。
作为一个实施例,所述k3是UE能力(capability)决定的。
作为一个实施例,所述k3是所述第一信令所指示的。
作为一个实施例,所述k3与一个子帧(subframe)内的时隙的数量有关。
作为一个实施例,所述k3等于3N,所述N是一个子帧(subframe)内的时隙的数量。
作为一个实施例,所述k3等于3N+1,所述N是一个子帧(subframe)内的时隙的数量。
作为一个实施例,所述目标频域资源集合从针对所述第一信令的HARQ-ACK信息的发送所占用的时隙之后的第k4个时隙开始生效。
作为一个实施例,所述目标频域资源集合从针对所述第一信令所调度的PDSCH的HARQ-ACK信息的发送所占用的时隙之后的第k4个时隙开始生效。
作为一个实施例,所述目标频域资源集合从针对所述第一信令的ACK的发送所占用的时隙之后的第k4个时隙开始生效。
作为一个实施例,所述目标频域资源集合从针对所述第一信令所调度的PDSCH的ACK的发送所占用的时隙之后的第k4个时隙开始生效。
作为一个实施例,所述k4是缺省的。
作为一个实施例,所述k4等于1。
作为一个实施例,所述k4等于2。
作为一个实施例,所述k4等于3。
作为一个实施例,所述k4等于4。
作为一个实施例,所述k4等于5。
作为一个实施例,所述k4等于6。
作为一个实施例,所述k4等于7。
作为一个实施例,所述k4等于8。
作为一个实施例,所述k4不大于128。
作为一个实施例,所述k4是可配置的。
作为一个实施例,所述k4是UE能力(capability)决定的。
作为一个实施例,所述k4是所述第一信令所指示的。
作为一个实施例,所述k4与一个子帧(subframe)内的时隙的数量有关。
作为一个实施例,所述k4等于3N,所述N是一个子帧(subframe)内的时隙的数量。
作为一个实施例,所述k4等于3N+1,所述N是一个子帧(subframe)内的时隙的数量。
实施例8
实施例8示例了根据本申请的一个实施例的目标频域资源集合和目标上行物理信道之间关系的示意图,如附图8所示。
在实施例8中,所述目标频域资源集合被用于确定所述目标上行物理信道所占用的频域资源。
作为一个实施例,所述目标上行物理信道所占用的频域资源属于所述目标频域资源集合。
作为一个实施例,所述目标上行物理信道的调度信令从所述目标频域资源集合中指示出所述目标上行物理信道所占用的频域资源。
作为一个实施例,所述目标上行物理信道的调度信令中的频域资源分配(Frequency domain resource assignment)域的大小与所述目标频域资源集合有关。
作为一个实施例,所述目标频域资源集合被用于确定所述目标上行物理信道的调度信令中的频域资源分配域的大小。
作为一个实施例,所述目标频域资源集合所包括的资源块(resource block(s),RB(s))的数量被用于确定所述目标上行物理信道的调度信令中的频域资源分配域的大小。
作为一个实施例,所述目标频域资源集合所包括的资源块组(Resource Block Groups,RBGs)的数量被用于确定所述目标上行物理信道的调度信令中的频域资源分配域的大小。
作为一个实施例,所述目标频域资源集合被用于指示所述目标上行物理信道的调度信令中的频域资源分配域的大小。
作为一个实施例,所述目标频域资源集合所包括的资源块(resource block(s),RB(s))的数量被用于指示所述目标上行物理信道的调度信令中的频域资源分配域的大小。
作为一个实施例,所述目标频域资源集合所包括的资源块组(Resource Block Groups,RBGs)的数量被用于指示所述目标上行物理信道的调度信令中的频域资源分配域的大小。
作为一个实施例,所述目标上行物理信道的调度信令中的频域资源分配域包括NRBG个比特,所述NRBG等于所述目标频域资源集合所包括的资源块组的数量。
作为一个实施例,所述目标上行物理信道的调度信令中的频域资源分配域包括个比特,所述NRBG等于所述目标频域资源集合所包括的资源块组的数量,所述等于所述目标频域资源集合所包括的资源块的数量。
作为一个实施例,所述目标上行物理信道的调度信令中的频域资源分配域包括个比特,所述等于所述目标频域资源集合所包括的资源块的数量。
实施例9
实施例9示例了一个第一节点设备中的处理装置的结构框图,如附图9所示。在附图9中,第一节点设备处理装置900包括第一接收机901和第一发射机902。
作为一个实施例,所述第一节点设备900是基站。
作为一个实施例,所述第一节点设备900是用户设备。
作为一个实施例,所述第一节点设备900是中继节点。
作为一个实施例,所述第一节点设备900是车载通信设备。
作为一个实施例,所述第一节点设备900是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备900是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备900是支持高频频谱上的操作的用户设备。
作为一个实施例,所述第一节点设备900是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第一节点设备900是支持XR业务的用户设备。
作为一个实施例,所述第一接收机901包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机901包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机901包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机901包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机901包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机902包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机902包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机902包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机902包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机902包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一接收机901,接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;所述第一发射机902,发送目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
作为一个实施例,所述目标上行物理信道是被动态调度的PUSCH,所述多个上行信道配置中的每个上行信道配置都包括用于被动态调度的PUSCH的配置。
作为一个实施例,所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
作为一个实施例,所述第一信令被用于指示所述目标频域资源集合的生效。
作为一个实施例,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源不生效。
作为一个实施例,所述目标频域资源集合被用于确定所述目标上行物理信道所占用的频域资源。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUSCH-Config。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUSCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUCCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-Config。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUCCH-ConfigCommon。
实施例10
实施例10示例了一个第二节点设备中的处理装置的结构框图,如附图10所示。在附图10中,第二节点设备处理装置1000包括第二发射机1001和第二接收机1002。
作为一个实施例,所述第二节点设备1000是用户设备。
作为一个实施例,所述第二节点设备1000是基站。
作为一个实施例,所述第二节点设备1000是卫星设备。
作为一个实施例,所述第二节点设备1000是中继节点。
作为一个实施例,所述第二节点设备1000是车载通信设备。
作为一个实施例,所述第二节点设备1000是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1000是支持高频频谱上的操作的设备。
作为一个实施例,所述第二节点设备1000是支持共享频谱上的操作的设备。
作为一个实施例,所述第二节点设备1000是支持XR业务的设备。
作为一个实施例,所述第二节点设备1000是测试装置,测试设备,测试仪表中之一。
作为一个实施例,所述第二发射机1001包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1001包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1001包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1001包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1001包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1002包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1002包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1002包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1002包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1002包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二发射机1001,发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;所述第二接收机1002,接收目标上行物理信道;其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道 配置和所述目标频域资源集合有关。
作为一个实施例,所述目标上行物理信道是被动态调度的PUSCH,所述多个上行信道配置中的每个上行信道配置都包括用于被动态调度的PUSCH的配置。
作为一个实施例,所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
作为一个实施例,所述第一信令被用于指示所述目标频域资源集合的生效。
作为一个实施例,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源不生效。
作为一个实施例,所述目标频域资源集合被用于确定所述目标上行物理信道所占用的频域资源。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUSCH-Config。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUSCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置都是PUCCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-Config。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUSCH-ConfigCommon。
作为一个实施例,所述多个上行信道配置中的每个上行信道配置的名字中都包括PUCCH-ConfigCommon。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
    第一发射机,发送目标上行物理信道;
    其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述目标上行物理信道是被动态调度的PUSCH,所述多个上行信道配置中的每个上行信道配置都包括用于被动态调度的PUSCH的配置。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述目标频域资源集合是多个频域资源集合中之一,所述多个频域资源集合分别对应所述多个上行信道配置,所述目标上行信道配置是所述多个上行信道配置中对应所述目标频域资源集合的上行信道配置;所述多个频域资源集合中的任一者所包括的全部频域资源属于所述第一BWP。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一信令被用于指示所述目标频域资源集合的生效。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,当所述目标频域资源集合生效时,在所述第一BWP中所述目标频域资源集合之外的频域资源不生效。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述目标频域资源集合被用于确定所述目标上行物理信道所占用的频域资源。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述多个上行信道配置中的每个上行信道配置都是PUSCH-Config。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
    第二接收机,接收目标上行物理信道;
    其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
    发送目标上行物理信道;
    其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息块和第一信令,所述第一信息块被用于确定多个上行信道配置,所述第一信令被用于确定目标频域资源集合,所述目标频域资源集合所包括的全部频域资源属于第一BWP,所述多个上行信道配置都和所述第一BWP相关联;
    接收目标上行物理信道;
    其中,目标上行信道配置是所述多个上行信道配置中之一,所述目标上行信道配置至少被用于确定所述目标上行物理信道所占用的时域资源,所述多个上行信道配置中的任意两个上行信道配置被用于配置相同类型的上行物理信道;所述目标上行信道配置是所述多个上行信道配置中的哪一个上行信道配置和所述目标频域资源集合有关。
PCT/CN2023/109136 2022-07-28 2023-07-25 一种被用于无线通信的节点中的方法和装置 WO2024022344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210899229.8A CN117768071A (zh) 2022-07-28 2022-07-28 一种被用于无线通信的节点中的方法和装置
CN202210899229.8 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024022344A1 true WO2024022344A1 (zh) 2024-02-01

Family

ID=89705542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109136 WO2024022344A1 (zh) 2022-07-28 2023-07-25 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117768071A (zh)
WO (1) WO2024022344A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167167A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 半持续性信道状态信息报告发送和接收方法及装置
CN110391881A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 配置信息的发送方法及装置
US20200383095A1 (en) * 2019-05-30 2020-12-03 Electronics And Telecommunications Research Institute Method and apparatus for uplink communication in unlicensed band
WO2021119996A1 (zh) * 2019-12-17 2021-06-24 Oppo广东移动通信有限公司 激活传输资源配置的方法和装置
CN114223156A (zh) * 2019-08-15 2022-03-22 联发科技股份有限公司 物理上行链路控制信道资源配置方法及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167167A (zh) * 2018-02-14 2019-08-23 维沃移动通信有限公司 半持续性信道状态信息报告发送和接收方法及装置
CN110391881A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 配置信息的发送方法及装置
US20200383095A1 (en) * 2019-05-30 2020-12-03 Electronics And Telecommunications Research Institute Method and apparatus for uplink communication in unlicensed band
CN114223156A (zh) * 2019-08-15 2022-03-22 联发科技股份有限公司 物理上行链路控制信道资源配置方法及电子设备
WO2021119996A1 (zh) * 2019-12-17 2021-06-24 Oppo广东移动通信有限公司 激活传输资源配置的方法和装置

Also Published As

Publication number Publication date
CN117768071A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020181993A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024007879A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246672A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032479A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193741A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207705A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032521A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023236853A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
US20240172220A1 (en) Method and device in nodes used for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845553

Country of ref document: EP

Kind code of ref document: A1