WO2021023038A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021023038A1
WO2021023038A1 PCT/CN2020/104731 CN2020104731W WO2021023038A1 WO 2021023038 A1 WO2021023038 A1 WO 2021023038A1 CN 2020104731 W CN2020104731 W CN 2020104731W WO 2021023038 A1 WO2021023038 A1 WO 2021023038A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
interface resource
block
signaling
bit
Prior art date
Application number
PCT/CN2020/104731
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗桦通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗桦通信技术有限公司 filed Critical 上海朗桦通信技术有限公司
Publication of WO2021023038A1 publication Critical patent/WO2021023038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device related to a side link (Sidelink) in wireless communication.
  • Sidelink side link
  • V2X Vehicle-to-Everything
  • 3GPP has initiated standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services, and has written it into the standard TS22.886.
  • 3GPP has defined 4 Use Case Groups for 5G V2X services, including: Automated Queued Driving (Vehicles Platnooning), support Extended sensors (Extended Sensors), semi/automatic driving (Advanced Driving) and remote driving (Remote Driving).
  • Automated Queued Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • NR V2X Compared with the existing LTE (Long-term Evolution) V2X system, NR V2X has a notable feature that supports unicast and multicast and supports HARQ (Hybrid Automatic Repeat reQuest) functions.
  • the PSFCH Physical Sidelink Feedback Channel, physical secondary link feedback channel
  • HARQ-ACK Acknowledgement
  • the PUCCH Physical Uplink Control Channel
  • the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node, and vice versa.
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is Correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the problem to be solved by this application includes: how to select the length of time resources occupied by the PSFCH in the V2X system.
  • the foregoing method determines the length of time resources occupied by the PSFCH according to the aggregation level of the corresponding scheduling signaling (Aggregation Level), thereby solving this problem.
  • the characteristics of the above method include: the first air interface resource block carries a PSFCH for the first bit block set, and the first signaling is scheduling signaling for the first bit block set,
  • the number of REs included in the first RE set reflects the aggregation level of the first signaling; the aggregation level of the first signaling is used to determine the time domain resources occupied by the first air interface resource block length.
  • the advantages of the above method include: selecting the length of time resources occupied by the PSFCH according to the channel quality between the two communicating parties, so as to ensure the reliability of HARQ transmission between the communicating parties with different corresponding channel qualities.
  • the advantages of the above method include: using the aggregation level of scheduling signaling to implicitly indicate the length of time resources occupied by the PSFCH, which saves signaling overhead.
  • the first air interface resource block occupies K multi-carrier symbols in the time domain and K is a positive integer greater than 1, the first information block is in the K multi-carrier symbols.
  • the carrier symbol is repeatedly transmitted.
  • the number of the multi-carrier symbols occupied by the first air interface resource block is related to the signaling format of the first signaling.
  • the load size of the first signaling and the number of the REs included in the first set of REs are jointly used to determine a first ratio, and the first ratio is used For determining the number of the multi-carrier symbols occupied by the first air interface resource block.
  • the first air interface resource block belongs to the first air interface resource pool; the first air interface resource pool is one of the P candidate air interface resource pools, and P is greater than A positive integer of 1; the P candidate air interface resource pools correspond to P candidate integers in a one-to-one correspondence, and the number of the multi-carrier symbols occupied by the first air interface resource block is equal to the P candidate integers and the total The candidate integer corresponding to the first air interface resource pool; any one of the P candidate integers is a positive integer.
  • a second air interface resource block is used to determine the first air interface resource block; the first signaling is used to determine the second air interface resource block;
  • the air interface resource block includes at least one of the time-frequency resource used to transmit the first bit block set or the time-frequency resource occupied by the first signaling.
  • the second information block is used to determine a first air interface resource set; the first RE set belongs to the first air interface resource set.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is Correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the first air interface resource block occupies K multi-carrier symbols in the time domain and K is a positive integer greater than 1, the first information block is in the K multi-carrier symbols.
  • the carrier symbol is repeatedly transmitted.
  • the number of the multi-carrier symbols occupied by the first air interface resource block is related to the signaling format of the first signaling.
  • the load size of the first signaling and the number of the REs included in the first set of REs are jointly used to determine a first ratio, and the first ratio is used For determining the number of the multi-carrier symbols occupied by the first air interface resource block.
  • the first air interface resource block belongs to the first air interface resource pool; the first air interface resource pool is one of the P candidate air interface resource pools, and P is greater than A positive integer of 1; the P candidate air interface resource pools correspond to P candidate integers in a one-to-one correspondence, and the number of the multi-carrier symbols occupied by the first air interface resource block is equal to the P candidate integers and the total The candidate integer corresponding to the first air interface resource pool; any one of the P candidate integers is a positive integer.
  • a second air interface resource block is used to determine the first air interface resource block; the first signaling is used to determine the second air interface resource block;
  • the air interface resource block includes at least one of the time-frequency resource used to transmit the first bit block set or the time-frequency resource occupied by the first signaling.
  • the second information block is used to determine a first air interface resource set; the first RE set belongs to the first air interface resource set.
  • the second node is a user equipment.
  • the second node is a relay node.
  • This application discloses a method used in a third node for wireless communication, which is characterized in that it includes:
  • the second information block is used to determine a first air interface resource set; the first RE set in this application belongs to the first air interface resource set.
  • the third node is a base station.
  • the third node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first set of bit blocks, and receives the first signaling in the first set of REs;
  • the first transmitter sends the first information block in the first air interface resource block
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is Correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first bit block set, and sends the first signaling in the first RE set;
  • a second receiver receiving the first information block in the first air interface resource block
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is Correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • This application discloses a third node device used for wireless communication, which is characterized in that it includes:
  • the third transmitter sends the second information block
  • the second information block is used to determine a first air interface resource set; the first RE set in this application belongs to the first air interface resource set.
  • this application has the following advantages:
  • the length of time resources occupied by the PSFCH is selected according to the channel quality between the two communicating parties to ensure the reliability of HARQ transmission between the communicating parties with different corresponding channel qualities.
  • the aggregation level of scheduling signaling is used to implicitly indicate the length of time resources occupied by the PSFCH, which saves signaling overhead.
  • Figure 1 shows a flow chart of the first signaling, the first bit block set and the first information block according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a first RE set according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a given air interface resource block according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the first information block being repeatedly transmitted in K multi-carrier symbols according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the first information block being repeatedly transmitted in K multi-carrier symbols according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the first information block being repeatedly transmitted in K multi-carrier symbols according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the number of multi-carrier symbols occupied by the first air interface resource block and the signaling format of the first signaling according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application
  • FIG. 16 shows a schematic diagram of P candidate air interface resource pools and P candidate integers according to an embodiment of the present application
  • Fig. 17 shows a schematic diagram of a second air interface resource block being used to determine a first air interface resource block according to an embodiment of the present application
  • FIG. 18 shows a schematic diagram of a second air interface resource block being used to determine a first air interface resource block according to an embodiment of the present application
  • Fig. 19 shows a schematic diagram of a second information block according to an embodiment of the present application.
  • Fig. 20 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 21 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application
  • Fig. 22 shows a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application.
  • Embodiment 1 illustrates the flow chart of the first signaling, the first bit block set and the first information block according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in this application receives the first signaling in the first set of REs in step 101; receives the first set of bit blocks in step 102; and in the first air interface in step 103
  • the first information block is sent in the resource block.
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is Correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the RE refers to: Resource Element (resource particle).
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first signaling is unicast (Unicast) transmission.
  • the first signaling is transmitted by multicast (Groupcast).
  • the first signaling is broadcast (Boradcast) transmission.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the first signaling includes one or more fields in an SCI.
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes one or more domains in one DCI.
  • the first signaling is transmitted on a side link (SideLink).
  • the first signaling is transmitted through the PC5 interface.
  • the scheduling information of the first bit block set includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme, modulation and coding method), DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information, HARQ process number (process number), RV (Redundancy Version, redundancy version), NDI (New Data Indicator, new data indication) ⁇ One or more of.
  • MCS Modulation and Coding Scheme, modulation and coding method
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • HARQ process number process number
  • RV Redundancy Version
  • redundancy version redundancy version
  • NDI New Data Indicator, new data indication
  • the DMRS configuration information includes ⁇ reference signal port, occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequence, mapping mode, DMRS type, cyclic shift amount ( One or more of cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask) ⁇ .
  • the first signaling occupies all REs in the first RE set, and only occupies REs in the first RE set.
  • the first signaling does not include DMRS.
  • the first signaling includes DMRS.
  • the first information block includes a positive integer number of information bits.
  • the first information block includes a positive integer number of binary information bits.
  • the first information block includes HARQ-ACK (Acknowledgement).
  • the first information block includes CSI (Channel State Information, channel state information).
  • the first information block is transmitted on a side link (SideLink).
  • SideLink side link
  • the first information block is transmitted through the PC5 interface.
  • the first information block is unicast (Unicast) transmission.
  • the first information block is multicast (Groupcast) transmission.
  • the first information block is broadcast (Boradcast) transmission.
  • the first information block indicates whether each bit block in the first bit block set is received correctly.
  • the first bit block set includes only 1 bit block.
  • the first set of bit blocks includes a plurality of bit blocks.
  • each bit block included in the first bit block set includes a positive integer number of binary bits.
  • any bit block included in the first bit block set is a TB (Transport Block, transport block).
  • any bit block included in the first bit block set is a CBG (Code Block Group, code block group).
  • any bit block included in the first bit block set is a CB (Code Block, code block).
  • any bit block included in the first bit block set is a TB or a CBG.
  • the first bit block set is transmitted on the side link (SideLink).
  • the first set of bit blocks is transmitted through the PC5 interface.
  • the first bit block set is unicast (Unicast) transmission.
  • the first bit block set is multicast (Groupcast) transmission.
  • the first bit block set is broadcast (Boradcast) transmission.
  • the number of multi-carrier symbols occupied by the first air interface resource block of the sentence is related to the number of REs included in the first set of REs, including: the number of multi-carrier symbols occupied by the first air interface resource block
  • the number of multi-carrier symbols is related to the aggregation level (Aggregation Level) of the first RE set.
  • the relationship between the number of multi-carrier symbols occupied by the first air interface resource block of the sentence and the number of REs included in the first RE set includes: the number of REs included in the first RE set The number is used to determine the number of the multi-carrier symbols occupied by the first air interface resource block.
  • the first signaling is used to determine a first index, and the number of multi-carrier symbols occupied by the first air interface resource block is related to the first index; the first index indicates the The sender of the first signaling.
  • the first index is a positive integer.
  • the first index is a non-negative integer.
  • the first signaling explicitly indicates the first index.
  • the first signaling implicitly indicates the first index.
  • the first index includes the identity of the sender of the first signaling.
  • the first index includes source ID.
  • the first index includes the source ID of Layer-1.
  • the Layer-2 ID of the sender of the first signaling is used to determine the first index.
  • the first information block is carried by a first sequence.
  • the first information block is used to generate the first sequence.
  • the first sequence includes a pseudo-random sequence.
  • the first sequence includes a Zadoff-Chu sequence.
  • the first sequence includes a CP (Cyclic Prefix).
  • the first sequence includes a low-PAPR (Peak-to-Average Power Ratio) sequence.
  • the first sequence is transmitted on the PSFCH, and the PSFCH adopts the PUCCH format (Format) 0.
  • the first sequence is a candidate sequence among M1 candidate sequences, and M1 is a positive integer greater than 1, and the first information block is used to extract the M1 candidate sequences from Determine the first sequence in.
  • the first sequence is the product of the target sequence and the first symbol; the first information block is used to generate the first symbol.
  • the first symbol is a QPSK symbol.
  • the first symbol is a BPSK symbol.
  • the target sequence includes a pseudo-random sequence.
  • the target sequence includes a low peak-to-average ratio sequence.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UEs (User Equipment) 201, a UE 241 that communicates with UE 201 on a side link (Sidelink), NG-RAN (Next Generation Radio Access Network) 202, 5G-CN (5G) -CoreNetwork, 5G core network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • UE 241 Next Generation Radio Access Network
  • 5G-CN (5G) -CoreNetwork Next Generation Radio Access Network
  • 5G core network 5G core network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • EPS200 provides packet switching services, but those skilled in the art will readily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services.
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5G-CN/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane) Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Serving Gateway) 212, and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that handles signaling between UE201 and 5G-CN/EPC210. Generally, MME/AMF/UPF211 provides bearer and connection management.
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the UE241.
  • the second node in this application includes the UE201.
  • the third node in this application includes the gNB203.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the air interface between the UE201 and the UE241 is a PC5 interface.
  • the radio link between the UE 201 and the UE 241 is a side link (Sidelink).
  • the first node in this application and the second node in this application are respectively a terminal within the coverage of the gNB203.
  • the first node in this application is a terminal covered by the gNB203
  • the second node in this application is a terminal outside the coverage of the gNB203.
  • the first node in this application is a terminal outside the coverage of the gNB203
  • the second node in this application is a terminal within the coverage of the gNB203.
  • the first node in this application and the second node in this application are respectively a terminal outside the coverage of the gNB203.
  • the UE 201 and the UE 241 support unicast (Unicast) transmission.
  • unicast unicast
  • the UE 201 and the UE 241 support broadcast (Broadcast) transmission.
  • the UE 201 and the UE 241 support multicast (Groupcast) transmission.
  • the sender of the first signaling in this application includes the UE 241.
  • the recipient of the first signaling in this application includes the UE201.
  • the sender of the first signaling in this application includes the UE201.
  • the recipient of the first signaling in this application includes the UE241.
  • the sender of the first bit block set in this application includes the UE241.
  • the recipient of the first bit block set in this application includes the UE201.
  • the sender of the first bit block set in this application includes the UE201.
  • the recipient of the first bit block set in this application includes the UE 241.
  • the sender of the first information block in this application includes the UE201.
  • the recipient of the first information block in this application includes the UE 241.
  • the sender of the first information block in this application includes the UE 241.
  • the recipient of the first information block in this application includes the UE201.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301, and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first bit block set is generated in the PHY301 or the PHY351.
  • the first bit block set is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first bit block set is generated in the RRC sublayer 306.
  • the first information block is generated in the PHY301 or the PHY351.
  • the second information block is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the second information block is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multiple antenna receiving processor 472, a multiple antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the communication device 450 is any parallel stream to the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receive the first signaling in this application in the first set of REs in this application; receive the first set of bit blocks in this application; Sending the first information block in this application in the first air interface resource block in.
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is received correctly
  • the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, which generates actions when executed by at least one processor, and the actions include: The first set of REs in the application receives the first signaling in this application; the first set of bit blocks in this application is received; this is sent in the first air interface resource block in this application.
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is received correctly
  • the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: send the first signaling in this application in the first set of REs in this application; send the first bit block set in this application; in this application Receiving the first information block in this application in the first air interface resource block in.
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is received correctly
  • the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, which generates actions when executed by at least one processor, and the actions include: Send the first signaling in this application in the first set of REs in the application; send the first bit block set in this application; receive this in the first air interface resource block in this application The first information block in the application.
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates whether the first bit block set is received correctly
  • the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending the second information block in this application.
  • the second information block is used to determine a first air interface resource set; the first RE set in this application belongs to the first air interface resource set.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The second information block in the application.
  • the second information block is used to determine a first air interface resource set; the first RE set in this application belongs to the first air interface resource set.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410.
  • the third node in this application includes the first communication device 410.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application in the first set of REs in this application;
  • the antenna 420, the transmitter 418, the transmission At least one of the processor 416, the multi-antenna transmission processor 471, the controller/processor 475, and the memory 476 ⁇ is used to transmit this application in the first set of REs in this application The first signaling in.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data
  • At least one of the sources 467 ⁇ is used to receive the first set of bit blocks in this application;
  • At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first bit block set in this application.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the first information block in this application in the first air interface resource block in this application;
  • the antenna 452, the transmitter 454, the transmission processor 468, the At least one of the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to transmit in the first air interface resource block in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the second node U1, the first node U2, and the third node U3 are communication nodes transmitted in pairs over the air interface.
  • the steps in blocks F51 to F53 are optional.
  • the second node U1 sends the second information block in step S5101; sends the first signaling in the first set of REs in step S511; sends the first set of bit blocks in step S512; and sends the first set of bit blocks in step S513.
  • the first information block is received in the resource block.
  • the first node U2 receives the second information block in step S5201; receives the first signaling in the first RE set in step S521; receives the first bit block set in step S522; in step S523, in the first air interface
  • the first information block is sent in the resource block.
  • the third node U3 sends the second information block in step S5301.
  • the first signaling includes scheduling information of the first bit block set, and the first bit block set includes a positive integer number of bit blocks; the first information block indicates the first bit Whether the block set is received correctly; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the second information block is used to determine a first air interface resource set; the first RE set belongs to the first air interface resource set.
  • the third node in this application includes a serving cell maintenance base station where the first node in this application resides.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the third node U3 is the third node in this application.
  • the air interface between the second node U1 and the first node U2 is a PC5 interface.
  • the air interface between the second node U1 and the first node U2 includes a secondary link.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the relay node and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the air interface between the third node U3 and the first node U2 is a Uu interface.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between the relay node and the user equipment.
  • the first node in this application is a terminal.
  • the first node in this application is a car.
  • the first node in this application is a vehicle.
  • the first node in this application is an RSU (Road Side Unit, Road Side Unit).
  • the second node in this application is a terminal.
  • the second node in this application is a car.
  • the second node in this application is a vehicle.
  • the second node in this application is an RSU.
  • the first air interface resource block occupies K multi-carrier symbols in the time domain and K is a positive integer greater than 1, the first information block is repeatedly transmitted in the K multi-carrier symbols .
  • the number of the multi-carrier symbols occupied by the first air interface resource block is related to the signaling format of the first signaling.
  • the load size of the first signaling and the number of REs included in the first set of REs are used together to determine a first ratio, and the first ratio is used to determine the first ratio.
  • the first air interface resource block belongs to a first air interface resource pool; the first air interface resource pool is a candidate air interface resource pool among P candidate air interface resource pools, and P is a positive integer greater than 1.
  • the P candidate air interface resource pools correspond to P candidate integers in a one-to-one correspondence, and the number of multi-carrier symbols occupied by the first air interface resource block is equal to the P candidate integers and the first air interface resource pool Corresponding candidate integer; any one of the P candidate integers is a positive integer.
  • the second air interface resource block is used to determine the first air interface resource block; the first signaling is used to determine the second air interface resource block; the second air interface resource block includes the used For sending at least one of the time-frequency resource of the first bit block set or the time-frequency resource occupied by the first signaling.
  • the first signaling is transmitted on a secondary link physical layer control channel (that is, a secondary link channel that can only be used to carry physical layer signaling).
  • a secondary link physical layer control channel that is, a secondary link channel that can only be used to carry physical layer signaling.
  • the first signaling is transmitted on PSCCH (Physical Sidelink Control Channel, Physical Secondary Link Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Secondary Link Control Channel
  • the first signaling is transmitted on PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first set of bit blocks is transmitted on a secondary link physical layer data channel (that is, a secondary link channel that can be used to carry physical layer data).
  • a secondary link physical layer data channel that is, a secondary link channel that can be used to carry physical layer data
  • the first set of bit blocks is transmitted on PSSCH (Physical Sidelink Shared Channel, Physical Secondary Link Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Secondary Link Shared Channel
  • the first information block is transmitted on the secondary link physical layer feedback channel (that is, the secondary link channel that can only be used to carry the physical layer HARQ feedback).
  • the first information block is transmitted on the PSFCH.
  • the second information block is transmitted on the PSSCH.
  • the second information block is transmitted on the PSCCH.
  • the second information block is transmitted on the PSBCH (Physical Sidelink Broadcast Channel, physical secondary link broadcast channel).
  • PSBCH Physical Sidelink Broadcast Channel, physical secondary link broadcast channel
  • the second information block is transmitted on PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • Embodiment 6 illustrates a schematic diagram of the first RE set according to an embodiment of the present application; as shown in FIG. 6.
  • the first signaling in this application is transmitted in the first RE set.
  • the first RE set includes a positive integer number of REs.
  • the first RE set includes a positive integer number of the multi-carrier symbols in the time domain.
  • the first RE set includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the first RE set includes a positive integer number of discontinuous multi-carrier symbols in the time domain.
  • the first RE set includes a positive integer number of subcarriers in the frequency domain.
  • the first RE set includes a positive integer number of PRBs (Physical Resource Block, physical resource block) in the frequency domain.
  • PRBs Physical Resource Block, physical resource block
  • the first RE set includes a positive integer number of sub-channels in the frequency domain.
  • the first set of REs is a PSCCH candidate (candidate).
  • the first RE set is a PDCCH candidate (candidate).
  • the first RE set belongs to a CORESET (COntrol RE source SET, control resource set).
  • the first set of REs belongs to a search space.
  • the first RE set does not include REs occupied by the DMRS of the PSCCH carrying the first signaling.
  • the first set of REs includes REs occupied by the DMRS of the PSCCH carrying the first signaling.
  • the first RE set is composed of L1 RE subsets, and any RE subset in the L1 RE subsets includes S1 REs; L1 is a positive integer, and S1 is a positive integer greater than 1.
  • the L1 belongs to ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the L1 is the aggregation level (Aggregation Level) of the first RE set.
  • the S1 is fixed.
  • the S1 is fixed at 54.
  • the S1 is fixed at 72.
  • the S1 is fixed to one of ⁇ 32, 33, 34, 35, 36 ⁇ .
  • the RE subset is the smallest unit used to transmit SCI.
  • the RE subset is the smallest unit used to transmit the first signaling.
  • a subset of REs is composed of all REs in a CCE (Control Channel Element, control channel element) except for REs occupied by DMRS.
  • CCE Control Channel Element, control channel element
  • a subset of REs is a CCE.
  • the number of the REs included in the first RE set is equal to the product of the L1 and the S1.
  • the first bit block set in this application does not occupy REs in the first RE set.
  • Embodiment 7 illustrates a schematic diagram of a given air interface resource block according to an embodiment of the present application; as shown in FIG. 7.
  • the given air interface resource block is any one of the first air interface resource block and the second air interface resource block in this application.
  • the given air interface resource block is the first air interface resource block.
  • the given air interface resource block is the second air interface resource block.
  • the given air interface resource block includes a positive integer number of REs in the time-frequency domain.
  • the given air interface resource block includes a positive integer number of subcarriers in the frequency domain.
  • the given air interface resource block includes a positive integer number of PRBs in the frequency domain.
  • the given air interface resource block includes a positive integer number of sub-channels in the frequency domain.
  • the given air interface resource block includes a positive integer number of the multi-carrier symbols in the time domain.
  • the given air interface resource block includes a positive integer number of slots in the time domain.
  • the given air interface resource block includes a positive integer number of sub-frames in the time domain.
  • the first air interface resource block includes time domain resources and frequency domain resources.
  • the first air interface resource block includes time domain resources, frequency domain resources and code domain resources.
  • the code domain resource includes pseudo-random sequence, low peak-to-average ratio sequence, cyclic shift, OCC, orthogonal sequence, frequency domain orthogonal sequence, and time domain orthogonal sequence One or more of.
  • the first air interface resource block is a PSFCH resource (resource).
  • the second air interface resource block includes time domain resources and frequency domain resources.
  • Embodiment 8 illustrates a schematic diagram of the first information block being repeatedly transmitted in K multi-carrier symbols according to an embodiment of the present application; as shown in FIG. 8.
  • the first air interface resource block in this application occupies the K multi-carrier symbols in the time domain; the first symbol stream carries the first information block, and the first symbol stream includes T1 Symbol, T1 is a positive integer greater than 1; the T1 symbols are respectively mapped to T1 REs in each of the K multi-carrier symbols.
  • the indexes of the K multi-carrier symbols are #0,...,#(K-1), and the indexes of the T1 symbols are #0,...,#(T -1).
  • any one of the T1 symbols is respectively multiplied by K weighting factors before being mapped to the corresponding RE in the K multi-carrier symbols.
  • any weighting factor in the K weighting factors is a complex number.
  • the K weighting factors include OCC.
  • the K weighting factors form an orthogonal sequence.
  • the K weighting factors form a time-domain orthogonal sequence.
  • the K is equal to 2.
  • the K is greater than 2.
  • the K multi-carrier symbols are continuous in the time domain.
  • the K multi-carrier symbols are not continuous in the time domain.
  • the K multi-carrier symbols belong to the same time slot.
  • two of the K multi-carrier symbols belong to different time slots.
  • any one of the T1 symbols is a QPSK (Quadrature Phase-Shift Keying) symbol.
  • any one of the T1 symbols is a BPSK (Binary Phase-Shift Keying) symbol.
  • any one of the T1 symbols is a complex number.
  • the T1 symbols constitute the first sequence in Embodiment 1.
  • the T1 symbols are all the symbols included in the first sequence in Embodiment 1.
  • the first information block is used to generate the first symbol stream.
  • the first symbol stream is that the information bits included in the first information block undergo CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment, channel coding, and rate matching in sequence.
  • CRC Cyclic Redundancy Check
  • cyclic redundancy check Cyclic Redundancy Check
  • channel coding channel coding
  • rate matching rate matching in sequence.
  • Output after Rate Matching
  • Modulation Mapper Modulation Mapper
  • the number of bits included in the output of the rate matching is independent of the K.
  • Embodiment 9 illustrates a schematic diagram of the first information block being repeatedly transmitted in K multi-carrier symbols according to an embodiment of the present application; as shown in FIG. 9.
  • the first symbol stream carries the first information block
  • the first symbol stream includes T1 symbols
  • T1 is a positive integer greater than 1
  • each symbol of the T1 symbols is in the
  • Each of the K multi-carrier symbols is repeatedly mapped to Q1 REs
  • Q1 is a positive integer greater than 1.
  • the indexes of the K multi-carrier symbols are #0,...,#(K-1)
  • the indexes of the T1 symbols are #0,...,#(T -1).
  • any symbol of the T1 symbols is respectively multiplied by Q1 weighting factors before being mapped to the corresponding Q1 REs in any of the K multi-carrier symbols.
  • any weighting factor in the Q1 weighting factors is a complex number.
  • the Q1 weighting factors include OCC.
  • the Q1 weighting factors form an orthogonal sequence.
  • the Q1 weighting factors form a frequency domain orthogonal sequence.
  • the Q1 weighting factor is obtained by multiplying each element in the frequency domain orthogonal sequence and the corresponding element in the time domain orthogonal sequence.
  • Embodiment 10 illustrates a schematic diagram of the first information block being repeatedly transmitted in K multi-carrier symbols according to an embodiment of the present application; as shown in FIG. 10.
  • the first symbol stream carries the first information block
  • the first symbol stream includes T1 symbols
  • T1 is a positive integer greater than 1
  • the T1 symbols are respectively mapped to T1 REs
  • the T1 REs are distributed in the K multi-carrier symbols.
  • the indexes of the K multi-carrier symbols are #0,...,#(K-1)
  • the indexes of the T1 symbols are #0,...,#(T -1).
  • the T1 REs are divided into K RE groups, and the K RE groups are respectively located in the K multi-carrier symbols; the REs included in any RE group in the K RE groups The quantity is greater than 0.
  • any two RE groups in the K RE groups include the same number of REs.
  • the first symbol stream is the output of the information bits in the first information block after CRC attachment, channel coding, rate matching, and modulation mapper in sequence; the number of bits included in the rate matching output Related to the K.
  • the number of bits included in the output of the rate matching is linearly related to the K.
  • Embodiment 11 illustrates a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application; as shown in FIG. 11.
  • the number of REs included in the first set of REs is not greater than a first threshold
  • the number of multi-carrier symbols occupied by the first air interface resource block is equal to K1
  • the number of the multi-carrier symbols occupied by the first air interface resource block is equal to K2
  • K1 and K2 are respectively positive integers, and K2 is not Equal to the K1
  • the first threshold is a positive integer.
  • the first threshold is configured by higher layer signaling.
  • the first threshold is configured by RRC signaling.
  • the first threshold is configured by PC5RRC signaling.
  • the first threshold is related to the sender of the first signaling in this application.
  • the first threshold is related to the identity of the sender of the first signaling in this application.
  • the K2 is greater than the K1.
  • the K2 is smaller than the K1.
  • the K1 is equal to 1, and the K2 is equal to 2.
  • the K1 and the K2 are configured by higher layer signaling.
  • the K1 and the K2 are configured by RRC signaling.
  • the K1 and the K2 are configured by PC5 RRC signaling.
  • both the K1 and the K2 are related to the sender of the first signaling in this application.
  • both the K1 and the K2 are related to the identity of the sender of the first signaling in this application.
  • the identity of the sender of the first signaling refers to the ID of Layer-1.
  • the first air interface resource block is The number of occupied multi-carrier symbols is equal to the K1; when the first index is equal to the target index and the number of REs included in the first set of REs is greater than the first threshold, the first The number of the multi-carrier symbols occupied by an air interface resource block is equal to the K2.
  • Embodiment 12 illustrates a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application; as shown in FIG. 12.
  • the aggregation level (Aggregation Level) of the first RE set is not greater than a second threshold
  • the number of the multi-carrier symbols occupied by the first air interface resource block is equal to K1
  • the second threshold is a positive integer.
  • the K2 is greater than the K1.
  • the aggregation level of the first RE set is a positive integer.
  • the aggregation level of the first RE set is one of ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the number of the REs included in the first RE set is related to the aggregation level of the first RE set.
  • the number of the REs included in the first RE set is linearly related to the aggregation level of the first RE set.
  • Embodiment 13 illustrates a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the signaling format of the first signaling according to an embodiment of the present application; as shown in FIG. 13.
  • the first air interface The number of multi-carrier symbols occupied by resource blocks is equal to K1; when the signaling format of the first signaling belongs to the first format set and the number of REs included in the first RE set is greater than
  • the number of the multi-carrier symbols occupied by the first air interface resource block is equal to K2; K1 and K2 are respectively positive integers, the K2 is not equal to the K1, and the first threshold is a positive integer ;
  • the first format set includes a positive integer number of signaling formats.
  • the signaling format of the first signaling includes: SCI Format.
  • the signaling format of the first signaling includes: DCI format.
  • the signaling format of the first signaling is used to determine the number of the multi-carrier symbols occupied by the first air interface resource block.
  • the number of REs included in the first set of REs and the signaling format of the first signaling in this application are both used to determine the amount occupied by the first air interface resource block.
  • the first air interface resource The number of multi-carrier symbols occupied by a block is equal to K3; when the signaling format of the first signaling belongs to the second format set and the number of REs included in the first RE set is greater than In the third threshold, the number of the multi-carrier symbols occupied by the first air interface resource block is equal to K4; K3 and K4 are respectively positive integers, and the K4 is not equal to the K3; the third threshold is a positive integer;
  • the second format set includes a positive integer number of signaling formats, any signaling format set in the second format set does not belong to the first format set, and any signaling format in the first format set The set does not belong to the second format set; the third threshold is not equal to the first threshold.
  • the K3 is not equal to the K1.
  • the K3 is equal to the K1.
  • the K4 is not equal to the K2.
  • the K4 is equal to the K2.
  • Embodiment 14 illustrates a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application; as shown in FIG. 14.
  • the number of REs included in the first RE set is a value in a first value set
  • the first value set is a first type value in M first type value sets
  • a set M is a positive integer greater than 1
  • any first-type value set in the M first-type value sets includes a positive integer first-type value
  • the M first-type value sets and the M-th There is a one-to-one correspondence between the two types of values, and any two of the M second types of values are not equal; the number of the multi-carrier symbols occupied by the first air interface resource block is equal to the M
  • the second type of value corresponds to the first value set in the second type of value.
  • the M is equal to the P in this application.
  • the M is smaller than the P in this application.
  • the M is equal to the P in this application, and the M second-type values are the P candidate integers in this application.
  • any first type value in the M first type value sets is a positive integer.
  • any value of the first type in the second value set is not equal to any value of the first type in the third value set; the second value set and the third value set are the M Any two value sets of the first type in the first type value set.
  • any of the M second-type values is a positive integer.
  • the M first type value sets are configured by higher layer signaling.
  • the M first-type value sets are configured by RRC signaling.
  • the M first-type value sets are related to the sender of the first signaling in this application.
  • the M first-type value sets are related to the identity of the sender of the first signaling.
  • the M second type values are configured by higher layer signaling.
  • the M second type values are configured by RRC signaling.
  • the M second-type values are related to the sender of the first signaling.
  • the M second-type values are related to the identity of the sender of the first signaling.
  • Embodiment 15 illustrates a schematic diagram related to the number of multi-carrier symbols occupied by the first air interface resource block and the number of REs included in the first RE set according to an embodiment of the present application; as shown in FIG. 15.
  • the load size of the first signaling in this application and the number of REs included in the first set of REs are used together to determine the first ratio in this application.
  • the number of multi-carrier symbols occupied by the first air interface resource block is equal to K1; when the first ratio is greater than the fourth threshold, the first air interface The number of the multi-carrier symbols occupied by the resource block is equal to K2; K1 and K2 are respectively positive integers, and the K2 is not equal to the K1; and the fourth threshold is a positive real number.
  • the payload size of the first signaling is the payload size of the first signaling.
  • the load size of the first signaling is the sum of the number of bits included in each field in the first signaling.
  • the number of bits included in the given field includes the zero-padding bits quantity.
  • the load size of the first signaling is a positive integer.
  • the first ratio is a positive real number.
  • the first ratio is a positive real number not greater than 1.
  • the first ratio is a positive real number not greater than 2.
  • the first ratio is a ratio of the load size of the first signaling to the number of REs included in the first RE set.
  • the first ratio is a ratio of a first integer to the number of REs included in the first RE set; the first integer is the load size of the first signaling and the total The sum of the CRC bits of the first signaling.
  • the number of CRC bits of the first signaling is a positive integer greater than 1.
  • the number of CRC bits of the first signaling is 24.
  • the number of CRC bits of the first signaling is one of ⁇ 6, 11, 16, 24 ⁇ .
  • the number of CRC bits of the first signaling is related to the load size of the first signaling.
  • the number of CRC bits of the first signaling is independent of the load size of the first signaling.
  • the first ratio is the ratio of the load size of the first signaling to the number of REs included in the first set of REs multiplied by the modulation order of the first signaling Number (Modulation order).
  • the first ratio is a ratio of the first integer and the number of REs included in the first set of REs, multiplied by a modulation order of the first signaling.
  • the modulation order of the first signaling is equal to 2.
  • the modulation order of the first signaling is greater than 2.
  • the fourth threshold is configured by higher layer signaling.
  • the fourth threshold is configured by RRC signaling.
  • the fourth threshold is configured by PC5RRC signaling.
  • the fourth threshold is related to the sender of the first signaling.
  • the fourth threshold is related to the identity of the sender of the first signaling.
  • the first ratio and the signaling format of the first signaling are jointly used to determine the number of the multi-carrier symbols occupied by the first air interface resource block.
  • the multi-carrier occupied by the first air interface resource block The number of symbols is equal to K1; when the signaling format of the first signaling belongs to the first format set and the first ratio is greater than the fourth threshold, the amount occupied by the first air interface resource block
  • the number of the multi-carrier symbols is equal to K2; K1 and K2 are respectively positive integers, the K2 is not equal to the K1, and the fourth threshold is a positive real number; the first format set includes a positive integer number of signaling formats.
  • the first air interface resource block is occupied
  • the number of the multi-carrier symbols of the first signaling is equal to K3; when the signaling format of the first signaling belongs to the second format set and the first ratio is greater than the fifth threshold, the first air interface
  • the number of the multi-carrier symbols occupied by the resource block is equal to K4; K3 and K4 are respectively positive integers, and the K4 is not equal to the K3;
  • the fifth threshold is a positive real number;
  • the second format set includes positive integers Let the format, any signaling format set in the second format set does not belong to the first format set, and any signaling format set in the first format set does not belong to the second format set;
  • the fifth threshold is not equal to the fourth threshold.
  • the first load bit block includes all bits in each field in the first signaling; the first load bit block is sequentially attached through CRC, channel coding, and rate matching to obtain the first A bit stream; the first bit stream sequentially undergoes scrambling and modulation mapper to obtain a second symbol stream; the symbols in the second symbol stream are mapped to the first set of REs; the Any bit in the first bit stream is mapped to only one RE in the first RE set; any symbol in the second symbol stream is mapped to only one RE in the first RE set on.
  • the first load bit block when any given field in the first signaling includes zero-padded bits, the first load bit block includes the zero-padded bits.
  • the first bit stream includes a positive integer number of binary bits.
  • the second symbol stream includes a positive integer number of modulation symbols.
  • the second symbol stream includes a positive integer number of QPSK symbols.
  • the number of bits included in the first bit stream is equal to the number of REs included in the first RE set multiplied by the modulation order of the first signaling.
  • Embodiment 16 illustrates a schematic diagram of P candidate air interface resource pools and P candidate integers according to an embodiment of the present application; as shown in FIG. 16.
  • the first air interface resource block in this application belongs to the first air interface resource pool in the P candidate air interface resource pools; the P candidate air interface resource pools and the P candidates
  • the integers have a one-to-one correspondence, and the number of the multi-carrier symbols occupied by the first air interface resource block is equal to the candidate integer corresponding to the first air interface resource pool.
  • the indexes of the P candidate air interface resource pools and the P candidate integers are #0, ..., #P-1, respectively.
  • the P is equal to 2.
  • the P is greater than 2.
  • the P is equal to 2, and the P candidate integers are 1 and 2, respectively.
  • any two candidate integers in the P candidate integers are not equal.
  • any candidate air interface resource pool in the P candidate air interface resource pools includes time domain resources and frequency domain resources.
  • any candidate air interface resource pool in the P candidate air interface resource pools includes time domain resources, frequency domain resources, and code domain resources.
  • any one of the P candidate air interface resource pools includes a positive integer number of REs in the time-frequency domain.
  • any candidate air interface resource pool in the P candidate air interface resource pools includes a positive integer number of subcarriers in the frequency domain.
  • any candidate air interface resource pool in the P candidate air interface resource pools includes a positive integer number of PRBs in the frequency domain.
  • any one of the P candidate air interface resource pools includes a positive integer number of the multi-carrier symbols in the time domain.
  • any candidate air interface resource pool in the P candidate air interface resource pools includes a positive integer number of time slots in the time domain.
  • the P candidate air interface resource pools are orthogonal to each other in the time domain.
  • any one of the P candidate air interface resource pools appears multiple times in the time domain.
  • any one of the P candidate air interface resource pools appears periodically in the time domain.
  • the first candidate air interface resource pool and the second candidate air interface resource pool are two candidate air interface resource pools in the P candidate air interface resource pools, and the first candidate air interface resource pool is in the time domain twice The minimum time interval between adjacent occurrences is smaller than the minimum time interval between any two adjacent occurrences of the second candidate air interface resource pool in the time domain.
  • the candidate integer corresponding to the first candidate air interface resource pool is smaller than the candidate integer corresponding to the second candidate air interface resource pool.
  • the candidate integer corresponding to the first candidate air interface resource pool is greater than the candidate integer corresponding to the second candidate air interface resource pool.
  • the P candidate air interface resource pools and the P candidate integers are pre-configured.
  • the P candidate air interface resource pools and the P candidate integers are configured by higher layer signaling.
  • the P candidate air interface resource pools and the P candidate integers are configured by RRC signaling.
  • the P candidate air interface resource pools and the P candidate integers are configured by PC5RRC signaling.
  • the P candidate air interface resource pools are related to the sender of the first signaling.
  • the P candidate air interface resource pools are related to the identity of the sender of the first signaling.
  • any candidate air interface resource pool in the P candidate air interface resource pools is reserved for the PSFCH.
  • any one of the P candidate air interface resource pools is reserved for HARQ-ACK.
  • the number of the multi-carrier symbols occupied by any one candidate air interface resource pool in the P candidate air interface resource pools in one occurrence of the time domain is equal to the corresponding candidate integer.
  • the number of REs included in the first RE set is used to determine the first air interface resource pool from the P candidate air interface resource pools.
  • the number of REs included in the first RE set belongs to a first value set, and the first value set is a first type value set among P first type value sets, and the P Any first-type value set in the first-type value sets includes a positive integer number of first-type values; the P first-type value sets and the P candidate air interface resource pools have a one-to-one correspondence, and the first The air interface resource pool is a candidate air interface resource pool corresponding to the first set of values among the P candidate air interface resource pools.
  • any first-type value in the P first-type value sets is a positive integer.
  • the correspondence between the P first-type value sets and the P candidate air interface resource pools is configured by RRC signaling.
  • the correspondence between the P first-type value sets and the P candidate air interface resource pools is configured by PC5RRC signaling.
  • Embodiment 17 illustrates a schematic diagram of the second air interface resource block being used to determine the first air interface resource block according to an embodiment of the present application; as shown in FIG. 17.
  • the second air interface resource block includes at least one of the time-frequency resources used to transmit the first bit block set in this application or the time-frequency resources occupied by the first signaling One.
  • the first signaling indicates the second air interface resource block.
  • the first signaling explicitly indicates the second air interface resource block.
  • the first signaling implicitly indicates the second air interface resource block.
  • the first signaling explicitly indicates a part of the second air interface resource block, and implicitly indicates another part of the second air interface resource block.
  • the second air interface resource block includes time-frequency resources used to transmit the first set of bit blocks.
  • the second air interface resource block is composed of time-frequency resources used to transmit the first set of bit blocks.
  • the second air interface resource block includes time-frequency resources occupied by the first signaling.
  • the second air interface resource block is composed of time-frequency resources occupied by the first signaling.
  • the second air interface resource block includes time-frequency resources used to transmit the first set of bit blocks and time-frequency resources occupied by the first signaling.
  • the second air interface resource block is composed of time-frequency resources used to transmit the first set of bit blocks and time-frequency resources occupied by the first signaling.
  • the second air interface resource block is used to determine the first air interface resource block from the first air interface resource pool in this application.
  • the time-frequency resource occupied by the second air interface resource block is used to determine the first air interface resource block.
  • the time domain resources occupied by the second air interface resource block are used to determine the time domain resources occupied by the first air interface resource block.
  • the time interval between the time unit to which the second air interface resource block belongs and the time unit to which the first air interface resource block belongs is not less than the first time interval.
  • the time unit is a slot.
  • the time unit includes a positive integer number of the multi-carrier symbols.
  • the first time interval is a non-negative integer.
  • the unit of the first time interval is a slot.
  • the unit of the first time interval is a positive integer number of the multi-carrier symbols.
  • the unit of the first time interval is the time unit.
  • the first time interval is pre-configured.
  • the first time interval is configured by RRC signaling.
  • the frequency domain resources occupied by the second air interface resource block are used to determine the frequency domain resources occupied by the first air interface resource block.
  • the frequency domain resources occupied by the second air interface resource block are used to determine the frequency domain resources and code domain resources occupied by the first air interface resource block.
  • the time-frequency resource occupied by the second air interface resource block is used to determine the frequency domain resource occupied by the first air interface resource block.
  • the time-frequency resources occupied by the second air interface resource block are used to determine the frequency domain resources and code domain resources occupied by the first air interface resource block.
  • the target recipient of the first bit block set is a first node set, and the first node set includes a positive integer number of nodes; the first node in this application is the first node set The index of the first node in the first node set is used to determine the first air interface resource block.
  • the identifier of the first node is used to determine the first air interface resource block.
  • the identity of the sender of the first signaling is used to determine the first air interface resource block.
  • Embodiment 18 illustrates a schematic diagram of the second air interface resource block being used to determine the first air interface resource block according to an embodiment of the present application; as shown in FIG. 18.
  • the first air interface resource block is one candidate air interface resource block among Q2 candidate air interface resource blocks; the lowest sub-channel occupied by the second air interface resource block is Q1 candidates One of the candidate subchannels of the subchannels, Q1 and Q2 are respectively positive integers greater than 1; any one of the Q1 candidate subchannels and one of the Q2 candidate air interface resource blocks Corresponding; the first air interface resource block is a candidate air interface resource block corresponding to the lowest subchannel occupied by the second air interface resource block among the Q2 candidate air interface resource blocks.
  • the indexes of the Q2 candidate air interface resource blocks are #0,...,#(Q2-1), and the indexes of the Q1 candidate subchannels are #0,..., respectively. #(Q1-1).
  • the Q1 is equal to the Q2.
  • the Q1 is not equal to the Q2.
  • any one of the Q2 candidate air interface resource blocks is reserved for HARQ-ACK.
  • any one of the Q2 candidate air interface resource blocks is reserved for one PSFCH.
  • any one of the Q2 candidate air interface resource blocks is a PSFCH resource.
  • any candidate air interface resource block in the Q2 candidate air interface resource blocks includes time domain resources and frequency domain resources.
  • any one candidate air interface resource block in the Q2 candidate air interface resource blocks includes time domain resources, frequency domain resources, and code domain resources.
  • any one of the Q2 candidate air interface resource blocks includes a positive integer number of REs in the time-frequency domain.
  • the Q2 candidate air interface resource blocks belong to the same time unit in Embodiment 17 in the time domain.
  • the Q2 candidate air interface resource blocks all belong to the first air interface resource pool in this application.
  • the correspondence between the Q1 candidate subchannels and the Q2 candidate air interface resource blocks is pre-configured.
  • the correspondence between the Q1 candidate subchannels and the Q2 candidate air interface resource blocks is configured by higher layer signaling.
  • the correspondence between the Q1 candidate subchannels and the Q2 candidate air interface resource blocks is configured by RRC signaling.
  • the Q2 candidate air interface resource blocks all belong to the first time unit in the time domain, and the second air interface resource blocks belong to the second time unit in the time domain; the first time unit is later than the The second time unit, and the time interval between the second time unit and the second time unit is not less than the first time interval in Embodiment 17, and includes the earliest one of the time domain resources reserved for the PSFCH .
  • Embodiment 19 illustrates a schematic diagram of the second information block according to an embodiment of the present application; as shown in FIG. 19.
  • the second information block is used to determine the first air interface resource set in this application; the first RE set in this application belongs to the first air interface resource set.
  • the second information block is carried by layer 1 (L1) signaling.
  • the second information block is carried by higher layer signaling.
  • the second information block is carried by RRC signaling.
  • the second information block is unicast (Unicast) transmission.
  • the second information block is multicast (Groupcast) transmission.
  • the second information block is broadcast (Broadcast) transmission.
  • the second information block includes information in all or part of a field in an IE (Information Element).
  • the second information block includes information in one or more fields in MIB (Master Information Block, master information block).
  • MIB Master Information Block, master information block
  • the second information block includes information in one or more fields in a SIB (System Information Block, System Information Block).
  • SIB System Information Block, System Information Block
  • the second information block includes information in one or more fields in RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the second information block includes all or part of the information in a field (Field) in a DCI.
  • the second information block includes all or part of the information in a field in an SCI.
  • the second information block is transmitted through wireless signals.
  • the second information block is transmitted from the base station to the first node.
  • the second information block is transmitted from the serving cell of the first node to the first node.
  • the second information block is transmitted from the sender of the first signaling to the first node.
  • the second information block is transferred from a higher layer of the first node to a physical layer of the first node.
  • the second information block is transferred from a higher layer of the first node to the physical layer of the first node.
  • the second information block is transmitted on the side link (SideLink).
  • the second information block is transmitted through the PC5 interface.
  • the second information block is transmitted on the downlink.
  • the second information block is transmitted through the Uu interface.
  • the second information block explicitly indicates the first air interface resource set.
  • the second information block implicitly indicates the first air interface resource set.
  • the second information block indicates that the first air interface resource set is reserved for a secondary link.
  • the second information block indicates that the first air interface resource set is reserved for V2X (Vehicle-to-Everything) communication.
  • V2X Vehicle-to-Everything
  • the first air interface resource set includes time domain resources and frequency domain resources.
  • the first air interface resource set includes a positive integer number of REs in the time-frequency domain.
  • the first air interface resource set includes a positive integer number of subcarriers in the frequency domain.
  • the first air interface resource set includes a positive integer number of PRBs in the frequency domain.
  • the first air interface resource set includes a positive integer number of subchannels in the frequency domain.
  • the first air interface resource set includes a positive integer number of the multi-carrier symbols in the time domain.
  • the first air interface resource set includes a positive integer number of time slots in the time domain.
  • the first air interface resource set is reserved for the secondary link.
  • the first air interface resource set is reserved for V2X communication.
  • the time-frequency resource used to transmit the first bit block set in this application belongs to the first air interface resource set.
  • the first air interface resource block in this application belongs to the first air interface resource set in the time-frequency domain.
  • any one of the P candidate air interface resource pools in the present application belongs to the first air interface resource set in the time-frequency domain.
  • the second information block indicates the P candidate air interface resource pools in this application from the first air interface resource set.
  • the first air interface resource block in this application belongs to a first air interface resource pool, and the first air interface resource pool belongs to the first air interface resource set; the second information block is derived from the first air interface resource pool.
  • the air interface resource set indicates the first air interface resource pool; the first air interface resource pool includes a positive integer number of REs, and the first air interface resource pool is reserved for the PSFCH.
  • Embodiment 20 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 20.
  • the processing device 2000 in the first node device includes a first receiver 2001 and a first transmitter 2002.
  • the first receiver 2001 receives the first bit block set, and receives the first signaling in the first RE set; the first transmitter 2002 sends the first information block in the first air interface resource block.
  • the first signaling includes scheduling information of the first bit block set, the first bit block set includes a positive integer number of bit blocks; the first information block indicates the first bit Whether the block set is correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the first air interface resource block occupies K multi-carrier symbols in the time domain and K is a positive integer greater than 1, the first information block is repeatedly transmitted in the K multi-carrier symbols .
  • the number of the multi-carrier symbols occupied by the first air interface resource block is related to the signaling format of the first signaling.
  • the load size of the first signaling and the number of REs included in the first set of REs are used together to determine a first ratio, and the first ratio is used to determine the first ratio.
  • the first air interface resource block belongs to a first air interface resource pool; the first air interface resource pool is a candidate air interface resource pool among P candidate air interface resource pools, and P is a positive integer greater than 1.
  • the P candidate air interface resource pools correspond to P candidate integers in a one-to-one correspondence, and the number of multi-carrier symbols occupied by the first air interface resource block is equal to the P candidate integers and the first air interface resource pool Corresponding candidate integer; any one of the P candidate integers is a positive integer.
  • the second air interface resource block is used to determine the first air interface resource block; the first signaling is used to determine the second air interface resource block; the second air interface resource block includes the used For sending at least one of the time-frequency resource of the first bit block set or the time-frequency resource occupied by the first signaling.
  • the first receiver 2001 receives a second information block; wherein the second information block is used to determine a first air interface resource set; the first RE set belongs to the first air interface resource set .
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 2001 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • the first transmitter 2002 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 21 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 21.
  • the processing device 2100 in the second node device includes a second transmitter 2101 and a second receiver 2102.
  • the second transmitter 2101 transmits the first bit block set, and transmits the first signaling in the first RE set; the second receiver 2102 receives the first information block in the first air interface resource block.
  • the first signaling includes scheduling information of the first bit block set, and the first bit block set includes a positive integer number of bit blocks; the first information block indicates the first bit Whether the block set is correctly received; the number of multi-carrier symbols occupied by the first air interface resource block is related to the number of REs included in the first RE set.
  • the first air interface resource block occupies K multi-carrier symbols in the time domain and K is a positive integer greater than 1, the first information block is repeatedly transmitted in the K multi-carrier symbols .
  • the number of the multi-carrier symbols occupied by the first air interface resource block is related to the signaling format of the first signaling.
  • the load size of the first signaling and the number of REs included in the first set of REs are used together to determine a first ratio, and the first ratio is used to determine the first ratio.
  • the first air interface resource block belongs to a first air interface resource pool; the first air interface resource pool is a candidate air interface resource pool among P candidate air interface resource pools, and P is a positive integer greater than 1.
  • the P candidate air interface resource pools correspond to P candidate integers in a one-to-one correspondence, and the number of multi-carrier symbols occupied by the first air interface resource block is equal to the P candidate integers and the first air interface resource pool Corresponding candidate integer; any one of the P candidate integers is a positive integer.
  • the second air interface resource block is used to determine the first air interface resource block; the first signaling is used to determine the second air interface resource block; the second air interface resource block includes the used For sending at least one of the time-frequency resource of the first bit block set or the time-frequency resource occupied by the first signaling.
  • the second transmitter 2101 sends a second information block; wherein, the second information block is used to determine a first air interface resource set; the first RE set belongs to the first air interface resource set .
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 2101 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second receiver 2102 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • Embodiment 22 illustrates a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application; as shown in FIG. 22.
  • the processing device 2200 in the third node device includes a third transmitter 2201.
  • the third transmitter 2201 transmits the second information block.
  • the second information block is used to determine a first air interface resource set; the first RE set in this application belongs to the first air interface resource set.
  • the third node device is a base station device.
  • the third node device is a relay node device.
  • the third transmitter 2201 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in embodiment 4 At least one.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point) and other wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点在第一RE集合中接收第一信令;接收第一比特块集合;在第一空口资源块中发送第一信息块。所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。上述方法在V2X系统中,保证不同对应信道质量的通信双方之间HARQ传输的可靠性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和副链路(Sidelink)相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成面向5G V2X业务的需求制定工作,并写入标准TS22.886。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
NR V2X和现有的LTE(Long-term Evolution,长期演进)V2X系统相比,一个显著的特征在于支持单播和组播并支持HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)功能。PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)信道被引入用于副链路上的HARQ-ACK(Acknowledgement,确认)传输。根据3GPP RAN1#96b会议的结果,PSFCH资源可以被周期性的配置或预配置。
在NR R(Release)15中,用于承载HARQ反馈的PUCCH(Physical Uplink Control CHannel,物理上行控制信道)信道可以占用不同长度的时间资源来满足不同用户和不同业务的需求。类似的,在V2X系统中,也需要支持不同时间长度的PSFCH。针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一RE集合中接收第一信令;
接收第一比特块集合;
在第一空口资源块中发送第一信息块;
其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,本申请要解决的问题包括:在V2X系统中,如何选择PSFCH所占用的时间资源长度。上述方法根据对应的调度信令的聚合等级(Aggregation Level)来确定PSFCH所占用的时间资源长度,从而解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一空口资源块承载了针对所述第一比特块集合的PSFCH,所述第一信令是所述第一比特块集合的调度信令,所述第一RE集合包括的RE的数量反应了所述第一信令的聚合等级;所述第一信令的聚合等级被用于确定所述第一空口资源块所占用的时域资源的长度。
作为一个实施例,上述方法的好处包括:根据通信双方之间的信道质量选择PSFCH所占用的时间资源长度,保证不同对应信道质量的通信双方之间HARQ传输的可靠性。
作为一个实施例,上述方法的好处包括:利用调度信令的聚合等级隐式的指示PSFCH所占用的时间资源长度,节省了信令开销。
根据本申请的一个方面,其特征在于,当所述第一空口资源块在时域占用K个多载波符号且K是大于1的正整数时,所述第一信息块在所述K个多载波符号中被重复传输。
根据本申请的一个方面,其特征在于,所述第一空口资源块所占用的所述多载波符号的数量和所述第一信令的信令格式有关。
根据本申请的一个方面,其特征在于,所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定第一比值,所述第一比值被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
根据本申请的一个方面,其特征在于,所述第一空口资源块属于第一空口资源池;所述第一空口资源池是P个候选空口资源池中的一个候选空口资源池,P是大于1的正整数;所述P个候选空口资源池和P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于所述P个候选整数中和所述第一空口资源池对应的候选整数;所述P个候选整数中的任一候选整数是正整数。
根据本申请的一个方面,其特征在于,第二空口资源块被用于确定所述第一空口资源块;所述第一信令被用于确定所述第二空口资源块;所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源或所述第一信令所占用的时频资源中的至少之一。
根据本申请的一个方面,其特征在于,包括:
接收第二信息块;
其中,所述第二信息块被用于确定第一空口资源集合;所述第一RE集合属于所述第一空口资源集合。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一RE集合中发送第一信令;
发送第一比特块集合;
在第一空口资源块中接收第一信息块;
其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
根据本申请的一个方面,其特征在于,当所述第一空口资源块在时域占用K个多载波符号且K是大于1的正整数时,所述第一信息块在所述K个多载波符号中被重复传输。
根据本申请的一个方面,其特征在于,所述第一空口资源块所占用的所述多载波符号的数量和所述第一信令的信令格式有关。
根据本申请的一个方面,其特征在于,所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定第一比值,所述第一比值被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
根据本申请的一个方面,其特征在于,所述第一空口资源块属于第一空口资源池;所述第一空口资源池是P个候选空口资源池中的一个候选空口资源池,P是大于1的正整数;所述P个候选空口资源池和P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于所述P个候选整数中和所述第一空口资源池对应的候选整数;所述P个候选整数中的任一候选整数是正整数。
根据本申请的一个方面,其特征在于,第二空口资源块被用于确定所述第一空口资源块;所述第一信令被用于确定所述第二空口资源块;所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源或所述第一信令所占用的时频资源中的至少之一。
根据本申请的一个方面,其特征在于,包括:
发送第二信息块;
其中,所述第二信息块被用于确定第一空口资源集合;所述第一RE集合属于所述第一空口资源集合。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于,包括:
发送第二信息块;
其中,所述第二信息块被用于确定第一空口资源集合;本申请中的所述第一RE集合属于所述第一空口资源集合。
根据本申请的一个方面,其特征在于,所述第三节点是基站。
根据本申请的一个方面,其特征在于,所述第三节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一比特块集合,并在第一RE集合中接收第一信令;
第一发送机,在第一空口资源块中发送第一信息块;
其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,发送第一比特块集合,并在第一RE集合中发送第一信令;
第二接收机,在第一空口资源块中接收第一信息块;
其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
本申请公开了一种被用于无线通信的第三节点设备,其特征在于,包括:
第三发送机,发送第二信息块;
其中,所述第二信息块被用于确定第一空口资源集合;本申请中的所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在V2X系统中,根据通信双方之间的信道质量选择PSFCH所占用的时间资源长度,保证不同对应信道质量的通信双方之间HARQ传输的可靠性。
利用调度信令的聚合等级隐式的指示PSFCH所占用的时间资源长度,节省了信令开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第一比特块集合和第一信息块的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一RE集合的示意图;
图7示出了根据本申请的一个实施例的给定空口资源块的示意图;
图8示出了根据本申请的一个实施例的第一信息块在K个多载波符号中被重复传输的示意图;
图9示出了根据本申请的一个实施例的第一信息块在K个多载波符号中被重复传输的示意图;
图10示出了根据本申请的一个实施例的第一信息块在K个多载波符号中被重复传输的示意图;
图11示出了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;
图12示出了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;
图13示出了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一信令的信令格式有关的示意图;
图14示出了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;
图15示出了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;
图16示出了根据本申请的一个实施例的P个候选空口资源池和P个候选整数的示意图;
图17示出了根据本申请的一个实施例的第二空口资源块被用于确定第一空口资源块的示意图;
图18示出了根据本申请的一个实施例的第二空口资源块被用于确定第一空口资源块的示意图;
图19示出了根据本申请的一个实施例的第二信息块的示意图;
图20示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图21示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图;
图22示出了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令,第一比特块集合和第一信息块的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中在第一RE集合中接收第一信令;在步骤102中接收第一比特块集合;在步骤103中在第一空口资源块中发送第一信息块。其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,所述RE是指:Resource Element(资源粒子)。
作为一个实施例,一个所述RE在时域占用一个所述多载波符号,在频域占用一个子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一信令是单播(Unicast)传输的。
作为一个实施例,所述第一信令是组播(Groupcast)传输的。
作为一个实施例,所述第一信令是广播(Boradcast)传输的。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一信令包括一个SCI中的一个或多个域(field)。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信令在副链路(SideLink)上被传输。
作为一个实施例,所述第一信令通过PC5接口被传输。
作为一个实施例,所述第一比特块集合的所述调度信息包括携带所述第一比特块集合的无线信号的{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)配置信息,HARQ进程号(process number),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示)}中的一种或多种。
作为一个实施例,所述DMRS配置信息包括{参考信号端口,所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)}中的一种或多种。
作为一个实施例,所述第一信令占用所述第一RE集合中的所有RE,并且仅占用所述第一RE集合中的RE。
作为一个实施例,所述第一信令不包括DMRS。
作为一个实施例,所述第一信令包括DMRS。
作为一个实施例,所述第一信息块包括正整数个信息比特。
作为一个实施例,所述第一信息块包括正整数个二进制信息比特。
作为一个实施例,所述第一信息块包括HARQ-ACK(Acknowledgement,确认)。
作为一个实施例,所述第一信息块包括CSI(Channel State Information,信道状态信息)。
作为一个实施例,所述第一信息块在副链路(SideLink)上被传输。
作为一个实施例,所述第一信息块通过PC5接口被传输。
作为一个实施例,所述第一信息块是单播(Unicast)传输的。
作为一个实施例,所述第一信息块是组播(Groupcast)传输的。
作为一个实施例,所述第一信息块是广播(Boradcast)传输的。
作为一个实施例,所述第一信息块指示所述第一比特块集合中的每个比特块是否被正确接收。
作为一个实施例,所述第一比特块集合仅包括1个比特块。
作为一个实施例,所述第一比特块集合包括多个比特块。
作为一个实施例,所述第一比特块集合包括的每个比特块包括正整数个二进制比特。
作为一个实施例,所述第一比特块集合包括的任一比特块是一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块集合包括的任一比特块是一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一比特块集合包括的任一比特块是一个CB(Code Block,码块)。
作为一个实施例,所述第一比特块集合包括的任一比特块是一个TB或一个CBG。
作为一个实施例,所述第一比特块集合在副链路(SideLink)上被传输。
作为一个实施例,所述第一比特块集合通过PC5接口被传输。
作为一个实施例,所述第一比特块集合是单播(Unicast)传输的。
作为一个实施例,所述第一比特块集合是组播(Groupcast)传输的。
作为一个实施例,所述第一比特块集合是广播(Boradcast)传输的。
作为一个实施例,所述句子所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关包括:所述第一空口资源块所占用的所述多载波符号的数量和所述第一RE集合的聚合等级(Aggregation Level)有关。
作为一个实施例,所述句子所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关包括:所述第一RE集合包括的所述RE的数量被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,所述第一信令被用于确定第一索引,所述第一空口资源块所占用的多载波符号的数量和所述第一索引有关;所述第一索引指示所述第一信令的发送者。
作为上述实施例的一个子实施例,所述第一索引是一个正整数。
作为上述实施例的一个子实施例,所述第一索引是一个非负整数。
作为上述实施例的一个子实施例,所述第一信令显式的指示所述第一索引。
作为上述实施例的一个子实施例,所述第一信令隐式的指示所述第一索引。
作为上述实施例的一个子实施例,所述第一索引包括所述第一信令的发送者的标识。
作为上述实施例的一个子实施例,所述第一索引包括source ID。
作为上述实施例的一个子实施例,所述第一索引包括层1(Layer-1)的source ID。
作为上述实施例的一个子实施例,所述第一信令的发送者的层2(Layer-2)的ID被用于确定所述第一索引。
作为一个实施例,所述第一信息块由第一序列承载。
作为上述实施例的一个子实施例,所述第一信息块被用于生成所述第一序列。
作为上述实施例的一个子实施例,所述第一序列包括伪随机(pseudo-random)序列。
作为上述实施例的一个子实施例,所述第一序列包括Zadoff-Chu序列。
作为上述实施例的一个子实施例,所述第一序列包括CP(Cyclic Prefix,循环前缀)。
作为上述实施例的一个子实施例,所述第一序列包括低峰均比(low-PAPR(Peak-to-Average Power Ratio))序列。
作为上述实施例的一个子实施例,所述第一序列在PSFCH上被传输,所述PSFCH采用PUCCH格式(Format)0。
作为上述实施例的一个子实施例,所述第一序列是M1个候选序列中的一个候选序列,M1是大于1的正整数;所述第一信息块被用于从所述M1个候选序列中确定所述第一序列。
作为上述实施例的一个子实施例,所述第一序列是目标序列和第一符号的乘积;所述第一信息块被用于生成所述第一符号。
作为上述子实施例的一个参考实施例,所述第一符号是QPSK符号。
作为上述子实施例的一个参考实施例,所述第一符号是BPSK符号。
作为上述子实施例的一个参考实施例,所述目标序列包括伪随机序列。
作为上述子实施例的一个参考实施例,所述目标序列包括低峰均比序列。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展 到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述UE201。
作为一个实施例,本申请中的所述第三节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC5接口。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路(Sidelink)。
作为一个实施例,本申请中的所述第一节点和本申请中的所述第二节点分别是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端,本申请中的所述第二节点是所述gNB203覆盖外的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖外的一个终端,本申请中的所述第二节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点和本申请中的所述第二节点分别是所述gNB203覆盖外的一个终端。
作为一个实施例,所述UE201和所述UE241之间支持单播(Unicast)传输。
作为一个实施例,所述UE201和所述UE241之间支持广播(Broadcast)传输。
作为一个实施例,所述UE201和所述UE241之间支持组播(Groupcast)传输。
作为一个实施例,本申请中的所述第一信令的发送者包括所述UE241。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信令的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE241。
作为一个实施例,本申请中的所述第一比特块集合的发送者包括所述UE241。
作为一个实施例,本申请中的所述第一比特块集合的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一比特块集合的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一比特块集合的接收者包括所述UE241。
作为一个实施例,本申请中的所述第一信息块的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信息块的接收者包括所述UE241。
作为一个实施例,本申请中的所述第一信息块的发送者包括所述UE241。
作为一个实施例,本申请中的所述第一信息块的接收者包括所述UE201。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一比特块集合生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一比特块集合生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一比特块集合生成于所述RRC子层306。
作为一个实施例,所述第一信息块生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信息块生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第二信息块生成于所述RRC子层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上 的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:在本申请中的所述第一RE集合中接收本申请中的所述第一信令;接收本申请中的所述第一比特块集合;在本申请中的所述第一空口资源块中发送本申请中的所述第一信息块。所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一RE集合中接收本申请中的所述第一信令;接收本申请中的所述第一比特块集合;在本申请中的所述第一空口资源块中发送本申请中的所述第一信息块。所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在本申请中的所述第一RE集合中发送本申请中的所述第一信令;发送本申请中的所述第一比特块集合;在本申请中的所述第一空口资源块中接收本申请中的所述第一信息块。所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一RE集合中发送本申请中的所述第一信令;发送本申请中的所述第一比特块集合;在本申请中的所述第一空口资源块中接收本申请中的所述第一信息块。所述第一信令包括所 述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述第二信息块。所述第二信息块被用于确定第一空口资源集合;本申请中的所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第二信息块。所述第二信息块被用于确定第一空口资源集合;本申请中的所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第三节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一RE集合中接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一RE集合中发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一比特块集合;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一比特块集合。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一空口资源块中接收本申请中的所述第一信息块;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一空口资源块中发送本申请中的所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1,第一节点U2和第三节点U3是两两通过空中接口传输的通信节点。附图5中,方框F51至F53中的步骤分别是可选的。
第二节点U1,在步骤S5101中发送第二信息块;在步骤S511中在第一RE集合中发送第一信令;在步骤S512中发送第一比特块集合;在步骤S513中在第一空口资源块中接收第一信息块。
第一节点U2,在步骤S5201中接收第二信息块;在步骤S521中在第一RE集合中接收 第一信令;在步骤S522中接收第一比特块集合;在步骤S523中在第一空口资源块中发送第一信息块。
第三节点U3,在步骤S5301中发送第二信息块。
在实施例5中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。所述第二信息块被用于确定第一空口资源集合;所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,本申请中的所述第三节点包括本申请中的所述第一节点所驻留的服务小区维持基站。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第三节点U3是本申请中的所述第三节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括副链路。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口是Uu接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括中继节点与用户设备之间的无线接口。
作为一个实施例,本申请中的所述第一节点是一个终端。
作为一个实施例,本申请中的所述第一节点是一辆汽车。
作为一个实施例,本申请中的所述第一节点是一个交通工具。
作为一个实施例,本申请中的所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,本申请中的所述第二节点是一个终端。
作为一个实施例,本申请中的所述第二节点是一辆汽车。
作为一个实施例,本申请中的所述第二节点是一个交通工具。
作为一个实施例,本申请中的所述第二节点是一个RSU。
作为一个实施例,当所述第一空口资源块在时域占用K个多载波符号且K是大于1的正整数时,所述第一信息块在所述K个多载波符号中被重复传输。
作为一个实施例,所述第一空口资源块所占用的所述多载波符号的数量和所述第一信令的信令格式有关。
作为一个实施例,所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定第一比值,所述第一比值被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,所述第一空口资源块属于第一空口资源池;所述第一空口资源池是P个候选空口资源池中的一个候选空口资源池,P是大于1的正整数;所述P个候选空口资源池和P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于所述P个候选整数中和所述第一空口资源池对应的候选整数;所述P个候选整数中的任一候选整数是正整数。
作为一个实施例,第二空口资源块被用于确定所述第一空口资源块;所述第一信令被用于确定所述第二空口资源块;所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源或所述第一信令所占用的时频资源中的至少之一。
作为一个实施例,所述第一信令在副链路物理层控制信道(即仅能用于承载物理层信令的副链路信道)上被传输。
作为一个实施例,所述第一信令在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被传输。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control CHannel,物理下行控制信道)上被传输。
作为一个实施例,所述第一比特块集合在副链路物理层数据信道(即能用于承载物理层数据的副链路信道)上被传输。
作为一个实施例,所述第一比特块集合在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被传输。
作为一个实施例,所述第一信息块在副链路物理层反馈信道(即仅能用于承载物理层HARQ反馈的副链路信道)上被传输。
作为一个实施例,所述第一信息块在PSFCH上被传输。
作为一个实施例,所述第二信息块在PSSCH上被传输。
作为一个实施例,所述第二信息块在PSCCH上被传输。
作为一个实施例,所述第二信息块在PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)上被传输。
作为一个实施例,所述第二信息块在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上被传输。
实施例6
实施例6示例了根据本申请的一个实施例的第一RE集合的示意图;如附图6所示。在实施例6中,本申请中的所述第一信令在所述第一RE集合中被传输。
作为一个实施例,所述第一RE集合包括正整数个RE。
作为一个实施例,所述第一RE集合在时域包括正整数个所述多载波符号。
作为一个实施例,所述第一RE集合在时域包括正整数个连续的所述多载波符号。
作为一个实施例,所述第一RE集合在时域包括正整数个不连续的所述多载波符号。
作为一个实施例,所述第一RE集合在频域包括正整数个子载波。
作为一个实施例,所述第一RE集合在频域包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一RE集合在频域包括正整数个子信道(sub-channel)。
作为一个实施例,所述第一RE集合是一个PSCCH候选项(candidate)。
作为一个实施例,所述第一RE集合是一个PDCCH候选项(candidate)。
作为一个实施例,所述第一RE集合属于一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第一RE集合属于一个搜索空间(search space)。
作为一个实施例,所述第一RE集合不包括承载所述第一信令的PSCCH的DMRS所占用的RE。
作为一个实施例,所述第一RE集合包括承载所述第一信令的PSCCH的DMRS所占用的RE。
作为一个实施例,所述第一RE集合由L1个RE子集组成,所述L1个RE子集中的任一RE子集包含S1个RE;L1是正整数,S1是大于1的正整数。
作为上述实施例的一个子实施例,所述L1属于{1,2,4,8,16}。
作为上述实施例的一个子实施例,所述L1是所述第一RE集合的聚合等级(Aggregation Level)。
作为上述实施例的一个子实施例,所述S1是固定的。
作为上述实施例的一个子实施例,所述S1固定为54。
作为上述实施例的一个子实施例,所述S1固定为72。
作为上述实施例的一个子实施例,所述S1固定为{32,33,34,35,36}中之一。
作为上述实施例的一个子实施例,所述RE子集是用于传输SCI的最小单位。
作为上述实施例的一个子实施例,所述RE子集是用于传输所述第一信令的最小单位。
作为上述实施例的一个子实施例,一个所述RE子集由一个CCE(Control Channel Element,控制信道单元)中除了DMRS所占用的RE以外的所有RE组成。
作为上述实施例的一个子实施例,一个所述RE子集是一个CCE。
作为上述实施例的一个子实施例,所述第一RE集合包括的所述RE的数量等于所述L1与所述S1的乘积。
作为一个实施例,本申请中的所述第一比特块集合不占用所述第一RE集合中的RE。
实施例7
实施例7示例了根据本申请的一个实施例的给定空口资源块的示意图;如附图7所示。在实施例7中,所述给定空口资源块是被本申请中的所述第一空口资源块和所述第二空口资源块中的任一空口资源块。
作为一个实施例,所述给定空口资源块是所述第一空口资源块。
作为一个实施例,所述给定空口资源块是所述第二空口资源块。
作为一个实施例,所述给定空口资源块在时频域包括正整数个RE。
作为一个实施例,所述给定空口资源块在频域包括正整数个子载波。
作为一个实施例,所述给定空口资源块在频域包括正整数个PRB。
作为一个实施例,所述给定空口资源块在频域包括正整数个子信道(sub-channel)。
作为一个实施例,所述给定空口资源块在时域包括正整数个所述多载波符号。
作为一个实施例,所述给定空口资源块在时域包括正整数个时隙(slot)。
作为一个实施例,所述给定空口资源块在时域包括正整数个子帧(sub-frame)。
作为一个实施例,所述第一空口资源块包括时域资源和频域资源。
作为一个实施例,所述第一空口资源块包括时域资源,频域资源和码域资源。
作为一个实施例,所述码域资源包括伪随机序列,低峰均比序列,循环位移量(cyclic shift),OCC,正交序列(orthogonal sequence),频域正交序列和时域正交序列中的一种或多种。
作为一个实施例,所述第一空口资源块是一个PSFCH资源(resource)。
作为一个实施例,所述第二空口资源块包括时域资源和频域资源。
实施例8
实施例8示例了根据本申请的一个实施例的第一信息块在K个多载波符号中被重复传输的示意图;如附图8所示。在实施例8中,本申请中的所述第一空口资源块在时域占用所述K个多载波符号;第一符号流携带所述第一信息块,所述第一符号流包括T1个符号,T1是大于1的正整数;所述T1个符号在所述K个多载波符号中的每个多载波符号中分别被映射到T1个RE上。在附图8中,所述K个多载波符号的索引分别是#0,...,#(K-1),所述T1个符号的索引分别是#0,...,#(T-1)。
作为一个实施例,所述T1个符号中的任一符号在被映射到所述K个多载波符号中对应的RE之前先分别被乘以K个加权因子。
作为上述实施例的一个子实施例,所述K个加权因子中的任一加权因子是一个复数。
作为上述实施例的一个子实施例,所述K个加权因子包括OCC。
作为上述实施例的一个子实施例,所述K个加权因子组成一个正交序列。
作为上述实施例的一个子实施例,所述K个加权因子组成时域正交序列。
作为一个实施例,所述K等于2。
作为一个实施例,所述K大于2。
作为一个实施例,所述K个多载波符号在时域是连续的。
作为一个实施例,所述K个多载波符号在时域是不连续的。
作为一个实施例,所述K个多载波符号属于同一个时隙。
作为一个实施例,所述K个多载波符号中存在两个多载波符号属于不同时隙。
作为一个实施例,所述T1个符号中任一符号是QPSK(Quadrature Phase-Shift Keying)符号。
作为一个实施例,所述T1个符号中任一符号是BPSK(Binary Phase-Shift Keying)符号。
作为一个实施例,所述T1个符号中任一符号是一个复数。
作为一个实施例,所述T1个符号组成实施例1中的所述第一序列。
作为一个实施例,所述T1个符号是实施例1中的所述第一序列包括的所有符号。
作为一个实施例,所述第一信息块被用于生成所述第一符号流。
作为一个实施例,所述第一符号流是所述第一信息块包括的信息比特依次经过CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching)和调制映射器(Modulation Mapper)之后的输出。
作为上述实施例的一个子实施例,所述速率匹配的输出包括的比特的数量和所述K无关。
实施例9
实施例9示例了根据本申请的一个实施例的第一信息块在K个多载波符号中被重复传输的示意图;如附图9所示。在实施例9中,第一符号流携带所述第一信息块,所述第一符号流包括T1个符号,T1是大于1的正整数;所述T1个符号中的每个符号在所述K个多载波符号中的每个多载波符号中被重复映射到Q1个RE上,Q1是大于1的正整数。在附图9中,所述K个多载波符号的索引分别是#0,...,#(K-1),所述T1个符号的索引分别是#0,...,#(T-1)。
作为一个实施例,所述T1个符号中的任一符号在被映射到所述K个多载波符号中的任一多载波符号中对应的Q1个RE之前先分别被乘以Q1个加权因子。
作为上述实施例的一个子实施例,所述Q1个加权因子中的任一加权因子是一个复数。
作为上述实施例的一个子实施例,所述Q1个加权因子包括OCC。
作为上述实施例的一个子实施例,所述Q1个加权因子组成一个正交序列。
作为上述实施例的一个子实施例,所述Q1个加权因子组成频域正交序列。
作为上述实施例的一个子实施例,所述Q1个加权因子是由频域正交序列中每个元素和时域正交序列中相应的元素相乘得到的。
实施例10
实施例10示例了根据本申请的一个实施例的第一信息块在K个多载波符号中被重复传输的示意图;如附图10所示。在实施例10中,第一符号流携带所述第一信息块,所述第一符号流包括T1个符号,T1是大于1的正整数;所述T1个符号分别被映射到T1个RE上,所述T1个RE分布在所述K个多载波符号中。在附图10中,所述K个多载波符号的索引分别是#0,...,#(K-1),所述T1个符号的索引分别是#0,...,#(T-1)。
作为一个实施例,所述T1个RE被分为K个RE组,所述K个RE组分别位于所述K个多载波符号中;所述K个RE组中任一RE组包括的RE的数量大于0。
作为上述实施例的一个子实施例,所述K个RE组中任意两个RE组包括的RE数量相等。
作为一个实施例,所述第一符号流是所述第一信息块中的信息比特依次经过CRC附着,信道编码,速率匹配和调制映射器后的输出;所述速率匹配的输出包括的比特数和所述K有关。
作为上述实施例的一个子实施例,所述速率匹配的输出包括的比特数和所述K线性相关。
实施例11
实施例11示例了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量 和第一RE集合包括的RE的数量有关的示意图;如附图11所示。在实施例11中,当所述第一RE集合包括的所述RE的数量不大于第一阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K1;当所述第一RE集合包括的所述RE的数量大于所述第一阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K2;K1和K2分别是正整数,所述K2不等于所述K1;所述第一阈值是正整数。
作为一个实施例,所述第一阈值是更高层(higher layer)信令配置的。
作为一个实施例,所述第一阈值是RRC信令配置的。
作为一个实施例,所述第一阈值是PC5RRC信令配置的。
作为一个实施例,所述第一阈值和本申请中的所述第一信令的发送者有关。
作为一个实施例,所述第一阈值和本申请中的所述第一信令的发送者的标识有关。
作为一个实施例,所述K2大于所述K1。
作为一个实施例,所述K2小于所述K1。
作为一个实施例,所述K1等于1,所述K2等于2。
作为一个实施例,所述K1和所述K2是更高层信令配置的。
作为一个实施例,所述K1和所述K2是RRC信令配置的。
作为一个实施例,所述K1和所述K2是PC5RRC信令配置的。
作为一个实施例,所述K1和所述K2均与本申请中的所述第一信令的发送者有关。
作为一个实施例,所述K1和所述K2均与本申请中的所述第一信令的发送者的标识有关。
作为一个实施例,所述第一信令的发送者的标识是指层1(Layer-1)的ID。
作为一个实施例,当实施例1中的所述第一索引等于目标索引且所述第一RE集合包括的所述RE的数量不大于所述第一阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于所述K1;当所述第一索引等于所述目标索引且所述第一RE集合包括的所述RE的数量大于所述第一阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于所述K2。
实施例12
实施例12示例了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;如附图12所示。在实施例12中,当所述第一RE集合的聚合等级(Aggregation Level)不大于第二阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K1;当所述第一RE集合的聚合等级大于所述第二阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K2;K1和K2分别是正整数,所述K2不等于所述K1;所述第二阈值是正整数。
作为一个实施例,所述K2大于所述K1。
作为一个实施例,所述第一RE集合的所述聚合等级是一个正整数。
作为一个实施例,所述第一RE集合的所述聚合等级是{1,2,4,8,16}中之一。
作为一个实施例,所述第一RE集合包括的所述RE的数量和所述第一RE集合的聚合等级有关。
作为一个实施例,所述第一RE集合包括的所述RE的数量和所述第一RE集合的聚合等级线性相关。
实施例13
实施例13示例了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一信令的信令格式有关的示意图;如附图13所示。在实施例13中,当所述第一信令的所述信令格式属于第一格式集合且所述第一RE集合包括的所述RE的数量不大于第一阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K1;当所述第一信令的所述信令格式属于所述第一格式集合且所述第一RE集合包括的所述RE的数量大于所述第一阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K2;K1和K2分别是正整数,所 述K2不等于所述K1,所述第一阈值是正整数;所述第一格式集合包括正整数个信令格式。
作为一个实施例,所述第一信令的所述信令格式包括:SCI Format。
作为一个实施例,所述第一信令的所述信令格式包括:DCI format。
作为一个实施例,所述第一信令的所述信令格式被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,本申请中的所述第一RE集合包括的所述RE的数量和所述第一信令的所述信令格式共同被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,当所述第一信令的所述信令格式属于第二格式集合并且所述第一RE集合包括的所述RE的数量不大于第三阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K3;当所述第一信令的所述信令格式属于所述第二格式集合并且所述第一RE集合包括的所述RE的数量大于所述第三阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K4;K3和K4分别是正整数,所述K4不等于所述K3;所述第三阈值是正整数;所述第二格式集合包括正整数个信令格式,所述第二格式集合中的任一信令格式集合不属于所述第一格式集合,所述第一格式集合中的任一信令格式集合不属于所述第二格式集合;所述第三阈值不等于所述第一阈值。
作为上述实施例的一个子实施例,所述K3不等于所述K1。
作为上述实施例的一个子实施例,所述K3等于所述K1。
作为上述实施例的一个子实施例,所述K4不等于所述K2。
作为上述实施例的一个子实施例,所述K4等于所述K2。
实施例14
实施例14示例了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;如附图14所示。在实施例14中,所述第一RE集合包括的所述RE的数量是第一数值集合中的一个数值,所述第一数值集合是M个第一类数值集合中的一个第一类数值集合,M是大于1的正整数,所述M个第一类数值集合中的任一第一类数值集合包括正整数个第一类数值;所述M个第一类数值集合和M个第二类数值一一对应,所述M个第二类数值中的任意两个第二类数值不相等;所述第一空口资源块所占用的所述多载波符号的数量等于所述M个第二类数值中和所述第一数值集合对应的第二类数值。
作为一个实施例,所述M等于本申请中的所述P。
作为一个实施例,所述M小于本申请中的所述P。
作为一个实施例,所述M等于本申请中的所述P,所述M个第二类数值分别是本申请中的所述P个候选整数。
作为一个实施例,所述M个第一类数值集合中任一第一类数值是一个正整数。
作为一个实施例,第二数值集合中的任一第一类数值不等于第三数值集合中的任一第一类数值;所述第二数值集合和所述第三数值集合是所述M个第一类数值集合中的任意两个第一类数值集合。
作为一个实施例,所述M个第二类数值中任一第二类数值是一个正整数。
作为一个实施例,所述M个第一类数值集合是更高层信令配置的。
作为一个实施例,所述M个第一类数值集合是RRC信令配置的。
作为一个实施例,所述M个第一类数值集合和本申请中的所述第一信令的发送者有关。
作为一个实施例,所述M个第一类数值集合和所述第一信令的发送者的标识有关。
作为一个实施例,所述M个第二类数值是更高层信令配置的。
作为一个实施例,所述M个第二类数值是RRC信令配置的。
作为一个实施例,所述M个第二类数值与所述第一信令的发送者有关。
作为一个实施例,所述M个第二类数值与所述第一信令的发送者的标识有关。
实施例15
实施例15示例了根据本申请的一个实施例的第一空口资源块所占用的多载波符号的数量和第一RE集合包括的RE的数量有关的示意图;如附图15所示。在实施例15中,本申请中的所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定本申请中的第一比值。当所述第一比值不大于第四阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K1;当所述第一比值大于第四阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K2;K1和K2分别是正整数,所述K2不等于所述K1;所述第四阈值是正实数。
作为一个实施例,所述第一信令的所述负载尺寸是所述第一信令的payload size。
作为一个实施例,所述第一信令的所述负载尺寸是所述第一信令中的每个域(field)包括的比特数量之和。
作为上述实施例的一个子实施例,当所述第一信令中的任一给定域包括补零(zero-padding)比特时,所述给定域包括的比特数量包括所述补零比特的数量。
作为一个实施例,所述第一信令的所述负载尺寸是一个正整数。
作为一个实施例,所述第一比值是正实数。
作为一个实施例,所述第一比值是不大于1的正实数。
作为一个实施例,所述第一比值是不大于2的正实数。
作为一个实施例,所述第一比值是所述第一信令的所述负载尺寸和所述第一RE集合包括的所述RE的数量的比值。
作为一个实施例,所述第一比值是第一整数和所述第一RE集合包括的所述RE的数量的比值;所述第一整数是所述第一信令的所述负载尺寸与所述第一信令的CRC比特数之和。
作为一个实施例,所述第一信令的CRC比特数是大于1的正整数。
作为一个实施例,所述第一信令的CRC比特数是24。
作为一个实施例,所述第一信令的CRC比特数是{6,11,16,24}中之一。
作为一个实施例,所述第一信令的CRC比特数和所述第一信令的所述负载尺寸有关。
作为一个实施例,所述第一信令的CRC比特数和所述第一信令的所述负载尺寸无关。
作为一个实施例,所述第一比值是所述第一信令的所述负载尺寸和所述第一RE集合包括的所述RE的数量的比值再乘以所述第一信令的调制阶数(Modulation order)。
作为一个实施例,所述第一比值是所述第一整数和所述第一RE集合包括的所述RE的数量的比值再乘以所述第一信令的调制阶数(Modulation order)。
作为一个实施例,所述第一信令的所述调制阶数等于2。
作为一个实施例,所述第一信令的所述调制阶数大于2。
作为一个实施例,所述第四阈值是更高层(higher layer)信令配置的。
作为一个实施例,所述第四阈值是RRC信令配置的。
作为一个实施例,所述第四阈值是PC5RRC信令配置的。
作为一个实施例,所述第四阈值和所述第一信令的发送者有关。
作为一个实施例,所述第四阈值和所述第一信令的发送者的标识有关。
作为一个实施例,所述第一比值和所述第一信令的所述信令格式共同被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,当所述第一信令的所述信令格式属于第一格式集合并且所述第一比值不大于第四阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K1;当所述第一信令的所述信令格式属于所述第一格式集合并且所述第一比值大于所述第四阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K2;K1和K2分别是正整数,所述K2不等于所述K1,所述第四阈值是正实数;所述第一格式集合包括正整数个信令格式。
作为上述实施例的一个子实施例,当所述第一信令的所述信令格式属于第二格式集合并 且所述第一比值不大于第五阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K3;当所述第一信令的所述信令格式属于所述第二格式集合并且所述第一比值大于所述第五阈值时,所述第一空口资源块所占用的所述多载波符号的数量等于K4;K3和K4分别是正整数,所述K4不等于所述K3;所述第五阈值是正实数;所述第二格式集合包括正整数个信令格式,所述第二格式集合中的任一信令格式集合不属于所述第一格式集合,所述第一格式集合中的任一信令格式集合不属于所述第二格式集合;所述第五阈值不等于所述第四阈值。
作为一个实施例,第一负载比特块包括所述第一信令中的每个域(field)中的所有比特;所述第一负载比特块依次经过CRC附着,信道编码,速率匹配后得到第一比特流;所述第一比特流依次经过加扰(Scrambling)和调制映射器后得到第二符号流;所述第二符号流中的符号被映射到所述第一RE集合中;所述第一比特流中的任一比特在所述第一RE集合中只被映射到一个RE上;所述第二符号流中的任一符号在所述第一RE集合中只被映射到一个RE上。
作为上述实施例的一个子实施例,当所述第一信令中的任一给定域包括补零比特时,所述第一负载比特块包括所述补零比特。
作为上述实施例的一个子实施例,所述第一比特流包括正整数个二进制比特。
作为上述实施例的一个子实施例,所述第二符号流包括正整数个调制符号。
作为上述实施例的一个子实施例,所述第二符号流包括正整数个QPSK符号。
作为上述实施例的一个子实施例,所述第一比特流包括的比特的数量等于所述第一RE集合包括的所述RE的数量乘以所述第一信令的调制阶数。
实施例16
实施例16示例了根据本申请的一个实施例的P个候选空口资源池和P个候选整数的示意图;如附图16所示。在实施例16中,本申请中的所述第一空口资源块属于所述P个候选空口资源池中的所述第一空口资源池;所述P个候选空口资源池和所述P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于和所述第一空口资源池对应的候选整数。在附图16中,所述P个候选空口资源池和所述P个候选整数的索引分别是#0,...,#P-1。
作为一个实施例,所述P等于2。
作为一个实施例,所述P大于2。
作为一个实施例,所述P等于2,所述P个候选整数分别是1和2。
作为一个实施例,所述P个候选整数中的任意两个候选整数不相等。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池包括时域资源和频域资源。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池包括时域资源,频域资源和码域资源。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在时频域包括正整数个RE。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在频域包括正整数个子载波。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在频域包括正整数个PRB。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在时域包括正整数个所述多载波符号。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在时域包括正整数个时隙。
作为一个实施例,所述P个候选空口资源池在时域两两相互正交。
作为一个实施例,所述P个候选空口资源池中存在两个候选空口资源池在时域交叠。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在时域多次出现。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在时域周期性出现。
作为一个实施例,第一候选空口资源池和第二候选空口资源池是所述P个候选空口资源池中的两个候选空口资源池,所述第一候选空口资源池在时域任意两次相邻的出现之间的最小时间间隔小于所述第二候选空口资源池在时域任意两次相邻的出现之间的最小时间间隔。
作为上述实施例的一个子实施例,所述第一候选空口资源池对应的候选整数小于所述第二候选空口资源池对应的候选整数。
作为上述实施例的一个子实施例,所述第一候选空口资源池对应的候选整数大于所述第二候选空口资源池对应的候选整数。
作为一个实施例,所述P个候选空口资源池和所述P个候选整数是预配置的。
作为一个实施例,所述P个候选空口资源池和所述P个候选整数是更高层(higher layer)信令配置的。
作为一个实施例,所述P个候选空口资源池和所述P个候选整数是RRC信令配置的。
作为一个实施例,所述P个候选空口资源池和所述P个候选整数是PC5RRC信令配置的。
作为一个实施例,所述P个候选空口资源池与所述第一信令的发送者有关。
作为一个实施例,所述P个候选空口资源池与所述第一信令的发送者的标识有关。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池被预留给PSFCH。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池被预留给HARQ-ACK。
作为一个实施例,所述P个候选空口资源池中任一候选空口资源池在时域的一次出现中所占用的所述多载波符号的数量等于对应的候选整数。
作为一个实施例,所述第一RE集合包括的所述RE的数量被用于从所述P个候选空口资源池中确定所述第一空口资源池。
作为一个实施例,所述第一RE集合包括的所述RE的数量属于第一数值集合,所述第一数值集合是P个第一类数值集合中的一个第一类数值集合,所述P个第一类数值集合中的任一第一类数值集合包括正整数个第一类数值;所述P个第一类数值集合和所述P个候选空口资源池一一对应,所述第一空口资源池是所述P个候选空口资源池中和所述第一数值集合对应的候选空口资源池。
作为上述实施例的一个子实施例,所述P个第一类数值集合中任一第一类数值是正整数。
作为上述实施例的一个子实施例,所述P个第一类数值集合和所述P个候选空口资源池之间的对应关系是RRC信令配置的。
作为上述实施例的一个子实施例,所述P个第一类数值集合和所述P个候选空口资源池之间的对应关系是PC5RRC信令配置的。
实施例17
实施例17示例了根据本申请的一个实施例的第二空口资源块被用于确定第一空口资源块的示意图;如附图17所示。在实施例17中,所述第二空口资源块包括被用于发送本申请中的所述第一比特块集合的时频资源或所述第一信令所占用的时频资源中的至少之一。
作为一个实施例,所述第一信令指示所述第二空口资源块。
作为一个实施例,所述第一信令显式的指示所述第二空口资源块。
作为一个实施例,所述第一信令隐式的指示所述第二空口资源块。
作为一个实施例,所述第一信令显式的指示所述第二空口资源块的一部分,隐式的指示所述第二空口资源块的另一部分。
作为一个实施例,所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源。
作为一个实施例,所述第二空口资源块由被用于发送所述第一比特块集合的时频资源组成。
作为一个实施例,所述第二空口资源块包括所述第一信令所占用的时频资源。
作为一个实施例,所述第二空口资源块由所述第一信令所占用的时频资源组成。
作为一个实施例,所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源 和所述第一信令所占用的时频资源。
作为一个实施例,所述第二空口资源块由被用于发送所述第一比特块集合的时频资源和所述第一信令所占用的时频资源组成。
作为一个实施例,所述第二空口资源块被用于从本申请中的所述第一空口资源池中确定所述第一空口资源块。
作为一个实施例,所述第二空口资源块所占用的时频资源被用于确定所述第一空口资源块。
作为一个实施例,所述第二空口资源块所占用的时域资源被用于确定所述第一空口资源块所占用的时域资源。
作为一个实施例,所述第二空口资源块所属的时间单元和所述第一空口资源块所属的时间单元之间的时间间隔不小于第一时间间隔。
作为上述实施例的一个子实施例,所述时间单元是一个时隙(slot)。
作为上述实施例的一个子实施例,所述时间单元包括正整数个所述多载波符号。
作为上述实施例的一个子实施例,所述第一时间间隔是非负整数。
作为上述实施例的一个子实施例,所述第一时间间隔的单位是时隙(slot)。
作为上述实施例的一个子实施例,所述第一时间间隔的单位是正整数个所述多载波符号。
作为上述实施例的一个子实施例,所述第一时间间隔的单位是所述时间单元。
作为上述实施例的一个子实施例,所述第一时间间隔是预配置的。
作为上述实施例的一个子实施例,所述第一时间间隔由RRC信令配置。
作为一个实施例,所述第二空口资源块所占用的频域资源被用于确定所述第一空口资源块所占用的频域资源。
作为一个实施例,所述第二空口资源块所占用的频域资源被用于确定所述第一空口资源块所占用的频域资源和码域资源。
作为一个实施例,所述第二空口资源块所占用的时频资源被用于确定所述第一空口资源块所占用的频域资源。
作为一个实施例,所述第二空口资源块所占用的时频资源被用于确定所述第一空口资源块所占用的频域资源和码域资源。
作为一个实施例,所述第一比特块集合的目标接收者是第一节点集合,所述第一节点集合包括正整数个节点;本申请中的所述第一节点是所述第一节点集合中的一个节点;所述第一节点在所述第一节点集合中的索引被用于确定所述第一空口资源块。
作为一个实施例,所述第一节点的标识被用于确定所述第一空口资源块。
作为一个实施例,所述第一信令的发送者的标识被用于确定所述第一空口资源块。
实施例18
实施例18示例了根据本申请的一个实施例的第二空口资源块被用于确定第一空口资源块的示意图;如附图18所示。在实施例18中,所述第一空口资源块是Q2个候选空口资源块中的一个候选空口资源块;所述第二空口资源块所占用的最低子信道(sub-channel)是Q1个候选子信道中的一个候选子信道,Q1和Q2分别是大于1的正整数;所述Q1个候选子信道中的任一候选子信道和所述Q2个候选空口资源块中的一个候选空口资源块对应;所述第一空口资源块是所述Q2个候选空口资源块中和所述第二空口资源块所占用的所述最低子信道对应的候选空口资源块。在附图18中,所述Q2个候选空口资源块的索引分别是#0,...,#(Q2-1),所述Q1个候选子信道的索引分别是#0,...,#(Q1-1)。
作为一个实施例,所述Q1等于所述Q2。
作为一个实施例,所述Q1不等于所述Q2。
作为一个实施例,所述Q2个候选空口资源块中任一候选空口资源块被预留给HARQ-ACK。
作为一个实施例,所述Q2个候选空口资源块中任一候选空口资源块被预留给一个PSFCH。
作为一个实施例,所述Q2个候选空口资源块中任一候选空口资源块是一个PSFCH资源。
作为一个实施例,所述Q2个候选空口资源块中任一候选空口资源块包括时域资源和频域资源。
作为一个实施例,所述Q2个候选空口资源块中任一候选空口资源块包括时域资源,频域资源和码域资源。
作为一个实施例,所述Q2个候选空口资源块中任一候选空口资源块在时频域包括正整数个RE。
作为一个实施例,所述Q2个候选空口资源块在时域属于同一个实施例17中的所述时间单元。
作为一个实施例,所述Q2个候选空口资源块均属于本申请中的所述第一空口资源池。
作为一个实施例,所述Q1个候选子信道和所述Q2个候选空口资源块之间的对应关系是预配置的。
作为一个实施例,所述Q1个候选子信道和所述Q2个候选空口资源块之间的对应关系是更高层(higher layer)信令配置的。
作为一个实施例,所述Q1个候选子信道和所述Q2个候选空口资源块之间的对应关系是RRC信令配置的。
作为一个实施例,所述Q2个候选空口资源块在时域都属于第一时间单元,所述第二空口资源块在时域属于第二时间单元;所述第一时间单元是晚于所述第二时间单元,和所述第二时间单元之间的时间间隔不小于实施例17中的所述第一时间间隔,并且包括被预留给PSFCH的时域资源的最早的一个所述时间单元。
实施例19
实施例19示例了根据本申请的一个实施例的第二信息块的示意图;如附图19所示。在实施例19中,所述第二信息块被用于确定本申请中的所述第一空口资源集合;本申请中的所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,所述第二信息块由层1(L1)的信令承载。
作为一个实施例,所述第二信息块由更高层(higher layer)信令承载。
作为一个实施例,所述第二信息块由RRC信令承载。
作为一个实施例,所述第二信息块是单播(Unicast)传输的。
作为一个实施例,所述第二信息块是组播(Groupcast)传输的。
作为一个实施例,所述第二信息块是广播(Broadcast)传输的。
作为一个实施例,所述第二信息块包括一个IE(Information Element,信息单元)中的全部或部分域(Field)中的信息。
作为一个实施例,所述第二信息块包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)中的信息。
作为一个实施例,所述第二信息块包括SIB(System Information Block,系统信息块)中的一个或多个域(Field)中的信息。
作为一个实施例,所述第二信息块包括RMSI(Remaining System Information,剩余系统信息)中的一个或多个域(Field)中的信息。
作为一个实施例,所述第二信息块包括一个DCI中的全部或部分域(Field)中的信息。
作为一个实施例,所述第二信息块包括一个SCI中的全部或部分域(Field)中的信息。
作为一个实施例,所述第二信息块是通过无线信号传输的。
作为一个实施例,所述第二信息块是从基站传输到所述第一节点。
作为一个实施例,所述第二信息块是从所述第一节点的服务小区传输到所述第一节点的。
作为一个实施例,所述第二信息块是从所述第一信令的发送者传输到所述第一节点的。
作为一个实施例,所述第二信息块是从所述第一节点的高层传递到所述第一节点的物理层的。
作为一个实施例,所述第二信息块是从所述第一节点的更高层传递到所述第一节点的物理层的。
作为一个实施例,所述第二信息块在副链路(SideLink)上被传输。
作为一个实施例,所述第二信息块是通过PC5接口被传输的。
作为一个实施例,所述第二信息块在下行链路上被传输。
作为一个实施例,所述第二信息块是通过Uu接口被传输的。
作为一个实施例,所述第二信息块显式的指示所述第一空口资源集合。
作为一个实施例,所述第二信息块隐式的指示所述第一空口资源集合。
作为一个实施例,所述第二信息块指示所述第一空口资源集合被预留给副链路。
作为一个实施例,所述第二信息块指示所述第一空口资源集合被预留给V2X(Vehicle-to-Everything)通信。
作为一个实施例,所述第一空口资源集合包括时域资源和频域资源。
作为一个实施例,所述第一空口资源集合在时频域包括正整数个RE。
作为一个实施例,所述第一空口资源集合在频域包括正整数个子载波。
作为一个实施例,所述第一空口资源集合在频域包括正整数个PRB。
作为一个实施例,所述第一空口资源集合在频域包括正整数个子信道。
作为一个实施例,所述第一空口资源集合在时域包括正整数个所述多载波符号。
作为一个实施例,所述第一空口资源集合在时域包括正整数个时隙。
作为一个实施例,所述第一空口资源集合被预留给副链路。
作为一个实施例,所述第一空口资源集合被预留给V2X通信。
作为一个实施例,被用于传输本申请中的所述第一比特块集合的时频资源属于所述第一空口资源集合。
作为一个实施例,本申请中的所述第一空口资源块在时频域属于所述第一空口资源集合。
作为一个实施例,本申请中的所述P个候选空口资源池中的任一候选空口资源池在时频域属于所述第一空口资源集合。
作为一个实施例,所述第二信息块从所述第一空口资源集合中指示本申请中的所述P个候选空口资源池。
作为一个实施例,本申请中的所述第一空口资源块属于第一空口资源池,所述第一空口资源池属于所述第一空口资源集合;所述第二信息块从所述第一空口资源集合中指示所述第一空口资源池;所述第一空口资源池包括正整数个RE,所述第一空口资源池被预留给PSFCH。
实施例20
实施例20示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图20所示。在附图20中,第一节点设备中的处理装置2000包括第一接收机2001和第一发送机2002。
在实施例20中,第一接收机2001接收第一比特块集合,并在第一RE集合中接收第一信令;第一发送机2002在第一空口资源块中发送第一信息块。
在实施例20中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,当所述第一空口资源块在时域占用K个多载波符号且K是大于1的正整数时,所述第一信息块在所述K个多载波符号中被重复传输。
作为一个实施例,所述第一空口资源块所占用的所述多载波符号的数量和所述第一信令 的信令格式有关。
作为一个实施例,所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定第一比值,所述第一比值被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,所述第一空口资源块属于第一空口资源池;所述第一空口资源池是P个候选空口资源池中的一个候选空口资源池,P是大于1的正整数;所述P个候选空口资源池和P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于所述P个候选整数中和所述第一空口资源池对应的候选整数;所述P个候选整数中的任一候选整数是正整数。
作为一个实施例,第二空口资源块被用于确定所述第一空口资源块;所述第一信令被用于确定所述第二空口资源块;所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源或所述第一信令所占用的时频资源中的至少之一。
作为一个实施例,所述第一接收机2001接收第二信息块;其中,所述第二信息块被用于确定第一空口资源集合;所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机2001包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机2002包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例21
实施例21示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图21所示。在附图21中,第二节点设备中的处理装置2100包括第二发送机2101和第二接收机2102。
在实施例21中,第二发送机2101发送第一比特块集合,并在第一RE集合中发送第一信令;第二接收机2102在第一空口资源块中接收第一信息块。
在实施例21中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
作为一个实施例,当所述第一空口资源块在时域占用K个多载波符号且K是大于1的正整数时,所述第一信息块在所述K个多载波符号中被重复传输。
作为一个实施例,所述第一空口资源块所占用的所述多载波符号的数量和所述第一信令的信令格式有关。
作为一个实施例,所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定第一比值,所述第一比值被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
作为一个实施例,所述第一空口资源块属于第一空口资源池;所述第一空口资源池是P个候选空口资源池中的一个候选空口资源池,P是大于1的正整数;所述P个候选空口资源池和P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于所述P个候选整数中和所述第一空口资源池对应的候选整数;所述P个候选整数中的任一候选整数是正整数。
作为一个实施例,第二空口资源块被用于确定所述第一空口资源块;所述第一信令被用于确定所述第二空口资源块;所述第二空口资源块包括被用于发送所述第一比特块集合的时 频资源或所述第一信令所占用的时频资源中的至少之一。
作为一个实施例,所述第二发送机2101发送第二信息块;其中,所述第二信息块被用于确定第一空口资源集合;所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发送机2101包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机2102包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
实施例22
实施例22示例了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图;如附图22所示。在附图22中,第三节点设备中的处理装置2200包括第三发送机2201。
在实施例22中,第三发送机2201发送第二信息块。其中,所述第二信息块被用于确定第一空口资源集合;本申请中的所述第一RE集合属于所述第一空口资源集合。
作为一个实施例,所述第三节点设备是基站设备。
作为一个实施例,所述第三节点设备是中继节点设备。
作为一个实施例,所述第三发送机2201包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一比特块集合,并在第一RE集合中接收第一信令;
    第一发送机,在第一空口资源块中发送第一信息块;
    其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
  2. 根据权利要求1所述的第一节点设备,其特征在于,当所述第一空口资源块在时域占用K个多载波符号且K是大于1的正整数时,所述第一信息块在所述K个多载波符号中被重复传输。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一空口资源块所占用的所述多载波符号的数量和所述第一信令的信令格式有关。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一信令的负载尺寸和所述第一RE集合包括的所述RE的数量共同被用于确定第一比值,所述第一比值被用于确定所述第一空口资源块所占用的所述多载波符号的数量。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一空口资源块属于第一空口资源池;所述第一空口资源池是P个候选空口资源池中的一个候选空口资源池,P是大于1的正整数;所述P个候选空口资源池和P个候选整数一一对应,所述第一空口资源块所占用的所述多载波符号的数量等于所述P个候选整数中和所述第一空口资源池对应的候选整数;所述P个候选整数中的任一候选整数是正整数。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,第二空口资源块被用于确定所述第一空口资源块;所述第一信令被用于确定所述第二空口资源块;所述第二空口资源块包括被用于发送所述第一比特块集合的时频资源或所述第一信令所占用的时频资源中的至少之一。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第二信息块;其中,所述第二信息块被用于确定第一空口资源集合;所述第一RE集合属于所述第一空口资源集合。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,发送第一比特块集合,并在第一RE集合中发送第一信令;
    第二接收机,在第一空口资源块中接收第一信息块;
    其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一RE集合中接收第一信令;
    接收第一比特块集合;
    在第一空口资源块中发送第一信息块;
    其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一RE集合中发送第一信令;
    发送第一比特块集合;
    在第一空口资源块中接收第一信息块;
    其中,所述第一信令包括所述第一比特块集合的调度信息,所述第一比特块集合包括正整数个比特块;所述第一信息块指示所述第一比特块集合是否被正确接收;所述第一空口资源块所占用的多载波符号的数量和所述第一RE集合包括的RE的数量有关。
PCT/CN2020/104731 2019-08-02 2020-07-27 一种被用于无线通信的节点中的方法和装置 WO2021023038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910711149.3 2019-08-02
CN201910711149.3A CN112312350A (zh) 2019-08-02 2019-08-02 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2021023038A1 true WO2021023038A1 (zh) 2021-02-11

Family

ID=74486457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104731 WO2021023038A1 (zh) 2019-08-02 2020-07-27 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN112312350A (zh)
WO (1) WO2021023038A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193643A1 (zh) * 2021-03-18 2022-09-22 上海移远通信技术股份有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN115134051A (zh) * 2021-03-25 2022-09-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115603856A (zh) * 2021-06-28 2023-01-13 上海朗帛通信技术有限公司(Cn) 用于无线通信的调制方式配制的方法和装置
WO2024051624A1 (zh) * 2022-09-09 2024-03-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107801247A (zh) * 2016-09-07 2018-03-13 上海朗帛通信技术有限公司 一种支持可变的子载波间距的ue、基站中的方法和设备
CN107889251A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种时域资源单元集合结构的确定方法、网络设备及终端
US20180152962A1 (en) * 2015-05-14 2018-05-31 Lg Electronics Inc. Method for terminal for receiving phich in wireless communication system and terminal utilizing the method
CN108123738A (zh) * 2016-11-27 2018-06-05 上海朗帛通信技术有限公司 一种用于动态调度的ue、基站中的方法和设备
CN109756440A (zh) * 2017-11-06 2019-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180152962A1 (en) * 2015-05-14 2018-05-31 Lg Electronics Inc. Method for terminal for receiving phich in wireless communication system and terminal utilizing the method
CN107801247A (zh) * 2016-09-07 2018-03-13 上海朗帛通信技术有限公司 一种支持可变的子载波间距的ue、基站中的方法和设备
CN107889251A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种时域资源单元集合结构的确定方法、网络设备及终端
CN108123738A (zh) * 2016-11-27 2018-06-05 上海朗帛通信技术有限公司 一种用于动态调度的ue、基站中的方法和设备
CN109756440A (zh) * 2017-11-06 2019-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193643A1 (zh) * 2021-03-18 2022-09-22 上海移远通信技术股份有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN115134051A (zh) * 2021-03-25 2022-09-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115134051B (zh) * 2021-03-25 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115603856A (zh) * 2021-06-28 2023-01-13 上海朗帛通信技术有限公司(Cn) 用于无线通信的调制方式配制的方法和装置
WO2024051624A1 (zh) * 2022-09-09 2024-03-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN112312350A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021213251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021082933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021077961A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221904A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022017127A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023131154A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023078080A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023077757A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022342A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112688763B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023098549A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193741A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040809A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061341A1 (zh) 被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850558

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20850558

Country of ref document: EP

Kind code of ref document: A1