WO2023185522A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023185522A1
WO2023185522A1 PCT/CN2023/082452 CN2023082452W WO2023185522A1 WO 2023185522 A1 WO2023185522 A1 WO 2023185522A1 CN 2023082452 W CN2023082452 W CN 2023082452W WO 2023185522 A1 WO2023185522 A1 WO 2023185522A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
tci
signaling
condition
group
Prior art date
Application number
PCT/CN2023/082452
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023185522A1 publication Critical patent/WO2023185522A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • Multi-antenna technology is a key technology in the 3GPP (3rd Generation Partner Project) LTE (Long-term Evolution) system and NR (New Radio) system. Additional spatial degrees of freedom are obtained by configuring multiple antennas at communication nodes, such as base stations or UEs (User Equipment). Multiple antennas use beamforming to form beams pointing in a specific direction to improve communication quality. When multiple antennas belong to multiple TRPs (Transmitter Receiver Points, transmitting and receiving nodes)/panels (antenna panels), additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels. In NR R(release)16 and R17, multi-TRP based transmission was introduced to enhance the transmission quality of data and control channels.
  • TRPs Transmitter Receiver Points, transmitting and receiving nodes
  • panels panels
  • additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels.
  • NR R(release)16 and R17 multi-TRP based transmission was
  • the beams formed by multi-antenna beamforming are generally narrow, and the beams of both communicating parties need to be aligned for effective communication.
  • a beam management mechanism is adopted for beam selection, updating and instructions between communicating parties to achieve the performance gains brought by multiple antennas.
  • the control channel and the data channel can use the same beam, and there is channel reciprocity between uplink and downlink channels in many application scenarios, physical layer signaling is used in NR R17 to simultaneously update the control channel and The data channel beam technology (unified TCI framework) has been adopted. In scenarios where uplink and downlink channel reciprocity exists, physical layer signaling can be used to simultaneously update uplink and downlink beams.
  • this application discloses a solution. It should be noted that although the above description uses cellular network and unified TCI framework as an example, this application is also applicable to other scenarios such as sidelink transmission and R15/R16 TCI indication framework, and achieves similar results in cellular network and unified Technical effects in TCI framework. In addition, adopting a unified solution for different scenarios (including but not limited to cellular network, secondary link, unified TCI framework, and R15/R16 TCI indication framework) can also help reduce hardware complexity and cost. In the case of no conflict, the embodiments and features in the embodiments of the first node of the present application can be applied to the second node, and vice versa. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the first signal;
  • the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the number of TCI states included in the first TCI state group and the The second signaling is jointly used to determine the time domain resources occupied by the first signal.
  • the problems to be solved by this application include: when a physical layer signaling can indicate a single or multiple TCI states, what impact does it have on the transmission of the data channel.
  • the TCI status included in the first TCI status group indicated by the first signaling is The quantity is used to determine the time domain resources occupied by the first signal, which solves this problem.
  • the characteristics of the above method include: the first signaling is a physical layer signaling, and the first TCI state group indicated by the first signaling includes one or two TCI states; At least one TCI state indicated by a signaling is applied to the first signal, and whether the first TCI state group includes one or two TCI states is used to determine the time domain resource occupied by the first signal.
  • the benefits of the above method include: adjusting the time domain resources occupied by the first signal according to the number of TCI states indicated by the first signaling, so that the transmission of the first signaling and the third Matching of the signaling instructions improves the transmission reliability of the first signal.
  • the benefits of the above method include: supporting dynamic switching between single-beam/TRP-based transmission and multi-beam/TRP-based transmission.
  • the benefits of the above method include: using physical layer signaling indicating TCI status to flexibly indicate switching between single-beam/TRP-based transmission and multi-beam/TRP-based transmission, saving signaling overhead.
  • the second signaling indicates a first symbol group
  • the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine The time domain resources occupied by the first signal.
  • the present application is characterized in that when each condition in the first set of conditions is satisfied, the number of TCI states included in the first TCI state group and the second signaling are jointly Used to determine the time domain resource occupied by the first signal; the first set of conditions includes at least one condition.
  • each condition in the first set of conditions is satisfied is used to determine whether the number of TCI states included in the first TCI state group is used to determine The time domain resources occupied by the first signal.
  • the first condition set includes a first condition
  • the first condition includes: a first higher-level parameter is configured and the value of the first higher-level parameter belongs to the first parameter Value set; the first parameter value set includes at least one parameter value.
  • the first condition set includes a second condition
  • the second condition includes: the format of the second signaling belongs to the first format set.
  • the present application is characterized in that when the number of TCI states included in the first TCI state group is equal to 2, the format of the second signaling is used to determine the first TCI state group. Only one TCI state in the first TCI state group is applied to the first signal or both TCI states in the first TCI state group are applied to the first signal.
  • the first node includes a user equipment.
  • the first node includes a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the first signal;
  • the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the number of TCI states included in the first TCI state group and the The second signaling is jointly used to determine the time domain resources occupied by the first signal.
  • the second signaling indicates a first symbol group
  • the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine The time domain resources occupied by the first signal.
  • the present application is characterized in that when each condition in the first set of conditions is satisfied, the number of TCI states included in the first TCI state group and the second signaling are jointly Used to determine the time domain resource occupied by the first signal; the first set of conditions includes at least one condition.
  • each condition in the first set of conditions is satisfied is used to determine whether the number of TCI states included in the first TCI state group is used to determine The time domain resources occupied by the first signal.
  • the first condition set includes a first condition
  • the first condition includes: a first higher-level parameter is configured and the value of the first higher-level parameter belongs to the first parameter Value set; the first parameter value set includes at least one parameter value.
  • the first condition set includes a second condition
  • the second condition includes: the first condition
  • the format of the second signaling belongs to the first format set.
  • the present application is characterized in that when the number of TCI states included in the first TCI state group is equal to 2, the format of the second signaling is used to determine the first TCI state group. Only one TCI state in the first TCI state group is applied to the first signal or both TCI states in the first TCI state group are applied to the first signal.
  • the second node is a base station.
  • the second node is user equipment.
  • the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first processor receives the first signaling, the second signaling and the first signal
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the first signal;
  • the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the number of TCI states included in the first TCI state group and the The second signaling is jointly used to determine the time domain resources occupied by the first signal.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second processor sends the first signaling, the second signaling and the first signal
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the first signal;
  • the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the number of TCI states included in the first TCI state group and the The second signaling is jointly used to determine the time domain resources occupied by the first signal.
  • this application has the following advantages:
  • the time domain resources occupied by the data channel are adjusted according to the number of TCI states indicated by the physical layer signaling, so that the transmission of the data channel matches the indication of the TCI state, thereby improving transmission reliability.
  • Physical layer signaling indicating TCI status is used to flexibly indicate switching between single-beam/TRP-based transmission and multi-beam/TRP-based transmission, saving signaling overhead.
  • Figure 1 shows a flow chart of first signaling, second signaling and first signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a schematic diagram in which at least one TCI state in the first TCI state group is applied to the first signal according to an embodiment of the present application
  • Figure 7 shows a schematic diagram in which at least one TCI state in the first TCI state group is applied to the first signal according to an embodiment of the present application
  • Figure 8 shows a schematic diagram in which the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the time domain resources occupied by the first signal according to an embodiment of the present application;
  • Figure 9 shows a schematic diagram in which the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the time domain resources occupied by the first signal according to an embodiment of the present application;
  • Figure 10 shows the number of TCI states included in the first TCI state group according to an embodiment of the present application.
  • the format of the second signaling and the first symbol group are jointly used to determine the time domain resources occupied by the first signal.
  • FIG. 11 illustrates the first TCI status group when each condition in the first set of conditions is satisfied according to an embodiment of the present application.
  • Figure 12 shows a schematic diagram of a first condition set including a first condition according to an embodiment of the present application
  • Figure 13 shows a schematic diagram of a first condition set including a first condition according to an embodiment of the present application
  • Figure 14 shows a schematic diagram of a first condition set including a first condition according to an embodiment of the present application
  • Figure 15 shows a schematic diagram of a first condition set including a first condition according to an embodiment of the present application
  • Figure 16 shows a schematic diagram of a first set of conditions including a second condition according to an embodiment of the present application
  • Figure 17 shows that when the number of TCI states included in the first TCI state group is equal to 2, the format of the second signaling is used to determine only one TCI state in the first TCI state group according to an embodiment of the present application.
  • Figure 18 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Figure 19 shows a structural block diagram of a processing device used in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signaling, the second signaling and the first signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the order of the steps in the box does not imply a specific temporal relationship between the steps.
  • the first node in this application receives the first signaling and the second signaling in step 101; and receives the first signal in step 102.
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the first signal;
  • the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the number of TCI states included in the first TCI state group and the The second signaling is jointly used to determine the time domain resources occupied by the first signal.
  • the first signaling includes physical layer signaling.
  • the first signaling includes dynamic signaling.
  • the first signaling includes layer 1 (L1) signaling.
  • the first signaling includes DCI (Downlink Control Information).
  • the first signaling is a DCI.
  • the first signaling includes DCI for downlink grant (DownLink Grant).
  • the format of the first signaling belongs to one of Format 1_0, Format 1_1 or Format 1_2.
  • the second signaling includes physical layer signaling.
  • the second signaling includes dynamic signaling.
  • the second signaling includes layer 1 (L1) signaling.
  • the second signaling includes DCI.
  • the second signaling is a DCI.
  • the second signaling includes DCI for downlink grant (DownLink Grant).
  • the format of the second signaling belongs to one of Format 1_0, Format 1_1 or Format 1_2.
  • the first signaling and the second signaling are two different DCIs respectively.
  • the format of the first signaling is different from the format of the second signaling.
  • the second signaling is later than the first signaling in the time domain.
  • the first signaling, the second signaling and the first signal belong to the same carrier (Carrier).
  • the first signaling, the second signaling and the first signal belong to the same BWP (BandWidth Part, bandwidth interval).
  • the first signaling, the second signaling and the first signal belong to the same cell.
  • the first signaling and the second signaling belong to different carriers.
  • the first signaling and the second signaling belong to different cells.
  • the first signaling and the second signaling belong to different BWPs.
  • the first signaling and the first signal belong to different carriers.
  • the first signaling and the first signal belong to different cells.
  • the first signaling and the first signal belong to different BWPs.
  • the first signaling is used to determine a target time unit, and the first signal is not earlier than the target time unit.
  • the first signaling is used to determine the target time unit, and the starting time of the first signal is not earlier than the starting time of the target time unit.
  • the target time unit is a time slot.
  • the target time unit is a sub-frame.
  • the target time unit is a symbol.
  • the target time unit is a subslot.
  • the target time unit includes a positive integer number of consecutive symbols.
  • the second signaling is not earlier than the target time unit.
  • the starting time of the second signaling is not earlier than the starting time of the target time unit.
  • the second signaling is earlier than the target time unit.
  • the starting time of the second signaling is earlier than the starting time of the target time unit.
  • the first signaling indicates the code point (codepoint) of the DCI domain Transmission configuration indication (TCI) corresponding to the first TCI status group.
  • the first signaling indicates a first TCI code point
  • the first TCI code point indicates the first TCI status group
  • the first TCI state group includes at least one TCI (Transmission Configuration Indicator) state.
  • TCI Transmission Configuration Indicator
  • the first TCI status group includes one or two TCI statuses.
  • the number of TCI states included in the first TCI state group is equal to 1 or 2.
  • the first TCI state group includes only one TCI state.
  • the first TCI status group only includes one TCI status; the first TCI code point indicates the one TCI status.
  • the first TCI state group includes two TCI states.
  • the first TCI status group includes two TCI statuses; the first TCI code point indicates the two TCI statuses in sequence.
  • the first TCI state group includes only one TCI state, and the one TCI state is applied to the first signal.
  • the first TCI state group includes two TCI states, and at least one TCI state among the two TCI states is applied to the first signal.
  • both TCI states are applied to the first signal.
  • only one of the two TCI states is applied to the first signal.
  • the first TCI state group includes two TCI states, and both TCI states are applied to the first signal.
  • the first signal includes a first sub-signal and a second sub-signal
  • the two TCI states are applied to the first sub-signal and the second sub-signal respectively.
  • the first signal includes a first sub-signal and a second sub-signal, and the two TCI states are applied to the first sub-signal and the second sub-signal respectively;
  • the first sub-signal and the second sub-signal are orthogonal to each other in the time domain.
  • each TCI state in the first TCI state group is applied to the first signal.
  • At least one TCI state in the first TCI state group is applied to the first signal.
  • At least one TCI state in the first TCI state group is applied to the first signal.
  • the first signaling indicates the TCI status of the first signal.
  • At least one TCI state indicated by the first signaling is applied to the first signal.
  • the first signaling indicates only one TCI state, and the only TCI state is applied to the first signal.
  • the first signaling indicates two TCI states, and both TCI states are applied to the first signal.
  • the first signaling indicates two TCI states, and only one of the two TCI states is applied to the first signal.
  • a default one of the two TCI states is applied to the first signal.
  • the two TCI states are arranged in sequence; the first TCI state among the two TCI states is applied to the first signal.
  • the first TCI code point indicates the two TCI states in sequence; the first TCI state among the two TCI states is applied to the first signal.
  • the TCI state whose corresponding TCI-StateId is smaller among the two TCI states is applied to the first signal.
  • At least one TCI state in the first TCI state group is applied to the second signaling.
  • the first signaling indicates the TCI status of the second signaling.
  • At least one TCI status indicated by the first signaling is applied to the second signaling.
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal carries a TB (Transport Block).
  • the first signal carries a CBG (Code Block Group).
  • the first signal carries at least one TB.
  • the first signal carries at least one CBG.
  • the second signaling indicates the frequency domain resource, MCS, HARQ process number, RV and NDI of the first signal.
  • the second signaling is used to schedule the first signal.
  • the second signaling is used to schedule a PDSCH (Physical Downlink Shared Channel) carrying the first signal.
  • PDSCH Physical Downlink Shared Channel
  • the meaning of the sentence that the number of TCI states included in the first TCI state group and the second signaling are jointly used to determine the time domain resources occupied by the first signal includes: The number of TCI states included in a TCI state group and the second signaling are jointly used to determine the number of PDSCH transmission opportunities corresponding to the first signal.
  • the first signal corresponds to one PDSCH transmission opportunity or two PDSCH transmission opportunities.
  • the format of the second signaling is used to determine the time domain resource occupied by the first signal.
  • the number of TCI states included in the first TCI state group and the format of the second signaling are jointly used to determine the time domain resources occupied by the first signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System). Grouping System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that communicates with the UE 201 on a side link, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnection with other access networks is possible, but these entities/interfaces are not shown for simplicity.
  • 5GS/EPS200 provides packet switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks providing circuit switched services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • the gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communications devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically MME/AMF/SMF211 provides bearer and connection management.
  • Internet Protocol Internet Protocol
  • S-GW/UPF212 All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet services 230 include Internet protocol services corresponding to operators, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the wireless link between the UE201 and the gNB203 includes a cellular network link.
  • the sender of the first signaling and the second signaling includes the gNB203.
  • the recipients of the first signaling and the second signaling include the UE201.
  • the sender of the first signal includes the gNB203.
  • the recipient of the first signal includes the UE201.
  • the UE201 supports unified TCI framework.
  • the UE 201 supports a unified TCI framework that indicates multiple downlink and uplink TCI states.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations. control
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using them between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the second signaling is generated in the PHY301 or the PHY351.
  • the second signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first signal is generated from the PHY301 or the PHY351.
  • the higher layer in this application refers to the layer above the physical layer.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and control of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • Transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 with the second Communication device 450 is the destination of any parallel streams.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media. In the DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which undergo analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then are provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communications device 450 .
  • Upper layer packets from controller/processor 475 may be provided to the core network.
  • Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 receives at least the first signaling and the second signaling; and receives the first signal.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving the first signaling and the second signaling; and receiving the first signal.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 sends at least the first signaling and the second signaling; and sends the first signal.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending the the first signaling and the second signaling; and sending the first signal.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling and the second signaling;
  • At least one of the controller 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first signaling and the second signaling.
  • Embodiment 5 illustrates a flow chart of transmission according to an embodiment of the present application; as shown in Figure 5.
  • the second node U1 and the first node U2 are communication nodes transmitting through the air interface.
  • the steps in block F51 and block F52 are respectively optional.
  • the first signaling is sent in step S511; the third signal is sent in step S5101; the second signal is received in step S5102; the second signaling is sent in step S512; and the third signal is sent in step S513.
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the The first signal; the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the TCI status included in the first TCI status group
  • the quantity and the second signaling are jointly used by the first node U2 to determine the time domain resource occupied by the first signal.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the relay node device and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the second node U1 is the serving cell maintenance base station of the first node U2.
  • the first signaling is transmitted in a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the first signaling is transmitted in PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the second signaling is transmitted in a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling is transmitted in PDCCH.
  • the first signaling and the second signaling are transmitted in two different PDCCHs respectively.
  • the first signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the first signal is transmitted in PDSCH.
  • the steps in block F52 in Figure 5 exist.
  • the above-mentioned method used in the first node for wireless communication includes: sending a second signal; wherein the second signal includes a target for the first node.
  • a signaling HARQ-ACK Hybrid Automatic Repeat request-Acknowledgement
  • the first signaling is used to determine the time domain resources occupied by the second signal, and the time domain resources occupied by the second signal are Used to determine the target time unit; the first signal is not earlier than the target time unit.
  • the above method used in the second node for wireless communication includes: receiving the second signal.
  • the method used in the first node for wireless communication includes: receiving a third signal; sending a second signal; wherein, A third signal is transmitted on the first PDSCH, the first signaling is used to schedule the first PDSCH, the third signal carries a first bit block; the second signal includes a block of bits for the first PDSCH.
  • HARQ-ACK the first signaling indicates the time domain resources occupied by the third signal, the first signaling indicates the time domain resources occupied by the second signal and the time domain resources occupied by the third signal.
  • the time interval between time domain resources; the time domain resources occupied by the second signal are used to determine A target time unit is determined; the first signal is not earlier than the target time unit.
  • the above method used in the second node for wireless communication includes: sending the third signal; receiving the second signal.
  • the starting time of the first signal is not earlier than the starting time of the target time unit.
  • the target time unit is a first time unit after at least a first interval after the last symbol of the second signal.
  • the target time unit is the first time unit after the first interval after the last symbol of the second signal.
  • the target time unit is a first time unit that is after the last symbol of the second signal and is not less than a first interval from the last symbol of the second signal.
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes UCI (Uplink control information).
  • the first signaling is earlier than the second signal in the time domain.
  • the second signal is earlier than the second signaling in the time domain.
  • the second signal is later than the second signaling in the time domain.
  • the HARQ-ACK for the first signaling indicates whether the first signaling is received correctly.
  • the HARQ-ACK for the first signaling indicates that the first signaling is received correctly.
  • the first signaling indicates the time domain resources occupied by the second signal.
  • the first signaling indicates the time interval between the time domain resources occupied by the second signal and the time domain resources occupied by the first signaling.
  • the first signaling indicates the time interval between the time slot occupied by the second signal and the time slot occupied by the first signaling.
  • the second signal is transmitted on PUSCH (Physical Uplink Shared CHannel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared CHannel, Physical Uplink Shared Channel
  • the second signal is transmitted on PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the first signaling indicates the time interval between the time slot occupied by the second signal and the time slot occupied by the third signal.
  • the second signal indicates whether the first bit block is received correctly.
  • the second signal indicates that the first bit block is received correctly.
  • the third signal includes a baseband signal.
  • the third signal includes a wireless signal.
  • the third signal includes a radio frequency signal.
  • the first bit block includes a TB (Transport Block).
  • the first bit block includes a CBG (Code Block Group).
  • the second signal is later than the third signal in the time domain.
  • the third signal is earlier than the second signaling in the time domain.
  • the third signal is later than the second signaling in the time domain.
  • the first signaling includes scheduling information of the third signal, and the scheduling information includes time domain resources, frequency domain resources, MCS (Modulation and Coding Scheme), DMRS (DeModulation Reference Signals) port ( port), HARQ process number (process number), RV (Redundancy version) or one or more of NDI (New data indicator).
  • MCS Modulation and Coding Scheme
  • DMRS DeModulation Reference Signals
  • HARQ process number process number
  • RV Redundancy version
  • NDI New data indicator
  • the HARQ-ACK for the first PDSCH includes: HARQ-ACK for the third signal.
  • the HARQ-ACK for the first PDSCH includes: HARQ-ACK for the first bit block.
  • the HARQ-ACK for the first PDSCH indicates whether the first bit block is received correctly.
  • the HARQ-ACK for the first PDSCH indicates that the first bit block is received correctly.
  • the time unit is a time slot.
  • the time unit is a sub-frame.
  • the time unit is a symbol.
  • the time unit is a subslot.
  • the time unit includes a positive integer number of consecutive symbols.
  • the HARQ-ACK includes ACK.
  • the HARQ-ACK includes NACK (Negative ACKnowledgement, denial).
  • the HARQ-ACK includes ACK or NACK.
  • the first interval is configured by RRC signaling.
  • the first interval is fixed.
  • the first interval is a non-negative real number.
  • the first interval is a positive integer.
  • the unit of the first interval is a slot.
  • the unit of the first interval is milliseconds (ms).
  • the unit of the first interval is a symbol.
  • the first interval is B1 symbols, and B1 is a non-negative integer.
  • B1 is a positive integer.
  • the B1 is configured with higher-layer parameters.
  • the B1 is configured with RRC parameters.
  • the B1 is configured with a higher-level parameter, and the name of the higher-level parameter configured with the B1 includes "BeamAppTime”.
  • Embodiment 6 illustrates a schematic diagram in which at least one TCI state in the first TCI state group is applied to the first signal according to an embodiment of the present application; as shown in FIG. 6 .
  • the first TCI status group includes a first TCI status, the first TCI status is applied to the first signal; the first TCI status indicates a first reference signal resource.
  • the first TCI state group only includes the first TCI state.
  • the first TCI state group includes two TCI states, and the first TCI state is one of the two TCI states; among the two TCI states, only the first TCI state is applied to the first signal.
  • the first TCI state is the default one of the two TCI states.
  • the two TCI states are arranged in sequence; the first TCI state is the first TCI state among the two TCI states.
  • the first TCI code point indicates the two TCI states in sequence; the first TCI state is the first TCI state among the two TCI states.
  • the first TCI state is the smaller one of the corresponding TCI-StateId of the two TCI states.
  • the TCI state of the first signal is the first TCI state.
  • the TCI state of the first signal includes the first TCI state.
  • the DMRS of the PDSCH carrying the first signal and the first reference signal resource are quasi co-located.
  • the DMRS of the PDSCH carrying the first signal and the first reference signal resource are quasi-co-located and the corresponding QCL (Quasi Co-Location, quasi-co-location) type includes TypeD.
  • the DMRS of the first signal and the first reference signal resource are quasi-co-located.
  • the DMRS of the first signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes TypeD.
  • the antenna port for transmitting the first signal and the first reference signal resource are quasi-co-located.
  • the antenna port that sends the first signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes TypeD.
  • the first node is able to infer the large-scale characteristics of the channel experienced by the DMRS of the PDSCH carrying the first signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource. characteristic.
  • the first node can infer the large-scale characteristics of the channel experienced by the DMRS of the first signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource.
  • the first node can infer the large-scale characteristics of the channel experienced by the first signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource.
  • the first signal includes a first sub-signal
  • the TCI state of the first sub-signal is the first TCI state
  • the first signal includes a first sub-signal
  • the DMRS of the PDSCH carrying the first sub-signal and the first reference signal resource are quasi co-located.
  • the first signal includes a first sub-signal
  • the DMRS of the PDSCH carrying the first sub-signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes TypeD.
  • the first signal includes a first sub-signal
  • the DMRS of the first sub-signal and the first reference signal resource are quasi co-located.
  • the first signal includes a first sub-signal
  • the DMRS of the first sub-signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes TypeD.
  • the first signal includes a first sub-signal
  • the antenna port sending the first sub-signal and the first reference signal resource are quasi-co-located.
  • the first signal includes a first sub-signal
  • the antenna port sending the first sub-signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes TypeD.
  • the first signal includes a first sub-signal
  • the first node can infer from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource that the first node carries the first sub-signal.
  • the sub-signal PDSCH DMRS experiences the large-scale characteristics of the channel.
  • the first signal includes a first sub-signal
  • the first node can infer the first sub-signal from large-scale characteristics of a channel experienced by a reference signal transmitted in the first reference signal resource.
  • DMRS signals experience the large-scale characteristics of the channel.
  • the first signal includes a first sub-signal
  • the first node can infer the first sub-signal from large-scale characteristics of a channel experienced by a reference signal transmitted in the first reference signal resource. Large-scale properties of the channel through which the signal travels.
  • the large-scale characteristics include delay spread, Doppler spread, Doppler shift, average delay or spatial reception parameters.
  • Rx parameter one or more.
  • the first TCI status indicates the QCL type corresponding to the first reference signal resource.
  • the first TCI status indicates that the QCL type corresponding to the first reference signal resource includes TypeD.
  • the first reference signal resource includes CSI-RS (Channel State Information-Reference Signal, Channel State Information Reference Signal) resource (resource).
  • CSI-RS Channel State Information-Reference Signal, Channel State Information Reference Signal
  • the first reference signal resource includes SS/PBCH block (Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block) resource.
  • SS/PBCH block Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block
  • quasi-co-location with a reference signal resource means: quasi-co-location with a reference signal transmitted in the one reference signal resource.
  • quasi-co-location with a reference signal resource means: quasi-co-location with a reference signal port of the reference signal resource.
  • quasi-co-location with a reference signal resource means: quasi-co-location with an antenna port of a reference signal resource.
  • Embodiment 7 illustrates that at least one TCI state in the first TCI state group is applied to the first signal according to an embodiment of the present application Schematic diagram; as shown in Figure 7.
  • the first TCI state group includes a first TCI state and a second TCI state, and both the first TCI state and the second TCI state are applied to the first signal;
  • a signal includes a first sub-signal and a second sub-signal, the first TCI state is applied to the first sub-signal, and the second TCI state is applied to the second sub-signal;
  • the first TCI The status indicates the first reference signal resource, and the second TCI status indicates the second reference signal resource.
  • the TCI state of the first signal includes the first TCI state and the second TCI state.
  • the TCI state of the first sub-signal includes the first TCI state
  • the TCI state of the second sub-signal includes the second TCI state
  • the TCI state of the first signal is the first TCI state and the second TCI state.
  • the TCI state of the first sub-signal is the first TCI state
  • the TCI state of the second sub-signal is the second TCI state
  • the DMRS of the PDSCH carrying the first sub-signal and the first reference signal resource are quasi co-located; the DMRS of the PDSCH carrying the second sub-signal and the second reference signal resource are quasi co-located.
  • Reference signal resources are quasi-co-located.
  • the DMRS of the PDSCH carrying the first sub-signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes Type D; the DMRS of the PDSCH carrying the second sub-signal and the first reference signal resource are quasi-colocated.
  • the two reference signal resources are quasi-co-located and the corresponding QCL types include TypeD.
  • the DMRS of the first sub-signal and the first reference signal resource are quasi co-located; the DMRS of the second sub-signal and the second reference signal resource are quasi co-located. .
  • the DMRS of the first sub-signal and the first reference signal resource are quasi-colocated and the corresponding QCL type includes Type D; the DMRS of the second sub-signal and the second reference signal resource are quasi-colocated. address and the corresponding QCL type includes TypeD.
  • the antenna port that sends the first sub-signal and the first reference signal resource are quasi-co-located; the antenna port that sends the second sub-signal and the second reference signal resource are quasi-co-located.
  • the antenna port that sends the first sub-signal and the first reference signal resource are quasi-co-located and the corresponding QCL type includes Type D; the antenna port that sends the second sub-signal and the second reference Signal resources are quasi-colocated and the corresponding QCL types include TypeD.
  • the first node can infer the large-scale characteristics of the channel experienced by the DMRS of the PDSCH carrying the first sub-signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource. Scale characteristics; the first node can infer the large-scale characteristics of the channel experienced by the DMRS of the PDSCH carrying the second sub-signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the second reference signal resource .
  • the first node can infer the large-scale characteristics of the channel experienced by the DMRS of the first sub-signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource;
  • the first node can infer the large-scale characteristics of the channel experienced by the DMRS of the second sub-signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the second reference signal resource.
  • the first node can infer the large-scale characteristics of the channel experienced by the first sub-signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the first reference signal resource; said The first node is able to infer the large-scale characteristics of the channel experienced by the second sub-signal from the large-scale characteristics of the channel experienced by the reference signal transmitted in the second reference signal resource.
  • the large-scale characteristics include one or more of delay spread, Doppler spread, Doppler shift, average delay or spatial reception parameters.
  • the first TCI state indicates the QCL type corresponding to the first reference signal resource
  • the second TCI state indicates the QCL type corresponding to the second reference signal resource
  • the first TCI state indicates that the QCL type corresponding to the first reference signal resource includes TypeD; the second TCI state indicates that the QCL type corresponding to the second reference signal resource includes TypeD.
  • the first reference signal resources include CSI-RS resources.
  • the first reference signal resources include SS/PBCH block resources.
  • the second reference signal resources include CSI-RS resources.
  • the second reference signal resources include SS/PBCH block resources.
  • the first reference signal resource and the second reference signal resource are not quasi-co-located.
  • the first reference signal resource and the second reference signal resource are not quasi-co-located corresponding to QCL-TypeD.
  • the first sub-signal and the second sub-signal are transmitted in two different PDSCH transmission opportunities respectively.
  • the first sub-signal and the second sub-signal are orthogonal to each other in the time domain.
  • the first sub-signal and the second sub-signal carry the same TB.
  • the first sub-signal and the second sub-signal each include a repeated transmission of the same TB.
  • the first sub-signal and the second sub-signal correspond to the same MCS.
  • the first sub-signal and the second sub-signal correspond to the same HARQ process number.
  • the first sub-signal and the second sub-signal correspond to the same NDI.
  • the first sub-signal and the second sub-signal correspond to the same RV.
  • the first sub-signal and the second sub-signal correspond to different RVs.
  • quasi-co-location with a reference signal resource means: quasi-co-location with a reference signal transmitted in the one reference signal resource.
  • quasi-co-location with a reference signal resource means: quasi-co-location with a reference signal port of the reference signal resource.
  • quasi-co-location with a reference signal resource means: quasi-co-location with an antenna port of a reference signal resource.
  • Embodiment 8 illustrates a schematic diagram in which the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the time domain resources occupied by the first signal according to an embodiment of the present application; as shown in Figure 8 Show.
  • the number of TCI states included in the first TCI state group and the first symbol group are jointly used by the first node to determine the time domain resource occupied by the first signal.
  • the first symbol group includes at least one symbol.
  • the first symbol group includes only one symbol.
  • the first symbol group includes multiple symbols.
  • the first symbol group includes a plurality of consecutive symbols.
  • all symbols in the first symbol group belong to the same time slot.
  • the second signaling includes a first field, and the first field in the second signaling indicates the first symbol group; and the first field includes at least one DCI field.
  • the first domain includes a DCI domain Time domain resource assignment.
  • the first domain is a DCI domain Time domain resource assignment.
  • all symbols in the first symbol group belong to the first time slot, and the first field in the second signaling indicates the first time slot.
  • all symbols in the first symbol group belong to the first time slot
  • the first field in the second signaling indicates the starting point in the first symbol group. The position of the symbol in the first time slot.
  • the first field in the second signaling indicates the number of symbols included in the first symbol group.
  • the first field in the second signaling indicates the number of consecutive symbols included in the first symbol group.
  • the symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the time domain resource occupied by the first signal includes the first symbol group.
  • the time domain resources occupied by the first signal include part or all of the symbols in the first symbol group.
  • the time domain resources occupied by the first signal include part or all of the symbols in the first symbol group ;
  • the time domain resource occupied by the first signal includes part or all of the symbols in the first symbol group and the second symbol Some or all symbols in the group; the first symbol group and the second symbol group are orthogonal to each other in the time domain, and the number of symbols included in the second symbol group is equal to the number of symbols included in the first symbol group. quantity.
  • Embodiment 9 illustrates a schematic diagram in which the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the time domain resources occupied by the first signal according to an embodiment of the present application; as shown in Figure 9 Show.
  • the time domain resource occupied by the first signal includes the first symbol group;
  • the time domain resources occupied by the first signal include the first symbol group and the second symbol group; the first symbol group and the The second symbol group is orthogonal to each other in the time domain, and the number of symbols included in the second symbol group is equal to the number of symbols included in the first symbol group.
  • the time domain resource occupied by the first signal is the first symbol group; when the first When the number of TCI states included in a TCI state group is equal to 2, the time domain resources occupied by the first signal are the first symbol group and the second symbol group.
  • the time domain resource occupied by the first signal does not include the second symbol group.
  • the number of TCI states included in the first TCI state group is equal to 2
  • one TCI state included in the first TCI state group is applied to the first symbol group
  • the first TCI state group includes One TCI state group includes another TCI state that is applied to the second symbol group.
  • the second symbol group includes at least one symbol.
  • the first symbol group includes only one symbol
  • the second symbol group includes only one symbol
  • the first symbol group includes multiple symbols
  • the second symbol group includes multiple symbols
  • the first symbol group includes a plurality of consecutive symbols
  • the second symbol group includes a plurality of consecutive symbols
  • all symbols in the second symbol group belong to the same time slot.
  • the first symbol group and the second symbol group belong to the same time slot.
  • the first symbol of the second symbol group is later than the last symbol of the first symbol group in the time domain.
  • both the first symbol group and the second symbol group belong to the first time slot.
  • the first symbol of the second symbol group starts after B2 symbols after the last symbol of the first symbol group, and the B2 is a non-negative integer; the B2 is equal to 0, or,
  • the B2 is configured by higher layer parameters.
  • the name of the higher-level parameter configured in B2 includes "StartingSymbolOffsetK".
  • the first symbol of the second symbol group and the last symbol of the first symbol group are separated by the B2 symbols.
  • the first signal when the number of TCI states included in the first TCI state group is equal to 1, the first signal only corresponds to one PDSCH transmission opportunity, and one TCI state included in the first TCI state group is Applied to the one PDSCH transmission opportunity; when the number of TCI states included in the first TCI state group is equal to 2, the first signal corresponds to two PDSCH transmission opportunities, and the first TCI state group includes Two TCI states are applied to the two PDSCH transmission opportunities respectively.
  • the one PDSCH transmission opportunity occupies the first symbol group; the two PDSCH transmission opportunities occupy the first symbol group and the second symbol group respectively.
  • the two PDSCH transmission opportunities belong to the same time slot.
  • the two PDSCH transmission opportunities both belong to the first time slot.
  • the time domain resources occupied by the two PDSCH transmission opportunities are orthogonal to each other.
  • the two PDSCH transmission opportunities occupy an equal number of symbols.
  • the first symbol of the second PDSCH transmission opportunity among the two PDSCH transmission opportunities starts from the last one of the first PDSCH transmission opportunity among the two PDSCH transmission opportunities.
  • the B2 is a non-negative integer; the B2 is equal to 0, or the B2 is configured by a higher layer parameter.
  • the name of the higher-level parameter configured in B2 includes "StartingSymbolOffsetK".
  • the first symbol of the second PDSCH transmission opportunity among the two PDSCH transmission opportunities and the last symbol of the first PDSCH transmission opportunity among the two PDSCH transmission opportunities are separated by the B2 symbols.
  • Embodiment 10 illustrates the number of TCI states included in the first TCI state group according to an embodiment of the present application.
  • the format of the second signaling and the first symbol group are jointly used to determine the time domain resources occupied by the first signal. Schematic diagram; as shown in Figure 10.
  • the number of TCI states included in the first TCI state group, the format of the second signaling and the first symbol group are jointly used by the first node to determine the first The time domain resources occupied by the signal.
  • the time domain resource occupied by the first signal is the first symbol group; when the first When the number of TCI states included in a TCI state group is equal to 2 and the format of the second signaling belongs to the second format set, the time domain resource occupied by the first signal is the first symbol group ; When the number of TCI states included in the first TCI state group is equal to 2 and the format of the second signaling belongs to the first format set, the time domain resource occupied by the first signal is the first symbol group and the second symbol group.
  • the time domain resource occupied by the first signal when the number of TCI states included in the first TCI state group is equal to 1, the time domain resource occupied by the first signal includes the first symbol group; when the first When the number of TCI states included in a TCI state group is equal to 2 and the format of the second signaling belongs to the second format set, the time domain resource occupied by the first signal includes the first symbol group ; When the number of TCI states included in the first TCI state group is equal to 2 and the format of the second signaling belongs to the first format set, the time domain resources occupied by the first signal include the first symbol group and the second symbol group.
  • the time domain resources occupied by the first signal do not include the second symbol group ;
  • the number of TCI states included in the first TCI state group is equal to 2 and the format of the second signaling belongs to the second format set, the time domain occupied by the first signal The resource does not include the second symbol group.
  • the first symbol group and the second symbol group are orthogonal to each other in the time domain, and the number of symbols included in the second symbol group is equal to the number of symbols included in the first symbol group;
  • the first symbol group and the second symbol group belong to the same time slot; the first symbol of the second symbol group starts after B2 symbols after the last symbol of the first symbol group, and the B2 is a non-negative integer; the B2 is equal to 0, or the B2 is configurable.
  • the first symbol of the second symbol group and the last symbol of the first symbol group are separated by the B2 symbols.
  • the format of the second signaling belongs to one of Format 1_0, Format 1_1 or Format 1_2.
  • the second format set and the first format set respectively include at least one DCI format; there is no DCI format that belongs to both the first format set and the second format set.
  • the first format set includes Format 1_1 and Format 1_2; the second format set includes Format 1_0.
  • the format of the second signaling includes: whether the second signaling includes a first DCI field; and the first DCI field indicates at least one TCI status.
  • each format in the first format set includes a first DCI domain, and each format in the second format set does not include the first DCI domain; the first DCI domain Indicates at least one TCI status.
  • the first DCI domain is the DCI domain "Transmission configuration indication”.
  • Embodiment 11 illustrates that according to an embodiment of the present application, when each condition in the first set of conditions is met, the number of TCI states included in the first TCI state group and the second signaling are jointly used to determine the first A schematic diagram of the time domain resources occupied by a signal; as shown in Figure 11.
  • the number of TCI states included in the first TCI state group and the second signaling are jointly used by the first
  • the node is used to determine the time domain resource occupied by the first signal.
  • whether each condition in the first condition set is satisfied is used by the first node to determine whether the number of TCI states included in the first TCI state group is satisfied by the first TCI state group.
  • a node is used to determine the time domain resource occupied by the first signal.
  • the number of TCI states included in the first TCI state group and the second signaling are jointly used. Determining the time domain resource occupied by the first signal.
  • the number of TCI states included in the first TCI state group is not used to determine the occupied area of the first signal. time domain resources.
  • the time domain resource occupied by the first signal has nothing to do with the number of TCI states included in the first TCI state group. .
  • the number of TCI states included in the first TCI state group and only the second one in the second signaling Signaling is used to determine the time domain resources occupied by the first signal.
  • the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the The time domain resources occupied by the first signal.
  • the number of TCI states included in the first TCI state group and the first symbol group are jointly used. Determining the time domain resource occupied by the first signal.
  • the number of TCI states included in the first TCI state group, the format of the second signaling and the third A group of symbols is collectively used to determine the time domain resource occupied by the first signal.
  • the number of TCI states included in the first TCI state group, the format of the second signaling and The first symbol group is jointly used to determine the time domain resource occupied by the first signal.
  • the number of TCI states included in the first TCI state group and only the first symbol in the first symbol group Groups of symbols are used to determine the time domain resources occupied by the first signal.
  • the time domain resource occupied by the first signal is the first symbol group.
  • the time domain resource occupied by the first signal includes the first symbol group.
  • the time domain resource occupied by the first signal belongs to the first symbol group.
  • the first condition set includes a third condition
  • the third condition includes: the first TCI status group is used to determine the QCL relationship of at least one CORESET (COntrol REsource SET, control resource set).
  • the first set of conditions includes a third condition
  • the third condition includes: the first TCI status group indicated by the first signaling is applied to at least a first type of channel and a second type of channel.
  • channel the first type of channel includes PDCCH
  • the second type of channel includes PDSCH.
  • the third condition is satisfied when the first TCI status group indicated by the first signaling is applied to at least the first type of channel and the second type of channel.
  • the third condition is a condition in the first set of conditions.
  • the second signaling indicates a first DMRS port group, and the first DMRS port group includes at least one DMRS port; the first set of conditions includes a fourth condition, and the fourth condition includes: All DMRS ports in the first DMRS port group belong to the same CDM group.
  • the first DMRS port group includes only one DMRS port.
  • the first DMRS port group includes multiple DMRS ports.
  • the first DMRS port group is used to send DMRS of the first signal.
  • the definition of the CDM group can be found in 3GPP TS 38.211.
  • the second signaling includes a second domain, and the second domain in the second signaling indicates the first DMRS port. group; the second domain includes the DCI domain "Antenna port(s)".
  • the fourth condition is satisfied.
  • the fourth condition is not satisfied.
  • the fourth condition is a condition in the first set of conditions.
  • the first condition set includes a fifth condition
  • the fifth condition includes: at least one TCI state in the first TCI state group is different from a previously indicated TCI state.
  • the first set of conditions includes a fifth condition
  • the fifth condition includes: any TCI state in the first TCI state group is different from a previously indicated TCI state.
  • the first condition set includes a fifth condition
  • the fifth condition includes: any TCI state in the first TCI state group is different from any previously indicated TCI state.
  • the fifth condition is satisfied when at least one TCI state in the first TCI state group is different from a previously indicated TCI state.
  • the fifth condition is satisfied when any TCI state in the first TCI state group is different from a previously indicated TCI state.
  • the fifth condition is satisfied when any TCI state in the first TCI state group is different from any previously indicated TCI state.
  • the fifth condition is not satisfied.
  • the fifth condition is a condition in the first set of conditions.
  • the first condition set only includes the first condition.
  • the first set of conditions only includes the second condition.
  • the first set of conditions only includes the third condition.
  • the first set of conditions only includes the fourth condition.
  • the first set of conditions only includes the fifth condition.
  • the first set of conditions includes the first condition and the second condition.
  • the first condition set consists of the first condition and the second condition.
  • the first condition set includes the first condition, the second condition and the fourth condition.
  • the first condition set consists of the first condition, the second condition and the fourth condition.
  • the first condition set includes the first condition, the second condition and the third condition.
  • the first condition set consists of the first condition, the second condition and the third condition.
  • the first condition set includes the first condition, the second condition and the fifth condition.
  • the first condition set consists of the first condition, the second condition and the fifth condition.
  • the first condition set includes the first condition, the second condition, the third condition and the fourth condition.
  • the first condition set consists of the first condition, the second condition, the third condition and the fourth condition.
  • the first condition set includes the first condition, the second condition, the third condition and the fifth condition.
  • the first condition set consists of the first condition, the second condition, the third condition and the fifth condition.
  • the first condition set includes the first condition, the second condition, the fourth condition and the fifth condition.
  • the first condition set consists of the first condition, the second condition, the fourth condition and the fifth condition.
  • the first condition set includes the first condition, the second condition, the third condition, the fourth condition and the fifth condition.
  • the first condition set consists of the first condition, the second condition, the third condition, the fourth condition and the fifth condition.
  • the first set of conditions includes the first condition and the third condition.
  • the first set of conditions includes the second condition and the third condition.
  • the first set of conditions includes the first condition and the fourth condition.
  • the first set of conditions includes the second condition and the fourth condition.
  • the first set of conditions includes the first condition and the fifth condition.
  • the first set of conditions includes the second condition and the fifth condition.
  • the first set of conditions includes the third condition and the fourth condition.
  • the first set of conditions includes the third condition and the fifth condition.
  • the first set of conditions includes the fourth condition and the fifth condition.
  • Embodiment 12 illustrates a schematic diagram of the first condition set including the first condition according to an embodiment of the present application; as shown in FIG. 12 .
  • the first condition includes: the first higher layer parameter is configured and the value of the first higher layer parameter belongs to the first parameter value set.
  • the first condition is a condition in the first set of conditions.
  • the first condition set consists of the first condition.
  • the first condition set includes at least one other condition except the first condition.
  • the first condition only includes that the first higher-layer parameter is configured and the value of the first higher-layer parameter belongs to the first parameter value set.
  • the first condition is satisfied when the first higher layer parameter is configured and the value of the first higher layer parameter belongs to the first parameter value set.
  • the first condition when the first higher layer parameter is not configured, the first condition is not satisfied; when the first higher layer parameter is configured and the value of the first higher layer parameter does not belong to the When the first parameter value is set, the first condition is not satisfied.
  • the first higher layer parameter is an RRC parameter.
  • the name of the first higher-level parameter includes “repetition”.
  • the name of the first higher-level parameter includes "repetitionScheme”.
  • any parameter value in the first parameter value set is a candidate value of the first higher-level parameter.
  • the first parameter value set includes only one parameter value.
  • the first parameter value set includes multiple parameter values.
  • one parameter value in the first parameter value set includes the string "tdmScheme”.
  • one parameter value in the first parameter value set includes the string "tdmSchemeA”.
  • the first parameter value set includes parameter value "tdmSchemeA”.
  • the first parameter value set only includes one parameter value, and the one parameter value includes the string "tdmScheme”.
  • the one parameter value includes the string "tdmSchemeA”.
  • the one parameter value is "tdmSchemeA”.
  • Embodiment 13 illustrates a schematic diagram of the first condition set including the first condition according to an embodiment of the present application; as shown in FIG. 13 .
  • the first condition includes: the first higher layer parameter is configured, the second higher layer parameter is configured, and the value of the first higher layer parameter belongs to the first parameter value set.
  • the first condition further includes: a second higher-layer parameter is configured.
  • the second higher layer parameter is configured and the first higher layer parameter
  • the first condition is satisfied.
  • the second higher layer parameter is configured and the value of the first higher layer parameter belongs to the first parameter value set, the The first condition is met.
  • the first condition when the first higher layer parameter is not configured, the first condition is not satisfied; when the second higher layer parameter is not configured, the first condition is not satisfied; when When the first higher-layer parameter is configured and the value of the first higher-layer parameter does not belong to the first parameter value set, the first condition is not satisfied.
  • the second higher layer parameters are RRC parameters.
  • the name of the second higher-level parameter includes "unifiedTCIstate”.
  • the name of the second higher-level parameter includes "TCIstate” and "r17".
  • the name of the second higher-level parameter includes "DLorJoint”.
  • the name of the second higher-level parameter includes "DLorJoint-TCIState".
  • the name of the second higher-level parameter includes "DLorJoint-TCIState-ToAddModList".
  • Embodiment 14 illustrates a schematic diagram of the first condition set including the first condition according to an embodiment of the present application; as shown in FIG. 14 .
  • the first condition includes: the first higher layer parameter is configured, the value of the first higher layer parameter belongs to the first parameter value set, and the second higher layer parameter or the third Higher level parameters are configured.
  • the first condition further includes: the second higher layer parameter or the third higher layer parameter is configured.
  • the second higher layer parameter or the third higher layer parameter is configured and the value of the first higher layer parameter belongs to the first parameter value When assembled, the first condition is met.
  • the second higher layer parameter or the third higher layer parameter is configured and the value of the first higher layer parameter belongs to the third higher layer parameter.
  • the first condition is satisfied.
  • the first condition when the first higher layer parameter is not configured, the first condition is not satisfied; when neither the second higher layer parameter nor the third higher layer parameter is configured, the first condition is not satisfied.
  • the first condition is not satisfied; when the first higher layer parameter is configured and the value of the first higher layer parameter does not belong to the first parameter value set, the first condition is not satisfied.
  • the name of the third higher-level parameter includes "refUnifiedTCIState".
  • the name of the third higher-level parameter includes "refUnifiedTCIStateList”.
  • the name of the second higher-level parameter includes "DLorJoint-TCIState"
  • the name of the third higher-level parameter includes "refUnifiedTCIState”.
  • the name of the second higher-level parameter includes "DLorJoint-TCIState-ToAddModList", and the name of the third higher-level parameter includes "refUnifiedTCIStateList”.
  • Embodiment 15 illustrates a schematic diagram of the first set of conditions including the first condition according to an embodiment of the present application; as shown in FIG. 15 .
  • the first condition includes: the first higher layer parameter is configured and the value of the first higher layer parameter belongs to the first parameter value set, and the second higher layer parameter is configured and The value of the second higher layer parameter belongs to a second set of parameter values.
  • the first condition further includes: a second higher-layer parameter is configured and the value of the second higher-layer parameter belongs to a second parameter value set.
  • the first higher layer parameter when the first higher layer parameter is configured and the value of the first higher layer parameter belongs to the first parameter value set, and the second higher layer parameter is configured and the second higher layer parameter When the value of the high-level parameter belongs to the second parameter value set, the first condition is satisfied.
  • the second higher layer parameter is configured and the The first condition is satisfied when the value of the second higher-level parameter belongs to the second parameter value set.
  • the first condition when the first higher layer parameter is not configured, the first condition is not satisfied; when the first higher layer parameter is configured and the value of the first higher layer parameter does not belong to When the first parameter value set is the first set of parameter values, the first condition is not satisfied; when the third When the second higher-layer parameter is not configured, the first condition is not satisfied; when the second higher-layer parameter is configured and the value of the second higher-layer parameter does not belong to the second parameter value set, the first condition is not satisfied.
  • the first condition mentioned above is not met.
  • the name of the second higher-level parameter includes "followUnifiedTCIstate”.
  • the name of the second higher-level parameter includes “follow”, “TCIstate” and “r17".
  • the name of the second higher-level parameter includes “follow”, “unified” and “TCIstate”.
  • any parameter value in the second parameter value set is a candidate value of the second higher-level parameter.
  • the second parameter value set includes only one parameter value.
  • the second set of parameter values includes multiple parameter values.
  • one parameter value in the second parameter value set includes the string "enabled”.
  • the second parameter value set includes the parameter value “enabled”.
  • the second parameter value set only includes one parameter value, and the one parameter value includes the string "enabled”.
  • Embodiment 16 illustrates a schematic diagram in which the first condition set includes the second condition according to an embodiment of the present application; as shown in FIG. 16 .
  • the second condition includes: the format of the second signaling belongs to the first format set.
  • the second condition is a condition in the first set of conditions.
  • the first condition set consists of the second condition.
  • the first condition set includes at least one other condition except the second condition.
  • the second condition only includes that the format of the second signaling belongs to the first format set.
  • the second condition is satisfied.
  • the second condition is not satisfied.
  • the format of the second signaling belongs to one of Format 1_0, Format 1_1 or Format 1_2.
  • the first format set includes Format 1_1.
  • the first format set includes Format 1_2.
  • the first format set includes Format 1_1 and Format 1_2.
  • the first format set does not include Format 1_0.
  • the first format set consists of Format 1_1 and Format 1_2.
  • the number of TCI states included in the first TCI state group and the second signaling are jointly used to determine the The time domain resources occupied by the first signal.
  • the time domain resource occupied by the first signal has nothing to do with the number of TCI states included in the first TCI state group.
  • the time domain resource occupied by the first signal is the first symbol group.
  • the time domain resources occupied by the first signal include the first symbol group.
  • the time domain resource occupied by the first signal belongs to the first symbol group.
  • the format of the second signaling includes: whether the second signaling includes a first DCI field; the first DCI field indicates at least one TCI status; each of the first format sets formats include the first DCI field.
  • the format of the second signaling includes: whether the second signaling includes a first DCI field indicating at least one TCI status; when the second signaling includes the When the first DCI domain is in the first DCI domain, the format of the second signaling belongs to the first format set; when the second signaling does not include the first DCI domain, the format of the second signaling does not belong to the first DCI domain.
  • the first set of formats includes: whether the second signaling includes a first DCI field indicating at least one TCI status; when the second signaling includes the When the first DCI domain is in the first DCI domain, the format of the second signaling belongs to the first format set; when the second signaling does not include the first DCI domain, the format of the second signaling does not belong to the first DCI domain.
  • the first DCI domain includes the DCI domain "Transmission configuration indication”.
  • the first DCI domain is the DCI domain "Transmission configuration indication”.
  • the number of TCI states included in the first TCI state group and the second signaling are jointly used to determine the The time domain resources occupied by the first signal.
  • the time domain resources occupied by the first signal and the number of TCI states included in the first TCI state group None to do.
  • the time domain resource occupied by the first signal is the first symbol group.
  • the time domain resources occupied by the first signal include the first symbol group.
  • the time domain resources occupied by the first signal belong to the first symbol group.
  • Embodiment 17 illustrates that according to an embodiment of the present application, when the number of TCI states included in the first TCI state group is equal to 2, the format of the second signaling is used to determine: only one TCI in the first TCI state group A schematic diagram of whether the state is applied to the first signal or both TCI states in the first TCI state group are applied to the first signal; as shown in Figure 17.
  • the format of the second signaling is used by the first node to determine: the first TCI state group Only one TCI state in the first TCI state group is applied to the first signal or both TCI states in the first TCI state group are applied to the first signal.
  • only one TCI state in the first TCI state group is applied to the first signal.
  • both TCI states in the first TCI state group are applied to the first signal.
  • the number of TCI states included in the first TCI state group is equal to 2; when the format of the second signaling belongs to the second format set, the number of TCI states in the first TCI state group Only one TCI state is applied to the first signal; when the format of the second signaling belongs to the first format set, both TCI states in the first TCI state group are applied to the The first signal; the second format set and the first format set each include at least one DCI format.
  • the second format set includes Format 1_0.
  • the second format set consists of Format 1_0.
  • the second format set does not include Format 1_1 and Format 1_2.
  • any DCI format in the second format set does not include the first DCI domain.
  • the first format set includes Format 1_1.
  • the first format set includes Format 1_2.
  • the first format set includes Format 1_1 and Format 1_2.
  • the first format set does not include Format 1_0.
  • the first format set consists of Format 1_1 and Format 1_2.
  • any DCI format in the first format set includes a first DCI domain.
  • the format of the second signaling includes: whether the second signaling includes a first DCI domain.
  • both TCI states in the first TCI state group are applied to the first signal.
  • the first DCI field indicates at least one TCI status.
  • the first DCI domain includes the DCI domain "Transmission configuration indication”.
  • the first DCI domain is the DCI domain "Transmission configuration indication”.
  • the first TCI state and the second TCI state are respectively two TCI states included in the first TCI state group; when only one TCI state in the first TCI state group is applied to the first TCI state, When a signal is received, the first TCI state is one of the two TCI states included in the first TCI state group that is applied to the first signal.
  • the second TCI state is not applied to the first signal.
  • the first TCI state is a default one of the two TCI states included in the first TCI state group.
  • the two TCI states included in the first TCI state group are arranged in sequence; the first TCI state is the two TCI states included in the first TCI state group.
  • the first TCI status in the list is the two TCI states included in the first TCI state group.
  • the first TCI code point indicates the two TCI states included in the first TCI state group in sequence; the first TCI state is all the TCI states included in the first TCI state group. The TCI state that ranks first among the two TCI states.
  • the first signaling indicates a first TCI code point
  • the first TCI code point indicates the two TCI states included in the first TCI state group in turn
  • the first TCI state is the first TCI state among the two TCI states included in the first TCI state group.
  • the first TCI state is the smaller one of the corresponding TCI-StateId among the two TCI states included in the first TCI state group.
  • the first signal when both TCI states in the first TCI state group are applied to the first signal, the first signal includes a first sub-signal and a second sub-signal, and the first TCI state is applied to the first sub-signal, and the second TCI state is applied to the second sub-signal; the first TCI state and the second TCI state are respectively the Two TCI states.
  • the first sub-signal and the second sub-signal are orthogonal to each other in the time domain.
  • Embodiment 18 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 18 .
  • the processing device 1800 in the first node device includes a first processor 1801.
  • the first processor 1801 receives the first signaling, the second signaling and the first signal.
  • the first signaling indicates a first TCI status group, the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the The first signal; the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the TCI status included in the first TCI status group
  • the quantity and the second signaling are jointly used to determine the time domain resources occupied by the first signal.
  • the second signaling indicates a first symbol group, and the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the first signal occupation of the time domain resources.
  • the number of TCI states included in the first TCI state group and the second signaling are jointly used to determine the third The time domain resource occupied by a signal; the first condition set includes at least one condition.
  • whether each condition in the first set of conditions is satisfied is used to determine whether the number of TCI states included in the first TCI state group is used to determine whether the first signal occupies of the time domain resources.
  • the first condition set includes a first condition, and the first condition includes: a first higher-layer parameter is configured and the value of the first higher-layer parameter belongs to the first parameter value set; the first higher-layer parameter is configured; A parameter value set includes at least one parameter value.
  • the first condition set includes a second condition
  • the second condition includes: the format of the second signaling belongs to the first format set.
  • the format of the second signaling is used to determine only one TCI state in the first TCI state group. is applied to the first signal or both TCI states in the first TCI state group are applied to the first signal.
  • the first processor 1801 also sends a second signal; wherein the second signal includes HARQ-ACK for the first signaling, and the first signaling is used to determine the The time domain resources occupied by the second signal are used to determine the target time unit; the first signal is not earlier than the target time unit.
  • the first processor 1801 also receives a third signal; wherein the third signal is transmitted on the first PDSCH, the first signaling is used to schedule the first PDSCH, and the The third signal carries the first bit block; the second signal includes HARQ-ACK for the first PDSCH; the first signaling indicates the time domain resources occupied by the third signal, and the first signaling Let indicate the time interval between the time domain resource occupied by the second signal and the time domain resource occupied by the third signal.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first signaling includes DCI
  • the second signaling includes DCI
  • the first signaling and the second signaling are divided into Each includes two different DCIs
  • the first signal carries at least one TB or at least one CBG
  • the first signaling indicates the TCI status of the first signal
  • the first signaling is used to determine the target time unit, the target time unit is a time slot
  • the first signal is not earlier than the target time unit.
  • the first signaling is used to determine the target time unit, and the target time unit is a time slot; the starting time of the second signaling is not earlier than the start of the target time unit. time; the first signaling indicates the TCI status of the second signaling; at least one TCI status in the first TCI status group is applied to the second signaling.
  • the first processor 1801 includes ⁇ antenna 452, receiver/transmitter 454, receiving processor 456, transmitting processor 468, multi-antenna receiving processor 458, multi-antenna transmitting processing in Embodiment 4 At least one of the processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ .
  • Embodiment 19 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 19 .
  • the processing device 1900 in the second node device includes a second processor 1901.
  • the second processor 1901 sends the first signaling, the second signaling and the first signal
  • the first signaling indicates a first TCI status group, and the first TCI status group includes at least one TCI status; at least one TCI status in the first TCI status group is applied to the The first signal; the second signaling indicates one or more of the frequency domain resources of the first signal, MCS, HARQ process number, RV or NDI; the TCI status included in the first TCI status group
  • the quantity and the second signaling are jointly used to determine the time domain resources occupied by the first signal.
  • the second signaling indicates a first symbol group, and the number of TCI states included in the first TCI state group and the first symbol group are jointly used to determine the first signal occupation of the time domain resources.
  • the number of TCI states included in the first TCI state group and the second signaling are jointly used to determine the third The time domain resource occupied by a signal; the first condition set includes at least one condition.
  • whether each condition in the first set of conditions is satisfied is used to determine whether the number of TCI states included in the first TCI state group is used to determine whether the first signal occupies of the time domain resources.
  • the first condition set includes a first condition, and the first condition includes: a first higher-layer parameter is configured and the value of the first higher-layer parameter belongs to the first parameter value set; the first higher-layer parameter is configured; A parameter value set includes at least one parameter value.
  • the first condition set includes a second condition
  • the second condition includes: the format of the second signaling belongs to the first format set.
  • the format of the second signaling is used to determine only one TCI state in the first TCI state group. is applied to the first signal or both TCI states in the first TCI state group are applied to the first signal.
  • the second processor 1901 also receives a second signal; wherein the second signal includes HARQ-ACK for the first signaling, and the first signaling is used to determine the The time domain resources occupied by the second signal are used to determine the target time unit; the first signal is not earlier than the target time unit.
  • the second processor 1901 also sends a third signal; wherein the third signal is transmitted on the first PDSCH, the first signaling is used to schedule the first PDSCH, and the The third signal carries the first bit block; the second signal includes HARQ-ACK for the first PDSCH; the first signaling indicates the time domain resources occupied by the third signal, and the first signaling Let indicate the time interval between the time domain resource occupied by the second signal and the time domain resource occupied by the third signal.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the first signaling includes DCI
  • the second signaling includes DCI
  • the first signaling and the second signaling respectively include two different DCIs
  • the first signal carries At least one TB or at least one CBG
  • the first signaling indicates the TCI status of the first signal
  • the first signaling is used to determine a target time unit, and the target time unit is a time slot
  • the The first signal is no earlier than the target time unit.
  • the first signaling is used to determine the target time unit, and the target time unit is a time slot; the starting time of the second signaling is not earlier than the start of the target time unit. time; the first signaling indicates the TCI status of the second signaling; at least one TCI status in the first TCI status group is applied to the second signaling.
  • the second processor 1901 includes the ⁇ antenna 420, transmitter/receiver 418, transmission processor 416, reception processor 470, multi-antenna transmission processor 471, multi-antenna reception processing in Embodiment 4. At least one of the processor 472, the controller/processor 475, and the memory 476 ⁇ .
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, vehicles, vehicles, RSU, wireless sensor, network card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle Communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, TRP (Transmitter Receiver Point, sending and receiving node), GNSS, relay Satellites, satellite base stations, air base stations, RSU (Road Side Unit), drones, test equipment, such as wireless communication equipment such as transceivers or signaling testers that simulate some functions of the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,第二信令和第一信号。所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。上述方法使得数据信道的传输和TCI状态的指示相匹配,提高了传输可靠性,并节省了信令开销。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。在NR R(release)16和R17中,基于多TRP的传输被引入来增强数据和控制信道的传输质量。
多天线波束赋型形成的波束一般比较窄,通信双方的波束需要对准才能进行有效的通信。从NR R15开始,波束管理机制被采用,用于通信双方之间的波束选择、更新和指示,来实现多天线带来的性能增益。考虑到在很多情况下,控制信道和数据信道可以采用相同的波束,并且上下行信道之间在很多应用场景下也存在信道互易性,在NR R17中采用物理层信令同时更新控制信道和数据信道的波束的技术(unified TCI framework)已经被采纳,在存在上下行信道互易性的场景下,可以用物理层信令同时更新上下行的波束。
发明内容
在NR R18及其后续版本中,基于多TRP/panel的传输方案和unified TCI framework将会被继续演进。在3GPP RAN(Radio Access Network,无线接入网)#94e次会议中已经同意将R17的unified TCI framework扩展来支持指示多个下行和上行TCI(Transmission configuration Indicator)状态(state)(包括但不限于multi-TRP场景)作为R18的一个研究方向。申请人通过研究发现,当unified TCI framework支持指示多个下行和上行TCI状态时,对数据信道的传输有些什么影响,是需要解决的一个问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用蜂窝网和unified TCI framework作为例子,本申请也适用于其他场景比如副链路(Sidelink)传输和R15/R16的TCI指示framework,并取得类似在蜂窝网和unified TCI framework中的技术效果。此外,不同场景(包括但不限于蜂窝网,副链路,unified TCI framework,和R15/R16的TCI指示framework)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令和第二信令;
接收第一信号;
其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
作为一个实施例,本申请要解决的问题包括:当一个物理层信令能指示单个或多个TCI状态时,对数据信道的传输有些什么影响。上述方法中,所述第一信令指示的所述第一TCI状态组中包括的TCI状态的 数量被用于确定所述第一信号占用的时域资源,解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一信令是一个物理层信令,所述第一信令指示的所述第一TCI状态组包括一个或两个TCI状态;所述第一信令指示的至少一个TCI状态被应用于所述第一信号,所述第一TCI状态组包括一个还是两个TCI状态被用于确定所述第一信号占用的时域资源。
作为一个实施例,上述方法的好处包括:根据所述第一信令指示的TCI状态的数量来调整所述第一信号占用的时域资源,使得所述第一信令的传输和所述第一信令的指示相匹配,提高了所述第一信号的传输可靠性。
作为一个实施例,上述方法的好处包括:支持在基于单波束/TRP的传输和基于多波束/TRP的传输之间的动态切换。
作为一个实施例,上述方法的好处包括:利用指示TCI状态的物理层信令来灵活指示基于单波束/TRP的传输和基于多波束/TRP的传输之间的切换,节省了信令开销。
根据本申请的一个方面,其特征在于,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
根据本申请的一个方面,其特征在于,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
根据本申请的一个方面,其特征在于,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
根据本申请的一个方面,其特征在于,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
根据本申请的一个方面,其特征在于,所述第一节点包括一个用户设备。
根据本申请的一个方面,其特征在于,所述第一节点包括一个中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令和第二信令;
发送第一信号;
其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
根据本申请的一个方面,其特征在于,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
根据本申请的一个方面,其特征在于,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
根据本申请的一个方面,其特征在于,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
根据本申请的一个方面,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:所述第 二信令的格式属于第一格式集合。
根据本申请的一个方面,其特征在于,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理器,接收第一信令,第二信令和第一信号;
其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二处理器,发送第一信令,第二信令和第一信号;
其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
作为一个实施例,和传统方案相比,本申请具备如下优势:
根据物理层信令指示的TCI状态的数量来调整数据信道占用的时域资源,使得数据信道的传输和TCI状态的指示相匹配,提高了传输可靠性。
支持在基于单波束/TRP的传输和基于多波束/TRP的传输之间的动态切换。
利用指示TCI状态的物理层信令来灵活指示基于单波束/TRP的传输和基于多波束/TRP的传输之间的切换,节省了信令开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第二信令和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一TCI状态组中的至少一个TCI状态被应用于第一信号的示意图;
图7示出了根据本申请的一个实施例的第一TCI状态组中的至少一个TCI状态被应用于第一信号的示意图;
图8示出了根据本申请的一个实施例的第一TCI状态组包括的TCI状态的数量和第一符号组共同被用于确定第一信号占用的时域资源的示意图;
图9示出了根据本申请的一个实施例的第一TCI状态组包括的TCI状态的数量和第一符号组共同被用于确定第一信号占用的时域资源的示意图;
图10示出了根据本申请的一个实施例的第一TCI状态组包括的TCI状态的数量,第二信令的格式和第一符号组共同被用于确定第一信号占用的时域资源的示意图;
图11示出了根据本申请的一个实施例的当第一条件集合中的每个条件都被满足时,第一TCI状态组 包括的TCI状态的数量和第二信令共同被用于确定第一信号占用的时域资源的示意图;
图12示出了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;
图13示出了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;
图14示出了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;
图15示出了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;
图16示出了根据本申请的一个实施例的第一条件集合包括第二条件的示意图;
图17示出了根据本申请的一个实施例的当第一TCI状态组包括的TCI状态的数量等于2时,第二信令的格式被用于确定第一TCI状态组中的仅一个TCI状态被应用于第一信号还是第一TCI状态组中的两个TCI状态都被应用于第一信号的示意图;
图18示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令,第二信令和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令和第二信令;在步骤102中接收第一信号。其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括动态信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令包括用于下行授予(DownLink Grant)的DCI。
作为一个实施例,所述第一信令的格式(format)属于Format 1_0,Format 1_1或Format 1_2中之一。
作为一个实施例,所述第二信令包括物理层信令。
作为一个实施例,所述第二信令包括动态信令。
作为一个实施例,所述第二信令包括层1(L1)的信令。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令是一个DCI。
作为一个实施例,所述第二信令包括用于下行授予(DownLink Grant)的DCI。
作为一个实施例,所述第二信令的格式(format)属于Format 1_0,Format 1_1或Format 1_2中之一。
作为一个实施例,所述第一信令和所述第二信令分别是两个不同的DCI。
作为一个实施例,所述第一信令的格式不同于所述第二信令的格式。
作为一个实施例,所述第二信令在时域晚于所述第一信令。
作为一个实施例,所述第一信令,所述第二信令和所述第一信号属于同一个载波(Carrier)。
作为一个实施例,所述第一信令,所述第二信令和所述第一信号属于同一个BWP(BandWidth Part,带宽区间)。
作为一个实施例,所述第一信令,所述第二信令和所述第一信号属于同一个小区。
作为一个实施例,所述第一信令和所述第二信令属于不同的载波。
作为一个实施例,所述第一信令和所述第二信令属于不同的小区。
作为一个实施例,所述第一信令和所述第二信令属于不同的BWP。
作为一个实施例,所述第一信令和所述第一信号属于不同的载波。
作为一个实施例,所述第一信令和所述第一信号属于不同的小区。
作为一个实施例,所述第一信令和所述第一信号属于不同的BWP。
作为一个实施例,所述第一信令被用于确定目标时间单元,所述第一信号不早于所述目标时间单元。
作为一个实施例,所述第一信令被用于确定目标时间单元,所述第一信号的起始时刻不早于所述目标时间单元的起始时刻。
作为一个实施例,所述目标时间单元是一个时隙(slot)。
作为一个实施例,所述目标时间单元是一个子帧(sub-frame)。
作为一个实施例,所述目标时间单元是一个符号。
作为一个实施例,所述目标时间单元是一个子时隙(subslot)。
作为一个实施例,所述目标时间单元包括正整数个连续的符号。
作为一个实施例,所述第二信令不早于所述目标时间单元。
作为一个实施例,所述第二信令的起始时刻不早于所述目标时间单元的起始时刻。
作为一个实施例,所述第二信令早于所述目标时间单元。
作为一个实施例,所述第二信令的起始时刻早于所述目标时间单元的起始时刻。
作为一个实施例,所述第一信令指示所述第一TCI状态组对应的DCI域Transmission configuration indication(TCI)的码点(codepoint)。
作为一个实施例,所述第一信令指示第一TCI码点,所述第一TCI码点指示所述第一TCI状态组。
作为一个实施例,所述第一TCI状态组包括至少一个TCI(Transmission configuration Indicator)状态(state)。
作为一个实施例,所述第一TCI状态组包括一个或两个TCI状态。
作为一个实施例,所述第一TCI状态组包括的TCI状态的所述数量等于1或2。
作为一个实施例,所述第一TCI状态组仅包括一个TCI状态。
作为一个实施例,所述第一TCI状态组仅包括一个TCI状态;所述第一TCI码点指示所述一个TCI状态。
作为一个实施例,所述第一TCI状态组包括两个TCI状态。
作为一个实施例,所述第一TCI状态组包括两个TCI状态;所述第一TCI码点依次指示所述两个TCI状态。
作为一个实施例,所述第一TCI状态组仅包括一个TCI状态,所述一个TCI状态被应用于所述第一信号。
作为一个实施例,所述第一TCI状态组包括两个TCI状态,所述两个TCI状态中的至少一个TCI状态被应用于所述第一信号。
作为上述实施例的一个子实施例,所述两个TCI状态都被应用于所述第一信号。
作为上述实施例的一个子实施例,所述两个TCI状态中的仅一个TCI状态被应用于所述第一信号。
作为一个实施例,所述第一TCI状态组包括两个TCI状态,所述两个TCI状态都被应用于所述第一信号。
作为上述实施例的一个子实施例,所述第一信号包括第一子信号和第二子信号,所述两个TCI状态分别被应用于所述第一子信号和所述第二子信号。
作为上述实施例的一个子实施例,所述第一信号包括第一子信号和第二子信号,所述两个TCI状态分别被应用于所述第一子信号和所述第二子信号;所述第一子信号和所述第二子信号在时域相互正交。
作为一个实施例,所述第一TCI状态组中的每个TCI状态都被应用于所述第一信号。
作为一个实施例,作为所述行为接收第一信令的响应,所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号。
作为一个实施例,伴随所述行为接收第一信令,所述第一TCI状态组中的至少一个TCI状态被应用于 所述第一信号。
作为一个实施例,所述第一信令指示所述第一信号的TCI状态。
作为一个实施例,所述第一信令指示的至少一个TCI状态被应用于所述第一信号。
作为一个实施例,所述第一信令指示仅一个TCI状态,所述仅一个TCI状态被应用于所述第一信号。
作为一个实施例,所述第一信令指示两个TCI状态,所述两个TCI状态都被应用于所述第一信号。
作为一个实施例,所述第一信令指示两个TCI状态,所述两个TCI状态中的仅一个TCI状态被应用于所述第一信号。
作为上述实施例的一个子实施例,所述两个TCI状态中默认的一个TCI状态被应用于所述第一信号。
作为上述实施例的一个子实施例,所述两个TCI状态依次排列;所述两个TCI状态中排在前面的一个TCI状态被应用于所述第一信号。
作为上述实施例的一个子实施例,第一TCI码点依次指示所述两个TCI状态;所述两个TCI状态中排在前面的一个TCI状态被应用于所述第一信号。
作为上述实施例的一个子实施例,所述两个TCI状态中对应的TCI-StateId较小的一个TCI状态被应用于所述第一信号。
作为一个实施例,所述第一TCI状态组中的至少一个TCI状态被应用于所述第二信令。
作为一个实施例,所述第一信令指示所述第二信令的TCI状态。
作为一个实施例,所述第一信令指示的至少一个TCI状态被应用于所述第二信令。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号携带一个TB(Transport Block,传输块)。
作为一个实施例,所述第一信号携带一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一信号携带至少一个TB。
作为一个实施例,所述第一信号携带至少一个CBG。
作为一个实施例,所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV和NDI。
作为一个实施例,所述第二信令被用于调度所述第一信号。
作为一个实施例,所述第二信令被用于调度承载所述第一信号的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为一个实施例,所述句子所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源的意思包括:所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号对应的PDSCH传输机会(transmission occasion)的数量。
作为一个实施例,所述第一信号对应一个PDSCH传输机会或两个PDSCH传输机会。
作为一个实施例,所述第二信令的格式被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令的格式共同被用于确定所述第一信号占用的所述时域资源。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示, 5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路包括蜂窝网链路。
作为一个实施例,所述第一信令和所述第二信令的发送者包括所述gNB203。
作为一个实施例,所述第一信令和所述第二信令的接收者包括所述UE201。
作为一个实施例,所述第一信号的发送者包括所述gNB203。
作为一个实施例,所述第一信号的接收者包括所述UE201。
作为一个实施例,所述UE201支持unified TCI framework。
作为一个实施例,所述UE201支持指示多个下行和上行TCI状态的unified TCI framework。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制 平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第二信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信令生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地 的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少接收所述第一信令和所述第二信令;接收所述第一信号。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信令和所述第二信令;接收所述第一信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少发送所述第一信令和所述第二信令;发送所述第一信号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信令和所述第二信令;发送所述第一信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信令和所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令和所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458, 所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的传输的流程图;如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51和方框F52中的步骤分别是可选的。
对于第二节点U1,在步骤S511中发送第一信令;在步骤S5101中发送第三信号;在步骤S5102中接收第二信号;在步骤S512中发送第二信令;在步骤S513中发送第一信号。
对于第一节点U2,在步骤S521中接收第一信令;在步骤S5201中接收第三信号;在步骤S5202中发送第二信号;在步骤S522中接收第二信令;在步骤S523中接收第一信号。
在实施例5中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被所述第一节点U2用于确定所述第一信号占用的时域资源。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)中被传输。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)中被传输。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)中被传输。
作为一个实施例,所述第二信令在PDCCH中被传输。
作为一个实施例,所述第一信令和所述第二信令分别在两个不同的PDCCH中被传输。
作为一个实施例,所述第一信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上被传输。
作为一个实施例,所述第一信号在PDSCH中被传输。
作为一个实施例,附图5中的方框F52中的步骤存在,上述被用于无线通信的第一节点中的方法包括:发送第二信号;其中,所述第二信号包括针对所述第一信令的HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement),所述第一信令被用于确定所述第二信号所占用的时域资源,所述第二信号所占用的时域资源被用于确定目标时间单元;所述第一信号不早于所述目标时间单元。
作为一个实施例,上述被用于无线通信的第二节点中的方法包括:接收所述第二信号。
作为一个实施例,附图5中的方框F52和F51中的步骤都存在,上述被用于无线通信的第一节点中的方法包括:接收第三信号;发送第二信号;其中,所述第三信号在第一PDSCH上传输,所述第一信令被用于调度所述第一PDSCH,所述第三信号携带第一比特块;所述第二信号包括针对所述第一PDSCH的HARQ-ACK;所述第一信令指示所述第三信号所占用的时域资源,所述第一信令指示所述第二信号所占用的时域资源和所述第三信号所占用的时域资源之间的时间间隔;所述第二信号所占用的时域资源被用于确 定目标时间单元;所述第一信号不早于所述目标时间单元。
作为一个实施例,上述被用于无线通信的第二节点中的方法包括:发送所述第三信号;接收所述第二信号。
作为一个实施例,所述第一信号的起始时刻不早于所述目标时间单元的起始时刻。
作为一个实施例,所述目标时间单元是所述第二信号的最后一个符号之后的至少第一间隔之后的第一个时间单元。
作为一个实施例,所述目标时间单元是所述第二信号的最后一个符号之后的第一间隔之后的第一个时间单元。
作为一个实施例,所述目标时间单元是在所述第二信号的最后一个符号之后,并且和所述第二信号的所述最后一个符号之间不小于第一间隔的第一个时间单元。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一信令在时域早于所述第二信号。
作为一个实施例,所述第二信号在时域早于所述第二信令。
作为一个实施例,所述第二信号在时域晚于所述第二信令。
作为一个实施例,针对所述第一信令的所述HARQ-ACK指示所述第一信令是否被正确接收。
作为一个实施例,针对所述第一信令的所述HARQ-ACK指示所述第一信令被正确接收。
作为一个实施例,所述第一信令指示所述第二信号所占用的时域资源。
作为一个实施例,所述第一信令指示所述第二信号所占用的时域资源和所述第一信令所占用的时域资源之间的时间间隔。
作为一个实施例,所述第一信令指示所述第二信号所占用的时隙和所述第一信令所占用的时隙之间的时间间隔。
作为一个实施例,所述第二信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上被传输。
作为一个实施例,所述第二信号在PUCCH(Physical Uplink Control Channel,物理上行控制信道)上被传输。
作为一个实施例,所述第一信令指示所述第二信号所占用的时隙和所述第三信号所占用的时隙之间的时间间隔。
作为一个实施例,所述第二信号指示所述第一比特块是否被正确接收。
作为一个实施例,所述第二信号指示所述第一比特块被正确接收。
作为一个实施例,所述第三信号包括基带信号。
作为一个实施例,所述第三信号包括无线信号。
作为一个实施例,所述第三信号包括射频信号。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块包括一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第二信号在时域晚于所述第三信号。
作为一个实施例,所述第三信号在时域早于所述第二信令。
作为一个实施例,所述第三信号在时域晚于所述第二信令。
作为一个实施例,所述第一信令包括所述第三信号的调度信息,所述调度信息包括时域资源,频域资源,MCS(Modulation and Coding Scheme),DMRS(DeModulation Reference Signals)端口(port),HARQ进程号(process number),RV(Redundancy version)或NDI(New data indicator)中的一种或多种。
作为一个实施例,针对所述第一PDSCH的所述HARQ-ACK包括:针对所述第三信号的HARQ-ACK。
作为一个实施例,针对所述第一PDSCH的所述HARQ-ACK包括:针对所述第一比特块的HARQ-ACK。
作为一个实施例,针对所述第一PDSCH的所述HARQ-ACK指示所述第一比特块是否被正确接收。
作为一个实施例,针对所述第一PDSCH的所述HARQ-ACK指示所述第一比特块被正确接收。
作为一个实施例,所述时间单元是一个时隙(slot)。
作为一个实施例,所述时间单元是一个子帧(sub-frame)。
作为一个实施例,所述时间单元是一个符号。
作为一个实施例,所述时间单元是一个子时隙(subslot)。
作为一个实施例,所述时间单元包括正整数个连续的符号。
作为一个实施例,所述HARQ-ACK包括ACK。
作为一个实施例,所述HARQ-ACK包括NACK(Negative ACKnowledgement,否认)。
作为一个实施例,所述HARQ-ACK包括ACK或NACK。
作为一个实施例,所述第一间隔是RRC信令配置的。
作为一个实施例,所述第一间隔是固定的。
作为一个实施例,所述第一间隔是一个非负实数。
作为一个实施例,所述第一间隔是一个正整数。
作为一个实施例,所述第一间隔的单位是时隙(slot)。
作为一个实施例,所述第一间隔的单位是毫秒(ms)。
作为一个实施例,所述第一间隔的单位是符号。
作为一个实施例,所述第一间隔是B1个符号,所述B1是非负整数。
作为上述实施例的一个子实施例,所述B1是正整数。
作为上述实施例的一个子实施例,所述B1是更高层参数配置的。
作为上述实施例的一个子实施例,所述B1是RRC参数配置的。
作为上述实施例的一个子实施例,所述B1是更高层参数配置的,配置所述B1的更高层参数的名称里包括“BeamAppTime”。
实施例6
实施例6示例了根据本申请的一个实施例的第一TCI状态组中的至少一个TCI状态被应用于第一信号的示意图;如附图6所示。在实施例6中,所述第一TCI状态组包括第一TCI状态,所述第一TCI状态被应用于所述第一信号;所述第一TCI状态指示第一参考信号资源。
作为一个实施例,所述第一TCI状态组仅包括所述第一TCI状态。
作为一个实施例,所述第一TCI状态组包括两个TCI状态,所述第一TCI状态是所述两个TCI状态中之一;所述两个TCI状态中仅所述第一TCI状态被应用于所述第一信号。
作为上述实施例的一个子实施例,所述第一TCI状态是所述两个TCI状态中默认的一个。
作为上述实施例的一个子实施例,所述两个TCI状态依次排列;所述第一TCI状态是所述两个TCI状态中排在前面的一个TCI状态。
作为上述实施例的一个子实施例,第一TCI码点依次指示所述两个TCI状态;所述第一TCI状态是所述两个TCI状态中排在前面的一个TCI状态。
作为上述实施例的一个子实施例,所述第一TCI状态是所述两个TCI状态中对应的TCI-StateId较小的一个。
作为一个实施例,所述第一信号的TCI状态是所述第一TCI状态。
作为一个实施例,所述第一信号的TCI状态包括所述第一TCI状态。
作为一个实施例,承载所述第一信号的PDSCH的DMRS和所述第一参考信号资源准共址(quasi co-located)。
作为一个实施例,承载所述第一信号的PDSCH的DMRS和所述第一参考信号资源准共址且对应的QCL(Quasi Co-Location,准共址)类型包括TypeD。
作为一个实施例,所述第一信号的DMRS和所述第一参考信号资源准共址。
作为一个实施例,所述第一信号的DMRS和所述第一参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,发送所述第一信号的天线端口和所述第一参考信号资源准共址。
作为一个实施例,发送所述第一信号的天线端口和所述第一参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出承载所述第一信号的PDSCH的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第一信号的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第一信号经历的信道的大尺度特性。
作为一个实施例,所述第一信号包括第一子信号,所述第一子信号的TCI状态是所述第一TCI状态。
作为一个实施例,所述第一信号包括第一子信号,承载所述第一子信号的PDSCH的DMRS和所述第一参考信号资源准共址(quasi co-located)。
作为一个实施例,所述第一信号包括第一子信号,承载所述第一子信号的PDSCH的DMRS和所述第一参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,所述第一信号包括第一子信号,所述第一子信号的DMRS和所述第一参考信号资源准共址(quasi co-located)。
作为一个实施例,所述第一信号包括第一子信号,所述第一子信号的DMRS和所述第一参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,所述第一信号包括第一子信号,发送所述第一子信号的天线端口和所述第一参考信号资源准共址。
作为一个实施例,所述第一信号包括第一子信号,发送所述第一子信号的天线端口和所述第一参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,所述第一信号包括第一子信号,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出承载所述第一子信号的PDSCH的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一信号包括第一子信号,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第一子信号的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一信号包括第一子信号,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第一子信号经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay)或空间接收参数(Spatial Rx parameter)中的一种或多种。
作为一个实施例,所述第一TCI状态指示所述第一参考信号资源对应的QCL类型。
作为一个实施例,所述第一TCI状态指示所述第一参考信号资源对应的QCL类型包括TypeD。
作为一个实施例,所述第一参考信号资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源(resource)。
作为一个实施例,所述第一参考信号资源包括SS/PBCH block(Synchronisation Signal/physical broadcast channel Block,同步信号/物理广播信道块)资源。
作为一个实施例,和一个参考信号资源准共址的意思包括:和所述一个参考信号资源中传输的参考信号准共址。
作为一个实施例,和一个参考信号资源准共址的意思包括:和所述一个参考信号资源的参考信号端口准共址。
作为一个实施例,和一个参考信号资源准共址的意思包括:和所述一个参考信号资源的天线端口准共址。
实施例7
实施例7示例了根据本申请的一个实施例的第一TCI状态组中的至少一个TCI状态被应用于第一信号 的示意图;如附图7所示。在实施例7中,所述第一TCI状态组包括第一TCI状态和第二TCI状态,所述第一TCI状态和所述第二TCI状态均被应用于所述第一信号;所述第一信号包括第一子信号和第二子信号,所述第一TCI状态被应用于所述第一子信号,所述第二TCI状态被应用于所述第二子信号;所述第一TCI状态指示第一参考信号资源,所述第二TCI状态指示第二参考信号资源。
作为一个实施例,所述第一信号的TCI状态包括所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第一子信号的TCI状态包括所述第一TCI状态,所述第二子信号的TCI状态包括所述第二TCI状态。
作为一个实施例,所述第一信号的TCI状态是所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第一子信号的TCI状态是所述第一TCI状态,所述第二子信号的TCI状态是所述第二TCI状态。
作为一个实施例,承载所述第一子信号的PDSCH的DMRS和所述第一参考信号资源准共址(quasi co-located);承载所述第二子信号的PDSCH的DMRS和所述第二参考信号资源准共址。
作为一个实施例,承载所述第一子信号的PDSCH的DMRS和所述第一参考信号资源准共址且对应的QCL类型包括TypeD;承载所述第二子信号的PDSCH的DMRS和所述第二参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,所述第一子信号的DMRS和所述第一参考信号资源准共址(quasi co-located);所述第二子信号的DMRS和所述第二参考信号资源准共址。
作为一个实施例,所述第一子信号的DMRS和所述第一参考信号资源准共址且对应的QCL类型包括TypeD;所述第二子信号的DMRS和所述第二参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,发送所述第一子信号的天线端口和所述第一参考信号资源准共址;发送所述第二子信号的天线端口和所述第二参考信号资源准共址。
作为一个实施例,发送所述第一子信号的天线端口和所述第一参考信号资源准共址且对应的QCL类型包括TypeD;发送所述第二子信号的天线端口和所述第二参考信号资源准共址且对应的QCL类型包括TypeD。
作为一个实施例,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出承载所述第一子信号的PDSCH的DMRS经历的信道的大尺度特性;所述第一节点能够从在所述第二参考信号资源中传输的参考信号经历的信道的大尺度特性推断出承载所述第二子信号的PDSCH的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第一子信号的DMRS经历的信道的大尺度特性;所述第一节点能够从在所述第二参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第二子信号的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一节点能够从在所述第一参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第一子信号经历的信道的大尺度特性;所述第一节点能够从在所述第二参考信号资源中传输的参考信号经历的信道的大尺度特性推断出所述第二子信号经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性包括延时扩展,多普勒扩展,多普勒位移,平均延时或空间接收参数中的一种或多种。
作为一个实施例,所述第一TCI状态指示所述第一参考信号资源对应的QCL类型,所述第二TCI状态指示所述第二参考信号资源对应的QCL类型。
作为一个实施例,所述第一TCI状态指示所述第一参考信号资源对应的QCL类型包括TypeD;所述第二TCI状态指示所述第二参考信号资源对应的QCL类型包括TypeD。
作为一个实施例,所述第一参考信号资源包括CSI-RS资源。
作为一个实施例,所述第一参考信号资源包括SS/PBCH block资源。
作为一个实施例,所述第二参考信号资源包括CSI-RS资源。
作为一个实施例,所述第二参考信号资源包括SS/PBCH block资源。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源不是准共址的。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源不是对应QCL-TypeD的准共址的。
作为一个实施例,所述第一子信号和所述第二子信号分别在两个不同的PDSCH传输机会(transmission occasion)中被传输。
作为一个实施例,所述第一子信号和所述第二子信号在时域相互正交。
作为一个实施例,所述第一子信号和所述第二子信号携带同一个TB。
作为一个实施例,所述第一子信号和所述第二子信号分别包括同一个TB的一次重复传输。
作为一个实施例,所述第一子信号和所述第二子信号对应相同的MCS。
作为一个实施例,所述第一子信号和所述第二子信号对应相同的HARQ进程号。
作为一个实施例,所述第一子信号和所述第二子信号对应相同的NDI。
作为一个实施例,所述第一子信号和所述第二子信号对应相同的RV。
作为一个实施例,所述第一子信号和所述第二子信号对应不同的RV。
作为一个实施例,和一个参考信号资源准共址的意思包括:和所述一个参考信号资源中传输的参考信号准共址。
作为一个实施例,和一个参考信号资源准共址的意思包括:和所述一个参考信号资源的参考信号端口准共址。
作为一个实施例,和一个参考信号资源准共址的意思包括:和所述一个参考信号资源的天线端口准共址。
实施例8
实施例8示例了根据本申请的一个实施例的第一TCI状态组包括的TCI状态的数量和第一符号组共同被用于确定第一信号占用的时域资源的示意图;如附图8所示。
作为一个实施例,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被所述第一节点用于确定所述第一信号占用的所述时域资源。
作为一个实施例,所述第一符号组包括至少一个符号。
作为一个实施例,所述第一符号组仅包括一个符号。
作为一个实施例,所述第一符号组包括多个符号。
作为一个实施例,所述第一符号组包括多个连续的符号。
作为一个实施例,所述第一符号组中的所有符号属于同一个时隙(slot)。
作为一个实施例,所述第二信令包括第一域,所述第二信令中的所述第一域指示所述第一符号组;所述第一域包括至少一个DCI域。
作为上述实施例的一个子实施例,所述第一域包括DCI域Time domain resource assignment。
作为上述实施例的一个子实施例,所述第一域是DCI域Time domain resource assignment。
作为上述实施例的一个子实施例,所述第一符号组中的所有符号属于第一时隙,所述第二信令中的所述第一域指示所述第一时隙。
作为上述实施例的一个子实施例,所述第一符号组中的所有符号属于第一时隙,所述第二信令中的所述第一域指示所述第一符号组中的起始符号在所述第一时隙中的位置。
作为上述实施例的一个子实施例,所述第二信令中的所述第一域指示所述第一符号组包括的符号的数量。
作为上述实施例的一个子实施例,所述第二信令中的所述第一域指示所述第一符号组包括的连续符号的数量。
作为一个实施例,所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一信号占用的所述时域资源包括所述第一符号组。
作为一个实施例,所述第一信号占用的所述时域资源包括所述第一符号组中的部分或全部符号。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源包括所述第一符号组中的部分或全部符号;当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第一信号占用的所述时域资源包括所述第一符号组中的部分或全部符号以及第二符号组中的部分或全部符号;所述第一符号组和所述第二符号组在时域相互正交,所述第二符号组包括的符号的数量等于所述第一符号组包括的符号的数量。
实施例9
实施例9示例了根据本申请的一个实施例的第一TCI状态组包括的TCI状态的数量和第一符号组共同被用于确定第一信号占用的时域资源的示意图;如附图9所示。在实施例9中,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源包括所述第一符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第一信号占用的所述时域资源包括所述第一符号组和第二符号组;所述第一符号组和所述第二符号组在时域相互正交,所述第二符号组包括的符号的数量等于所述第一符号组包括的符号的数量。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源是所述第一符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第一信号占用的所述时域资源是所述第一符号组和所述第二符号组。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源不包括所述第二符号组。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第一TCI状态组包括的一个TCI状态被应用于所述第一符号组,所述第一TCI状态组包括的另一个TCI状态被应用于所述第二符号组。
作为一个实施例,所述第二符号组包括至少一个符号。
作为一个实施例,所述第一符号组仅包括一个符号,所述第二符号组仅包括一个符号。
作为一个实施例,所述第一符号组包括多个符号,所述第二符号组包括多个符号。
作为一个实施例,所述第一符号组包括多个连续的符号,所述第二符号组包括多个连续的符号。
作为一个实施例,所述第二符号组中的所有符号属于同一个时隙。
作为一个实施例,所述第一符号组和所述第二符号组属于同一个时隙。
作为一个实施例,所述第二符号组的第一个符号在时域晚于所述第一符号组的最后一个符号。
作为一个实施例,所述第一符号组和所述第二符号组均属于所述第一时隙。
作为一个实施例,所述第二符号组的第一个符号开始于所述第一符号组的最后一个符号之后的B2个符号之后,所述B2是非负整数;所述B2等于0,或者,所述B2是更高层参数配置的。
作为上述实施例的一个子实施例,配置所述B2的更高层参数的名称里包括“StartingSymbolOffsetK”。
作为上述实施例的一个子实施例,所述第二符号组的第一个符号和所述第一符号组的最后一个符号之间间隔了所述B2个符号。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号仅对应一个PDSCH传输机会,所述第一TCI状态组包括的一个TCI状态被应用于所述一个PDSCH传输机会;当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第一信号对应两个PDSCH传输机会,所述第一TCI状态组包括的两个TCI状态分别被应用于所述两个PDSCH传输机会。
作为上述实施例的一个子实施例,所述一个PDSCH传输机会占用所述第一符号组;所述两个PDSCH传输机会分别占用所述第一符号组和所述第二符号组。
作为上述实施例的一个子实施例,所述两个PDSCH传输机会属于同一个时隙。
作为上述实施例的一个子实施例,所述两个PDSCH传输机会均属于所述第一时隙。
作为上述实施例的一个子实施例,所述两个PDSCH传输机会占用的时域资源相互正交。
作为上述实施例的一个子实施例,所述两个PDSCH传输机会占用的符号数量相等。
作为上述实施例的一个子实施例,所述两个PDSCH传输机会中的第二个PDSCH传输机会的第一个符号开始于所述两个PDSCH传输机会中的第一个PDSCH传输机会的最后一个符号之后的B2个符号之后, 所述B2是非负整数;所述B2等于0,或者,所述B2是更高层参数配置的。
作为上述子实施例的一个参考实施例,配置所述B2的更高层参数的名称里包括“StartingSymbolOffsetK”。
作为上述子实施例的一个参考实施例,所述两个PDSCH传输机会中的第二个PDSCH传输机会的第一个符号和所述两个PDSCH传输机会中的第一个PDSCH传输机会的最后一个符号之间间隔了所述B2个符号。
实施例10
实施例10示例了根据本申请的一个实施例的第一TCI状态组包括的TCI状态的数量,第二信令的格式和第一符号组共同被用于确定第一信号占用的时域资源的示意图;如附图10所示。
作为一个实施例,所述第一TCI状态组包括的TCI状态的所述数量,所述第二信令的格式和所述第一符号组共同被所述第一节点用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源是所述第一符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2并且所述第二信令的所述格式属于第二格式集合时,所述第一信号占用的所述时域资源是所述第一符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2并且所述第二信令的所述格式属于第一格式集合时,所述第一信号占用的所述时域资源是所述第一符号组和第二符号组。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源包括所述第一符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2并且所述第二信令的所述格式属于第二格式集合时,所述第一信号占用的所述时域资源包括所述第一符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2并且所述第二信令的所述格式属于第一格式集合时,所述第一信号占用的所述时域资源包括所述第一符号组和第二符号组。
作为上述实施例的一个子实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于1时,所述第一信号占用的所述时域资源不包括所述第二符号组;当所述第一TCI状态组包括的TCI状态的所述数量等于2并且所述第二信令的所述格式属于所述第二格式集合时,所述第一信号占用的所述时域资源不包括所述第二符号组。
作为一个实施例,所述第一符号组和所述第二符号组在时域相互正交,所述第二符号组包括的符号的数量等于所述第一符号组包括的符号的数量;所述第一符号组和所述第二符号组属于同一个时隙;所述第二符号组的第一个符号开始于所述第一符号组的最后一个符号之后的B2个符号之后,所述B2是非负整数;所述B2等于0,或者,所述B2是可配置的。
作为上述实施例的一个子实施例,所述第二符号组的第一个符号和所述第一符号组的最后一个符号之间间隔了所述B2个符号。
作为一个实施例,所述第二信令的格式属于Format 1_0,Format 1_1或Format 1_2中之一。
作为一个实施例,所述第二格式集合和所述第一格式集合分别包括至少一个DCI格式;不存在一个DCI格式同时属于所述第一格式集合和所述第二格式集合。
作为一个实施例,所述第一格式集合包括Format 1_1和Format 1_2;所述第二格式集合包括Format 1_0。
作为一个实施例,所述第二信令的格式包括:所述第二信令是否包括第一DCI域;所述第一DCI域指示至少一个TCI状态。
作为一个实施例,所述第一格式集合中的每个格式都包括第一DCI域,所述第二格式集合中的每个格式都不包括所述第一DCI域;所述第一DCI域指示至少一个TCI状态。
作为一个实施例,所述第一DCI域是DCI域“Transmission configuration indication”。
实施例11
实施例11示例了根据本申请的一个实施例的当第一条件集合中的每个条件都被满足时,第一TCI状态组包括的TCI状态的数量和第二信令共同被用于确定第一信号占用的时域资源的示意图;如附图11所示。
作为一个实施例,当所述第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被所述第一节点用于确定所述第一信号占用的所述时域资源。
作为一个实施例,所述第一条件集合中的每个条件是否都被满足被所述第一节点用于确定:所述第一TCI状态组包括的TCI状态的所述数量是否被所述第一节点用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当且仅当所述第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一TCI状态组包括的TCI状态的所述数量不被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一信号占用的所述时域资源和所述第一TCI状态组包括的TCI状态的所述数量无关。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令中的仅所述第二信令被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当且仅当所述第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量,所述第二信令的格式和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当且仅当所述第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量,所述第二信令的格式和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组中的仅所述第一符号组被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一信号占用的所述时域资源是所述第一符号组。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一信号占用的所述时域资源包括所述第一符号组。
作为一个实施例,当所述第一条件集合中存在一个条件不被满足时,所述第一信号占用的所述时域资源属于所述第一符号组。
作为一个实施例,所述第一条件集合包括第三条件,所述第三条件包括:所述第一TCI状态组被用于确定至少一个CORESET(COntrol REsource SET,控制资源集合)的QCL关系。
作为一个实施例,所述第一条件集合包括第三条件,所述第三条件包括:所述第一信令指示的所述第一TCI状态组被应用于至少第一类信道和第二类信道,所述第一类信道包括PDCCH,所述第二类信道包括PDSCH。
作为一个实施例,当所述第一信令指示的所述第一TCI状态组被应用于至少所述第一类信道和所述第二类信道时,所述第三条件被满足。
作为一个实施例,所述第三条件是所述第一条件集合中的一个条件。
作为一个实施例,所述第二信令指示第一DMRS端口组,所述第一DMRS端口组包括至少一个DMRS端口;所述第一条件集合包括第四条件,所述第四条件包括:所述第一DMRS端口组中的所有DMRS端口属于同一个CDM组。
作为一个实施例,所述第一DMRS端口组仅包括一个DMRS端口。
作为一个实施例,所述第一DMRS端口组包括多个DMRS端口。
作为一个实施例,所述第一DMRS端口组被用于发送所述第一信号的DMRS。
作为一个实施例,所述CDM组的定义参见3GPP TS 38.211。
作为一个实施例,所述第二信令包括第二域,所述第二信令中的所述第二域指示所述第一DMRS端口 组;所述第二域包括DCI域“Antenna port(s)”。
作为一个实施例,当所述第一DMRS端口组中的所有DMRS端口属于同一个CDM组时,所述第四条件被满足。
作为一个实施例,当所述第一DMRS端口组中存在两个DMRS端口属于不同的CDM组时,所述第四条件不被满足。
作为一个实施例,所述第四条件是所述第一条件集合中的一个条件。
作为一个实施例,所述第一条件集合包括第五条件,所述第五条件包括:所述第一TCI状态组中的至少一个TCI状态不同于之前指示的一个TCI状态。
作为一个实施例,所述第一条件集合包括第五条件,所述第五条件包括:所述第一TCI状态组中的任一TCI状态不同于之前指示的一个TCI状态。
作为一个实施例,所述第一条件集合包括第五条件,所述第五条件包括:所述第一TCI状态组中的任一TCI状态不同于之前指示的任一TCI状态。
作为一个实施例,当所述第一TCI状态组中的至少一个TCI状态不同于之前指示的一个TCI状态时,所述第五条件被满足。
作为一个实施例,当所述第一TCI状态组中的任一TCI状态不同于之前指示的一个TCI状态时,所述第五条件被满足。
作为一个实施例,当所述第一TCI状态组中的任一TCI状态不同于之前指示的任一TCI状态时,所述第五条件被满足。
作为一个实施例,当所述第一TCI状态组中的一个TCI状态和之前指示的一个TCI状态相同时,所述第五条件不被满足。
作为一个实施例,所述第五条件是所述第一条件集合中的一个条件。
作为一个实施例,所述第一条件集合仅包括所述第一条件。
作为一个实施例,所述第一条件集合仅包括所述第二条件。
作为一个实施例,所述第一条件集合仅包括所述第三条件。
作为一个实施例,所述第一条件集合仅包括所述第四条件。
作为一个实施例,所述第一条件集合仅包括所述第五条件。
作为一个实施例,所述第一条件集合包括所述第一条件和所述第二条件。
作为一个实施例,所述第一条件集合由所述第一条件和所述第二条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件和所述第四条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件和所述第四条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件和所述第三条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件和所述第三条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件和所述第五条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件和所述第五条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件,所述第三条件和所述第四条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件,所述第三条件和所述第四条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件,所述第三条件和所述第五条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件,所述第三条件和所述第五条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件,所述第四条件和所述第五条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件,所述第四条件和所述第五条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件,所述第二条件,所述第三条件,所述第四条件和所述第五条件。
作为一个实施例,所述第一条件集合由所述第一条件,所述第二条件,所述第三条件,所述第四条件和所述第五条件组成。
作为一个实施例,所述第一条件集合包括所述第一条件和所述第三条件。
作为一个实施例,所述第一条件集合包括所述第二条件和所述第三条件。
作为一个实施例,所述第一条件集合包括所述第一条件和所述第四条件。
作为一个实施例,所述第一条件集合包括所述第二条件和所述第四条件。
作为一个实施例,所述第一条件集合包括所述第一条件和所述第五条件。
作为一个实施例,所述第一条件集合包括所述第二条件和所述第五条件。
作为一个实施例,所述第一条件集合包括所述第三条件和所述第四条件。
作为一个实施例,所述第一条件集合包括所述第三条件和所述第五条件。
作为一个实施例,所述第一条件集合包括所述第四条件和所述第五条件。
实施例12
实施例12示例了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;如附图12所示。在实施例12中,所述第一条件包括:所述第一更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合。
作为一个实施例,所述第一条件是所述第一条件集合中的一个条件。
作为一个实施例,所述第一条件集合由所述第一条件组成。
作为一个实施例,所述第一条件集合包括除所述第一条件以外的至少一个其他条件。
作为一个实施例,所述第一条件仅包括所述第一更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合。
作为一个实施例,当所述第一更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合时,所述第一条件被满足。
作为一个实施例,当所述第一更高层参数未被配置,所述第一条件不被满足;当所述第一更高层参数被配置并且所述第一更高层参数的值不属于所述第一参数值集合时,所述第一条件不被满足。
作为一个实施例,所述第一更高层参数是RRC参数。
作为一个实施例,所述第一更高层参数的名称里包括“repetition”。
作为一个实施例,所述第一更高层参数的名称里包括“repetitionScheme”。
作为一个实施例,所述第一参数值集合中的任一参数值是所述第一更高层参数的一个候选值。
作为一个实施例,所述第一参数值集合仅包括一个参数值。
作为一个实施例,所述第一参数值集合包括多个参数值。
作为一个实施例,所述第一参数值集合中的一个参数值包括字符串“tdmScheme”。
作为一个实施例,所述第一参数值集合中的一个参数值包括字符串“tdmSchemeA”。
作为一个实施例,所述第一参数值集合包括参数值“tdmSchemeA”。
作为一个实施例,所述第一参数值集合仅包括一个参数值,所述一个参数值包括字符串“tdmScheme”。
作为上述实施例的一个子实施例,所述一个参数值包括字符串“tdmSchemeA”。
作为上述实施例的一个子实施例,所述一个参数值是“tdmSchemeA”。
实施例13
实施例13示例了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;如附图13所示。在实施例13中,所述第一条件包括:所述第一更高层参数被配置,第二更高层参数被配置,以及所述第一更高层参数的值属于所述第一参数值集合。
作为一个实施例,所述第一条件还包括:第二更高层参数被配置。
作为一个实施例,当所述第一更高层参数被配置,所述第二更高层参数被配置并且所述第一更高层参 数的值属于所述第一参数值集合时,所述第一条件被满足。
作为一个实施例,当且仅当所述第一更高层参数被配置,所述第二更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合时,所述第一条件被满足。
作为一个实施例,当所述第一更高层参数未被配置时,所述第一条件不被满足;当所述第二更高层参数未被配置时,所述第一条件不被满足;当所述第一更高层参数被配置并且所述第一更高层参数的值不属于所述第一参数值集合时,所述第一条件不被满足。
作为一个实施例,所述第二更高层参数是RRC参数。
作为一个实施例,所述第二更高层参数的名称里包括“unifiedTCIstate”。
作为一个实施例,所述第二更高层参数的名称里包括“TCIstate”和“r17”。
作为一个实施例,所述第二更高层参数的名称里包括“DLorJoint”。
作为一个实施例,所述第二更高层参数的名称里包括“DLorJoint-TCIState”。
作为一个实施例,所述第二更高层参数的名称里包括“DLorJoint-TCIState-ToAddModList”。
实施例14
实施例14示例了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;如附图14所示。在实施例14中,所述第一条件包括:所述第一更高层参数被配置,所述第一更高层参数的值属于所述第一参数值集合,以及第二更高层参数或第三更高层参数被配置。
作为一个实施例,所述第一条件还包括:第二更高层参数或第三更高层参数被配置。
作为一个实施例,当所述第一更高层参数被配置,所述第二更高层参数或所述第三更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合时,所述第一条件被满足。
作为一个实施例,当且仅当所述第一更高层参数被配置,所述第二更高层参数或所述第三更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合时,所述第一条件被满足。
作为一个实施例,当所述第一更高层参数未被配置时,所述第一条件不被满足;当所述第二更高层参数和所述第三更高层参数均未被配置时,所述第一条件不被满足;当所述第一更高层参数被配置并且所述第一更高层参数的值不属于所述第一参数值集合时,所述第一条件不被满足。
作为一个实施例,所述第三更高层参数的名称里包括“refUnifiedTCIState”。
作为一个实施例,所述第三更高层参数的名称里包括“refUnifiedTCIStateList”。
作为一个实施例,所述第二更高层参数的名称里包括“DLorJoint-TCIState”,所述第三更高层参数的名称里包括“refUnifiedTCIState”。
作为一个实施例,所述第二更高层参数的名称里包括“DLorJoint-TCIState-ToAddModList”,所述第三更高层参数的名称里包括“refUnifiedTCIStateList”。
实施例15
实施例15示例了根据本申请的一个实施例的第一条件集合包括第一条件的示意图;如附图15所示。在实施例15中,所述第一条件包括:所述第一更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合,以及第二更高层参数被配置并且所述第二更高层参数的值属于第二参数值集合。
作为一个实施例,所述第一条件还包括:第二更高层参数被配置并且所述第二更高层参数的值属于第二参数值集合。
作为一个实施例,当所述第一更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合,以及所述第二更高层参数被配置并且所述第二更高层参数的值属于所述第二参数值集合时,所述第一条件被满足。
作为一个实施例,当且仅当所述第一更高层参数被配置并且所述第一更高层参数的值属于所述第一参数值集合,以及所述第二更高层参数被配置并且所述第二更高层参数的值属于所述第二参数值集合时,所述第一条件被满足。
作为一个实施例,当所述第一更高层参数未被配置时,所述第一条件不被满足;当所述第一更高层参数被配置并且所述第一更高层参数的值不属于所述第一参数值集合时,所述第一条件不被满足;当所述第 二更高层参数未被配置时,所述第一条件不被满足;当所述第二更高层参数被配置并且所述第二更高层参数的值不属于所述第二参数值集合时,所述第一条件不被满足。
作为一个实施例,所述第二更高层参数的名称里包括“followUnifiedTCIstate”。
作为一个实施例,所述第二更高层参数的名称里包括“follow”,“TCIstate”和“r17”。
作为一个实施例,所述第二更高层参数的名称里包括“follow”,“unified”和“TCIstate”。
作为一个实施例,所述第二参数值集合中的任一参数值是所述第二更高层参数的一个候选值。
作为一个实施例,所述第二参数值集合仅包括一个参数值。
作为一个实施例,所述第二参数值集合包括多个参数值。
作为一个实施例,所述第二参数值集合中的一个参数值包括字符串“enabled”。
作为一个实施例,所述第二参数值集合包括参数值“enabled”。
作为一个实施例,所述第二参数值集合仅包括一个参数值,所述一个参数值包括字符串“enabled”。
实施例16
实施例16示例了根据本申请的一个实施例的第一条件集合包括第二条件的示意图;如附图16所示。在实施例16中所述第二条件包括:所述第二信令的格式属于所述第一格式集合。
作为一个实施例,所述第二条件是所述第一条件集合中的一个条件。
作为一个实施例,所述第一条件集合由所述第二条件组成。
作为一个实施例,所述第一条件集合包括除所述第二条件以外的至少一个其他条件。
作为一个实施例,所述第二条件仅包括所述第二信令的格式属于所述第一格式集合。
作为一个实施例,当所述第二信令的格式属于所述第一格式集合时,所述第二条件被满足。
作为一个实施例,当所述第二信令的格式不属于所述第一格式集合时,所述第二条件不被满足。
作为一个实施例,所述第二信令的格式属于Format 1_0,Format 1_1或Format 1_2中之一。
作为一个实施例,所述第一格式集合包括Format 1_1。
作为一个实施例,所述第一格式集合包括Format 1_2。
作为一个实施例,所述第一格式集合包括Format 1_1和Format 1_2。
作为一个实施例,所述第一格式集合不包括Format 1_0。
作为一个实施例,所述第一格式集合由Format 1_1和Format 1_2组成。
作为一个实施例,当所述第二信令的格式是Format 1_1或Format 1_2时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第二信令的格式是Format 1_0时,所述第一信号占用的所述时域资源和所述第一TCI状态组包括的TCI状态的所述数量无关。
作为一个实施例,当所述第二信令的格式是Format 1_0时,所述第一信号占用的所述时域资源是所述第一符号组。
作为一个实施例,当所述第二信令的格式是Format 1_0时,所述第一信号占用的所述时域资源包括所述第一符号组。
作为一个实施例,当所述第二信令的格式是Format 1_0时,所述第一信号占用的所述时域资源属于所述第一符号组。
作为一个实施例,所述第二信令的格式包括:所述第二信令是否包括第一DCI域;所述第一DCI域指示至少一个TCI状态;所述第一格式集合中的每个格式都包括所述第一DCI域。
作为一个实施例,所述第二信令的格式包括:所述第二信令是否包括第一DCI域,所述第一DCI域指示至少一个TCI状态;当所述第二信令包括所述第一DCI域时,所述第二信令的格式属于所述第一格式集合;当所述第二信令不包括所述第一DCI域时,所述第二信令的格式不属于所述第一格式集合。
作为一个实施例,所述第一DCI域包括DCI域“Transmission configuration indication”。
作为一个实施例,所述第一DCI域是DCI域“Transmission configuration indication”。
作为一个实施例,当所述第二信令包括所述第一DCI域时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当所述第二信令不包括所述第一DCI域时,所述第一信号占用的所述时域资源和所述第一TCI状态组包括的TCI状态的所述数量无关。
作为一个实施例,当所述第二信令不包括所述第一DCI域时,所述第一信号占用的所述时域资源是所述第一符号组。
作为一个实施例,当所述第二信令不包括所述第一DCI域时,所述第一信号占用的所述时域资源包括所述第一符号组。
作为一个实施例,当所述第二信令不包括所述第一DCI域时,所述第一信号占用的所述时域资源属于所述第一符号组。
实施例17
实施例17示例了根据本申请的一个实施例的当第一TCI状态组包括的TCI状态的数量等于2时,第二信令的格式被用于确定:第一TCI状态组中的仅一个TCI状态被应用于第一信号还是第一TCI状态组中的两个TCI状态都被应用于第一信号的示意图;如附图17所示。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被所述第一节点用于确定:所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
作为一个实施例,所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号。
作为一个实施例,所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
作为一个实施例,所述第一TCI状态组包括的TCI状态的所述数量等于2;当所述第二信令的所述格式属于第二格式集合时,所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号;当所述第二信令的所述格式属于第一格式集合时,所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号;所述第二格式集合和所述第一格式集合分别包括至少一个DCI格式。
作为一个实施例,所述第二格式集合包括Format 1_0。
作为一个实施例,所述第二格式集合由Format 1_0组成。
作为一个实施例,所述第二格式集合不包括Format 1_1和Format 1_2。
作为一个实施例,所述第二格式集合中的任一DCI格式不包括第一DCI域。
作为一个实施例,所述第一格式集合包括Format 1_1。
作为一个实施例,所述第一格式集合包括Format 1_2。
作为一个实施例,所述第一格式集合包括Format 1_1和Format 1_2。
作为一个实施例,所述第一格式集合不包括Format 1_0。
作为一个实施例,所述第一格式集合由Format 1_1和Format 1_2组成。
作为一个实施例,所述第一格式集合中的任一DCI格式包括第一DCI域。
作为一个实施例,不存在一个DCI格式同时属于所述第二格式集合和所述第一格式集合。
作为一个实施例,所述第二信令的所述格式包括:所述第二信令是否包括第一DCI域。
作为一个实施例,当所述第二信令不包括所述第一DCI域时,所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号;当所述第二信令包括所述第一DCI域时,所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
作为一个实施例,所述第一DCI域指示至少一个TCI状态。
作为一个实施例,所述第一DCI域包括DCI域“Transmission configuration indication”。
作为一个实施例,所述第一DCI域是DCI域“Transmission configuration indication”。
作为一个实施例,第一TCI状态和第二TCI状态分别是所述第一TCI状态组包括的两个TCI状态;当所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号时,所述第一TCI状态是所述第一TCI状态组包括的所述两个TCI状态中被应用于所述第一信号的一个TCI状态。
作为上述实施例的一个子实施例,所述第二TCI状态不被应用于所述第一信号。
作为上述实施例的一个子实施例,所述第一TCI状态是所述第一TCI状态组包括的所述两个TCI状态中默认的一个。
作为上述实施例的一个子实施例,所述第一TCI状态组包括的所述两个TCI状态依次排列;所述第一TCI状态是所述第一TCI状态组包括的所述两个TCI状态中排在前面的一个TCI状态。
作为上述实施例的一个子实施例,第一TCI码点依次指示所述第一TCI状态组包括的所述两个TCI状态;所述第一TCI状态是所述第一TCI状态组包括的所述两个TCI状态中排在前面的一个TCI状态。
作为上述实施例的一个子实施例,所述第一信令指示第一TCI码点,所述第一TCI码点依次指示所述第一TCI状态组包括的所述两个TCI状态;所述第一TCI状态是所述第一TCI状态组包括的所述两个TCI状态中排在前面的一个TCI状态。
作为上述实施例的一个子实施例,所述第一TCI状态是所述第一TCI状态组包括的所述两个TCI状态中对应的TCI-StateId较小的一个。
作为一个实施例,当所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号时,所述第一信号包括第一子信号和第二子信号,第一TCI状态被应用于所述第一子信号,第二TCI状态被应用于所述第二子信号;所述第一TCI状态和所述第二TCI状态分别是所述第一TCI状态组包括的所述两个TCI状态。
作为上述实施例的一个子实施例,所述第一子信号和所述第二子信号在时域相互正交。
实施例18
实施例18示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图18所示。在附图18中,第一节点设备中的处理装置1800包括第一处理器1801。
在实施例18中,第一处理器1801接收第一信令,第二信令和第一信号。
在实施例18中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
作为一个实施例,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
作为一个实施例,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
作为一个实施例,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
作为一个实施例,所述第一处理器1801还发送第二信号;其中,所述第二信号包括针对所述第一信令的HARQ-ACK,所述第一信令被用于确定所述第二信号所占用的时域资源,所述第二信号所占用的时域资源被用于确定目标时间单元;所述第一信号不早于所述目标时间单元。
作为一个实施例,所述第一处理器1801还接收第三信号;其中,所述第三信号在第一PDSCH上传输,所述第一信令被用于调度所述第一PDSCH,所述第三信号携带第一比特块;所述第二信号包括针对所述第一PDSCH的HARQ-ACK;所述第一信令指示所述第三信号所占用的时域资源,所述第一信令指示所述第二信号所占用的时域资源和所述第三信号所占用的时域资源之间的时间间隔。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一信令包括DCI,所述第二信令包括DCI,所述第一信令和所述第二信令分 别包括两个不同的DCI;所述第一信号携带至少一个TB或至少一个CBG;所述第一信令指示所述第一信号的TCI状态;所述第一信令被用于确定目标时间单元,所述目标时间单元是一个时隙;所述第一信号不早于所述目标时间单元。
作为一个实施例,所述第一信令被用于确定目标时间单元,所述目标时间单元是一个时隙;所述第二信令的起始时刻不早于所述目标时间单元的起始时刻;所述第一信令指示所述第二信令的TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第二信令。
作为一个实施例,所述第一处理器1801包括实施例4中的{天线452,接收器/发射器454,接收处理器456,发射处理器468,多天线接收处理器458,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例19
实施例19示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图19所示。在附图19中,第二节点设备中的处理装置1900包括第二处理器1901。
在实施例19中,第二处理器1901发送第一信令,第二信令和第一信号;
在实施例19中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
作为一个实施例,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
作为一个实施例,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
作为一个实施例,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
作为一个实施例,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
作为一个实施例,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
作为一个实施例,所述第二处理器1901还接收第二信号;其中,所述第二信号包括针对所述第一信令的HARQ-ACK,所述第一信令被用于确定所述第二信号所占用的时域资源,所述第二信号所占用的时域资源被用于确定目标时间单元;所述第一信号不早于所述目标时间单元。
作为一个实施例,所述第二处理器1901还发送第三信号;其中,所述第三信号在第一PDSCH上传输,所述第一信令被用于调度所述第一PDSCH,所述第三信号携带第一比特块;所述第二信号包括针对所述第一PDSCH的HARQ-ACK;所述第一信令指示所述第三信号所占用的时域资源,所述第一信令指示所述第二信号所占用的时域资源和所述第三信号所占用的时域资源之间的时间间隔。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第一信令包括DCI,所述第二信令包括DCI,所述第一信令和所述第二信令分别包括两个不同的DCI;所述第一信号携带至少一个TB或至少一个CBG;所述第一信令指示所述第一信号的TCI状态;所述第一信令被用于确定目标时间单元,所述目标时间单元是一个时隙;所述第一信号不早于所述目标时间单元。
作为一个实施例,所述第一信令被用于确定目标时间单元,所述目标时间单元是一个时隙;所述第二信令的起始时刻不早于所述目标时间单元的起始时刻;所述第一信令指示所述第二信令的TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第二信令。
作为一个实施例,所述第二处理器1901包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理器,接收第一信令,第二信令和第一信号;
    其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
  4. 根据权利要求3所述的第一节点设备,其特征在于,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
  5. 根据权利要求3或4所述的第一节点设备,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
  6. 根据权利要求3至5中任一权利要求所述的第一节点设备,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二处理器,发送第一信令,第二信令和第一信号;
    其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
  9. 根据权利要求8所述的第二节点设备,其特征在于,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
  10. 根据权利要求8或9所述的第二节点设备,其特征在于,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
  11. 根据权利要求10所述的第二节点设备,其特征在于,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
  12. 根据权利要求10或11所述的第二节点设备,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
  13. 根据权利要求10至12中任一权利要求所述的第二节点设备,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
  14. 根据权利要求8至13中任一权利要求所述的第二节点设备,其特征在于,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令和第二信令;
    接收第一信号;
    其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
  16. 根据权利要求15所述的方法,其特征在于,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
  17. 根据权利要求15或16所述的方法,其特征在于,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
  18. 根据权利要求17所述的方法,其特征在于,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
  20. 根据权利要求17至19中任一权利要求所述的方法,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
  21. 根据权利要求15至20中任一权利要求所述的方法,其特征在于,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令和第二信令;
    发送第一信号;
    其中,所述第一信令指示第一TCI状态组,所述第一TCI状态组包括至少一个TCI状态;所述第一TCI状态组中的至少一个TCI状态被应用于所述第一信号;所述第二信令指示所述第一信号的频域资源,MCS,HARQ进程号,RV或NDI中的一种或多种;所述第一TCI状态组包括的TCI状态的数量和所述第二信令共同被用于确定所述第一信号占用的时域资源。
  23. 根据权利要求22所述的方法,其特征在于,所述第二信令指示第一符号组,所述第一TCI状态组包括的TCI状态的所述数量和所述第一符号组共同被用于确定所述第一信号占用的所述时域资源。
  24. 根据权利要求22或23所述的方法,其特征在于,当第一条件集合中的每个条件都被满足时,所述第一TCI状态组包括的TCI状态的所述数量和所述第二信令共同被用于确定所述第一信号占用的所述时域资源;所述第一条件集合包括至少一个条件。
  25. 根据权利要求24所述的方法,其特征在于,所述第一条件集合中的每个条件是否都被满足被用于确定所述第一TCI状态组包括的TCI状态的所述数量是否被用于确定所述第一信号占用的所述时域资源。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第一条件集合包括第一条件,所述第一条件包括:第一更高层参数被配置并且所述第一更高层参数的值属于第一参数值集合;所述第一参数值集合包括至少一个参数值。
  27. 根据权利要求24至26中任一权利要求所述的方法,其特征在于,所述第一条件集合包括第二条件,所述第二条件包括:所述第二信令的格式属于第一格式集合。
  28. 根据权利要求22至27中任一权利要求所述的方法,其特征在于,当所述第一TCI状态组包括的TCI状态的所述数量等于2时,所述第二信令的格式被用于确定所述第一TCI状态组中的仅一个TCI状态被应用于所述第一信号还是所述第一TCI状态组中的两个TCI状态都被应用于所述第一信号。
PCT/CN2023/082452 2022-03-29 2023-03-20 一种被用于无线通信的节点中的方法和装置 WO2023185522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210323924.X 2022-03-29
CN202210323924.XA CN116938400A (zh) 2022-03-29 2022-03-29 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023185522A1 true WO2023185522A1 (zh) 2023-10-05

Family

ID=88199095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082452 WO2023185522A1 (zh) 2022-03-29 2023-03-20 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116938400A (zh)
WO (1) WO2023185522A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170464A (zh) * 2018-12-20 2021-07-23 高通股份有限公司 具有多个传送-接收点的半持久调度
CN113453353A (zh) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210328641A1 (en) * 2020-04-17 2021-10-21 Kai Xu Beamforming with Multiple Panels in a Radio System
CN113556820A (zh) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170464A (zh) * 2018-12-20 2021-07-23 高通股份有限公司 具有多个传送-接收点的半持久调度
CN113453353A (zh) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210328641A1 (en) * 2020-04-17 2021-10-21 Kai Xu Beamforming with Multiple Panels in a Radio System
CN113556820A (zh) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116938400A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115226193A (zh) 一种被用于无线通信的节点中的方法和装置
CN113271193A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221904A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202416A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023093516A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021077961A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023155740A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021143512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023231971A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777896

Country of ref document: EP

Kind code of ref document: A1