WO2023093516A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023093516A1
WO2023093516A1 PCT/CN2022/130488 CN2022130488W WO2023093516A1 WO 2023093516 A1 WO2023093516 A1 WO 2023093516A1 CN 2022130488 W CN2022130488 W CN 2022130488W WO 2023093516 A1 WO2023093516 A1 WO 2023093516A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
pdcch candidate
pdcch
resource set
target
Prior art date
Application number
PCT/CN2022/130488
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023093516A1 publication Critical patent/WO2023093516A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • Multi-antenna technology is a key technology in 3GPP (3rd Generation Partner Project, third generation partnership project) LTE (Long-term Evolution, long-term evolution) system and NR (New Radio, new radio) system. Additional spatial degrees of freedom are obtained by configuring multiple antennas at a communication node, such as a base station or a UE (User Equipment, User Equipment). Multiple antennas use beamforming to form beams pointing in a specific direction to improve communication quality. The beams formed by multi-antenna beamforming are generally narrow, and the beams of the communicating parties need to be aligned for effective communication. When the transmission/reception beams are out of synchronization due to reasons such as UE movement, the communication quality will be greatly reduced or even communication will be impossible.
  • 3GPP 3rd Generation Partner Project, third generation partnership project
  • LTE Long-term Evolution, long-term evolution
  • NR New Radio, new radio
  • NR R(release)15 and R16 beam management is used for beam selection, update and indication between communication parties, so as to realize the performance gain brought by multiple antennas.
  • multiple antennas belong to multiple TRPs (Transmitter Receiver Points)/panels (antenna panels)
  • additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels.
  • NR R(release)16 multi-TRP based transmission is introduced to enhance the transmission quality of the downlink data channel.
  • the control channel and data channel adopt different beam management/indication mechanisms, and the uplink and downlink also adopt different beam management/indication mechanisms.
  • the control channel and the data channel can use the same beam, and there is channel reciprocity between the uplink and downlink channels in many application scenarios, and the same beam can be used. Utilizing this feature can greatly reduce system complexity, signaling overhead and delay.
  • the 3GPP RAN (Radio Access Network, Radio Access Network) 1#103e meeting the technology of using physical layer signaling to update the beams of the control channel and data channel at the same time has been adopted. In this case, the uplink and downlink beams can be updated simultaneously by using physical layer signaling.
  • a proposal to simultaneously update the beams of the control channel and the data channel by using downlink granted DCI (Downlink control information, downlink control information) was passed.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • first signaling where the first signaling includes DCI, where the first signaling includes a first field, and the first field in the first signaling indicates a first TCI state and a second TCI state;
  • the target TCI state is the The default one of the first TCI state and the second TCI state, or the target TCI state is related to whether a first condition is met;
  • the first condition includes: at least one PDCCH in the first resource set A candidate is connected to another PDCCH candidate.
  • the problems to be solved in this application include: in a system where DCI is used to simultaneously update beams of control channels and data channels, when one DCI indicates two TCI states, how to determine which beams of control channels are used Which TCI status update.
  • the above method solves the above problem by using the default TCI state to update the beam of the control channel.
  • the above method solves the above problem by determining the TCI state of the beam used to update the control channel according to whether the control channel satisfies the first condition.
  • the characteristics of the above method include: the first resource set is used to transmit a control channel, and after receiving the first signaling, the TCI state of the first resource set is updated to the first A TCI state and a default TCI state in the second TCI state.
  • the characteristics of the above method include: the first resource set is used to transmit a control channel, after receiving the first signaling, according to whether the first resource set satisfies the first condition Determine whether the TCI state of the first resource set is updated to the first TCI state or the second TCI state.
  • the advantages of the above method include: solving the problem of how to determine which control channel beams are updated by which TCI state when one DCI indicates two TCI states.
  • the advantages of the above method include: by reasonably updating beams of the control channel, transmission reliability of the control channel is improved.
  • the advantages of the above method include: avoiding using additional signaling to indicate which TCI state is used to update which control channel beam, saving signaling overhead.
  • the advantages of the above method include: it ensures that the beams of the two connected PDCCH candidates are updated by different TCI states, and provides additional diversity gain for the control channel.
  • the first TCI state and the second TCI state are jointly used to receive the first signal.
  • the target TCI state is related to whether the first condition is satisfied; when the first condition is satisfied, the target TCI state is related to the first index and the second index At least one of them is related; the first resource set is used to determine the first index; the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate and The second PDCCH candidate is connected, and the second PDCCH candidate is a PDCCH candidate in a second resource set, and the second resource set is used to determine the second index.
  • the target TCI state is related to whether the first condition is satisfied; when the first condition is satisfied, the target TCI state is related to the first index and the second index At least one of them is related;
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate is connected to the second PDCCH candidate;
  • the first PDCCH candidate belongs to The first search space set, the second PDCCH candidate belongs to the second search space set, the first search space set and the second search space set are used to determine the first index and the second search space set respectively index.
  • the first condition is satisfied; the first PDCCH candidate is a PDCCH candidate in the first resource set, the first PDCCH candidate is connected to the second PDCCH candidate, and the second PDCCH
  • the candidate is a PDCCH candidate in the second set of resources; only other TCI states of the first TCI state and the second TCI state are used for The PDCCH is monitored in the resource set; the other TCI state is a TCI state different from the target TCI state among the first TCI state and the second TCI state.
  • the characteristics of the above method include: the beams of the two connected PDCCH candidates are respectively updated by the two TCI states indicated by the DCI; the benefits of the above method include: it ensures that the control channel can acquire multiple TCI states provided by Additional diversity gain.
  • the target TCI state is related to whether the first condition is satisfied; when the first condition is not satisfied, the target TCI state is the first TCI state and the default one of the second TCI states.
  • the first information block is used to determine the first resource set.
  • the first node includes a user equipment.
  • the first node includes a relay node.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the target TCI state of the first TCI state and the second TCI state is used by the target recipient of the first signaling to monitor in the first set of resources after the first moment PDCCH;
  • the target TCI state is a default one of the first TCI state and the second TCI state, or, the target TCI state is related to whether the first condition is met;
  • the first condition includes: At least one PDCCH candidate in the first resource set is connected to another PDCCH candidate.
  • the first TCI state and the second TCI state are jointly used by the intended receiver of the first signal to receive the first signal.
  • the target TCI state is related to whether the first condition is satisfied; when the first condition is satisfied, the target TCI state is related to the first index and the second index At least one of them is related; the first resource set is used to determine the first index; the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate and The second PDCCH candidate is connected, and the second PDCCH candidate is a PDCCH candidate in a second resource set, and the second resource set is used to determine the second index.
  • the target TCI state is related to whether the first condition is satisfied; when the first condition is satisfied, the target TCI state is related to the first index and the second index At least one of them is related;
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate is connected to the second PDCCH candidate;
  • the first PDCCH candidate belongs to The first search space set, the second PDCCH candidate belongs to the second search space set, the first search space set and the second search space set are used to determine the first index and the second search space set respectively index.
  • the first condition is satisfied; the first PDCCH candidate is a PDCCH candidate in the first resource set, the first PDCCH candidate is connected to the second PDCCH candidate, and the second PDCCH a candidate is a PDCCH candidate in said second set of resources; only other TCI states of said first TCI state and said second TCI state are used by said intended recipient of said first signaling
  • the PDCCH is monitored in the second resource set after the first moment; the other TCI state is a TCI state different from the target TCI state among the first TCI state and the second TCI state.
  • the target TCI state is related to whether the first condition is satisfied; when the first condition is not satisfied, the target TCI state is the first TCI state and the default one of the second TCI states.
  • the first information block is used to determine the first resource set.
  • the second node is a base station.
  • the second node is a user equipment.
  • the second node is a relay node.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first processor receives first signaling, the first signaling includes DCI, the first signaling includes a first field, and the first field in the first signaling indicates a first TCI state and Second TCI state;
  • the first processor monitors PDCCH in a first set of resources after a first moment, the first signaling is used to determine the first moment;
  • the target TCI state is the The default one of the first TCI state and the second TCI state, or the target TCI state is related to whether a first condition is met;
  • the first condition includes: at least one PDCCH in the first resource set A candidate is connected to another PDCCH candidate.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second processor sends first signaling, the first signaling includes DCI, the first signaling includes a first field, and the first field in the first signaling indicates the first TCI state and Second TCI state;
  • the second processor sends a PDCCH in a first set of resources after a first moment, and the first signaling is used to determine the first moment;
  • the target TCI state of the first TCI state and the second TCI state is used by the target recipient of the first signaling to monitor in the first set of resources after the first moment PDCCH;
  • the target TCI state is a default one of the first TCI state and the second TCI state, or, the target TCI state is related to whether the first condition is met;
  • the first condition includes: At least one PDCCH candidate in the first resource set is connected to another PDCCH candidate.
  • this application has the following advantages:
  • the transmission reliability of the control channel is improved, and signaling overhead is saved at the same time.
  • FIG. 1 shows a flowchart of first signaling and a first resource set according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to one embodiment of the present application
  • FIG. 6 shows a schematic diagram of first signaling being used to determine a first moment according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a target TCI state being used to monitor a PDCCH in a first resource set after a first moment according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram in which the target TCI state is a default one of the first TCI state and the second TCI state according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a first condition according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a first TCI state and a second TCI state being jointly used to receive a first signal according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of a first PDCCH candidate and a second PDCCH candidate according to an embodiment of the present application
  • Fig. 12 shows a schematic diagram related to whether the target TCI state and the first condition are met according to an embodiment of the present application
  • Fig. 13 shows a schematic diagram related to whether the target TCI state and the first condition are met according to an embodiment of the present application
  • Fig. 14 shows a schematic diagram related to whether the target TCI state and the first condition are met according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of a first node monitoring a PDCCH in a second resource set after a first moment according to an embodiment of the present application
  • Fig. 16 shows a schematic diagram related to whether the target TCI state and the first condition are met according to an embodiment of the present application
  • Fig. 17 shows a schematic diagram of a first information block according to an embodiment of the present application.
  • FIG. 18 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Fig. 19 shows a structural block diagram of a processing device used in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first signaling and the first resource set according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step.
  • the order of the steps in the blocks does not represent a specific chronological relationship between the various steps.
  • the first node in this application receives first signaling in step 101, the first signaling includes DCI, the first signaling includes a first field, and the first signaling The first field in the order indicates the first TCI state and the second TCI state; in step 102, the PDCCH is monitored in the first resource set after the first moment, and the first signaling is used to determine the first moment.
  • the target TCI state is the The default one of the first TCI state and the second TCI state, or the target TCI state is related to whether a first condition is met;
  • the first condition includes: at least one PDCCH in the first resource set A candidate is connected to another PDCCH candidate.
  • the target TCI state is the first TCI state or the second TCI state.
  • only the target TCI state of the first TCI state and the second TCI state is used for the monitor the PDCCH in the first resource set.
  • one of the first TCI state and the second TCI state is used in the first resource set after the first moment in response to the behavior receiving the first signaling monitor the PDCCH.
  • one of the first TCI state and the second TCI state is used to monitor in the first set of resources after the first moment PDCCH.
  • the first signaling includes physical layer signaling.
  • the first signaling includes dynamic signaling.
  • the first signaling includes Layer 1 (L1) signaling.
  • the first signaling includes layer 1 (L1) control signaling.
  • the first signaling is a DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes DCI for a downlink grant (DL Grant).
  • DL Grant downlink grant
  • the first signaling is used to schedule PDSCH transmission.
  • the first signaling includes downlink assignment (Downlink assignment).
  • the first signaling is not used to schedule PDSCH transmission.
  • the first signaling does not include downlink assignment (Downlink assignment).
  • the first signaling includes DCI for TCI state indication.
  • the first signaling includes DCI for downlink TCI state indication.
  • the DCI format (format) of the first signaling is one of DCI format 1_1 or DCI format 1_2.
  • the CRC Cyclic Redundancy Check, cyclic redundancy check
  • C Cell, cell
  • RTI Radio Network Temporary Identifier, wireless network temporary identifier
  • the CRC of the first signaling is scrambled by a CS (Configured Scheduling, configuration scheduling)-RNTI.
  • CS Configured Scheduling, configuration scheduling
  • the CRC of the first signaling is scrambled by MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • the CRC of the first signaling is scrambled by CS-RNTI
  • the RV (Redundancy version) field of the first signaling is set to all 1
  • the MCS (Modulation and coding scheme) field is set to all 1
  • the NDI (New data indicator) field of the first signaling is set to all 0
  • the FDRA (Frequency domain resource assignment) field of the first signaling is set to all 0 or all 1s.
  • the first signaling indicates that the first TCI state and the second TCI state take effect from the first moment.
  • the first signaling indicates that the first TCI state and the second TCI state become active (active) TCI states from the first moment.
  • the first signaling indicates that an active (active) TCI state is updated to the first TCI state and the second TCI state from the first moment.
  • the first node is configured with a unified TCI architecture supporting R(Release)-17.
  • the first node is configured with a DCI-based beam indication (beam indication) framework supporting R-17.
  • the first field includes at least one bit.
  • the number of bits included in the first field is not greater than 3.
  • the first field includes all or part of bits in one field in one DCI.
  • the first field includes at least one field in a DCI.
  • the first field includes one field in one DCI.
  • the first domain includes multiple domains in one DCI.
  • the first field includes a "Transmission configuration indication" field in a DCI.
  • the first field is a "Transmission configuration indication" field in a DCI.
  • the TCI state refers to: Transmission Configuration Indicator state.
  • the first field indicates a TCI state.
  • the first field indicates one or two TCI states.
  • the first field in the first signaling indicates two TCI states.
  • a value of the first field in the first signaling is equal to a first TCI code point, and the first TCI code point indicates the first TCI state and the second TCI state.
  • the first TCI state and the second TCI state correspond to the same TCI code point.
  • the first field in the first signaling indicates the first TCI state and the second TCI state in sequence.
  • the meaning of the sentence that the first field in the first signaling indicates the first TCI state and the second TCI state in turn includes: the first field in the first signaling The first field first indicates the first TCI state, and then indicates the second TCI state.
  • the first field includes a first subfield and a second subfield
  • the first subfield in the first signaling indicates the first TCI state
  • the first signaling indicates the second TCI state.
  • the value of the first subfield in the first signaling is equal to the TCI code point corresponding to the first TCI state
  • the first subfield in the first signaling is equal to the TCI code point corresponding to the second TCI state.
  • the position of the first subfield in the first signaling in the first signaling is earlier than the second subfield in the first signaling .
  • the first subfield is composed of L1 MSBs (Most Significant Bit, most significant bit) in the first field
  • the second subfield is composed of the first field L2 LSBs (Least Significant Bit, least significant bit) in L2;
  • L1 and L2 are positive integers respectively, and the sum of L1 and L2 is not greater than the number of bits included in the first field.
  • the first TCI state belongs to a first TCI state set
  • the second TCI state belongs to a second TCI state set
  • the first TCI state set and the second TCI state set respectively include at least one TCI state: there is at least one TCI state that belongs to only one of the first TCI state set and the second TCI state set.
  • the first field in the first signaling indicates the first TCI state from the first TCI state set, and indicates the first TCI state from the second TCI state set The second TCI state.
  • a TCI state includes a DMRS (DeModulation Reference Signals, demodulation reference signal) port (port), PDCCH ( QCL (Quasi Co-Location, quasi-co-location) relationship parameters.
  • DMRS Demodulation Reference Signals, demodulation reference signal
  • PDCCH QCL (Quasi Co-Location, quasi-co-location) relationship parameters.
  • the first moment is an effective moment of the first TCI state and the second TCI state.
  • the first moment is a moment when the first TCI state and the second TCI state become active (active) TCI states.
  • the first resource set includes time-frequency resources.
  • the first resource set includes a CORESET (COntrol REsource SET, control resource set).
  • CORESET COntrol REsource SET, control resource set.
  • the first resource set is a CORESET.
  • the first resource set includes a search space set (search space set).
  • the first resource set includes at least one PDCCH candidate (candidate).
  • the first resource set includes a PDCCH candidate of a CORESET after the first moment.
  • the first resource set includes a CORESET PDCCH candidate in a monitoring occasion (monitoring occasion) after the first moment.
  • the first resource set includes a search space set of PDCCH candidates after the first moment.
  • the first resource set includes PDCCH candidates of a search space set in a monitoring occasion (monitoring occasion) after the first moment.
  • the search space set includes a search space (search space).
  • the first resource set occurs periodically in the time domain.
  • the first resource set appears multiple times in the time domain.
  • the first resource set only appears once in the time domain.
  • the first resource set appears multiple times in the time domain after the first moment.
  • the first resource set only appears once in the time domain after the first moment.
  • the first signaling and the first resource set belong to the same carrier (Carrier).
  • the first signaling and the first resource set belong to the same BWP (BandWidth Part, bandwidth interval).
  • the first signaling and the first resource set belong to the same cell.
  • the first signaling and the first resource set belong to different carriers.
  • the first signaling and the first resource set belong to different BWPs.
  • the first signaling and the first resource set belong to different cells.
  • the meaning of the phrase monitoring a PDCCH includes: monitoring a PDCCH candidate (candidate).
  • the meaning of the phrase monitoring the PDCCH includes: monitoring DCI transmitted in the PDCCH.
  • the meaning of the phrase monitoring the PDCCH includes: detecting DCI by monitoring the PDCCH.
  • monitoring PDCCH includes: detecting DCI by monitoring PDCCH candidates.
  • the phrase monitoring the PDCCH includes: monitoring PDCCH candidates to determine whether DCI is transmitted in the PDCCH.
  • the phrase monitoring the PDCCH includes: performing a decoding operation; if it is determined that the decoding is correct according to the CRC, it is determined that the PDCCH is detected; otherwise, it is determined that the PDCCH is not detected.
  • the meaning of the phrase monitoring PDCCH includes: performing a decoding operation; if it is determined that the decoding is correct according to the CRC, it is judged that DCI is detected to be transmitted in the PDCCH; otherwise, it is judged that DCI is not detected.
  • the meaning of the phrase monitoring PDCCH includes: performing coherent detection; if the signal energy obtained after the coherent detection is greater than the first given threshold, it is judged that DCI is transmitted in the PDCCH; otherwise, it is judged that it is not detected to DCI.
  • the meaning of the phrase monitoring PDCCH includes: performing energy detection; if the signal energy obtained by the energy detection is greater than the second given threshold, it is judged that DCI is transmitted in the PDCCH; otherwise, it is judged that it is not detected DCI.
  • the meaning of the phrase monitoring PDCCH includes: determining whether there is DCI transmitted in the PDCCH according to the CRC, and determining whether there is DCI transmitted in the PDCCH before judging whether the decoding is correct according to the CRC.
  • the meaning of the phrase monitoring the PDCCH includes: determining whether there is DCI transmitted in the PDCCH according to coherent detection; determining whether there is DCI transmitted in the PDCCH before the coherent detection.
  • the meaning of the phrase monitoring the PDCCH includes: determining whether there is DCI transmitted in the PDCCH according to energy detection; determining whether there is DCI transmitted in the PDCCH before the energy detection.
  • the monitoring for the PDCCH is performed in a PDCCH candidate (candidate).
  • the target TCI state is a default one of the first TCI state and the second TCI state.
  • the target TCI state is related to whether the first condition is satisfied.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • LTE Long-Term Evolution, long-term evolution
  • LTE-A Long-Term Evolution Advanced, enhanced long-term evolution
  • EPS Evolved Packet System
  • 5GNR Long-Term Evolution
  • EPS Evolved Packet System
  • 5GS 5G System
  • EPS Evolved Packet System, Evolved Packet System
  • 5GS/EPS 200 may include one or more UEs (User Equipment, user equipment) 201, a UE241 for Sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS200 May be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN202 includes NR (New Radio, new radio) node B (gNB) 203 and other gNB204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Point
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the sender of the first signaling includes the gNB203.
  • the recipient of the first signaling includes the UE201.
  • the sender of the PDCCH transmitted in the first resource set includes the gNB203.
  • the recipients of the PDCCH transmitted in the first resource set include the UE 201 .
  • the sender of the first signal includes the gNB203.
  • the receiver of the first signal includes the UE201.
  • the sender of the PDCCH transmitted in the second resource set includes the gNB203.
  • the recipients of the PDCCH transmitted in the second resource set include the UE 201 .
  • the sender of the first information block includes the gNB203.
  • the recipient of the first information block includes the UE201.
  • the UE 201 supports the R-17 unified TCI architecture.
  • the UE 201 supports R-17 DCI-based beam indication.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling is generated by the PHY301 or the PHY351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • the first signal is generated by the PHY301 or the PHY351.
  • the first information block is generated in the RRC sublayer 306 .
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and routing to the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M Phase Shift Keying
  • M-QAM M Quadrature Amplitude Modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding,
  • the transmit processor 416 then maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilots) in the time and/or frequency domains, and then uses an inverse fast Fourier transform (IFFT) to ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452.
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the second Communication device 450 is the destination for any parallel streams.
  • the symbols on each parallel stream are demodulated and recovered in receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium. In DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operation.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer. Similar to the transmit function at the first communication device 410 described in DL, the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the radio resource allocation of the first communication device 410. Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane. The controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which are provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the second communication device 450 .
  • Upper layer packets from controller/processor 475 may be provided to the core network.
  • Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operation.
  • the second communication device 450 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving the first signaling; and monitoring the PDCCH in the first resource set after the first moment.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the The first signaling; monitor the PDCCH in the first resource set after the first moment.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending the first signaling; and sending a PDCCH in the first resource set after the first moment.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the The first signaling; sending the PDCCH in the first resource set after the first moment.
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to monitor the PDCCH in the first set of resources after the first moment;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multiple At least one of antenna transmit processor 471, said controller/processor 475, said memory 476 ⁇ is used to transmit a PDCCH in said first set of resources after said first time instant.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signal after the first moment;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data at least one of the sources 467 ⁇ is used to monitor the PDCCH in the second set of resources after the first moment;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multiple At least one of antenna transmit processor 471, said controller/processor 475, said memory 476 ⁇ is used to transmit a PDCCH in said second set of resources after said first time instant.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of sources 467 ⁇ is used to receive the first information block;
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the second node U1 and the first node U2 are communication nodes that transmit through the air interface.
  • the steps in blocks F51 to F57 are optional.
  • the first information block is sent in step S5101; the PDCCH is sent in the first resource set before the first time in step S5102; the first signaling is sent in step S511; the first signaling is sent in step S5103 Three signals; receive a second signal in step S5104; send a PDCCH in the first resource set after the first moment in step S512; send a PDCCH in the second resource set after the first moment in step S5105 Send the PDCCH in step S5106; send the second signaling in step S5106; send the first signal in step S5107.
  • the first information block is received in step S5201; the PDCCH is monitored in the first resource set before the first moment in step S5202; the first signaling is received in step S521; the first signaling is received in step S5203 Three signals; send a second signal in step S5204; monitor PDCCH in the first resource set after the first moment in step S522; monitor the PDCCH in the second resource set after the first moment in step S5205 monitor the PDCCH; receive the second signaling in step S5206; receive the first signal in step S5207.
  • the first signaling includes DCI
  • the first signaling includes a first field
  • the first field in the first signaling indicates a first TCI state and a second TCI state
  • the first signaling is used by the first node U2 to determine the first moment; only the target TCI state in the first TCI state and the second TCI state is used by the first node U2 Monitor the PDCCH in the first resource set after the first moment;
  • the target TCI state is a default one of the first TCI state and the second TCI state, or, the target TCI state and the Whether the first condition is satisfied is relevant;
  • the first condition includes: at least one PDCCH candidate in the first resource set is connected to another PDCCH candidate.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a relay node device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a user equipment-to-user wireless interface.
  • the second node U1 is a serving cell maintenance base station of the first node U2.
  • the first signaling is transmitted in a downlink physical layer control channel (that is, a downlink channel that can only be used to bear physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to bear physical layer signaling.
  • the first signaling is transmitted in a PDCCH.
  • the step in block F51 in Fig. 5 exists, the first information block is used by the first node U2 to determine the first resource set.
  • the first information block is transmitted on the PDSCH.
  • the steps in block F52 in FIG. 5 exist, and the above-mentioned method used in the first node for wireless communication includes: monitoring PDCCH in the first resource set before the first moment ; Wherein, the third TCI state is used by the first node U2 to monitor the PDCCH in the first resource set before the first moment; the third TCI state is different from the target TCI state.
  • the steps in block F52 in FIG. 5 exist, and the above-mentioned method used in the second node for wireless communication includes: sending PDCCH in the first resource set before the first moment .
  • the third TCI state is different from the first TCI state and different from the second TCI state.
  • the TCI state of the first resource set is the third TCI state.
  • the DMRS port associated with the PDCCH reception in the first resource set is quasi co-located with a third reference signal (quasi co-located), and the third reference signal is at transmitted in a third reference signal resource, where the third TCI state indicates the third reference signal resource.
  • the third TCI state indicates that the QCL type corresponding to the third reference signal resource includes QCL-TypeD.
  • the steps in block F54 in FIG. 5 exist, and the above-mentioned method used in the first node for wireless communication includes: sending a second signal; wherein, the second signal includes A signaling HARQ-ACK, the first signaling is used by the first node to determine the time domain resource occupied by the second signal, and the time domain resource occupied by the second signal is determined by the first A node is used to determine the first instant.
  • the second signal includes A signaling HARQ-ACK
  • the first signaling is used by the first node to determine the time domain resource occupied by the second signal
  • the time domain resource occupied by the second signal is determined by the first A node is used to determine the first instant.
  • the step in block F54 in Fig. 5 exists, the above-mentioned method used in the second node for wireless communication includes: receiving the second signal.
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes UCI (Uplink control information, uplink control information).
  • UCI Uplink control information, uplink control information
  • the first signaling is earlier than the second signal in the time domain.
  • the second signal is transmitted on a PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the second signal is transmitted on a PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • both the steps in blocks F54 and F53 in FIG. 5 exist, and the above-mentioned method used in the first node for wireless communication includes: receiving a third signal; wherein, the first signaling includes Scheduling information of the third signal, where the third signal carries a first bit block, and the second signal indicates whether the first bit block is received correctly.
  • the steps in blocks F54 and F53 in Fig. 5 both exist, and the above-mentioned method used in the second node for wireless communication includes: sending the third signal.
  • the third signal includes a baseband signal.
  • the third signal includes a wireless signal.
  • the third signal includes a radio frequency signal.
  • the first bit block includes a TB (Transport Block, transport block).
  • TB Transport Block, transport block
  • the first bit block includes a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the second signal is later than the third signal in the time domain.
  • the third signal is transmitted on the PDSCH.
  • the steps in the block F55 in accompanying drawing 5 exist; the first condition is met; the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH The candidate item is connected with the second PDCCH candidate item, and the second PDCCH candidate item is a PDCCH candidate item in the second resource set; only other TCI items in the first TCI state and the second TCI state The state is used by the first node U2 to monitor the PDCCH in the second resource set after the first moment; the other TCI state is different from the first TCI state and the second TCI state The TCI state of the target TCI state.
  • the steps in the block F57 in FIG. 5 exist; the first signal is transmitted on the PDSCH; the first TCI state and the second TCI state are jointly transmitted by the first node U2 for receiving the first signal.
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal carries one TB or one CBG.
  • the steps in blocks F56 and F57 in FIG. 5 both exist; the second signaling includes the scheduling information of the first signal; the scheduling information includes time domain resources, frequency domain resources, One or more of MCS, DMRS port, HARQ process number, RV, NDI or TCI state.
  • Embodiment 6 illustrates a schematic diagram in which the first signaling is used to determine the first moment according to an embodiment of the present application; as shown in FIG. 6 .
  • the time domain resource occupied by the first signaling is used to determine the first moment.
  • the first signaling is earlier than the first moment in the time domain.
  • the second signal includes HARQ-ACK for the first signaling
  • the first signaling is used to determine the time domain resource occupied by the second signal
  • the time domain resource occupied by the second signal The time domain resources are used to determine the first instant.
  • the HARQ-ACK refers to: Hybrid Automatic Repeat request-Acknowledgment.
  • the HARQ-ACK includes ACK.
  • the HARQ-ACK includes NACK (Negative ACKnowledgement, deny).
  • the HARQ-ACK includes ACK or NACK.
  • the HARQ-ACK for the first signaling indicates whether the first signaling is received correctly.
  • the HARQ-ACK for the first signaling indicates that the first signaling is received correctly.
  • the HARQ-ACK for the first signaling is used by a sender of the first signaling to determine whether the first signaling is received correctly.
  • the HARQ-ACK for the first signaling is used by a sender of the first signaling to determine that the first signaling is received correctly.
  • the sender of the first signaling if the sender of the first signaling receives the second signal, the sender of the first signaling considers that the first signaling is received correctly.
  • the sender of the first signaling if the sender of the first signaling does not receive the second signal, the sender of the first signaling considers that the first signaling has not been received correctly.
  • the channel occupied by the second signal includes PUSCH.
  • the channel occupied by the second signal includes a PUCCH.
  • the first signaling indicates time domain resources occupied by the second signal.
  • the first signaling indicates a time interval between the time domain resource occupied by the second signal and the time domain resource occupied by the first signaling.
  • the first signaling indicates a time interval between the time slot occupied by the second signal and the time slot occupied by the first signaling.
  • the meaning of the sentence that the first signaling is used to determine the first moment includes: the time domain resource occupied by the second signal is used to determine the first moment, the The first signaling indicates the time domain resource occupied by the second signal.
  • the first moment is later than the second signal.
  • the first moment is later than a first reference moment, and time domain resources occupied by the second signal are used to determine the first reference moment.
  • the first reference time is the end time of the last symbol occupied by the second signal.
  • the first reference time is an end time of a time slot occupied by the second signal.
  • the time interval between the first moment and the first reference moment is not less than a first interval.
  • the time interval between the first moment and the first reference moment is equal to the first interval.
  • the first moment is the start moment of the first time slot after the first interval after the first reference moment.
  • the first moment is the start moment of the first time slot after the first interval after the last symbol occupied by the second signal.
  • the first interval is configured by RRC.
  • the first interval is fixed.
  • the first interval is a non-negative real number.
  • the first interval is a positive integer.
  • the unit of the first interval is a time slot (slot).
  • the unit of the first interval is millisecond (ms).
  • the unit of the first interval is a symbol.
  • the symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first signaling includes scheduling information of a third signal, the third signal carries a first bit block, and the second signal indicates whether the first bit block is received correctly; the first a signaling indicating the time domain resource occupied by the third signal, the first signaling indicating the time between the time domain resource occupied by the second signal and the time domain resource occupied by the third signal interval; the scheduling information includes one or more of time domain resources, frequency domain resources, MCS, DMRS port (port), HARQ process number, RV, NDI or TCI state.
  • the first signaling indicates a time interval between the time slot occupied by the second signal and the time slot occupied by the third signal.
  • the HARQ-ACK for the first signaling includes: HARQ-ACK for the third signal.
  • the HARQ-ACK for the first signaling includes: HARQ-ACK for the first bit block.
  • the HARQ-ACK for the first signaling indicates whether the first bit block is received correctly.
  • the HARQ-ACK for the first signaling indicates that the first bit block is correctly received.
  • the meaning of the sentence that the first signaling is used to determine the first moment includes: the time domain resource occupied by the second signal is used to determine the first moment, the The first signaling indicates the time domain resource occupied by the third signal and the time interval between the time domain resource occupied by the second signal and the time domain resource occupied by the third signal.
  • the channel occupied by the third signal includes PDSCH.
  • Embodiment 7 illustrates a schematic diagram in which the target TCI state is used to monitor the PDCCH in the first resource set after the first moment according to an embodiment of the present application; as shown in FIG. 7 .
  • the first TCI state indicates a first reference signal resource
  • the second TCI state indicates a second reference signal resource
  • the first TCI state further indicates the QCL type corresponding to the first reference signal resource
  • the second TCI state further indicates the QCL type corresponding to the second reference signal resource
  • the first TCI state indicates that the QCL type corresponding to the first reference signal resource includes QCL-TypeD
  • the second TCI state indicates that the QCL type corresponding to the second reference signal resource includes QCL-TypeD
  • the first reference signal resources include CSI-RS resources.
  • the first reference signal resource includes SS/PBCH block (Synchronization Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block) resource.
  • SS/PBCH block Synchronization Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block
  • the first reference signal resources include SRS (Sounding Reference Signal, Sounding Reference Signal) resources.
  • the first reference signal resources include downlink reference signal resources.
  • the second reference signal resources include CSI-RS resources.
  • the second reference signal resources include SS/PBCH block resources.
  • the second reference signal resources include SRS resources.
  • the second reference signal resources include downlink reference signal resources.
  • the reference signal resource includes an antenna port.
  • the reference signal resource includes a reference signal port.
  • the meaning of the sentence that the target TCI state is used to monitor the PDCCH in the first resource set after the first moment includes: after the first moment, the TCI state is the target TCI state.
  • the meaning of the sentence that the target TCI state is used to monitor the PDCCH in the first resource set after the first moment includes: starting from the first moment, the first resource set TCI state is the target TCI state.
  • the meaning of the sentence that the target TCI state is used to monitor the PDCCH in the first resource set after the first moment includes: after the first moment, the first resource
  • the PDCCH reception associated DMRS ports in the set are quasi co-located with the target reference signal transmitted in the target reference signal resource, the target TCI state indicating the target reference signal resource.
  • the DMRS port associated with the PDCCH reception in the first resource set is quasi-co-located with the target reference signal and the corresponding QCL type includes QCL- Type D.
  • the meaning of the sentence that the target TCI state is used to monitor the PDCCH in the first resource set after the first moment includes: after the first moment, the first node can obtain from The large-scale characteristics of the channel experienced by the target reference signal infer the large-scale characteristics of the channel experienced by the DMRS of the PDCCH transmitted in the first resource set; the target reference signal is transmitted in the target reference signal resource, and the target The TCI state indicates the target reference signal resource.
  • the meaning of the sentence that the target TCI state is used to monitor the PDCCH in the first resource set after the first moment includes: after the first moment, the first node can obtain from The large-scale characteristics of the channel experienced by the target reference signal infer the large-scale characteristics of the channel experienced by the PDCCH transmitted in the first resource set; the target reference signal is transmitted in the target reference signal resource, and the target TCI state Indicate the target reference signal resource.
  • the large-scale characteristics include delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average delay (average delay) or spatial receiving parameter (Spatial One or more of Rx parameter).
  • the target reference signal resource is the first reference signal resource; when the target TCI state is the second TCI state, The target reference signal resource is the second reference signal resource.
  • Embodiment 8 illustrates a schematic diagram in which the target TCI state is a default one of the first TCI state and the second TCI state according to an embodiment of the present application; as shown in FIG. 8 .
  • the default meaning of the phrase includes: no indication is required.
  • the default meaning of the phrase includes: no physical layer signaling indication is required.
  • the default meaning of the phrase includes: no RRC (Radio Resource Control, radio resource control) signaling indication is required.
  • the default meaning of the phrase includes: MAC CE (Medium Access Control layer Control Element, Medium Access Control layer Control Element) signaling indication is not required.
  • the default meaning of the phrase includes: regardless of whether the first condition is met.
  • the default meaning of the phrase includes: nothing to do with the identifier of the first resource set.
  • the identifier of the first resource set includes ControlResourceSetId.
  • the identifier of the first resource set includes SearchSpaceId.
  • the target TCI state is the first TCI state.
  • the target TCI state is the second TCI state.
  • the meaning of the sentence that the target TCI state is the default one of the first TCI state and the second TCI state includes: the target TCI state is the first TCI state and the A TCI state corresponding to a smaller TCI-StateId in the second TCI state.
  • the meaning of the sentence that the target TCI state is the default one of the first TCI state and the second TCI state includes: the target TCI state is the first TCI state and the A TCI state corresponding to a larger TCI-StateId in the second TCI state.
  • the meaning of the sentence that the target TCI state is the default one of the first TCI state and the second TCI state includes: the target TCI state is the first TCI state and the The first TCI state in the second TCI state.
  • the meaning of the sentence that the target TCI state is the default one of the first TCI state and the second TCI state includes: the first field in the first signaling indicates sequentially The first TCI state and the second TCI state, the target TCI state is the first TCI state.
  • the meaning of the sentence that the target TCI state is the default one of the first TCI state and the second TCI state includes: the first field in the first signaling indicates sequentially The first TCI state and the second TCI state, the target TCI state is the second TCI state.
  • the meaning of the sentence that the target TCI state is a default one of the first TCI state and the second TCI state includes: the first domain includes a first subdomain and a second subdomain , the first subfield in the first signaling indicates the first TCI state, the second subfield in the first signaling indicates the second TCI state; the target TCI state is the first TCI state.
  • the position of the first subfield in the first signaling in the first signaling is earlier than the second subfield in the first signaling .
  • the first subfield is composed of L1 MSBs in the first field
  • the second subfield is composed of L2 LSBs in the first field
  • L1 and L2 are positive integers, and the sum of L1 and L2 is not greater than the number of bits included in the first field.
  • the meaning of the sentence that the target TCI state is the default one of the first TCI state and the second TCI state includes: the target TCI state and the first resource set belong to the first The resource pool is also related to belonging to the second resource pool; the first resource pool and the second resource pool respectively include at least one resource set.
  • any resource set in the first resource pool and the second resource pool includes one CORESET.
  • any resource set in the first resource pool and the second resource pool includes one search space set.
  • the first resource pool and the second resource pool are configured by RRC signaling.
  • the first field in the first signaling indicates the first TCI state and the second TCI state in sequence; when the first resource set belongs to the second When there is a resource pool, the target TCI state is the first TCI state; when the first resource set belongs to the second resource pool, the target TCI state is the second TCI state.
  • the target TCI state when the first resource set belongs to the first resource pool, the target TCI state is the corresponding smaller of the first TCI state and the second TCI state The TCI state of the TCI-StateId; when the first resource set belongs to the second resource pool, the target TCI state is the correspondingly larger TCI among the first TCI state and the second TCI state -StateId of the TCI state.
  • Embodiment 9 illustrates a schematic diagram of the first condition according to an embodiment of the present application; as shown in FIG. 9 .
  • the first condition includes: at least one PDCCH candidate in the first resource set is connected to another PDCCH candidate.
  • the first resource set is a CORESET
  • the PDCCH candidates in the first resource set refer to the PDCCH candidates in the search space set associated with the first resource set.
  • the first resource set is a CORESET
  • the meaning of the search space set associated with the first resource set includes: the configuration IE (Information Element, information element) of the search space set indicates that the first Collection of resources.
  • the configuration IE indicates the monitoring slot cycle of the search space set, the monitoring slot offset, the number of continuous slots in each cycle, and the PDCCH monitoring time One or more first symbols occupied in the slot, the number of PDCCH candidates, or some or all of the search space types.
  • the configuration IE indicates that the first resource set is suitable for the search space set.
  • the first resource set is a CORESET
  • the meaning of the search space set associated with the first resource set includes: the frequency domain resources of the search space set, the TCI state, and the duration in units of symbols , the corresponding CCE (Control Channel Element) to REG (Resource-element group) mapping type (CCE-REG-MappingType), or part or all of the precoding granularity is determined by the first resource set.
  • the frequency domain resource occupied by the search space set is the frequency domain resource of the first resource set.
  • the TCI state of the search space set is the TCI state of the first resource set.
  • the CCE-to-REG mapping type corresponding to the search space set is the CCE-to-REG mapping type corresponding to the first resource set.
  • the precoding granularity of the search space set is the precoding granularity of the first resource set.
  • the first resource set is a search space set
  • the PDCCH candidates in the first resource set refer to the PDCCH candidates in the one search space set.
  • the first resource set is a CORESET
  • the PDCCH candidates in the first resource set include all PDCCH candidates in all search space sets associated with the first resource set.
  • the other PDCCH candidate is not a PDCCH candidate in the first resource set.
  • the first node adopts the first candidate decoding hypothesis in the one PDCCH candidate and the other PDCCH candidate, and the third candidate monitoring the PDCCH in one of the decoding hypothesis or the fourth candidate decoding hypothesis; if one PDCCH candidate and the other PDCCH candidate are not connected, the first node
  • the second candidate decoding assumption is used to monitor the PDCCH; the first candidate decoding assumption is to perform only combined decoding on the one PDCCH candidate and the other PDCCH candidate; the second candidate decoding assumption is on the one The PDCCH candidate and the other PDCCH candidate perform independent decoding respectively;
  • the third candidate decoding assumes that only one PDCCH candidate in the one PDCCH candidate and the other PDCCH candidate is independently decoded, and perform combined decoding on the one PDCCH candidate and the other PDCCH candidate;
  • the fourth candidate decoding assumption is to perform independent decoding on the one PDCCH candidate and the other PDCCH candidate, and perform The one PDCCH candidate and
  • the phrase that one PDCCH candidate is connected to another PDCCH candidate means that: the first node performs combined decoding on the one PDCCH candidate and the other PDCCH candidate.
  • the phrase that one PDCCH candidate is connected to another PDCCH candidate means that: the first node can perform combined decoding on the one PDCCH candidate and the other PDCCH candidate.
  • the meaning of the phrase that a PDCCH candidate is connected to another PDCCH candidate includes: a signal received in the one PDCCH candidate and a signal received in the other PDCCH candidate Commonly used to determine whether a DCI is detected to be transmitted in the PDCCH.
  • the meaning of the phrase that a PDCCH candidate is connected to another PDCCH candidate includes: a signal received in the one PDCCH candidate and a signal received in the other PDCCH candidate can be collectively used to determine whether a DCI is detected to be transmitted in the PDCCH.
  • the meaning of the phrase that one PDCCH candidate is connected to another PDCCH candidate includes: the first node performs combined decoding on the one PDCCH candidate and the other PDCCH candidate, and It is determined whether a DCI is detected to be transmitted in the PDCCH according to the combined decoding result.
  • the first node determines whether the CRC passes according to the combined decoding result; if the CRC passes, it judges that a DCI is detected to be transmitted in the PDCCH; otherwise, it judges that no DCI is detected.
  • the meaning of the phrase that a PDCCH candidate is connected to another PDCCH candidate includes: the DCI transmitted in the one PDCCH candidate and the DCI transmitted in the other PDCCH candidate carry the same load (payload).
  • the phrase that one PDCCH candidate is connected to another PDCCH candidate includes: the one PDCCH candidate and the other PDCCH candidate respectively bear two repeated transmissions of the same DCI.
  • the meaning of the phrase that a PDCCH candidate is connected to another PDCCH candidate includes: the first node assumes that the DCI transmitted in the one PDCCH candidate and the DCI transmitted in the other PDCCH candidate The DCIs carry the same payload.
  • the meaning of the phrase that one PDCCH candidate is connected to another PDCCH candidate includes: the first node assumes that the one PDCCH candidate and the other PDCCH candidate respectively carry the same DCI Repeat the transfer twice.
  • the meaning of the phrase that one PDCCH candidate is connected to another PDCCH candidate includes: the first node expects to receive the scheduling DCI of the first PDSCH in the one PDCCH candidate and The scheduling DCI of the second PDSCH is received in another PDCCH candidate, and the first PDSCH and the second PDSCH correspond to the same HARQ process number; the first PDSCH and the second PDSCH overlap in the time domain, Or, the second PDSCH is earlier than the end moment of the expected HARQ-ACK transmission of the first PDSCH in the time domain.
  • the number of times of blind detection (Blind Detection) corresponding to the one PDCCH candidate and the other PDCCH candidate is equal to the first value; if one The PDCCH candidate is not connected to another PDCCH candidate, and the number of blind detections corresponding to the one PDCCH candidate and the other PDCCH candidate is equal to a second value; the first value is not equal to the second value ;
  • the first numerical value and the second numerical value are respectively positive real numbers.
  • the first numerical value and the second numerical value are respectively positive integers.
  • the first numerical value is greater than the second numerical value.
  • the first numerical value is smaller than the second numerical value.
  • the first node if a PDCCH candidate and another PDCCH candidate are not connected, the first node does not perform combined decoding on the one PDCCH candidate and the other PDCCH candidate.
  • the first node performs independent decoding on the one PDCCH candidate and the other PDCCH candidate respectively.
  • the first node cannot perform combined decoding on the one PDCCH candidate and the other PDCCH candidate.
  • the DCI transmitted in the one PDCCH candidate and the DCI transmitted in the other PDCCH candidate carry different payloads.
  • the one PDCCH candidate and the other PDCCH candidate bear two different DCIs respectively.
  • the signal received in the one PDCCH candidate and the signal received in the other PDCCH candidate cannot be used together for determining whether a DCI is detected to be transmitted in the PDCCH.
  • the first node will not expect to receive the scheduling DCI of the first PDSCH in the one PDCCH candidate and receive the scheduling DCI in the other PDCCH
  • the scheduling DCI of the second PDSCH is received in the PDCCH candidate; the first PDSCH and the second PDSCH correspond to the same HARQ process number; the first PDSCH and the second PDSCH overlap in the time domain, or, The second PDSCH is earlier in the time domain than the end moment of the expected HARQ-ACK transmission of the first PDSCH.
  • the meaning of the phrase combined decoding includes: modulation symbols are combined.
  • the meaning of the phrase combined decoding includes: modulation symbols are combined and then input to a demodulator.
  • the meaning of the phrase combined decoding includes: demodulation information is combined.
  • the meaning of the phrase combined decoding includes: the demodulated information is combined and then input to the decoder.
  • the meaning of the phrase combined decoding includes: decoder outputs are combined.
  • the meaning of the phrase combined decoding includes: joint demodulation.
  • the meaning of the phrase combined decoding includes: joint channel decoding.
  • the decoding includes demodulation.
  • the decoding includes channel decoding.
  • the first condition is satisfied.
  • the first condition is not satisfied.
  • the first condition is not satisfied.
  • the first resource set is a CORESET; when the first condition is satisfied, at least one search space set associated with the first resource set is connected to another search space set.
  • the first resource set is a CORESET; whether there is a search space set connected to another search space set in the search space set associated with the first resource set is used to determine the first condition whether it is satisfied.
  • the first resource set is a CORESET; the first condition includes: at least one search space set associated with the first resource set is connected to another search space set.
  • the first resource set is a CORESET; when at least one search space set associated with the first resource set is connected to another search space set, the first condition is satisfied.
  • the first resource set is a CORESET; the first condition is satisfied if and only when at least one search space set associated with the first resource set is connected to another search space set.
  • the first resource set is a CORESET; when each search space set associated with the first resource set is not connected to another search space set, the first condition is not satisfied.
  • the first resource set is a CORESET; when there is no search space set connected to the given search space set for any given search space set associated with the first resource set , the first condition is not satisfied.
  • the RRC parameter is used to indicate whether the first condition is satisfied.
  • a higher layer parameter is used to indicate whether said first condition is met.
  • the first resource set is a search space set
  • the Configuration IE of the first resource set indicates whether the first condition is satisfied.
  • the first resource set is a CORESET, and a configuration IE of at least one search space set associated with the first resource set indicates whether the first condition is satisfied.
  • the configuration IE of a search space set indicates the monitoring slot cycle of the search space set, the monitoring slot offset, the number of continuous continuous slots in each cycle, and the PDCCH monitoring in the slot One or more first symbols occupied in , the number of PDCCH candidates, or some or all of the search space types.
  • the first resource set is a search space set; the first condition includes: the first resource set is connected to another search space set.
  • the first resource set is a search space set; when the first resource set is connected to another search space set, the first condition is satisfied.
  • the first resource set is a search space set; when there is no search space set connected to the first resource set, the first condition is not satisfied.
  • the meaning of the phrase that one search space set is connected to another search space set includes: any PDCCH candidate in the one search space set and a PDCCH candidate in the other search space set items are connected.
  • the meaning of the phrase that one search space set is connected to another search space set includes: any PDCCH candidate in the one search space set and a PDCCH candidate in the other search space set Items are connected, and any PDCCH candidate in the other search space set is connected to a PDCCH candidate in the one search space set.
  • the meaning of the phrase that one search space set is connected to another search space set includes: there is a PDCCH candidate in the one search space set and a PDCCH candidate in the other search space set connected.
  • the configuration IE of a set of search spaces indicates whether the set of search spaces is connected to another set of search spaces.
  • Embodiment 10 illustrates a schematic diagram in which the first TCI state and the second TCI state are jointly used to receive the first signal according to an embodiment of the present application; as shown in FIG. 10 .
  • the first signal includes a first sub-signal and a second sub-signal
  • the first TCI state and the second TCI state are respectively used to receive the first sub-signal and the second sub-signal Secondary signal.
  • the first TCI state and the second TCI state are jointly used to receive the first signal.
  • the first sub-signal and the second sub-signal carry the same TB or CBG.
  • the first sub-signal and the second sub-signal are two repeated transmissions of one TB or CBG.
  • the first sub-signal and the second sub-signal occupy the same time domain resources and mutually orthogonal frequency domain resources.
  • the first sub-signal and the second sub-signal occupy mutually orthogonal time-domain resources.
  • the first sub-signal and the second sub-signal occupy mutually orthogonal time-domain resources and the same frequency-domain resources.
  • the first sub-signal and the second sub-signal occupy overlapping time-frequency resources.
  • the TCI state of the first sub-signal and the TCI state of the second sub-signal are the first TCI state and the second TCI state respectively.
  • the DMRS port of the first sub-signal is quasi-co-located with a reference signal indicated by the first TCI state
  • the DMRS port of the second sub-signal is quasi-co-located with a reference signal indicated by the second TCI state.
  • the signals are quasi-colocated.
  • the DMRS port of the first sub-signal is quasi-co-located with a reference signal indicated by the first TCI status and corresponds to QCL-TypeD
  • the DMRS port of the second sub-signal and the second TCI A reference signal for status indication is quasi-co-located and corresponds to QCL-TypeD.
  • the first node can deduce the large-scale characteristics of the channel experienced by the DMRS of the first sub-signal from the large-scale characteristics of the channel experienced by a reference signal indicated by the first TCI state;
  • the first node can deduce the large-scale characteristics of the channel experienced by the DMRS of the second sub-signal from the large-scale characteristics of the channel experienced by a reference signal indicated by the second TCI state.
  • the first signal and the first resource set belong to the same carrier (Carrier).
  • the first signal and the first resource set belong to the same BWP.
  • the first signal and the first resource set belong to the same cell.
  • the first signal and the first resource set belong to different carriers (Carrier).
  • the first signal and the first resource set belong to different BWPs.
  • the first signal and the first resource set belong to different cells.
  • Embodiment 11 illustrates a schematic diagram of a first PDCCH candidate and a second PDCCH candidate according to an embodiment of the present application; as shown in FIG. 11 .
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate is connected to the second PDCCH candidate; the first PDCCH candidate belongs to the first PDCCH candidate A search space set, the second PDCCH candidate belongs to the second search space set.
  • the first PDCCH candidate and the second PDCCH candidate correspond to the same aggregation level (Aggregation Level).
  • the first PDCCH candidate and the second PDCCH candidate correspond to the same DCI format (format).
  • the first PDCCH candidate and the second PDCCH candidate correspond to the same PDCCH candidate index.
  • the first resource set is a CORESET
  • the first search space set is a search space set associated with the first resource set.
  • the first resource set is a search space set
  • the first search space set is the first resource set
  • the second resource set is a CORESET
  • the second search space set is a search space set associated with the second resource set.
  • the second resource set is a search space set
  • the second search space set is the second resource set
  • any PDCCH candidate in the first search space set is connected to a PDCCH candidate in the second search space set.
  • any PDCCH candidate in the second search space set is connected to a PDCCH candidate in the first search space set.
  • one PDCCH candidate in the first search space set is not connected to any PDCCH candidate in the second search space set.
  • the number of PDCCH candidates included in the first search space set is equal to the number of PDCCH candidates included in the second search space set.
  • the number of PDCCH candidates included in the first search space set is equal to the number of PDCCH candidates included in the second search space set.
  • the first set of search spaces and the second set of search spaces are respectively associated with different CORESETs.
  • both the first search space set and the second search space set are CSS (Common Search Space).
  • both the first search space set and the second search space set are USS (UE-specific Search Space).
  • the first set of search spaces is connected to the second set of search spaces.
  • the RRC parameter indicates that the first PDCCH candidate is connected to the second PDCCH candidate.
  • the MAC CE signaling indicates that the first PDCCH candidate is connected to the second PDCCH candidate.
  • Embodiment 12 illustrates a schematic diagram related to the target TCI state and whether the first condition is met according to an embodiment of the present application; as shown in FIG. 12 .
  • the target TCI state is related to at least one of a first index and a second index
  • the first resource set is used by the first node Determine the first index
  • the first PDCCH candidate is a PDCCH candidate in the first resource set
  • the first PDCCH candidate is connected to a second PDCCH candidate
  • the second PDCCH candidate is A PDCCH candidate in a second set of resources used by the first node to determine the second index.
  • the first PDCCH candidate is a PDCCH candidate connected to another PDCCH candidate in the first resource set.
  • the first PDCCH candidate is a PDCCH candidate connected to any one of the first resource set and another PDCCH candidate.
  • the first resource set is a CORESET; the first PDCCH candidate is the one with the smallest corresponding SearchSpaceId in all search space sets associated with the first resource set connected to another search space set One PDCCH candidate in one set of search spaces.
  • the first resource set is a CORESET; the first PDCCH candidate is the one with the smallest corresponding SearchSpaceId in all search space sets associated with the first resource set connected to another search space set Any PDCCH candidate in a search space set.
  • the first resource set is a CORESET; the first PDCCH candidate is the one with the largest corresponding SearchSpaceId in all search space sets connected to another search space set associated with the first resource set One PDCCH candidate in one set of search spaces.
  • the second PDCCH candidate is not a PDCCH candidate in the first resource set.
  • the first PDCCH candidate and the second PDCCH candidate correspond to the same aggregation level, the same DCI format (format), and the same PDCCH candidate index.
  • the second resource set includes time-frequency resources.
  • the second resource set includes a CORESET.
  • the second resource set is a CORESET.
  • the second resource set includes a search space set (search space set).
  • the second resource set includes at least one PDCCH candidate (candidate).
  • the second resource set includes a PDCCH candidate of a CORESET after the first moment.
  • the second resource set includes a CORESET PDCCH candidate in a monitoring occasion (monitoring occasion) after the first moment.
  • the second resource set includes a PDCCH candidate whose search space set is after the first moment.
  • the second resource set includes PDCCH candidates of a search space set in a monitoring occasion (monitoring occasion) after the first moment.
  • the second resource set and the first resource set belong to the same carrier.
  • the second resource set and the first resource set belong to the same BWP.
  • the second resource set and the first resource set belong to the same cell.
  • only the second PDCCH candidate in the second resource set is connected to the first PDCCH candidate.
  • only the first PDCCH candidate and the second PDCCH candidate are connected in the first resource set.
  • the first resource set and the second resource set are CORESETs respectively, and the first resource set and the second resource set correspond to different ControlResourceSetIds.
  • the first resource set and the second resource set are respectively search space sets, and the first resource set and the second resource set correspond to different SearchSpaceIds.
  • the target TCI state is related to only one of the first index and the second index.
  • the target TCI state is related to both the first index and the second index.
  • the target TCI state is related to a magnitude relationship between the first index and the second index.
  • At least one of the first index and the second index is used to determine the target TCI state.
  • At least one of the first index and the second index is used to determine from the first TCI state and the second TCI state The target TCI state.
  • the first index and the second index are jointly used to determine the target TCI state.
  • the first index and the second index are jointly used to determine the target TCI from the first TCI state and the second TCI state state.
  • the first field in the first signaling indicates the first TCI state and the second TCI state in turn; when the first condition is met, if the first index less than the second index, the target TCI state is the first TCI state; if the first index is greater than the second index, the target TCI state is the second TCI state.
  • the target TCI state when the first condition is met, if the first index is smaller than the second index, the target TCI state is the corresponding one of the first TCI state and the second TCI state A TCI state with a smaller TCI-StateId; if the first index is greater than the second index, the target TCI state is the corresponding TCI-StateId in the first TCI state and the second TCI state is larger of a TCI state.
  • the first field in the first signaling indicates the first TCI state and the second TCI state in turn; when the first condition is met, if the first index belongs to the first index set, the target TCI state is the first TCI state; if the first index belongs to the second index set, the target TCI state is the second TCI state; the first index set and the second index set respectively include at least one index, and the first index set and the second index set do not include a common index.
  • the target TCI state is the corresponding TCI in the first TCI state and the second TCI state - A TCI state with a smaller StateId; if the first index belongs to the second index set, the target TCI state is the larger one of the corresponding TCI-StateId in the first TCI state and the second TCI state TCI state: the first index set and the second index set respectively include at least one index, and the first index set and the second index set do not include a common index.
  • the first index and the second index do not belong to the same index set in the first index set and the second index set.
  • the first index set and the second index set are respectively configured by RRC signaling.
  • the first index set and the second index set are respectively configured by MAC CE signaling.
  • the first index and the second index are non-negative integers respectively.
  • the first index is not equal to the second index.
  • the first resource set is identified by the first index
  • the second resource set is identified by the second index
  • the first index and the second index are ControlResourceSetId respectively.
  • the first resource set is a CORESET
  • the second resource set is a CORESET
  • the first index is the ControlResourceSetId corresponding to the first resource set
  • the second index is the The ControlResourceSetId corresponding to the resource set.
  • the first index and the second index are SearchSpaceId respectively.
  • the first resource set is a search space set
  • the second resource set is a search space set
  • the first index is the SearchSpaceId corresponding to the first resource set
  • the second index is the SearchSpaceId corresponding to the second resource set.
  • the first resource set is a CORESET, and the first resource set belongs to the first CORESET pool;
  • the second resource set is a CORESET, and the second resource set belongs to the second CORESET pool;
  • the first CORESET pool and the second CORESET pool are respectively used to determine the first index and the second index;
  • the first CORESET pool and the second CORESET pool respectively include at least one CORESET.
  • the first index is the coresetPoolIndex corresponding to the first CORESET pool
  • the second index is the coresetPoolIndex corresponding to the second CORESET pool.
  • the first CORESET pool and the second CORESET pool do not include a common CORESET.
  • the first CORESET pool and the second CORESET pool are configured by RRC signaling.
  • Embodiment 13 illustrates a schematic diagram related to a target TCI state and whether the first condition is met according to an embodiment of the present application; as shown in FIG. 13 .
  • the target TCI state is related to at least one of the first index and the second index
  • the first PDCCH candidate is the first resource set PDCCH candidates, the first PDCCH candidate and the second PDCCH candidate are connected
  • the first PDCCH candidate belongs to the first search space set
  • the second PDCCH candidate belongs to the second search space set
  • the The first set of search spaces and the second set of search spaces are used by the first node to determine the first index and the second index, respectively.
  • the first resource set is a CORESET
  • the first search space set is the one with the smallest corresponding SearchSpaceId among all search space sets connected to another search space set associated with the first resource set A collection of search spaces.
  • the first resource set is a CORESET
  • the first search space set is a search space set that is connected to any other search space set associated with the first resource set.
  • the first resource set is a CORESET, and among all search space sets associated with the first resource set, only the first search space set is connected to another search space set.
  • the first PDCCH candidate is any PDCCH candidate in the first search space set.
  • the first PDCCH candidate is a PDCCH candidate corresponding to a smallest PDCCH candidate index in the first search space set.
  • the first resource set is a CORESET
  • the search space set associated with the first resource set has a search space set connected to another search space set in addition to the first search space set .
  • the first resource set is a CORESET, and among the search space sets associated with the first resource set, only the first search space set is connected to another search space set.
  • the first set of search spaces is connected to the second set of search spaces.
  • the first search space set and the second search space set correspond to different SearchSpaceIds.
  • the first set of search spaces and the second set of search spaces are respectively associated with different CORESETs.
  • any PDCCH candidate in the first search space set is connected to a PDCCH candidate in the second search space set.
  • any PDCCH candidate in the second search space set is connected to a PDCCH candidate in the first search space set.
  • the number of PDCCH candidates included in the first search space set is equal to the number of PDCCH candidates included in the second search space set.
  • the number of PDCCH candidates included in the first search space set is equal to the number of PDCCH candidates included in the second search space set.
  • the first search space set and the second search space set correspond to the same search space type.
  • the first search space set is identified by the first index
  • the second search space set is identified by the second index
  • the first index is the SearchSpaceId corresponding to the first search space set
  • the second index is the SearchSpaceId corresponding to the second search space set.
  • Embodiment 14 illustrates a schematic diagram related to a target TCI state and whether the first condition is met according to an embodiment of the present application; as shown in FIG. 14 .
  • the sequence relationship between the first PDCCH candidate and the second PDCCH candidate in the time domain is used to determine the target TCI state;
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate is connected to the second PDCCH candidate.
  • the target TCI state is the first TCI state and The TCI state corresponding to the smaller TCI-StateId in the second TCI state; when the first symbol of the first PDCCH candidate is later than the first symbol of the second PDCCH candidate in the time domain, The target TCI state is a TCI state corresponding to a larger TCI-StateId among the first TCI state and the second TCI state.
  • the first field in the first signaling indicates the first TCI state and the second TCI state in turn; when the first symbol of the first PDCCH candidate is in the time domain When it is earlier than the first symbol of the second PDCCH candidate, the target TCI state is the first TCI state; when the first symbol of the first PDCCH candidate is later than the first symbol in the time domain In the first symbol of two PDCCH candidates, the target TCI state is the second TCI state.
  • the identifier of the first resource set and the second The identification of the resource set is used to determine the target TCI state; the second PDCCH candidate belongs to the second resource set.
  • the first PDCCH candidate is a PDCCH candidate corresponding to a smallest PDCCH candidate index among all PDCCH candidates connected to another PDCCH candidate in the first resource set.
  • the first resource set is a CORESET; the first PDCCH candidate is the one with the smallest corresponding SearchSpaceId in all search space sets associated with the first resource set connected to another search space set One PDCCH candidate in one set of search spaces.
  • the first resource set is a CORESET;
  • the first PDCCH candidate is the one with the smallest corresponding SearchSpaceId in all search space sets associated with the first resource set connected to another search space set The PDCCH candidate corresponding to the smallest PDCCH candidate index in the search space set.
  • Embodiment 15 illustrates a schematic diagram of the first node monitoring the PDCCH in the second resource set after the first moment according to an embodiment of the present application; as shown in FIG. 15 .
  • only other TCI states in the first TCI state and the second TCI state are used by the first node to monitor PDCCH in the second set of resources after the first moment ;
  • the other TCI state is a TCI state different from the target TCI state among the first TCI state and the second TCI state.
  • the other TCI state is used to monitor the PDCCH in the second set of resources after the first moment.
  • the target TCI state is the first TCI state, and the other TCI states are the second TCI state; or, the target TCI state is the second TCI state, and the other TCI states are state is the first TCI state.
  • the TCI state of the second resource set is the other TCI state.
  • the PDCCH in the second resource set receives associated DMRS ports and other reference signals quasi co-located (quasi co-located), and the other reference signals are in other reference
  • the other TCI states indicate the other reference signal resources.
  • the DMRS port associated with the PDCCH reception in the second resource set is quasi-co-located with the other reference signal and the corresponding QCL type includes QCL- Type D.
  • the first node can deduce the channel experienced by the DMRS of the PDCCH transmitted in the second resource set from the large-scale characteristics of the channel experienced by other reference signals.
  • Large-scale characteristics the other reference signals are transmitted in other reference signal resources, and the other TCI states indicate the other reference signal resources.
  • the other reference signal resource is the second reference signal resource; when the target TCI state is the second TCI state, The other reference signal resource is the first reference signal resource.
  • a PDCCH candidate in the second resource set is earlier than a PDCCH candidate in the first resource set in the time domain.
  • a PDCCH candidate in the second resource set is later than a PDCCH candidate in the first resource set in the time domain.
  • Embodiment 16 illustrates a schematic diagram related to the target TCI state and whether the first condition is met according to an embodiment of the present application; as shown in FIG. 16 .
  • the target TCI state is a default one of the first TCI state and the second TCI state.
  • the default meaning of the phrase includes: no indication is required.
  • the default meaning of the phrase includes: no physical layer signaling indication is required.
  • the target TCI state is a default TCI state among the first TCI state and the second TCI state.
  • the target TCI state is a TCI state with a smaller corresponding TCI-StateId among the first TCI state and the second TCI state.
  • the first field in the first signaling indicates the first TCI state and the second TCI state in sequence; when the first condition is not satisfied, the target TCI state is the first TCI state.
  • the target TCI state is related to whether the first resource set belongs to the first resource pool or the second resource pool; the first resource pool and the second resource pool
  • the two resource pools respectively include at least one resource set.
  • the target TCI state has nothing to do with the identifier of the first resource set.
  • the target TCI state has nothing to do with the CORESET pool to which the first resource set belongs.
  • Embodiment 17 illustrates a schematic diagram of a first information block according to an embodiment of the present application; as shown in FIG. 17 .
  • the first information block is used to determine the first resource set.
  • the first information block is carried by higher layer (higher layer) signaling.
  • the first information block is carried by RRC signaling.
  • the first information block includes all or part of the information in one IE.
  • the first information block is an IE.
  • the first information block is an IE, and the name of the first information block includes "ControlResourceSet”.
  • the first information block is an IE, and the name of the first information block includes "SearchSpace”.
  • the first information block includes information in the first IE and the second IE, the name of the first IE includes "ControlResourceSet", and the name of the second IE includes "SearchSpace”.
  • the first information block is carried by MAC CE signaling.
  • the first information block is carried by physical layer signaling.
  • the first information block is jointly carried by RRC signaling and MAC CE signaling.
  • the first information block includes configuration information of the first resource set.
  • the first resource set is a CORESET
  • the configuration information includes frequency domain resources, duration in symbol unit, CCE to REG mapping type, precoding granularity or DMRS scrambling sequence of PDCCH part or all of .
  • the first resource set is a set of search spaces
  • the configuration information includes the monitoring slot cycle, the monitoring slot offset, the number of continuous continuous slots in each cycle, and the PDCCH monitoring in Some or all of one or more first symbols occupied in the slot, the number of PDCCH candidates, or the search space type.
  • the first resource set is a CORESET
  • the first information block includes configuration IEs of all search space sets associated with the first resource set.
  • the first information block is used to determine whether the first condition is satisfied.
  • the first node judges whether the first condition is satisfied according to the first information block.
  • the first resource set is a CORESET
  • the first information block indicates whether there is a search space set connected to another search space set in the search space sets associated with the first resource set.
  • the first resource set is a search space set
  • the first information block indicates whether the first resource set is connected to another search space set.
  • Embodiment 18 illustrates a structural block diagram of a processing device used in the first node device according to an embodiment of the present application; as shown in FIG. 18 .
  • the processing device 1800 in the first node device includes a first processor 1801 .
  • the first processor 1801 receives the first signaling, and monitors the PDCCH in the first resource set after the first moment.
  • the first signaling includes DCI
  • the first signaling includes a first field
  • the first field in the first signaling indicates a first TCI state and a second TCI state
  • the first signaling is used to determine the first moment; only the target TCI state of the first TCI state and the second TCI state is used to PDCCH is monitored in the resource set;
  • the target TCI state is a default one of the first TCI state and the second TCI state, or the target TCI state is related to whether the first condition is met;
  • the first The condition includes: at least one PDCCH candidate in the first resource set is connected to another PDCCH candidate.
  • the first processor 1801 receives a first signal after the first moment, and the first signal is transmitted on the PDSCH; wherein, the first TCI state and the second TCI state are commonly used to receive the first signal.
  • the target TCI state is related to whether the first condition is met; when the first condition is met, the target TCI state is related to at least one of the first index and the second index
  • the first resource set is used to determine the first index;
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate and the second PDCCH candidate are the same connection,
  • the second PDCCH candidate is a PDCCH candidate in a second resource set, and the second resource set is used to determine the second index.
  • the target TCI state is related to whether the first condition is met; when the first condition is met, the target TCI state is related to at least one of the first index and the second index
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate is connected to the second PDCCH candidate; the first PDCCH candidate belongs to the first search space set, The second PDCCH candidate belongs to a second set of search spaces, and the first set of search spaces and the second set of search spaces are used to determine the first index and the second index respectively.
  • the first processor 1801 monitors the PDCCH in the second resource set after the first moment; wherein, the first condition is satisfied; the first PDCCH candidate is the first resource set A PDCCH candidate in the first PDCCH candidate is connected to a second PDCCH candidate, and the second PDCCH candidate is a PDCCH candidate in the second resource set; the first TCI state and only other TCI states in the second TCI state are used to monitor PDCCH in the second set of resources after the first moment; the other TCI states are the first TCI state and the second TCI state A TCI state different from the target TCI state among the two TCI states.
  • the target TCI state is related to whether the first condition is met; when the first condition is not satisfied, the target TCI state is the first TCI state and the second TCI state The default one in the state.
  • the first processor 1801 receives a first information block; wherein, the first information block is used to determine the first resource set.
  • the first resource set is a CORESET
  • the first field in the first signaling indicates the first TCI state and the second TCI state in sequence.
  • the target TCI state is a default one of the first TCI state and the second TCI state.
  • the target TCI state is related to whether the first condition is met; when the first condition is met, the target TCI state is related to the first index and the second index At least one of them is related; when the first condition is not satisfied, the target TCI state is a default one of the first TCI state and the second TCI state.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first processor 1801 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one of.
  • Embodiment 19 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 19 .
  • the processing device 1900 in the second node device includes a second processor 1901 .
  • the second processor 1901 sends the first signaling, and sends the PDCCH in the first resource set after the first moment.
  • the first signaling includes DCI
  • the first signaling includes a first field
  • the first field in the first signaling indicates a first TCI state and a second TCI state
  • the first signaling is used to determine the first time instant; only the target TCI state of the first TCI state and the second TCI state is used by the target recipient of the first signaling at the monitor the PDCCH in the first resource set after the first moment;
  • the target TCI state is the default one of the first TCI state and the second TCI state, or, the target TCI state and the first It is related to whether the condition is satisfied;
  • the first condition includes: at least one PDCCH candidate in the first resource set is connected to another PDCCH candidate.
  • the second processor 1901 sends a first signal after the first moment, and the first signal is transmitted on the PDSCH; wherein, the first TCI state and the second TCI state commonly used by the intended recipient of the first signal to receive the first signal.
  • the target TCI state is related to whether the first condition is met; when the first condition is met, the target TCI state is related to at least one of the first index and the second index
  • the first resource set is used to determine the first index;
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate and the second PDCCH candidate are the same connection,
  • the second PDCCH candidate is a PDCCH candidate in a second resource set, and the second resource set is used to determine the second index.
  • the target TCI state is related to whether the first condition is met; when the first condition is met, the target TCI state is related to at least one of the first index and the second index
  • the first PDCCH candidate is a PDCCH candidate in the first resource set, and the first PDCCH candidate is connected to the second PDCCH candidate; the first PDCCH candidate belongs to the first search space set, The second PDCCH candidate belongs to a second set of search spaces, and the first set of search spaces and the second set of search spaces are used to determine the first index and the second index respectively.
  • the second processor 1901 sends the PDCCH in the second resource set after the first moment; wherein, the first condition is satisfied; the first PDCCH candidate is the first resource set A PDCCH candidate in the first PDCCH candidate is connected to a second PDCCH candidate, and the second PDCCH candidate is a PDCCH candidate in the second resource set; the first TCI state and only other TCI states in said second TCI state are used by said intended recipient of said first signaling to monitor PDCCH in said second set of resources after said first moment; said other TCI The state is a TCI state different from the target TCI state among the first TCI state and the second TCI state.
  • the target TCI state is related to whether the first condition is met; when the first condition is not satisfied, the target TCI state is the first TCI state and the second TCI state The default one in the state.
  • the second processor 1901 sends a first information block; where the first information block is used to determine the first resource set.
  • the first resource set is a CORESET
  • the first field in the first signaling indicates the first TCI state and the second TCI state in sequence.
  • the target TCI state is a default one of the first TCI state and the second TCI state.
  • the target TCI state is related to whether the first condition is met; when the first condition is met, the target TCI state is related to the first index and the second index At least one of them is related; when the first condition is not satisfied, the target TCI state is a default one of the first TCI state and the second TCI state.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second processor 1901 includes ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the user equipment, terminal and UE in this application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, vehicles, vehicles, RSU, wireless sensor, network card, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle Communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, TRP (Transmitter Receiver Point, sending and receiving node), GNSS, relay Satellites, satellite base stations, aerial base stations, RSU (Road Side Unit, roadside unit), drones, test equipment, such as wireless communication equipment such as transceivers or signaling testers that simulate some functions of base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令;在第一时刻之后在第一资源集合中监测PDCCH。所述第一信令包括DCI,所述第一信令中的第一域指示第一TCI状态和第二TCI状态;所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。上述方法解决了当一个DCI更新了两个TCI状态时,如何确定哪些控制信道的波束由哪个TCI状态更新的问题。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。多天线波束赋型形成的波束一般比较窄,通信双方的波束需要对准才能进行有效的通信。当由于UE移动等原因造成发送/接收波束之间失步时,通信质量将大幅下降甚至无法通信。在NR R(release)15和R16中,波束管理被用于通信双方之间的波束选择、更新和指示,从而实现多天线带来的性能增益。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。在NR R(release)16中,基于多TRP的传输被引入来增强下行数据信道的传输质量。
发明内容
在NR R15和R16中,控制信道和数据信道采用不同的波束管理/指示机制,上下行也采用不同的波束管理/指示机制。然而在很多情况下,控制信道和数据信道可以采用相同的波束,上下行信道之间在很多应用场景下也存在信道互易性,可以采用相同的波束。利用这一特性可以大大降低系统的复杂度,信令开销和延时。在3GPP RAN(Radio Access Network,无线接入网)1#103e次会议中,采用物理层信令同时更新控制信道和数据信道的波束的技术已被采纳,在存在上下行信道互易性的场景下,可以用物理层信令同时更新上下行的波束。在3GPP RAN1 #103e次会议中,通过了利用下行授予的DCI(Downlink control information,下行控制信息)对控制信道和数据信道的波束同时进行更新的提案。
申请人通过研究发现,当DCI中同时指示了两个波束时,哪些控制信道的波束将被第一个波束更新,哪些控制信道的波束将被第二个波束更新,是需要解决的一个问题。针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用蜂窝网和控制信道波束作为例子,本申请也适用于其他场景比如副链路(Sidelink)传输和数据信道波束,并取得类似在蜂窝网和控制信道波束中的技术效果。此外,不同场景(包括但不限于蜂窝网,副链路,控制信道波束和数据信道波束)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
在第一时刻之后在第一资源集合中监测PDCCH,所述第一信令被用于确定所述第一时刻;
其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
作为一个实施例,本申请要解决的问题包括:在采用DCI对控制信道和数据信道的波束同时进行更新的系统中,当一个DCI指示了两个TCI状态时,如何确定哪些控制信道的波束由哪个TCI状态更新。
作为一个实施例,上述方法通过采用默认的TCI状态来更新控制信道的波束,解决了上述问题。
作为一个实施例,上述方法通过根据控制信道是否满足所述第一条件来确定用于更新控制信道的波束的TCI状态,解决了上述问题。
作为一个实施例,上述方法的特质包括:所述第一资源集合被用于传输控制信道,在接收到所述第一 信令之后,所述第一资源集合的TCI状态被更新为所述第一TCI状态和所述第二TCI状态中默认的一个TCI状态。
作为一个实施例,上述方法的特质包括:所述第一资源集合被用于传输控制信道,在接收到所述第一信令之后,根据所述第一资源集合是否满足所述第一条件来确定所述第一资源集合的TCI状态被更新为所述第一TCI状态还是所述第二TCI状态。
作为一个实施例,上述方法的好处包括:解决了当一个DCI指示了两个TCI状态时,如何确定哪些控制信道的波束由哪个TCI状态更新的问题。
作为一个实施例,上述方法的好处包括:通过合理更新控制信道的波束,提高了控制信道的传输可靠性。
作为一个实施例,上述方法的好处包括:避免使用额外的信令来指示哪个TCI状态被用于更新哪个控制信道的波束,节省了信令开销。
作为一个实施例,上述方法的好处包括:保证了相连接的两个PDCCH候选项的波束被不同TCI状态更新,为控制信道提供了额外的分集增益。
根据本申请的一个方面,其特征在于,包括:
在所述第一时刻之后接收第一信号,所述第一信号在PDSCH上被传输;
其中,所述第一TCI状态和所述第二TCI状态共同被用于接收所述第一信号。
根据本申请的一个方面,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
根据本申请的一个方面,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
根据本申请的一个方面,其特征在于,包括:
在所述第一时刻之后在第二资源集合中监测PDCCH;
其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
作为一个实施例,上述方法的特质包括:相连接的两个PDCCH候选项的波束分别被DCI指示的两个TCI状态更新;上述方法的好处包括:保证了控制信道能获取多个TCI状态提供的额外分集增益。
根据本申请的一个方面,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
根据本申请的一个方面,其特征在于,包括:
接收第一信息块;
其中,所述第一信息块被用于确定所述第一资源集合。
根据本申请的一个方面,其特征在于,所述第一节点包括一个用户设备。
根据本申请的一个方面,其特征在于,所述第一节点包括一个中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
在第一时刻之后在第一资源集合中发送PDCCH,所述第一信令被用于确定所述第一时刻;
其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被所述第一信令的目标接收者用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
根据本申请的一个方面,其特征在于,包括:
在所述第一时刻之后发送第一信号,所述第一信号在PDSCH上被传输;
其中,所述第一TCI状态和所述第二TCI状态共同被所述第一信号的目标接收者用于接收所述第一信号。
根据本申请的一个方面,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
根据本申请的一个方面,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
根据本申请的一个方面,其特征在于,包括:
在所述第一时刻之后在第二资源集合中发送PDCCH;
其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被所述第一信令的所述目标接收者用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
根据本申请的一个方面,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块;
其中,所述第一信息块被用于确定所述第一资源集合。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理器,接收第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
所述第一处理器,在第一时刻之后在第一资源集合中监测PDCCH,所述第一信令被用于确定所述第一时刻;
其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二处理器,发送第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
所述第二处理器,在第一时刻之后在第一资源集合中发送PDCCH,所述第一信令被用于确定所述第 一时刻;
其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被所述第一信令的目标接收者用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在采用DCI对控制信道和数据信道的波束同时进行更新的系统中,解决了当一个DCI指示了两个TCI状态时,如何确定哪些控制信道的波束由哪个TCI状态更新的问题。
提高了控制信道的传输可靠性,同时节省了信令开销。
保证了相连接的两个PDCCH候选项的波束被不同TCI状态更新,为控制信道提供了额外的分集增益。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一资源集合的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一信令被用于确定第一时刻的示意图;
图7示出了根据本申请的一个实施例的目标TCI状态被用于在第一时刻之后在第一资源集合中监测PDCCH的示意图;
图8示出了根据本申请的一个实施例的目标TCI状态是第一TCI状态和第二TCI状态中默认的一个的示意图;
图9示出了根据本申请的一个实施例的第一条件的示意图;
图10示出了根据本申请的一个实施例的第一TCI状态和第二TCI状态共同被用于接收第一信号的示意图;
图11示出了根据本申请的一个实施例的第一PDCCH候选项和第二PDCCH候选项的示意图;
图12示出了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;
图13示出了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;
图14示出了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;
图15示出了根据本申请的一个实施例的第一节点在第一时刻之后在第二资源集合中监测PDCCH的示意图;
图16示出了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;
图17示出了根据本申请的一个实施例的第一信息块的示意图;
图18示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一资源集合的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;在步骤102中在第一时刻之后在第一资源集合中监测PDCCH,所述第一信令被用于确定所述第一时刻。其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
典型的,所述目标TCI状态是所述第一TCI状态或所述第二TCI状态。
作为一个实施例,作为所述行为接收第一信令的响应,所述第一TCI状态和所述第二TCI状态中的仅所述目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH。
作为一个实施例,作为所述行为接收第一信令的响应,所述第一TCI状态和所述第二TCI状态中之一被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH。
作为一个实施例,伴随所述行为接收第一信令,所述第一TCI状态和所述第二TCI状态中之一被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括动态信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括层1(L1)的控制信令。
典型的,所述第一信令是一个DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括用于下行授予(DL Grant)的DCI。
作为一个实施例,所述第一信令被用于调度PDSCH传输。
作为一个实施例,所述第一信令包括下行分配(Downlink assignment)。
作为一个实施例,所述第一信令不被用于调度PDSCH传输。
作为一个实施例,所述第一信令不包括下行分配(Downlink assignment)。
作为一个实施例,所述第一信令包括用于TCI状态指示的DCI。
作为一个实施例,所述第一信令包括用于下行TCI状态指示的DCI。
作为一个实施例,所述第一信令的DCI格式(format)是DCI format 1_1或DCI format 1_2中之一。
作为一个实施例,所述第一信令的CRC(Cyclic Redundancy Check,循环冗余校验)被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所加扰。
作为一个实施例,所述第一信令的CRC被CS(Configured Scheduling,配置调度)-RNTI所加扰。
作为一个实施例,所述第一信令的CRC被MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI所加扰。
作为一个实施例,所述第一信令的CRC被CS-RNTI所加扰,所述第一信令的RV(Redundancy version)域被设为全1,所述第一信令的MCS(Modulation and coding scheme)域被设为全1,所述第一信令的NDI(New data indicator)域被设为全0,所述第一信令的FDRA(Frequency domain resource assignment)域被设为全0或全1。
作为一个实施例,所述第一信令指示所述第一TCI状态和所述第二TCI状态从所述第一时刻开始生效。
作为一个实施例,所述第一信令指示所述第一TCI状态和所述第二TCI状态从所述第一时刻开始成为活跃的(active)TCI状态。
作为一个实施例,所述第一信令指示活跃的(active)TCI状态从所述第一时刻开始被更新为所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第一节点被配置了支持R(Release)-17的unified TCI架构。
作为一个实施例,所述第一节点被配置了支持R-17的基于DCI的波束指示(beam indication)架构。
作为一个实施例,所述第一域包括至少一个比特。
作为一个实施例,所述第一域包括的比特的数量不大于3。
作为一个实施例,所述第一域包括一个DCI中的一个域中的全部或部分比特。
作为一个实施例,所述第一域包括一个DCI中的至少一个域。
作为一个实施例,所述第一域包括一个DCI中的一个域。
作为一个实施例,所述第一域包括一个DCI中的多个域。
典型的,所述第一域包括一个DCI中的“Transmission configuration indication”域。
作为一个实施例,所述第一域是一个DCI中的“Transmission configuration indication”域。
作为一个实施例,所述TCI状态是指:Transmission Configuration Indicator state。
作为一个实施例,所述第一域指示一个TCI状态。
作为一个实施例,所述第一域指示一个或两个TCI状态。
作为一个实施例,所述第一信令中的所述第一域指示两个TCI状态。
作为一个实施例,所述第一信令中的所述第一域的值等于第一TCI码点,所述第一TCI码点指示所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第一TCI状态和所述第二TCI状态对应同一个TCI码点。
典型的,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述句子所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态的意思包括:所述第一信令中的所述第一域先指示所述第一TCI状态,后指示所述第二TCI状态。
作为一个实施例,所述第一域包括第一子域和第二子域,所述第一信令中的所述第一子域指示所述第一TCI状态,所述第一信令中的所述第二子域指示所述第二TCI状态。
作为上述实施例的一个子实施例,所述第一信令中的所述第一子域的值等于所述第一TCI状态对应的TCI码点,所述第一信令中的所述第二子域的值等于所述第二TCI状态对应的TCI码点。
作为上述实施例的一个子实施例,所述第一信令中的所述第一子域在所述第一信令中的位置早于所述第一信令中的所述第二子域。
作为上述实施例的一个子实施例,所述第一子域由所述第一域中的L1个MSB(Most Significant Bit,最高有效位)组成,所述第二子域由所述第一域中的L2个LSB(Least Significant Bit,最低有效位)组成;L1和L2分别是正整数,所述L1和所述L2之和不大于所述第一域包括的比特的数量。
作为一个实施例,所述第一TCI状态属于第一TCI状态集合,所述第二TCI状态属于第二TCI状态集合;所述第一TCI状态集合和所述第二TCI状态集合分别包括至少一个TCI状态;至少存在一个TCI状态仅属于所述第一TCI状态集合和所述第二TCI状态集合中之一。
作为上述实施例的一个子实施例,所述第一信令中的所述第一域从所述第一TCI状态集合中指示所述第一TCI状态,从所述第二TCI状态集合中指示所述第二TCI状态。
作为一个实施例,一个TCI状态包括用于配置一个或两个参考信号和PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)的DMRS(DeModulation Reference Signals,解调参考信号)端口(port),PDCCH(Physical Downlink Control Channel,物理下行控制信道)的DMRS端口或CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源(resource)的CSI-RS端口之间的QCL(Quasi Co-Location,准共址)关系的参数。
作为一个实施例,所述第一时刻是所述第一TCI状态和所述第二TCI状态的生效时刻。
作为一个实施例,所述第一时刻是所述第一TCI状态和所述第二TCI状态开始成为活跃的(active)TCI状态的时刻。
作为一个实施例,所述第一资源集合包括时频资源。
典型的,所述第一资源集合包括一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第一资源集合是一个CORESET。
作为一个实施例,所述第一资源集合包括一个搜索空间集合(search space set)。
作为一个实施例,所述第一资源集合包括至少一个PDCCH候选项(candidate)。
作为一个实施例,所述第一资源集合包括一个CORESET在所述第一时刻之后的PDCCH候选项。
作为一个实施例,所述第一资源集合包括一个CORESET在所述第一时刻之后的一个监测时机(monitoring occasion)中的PDCCH候选项。
作为一个实施例,所述第一资源集合包括一个搜索空间集合在所述第一时刻之后的PDCCH候选项。
作为一个实施例,所述第一资源集合包括一个搜索空间集合在所述第一时刻之后的一个监测时机(monitoring occasion)中的PDCCH候选项。
作为一个实施例,所述搜索空间集合包括搜索空间(search space)。
作为一个实施例,所述第一资源集合在时域周期性出现。
作为一个实施例,所述第一资源集合在时域多次出现。
作为一个实施例,所述第一资源集合在时域仅出现一次。
作为一个实施例,所述第一资源集合在所述第一时刻之后在时域多次出现。
作为一个实施例,所述第一资源集合在所述第一时刻之后在时域仅出现一次。
作为一个实施例,所述第一信令和所述第一资源集合属于同一个载波(Carrier)。
作为一个实施例,所述第一信令和所述第一资源集合属于同一个BWP(BandWidth Part,带宽区间)。
作为一个实施例,所述第一信令和所述第一资源集合属于同一个小区。
作为一个实施例,所述第一信令和所述第一资源集合属于不同的载波。
作为一个实施例,所述第一信令和所述第一资源集合属于不同的BWP。
作为一个实施例,所述第一信令和所述第一资源集合属于不同的小区。
作为一个实施例,所述短语监测PDCCH的意思包括:监测PDCCH候选项(candidate)。
作为一个实施例,所述短语监测PDCCH的意思包括:监测在PDCCH中被传输的DCI。
作为一个实施例,所述短语监测PDCCH的意思包括:通过监测PDCCH来检测DCI。
作为一个实施例,所述短语监测PDCCH的意思包括:通过监测PDCCH候选项来检测DCI。
作为一个实施例,所述短语监测PDCCH的意思包括:监测PDCCH候选项以判断DCI是否在PDCCH中被传输。
作为一个实施例,所述短语监测PDCCH的意思包括:执行译码操作;如果根据CRC确定译码正确,则判断检测到PDCCH;否则判断未检测到PDCCH。
作为一个实施例,所述短语监测PDCCH的意思包括:执行译码操作;如果根据CRC确定译码正确,则判断检测到DCI在PDCCH中被传输;否则判断未检测到DCI。
作为一个实施例,所述短语监测PDCCH的意思包括:进行相干检测;如果所述相干检测后得到的信号能量大于第一给定阈值,则判断检测到DCI在PDCCH中被传输;否则判断未检测到DCI。
作为一个实施例,所述短语监测PDCCH的意思包括:进行能量检测;如果所述能量检测得到的信号能量大于第二给定阈值,则判断检测到DCI在PDCCH中被传输;否则判断未检测到DCI。
作为一个实施例,所述短语监测PDCCH的意思包括:根据CRC确定是否存在DCI在PDCCH中被传输,在根据CRC判断译码是否正确之前不确定是否存在DCI在PDCCH中被传输。
作为一个实施例,所述短语监测PDCCH的意思包括:根据相干检测确定是否存在DCI在PDCCH中被传输;在相干检测前不确定是否存在DCI在PDCCH中被传输。
作为一个实施例,所述短语监测PDCCH的意思包括:根据能量检测确定是否存在DCI在PDCCH中被传输;在能量检测前不确定是否存在DCI在PDCCH中被传输。
作为一个实施例,针对PDCCH的所述监测在PDCCH候选项(candidate)中被执行。
作为一个实施例,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5GNR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home  Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述第一信令的发送者包括所述gNB203。
作为一个实施例,所述第一信令的接收者包括所述UE201。
作为一个实施例,在所述第一资源集合中被传输的PDCCH的发送者包括所述gNB203。
作为一个实施例,在所述第一资源集合中被传输的PDCCH的接收者包括所述UE201。
作为一个实施例,所述第一信号的发送者包括所述gNB203。
作为一个实施例,所述第一信号的接收者包括所述UE201。
作为一个实施例,在所述第二资源集合中被传输的PDCCH的发送者包括所述gNB203。
作为一个实施例,在所述第二资源集合中被传输的PDCCH的接收者包括所述UE201。
作为一个实施例,所述第一信息块的发送者包括所述gNB203。
作为一个实施例,所述第一信息块的接收者包括所述UE201。
作为一个实施例,所述UE201支持R-17的unified TCI架构。
作为一个实施例,所述UE201支持R-17的基于DCI的波束指示。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上, 负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信息块生成于所述RRC子层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接 收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收所述第一信令;在所述第一时刻之后在所述第一资源集合中监测PDCCH。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信令;在所述第一时刻之后在所述第一资源集合中监测PDCCH。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送所述第一信令;在所述第一时刻之后在所述第一资源集合中发送PDCCH。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信令;在所述第一时刻 之后在所述第一资源集合中发送PDCCH。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第一时刻之后在所述第一资源集合中发送PDCCH。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在所述第一时刻之后接收所述第一信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第一时刻之后发送所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第一时刻之后在所述第二资源集合中发送PDCCH。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51至方框F57中的步骤分别是可选的。
对于第二节点U1,在步骤S5101中发送第一信息块;在步骤S5102中在第一时刻之前在第一资源集合中发送PDCCH;在步骤S511中发送第一信令;在步骤S5103中发送第三信号;在步骤S5104中接收第二信号;在步骤S512中在所述第一时刻之后在所述第一资源集合中发送PDCCH;在步骤S5105中在所述第一时刻之后在第二资源集合中发送PDCCH;在步骤S5106中发送第二信令;在步骤S5107中发送第一信号。
对于第一节点U2,在步骤S5201中接收第一信息块;在步骤S5202中在第一时刻之前在第一资源集合中监测PDCCH;在步骤S521中接收第一信令;在步骤S5203中接收第三信号;在步骤S5204中发送第二信号;在步骤S522中在所述第一时刻之后在所述第一资源集合中监测PDCCH;在步骤S5205中在所述第一时刻之后在第二资源集合中监测PDCCH;在步骤S5206中接收第二信令;在步骤S5207中接收第一信号。
在实施例5中,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;所述第一信令被所述第一节点U2用于确定所述第一时刻;所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被所述第一节点U2用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)中被传输。
作为一个实施例,所述第一信令在PDCCH中被传输。
作为一个实施例,附图5中的方框F51中的步骤存在,所述第一信息块被所述第一节点U2用于确定所述第一资源集合。
作为一个实施例,所述第一信息块在PDSCH上被传输。
作为一个实施例,附图5中的方框F52中的步骤存在,上述被用于无线通信的第一节点中的方法包括:在所述第一时刻之前在所述第一资源集合中监测PDCCH;其中,第三TCI状态被所述第一节点U2用于在所述第一时刻之前在所述第一资源集合中监测PDCCH;所述第三TCI状态不同于所述目标TCI状态。
作为一个实施例,附图5中的方框F52中的步骤存在,上述被用于无线通信的第二节点中的方法包括:在所述第一时刻之前在所述第一资源集合中发送PDCCH。
作为一个实施例,所述第三TCI状态不同于所述第一TCI状态并且不同于所述第二TCI状态。
作为一个实施例,在所述第一时刻之前,所述第一资源集合的TCI状态是所述第三TCI状态。
作为一个实施例,在所述第一时刻之前,所述第一资源集合中的PDCCH接收相关联的DMRS端口和第三参考信号准共址(quasi co-located),所述第三参考信号在第三参考信号资源中传输,所述第三TCI状态指示所述第三参考信号资源。
作为上述实施例的一个子实施例,所述第三TCI状态指示所述第三参考信号资源对应的QCL类型包括QCL-TypeD。
作为一个实施例,附图5中的方框F54中的步骤存在,上述被用于无线通信的第一节点中的方法包括:发送第二信号;其中,所述第二信号包括针对所述第一信令的HARQ-ACK,所述第一信令被所述第一节点用于确定所述第二信号所占用的时域资源,所述第二信号所占用的时域资源被所述第一节点用于确定所述第一时刻。
作为一个实施例,附图5中的方框F54中的步骤存在,上述被用于无线通信的第二节点中的方法包括:接收所述第二信号。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一信令在时域早于所述第二信号。
作为一个实施例,所述第二信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上被传输。
作为一个实施例,所述第二信号在PUCCH(Physical Uplink Control Channel,物理上行控制信道)上被传输。
作为一个实施例,附图5中的方框F54和F53中的步骤都存在,上述被用于无线通信的第一节点中的方法包括:接收第三信号;其中,所述第一信令包括所述第三信号的调度信息,所述第三信号携带第一比特块,所述第二信号指示所述第一比特块是否被正确接收。
作为一个实施例,附图5中的方框F54和F53中的步骤都存在,上述被用于无线通信的第二节点中的 方法包括:发送所述第三信号。
作为一个实施例,所述第三信号包括基带信号。
作为一个实施例,所述第三信号包括无线信号。
作为一个实施例,所述第三信号包括射频信号。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块包括一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第二信号在时域晚于所述第三信号。
作为一个实施例,所述第三信号在PDSCH上被传输。
作为一个实施例,附图5中的方框F55中的步骤存在;所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被所述第一节点U2用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
作为一个实施例,附图5中的方框F57中的步骤存在;所述第一信号在PDSCH上被传输;所述第一TCI状态和所述第二TCI状态共同被所述第一节点U2用于接收所述第一信号。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号携带一个TB或一个CBG。
作为一个实施例,附图5中的方框F56和F57中的步骤都存在;所述第二信令包括所述第一信号的调度信息;所述调度信息包括时域资源,频域资源,MCS,DMRS端口,HARQ进程号,RV,NDI或TCI状态中的一种或多种。
实施例6
实施例6示例了根据本申请的一个实施例的第一信令被用于确定第一时刻的示意图;如附图6所示。
作为一个实施例,所述第一信令所占用的时域资源被用于确定所述第一时刻。
作为一个实施例,所述第一信令在时域早于所述第一时刻。
作为一个实施例,第二信号包括针对所述第一信令的HARQ-ACK,所述第一信令被用于确定所述第二信号所占用的时域资源,所述第二信号所占用的时域资源被用于确定所述第一时刻。
作为一个实施例,所述HARQ-ACK是指:Hybrid Automatic Repeat request-Acknowledgement。
作为一个实施例,所述HARQ-ACK包括ACK。
作为一个实施例,所述HARQ-ACK包括NACK(Negative ACKnowledgement,否认)。
作为一个实施例,所述HARQ-ACK包括ACK或NACK。
作为一个实施例,针对所述第一信令的所述HARQ-ACK指示所述第一信令是否被正确接收。
作为一个实施例,针对所述第一信令的所述HARQ-ACK指示所述第一信令被正确接收。
作为一个实施例,针对所述第一信令的所述HARQ-ACK被所述第一信令的发送者用于确定所述第一信令是否被正确接收。
作为一个实施例,针对所述第一信令的所述HARQ-ACK被所述第一信令的发送者用于确定所述第一信令被正确接收。
作为一个实施例,如果所述第一信令的发送者接收到所述第二信号,所述第一信令的所述发送者认为所述第一信令被正确接收。
作为一个实施例,如果所述第一信令的发送者未接收到所述第二信号,所述第一信令的所述发送者认为所述第一信令未被正确接收。
作为一个实施例,所述第二信号占用的信道包括PUSCH。
作为一个实施例,所述第二信号占用的信道包括PUCCH。
作为一个实施例,所述第一信令指示所述第二信号所占用的时域资源。
作为一个实施例,所述第一信令指示所述第二信号所占用的时域资源和所述第一信令所占用的时域资源之间的时间间隔。
作为一个实施例,所述第一信令指示所述第二信号所占用的时隙和所述第一信令所占用的时隙之间的时间间隔。
作为一个实施例,所述句子所述第一信令被用于确定所述第一时刻的意思包括:所述第二信号所占用的时域资源被用于确定所述第一时刻,所述第一信令指示所述第二信号所占用的时域资源。
作为一个实施例,所述第一时刻晚于所述第二信号。
作为一个典型的实施例,所述第一时刻晚于第一参考时刻,所述第二信号所占用的时域资源被用于确定所述第一参考时刻。
作为上述实施例的一个典型子实施例,所述第一参考时刻是所述第二信号所占用的最后一个符号的结束时刻。
作为上述实施例的一个子实施例,所述第一参考时刻是所述第二信号所占用的时隙的结束时刻。
作为一个实施例,所述第一时刻和所述第一参考时刻之间的时间间隔不小于第一间隔。
作为一个实施例,所述第一时刻和所述第一参考时刻之间的时间间隔等于第一间隔。
典型的,所述第一时刻是所述第一参考时刻后的第一间隔之后的第一个时隙的起始时刻。
典型的,所述第一时刻是所述第二信号所占用的最后一个符号后的第一间隔之后的第一个时隙的起始时刻。
作为一个实施例,所述第一间隔是RRC配置的。
作为一个实施例,所述第一间隔是固定的。
作为一个实施例,所述第一间隔是一个非负实数。
作为一个实施例,所述第一间隔是一个正整数。
作为一个实施例,所述第一间隔的单位是时隙(slot)。
作为一个实施例,所述第一间隔的单位是毫秒(ms)。
作为一个实施例,所述第一间隔的单位是符号。
作为一个实施例,所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一信令包括第三信号的调度信息,所述第三信号携带第一比特块,所述第二信号指示所述第一比特块是否被正确接收;所述第一信令指示所述第三信号所占用的时域资源,所述第一信令指示所述第二信号所占用的时域资源和所述第三信号所占用的时域资源之间的时间间隔;所述调度信息包括时域资源,频域资源,MCS,DMRS端口(port),HARQ进程号,RV,NDI或TCI状态中的一种或多种。
作为上述实施例的一个子实施例,所述第一信令指示所述第二信号所占用的时隙和所述第三信号所占用的时隙之间的时间间隔。
作为一个实施例,所述针对所述第一信令的所述HARQ-ACK包括:针对所述第三信号的HARQ-ACK。
作为一个实施例,针对所述第一信令的所述HARQ-ACK包括:针对所述第一比特块的HARQ-ACK。
作为一个实施例,针对所述第一信令的所述HARQ-ACK指示所述第一比特块是否被正确接收。
作为一个实施例,针对所述第一信令的所述HARQ-ACK指示所述第一比特块被正确接收。
作为一个实施例,所述句子所述第一信令被用于确定所述第一时刻的意思包括:所述第二信号所占用的时域资源被用于确定所述第一时刻,所述第一信令指示所述第三信号所占用的时域资源以及所述第二信号所占用的时域资源和所述第三信号所占用的时域资源之间的时间间隔。
作为一个实施例,所述第三信号占用的信道包括PDSCH。
实施例7
实施例7示例了根据本申请的一个实施例的目标TCI状态被用于在第一时刻之后在第一资源集合中监 测PDCCH的示意图;如附图7所示。
典型的,所述第一TCI状态指示第一参考信号资源,所述第二TCI状态指示第二参考信号资源。
典型的,所述第一TCI状态还指示所述第一参考信号资源对应的QCL类型,所述第二TCI状态还指示所述第二参考信号资源对应的QCL类型。
典型的,所述第一TCI状态指示所述第一参考信号资源对应的QCL类型包括QCL-TypeD,所述第二TCI状态指示所述第二参考信号资源对应的QCL类型包括QCL-TypeD。
作为一个实施例,所述第一参考信号资源包括CSI-RS资源。
作为一个实施例,所述第一参考信号资源包括SS/PBCH block(Synchronisation Signal/physical broadcast channel Block,同步信号/物理广播信道块)资源。
作为一个实施例,所述第一参考信号资源包括SRS(Sounding Reference Signal,探测参考信号)资源。
作为一个实施例,所述第一参考信号资源包括下行参考信号资源。
作为一个实施例,所述第二参考信号资源包括CSI-RS资源。
作为一个实施例,所述第二参考信号资源包括SS/PBCH block资源。
作为一个实施例,所述第二参考信号资源包括SRS资源。
作为一个实施例,所述第二参考信号资源包括下行参考信号资源。
作为一个实施例,所述参考信号资源包括天线端口。
作为一个实施例,所述参考信号资源包括参考信号端口。
作为一个实施例,所述句子目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH的意思包括:在所述第一时刻之后,所述第一资源集合的TCI状态是所述目标TCI状态。
作为一个实施例,所述句子目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH的意思包括:从所述第一时刻开始,所述第一资源集合的TCI状态是所述目标TCI状态。
作为一个典型的实施例,所述句子目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH的意思包括:在所述第一时刻之后,所述第一资源集合中的PDCCH接收相关联的DMRS端口和目标参考信号准共址(quasi co-located),所述目标参考信号在目标参考信号资源中传输,所述目标TCI状态指示所述目标参考信号资源。
作为上述实施例的一个子实施例,在所述第一时刻之后,所述第一资源集合中的PDCCH接收相关联的DMRS端口和所述目标参考信号准共址且对应的QCL类型包括QCL-TypeD。
作为一个实施例,所述句子目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH的意思包括:在所述第一时刻之后,所述第一节点能够从目标参考信号经历的信道的大尺度特性推断出在所述第一资源集合中被传输的PDCCH的DMRS经历的信道的大尺度特性;所述目标参考信号在目标参考信号资源中传输,所述目标TCI状态指示所述目标参考信号资源。
作为一个实施例,所述句子目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH的意思包括:在所述第一时刻之后,所述第一节点能够从目标参考信号经历的信道的大尺度特性推断出在所述第一资源集合中被传输的PDCCH经历的信道的大尺度特性;所述目标参考信号在目标参考信号资源中传输,所述目标TCI状态指示所述目标参考信号资源。
作为一个实施例,所述大尺度特性包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay)或空间接收参数(Spatial Rx parameter)中的一种或多种。
作为一个实施例,当所述目标TCI状态是所述第一TCI状态时,所述目标参考信号资源是所述第一参考信号资源;当所述目标TCI状态是所述第二TCI状态时,所述目标参考信号资源是所述第二参考信号资源。
实施例8
实施例8示例了根据本申请的一个实施例的目标TCI状态是第一TCI状态和第二TCI状态中默认的一个的示意图;如附图8所示。
作为一个实施例,所述短语默认的意思包括:不需要指示的。
作为一个实施例,所述短语默认的意思包括:不需要物理层信令指示的。
作为一个实施例,所述短语默认的意思包括:不需要RRC(Radio Resource Control,无线电资源控制)信令指示的。
作为一个实施例,所述短语默认的意思包括:不需要MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令指示的。
作为一个实施例,所述短语默认的意思包括:和所述第一条件是否被满足无关。
作为一个实施例,所述短语默认的意思包括:和所述第一资源集合的标识无关。
作为一个实施例,所述第一资源集合的所述标识包括ControlResourceSetId。
作为一个实施例,所述第一资源集合的所述标识包括SearchSpaceId。
作为一个实施例,所述目标TCI状态是所述第一TCI状态。
作为一个实施例,所述目标TCI状态是所述第二TCI状态。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较小的一个TCI状态。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较大的一个TCI状态。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中的第一个TCI状态。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态,所述目标TCI状态是所述第一TCI状态。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态,所述目标TCI状态是所述第二TCI状态。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述第一域包括第一子域和第二子域,所述第一信令中的所述第一子域指示所述第一TCI状态,所述第一信令中的所述第二子域指示所述第二TCI状态;所述目标TCI状态是所述第一TCI状态。
作为上述实施例的一个子实施例,所述第一信令中的所述第一子域在所述第一信令中的位置早于所述第一信令中的所述第二子域。
作为上述实施例的一个子实施例,所述第一子域由所述第一域中的L1个MSB组成,所述第二子域由所述第一域中的L2个LSB组成;L1和L2分别是正整数,所述L1和所述L2之和不大于所述第一域包括的比特的数量。
作为一个实施例,所述句子所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个的意思包括:所述目标TCI状态和所述第一资源集合属于第一资源池还是属于第二资源池有关;所述第一资源池和所述第二资源池分别包括至少一个资源集合。
作为上述实施例的一个子实施例,所述第一资源池和所述第二资源池中的任一资源集合包括一个CORESET。
作为上述实施例的一个子实施例,所述第一资源池和所述第二资源池中的任一资源集合包括一个搜索空间集合。
作为上述实施例的一个子实施例,所述第一资源池和所述第二资源池由RRC信令配置。
作为上述实施例的一个子实施例,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态;当所述第一资源集合属于所述第一资源池时,所述目标TCI状态是所述第一TCI状态;当所述第一资源集合属于所述第二资源池时,所述目标TCI状态是所述第二TCI状态。
作为上述实施例的一个子实施例,当所述第一资源集合是属于所述第一资源池时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应较小的TCI-StateId的TCI状态;当所述第一资源集合是属于所述第二资源池时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应较大的 TCI-StateId的TCI状态。
实施例9
实施例9示例了根据本申请的一个实施例的第一条件的示意图;如附图9所示。在实施例9中,所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合中的PDCCH候选项是指所述第一资源集合关联的搜索空间集合中的PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合关联的搜索空间集合的意思包括:所述搜索空间集合的配置IE(Information Element,信息单元)指示所述第一资源集合。
作为上述实施例的一个子实施例,所述配置IE指示所述搜索空间集合的监测时隙周期,监测时隙偏移量,在每个周期中持续的连续时隙的数量,PDCCH监测在时隙中占用的一个或多个第一个符号,PDCCH候选项的数量,或搜索空间类型中的部分或全部。
作为上述实施例的一个子实施例,所述配置IE指示所述第一资源集合适用于所述搜索空间集合。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合关联的搜索空间集合的意思包括:所述搜索空间集合的频域资源,TCI状态,以符号为单位的持续时间,对应的CCE(Control Channel Element)到REG(Resource-element group)映射类型(CCE-REG-MappingType),或预编码颗粒度中的部分或全部由所述第一资源集合确定。
作为上述实施例的一个子实施例,所述搜索空间集合占用的频域资源是所述第一资源集合的频域资源。
作为上述实施例的一个子实施例,所述搜索空间集合的TCI状态是所述第一资源集合的TCI状态。
作为上述实施例的一个子实施例,所述搜索空间集合对应的CCE到REG映射类型是所述第一资源集合对应的CCE到REG映射类型。
作为上述实施例的一个子实施例,所述搜索空间集合的预编码颗粒度是所述第一资源集合的预编码颗粒度。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一资源集合中的PDCCH候选项是指所述一个搜索空间集合中的PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合中的PDCCH候选项包括所述第一资源集合关联的所有搜索空间集合中的所有PDCCH候选项。
作为一个实施例,所述另一个PDCCH候选项不是所述第一资源集合中的一个PDCCH候选项。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项相连接,所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中采用第一候选解码假设,第三候选解码假设或第四候选解码假设中之一中监测PDCCH;如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中采用第二候选解码假设监测PDCCH;所述第一候选解码假设是对所述一个PDCCH候选项和所述另一个PDCCH候选项仅执行合并解码;所述第二候选解码假设是对所述一个PDCCH候选项和所述另一个PDCCH候选项分别执行独立解码;所述第三候选解码假设是对所述一个PDCCH候选项和所述另一个PDCCH候选项中的仅一个PDCCH候选项执行独立解码,并对所述一个PDCCH候选项和所述另一个PDCCH候选项执行合并解码;所述第四候选解码假设是对所述一个PDCCH候选项和所述另一个PDCCH候选项分别执行独立解码,并对所述一个PDCCH候选项和所述另一个PDCCH候选项执行合并解码。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中执行合并解码。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中可以执行合并解码。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:在所述一个PDCCH候选项中接收到的信号和在所述另一个PDCCH候选项中接收到的信号共同被用于确定是否检测到一个DCI在PDCCH中被传输。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:在所述 一个PDCCH候选项中接收到的信号和在所述另一个PDCCH候选项中接收到的信号可以共同被用于确定是否检测到一个DCI在PDCCH中被传输。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中执行合并解码,并根据所述合并解码的结果确定是否检测到一个DCI在PDCCH中被传输。
作为上述实施例的一个子实施例,所述第一节点根据所述合并解码的结果确定CRC是否通过;如果CRC通过则判断检测到一个DCI在PDCCH中被传输;否则判断未检测到DCI。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述一个PDCCH候选项中传输的DCI和所述另一个PDCCH候选项中传输的DCI携带相同的负载(payload)。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述一个PDCCH候选项和所述另一个PDCCH候选项分别承载同一个DCI的两次重复传输。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述第一节点假设所述一个PDCCH候选项中传输的DCI和所述另一个PDCCH候选项中传输的DCI携带相同的负载(payload)。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述第一节点假设所述一个PDCCH候选项和所述另一个PDCCH候选项分别承载同一个DCI的两次重复传输。
作为一个实施例,所述短语一个PDCCH候选项和另一个PDCCH候选项相连接的意思包括:所述第一节点预期在所述一个PDCCH候选项中接收到第一PDSCH的调度DCI并在所述另一个PDCCH候选项中接收到第二PDSCH的调度DCI,所述第一PDSCH和所述第二PDSCH对应相同的HARQ进程号;所述第一PDSCH和所述第二PDSCH在时域交叠,或者,所述第二PDSCH在时域早于所述第一PDSCH的预期的HARQ-ACK传输的结束时刻。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项相连接,所述一个PDCCH候选项和所述另一个PDCCH候选项对应的盲检测(Blind Detection)的次数等于第一数值;如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述一个PDCCH候选项和所述另一个PDCCH候选项对应的盲检测的次数等于第二数值;所述第一数值不等于所述第二数值;所述第一数值和所述第二数值分别是正实数。
作为上述实施例的一个子实施例,所述第一数值和所述第二数值分别是正整数。
作为上述实施例的一个子实施例,所述第一数值大于所述第二数值。
作为上述实施例的一个子实施例,所述第一数值小于所述第二数值。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中不执行合并解码。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中分别执行独立解码。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述第一节点在所述一个PDCCH候选项和所述另一个PDCCH候选项中不可以执行合并解码。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述一个PDCCH候选项中传输的DCI和所述另一个PDCCH候选项中传输的DCI携带不同payload。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述一个PDCCH候选项和所述另一个PDCCH候选项分别承载两个不同的DCI。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,在所述一个PDCCH候选项中接收到的信号和在所述另一个PDCCH候选项中接收到的信号不能共同被用于确定是否检测到一个DCI在PDCCH中被传输。
作为一个实施例,如果一个PDCCH候选项和另一个PDCCH候选项不相连接,所述第一节点不会预期在所述一个PDCCH候选项中接收到第一PDSCH的调度DCI并在所述另一个PDCCH候选项中接收到第二PDSCH的调度DCI;所述第一PDSCH和所述第二PDSCH对应相同的HARQ进程号;所述第一PDSCH和所述第二PDSCH在时域交叠,或者,所述第二PDSCH在时域早于所述第一PDSCH的预期的HARQ-ACK 传输的结束时刻。
作为一个实施例,所述短语合并解码的意思包括:调制符号被合并。
作为一个实施例,所述短语合并解码的意思包括:调制符号被合并后再输入解调器。
作为一个实施例,所述短语合并解码的意思包括:解调信息被合并。
作为一个实施例,所述短语合并解码的意思包括:解调信息被合并后再输入译码器。
作为一个实施例,所述短语合并解码的意思包括:译码器输出被合并。
作为一个实施例,所述短语合并解码的意思包括:联合解调。
作为一个实施例,所述短语合并解码的意思包括:联合信道译码。
作为一个实施例,所述解码包括解调。
作为一个实施例,所述解码包括信道译码。
作为一个实施例,当所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接时,所述第一条件被满足。
作为一个实施例,当所述第一资源集合中的每一个PDCCH候选项都不和另一个PDCCH候选项相连接时,所述第一条件不被满足。
作为一个实施例,当对于所述第一资源集合中的任一给定PDCCH候选项都不存在一个PDCCH候选项和所述给定PDCCH候选项相连接时,所述第一条件不被满足。
作为一个实施例,所述第一资源集合是一个CORESET;当所述第一条件被满足时,所述第一资源集合关联的至少一个搜索空间集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一资源集合关联的搜索空间集合中是否存在一个搜索空间集合和另一个搜索空间集合相连接被用于确定所述第一条件是否被满足。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一条件包括:所述第一资源集合关联的至少一个搜索空间集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一资源集合是一个CORESET;当所述第一资源集合关联的至少一个搜索空间集合和另一个搜索空间集合相连接时,所述第一条件被满足。
作为一个实施例,所述第一资源集合是一个CORESET;当且仅当所述第一资源集合关联的至少一个搜索空间集合和另一个搜索空间集合相连接时,所述第一条件被满足。
作为一个实施例,所述第一资源集合是一个CORESET;当所述第一资源集合关联的每一个搜索空间集合都不和另一个搜索空间集合相连接时,所述第一条件不被满足。
作为一个实施例,所述第一资源集合是一个CORESET;当对于所述第一资源集合关联的任一给定搜索空间集合都不存在一个搜索空间集合和所述给定搜索空间集合相连接时,所述第一条件不被满足。
作为一个实施例,RRC参数被用于指示所述第一条件是否被满足。
作为一个实施例,更高层参数被用于指示所述第一条件是否被满足。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一资源集合的配置IE指示所述第一条件是否被满足。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合关联的至少一个搜索空间集合的配置IE指示所述第一条件是否被满足。
作为一个实施例,一个搜索空间集合的配置IE指示所述一个搜索空间集合的监测时隙周期,监测时隙偏移量,在每个周期中持续的连续时隙的数量,PDCCH监测在时隙中占用的一个或多个第一个符号,PDCCH候选项的数量,或搜索空间类型中的部分或全部。
作为一个实施例,所述第一资源集合是一个搜索空间集合;所述第一条件包括:所述第一资源集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一资源集合是一个搜索空间集合;当所述第一资源集合和另一个搜索空间集合相连接时,所述第一条件被满足。
作为一个实施例,所述第一资源集合是一个搜索空间集合;当不存在一个搜索空间集合和所述第一资源集合相连接时,所述第一条件不被满足。
作为一个实施例,所述短语一个搜索空间集合和另一个搜索空间集合相连接的意思包括:所述一个搜 索空间集合中的任一PDCCH候选项和所述另一个搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,所述短语一个搜索空间集合和另一个搜索空间集合相连接的意思包括:所述一个搜索空间集合中的任一PDCCH候选项和所述另一个搜索空间集合中的一个PDCCH候选项相连接,并且所述另一个搜索空间集合中的任一PDCCH候选项和所述一个搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,所述短语一个搜索空间集合和另一个搜索空间集合相连接的意思包括:所述一个搜索空间集合中存在一个PDCCH候选项和所述另一个搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,一个搜索空间集合的配置IE指示所述一个搜索空间集合是否和另一个搜索空间集合相连接。
实施例10
实施例10示例了根据本申请的一个实施例的第一TCI状态和第二TCI状态共同被用于接收第一信号的示意图;如附图10所示。在实施例10中,所述第一信号包括第一子信号和第二子信号,所述第一TCI状态和所述第二TCI状态分别被用于接收所述第一子信号和所述第二子信号。
作为一个实施例,作为所述行为接收第一信令的响应,所述第一TCI状态和所述第二TCI状态共同被用于接收所述第一信号。
作为一个实施例,所述第一子信号和所述第二子信号携带同一个TB或CBG。
作为一个实施例,所述第一子信号和所述第二子信号是一个TB或CBG的两次重复传输。
作为一个实施例,所述第一子信号和所述第二子信号占用相同的时域资源和相互正交的频域资源。
作为一个实施例,所述第一子信号和所述第二子信号占用相互正交的时域资源。
作为一个实施例,所述第一子信号和所述第二子信号占用相互正交的时域资源和相同的频域资源。
作为一个实施例,所述第一子信号和所述第二子信号占用重叠的时频资源。
作为一个实施例,所述第一子信号的TCI状态和所述第二子信号的TCI状态分别是所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第一子信号的DMRS端口和所述第一TCI状态指示的一个参考信号准共址,所述第二子信号的DMRS端口和所述第二TCI状态指示的一个参考信号准共址。
作为一个实施例,所述第一子信号的DMRS端口和所述第一TCI状态指示的一个参考信号准共址且对应QCL-TypeD,所述第二子信号的DMRS端口和所述第二TCI状态指示的一个参考信号准共址且对应QCL-TypeD。
作为一个实施例,所述第一节点能够从所述第一TCI状态指示的一个参考信号经历的信道的大尺度特性推断出所述第一子信号的DMRS经历的信道的大尺度特性;所述第一节点能够从所述第二TCI状态指示的一个参考信号经历的信道的大尺度特性推断出所述第二子信号的DMRS经历的信道的大尺度特性。
作为一个实施例,所述第一信号和所述第一资源集合属于同一个载波(Carrier)。
作为一个实施例,所述第一信号和所述第一资源集合属于同一个BWP。
作为一个实施例,所述第一信号和所述第一资源集合属于同一个小区。
作为一个实施例,所述第一信号和所述第一资源集合属于不同的载波(Carrier)。
作为一个实施例,所述第一信号和所述第一资源集合属于不同的BWP。
作为一个实施例,所述第一信号和所述第一资源集合属于不同的小区。
实施例11
实施例11示例了根据本申请的一个实施例的第一PDCCH候选项和第二PDCCH候选项的示意图;如附图11所示。在实施例11中,第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合。
作为一个实施例,所述第一PDCCH候选项和所述第二PDCCH候选项对应相同的聚合等级(Aggregation Level)。
作为一个实施例,所述第一PDCCH候选项和所述第二PDCCH候选项对应相同的DCI格式(format)。
作为一个实施例,所述第一PDCCH候选项和所述第二PDCCH候选项对应相同的PDCCH候选项索引。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一搜索空间集合是所述第一资源集合关联的一个搜索空间集合。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一搜索空间集合是所述第一资源集合。
作为一个实施例,所述第二资源集合是一个CORESET,所述第二搜索空间集合是所述第二资源集合关联的一个搜索空间集合。
作为一个实施例,所述第二资源集合是一个搜索空间集合,所述第二搜索空间集合是所述第二资源集合。
作为一个实施例,所述第一搜索空间集合中的任一PDCCH候选项和所述第二搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,所述第二搜索空间集合中的任一PDCCH候选项和所述第一搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,所述第一搜索空间集合中存在一个PDCCH候选项和所述第二搜索空间集合中的任一PDCCH候选项都不相连接。
作为一个实施例,所述第一搜索空间集合包括的PDCCH候选项的数量等于所述第二搜索空间集合包括的PDCCH候选项的数量。
作为一个实施例,对于任意一个聚合等级,所述第一搜索空间集合包括的PDCCH候选项的数量等于所述第二搜索空间集合包括的PDCCH候选项的数量。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合分别被关联到不同的CORESET。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合都是CSS(Common Search Space)。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合都是USS(UE-specific Search Space)。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合相连接。
作为一个实施例,RRC参数指示所述第一PDCCH候选项和所述第二PDCCH候选项相连接。
作为一个实施例,MAC CE信令指示所述第一PDCCH候选项和所述第二PDCCH候选项相连接。
实施例12
实施例12示例了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;如附图12所示。在实施例12中,当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被所述第一节点用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被所述第一节点用于确定所述第二索引。
作为一个实施例,所述第一PDCCH候选项是所述第一资源集合中的一个和另一个PDCCH候选项相连接的PDCCH候选项。
作为一个实施例,所述第一PDCCH候选项是所述第一资源集合中的任意一个和另一个PDCCH候选项相连接的PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一PDCCH候选项是所述第一资源集合关联的所有和另一个搜索空间集合相连接的搜索空间集合中对应的SearchSpaceId最小的一个搜索空间集合中的一个PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一PDCCH候选项是所述第一资源集合关联的所有和另一个搜索空间集合相连接的搜索空间集合中对应的SearchSpaceId最小的一个搜索空间集合中的任意一个PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一PDCCH候选项是所述第一资源集合关联的所有和另一个搜索空间集合相连接的搜索空间集合中对应的SearchSpaceId最大的一个搜索空间 集合中的一个PDCCH候选项。
作为一个实施例,所述第二PDCCH候选项不是所述第一资源集合中的PDCCH候选项。
作为一个实施例,所述第一PDCCH候选项和所述第二PDCCH候选项对应相同的聚合等级,相同的DCI格式(format)和相同的PDCCH候选项索引。
作为一个实施例,所述第二资源集合包括时频资源。
典型的,所述第二资源集合包括一个CORESET。
作为一个实施例,所述第二资源集合是一个CORESET。
作为一个实施例,所述第二资源集合包括一个搜索空间集合(search space set)。
作为一个实施例,所述第二资源集合包括至少一个PDCCH候选项(candidate)。
作为一个实施例,所述第二资源集合包括一个CORESET在所述第一时刻之后的PDCCH候选项。
作为一个实施例,所述第二资源集合包括一个CORESET在所述第一时刻之后的一个监测时机(monitoring occasion)中的PDCCH候选项。
作为一个实施例,所述第二资源集合包括一个搜索空间集合在所述第一时刻之后的PDCCH候选项。
作为一个实施例,所述第二资源集合包括一个搜索空间集合在所述第一时刻之后的一个监测时机(monitoring occasion)中的PDCCH候选项。
作为一个实施例,所述第二资源集合和所述第一资源集合属于同一个载波。
作为一个实施例,所述第二资源集合和所述第一资源集合属于同一个BWP。
作为一个实施例,所述第二资源集合和所述第一资源集合属于同一个小区。
作为一个实施例,所述第二资源集合中的仅所述第二PDCCH候选项和所述第一PDCCH候选项相连接。
作为一个实施例,所述第一资源集合中仅所述第一PDCCH候选项和所述第二PDCCH候选项相连接。
作为一个实施例,所述第一资源集合和所述第二资源集合分别是CORESET,所述第一资源集合和所述第二资源集合对应不同的ControlResourceSetId。
作为一个实施例,所述第一资源集合和所述第二资源集合分别是搜索空间集合,所述第一资源集合和所述第二资源集合对应不同的SearchSpaceId。
作为一个实施例,当所述第一条件被满足时,所述目标TCI状态与所述第一索引和所述第二索引中的仅一个索引有关。
作为一个实施例,当所述第一条件被满足时,所述目标TCI状态与所述第一索引和所述第二索引均有关。
作为一个实施例,当所述第一条件被满足时,所述目标TCI状态与所述第一索引和所述第二索引之间的大小关系有关。
作为一个实施例,当所述第一条件被满足时,所述第一索引和所述第二索引中的至少之一被用于确定所述目标TCI状态。
作为一个实施例,当所述第一条件被满足时,所述第一索引和所述第二索引中的至少之一被用于从所述第一TCI状态和所述第二TCI状态中确定所述目标TCI状态。
作为一个实施例,当所述第一条件被满足时,所述第一索引和所述第二索引共同被用于确定所述目标TCI状态。
作为一个实施例,当所述第一条件被满足时,所述第一索引和所述第二索引共同被用于从所述第一TCI状态和所述第二TCI状态中确定所述目标TCI状态。
作为一个实施例,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态;当所述第一条件被满足时,如果所述第一索引小于所述第二索引,所述目标TCI状态是所述第一TCI状态;如果所述第一索引大于所述第二索引,所述目标TCI状态是所述第二TCI状态。
作为一个实施例,当所述第一条件被满足时,如果所述第一索引小于所述第二索引,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较小的一个TCI状态;如果所述第一索引大于所述第二索引,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较大的一个TCI状态。
作为一个实施例,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态;当所述第一条件被满足时,如果所述第一索引属于第一索引集合,所述目标TCI状态是所述第一TCI状态;如果所述第一索引属于第二索引集合,所述目标TCI状态是所述第二TCI状态;所述第一索引集合和所述第二索引集合分别包括至少一个索引,所述第一索引集合和所述第二索引集合不包括公共的索引。
作为一个实施例,当所述第一条件被满足时,如果所述第一索引属于第一索引集合,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较小的一个TCI状态;如果所述第一索引属于第二索引集合,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较大的一个TCI状态;所述第一索引集合和所述第二索引集合分别包括至少一个索引,所述第一索引集合和所述第二索引集合不包括公共的索引。
作为一个实施例,所述第一索引和所述第二索引不属于所述第一索引集合和所述第二索引集合中的同一个索引集合。
作为一个实施例,所述第一索引集合和所述第二索引集合分别是RRC信令配置的。
作为一个实施例,所述第一索引集合和所述第二索引集合分别是MAC CE信令配置的。
典型的,所述第一索引和所述第二索引分别是非负整数。
典型的,所述第一索引不等于所述第二索引。
作为一个实施例,所述第一资源集合被所述第一索引标识,所述第二资源集合被所述第二索引标识。
作为一个实施例,所述第一索引和所述第二索引分别是ControlResourceSetId。
作为一个实施例,所述第一资源集合是一个CORESET,所述第二资源集合是一个CORESET;所述第一索引是所述第一资源集合对应的ControlResourceSetId,所述第二索引是所述第二资源集合对应的ControlResourceSetId。
作为一个实施例,所述第一索引和所述第二索引分别是SearchSpaceId。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第二资源集合是一个搜索空间集合;所述第一索引是所述第一资源集合对应的SearchSpaceId,所述第二索引是所述第二资源集合对应的SearchSpaceId。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合属于第一CORESET池;所述第二资源集合是一个CORESET,所述第二资源集合属于第二CORESET池;所述第一CORESET池和所述第二CORESET池分别被用于确定所述第一索引和所述第二索引;所述第一CORESET池和所述第二CORESET池分别包括至少一个CORESET。
作为上述实施例的一个子实施例,所述第一索引是所述第一CORESET池对应的coresetPoolIndex,所述第二索引是所述第二CORESET池对应的coresetPoolIndex。
作为上述实施例的一个子实施例,所述第一CORESET池和所述第二CORESET池不包括公共的CORESET。
作为上述实施例的一个子实施例,所述第一CORESET池和所述第二CORESET池是RRC信令配置的。
实施例13
实施例13示例了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;如附图13所示。在实施例13中,当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被所述第一节点用于确定所述第一索引和所述第二索引。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一搜索空间集合是所述第一资源集合关联的所有和另一搜索空间集合相连接的搜索空间集合中对应的SearchSpaceId最小的一个搜索空间集合。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一搜索空间集合是所述第一资源集合关联的任意一个和另一搜索空间集合相连接的搜索空间集合。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合关联的所有搜索空间集合 中仅所述第一搜索空间集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一PDCCH候选项是所述第一搜索空间集合中任意一个PDCCH候选项。
作为一个实施例,所述第一PDCCH候选项是所述第一搜索空间集合中对应最小的PDCCH候选项索引的PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合关联的搜索空间集合中除所述第一搜索空间集合外还有一个搜索空间集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一资源集合关联的搜索空间集合中仅所述第一搜索空间集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合相连接。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合对应不同的SearchSpaceId。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合分别关联到不同的CORESET。
作为一个实施例,所述第一搜索空间集合中的任一PDCCH候选项和所述第二搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,所述第二搜索空间集合中的任一PDCCH候选项和所述第一搜索空间集合中的一个PDCCH候选项相连接。
作为一个实施例,所述第一搜索空间集合包括的PDCCH候选项的数量等于所述第二搜索空间集合包括的PDCCH候选项的数量。
作为一个实施例,对于任意一个聚合等级,所述第一搜索空间集合包括的PDCCH候选项的数量等于所述第二搜索空间集合包括的PDCCH候选项的数量。
作为一个实施例,所述第一搜索空间集合和所述第二搜索空间集合对应相同的搜索空间类型。
作为一个实施例,所述第一搜索空间集合被所述第一索引所标识,所述第二搜索空间集合被所述第二索引所标识。
作为一个实施例,所述第一索引是所述第一搜索空间集合对应的SearchSpaceId,所述第二索引是所述第二搜索空间集合对应的SearchSpaceId。
实施例14
实施例14示例了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;如附图14所示。在实施例14中,当所述第一条件被满足时,第一PDCCH候选项和第二PDCCH候选项在时域的先后关系被用于确定所述目标TCI状态;所述第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和所述第二PDCCH候选项相连接。
作为一个实施例,当所述第一PDCCH候选项的第一个符号在时域早于所述第二PDCCH候选项的第一个符号时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应较小的TCI-StateId的TCI状态;当所述第一PDCCH候选项的第一个符号在时域晚于所述第二PDCCH候选项的第一个符号时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应较大的TCI-StateId的TCI状态。
作为一个实施例,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态;当所述第一PDCCH候选项的第一个符号在时域早于所述第二PDCCH候选项的第一个符号时,所述目标TCI状态是所述第一TCI状态;当所述第一PDCCH候选项的第一个符号在时域晚于所述第二PDCCH候选项的第一个符号时,所述目标TCI状态是所述第二TCI状态。
作为一个实施例,当所述第一PDCCH候选项的第一个符号和所述第二PDCCH候选项的第一个符号占用相同的时域资源时,所述第一资源集合的标识和第二资源集合的标识被用于确定所述目标TCI状态;所述第二PDCCH候选项属于所述第二资源集合。
作为一个实施例,所述第一PDCCH候选项是所述第一资源集合中所有和另一个PDCCH候选项相连接的PDCCH候选项中对应最小的PDCCH候选项索引的PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一PDCCH候选项是所述第一资源集合关联的所有和另一个搜索空间集合相连接的搜索空间集合中对应的SearchSpaceId最小的一个搜索空间集合中的一个PDCCH候选项。
作为一个实施例,所述第一资源集合是一个CORESET;所述第一PDCCH候选项是所述第一资源集合关联的所有和另一个搜索空间集合相连接的搜索空间集合中对应的SearchSpaceId最小的搜索空间集合中对应最小的PDCCH候选项索引的PDCCH候选项。
实施例15
实施例15示例了根据本申请的一个实施例的第一节点在第一时刻之后在第二资源集合中监测PDCCH的示意图;如附图15所示。在实施例15中,所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被所述第一节点用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
作为一个实施例,作为所述行为接收第一信令的响应,所述其他TCI状态被用于在所述第一时刻之后在所述第二资源集合中监测PDCCH。
作为一个实施例,所述目标TCI状态是所述第一TCI状态,所述其他TCI状态是所述第二TCI状态;或者,所述目标TCI状态是所述第二TCI状态,所述其他TCI状态是所述第一TCI状态。
作为一个实施例,从所述第一时刻开始,所述第二资源集合的TCI状态是所述其他TCI状态。
作为一个实施例,在所述第一时刻之后,所述第二资源集合中的PDCCH接收相关联的DMRS端口和其他参考信号准共址(quasi co-located),所述其他参考信号在其他参考信号资源中传输,所述其他TCI状态指示所述其他参考信号资源。
作为上述实施例的一个子实施例,在所述第一时刻之后,所述第二资源集合中的PDCCH接收相关联的DMRS端口和所述其他参考信号准共址且对应的QCL类型包括QCL-TypeD。
作为一个实施例,在所述第一时刻之后,所述第一节点能够从其他参考信号经历的信道的大尺度特性推断出在所述第二资源集合中被传输的PDCCH的DMRS经历的信道的大尺度特性;所述其他参考信号在其他参考信号资源中传输,所述其他TCI状态指示所述其他参考信号资源。
作为一个实施例,当所述目标TCI状态是所述第一TCI状态时,所述其他参考信号资源是所述第二参考信号资源;当所述目标TCI状态是所述第二TCI状态时,所述其他参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第二资源集合中的一个PDCCH候选项在时域早于所述第一资源集合中的一个PDCCH候选项。
作为一个实施例,所述第二资源集合中的一个PDCCH候选项在时域晚于所述第一资源集合中的一个PDCCH候选项。
实施例16
实施例16示例了根据本申请的一个实施例的目标TCI状态和第一条件是否被满足有关的示意图;如附图16所示。在实施例16中,当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述短语默认的意思包括:不需要指示的。
作为一个实施例,所述短语默认的意思包括:不需要物理层信令指示的。
作为一个实施例,当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个TCI状态。
作为一个实施例,当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中对应的TCI-StateId较小的一个TCI状态。
作为一个实施例,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态。
作为一个实施例,当所述第一条件不被满足时,所述目标TCI状态和所述第一资源集合属于第一资源池还是第二资源池有关;所述第一资源池和所述第二资源池分别包括至少一个资源集合。
作为一个实施例,当所述第一条件不被满足时,所述目标TCI状态和所述第一资源集合的标识无关。
作为一个实施例,当所述第一条件不被满足时,所述目标TCI状态和所述第一资源集合所属的 CORESET池无关。
实施例17
实施例17示例了根据本申请的一个实施例的第一信息块的示意图;如附图17所示。在实施例17中,所述第一信息块被用于确定所述第一资源集合。
作为一个实施例,所述第一信息块由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息块由RRC信令承载。
作为一个实施例,所述第一信息块包括一个IE中的全部或部分信息。
作为一个实施例,所述第一信息块是一个IE。
作为一个实施例,所述第一信息块是一个IE,所述第一信息块的名称里包括“ControlResourceSet”。
作为一个实施例,所述第一信息块是一个IE,所述第一信息块的名称里包括“SearchSpace”。
作为一个实施例,所述第一信息块包括第一IE和第二IE中的信息,所述第一IE的名称里包括“ControlResourceSet”,所述第二IE的名称里包括“SearchSpace”。
作为一个实施例,所述第一信息块由MAC CE信令承载。
作为一个实施例,所述第一信息块由物理层信令承载。
作为一个实施例,所述第一信息块由RRC信令和MAC CE信令共同承载。
作为一个实施例,所述第一信息块包括所述第一资源集合的配置信息。
作为一个实施例,所述第一资源集合是一个CORESET,所述配置信息包括频域资源,以符号为单位的持续时间,CCE到REG映射类型,预编码颗粒度或PDCCH的DMRS扰码序列中的部分或全部。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述配置信息包括监测时隙周期,监测时隙偏移量,在每个周期中持续的连续时隙的数量,PDCCH监测在时隙中占用的一个或多个第一个符号,PDCCH候选项的数量,或搜索空间类型中的部分或全部。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一信息块包括所述第一资源集合关联的所有搜索空间集合的配置IE。
作为一个实施例,所述第一信息块被用于确定所述第一条件是否被满足。
作为一个实施例,所述第一节点根据所述第一信息块判断所述第一条件是否被满足。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一信息块指示所述第一资源集合关联的搜索空间集合中是否存在一个搜索空间集合和另一个搜索空间集合相连接。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一信息块指示所述第一资源集合是否和另一个搜索空间集合相连接。
实施例18
实施例18示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图18所示。在附图18中,第一节点设备中的处理装置1800包括第一处理器1801。
在实施例18中,第一处理器1801接收第一信令,在第一时刻之后在第一资源集合中监测PDCCH。
在实施例18中,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;所述第一信令被用于确定所述第一时刻;所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
作为一个实施例,所述第一处理器1801在所述第一时刻之后接收第一信号,所述第一信号在PDSCH上被传输;其中,所述第一TCI状态和所述第二TCI状态共同被用于接收所述第一信号。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH 候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
作为一个实施例,所述第一处理器1801在所述第一时刻之后在第二资源集合中监测PDCCH;其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述第一处理器1801接收第一信息块;其中,所述第一信息块被用于确定所述第一资源集合。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与所述第一索引和所述第二索引中的至少之一有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一处理器1801包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例19
实施例19示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图19所示。在附图19中,第二节点设备中的处理装置1900包括第二处理器1901。
在实施例19中,第二处理器1901发送第一信令,并在第一时刻之后在第一资源集合中发送PDCCH。
在实施例19中,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;所述第一信令被用于确定所述第一时刻;所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被所述第一信令的目标接收者用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
作为一个实施例,所述第二处理器1901在所述第一时刻之后发送第一信号,所述第一信号在PDSCH上被传输;其中,所述第一TCI状态和所述第二TCI状态共同被所述第一信号的目标接收者用于接收所述第一信号。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
作为一个实施例,所述第二处理器1901在所述第一时刻之后在第二资源集合中发送PDCCH;其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被所述第一信令的所述目标接收者用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述第二处理器1901发送第一信息块;其中,所述第一信息块被用于确定所述第一资源集合。
作为一个实施例,所述第一资源集合是一个CORESET,所述第一信令中的所述第一域依次指示所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与所述第一索引和所述第二索引中的至少之一有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二处理器1901包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理器,接收第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
    所述第一处理器,在第一时刻之后在第一资源集合中监测PDCCH,所述第一信令被用于确定所述第一时刻;
    其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一处理器在所述第一时刻之后接收第一信号,所述第一信号在PDSCH上被传输;其中,所述第一TCI状态和所述第二TCI状态共同被用于接收所述第一信号。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
  4. 根据权利要求1或2所述的第一节点设备,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器在所述第一时刻之后在第二资源集合中监测PDCCH;其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器接收第一信息块;其中,所述第一信息块被用于确定所述第一资源集合。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二处理器,发送第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
    所述第二处理器,在第一时刻之后在第一资源集合中发送PDCCH,所述第一信令被用于确定所述第一时刻;
    其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被所述第一信令的目标接收者用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
  9. 根据权利要求8所述的第二节点设备,其特征在于,所述第二处理器在所述第一时刻之后发送第一信号,所述第一信号在PDSCH上被传输;其中,所述第一TCI状态和所述第二TCI状态共同被所述第一信号的目标接收者用于接收所述第一信号。
  10. 根据权利要求8或9所述的第二节点设备,其特征在于,所述目标TCI状态和所述第一条件是否 被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
  11. 根据权利要求8或9所述的第二节点设备,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
  12. 根据权利要求8至11中任一权利要求所述的第二节点设备,其特征在于,所述第二处理器在所述第一时刻之后在第二资源集合中发送PDCCH;其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被所述第一信令的所述目标接收者用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
  13. 根据权利要求8至12中任一权利要求所述的第二节点设备,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
  14. 根据权利要求8至13中任一权利要求所述的第二节点设备,其特征在于,所述第二处理器发送第一信息块;其中,所述第一信息块被用于确定所述第一资源集合。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
    在第一时刻之后在第一资源集合中监测PDCCH,所述第一信令被用于确定所述第一时刻;
    其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
  16. 根据权利要求15所述的方法,其特征在于,包括:
    在所述第一时刻之后接收第一信号,所述第一信号在PDSCH上被传输;
    其中,所述第一TCI状态和所述第二TCI状态共同被用于接收所述第一信号。
  17. 根据权利要求15或16所述的方法,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
  18. 根据权利要求15或16所述的方法,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
  19. 根据权利要求15至18中任一权利要求所述的方法,其特征在于,包括:
    在所述第一时刻之后在第二资源集合中监测PDCCH;
    其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的 一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
  20. 根据权利要求15至19中任一权利要求所述的方法,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
  21. 根据权利要求15至20中任一权利要求所述的方法,其特征在于,包括:
    接收第一信息块;
    其中,所述第一信息块被用于确定所述第一资源集合。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令包括DCI,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一TCI状态和第二TCI状态;
    在第一时刻之后在第一资源集合中发送PDCCH,所述第一信令被用于确定所述第一时刻;
    其中,所述第一TCI状态和所述第二TCI状态中的仅目标TCI状态被所述第一信令的目标接收者用于在所述第一时刻之后在所述第一资源集合中监测PDCCH;所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个,或者,所述目标TCI状态和第一条件是否被满足有关;所述第一条件包括:所述第一资源集合中的至少一个PDCCH候选项和另一个PDCCH候选项相连接。
  23. 根据权利要求22所述的方法,其特征在于,包括:
    在所述第一时刻之后发送第一信号,所述第一信号在PDSCH上被传输;
    其中,所述第一TCI状态和所述第二TCI状态共同被所述第一信号的目标接收者用于接收所述第一信号。
  24. 根据权利要求22或23所述的方法,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;所述第一资源集合被用于确定所述第一索引;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是第二资源集合中的一个PDCCH候选项,所述第二资源集合被用于确定所述第二索引。
  25. 根据权利要求22或23所述的方法,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件被满足时,所述目标TCI状态与第一索引和第二索引中的至少之一有关;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接;所述第一PDCCH候选项属于第一搜索空间集合,所述第二PDCCH候选项属于第二搜索空间集合,所述第一搜索空间集合和所述第二搜索空间集合分别被用于确定所述第一索引和所述第二索引。
  26. 根据权利要求22至25中任一权利要求所述的方法,其特征在于,包括:
    在所述第一时刻之后在第二资源集合中发送PDCCH;
    其中,所述第一条件被满足;第一PDCCH候选项是所述第一资源集合中的一个PDCCH候选项,所述第一PDCCH候选项和第二PDCCH候选项相连接,所述第二PDCCH候选项是所述第二资源集合中的一个PDCCH候选项;所述第一TCI状态和所述第二TCI状态中的仅其他TCI状态被所述第一信令的所述目标接收者用于在所述第一时刻之后在所述第二资源集合中监测PDCCH;所述其他TCI状态是所述第一TCI状态和所述第二TCI状态中不同于所述目标TCI状态的TCI状态。
  27. 根据权利要求22至26中任一权利要求所述的方法,其特征在于,所述目标TCI状态和所述第一条件是否被满足有关;当所述第一条件不被满足时,所述目标TCI状态是所述第一TCI状态和所述第二TCI状态中默认的一个。
  28. 根据权利要求22至27中任一权利要求所述的方法,其特征在于,包括:
    发送第一信息块;
    其中,所述第一信息块被用于确定所述第一资源集合。
PCT/CN2022/130488 2021-11-29 2022-11-08 一种被用于无线通信的节点中的方法和装置 WO2023093516A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111429617.1 2021-11-29
CN202111429617 2021-11-29
CN202111513873.9A CN116209078A (zh) 2021-11-29 2021-12-13 一种被用于无线通信的节点中的方法和装置
CN202111513873.9 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023093516A1 true WO2023093516A1 (zh) 2023-06-01

Family

ID=86508276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130488 WO2023093516A1 (zh) 2021-11-29 2022-11-08 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116209078A (zh)
WO (1) WO2023093516A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937457A (zh) * 2018-03-23 2020-11-13 三星电子株式会社 用于多流传输的波束管理的方法和装置
US20210321406A1 (en) * 2020-04-13 2021-10-14 Qualcomm Incorporated Dynamic indication of the tci/qcl for dynamic coresets
US20210321379A1 (en) * 2020-04-09 2021-10-14 Comcast Cable Communications, Llc Transmission and reception configuration and signaling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937457A (zh) * 2018-03-23 2020-11-13 三星电子株式会社 用于多流传输的波束管理的方法和装置
US20210321379A1 (en) * 2020-04-09 2021-10-14 Comcast Cable Communications, Llc Transmission and reception configuration and signaling
US20210321406A1 (en) * 2020-04-13 2021-10-14 Qualcomm Incorporated Dynamic indication of the tci/qcl for dynamic coresets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On the LS about Activating two TCI states with a MAC CE", 3GPP DRAFT; R2-2105907, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210519 - 20210528, 10 May 2021 (2021-05-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052003982 *

Also Published As

Publication number Publication date
CN116209078A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020233405A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114978447A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112637810B (zh) 一种被用于无线通信的节点中的方法和装置
CN114828035A (zh) 一种被用于无线通信的节点中的方法和装置
CN115348676A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023093516A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023020453A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022194114A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022242613A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179469A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022199537A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113315609B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023098549A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897599

Country of ref document: EP

Kind code of ref document: A1