WO2021082933A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021082933A1
WO2021082933A1 PCT/CN2020/121061 CN2020121061W WO2021082933A1 WO 2021082933 A1 WO2021082933 A1 WO 2021082933A1 CN 2020121061 W CN2020121061 W CN 2020121061W WO 2021082933 A1 WO2021082933 A1 WO 2021082933A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
signal
type signal
air interface
signal set
Prior art date
Application number
PCT/CN2020/121061
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021082933A1 publication Critical patent/WO2021082933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and more particularly to a transmission method and device related to a side link (Sidelink) in wireless communication.
  • Sidelink side link
  • V2X Vehicle-to-Everything
  • 3GPP has initiated standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP has defined 4 Use Case Groups for 5G V2X services, including Automated Queuing Driving (Vehicles Platnooning), and support for expansion Sensors (Extended Sensors), semi/automatic driving (Advanced Driving) and remote driving (Remote Driving).
  • Automated Queuing Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • NR V2X Compared with the existing LTE (Long-term Evolution) V2X system, NR V2X has a notable feature that supports unicast and multicast and supports HARQ (Hybrid Automatic Repeat reQuest) functions.
  • the PSFCH (Physical Sidelink Feedback Channel) channel is introduced for HARQ-ACK (Acknowledgement) transmission on the secondary link.
  • the PSFCH resources in a secondary link resource pool will be periodically configured or pre-configured.
  • the time slots and sub-channels occupied by PSSCH Physical Sidelink Shared Channel
  • the inventor found through research that when multiple PSFCHs for the same node collide in the time domain, the PSFCH sending node can multiplex the content on different PSFCHs onto the same PSFCH, thereby avoiding the lack of HARQ-ACK information and The resulting waste of resources.
  • the design of reuse is a problem that needs to be solved.
  • this application discloses a solution. It should be noted that although the foregoing description uses the secondary link communication scenario as an example, the present application is also applicable to other cellular network communication scenarios, and achieves similar technical effects in the secondary link communication scenario. In addition, adopting a unified solution for different scenarios (including but not limited to secondary link communication and cellular network communication) also helps to reduce hardware complexity and cost.
  • the embodiment in the first node of the present application and the features in the embodiment can be applied to the second node, and vice versa.
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • for each first-type signal in the first-type signal set HARQ-ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first An air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a first type of the first type of signal set Signal, the first signal is used to determine the first air interface resource block.
  • the problem to be solved by this application includes: how to multiplex HARQ-ACK information of multiple data channels on one HARQ-ACK feedback channel, including how to determine feedback channel resources.
  • the above method solves this problem by restricting the type of data channel used to determine the feedback channel resource.
  • the characteristics of the above method include: the PSFCHs corresponding to the signals in the first type signal set and the second type signal set are mapped to the target time unit in the time domain, and the first type signal set is mapped to the target time unit.
  • the HARQ-ACKs of the signal set and the second type signal set are multiplexed in the first bit block, and only the signals in the first type signal set can be used to determine the PSFCH occupied by the first bit block Resources.
  • the characteristics of the above method include: the signals in the first type of signal set are all unicast (unicast) transmission, and the signals in the second type of signal set are all multicast (groupcast) transmission , Only the unicast transmission signal is used to determine the PSFCH resource occupied by the first bit block.
  • the advantages of the above method include: HARQ-ACK multiplexing is realized in the secondary link communication, the resource utilization rate of the feedback channel is improved, and the design of the feedback channel is simplified.
  • the advantages of the above method include: only performing HARQ-ACK multiplexing in the PSFCH resource corresponding to the unicast signal, which simplifies the design of the multiplexing mechanism and avoids insufficient resources.
  • any first-type signal in the first-type signal set indicates a first-type index
  • any second-type signal in the second-type signal set indicates a The second type index
  • the first type index indicated by any first type signal in the first type signal set indicates the first node
  • any second type signal in the second type signal set indicates The second type index indicates a node set including the first node.
  • the first-type signal set includes P first-type signals, and P is a positive integer greater than 1, and the size of the frequency domain resources occupied by the first signal is not less than all The size of the frequency domain resource occupied by any one of the first type signals except the first signal among the P first type signals.
  • the first signal includes a first signaling and a first sub-signal, and the first signaling includes scheduling information of the first sub-signal; the first signaling Indicating that the first signal is used to determine the first air interface resource block.
  • the set of first-type signals includes P first-type signals, and P is a positive integer greater than 1, and the first signal is among the P first-type signals The location is the default.
  • any first-type signal in the first-type signal set is used to determine an air interface resource block
  • any second-type signal in the second-type signal set is used to determine an air interface resource block
  • the first air interface resource block set is an air interface resource block determined by each first type signal in the first type signal set and an air interface determined by each second type signal in the second type signal set Resource block composition.
  • the first information block indicates a first interval; the time interval between any time unit in the first time window and the target time unit is not less than the first interval.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • for each first-type signal in the first-type signal set HARQ-ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first An air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a first type of the first type of signal set Signal, the first signal is used to determine the first air interface resource block.
  • any first-type signal in the first-type signal set indicates a first-type index
  • any second-type signal in the second-type signal set indicates a The second type index
  • the first type index indicated by any first type signal in the first type signal set indicates the first node
  • any second type signal in the second type signal set indicates The second type index indicates a node set including the first node.
  • the first-type signal set includes P first-type signals, and P is a positive integer greater than 1, and the size of the frequency domain resources occupied by the first signal is not less than all The size of the frequency domain resource occupied by any one of the first type signals except the first signal among the P first type signals.
  • the first signal includes a first signaling and a first sub-signal, and the first signaling includes scheduling information of the first sub-signal; the first signaling Indicating that the first signal is used to determine the first air interface resource block.
  • the set of first-type signals includes P first-type signals, and P is a positive integer greater than 1, and the first signal is among the P first-type signals The location is the default.
  • the second node receives the first bit block in the first air interface resource block;
  • the first air interface resource block subset is composed of a positive integer number of air interface resource blocks in the first air interface resource block set ,
  • the first air interface resource block subset includes the first air interface resource block; any first type signal in the first type signal set is used to determine an air interface resource block, and the second type signal set Any of the second type signals in the signal set is used to determine an air interface resource block;
  • the first air interface resource block set is determined by the air interface resource block determined by each first type signal in the first type signal set and the It is composed of air interface resource blocks determined by each second-type signal in the second-type signal set.
  • the first information block indicates a first interval; the time interval between any time unit in the first time window and the target time unit is not less than the first interval.
  • the second node is a user equipment.
  • the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first type signal set and the second type signal set in a first time window
  • the first transmitter sends the first bit block in the first air interface resource block
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • for each first-type signal in the first-type signal set HARQ-ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first An air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a first type of the first type of signal set Signal, the first signal is used to determine the first air interface resource block.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter transmits the first type signal set and the second type signal set in the first time window
  • a second receiver receiving the first bit block in the first air interface resource block
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • for each first-type signal in the first-type signal set HARQ-ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first An air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a first type of the first type of signal set Signal, the first signal is used to determine the first air interface resource block.
  • this application has the following advantages:
  • HARQ-ACK multiplexing is realized in the secondary link communication, which improves the resource utilization rate of the feedback channel, and simplifies the design of the feedback channel and the design of the multiplexing mechanism.
  • Fig. 1 shows a flow chart of the first type of signal set, the second type of signal set and the first bit block according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a given signal according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first air interface resource block according to an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of a first bit block according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a first signal used to determine a first air interface resource block according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a first signal used to determine a first air interface resource block according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of a first-type signal set, a first-type index, a second-type signal set, and a second-type index according to an embodiment of the present application
  • FIG. 12 shows the relationship between the size of the frequency domain resources occupied by the first signal and the size of the frequency domain resources occupied by other first-type signals in the P first-type signals according to an embodiment of the present application
  • Fig. 13 shows a schematic diagram of a first signal according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of the position of a first signal in P first-type signals according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of the position of a first signal in P first-type signals according to an embodiment of the present application
  • FIG. 16 shows a schematic diagram of a first air interface resource block set according to an embodiment of the present application
  • FIG. 17 shows a schematic diagram of a first information block indicating a first interval according to an embodiment of the present application
  • Fig. 18 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 19 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first type of signal set, the second type of signal set and the first bit block according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in this application receives the first-type signal set and the second-type signal set in the first time window in step 101; and sends it in the first air interface resource block in step 102.
  • the first bit block includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • for each first-type signal in the first-type signal set HARQ-ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first An air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a first type of the first type of signal set Signal, the first signal is used to determine the first air interface resource block.
  • the first time window is a continuous time period.
  • the first time window includes a positive integer number of multi-carrier symbols.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first time window includes a positive integer number of slots.
  • the first time window includes a positive integer number of consecutive time slots (slots).
  • the first time window includes a positive integer number of sub-frames.
  • the first-type signal set includes only the first signal.
  • the first-type signal set includes at least one first-type signal other than the first signal.
  • any first-type signal in the first-type signal set is a wireless signal.
  • any first-type signal in the first-type signal set is a baseband signal.
  • the first type of signal set is transmitted on a side link (SideLink).
  • the first type of signal set is transmitted through the PC5 interface.
  • any first-type signal in the first-type signal set is unicast transmission.
  • the target receiver of any first-type signal in the first-type signal set includes the first node.
  • the target receiver of any first-type signal in the first-type signal set includes only the first node.
  • a part of any first type signal in the first type signal set is unicast transmission, and the other part is broadcast transmission.
  • any first type signal in the first type signal set carries a bit block set
  • the bit block set includes a positive integer number of bit blocks
  • any bit block in the bit block set is A TB (Transport Block) or CBG (Code Block Group, code block group).
  • the second-type signal set includes only one second-type signal.
  • the second-type signal set includes a plurality of second-type signals.
  • any second-type signal in the second-type signal set is a wireless signal.
  • any second type signal in the second type signal set is a baseband signal.
  • the second type of signal set is transmitted on a side link (SideLink).
  • the second type of signal set is transmitted through the PC5 interface.
  • any second type signal in the second type signal set is multicast (Groupcast) transmission.
  • the target receiver of any second-type signal in the second-type signal set includes the first node.
  • the target receiver of any second-type signal in the second-type signal set includes a node set, and the node set includes the first node and at least one node other than the first node .
  • a part of any second type signal in the second type signal set is multicast transmission, and the other part is broadcast transmission.
  • any second type signal in the second type signal set carries a bit block set
  • the bit block set includes a positive integer number of bit blocks
  • any bit block in the bit block set is One TB or CBG.
  • the first node in addition to the first type of signal set and the second type of signal set, the first node does not receive any information from the sender of the first signal in the first time window. Other PSSCH.
  • the first-type signal set includes a plurality of first-type signals, and any two first-type signals in the plurality of first-type signals occupy mutually orthogonal time domain resources.
  • the first-type signal set includes a plurality of first-type signals, and there are two first-type signals in the plurality of first-type signals occupying the same time domain resource.
  • the second-type signal set includes a plurality of second-type signals, and any two second-type signals in the plurality of second-type signals occupy mutually orthogonal time domain resources.
  • the second-type signal set includes a plurality of second-type signals, and there are two second-type signals in the plurality of second-type signals occupying the same time domain resource.
  • any first-type signal in the first-type signal set and any second-type signal in the second-type signal set occupy mutually orthogonal time domain resources.
  • first-type signal in the first-type signal set and a second-type signal in the second-type signal set occupies the same time domain resource.
  • the start time of a first-type signal in the first-type signal set is no earlier than the end time of a second-type signal in the second-type signal set.
  • the start time of a second-type signal in the second-type signal set is no earlier than the end time of a first-type signal in the first-type signal set.
  • the senders of any two first-type signals in the first-type signal set are the same.
  • the senders of any two first-type signals in the first-type signal set are QCL (Quasi Co-Located).
  • the senders of any two second-type signals in the second-type signal set are the same.
  • the sender QCL of any two second-type signals in the second-type signal set is not limited.
  • the sender of any first-type signal in the first-type signal set is the same as the sender of any second-type signal in the second-type signal set.
  • the sender of any first-type signal in the first-type signal set and the sender of any second-type signal in the second-type signal set are QCL.
  • the first bit block includes a positive integer number of binary bits.
  • the first bit block only includes 1 binary bit.
  • the first bit block includes a plurality of binary bits.
  • the first bit block is transmitted on the side link (SideLink).
  • the first bit block is transmitted through the PC5 interface.
  • the first bit block is unicast (Unicast) transmission.
  • the first bit block is multicast (Groupcast) transmission.
  • the first bit block is broadcast (Boradcast) transmission.
  • the HARQ-ACK refers to Hybrid Automatic Repeat reQuest-Acknowledgement (hybrid automatic repeat request confirmation).
  • the HARQ-ACK for any first-type signal in the first-type signal set includes ACK.
  • the HARQ-ACK for any first-type signal in the first-type signal set includes NACK (Negative ACKnowledgement).
  • the HARQ-ACK for any second-type signal in the second-type signal set includes ACK.
  • the HARQ-ACK for any second-type signal in the second-type signal set includes NACK.
  • the first bit block includes ACK.
  • the first bit block includes NACK.
  • the first bit block carries the HARQ-ACK for any first-type signal in the first-type signal set and the HARQ-ACK for any second-type signal in the second-type signal set.
  • the HARQ-ACK is the HARQ-ACK.
  • the given signal is any first-type signal in the first-type signal set or any second-type signal in the second-type signal set; the given signal carries a given bit A block set, any bit block in the given bit block set is a TB or CBG, and the first bit block indicates whether the given bit block set is received correctly.
  • the given signal is any first-type signal in the first-type signal set.
  • the given signal is any two first-type signals in the second-type signal set.
  • the first bit block indicates whether each bit block in the given bit block set is received correctly.
  • the first bit block respectively indicates whether each bit block in the given bit block set is received correctly.
  • the first bit block indicates that each bit block in the given bit block set is correctly received, or at least one bit block in the given bit block set is not Was received correctly.
  • the first bit block indicates whether any first-type signal in the first-type signal set is correctly received, and the first bit block indicates any one of the second-type signal set Whether the second type of signal is received correctly.
  • the first bit block indicates that each bit block carried by any first type signal in the first type signal set and any second type signal in the second type signal set carries Each bit block in the first type signal set is correctly received, or indicates that all the bit blocks carried by the first type signal in the first type signal set and all the bit blocks carried by the second type signal in the second type signal set At least one bit block was not received correctly.
  • the time unit is a continuous time period.
  • the time unit includes a positive integer number of multi-carrier symbols.
  • the time unit includes a positive integer number of consecutive multi-carrier symbols.
  • the time unit is a slot.
  • the time unit is a sub-frame.
  • the time unit is a sub-slot.
  • the time unit is a mini-slot.
  • the first time window only includes 1 time unit.
  • the first time window includes multiple time units.
  • the first time window is composed of a positive integer number of time units.
  • the first time window and the target time unit are orthogonal to each other in the time domain.
  • the start time of the target time unit is not earlier than the end time of the first time window.
  • the first air interface resource block occupies part of the time domain resources in the target time unit in the time domain.
  • the first air interface resource block occupies the latest positive integer number of multi-carrier symbols in the target time unit in the time domain.
  • associating any time unit in the first time window of the sentence with the target time unit includes: for any given time unit in the first time window, The HARQ-ACK corresponding to the PSSCH transmitted in the time unit cannot be transmitted in time domain resources other than the target time unit.
  • associating any time unit in the first time window of the sentence with the target time unit includes: for any given time unit in the first time window, The HARQ-ACK corresponding to the PSSCH transmitted in the time unit is transmitted in the target time unit.
  • associating any time unit in the first time window of the sentence with the target time unit includes: for any given time unit in the first time window, The PSFCH corresponding to the PSSCH transmitted in the time unit cannot be transmitted in time domain resources other than the target time unit.
  • associating any time unit in the first time window of the sentence with the target time unit includes: for any given time unit in the first time window, The PSFCH corresponding to the PSSCH transmitted in the time unit is transmitted in the target time unit.
  • the first air interface resource block has nothing to do with any second-type signal in the second-type signal set.
  • the frequency domain resource occupied by the first air interface resource block is independent of the time-frequency resource occupied by any second type signal in the second type signal set.
  • the frequency domain resources and code domain resources occupied by the first air interface resource block are independent of the time-frequency resources occupied by any second type signal in the second type signal set.
  • the first-type signal set includes a plurality of first-type signals, and the first air interface resource block and any first-type signal in the first-type signal set other than the first signal Irrelevant.
  • the first-type signal set includes multiple first-type signals, and the frequency domain resource occupied by the first air interface resource block is different from any one of the first-type signal set except the first signal.
  • the time-frequency resources occupied by the first type of signals are irrelevant.
  • the first type signal set includes a plurality of first type signals, and the frequency domain resources and code domain resources occupied by the first air interface resource block are the same as the first type signal set except for the first type signal set.
  • the time-frequency resources occupied by any first-type signal other than one signal are irrelevant.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System) Grouping system) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UEs (User Equipment) 201, a UE241 that performs sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G core network)/EPC (Evolved Packet Core, evolved packet core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management, unified data management) 220 and Internet services 230.
  • 5GS/EPS200 It can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in Figure 2, 5GS/EPS200 provides packet switching services. However, those skilled in the art will readily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • UE201 examples include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the UE241.
  • the second node in this application includes the UE201.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the air interface between the UE201 and the UE241 is a PC5 interface.
  • the radio link between the UE 201 and the UE 241 is a side link (Sidelink).
  • the first node in this application is a terminal covered by the gNB203
  • the second node in this application is a terminal covered by the gNB203.
  • the first node in this application is a terminal within the coverage of the gNB203
  • the second node in this application is a terminal outside the coverage of the gNB203.
  • the first node in this application is a terminal outside the coverage of the gNB203
  • the second node in this application is a terminal within the coverage of the gNB203.
  • the first node in this application is a terminal outside the coverage of the gNB203
  • the second node in this application is a terminal outside the coverage of the gNB203.
  • unicast transmission is supported between the UE201 and the UE241.
  • the UE 201 and the UE 241 support multicast (Groupcast) transmission.
  • the sender of the first-type signal set in this application includes the UE241.
  • the receiver of the first-type signal set in this application includes the UE201.
  • the sender of the second type signal set in this application includes the UE241.
  • the receiver of the second-type signal set in this application includes the UE201.
  • the sender of the first bit block in this application includes the UE201.
  • the recipient of the first bit block in this application includes the UE 241.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture used for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • any first-type signal in the first-type signal set in the present application is generated in the PHY301 or the PHY351.
  • any second-type signal in the second-type signal set in the present application is generated in the PHY301 or the PHY351.
  • the first bit block in this application is generated in the PHY301 or the PHY351.
  • the first information block in this application is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time domain and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the communication device 450 is any parallel stream that is the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receive the first type signal set and the second type signal set in this application in the first time window in this application; The first bit block in this application is sent in the first air interface resource block.
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • HARQ- for each first-type signal in the first-type signal set ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit; the first signal is a first type signal in the first type signal set, and The first signal is used to determine the first air interface resource block.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: The first type of signal set and the second type of signal set in this application are received in the first time window in the application; all the signal sets in this application are sent in the first air interface resource block in this application. The first bit block.
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • HARQ- for each first-type signal in the first-type signal set ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units, and the first air interface
  • the resource block belongs to the target time unit in the time domain; any time unit in the first time window is associated with the target time unit; the first signal is a first type signal in the first type signal set, so The first signal is used to determine the first air interface resource block.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: transmit the first type signal set and the second type signal set in this application in the first time window in this application; The first bit block in this application is received in the first air interface resource block.
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • HARQ- for each first-type signal in the first-type signal set ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit; the first signal is a first type signal in the first type signal set, and The first signal is used to determine the first air interface resource block.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: The first type of signal set and the second type of signal set in this application are sent in the first time window in the application; all the signal sets in this application are received in the first air interface resource block in this application. The first bit block.
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • HARQ- for each first-type signal in the first-type signal set ACK and HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units, and the first air interface
  • the resource block belongs to the target time unit in the time domain; any time unit in the first time window is associated with the target time unit; the first signal is a first type signal in the first type signal set, so The first signal is used to determine the first air interface resource block.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first type signal set and the second type signal set in this application in the first time window in this application;
  • the antenna 420, At least one of the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, and the memory 476 ⁇ is used for all the information in this application.
  • the first type of signal set and the second type of signal set in this application are sent in the first time window.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the first bit block in this application in the first air interface resource block in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the At least one of the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to transmit in the first air interface resource block in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information block in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first information block in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the second node U1, the first node U2, and the third node U3 are communication nodes transmitted in pairs over the air interface.
  • the steps in block F51 to block F54 are optional.
  • the steps in boxes F51 and F52 in Fig. 5 cannot exist at the same time.
  • the second node U1 sends the first information block in step S5101; sends the first type signal set and the second type signal set in the first time window in step S511; in step S5102 in the first air interface resource block subset
  • the first bit block is monitored in each air interface resource block; in step S512, the first bit block is received in the first air interface resource block.
  • the first node U2 receives the first information block in step S5201; receives the first information block in step S5202; receives the first type signal set and the second type signal set in the first time window in step S521; In S5203, sending wireless signals in any air interface resource block other than the first air interface resource block in the first air interface resource block set is abandoned; in step S522, the first bit block is sent in the first air interface resource block.
  • the third node U3 sends the first information block in step S5301.
  • the first type signal set includes a positive integer number of first type signals
  • the second type signal set includes a positive integer number of second type signals
  • the HARQ-ACK for the first-type signal and the HARQ-ACK for each second-type signal in the second-type signal set are used by the first node U2 to determine the first bit block
  • the first time window It includes a positive integer number of time units, the first air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit; the first signal is the first A first-type signal in a first-type signal set, where the first signal is used to determine the first air interface resource block.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the third node U3 is a base station.
  • the air interface between the second node U1 and the first node U2 is a PC5 interface.
  • the air interface between the second node U1 and the first node U2 includes a secondary link.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the user equipment and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a user equipment and a relay node.
  • the air interface between the third node U3 and the first node U2 is a Uu interface.
  • the air interface between the third node U3 and the first node U2 includes a cellular link.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the first node in this application is a terminal.
  • the first node in this application is a car.
  • the first node in this application is a vehicle.
  • the first node in this application is an RSU (Road Side Unit).
  • the second node in this application is a terminal.
  • the second node in this application is a car.
  • the second node in this application is a vehicle.
  • the second node in this application is an RSU.
  • the first signal is used by the first node U2 to determine the first air interface resource block.
  • the first signal is used by the second node U1 to determine the first air interface resource block.
  • the step in block F51 in FIG. 5 exists, and the step in block F52 does not exist.
  • the step in block F52 in FIG. 5 exists, and the step in block F51 does not exist.
  • the first information block indicates a first interval; the time interval between any time unit in the first time window and the target time unit is not less than the first interval.
  • any first-type signal in the first-type signal set is used to determine an air interface resource block
  • the second-type signal set is Any of the second-type signals in the first type signal set is used to determine an air interface resource block
  • the first air interface resource block set is determined by each first-type signal in the first type signal set and the first air interface resource block It is composed of air interface resource blocks determined by each second type signal in the second type signal set.
  • any first-type signal in the first-type signal set is used by the first node U2 to determine an air interface resource block, and any second-type signal in the second-type signal set Used by the first node U2 to determine an air interface resource block.
  • any first-type signal in the first-type signal set is used by the second node U1 to determine an air interface resource block, and any second-type signal in the second-type signal set Used by the second node U1 to determine an air interface resource block.
  • the steps in block F54 in FIG. 5 exist; the first air interface resource block subset is composed of a positive integer number of air interface resource blocks in the first air interface resource block set; the second The node U1 receives the first bit block in the first air interface resource block.
  • the monitoring refers to receiving based on energy detection, that is, sensing the energy of the wireless signal, and averaging to obtain the received energy; if the received energy is greater than a second given threshold, it is determined that the received energy The first bit block; otherwise, it is determined that the first bit block is not received.
  • the monitoring refers to reception based on coherent detection, that is, performing coherent reception and measuring the energy of the signal obtained after the coherent reception; if the energy of the signal obtained after the coherent reception is greater than that of the first signal If a threshold is set, it is determined that the first bit block is received; otherwise, it is determined that the first bit block is not received.
  • the monitoring refers to blind decoding, that is, receiving a signal and performing a decoding operation; if it is determined that the decoding is correct according to the CRC (Cyclic Redundancy Check) bit, it is determined that the second is received One bit block; otherwise, it is determined that the first bit block is not received.
  • CRC Cyclic Redundancy Check
  • the sentence monitoring the first bit block includes: the second node in the present application determines whether the first bit block is sent according to coherent detection.
  • the sentence monitoring the first bit block includes: the second node in this application determines whether the first bit block is sent according to the CRC.
  • the sentence monitoring the first bit block includes: the second node in the present application determines the first bit block in the first air interface resource block set according to coherent detection. It is sent in an air interface resource block.
  • the sentence monitoring the first bit block includes: the second node in this application determines the first bit block in the first air interface resource block set according to the CRC. It is sent in the air interface resource block.
  • the first air interface resource block subset includes only the first air interface resource block.
  • the first air interface resource block subset includes at least one air interface resource block excluding the first air interface resource block in the first air interface resource block set.
  • the first air interface resource block subset includes all air interface resource blocks in the first air interface resource block set.
  • any first-type signal in the first-type signal set is transmitted on a secondary link physical layer control channel (that is, a secondary link channel that can only be used to carry physical layer signaling).
  • a secondary link physical layer control channel that is, a secondary link channel that can only be used to carry physical layer signaling.
  • any first-type signal in the first-type signal set is transmitted on a PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • any first-type signal in the first-type signal set is transmitted on a secondary link physical layer data channel (that is, a secondary link channel that can be used to carry physical layer data).
  • a secondary link physical layer data channel that is, a secondary link channel that can be used to carry physical layer data
  • any first-type signal in the first-type signal set is transmitted on the PSSCH.
  • a part of any first type signal in the first type signal set is transmitted on the PSCCH, and the other part is transmitted on the PSSCH.
  • any second-type signal in the second-type signal set is transmitted on a secondary link physical layer control channel (that is, a secondary link channel that can only be used to carry physical layer signaling).
  • a secondary link physical layer control channel that is, a secondary link channel that can only be used to carry physical layer signaling.
  • any second-type signal in the second-type signal set is transmitted on the PSCCH.
  • any second-type signal in the second-type signal set is transmitted on a secondary link physical layer data channel (that is, a secondary link channel that can be used to carry physical layer data).
  • a secondary link physical layer data channel that is, a secondary link channel that can be used to carry physical layer data
  • any second-type signal in the second-type signal set is transmitted on the PSSCH.
  • a part of any second type signal in the second type signal set is transmitted on the PSCCH, and the other part is transmitted on the PSSCH.
  • the first bit block is transmitted on the secondary link physical layer feedback channel (that is, the secondary link channel that can only be used to carry the physical layer HARQ feedback).
  • the first bit block is transmitted on the PSFCH.
  • the first bit block is transmitted on the PSSCH.
  • the first information block is transmitted on the PSSCH.
  • the first information block is transmitted on PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information block is transmitted on a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the first information block is transmitted on a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • Embodiment 6 illustrates a schematic diagram of a given signal according to an embodiment of the present application; as shown in FIG. 6.
  • the given signal is any first-type signal in the first-type signal set or any second-type signal in the second-type signal set;
  • the given signal includes A given signaling and a given sub-signal;
  • the given signaling includes the scheduling information of the given sub-signal, and the given sub-signal carries a given set of bit blocks.
  • the given signal is any first-type signal in the first-type signal set.
  • the given sub-signal is unicast transmission.
  • the target receiver of the given sub-signal includes only the first node.
  • the given signal is any second-type signal in the second-type signal set.
  • the given sub-signal is multicast (Groupcast) transmission.
  • the target receiver of the given sub-signal is a given set of nodes, and the given set of nodes includes the first node and at least one node other than the first node.
  • the given signaling is dynamic signaling.
  • the given signaling is layer 1 (L1) signaling.
  • the given signaling is layer 1 (L1) control signaling.
  • the given signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the given signaling includes one or more fields in an SCI.
  • the given signaling is unicast (Unicast) transmission.
  • the given signaling is transmitted by multicast (Groupcast).
  • the given signaling is transmitted by broadcast (Boradcast).
  • the given signaling is transmitted on PSCCH.
  • the given stator signal is transmitted on the PSSCH.
  • the given bit block set includes a positive integer number of bit blocks, and any bit block in the given bit block set includes a positive integer number of binary bits.
  • any bit block in the given bit block set is a TB.
  • any bit block in the given bit block set is a CB.
  • any bit block in the given bit block set is a CBG.
  • any bit block in the given bit block set is a TB or CBG.
  • the scheduling information includes occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme, modulation and coding scheme), DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information, One or more of HARQ process number (process number), RV (Redundancy Version), or NDI (New Data Indicator, new data indicator).
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • HARQ process number process number
  • RV Redundancy Version
  • NDI New Data Indicator, new data indicator
  • a given set of bit blocks carried by a given signal of a sentence includes: the given sub-signal includes all or part of the bits in the given set of bit blocks and sequentially undergoes CRC (Cyclic Redundancy Check, cyclic redundancy check) Attachment, Channel Coding, Rate Matching, Modulation Mapper, Layer Mapper, Transform Precoder, Precoding, Resource Element Mapper, multi-carrier symbol generation (Generation), output after modulation and upconversion (Modulation and Upconversion).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • a given set of bit blocks carried by a given signal of a sentence includes: the given sub-signal includes all or part of the bits in the given set of bit blocks in turn through CRC attachment, channel coding, rate matching, and modulation mapper , Layer mapper, precoding, resource particle mapper, multi-carrier symbol generation, output after modulation and up-conversion.
  • a given set of bit blocks carried by a given signal of a sentence includes: all or part of the bits in the given set of bit blocks are used to generate the given sub signal.
  • Embodiment 7 illustrates a schematic diagram of the first air interface resource block according to an embodiment of the present application; as shown in FIG. 7.
  • the first air interface resource block includes time domain resources and frequency domain resources.
  • the first air interface resource block includes time domain resources, frequency domain resources and code domain resources.
  • the code domain resources include pseudo-random (pseudo-random) sequence, Zadoff-Chu sequence, low-PAPR (Peak-to-Average Power Ratio) sequence, and cyclic shift (cyclic shift) sequence. shift), OCC (Orthogonal Cover Code, orthogonal mask), orthogonal sequence (orthogonal sequence), frequency domain orthogonal sequence, or time domain orthogonal sequence.
  • the first air interface resource block includes a positive integer number of REs (Resource Elemen, resource particles) in the time-frequency domain.
  • REs Resource Elemen, resource particles
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the first air interface resource block includes a positive integer number of subcarriers in the frequency domain.
  • the first air interface resource block includes a positive integer number of PRBs (Physical Resource Block, physical resource block) in the frequency domain.
  • PRBs Physical Resource Block, physical resource block
  • the first air interface resource block includes a positive integer number of consecutive PRBs in the frequency domain.
  • the first air interface resource block includes 1 PRB in the frequency domain.
  • the first air interface resource block includes 2 consecutive PRBs in the frequency domain.
  • the first air interface resource block includes 4 consecutive PRBs in the frequency domain.
  • the first air interface resource block includes a positive integer number of sub-channels in the frequency domain.
  • one of the sub-channels includes a positive integer number of sub-carriers.
  • one sub-channel includes a positive integer number of consecutive sub-carriers.
  • one of the sub-channels includes a positive integer number of PRBs.
  • one sub-channel includes a positive integer number of consecutive PRBs.
  • the first air interface resource block includes a positive integer number of multi-carrier symbols in the time domain.
  • the first air interface resource block includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the first air interface resource block includes one multi-carrier symbol in the time domain.
  • the first air interface resource block includes two consecutive multi-carrier symbols in the time domain.
  • the first air interface resource block includes a positive integer number of slots in the time domain.
  • the first air interface resource block includes a positive integer number of sub-frames in the time domain.
  • the first air interface resource block includes one PSFCH resource (resource).
  • the first air interface resource block includes multiple PSFCH resources.
  • the first air interface resource block is reserved for PSFCH.
  • the first air interface resource block is reserved for HARQ-ACK of the secondary link.
  • the first air interface resource block is reserved for HARQ-ACK for V2X.
  • the time-frequency resource occupied by the first signal is used to determine the first air interface resource block.
  • the first signal and the first air interface resource block are orthogonal in the time domain.
  • the first air interface resource block and the first signal belong to mutually orthogonal time units in the time domain.
  • the start time of the first air interface resource block is later than the end time of the first signal.
  • the time domain resource occupied by the first signal is used to determine the time domain resource occupied by the first air interface resource block.
  • the frequency domain resource occupied by the first signal is used to determine the frequency domain resource occupied by the first air interface resource block.
  • the frequency domain resources occupied by the first signal are used to determine the frequency domain resources and code domain resources occupied by the first air interface resource block.
  • the time-frequency resource occupied by the first signal is used to determine the frequency domain resource occupied by the first air interface resource block.
  • the time-frequency resource occupied by the first signal is used to determine the frequency domain resource and the code domain resource occupied by the first air interface resource block.
  • Embodiment 8 illustrates a schematic diagram of the first bit block according to an embodiment of the present application; as shown in FIG. 8.
  • the given signal is any first-type signal in the first-type signal set or any second-type signal in the second-type signal set, and the given signal carries a given bit block
  • the first bit block includes a given bit sub-block, the given bit sub-block indicates whether the given bit block set is correctly received; the given bit block sub-block is in the first bit block
  • the position in is related to the position in the first time window of the time unit to which the given signal belongs.
  • the position in the first time window of the time unit to which the given signal belongs is used to determine the position of the given bit block sub-block in the first bit block.
  • the given bit sub-block includes only one binary bit.
  • the given bit sub-block includes a plurality of binary bits.
  • the given bit sub-block indicates whether each bit block in the given bit block set is received correctly.
  • the given bit sub-blocks respectively indicate whether each bit block in the given bit block set is received correctly.
  • the given bit sub-block indicates that each bit block in the given bit block set is correctly received, or at least one bit block in the given bit block set is not correctly received.
  • the first time window includes S time units, and S is a positive integer greater than 1; the first bit block includes S bit sub-blocks, the S bit sub-blocks and the S bit sub-blocks
  • the time unit has a one-to-one correspondence; any bit sub-block in the S bit sub-blocks is reserved for the HARQ-ACK of the PSSCH transmitted in the corresponding time unit.
  • the given bit sub-block is a bit sub-block corresponding to the time unit to which the given signal belongs among the S bit sub-blocks.
  • the value of each bit in the bit sub-block corresponding to the given time unit in the S bit sub-block is set to NACK.
  • Embodiment 9 illustrates a schematic diagram of the first signal used to determine the first air interface resource block according to an embodiment of the present application; as shown in FIG. 9.
  • the first time unit is a time unit occupied by the first signal in the time domain
  • the first subchannel is a sub-channel (sub-channel) occupied by the first signal in the frequency domain
  • the (the first time unit, the first subchannel) pair is used to determine the first air interface resource block.
  • the first subchannel is the lowest subchannel occupied by the first signal.
  • the first subchannel is the highest subchannel occupied by the first signal.
  • the first subchannel is the initial subchannel occupied by the first signal.
  • the first subchannel is the lowest subchannel occupied by the first subsignal.
  • the first subchannel is the highest subchannel occupied by the first subsignal.
  • the first subchannel is the lowest subchannel occupied by the first signaling.
  • the first subchannel is the highest subchannel occupied by the first signaling.
  • the first time unit, the first subchannel pair is one of the P1 candidate pairs, P1 is a positive integer greater than 1, and any one of the P1 candidate pairs
  • the pair includes (one time unit, one subchannel); the first air interface resource block belongs to a first air interface resource block group, and the first air interface resource block group is one candidate air interface resource block in the P2 candidate air interface resource block groups P2 is a positive integer greater than 1, and any one of the P2 candidate air interface resource block groups includes a positive integer of candidate air interface resource blocks; any one of the P1 candidate pairs is sum One of the P2 candidate air interface resource block groups corresponds to one candidate air interface resource block group; the first air interface resource block group is the P2 candidate air interface resource block group corresponding to the (the first time unit, The candidate air interface resource block group of the first subchannel) pair.
  • the first air interface resource block group is composed of the first air interface resource block.
  • the first air interface resource block group includes a plurality of air interface resource blocks.
  • the first air interface resource block group includes multiple air interface resource blocks, and any two air interface resource blocks in the multiple air interface resource blocks occupy the same time-frequency resources and different code domains. Resources.
  • the first air interface resource block group includes a plurality of air interface resource blocks, and there are two air interface resource blocks in the plurality of air interface resource blocks occupying frequency domain resources that are orthogonal to each other.
  • the first air interface resource block group includes a plurality of air interface resource blocks, and the ID (IDentity) of the first node is used to obtain information from the first air interface resource block group. Determine the first air interface resource block.
  • the first air interface resource block group includes a plurality of air interface resource blocks, and the ID of the sender of the first signal is used to determine from the first air interface resource block group.
  • the first air interface resource block includes a plurality of air interface resource blocks, and the ID of the sender of the first signal is used to determine from the first air interface resource block group.
  • the first bit block is used to determine the first air interface resource block from the first air interface resource block group.
  • the correspondence between the P1 candidate pairs and the P2 candidate air interface resource block groups is pre-configured.
  • the correspondence between the P1 candidate pairs and the P2 candidate air interface resource block groups is configured by RRC signaling.
  • Embodiment 10 illustrates a schematic diagram of the first signal being used to determine the first air interface resource block according to an embodiment of the present application; as shown in FIG. 10.
  • the first signal occupies Q subchannels in the frequency domain, where Q is a positive integer greater than 1.
  • the Q subchannels are used to determine Q air interface resource blocks, and the Q air interface resource blocks All belong to the target time unit in the time domain, the Q air interface resource blocks are continuous in the frequency domain; the first air interface resource block includes Q1 air interface resource blocks out of the Q air interface resource blocks, and Q1 is A positive integer not greater than the Q.
  • the indexes of the Q subchannels and the Q air interface resource blocks are #0,...,#(Q-1), respectively.
  • the Q1 air interface resource blocks are continuous in the frequency domain.
  • the first air interface resource block is composed of the Q1 air interface resource blocks.
  • the Q1 is equal to the Q.
  • the Q1 is smaller than the Q.
  • the Q air interface resource blocks occupy the same time domain resources.
  • the time domain resource occupied by the first signal is used to determine the target time unit.
  • the Q subchannels are respectively used to determine frequency domain resources occupied by the Q air interface resource blocks.
  • the Q subchannels are respectively used to determine frequency domain resources and code domain resources occupied by the Q air interface resource blocks.
  • the time domain resource occupied by the first signal corresponds to the given air interface resource block in the Q subchannels
  • the sub-channels of are jointly used to determine the frequency domain resources occupied by the given air interface resource block.
  • the time domain resource occupied by the first signal corresponds to the given air interface resource block in the Q subchannels
  • the sub-channels of are jointly used to determine the frequency domain resources and code domain resources occupied by the given air interface resource block.
  • the first signal belongs to the first time unit in Embodiment 9 in the time domain
  • the Q reference pairs correspond to the Q subchannels one-to-one, and any one of the Q reference pairs
  • the reference pair includes (the first time unit, the corresponding subchannel); the Q reference pairs are respectively used to determine the Q air interface resource blocks.
  • Embodiment 11 illustrates a schematic diagram of a first-type signal set, a first-type index, a second-type signal set, and a second-type index according to an embodiment of the present application; as shown in FIG. 11.
  • any first-type signal in the first-type signal set indicates a first-type index
  • any second-type signal in the second-type signal set indicates a second-type index
  • the first-type index indicated by any first-type signal in the first-type signal set indicates the first node
  • the second-type index indicated by any second-type signal in the second-type signal set indicates that one includes the The node collection of the first node.
  • any first-type signal in the first-type signal set explicitly indicates the corresponding first-type index.
  • any first-type signal in the first-type signal set implicitly indicates the corresponding first-type index.
  • any given first-type signal in the first-type signal set includes a first given signal and a first given sub-signal, and the first given signal includes the first given signal.
  • Scheduling information of the stator signal; the first given signaling indicates the corresponding first type index.
  • the values of the first-type indexes indicated by any two first-type signals in the first-type signal set are equal.
  • the first type index indicated by any first type signal in the first type signal set indicates the ID of the first node.
  • the first-type index indicated by any first-type signal in the first-type signal set indicates that the target receiver of the corresponding first-type signal includes and only includes the first node.
  • the first type index indicated by any first type signal in the first type signal set includes a destination ID.
  • the first type index indicated by any first type signal in the first type signal set includes the destination ID of Layer-1.
  • the first type index indicated by any first type signal in the first type signal set includes the RNTI (Radio Network Temporary Identifier) of the first node.
  • RNTI Radio Network Temporary Identifier
  • the RNTI of the first node is used to determine the first type index indicated by any first type signal in the first type signal set.
  • the first type index indicated by any first type signal in the first type signal set includes the IMSI (International Mobile Subscriber Identification Number, International Mobile Subscriber Identification Number) of the first node.
  • IMSI International Mobile Subscriber Identification Number, International Mobile Subscriber Identification Number
  • the IMSI of the first node is used to determine the first type index indicated by any first type signal in the first type signal set.
  • the first type index indicated by any first type signal in the first type signal set includes the S-TMSI (SAE Temporary Mobile Subscriber Identity, SAE Temporary Mobile Subscriber Identity) of the first node .
  • S-TMSI SAE Temporary Mobile Subscriber Identity, SAE Temporary Mobile Subscriber Identity
  • the S-TMSI of the first node is used to determine the first type index indicated by any first type signal in the first type signal set.
  • the first-type index indicated by any first-type signal in the first-type signal set indicates that the target receiver of the corresponding first-type signal includes only the first node.
  • the first type index indicated by any first type signal in the first type signal set indicates that the target receiver of the bit block set carried by the corresponding first type signal includes only the first node, so
  • the bit block set includes a positive integer number of TB or CBG.
  • the first type index indicated by any first type signal in the first type signal set includes a corresponding broadcast type (cast type) of the first type signal.
  • the first type index indicated by any first type signal in the first type signal set indicates that the corresponding first type signal is unicast transmission.
  • the first type index indicated by any first type signal in the first type signal set indicates that the bit block set carried by the corresponding first type signal is unicast transmission, and the bit block set includes Positive integer number of TB or CBG.
  • any second-type signal in the second-type signal set explicitly indicates the corresponding second-type index.
  • any second-type signal in the second-type signal set implicitly indicates the corresponding second-type index.
  • any given second-type signal in the second-type signal set includes a second given signaling and a second given sub-signal, and the second given signaling includes the second given signal.
  • Scheduling information of the stator signal; the second given signaling indicates the corresponding second type index.
  • the second-type index indicated by any second-type signal in the second-type signal set indicates that the target receiver of the corresponding second-type signal is a node set including the first node.
  • the node set indicated by the second type index indicated by any second type signal in the second type signal set includes at least one node other than the first node.
  • the second-type index indicated by any second-type signal in the second-type signal set indicates an ID of a node set including the first node.
  • the second type index indicated by any second type signal in the second type signal set includes a destination group ID.
  • the second type index indicated by any second type signal in the second type signal set includes the destination group ID of layer 1 (Layer-1).
  • the second-type index indicated by any second-type signal in the second-type signal set includes a cast type of the corresponding second-type signal.
  • the second type index indicated by any second type signal in the second type signal set indicates that the corresponding second type signal is multicast (groupcast) transmission.
  • the second type index indicated by any second type signal in the second type signal set indicates that the bit block set carried by the corresponding second type signal is multicast transmission, and the bit block set includes Positive integer number of TB or CBG.
  • any index of the first type is a non-negative integer.
  • any index of the first type is a positive integer.
  • any second type index is a non-negative integer.
  • any second type index is a positive integer.
  • the value of any index of the first type is not equal to the value of any index of the second type.
  • Embodiment 12 illustrates a schematic diagram of the relationship between the size of the frequency domain resources occupied by the first signal and the size of the frequency domain resources occupied by other first-type signals in the P first-type signals according to an embodiment of the present application; Shown in Figure 12.
  • the first signal is a first-type signal that occupies the largest frequency domain resource among the P first-type signals.
  • the size of the frequency domain resource occupied by any one of the P first type signals except the first signal is smaller than the size of the frequency domain resource occupied by the first signal .
  • the size of the frequency domain resources occupied by P3 of the P first type signals is equal to the size of the frequency domain resources occupied by the first signal, and P3 is a positive value greater than 1.
  • the P3 first-type signals include the first signal.
  • the first signal is the earliest first-type signal among the P3 first-type signals.
  • the first signal is the latest first-type signal among the P3 first-type signals.
  • Embodiment 13 illustrates a schematic diagram of the first signal according to an embodiment of the present application; as shown in FIG. 13.
  • the first signal includes the first signaling and the first sub-signal, and the first signaling includes scheduling information of the first sub-signal; the first signaling indicates The first signal is used to determine the first air interface resource block.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling includes SCI.
  • the first signaling includes one or more fields in an SCI.
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling is transmitted on the side link (SideLink).
  • the first signaling is transmitted through the PC5 interface.
  • the first signaling is transmitted on the downlink (DownLink).
  • the first signaling is unicast (Unicast) transmission.
  • the first signaling is transmitted by multicast (Groupcast).
  • the first signaling is broadcast (Boradcast) transmission.
  • the first sub-signal carries a first bit block set
  • the first bit block set includes an integer number of bit blocks
  • any bit block in the first bit block set includes a positive integer number of bits. Bits.
  • any bit block in the first bit block set is a TB.
  • any bit block in the first bit block set is a CB.
  • any bit block in the first bit block set is a CBG.
  • any bit block in the first bit block set is a TB or CBG.
  • the first signaling indicates from the first type signal set that the first signal is used to determine the first air interface resource block.
  • the first signaling indicates that the time-frequency resource occupied by the first signal is used to determine the first air interface resource block.
  • the first signaling explicitly indicates that the first signal is used to determine the first air interface resource block.
  • the first signaling implicitly indicates that the first signal is used to determine the first air interface resource block.
  • Embodiment 14 illustrates a schematic diagram of the position of the first signal in the P first-type signals according to an embodiment of the present application; as shown in FIG. 14.
  • the position of the first signal in the P first-type signals is a default.
  • the sentence is included by default: no signaling indication is required.
  • the sentence is included by default: no dynamic signaling indication is required.
  • the sentence is included by default: it does not need to be indicated by higher layer signaling.
  • the sentence is included by default: pre-configured.
  • the first signal is the earliest first-type signal among the P first-type signals.
  • the time unit to which the first signal belongs is the earliest time unit among the time units to which the P signals of the first type belong respectively.
  • Embodiment 15 illustrates a schematic diagram of the position of the first signal in the P first-type signals according to an embodiment of the present application; as shown in FIG. 15.
  • the first signal is the latest first-type signal among the P first-type signals.
  • the time unit to which the first signal belongs is the latest time unit among the time units to which the P signals of the first type belong respectively.
  • Embodiment 16 illustrates a schematic diagram of the first air interface resource block set according to an embodiment of the present application; as shown in FIG. 16.
  • any first-type signal in the first-type signal set is used to determine an air interface resource block
  • any second-type signal in the second-type signal set is used to determine an air interface resource block.
  • Air interface resource block; the first air interface resource block set is determined by each first type signal in the first type signal set and each second type signal in the second type signal set The determined air interface resource block composition.
  • any air interface resource block in the first air interface resource block set includes time domain resources and frequency domain resources.
  • any air interface resource block in the first air interface resource block set includes time-frequency resources and code domain resources.
  • any air interface resource block in the first air interface resource block set includes a positive integer number of REs in the time-frequency domain.
  • any air interface resource block in the first air interface resource block set includes one PSFCH resource.
  • one air interface resource block in the first air interface resource block set includes multiple PSFCH resources.
  • any air interface resource block in the first air interface resource block set is reserved for the PSFCH.
  • any air interface resource block in the first air interface resource block set is reserved for HARQ-ACK of the secondary link.
  • the air interface resource block determined by any given first-type signal in the first-type signal set is reserved for the PSFCH corresponding to the given first-type signal.
  • the air interface resource block determined by any given first-type signal in the first-type signal set is reserved for transmission in the time-frequency resource occupied by the given first-type signal PSFCH corresponding to the PSSCH.
  • the air interface resource block determined by any given second-type signal in the second-type signal set is reserved for the PSFCH corresponding to the given second-type signal.
  • the air interface resource block determined by any given second-type signal in the second-type signal set is reserved for transmission in the time-frequency resource occupied by the given second-type signal PSFCH corresponding to the PSSCH.
  • the time-frequency resource occupied by any first-type signal in the first-type signal set is used to determine the corresponding air interface resource block.
  • the time-frequency resource occupied by any second-type signal in the second-type signal set is used to determine the corresponding air interface resource block.
  • the method in which any first-type signal in the first-type signal set is used to determine the corresponding air interface resource block is similar to that the first signal is used to determine the first air interface resource block.
  • the method in which any second-type signal in the second-type signal set is used to determine the corresponding air interface resource block is similar to that the first signal is used to determine the first air interface resource block.
  • any air interface resource block in the first air interface resource block set belongs to the target time unit.
  • any two air interface resource blocks in the first air interface resource block set occupy the same time domain resources.
  • any two air interface resource blocks in the first air interface resource block set occupy frequency domain resources that are orthogonal to each other.
  • Embodiment 17 illustrates a schematic diagram of the first information block indicating the first interval according to an embodiment of the present application; as shown in FIG. 17.
  • the first information block is carried by higher layer signaling.
  • the first information block is carried by RRC signaling.
  • the first information block is carried by MAC CE (Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element
  • the first information block is transmitted on a side link (SideLink).
  • SideLink side link
  • the first information block is transmitted through the PC5 interface.
  • the first information block is transmitted on the downlink.
  • the first information block is transmitted through a Uu interface.
  • the first information block includes all or part of information in a field (Field) in an IE (Information Element).
  • the first information block includes information in one or more fields in a MIB (Master Information Block, master information block).
  • MIB Master Information Block, master information block
  • the first information block includes information in one or more fields in a SIB (System Information Block, System Information Block).
  • SIB System Information Block, System Information Block
  • the first information block includes information in one or more fields in RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the first information block is transmitted through wireless signals.
  • the first information block is transmitted from the sender of the first signal to the first node.
  • the first information block is transmitted from the serving cell of the first node to the first node.
  • the first information block is transferred from the upper layer of the first node to the physical layer of the first node.
  • the first information block is transferred from a higher layer of the first node to the physical layer of the first node.
  • the first information block explicitly indicates the first interval.
  • the first information block implicitly indicates the first interval.
  • the first interval is a non-negative integer.
  • the first interval is a positive integer.
  • the unit of the first interval is a slot.
  • the unit of the first interval is a sub-frame.
  • the unit of the first interval is the time unit in this application.
  • the unit of the first interval is a positive integer number of multi-carrier symbols.
  • the time interval between two time units refers to: the end time of a time unit with an earlier start time and the start time of a time unit with a later start time in the two time units The time interval between.
  • the time interval between two time units refers to the time interval between the end moments of the two time units.
  • the time interval between two time units refers to: the time interval between the start moments of the two time units.
  • the target time unit is a time unit in a first time unit set, and any time unit in the first time unit set includes time domain resources that can be used to transmit PSFCH;
  • the target time unit is that the start time in the first time unit set is not earlier than the end time of the given time unit and is the same as the given time unit
  • the time interval between is not less than the earliest time unit of the first interval.
  • the first information block indicates the first time unit set.
  • associating any time unit in the first time window of the sentence with the target time unit includes: for any given time unit in the first time window ,
  • the target time unit is that the start time in the first time unit set is not earlier than the end time of the given time unit and the time interval between the target time unit and the given time unit is not less than the first interval The earliest unit of time.
  • the time interval between the end time of the first time window and the start time of the target time unit is not less than the first interval.
  • the time interval between the end time of the first time window and the end time of the target time unit is not less than the first interval.
  • Embodiment 18 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 18.
  • the processing device 1800 in the first node device includes a first receiver 1801 and a first transmitter 1802.
  • the first receiver 1801 receives the first type signal set and the second type signal set in the first time window; the first transmitter 1802 transmits the first bit block in the first air interface resource block.
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • the HARQ-ACK of the first-type signal and the HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a signal in the first type of signal set A first-type signal, the first signal is used to determine the first air interface resource block.
  • any first-type signal in the first-type signal set indicates a first-type index
  • any second-type signal in the second-type signal set indicates a second-type index
  • the first type index indicated by any first type signal in the first type signal set indicates the first node
  • the second type index indicated by any second type signal in the second type signal set indicates one A set of nodes including the first node.
  • the first-type signal set includes P first-type signals, and P is a positive integer greater than 1, and the size of frequency domain resources occupied by the first signal is not less than the P first-type signals The size of the frequency domain resource occupied by any first type signal in the signal except the first signal.
  • the first signal includes first signaling and a first sub-signal, the first signaling includes scheduling information of the first sub-signal; the first signaling indicates the first signal Is used to determine the first air interface resource block.
  • the first-type signal set includes P first-type signals, and P is a positive integer greater than 1, and the position of the first signal in the P first-type signals is a default.
  • the first transmitter 1802 abandons sending wireless signals in any air interface resource block except the first air interface resource block in the first air interface resource block set; wherein, the first type of signal set Any signal of the first type in the signal set is used to determine an air interface resource block, and any signal of the second type in the signal set of the second type is used to determine an air interface resource block; An air interface resource block determined by each first-type signal in the first-type signal set and an air interface resource block determined by each second-type signal in the second-type signal set.
  • the first receiver 1801 receives a first information block; wherein the first information block indicates a first interval; any time unit in the first time window and the target time unit The time interval between is not less than the first interval.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1801 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • the first transmitter 1802 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 19 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 19.
  • the processing device 1900 in the second node device includes a second transmitter 1901 and a second receiver 1902.
  • the second transmitter 1901 transmits the first type signal set and the second type signal set in the first time window; the second receiver 1902 receives the first bit block in the first air interface resource block.
  • the first-type signal set includes a positive integer number of first-type signals
  • the second-type signal set includes a positive integer number of second-type signals
  • the HARQ-ACK of the first-type signal and the HARQ-ACK for each second-type signal in the second-type signal set are used to determine the first bit block
  • the first time window includes a positive integer number of time units
  • the first air interface resource block belongs to a target time unit in the time domain; any time unit in the first time window is associated with the target time unit;
  • the first signal is a signal in the first type of signal set A first-type signal, the first signal is used to determine the first air interface resource block.
  • any first-type signal in the first-type signal set indicates a first-type index
  • any second-type signal in the second-type signal set indicates a second-type index
  • the first type index indicated by any first type signal in the first type signal set indicates the first node
  • the second type index indicated by any second type signal in the second type signal set indicates one A set of nodes including the first node.
  • the first-type signal set includes P first-type signals, and P is a positive integer greater than 1, and the size of frequency domain resources occupied by the first signal is not less than the P first-type signals The size of the frequency domain resource occupied by any first type signal in the signal except the first signal.
  • the first signal includes first signaling and a first sub-signal, the first signaling includes scheduling information of the first sub-signal; the first signaling indicates the first signal Is used to determine the first air interface resource block.
  • the first-type signal set includes P first-type signals, and P is a positive integer greater than 1, and the position of the first signal in the P first-type signals is a default.
  • the second receiver 1902 monitors the first bit block in each air interface resource block in the first air interface resource block subset; wherein, the second node device is in the first air interface resource block.
  • the first bit block is received in the block;
  • the first air interface resource block subset is composed of a positive integer number of air interface resource blocks in a first air interface resource block set, and the first air interface resource block subset includes the first air interface resource block subset.
  • any first type signal in the first type signal set is used to determine an air interface resource block, and any second type signal in the second type signal set is used to determine an air interface Resource block; the first air interface resource block set is determined by the air interface resource block determined by each first type signal in the first type signal set and each second type signal in the second type signal set The determined air interface resource block composition.
  • the second transmitter 1901 sends a first information block; wherein, the first information block indicates a first interval; any time unit in the first time window and the target time unit The time interval between is not less than the first interval.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1901 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second receiver 1902 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point) and other wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点在第一时间窗中接收第一类信号集合和第二类信号集合;在第一空口资源块中发送第一比特块。所述第一类信号集合和所述第二类信号集合分别包括正整数个第一类信号和第二类信号;所述第一类信号集合的HARQ-ACK和所述第二类信号集合的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。上述方法在副链路通信中实现了HARQ-ACK复用,提高了反馈信道的资源利用率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和副链路(Sidelink)相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成面向5G V2X业务的需求制定工作,并写入标准TS22.886。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
NR V2X和现有的LTE(Long-term Evolution,长期演进)V2X系统相比,一个显著的特征在于支持单播和组播并支持HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)功能。PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)信道被引入用于副链路上的HARQ-ACK(Acknowledgement,确认)传输。根据3GPP RAN1#96b会议的结果,一个副链路资源池中的PSFCH资源将被周期性的配置或预配置。根据3GPP RAN1#97会议的结果,PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)所占用的时隙和子信道(sub-channel)会被用于确定对应的PSFCH资源。
发明人通过研究发现,当针对同一个节点的多个PSFCH在时域发生冲突时,PSFCH的发送节点可以将不同PSFCH上的内容复用到同一个PSFCH上,从而避免HARQ-ACK信息的缺失和导致的资源浪费。复用的设计是一个需要解决的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用副链路通信场景作为一个例子,本申请也适用于其他蜂窝网通信场景,并取得类似在副链路通信场景中的技术效果。此外,不同场景(包括但不限于副链路通信和蜂窝网通信)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一时间窗中接收第一类信号集合和第二类信号集合;
在第一空口资源块中发送第一比特块;
其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,本申请要解决的问题包括:如何在一个HARQ-ACK反馈信道上复用多个数据信道的HARQ-ACK信息,包括如何确定反馈信道资源。上述方法通过限制被用于 确定反馈信道资源的数据信道的类型,从而解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一类信号集合和所述第二类信号集合中的信号对应的PSFCH在时域都映射到所述目标时间单元内,所述第一类信号集合和所述第二类信号集合的HARQ-ACK在所述第一比特块中被复用,只有第一类信号集合中的信号才能被用于确定所述第一比特块所占用的PSFCH资源。
作为一个实施例,上述方法的特质包括:所述第一类信号集合中的信号都是单播(unicast)传输的,所述第二类信号集合中的信号都是组播(groupcast)传输的,只有单播传输的信号才被用于确定所述第一比特块所占用的PSFCH资源。
作为一个实施例,上述方法的好处包括:在副链路通信中实现了HARQ-ACK复用,提高了反馈信道的资源利用率,并简化了反馈信道的设计。
作为一个实施例,上述方法的好处包括:仅在单播信号对应的PSFCH资源内进行HARQ-ACK复用,简化了复用机制的设计,避免了资源不足。
根据本申请的一个方面,其特征在于,所述第一类信号集合中的任一第一类信号指示一个第一类索引,所述第二类信号集合中的任一第二类信号指示一个第二类索引;所述第一类信号集合中的任一第一类信号指示的第一类索引指示所述第一节点,所述第二类信号集合中的任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合。
根据本申请的一个方面,其特征在于,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号所占用的频域资源的大小不小于所述P个第一类信号中除所述第一信号以外的任一第一类信号所占用的频域资源的大小。
根据本申请的一个方面,其特征在于,所述第一信号包括第一信令和第一子信号,所述第一信令包括所述第一子信号的调度信息;所述第一信令指示所述第一信号被用于确定所述第一空口资源块。
根据本申请的一个方面,其特征在于,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号在所述P个第一类信号中的位置是默认的。
根据本申请的一个方面,其特征在于,包括:
放弃在第一空口资源块集合中除所述第一空口资源块以外的任一空口资源块中发送无线信号;
其中,所述第一类信号集合中的任一第一类信号被用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
根据本申请的一个方面,其特征在于,包括:
接收第一信息块;
其中,所述第一信息块指示第一间隔;所述第一时间窗中的任一时间单元和所述目标时间单元之间的时间间隔不小于所述第一间隔。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一时间窗中发送第一类信号集合和第二类信号集合;
在第一空口资源块中接收第一比特块;
其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
根据本申请的一个方面,其特征在于,所述第一类信号集合中的任一第一类信号指示一个第一类索引,所述第二类信号集合中的任一第二类信号指示一个第二类索引;所述第一类信号集合中的任一第一类信号指示的第一类索引指示所述第一节点,所述第二类信号集合中的任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合。
根据本申请的一个方面,其特征在于,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号所占用的频域资源的大小不小于所述P个第一类信号中除所述第一信号以外的任一第一类信号所占用的频域资源的大小。
根据本申请的一个方面,其特征在于,所述第一信号包括第一信令和第一子信号,所述第一信令包括所述第一子信号的调度信息;所述第一信令指示所述第一信号被用于确定所述第一空口资源块。
根据本申请的一个方面,其特征在于,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号在所述P个第一类信号中的位置是默认的。
根据本申请的一个方面,其特征在于,包括:
在第一空口资源块子集中的每个空口资源块中监测所述第一比特块;
其中,所述第二节点在所述第一空口资源块中接收到所述第一比特块;所述第一空口资源块子集由第一空口资源块集合中的正整数个空口资源块组成,所述第一空口资源块子集包括所述第一空口资源块;所述第一类信号集合中的任一第一类信号被用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块;
其中,所述第一信息块指示第一间隔;所述第一时间窗中的任一时间单元和所述目标时间单元之间的时间间隔不小于所述第一间隔。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,在第一时间窗中接收第一类信号集合和第二类信号集合;
第一发送机,在第一空口资源块中发送第一比特块;
其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,在第一时间窗中发送第一类信号集合和第二类信号集合;
第二接收机,在第一空口资源块中接收第一比特块;
其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在副链路通信中实现了HARQ-ACK复用,提高了反馈信道的资源利用率,并简化了反馈信道的设计和复用机制的设计。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一类信号集合,第二类信号集合和第一比特块的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的给定信号的示意图;
图7示出了根据本申请的一个实施例的第一空口资源块的示意图;
图8示出了根据本申请的一个实施例的第一比特块的示意图;
图9示出了根据本申请的一个实施例的第一信号被用于确定第一空口资源块的示意图;
图10示出了根据本申请的一个实施例的第一信号被用于确定第一空口资源块的示意图;
图11示出了根据本申请的一个实施例的第一类信号集合,第一类索引,第二类信号集合和第二类索引的示意图;
图12示出了根据本申请的一个实施例的第一信号所占用的频域资源的大小和P个第一类信号中其他第一类信号所占用的频域资源的大小之间的关系的示意图;
图13示出了根据本申请的一个实施例的第一信号的示意图;
图14示出了根据本申请的一个实施例的第一信号在P个第一类信号中的位置示意图;
图15示出了根据本申请的一个实施例的第一信号在P个第一类信号中的位置示意图;
图16示出了根据本申请的一个实施例的第一空口资源块集合的示意图;
图17示出了根据本申请的一个实施例的第一信息块指示第一间隔的示意图;
图18示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一类信号集合,第二类信号集合和第一比特块的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中在第一时间窗中接收第一类信号集合和第二类信号集合;在步骤102中在第一空口资源块中发送第一比特块。其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一时间窗是一个连续的时间段。
作为一个实施例,所述第一时间窗包括正整数个多载波符号。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一时间窗包括正整数个时隙(slot)。
作为一个实施例,所述第一时间窗包括正整数个连续的时隙(slot)。
作为一个实施例,所述第一时间窗包括正整数个子帧(sub-frame)。
作为一个实施例,所述第一类信号集合仅包括所述第一信号。
作为一个实施例,所述第一类信号集合包括所述第一信号以外的至少一个第一类信号。
作为一个实施例,所述第一类信号集合中的任一第一类信号是一个无线信号。
作为一个实施例,所述第一类信号集合中的任一第一类信号是一个基带信号。
作为一个实施例,所述第一类信号集合在副链路(SideLink)上被传输。
作为一个实施例,所述第一类信号集合通过PC5接口被传输。
作为一个实施例,所述第一类信号集合中的任一第一类信号是单播(Unicast)传输的。
作为一个实施例,所述第一类信号集合中任一第一类信号的目标接收者包括所述第一节点。
作为一个实施例,所述第一类信号集合中的任一第一类信号的目标接收者仅包括所述第一节点。
作为一个实施例,所述第一类信号集合中的任一第一类信号的一部分是单播传输的,另一部分是广播(broadcast)传输的。
作为一个实施例,所述第一类信号集合中的任一第一类信号携带一个比特块集合,所述比特块集合包括正整数个比特块,所述比特块集合中的任一比特块是一个TB(Transport Block,传输块)或CBG(Code Block Group,码块组)。
作为一个实施例,所述第二类信号集合仅包括1个第二类信号。
作为一个实施例,所述第二类信号集合包括多个第二类信号。
作为一个实施例,所述第二类信号集合中的任一第二类信号是一个无线信号。
作为一个实施例,所述第二类信号集合中的任一第二类信号是一个基带信号。
作为一个实施例,所述第二类信号集合在副链路(SideLink)上被传输。
作为一个实施例,所述第二类信号集合通过PC5接口被传输。
作为一个实施例,所述第二类信号集合中的任一第二类信号是组播(Groupcast)传输的。
作为一个实施例,所述第二类信号集合中任一第二类信号的目标接收者包括所述第一节点。
作为一个实施例,所述第二类信号集合中的任一第二类信号的目标接收者包括一个节点集合,所述节点集合包括所述第一节点以及所述第一节点以外的至少一个节点。
作为一个实施例,所述第二类信号集合中的任一第二类信号一部分是组播传输的,另一部分是广播(broadcast)传输的。
作为一个实施例,所述第二类信号集合中的任一第二类信号携带一个比特块集合,所述比特块集合包括正整数个比特块,所述比特块集合中的任一比特块是一个TB或CBG。
作为一个实施例,除所述第一类信号集合和所述第二类信号集合以外,所述第一节点在所述第一时间窗中没有收到的来自所述第一信号的发送者的其他PSSCH。
作为一个实施例,所述第一类信号集合包括多个第一类信号,所述多个第一类信号中的任意两个第一类信号占用相互正交的时域资源。
作为一个实施例,所述第一类信号集合包括多个第一类信号,所述多个第一类信号中的存在两个第一类信号占用相同的时域资源。
作为一个实施例,所述第二类信号集合包括多个第二类信号,所述多个第二类信号中的任意两个第二类信号占用相互正交的时域资源。
作为一个实施例,所述第二类信号集合包括多个第二类信号,所述多个第二类信号中的存在两个第二类信号占用相同的时域资源。
作为一个实施例,所述第一类信号集合中任一第一类信号和所述第二类信号集合中任一第二类信号占用相互正交的时域资源。
作为一个实施例,所述第一类信号集合中存在一个第一类信号和所述第二类信号集合中的一个第二类信号占用相同的时域资源。
作为一个实施例,所述第一类信号集合中存在一个第一类信号的起始时刻不早于所述第二类信号集合中的一个第二类信号的结束时刻。
作为一个实施例,所述第二类信号集合中存在一个第二类信号的起始时刻不早于所述第一类信号集合中的一个第一类信号的结束时刻。
作为一个实施例,所述第一类信号集合中的任意两个第一类信号的发送者相同。
作为一个实施例,所述第一类信号集合中的任意两个第一类信号的发送者QCL(Quasi Co-Located,准共址)。
作为一个实施例,所述第二类信号集合中的任意两个第二类信号的发送者相同。
作为一个实施例,所述第二类信号集合中的任意两个第二类信号的发送者QCL。
作为一个实施例,所述第一类信号集合中的任一第一类信号的发送者和所述第二类信号集合中的任一第二类信号的发送者相同。
作为一个实施例,所述第一类信号集合中的任一第一类信号的发送者和所述第二类信号集合中的任一第二类信号的发送者QCL。
作为一个实施例,所述QCL的具体定义参见3GPP TS38.211的4.4章节。
作为一个实施例,所述第一比特块包括正整数个二进制比特。
作为一个实施例,所述第一比特块仅包括1个二进制比特。
作为一个实施例,所述第一比特块包括多个二进制比特。
作为一个实施例,所述第一比特块在副链路(SideLink)上被传输。
作为一个实施例,所述第一比特块通过PC5接口被传输。
作为一个实施例,所述第一比特块是单播(Unicast)传输的。
作为一个实施例,所述第一比特块是组播(Groupcast)传输的。
作为一个实施例,所述第一比特块是广播(Boradcast)传输的。
作为一个实施例,所述HARQ-ACK是指Hybrid Automatic Repeat reQuest-Acknowledgement(混合自动重传请求确认)。
作为一个实施例,针对所述第一类信号集合中任一第一类信号的所述HARQ-ACK包括ACK。
作为一个实施例,针对所述第一类信号集合中任一第一类信号的所述HARQ-ACK包括NACK(Negative ACKnowledgement,否认)。
作为一个实施例,针对所述第二类信号集合中任一第二类信号的所述HARQ-ACK包括ACK。
作为一个实施例,针对所述第二类信号集合中任一第二类信号的所述HARQ-ACK包括NACK。
作为一个实施例,所述第一比特块包括ACK。
作为一个实施例,所述第一比特块包括NACK。
作为一个实施例,所述第一比特块携带针对所述第一类信号集合中任一第一类信号的所述HARQ-ACK和针对所述第二类信号集合中任一第二类信号的所述HARQ-ACK。
作为一个实施例,给定信号是所述第一类信号集合中的任一第一类信号或所述第二类信号集合中的任一第二类信号;所述给定信号携带给定比特块集合,所述给定比特块集合中任 一比特块是一个TB或CBG,所述第一比特块指示所述给定比特块集合是否被正确接收。
作为上述实施例的一个子实施例,所述给定信号是所述第一类信号集合中任一第一类信号。
作为上述实施例的一个子实施例,所述给定信号是所述第二类信号集合中任二第一类信号。
作为上述实施例的一个子实施例,所述第一比特块指示所述给定比特块集合中的每个比特块是否被正确接收。
作为上述实施例的一个子实施例,所述第一比特块分别指示所述给定比特块集合中的每个比特块是否被正确接收。
作为上述实施例的一个子实施例,所述第一比特块指示所述给定比特块集合中的每个比特块均被正确接收,或者所述给定比特块集合中的至少一个比特块未被正确接收。
作为一个实施例,所述第一比特块指示所述第一类信号集合中的任一第一类信号是否被正确接收,所述第一比特块指示所述第二类信号集合中的任一第二类信号是否被正确接收。
作为一个实施例,所述第一比特块指示所述第一类信号集合中的任一第一类信号携带的每个比特块和所述第二类信号集合中的任一第二类信号携带的每个比特块均被正确接收,或者指示所述第一类信号集合中的第一类信号携带的所有比特块和所述第二类信号集合中的第二类信号携带的所有比特块中至少有一个比特块未被正确接收。
作为一个实施例,所述时间单元是一个连续的时间段。
作为一个实施例,所述时间单元包括正整数个多载波符号。
作为一个实施例,所述时间单元包括正整数个连续的多载波符号。
作为一个实施例,所述时间单元是一个时隙(slot)。
作为一个实施例,所述时间单元是一个子帧(sub-frame)。
作为一个实施例,所述时间单元是一个子时隙(sub-slot)。
作为一个实施例,所述时间单元是一个微时隙(mini-slot)。
作为一个实施例,所述第一时间窗仅包括1个时间单元。
作为一个实施例,所述第一时间窗包括多个时间单元。
作为一个实施例,所述第一时间窗由正整数个时间单元组成。
作为一个实施例,所述第一时间窗和所述目标时间单元在时域相互正交。
作为一个实施例,所述目标时间单元的起始时刻不早于所述第一时间窗的结束时刻。
作为一个实施例,所述第一空口资源块在时域占用所述目标时间单元中的部分时域资源。
作为一个实施例,所述第一空口资源块在时域占用所述目标时间单元中最晚的正整数个多载波符号。
作为一个实施例,所述句子所述第一时间窗中的任一时间单元和所述目标时间单元相关联包括:对于所述第一时间窗中任一给定时间单元,在所述给定时间单元中被传输的PSSCH对应的HARQ-ACK不能在所述目标时间单元以外的时域资源中被传输。
作为一个实施例,所述句子所述第一时间窗中的任一时间单元和所述目标时间单元相关联包括:对于所述第一时间窗中任一给定时间单元,在所述给定时间单元中被传输的PSSCH对应的HARQ-ACK在所述目标时间单元中被传输。
作为一个实施例,所述句子所述第一时间窗中的任一时间单元和所述目标时间单元相关联包括:对于所述第一时间窗中任一给定时间单元,在所述给定时间单元中被传输的PSSCH对应的PSFCH不能在所述目标时间单元以外的时域资源中被传输。
作为一个实施例,所述句子所述第一时间窗中的任一时间单元和所述目标时间单元相关联包括:对于所述第一时间窗中任一给定时间单元,在所述给定时间单元中被传输的PSSCH对应的PSFCH在所述目标时间单元中被传输。
作为一个实施例,所述第一空口资源块与所述第二类信号集合中的任一第二类信号无关。
作为一个实施例,所述第一空口资源块所占用的频域资源与所述第二类信号集合中的任一第二类信号所占用的时频资源无关。
作为一个实施例,所述第一空口资源块所占用的频域资源和码域资源与所述第二类信号 集合中的任一第二类信号所占用的时频资源无关。
作为一个实施例,所述第一类信号集合包括多个第一类信号,所述第一空口资源块与所述第一类信号集合中除所述第一信号以外的任一第一类信号无关。
作为一个实施例,所述第一类信号集合包括多个第一类信号,所述第一空口资源块占用的频域资源与所述第一类信号集合中除所述第一信号外任一第一类信号占用的时频资源无关。
作为一个实施例,所述第一类信号集合包括多个第一类信号,所述第一空口资源块所占用的频域资源和码域资源与所述第一类信号集合中除所述第一信号外的任一第一类信号所占用的时频资源无关。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述UE201。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC5接口。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路(Sidelink)。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端,本申请中的所述第二节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端,本申请中的所述第二节点是所述gNB203覆盖外的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖外的一个终端,本申请中的所述第二节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖外的一个终端,本申请中的所述第二节点是所述gNB203覆盖外的一个终端。
作为一个实施例,所述UE201和所述UE241之间支持单播(Unicast)传输。
作为一个实施例,所述UE201和所述UE241之间支持广播(Broadcast)传输。
作为一个实施例,所述UE201和所述UE241之间支持组播(Groupcast)传输。
作为一个实施例,本申请中的所述第一类信号集合的发送者包括所述UE241。
作为一个实施例,本申请中的所述第一类信号集合的接收者包括所述UE201。
作为一个实施例,本申请中的所述第二类信号集合的发送者包括所述UE241。
作为一个实施例,本申请中的所述第二类信号集合的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一比特块的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一比特块的接收者包括所述UE241。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同, 但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一类信号集合中的任一第一类信号生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述第二类信号集合中的任一第二类信号生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述第一信息块生成于所述RRC子层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估 计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:在本申请中的所述第一时间窗中接收本申请中的所述第一类信号集合和所述第二类信号集合;在本申请中的所述第一空口资源块中发送本申请中的所述第一比特块。所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一时间窗中接收本申请中的所述第一类信号集合和所述第二类信号集合;在本申请中的所述第一空口资源块中发送本申请中的所述第一比特块。所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合 中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在本申请中的所述第一时间窗中发送本申请中的所述第一类信号集合和所述第二类信号集合;在本申请中的所述第一空口资源块中接收本申请中的所述第一比特块。所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一时间窗中发送本申请中的所述第一类信号集合和所述第二类信号集合;在本申请中的所述第一空口资源块中接收本申请中的所述第一比特块。所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一时间窗中接收本申请中的所述第一类信号集合和所述第二类信号集合;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时间窗中发送本申请中的所述第一类信号集合和所述第二类信号集合。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一空口资源块中接收本申请中的所述第一比特块;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一空口资源块中发送本申请中的所述第一比特块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1,第一节点U2和第三节点U3是两两通过空中接口传输的通信节点。附图5中,方框F51至方框F54中的步骤分别是可选的。附图5中的方框F51和F52中的步骤不能同时存在。
第二节点U1,在步骤S5101中发送第一信息块;在步骤S511中在第一时间窗中发送第一类信号集合和第二类信号集合;在步骤S5102中在第一空口资源块子集中的每个空口资源块中监测第一比特块;在步骤S512中在第一空口资源块中接收所述第一比特块。
第一节点U2,在步骤S5201中接收第一信息块;在步骤S5202中接收第一信息块;在步骤S521中在第一时间窗中接收第一类信号集合和第二类信号集合;在步骤S5203中放弃在第一空口资源块集合中除第一空口资源块以外的任一空口资源块中发送无线信号;在步骤S522中在所述第一空口资源块中发送第一比特块。
第三节点U3,在步骤S5301中发送第一信息块。
在实施例5中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被所述第一节点U2用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第三节点U3是一个基站。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括副链路。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与中继节点之间的无线接口。
作为一个实施例,所述第第三节点U3和所述第一节点U2之间的空中接口是Uu接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括蜂窝链路。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,本申请中的所述第一节点是一个终端。
作为一个实施例,本申请中的所述第一节点是一辆汽车。
作为一个实施例,本申请中的所述第一节点是一个交通工具。
作为一个实施例,本申请中的所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,本申请中的所述第二节点是一个终端。
作为一个实施例,本申请中的所述第二节点是一辆汽车。
作为一个实施例,本申请中的所述第二节点是一个交通工具。
作为一个实施例,本申请中的所述第二节点是一个RSU。
作为一个实施例,所述第一信号被所述第一节点U2用于确定所述第一空口资源块。
作为一个实施例,所述第一信号被所述第二节点U1用于确定所述第一空口资源块。
作为一个实施例,附图5中的方框F51中的步骤存在,方框F52中的步骤不存在。
作为一个实施例,附图5中的方框F52中的步骤存在,方框F51中的步骤不存在。
作为一个实施例,所述第一信息块指示第一间隔;所述第一时间窗中的任一时间单元和所述目标时间单元之间的时间间隔不小于所述第一间隔。
作为一个实施例,附图5中的方框F53中的步骤存在;所述第一类信号集合中的任一第 一类信号被用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
作为一个实施例,所述第一类信号集合中的任一第一类信号被所述第一节点U2用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被所述第一节点U2用于确定一个空口资源块。
作为一个实施例,所述第一类信号集合中的任一第一类信号被所述第二节点U1用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被所述第二节点U1用于确定一个空口资源块。
作为一个实施例,附图5中的方框F54中的步骤存在;所述第一空口资源块子集由所述第一空口资源块集合中的正整数个空口资源块组成;所述第二节点U1在所述第一空口资源块中接收到所述第一比特块。
作为一个实施例,所述监测是指基于能量检测的接收,即感知(Sense)无线信号的能量,并平均以获得接收能量;如果所述接收能量大于第二给定阈值,则判断接收到所述第一比特块;否则判断未接收到所述第一比特块。
作为一个实施例,所述监测是指基于相干检测的接收,即进行相干接收并测量所述相干接收后得到的信号的能量;如果所述相干接收后得到的所述信号的能量大于第一给定阈值,则判断接收到所述第一比特块;否则判断未接收到所述第一比特块。
作为一个实施例,所述监测是指盲译码,即接收信号并执行译码操作;如果根据CRC(Cyclic Redundancy Check,循环冗余校验)比特确定译码正确,则判断接收到所述第一比特块;否则判断未接收到所述第一比特块。
作为一个实施例,所述句子监测所述第一比特块包括:本申请中的所述第二节点根据相干检测确定所述第一比特块是否被发送。
作为一个实施例,所述句子监测所述第一比特块包括:本申请中的所述第二节点根据CRC确定所述所述第一比特块是否被发送。
作为一个实施例,所述句子监测所述第一比特块包括:本申请中的所述第二节点根据相干检测确定所述第一比特块在所述第一空口资源块集合中的所述第一空口资源块中被发送。
作为一个实施例,所述句子监测所述第一比特块包括:本申请中的所述第二节点根据CRC确定所述第一比特块在所述第一空口资源块集合中的所述第一空口资源块中被发送。
作为一个实施例,所述第一空口资源块子集仅包括所述第一空口资源块。
作为一个实施例,所述第一空口资源块子集包括所述第一空口资源块集合中除所述第一空口资源块以外的至少一个空口资源块。
作为一个实施例,所述第一空口资源块子集包括所述第一空口资源块集合中所有的空口资源块。
作为一个实施例,所述第一类信号集合中的任一第一类信号在副链路物理层控制信道(即仅能用于承载物理层信令的副链路信道)上被传输。
作为一个实施例,所述第一类信号集合中的任一第一类信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被传输。
作为一个实施例,所述第一类信号集合中的任一第一类信号在副链路物理层数据信道(即能用于承载物理层数据的副链路信道)上被传输。
作为一个实施例,所述第一类信号集合中的任一第一类信号在PSSCH上被传输。
作为一个实施例,所述第一类信号集合中的任一第一类信号的一部分在PSCCH上被传输,另一部分在PSSCH上被传输。
作为一个实施例,所述第二类信号集合中的任一第二类信号在副链路物理层控制信道(即仅能用于承载物理层信令的副链路信道)上被传输。
作为一个实施例,所述第二类信号集合中的任一第二类信号在PSCCH上被传输。
作为一个实施例,所述第二类信号集合中的任一第二类信号在副链路物理层数据信道(即能用于承载物理层数据的副链路信道)上被传输。
作为一个实施例,所述第二类信号集合中的任一第二类信号在PSSCH上被传输。
作为一个实施例,所述第二类信号集合中的任一第二类信号的一部分在PSCCH上被传输,另一部分在PSSCH上被传输。
作为一个实施例,所述第一比特块在副链路物理层反馈信道(即仅能用于承载物理层HARQ反馈的副链路信道)上被传输。
作为一个实施例,所述第一比特块在PSFCH上被传输。
作为一个实施例,所述第一比特块在PSSCH上被传输。
作为一个实施例,所述第一信息块在PSSCH上被传输。
作为一个实施例,所述第一信息块在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上被传输。
作为一个实施例,所述第一信息块在PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)上被传输。
作为一个实施例,所述第一信息块在PBCH(Physical Broadcast Channel,物理广播信道)上被传输。
实施例6
实施例6示例了根据本申请的一个实施例的给定信号的示意图;如附图6所示。在实施例6中,所述给定信号是所述第一类信号集合中的任一第一类信号或所述第二类信号集合中的任一第二类信号;所述给定信号包括给定信令和给定子信号;所述给定信令包括所述给定子信号的调度信息,所述给定子信号携带给定比特块集合。
作为一个实施例,所述给定信号是所述第一类信号集合中的任一第一类信号。
作为上述实施例的一个子实施例,所述给定子信号是单播(Unicast)传输的。
作为上述实施例的一个子实施例,所述给定子信号的目标接收者仅包括所述第一节点。
作为一个实施例,所述给定信号是所述第二类信号集合中的任一第二类信号。
作为上述实施例的一个子实施例,所述给定子信号是组播(Groupcast)传输的。
作为上述实施例的一个子实施例,所述给定子信号的目标接收者是给定节点集合,所述给定节点集合包括所述第一节点以及所述第一节点以外的至少一个节点。
作为一个实施例,所述给定信令是动态信令。
作为一个实施例,所述给定信令是层1(L1)的信令。
作为一个实施例,所述给定信令是层1(L1)的控制信令。
作为一个实施例,所述给定信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述给定信令包括一个SCI中的一个或多个域(field)。
作为一个实施例,所述给定信令是单播(Unicast)传输的。
作为一个实施例,所述给定信令是组播(Groupcast)传输的。
作为一个实施例,所述给定信令是广播(Boradcast)传输的。
作为一个实施例,所述给定信令在PSCCH上被传输。
作为一个实施例,所述给定子信号在PSSCH上被传输。
作为一个实施例,所述给定比特块集合包括正整数个比特块,所述给定比特块集合中的任一比特块包括正整数个二进制比特。
作为一个实施例,所述给定比特块集合中任一比特块是一个TB。
作为一个实施例,所述给定比特块集合中任一比特块是一个CB。
作为一个实施例,所述给定比特块集合中任一比特块是一个CBG。
作为一个实施例,所述给定比特块集合中任一比特块是一个TB或CBG。
作为一个实施例,所述调度信息包括所占用的时域资源,所占用的频域资源,MCS (Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)配置信息,HARQ进程号(process number),RV(Redundancy Version,冗余版本)或NDI(New Data Indicator,新数据指示)中的一种或多种。
作为一个实施例,句子给定信号携带给定比特块集合包括:所述给定子信号包括所述给定比特块集合中的所有或部分比特依次经过CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),调制映射器(Modulation Mapper),层映射器(Layer Mapper),转换预编码器(transform precoder),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,句子给定信号携带给定比特块集合包括:所述给定子信号包括所述给定比特块集合中的所有或部分比特依次经过CRC附着,信道编码,速率匹配,调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,句子给定信号携带给定比特块集合包括:所述给定比特块集合中的全部或部分比特被用于生成所述给定子信号。
实施例7
实施例7示例了根据本申请的一个实施例的第一空口资源块的示意图;如附图7所示。
作为一个实施例,所述第一空口资源块包括时域资源和频域资源。
作为一个实施例,所述第一空口资源块包括时域资源,频域资源和码域资源。
作为一个实施例,所述码域资源包括伪随机(pseudo-random)序列,Zadoff-Chu序列,低峰均比(low-PAPR(Peak-to-Average Power Ratio))序列,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),正交序列(orthogonal sequence),频域正交序列或时域正交序列中的一种或多种。
作为一个实施例,所述第一空口资源块在时频域包括正整数个RE(Resource Elemen,资源粒子)。
作为一个实施例,一个RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述第一空口资源块在频域包括正整数个子载波。
作为一个实施例,所述第一空口资源块在频域包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一空口资源块在频域包括正整数个连续的PRB。
作为一个实施例,所述第一空口资源块在频域包括1个PRB。
作为一个实施例,所述第一空口资源块在频域包括2个连续的PRB。
作为一个实施例,所述第一空口资源块在频域包括4个连续的PRB。
作为一个实施例,所述第一空口资源块在频域包括正整数个子信道(sub-channel)。
作为一个实施例,一个所述子信道(sub-channel)包括正整数个子载波。
作为一个实施例,一个所述子信道(sub-channel)包括正整数个连续的子载波。
作为一个实施例,一个所述子信道(sub-channel)包括正整数个PRB。
作为一个实施例,一个所述子信道(sub-channel)包括正整数个连续的PRB。
作为一个实施例,所述第一空口资源块在时域包括正整数个多载波符号。
作为一个实施例,所述第一空口资源块在时域包括正整数个连续的多载波符号。
作为一个实施例,所述第一空口资源块在时域包括1个多载波符号。
作为一个实施例,所述第一空口资源块在时域包括2个连续的多载波符号。
作为一个实施例,所述第一空口资源块在时域包括正整数个时隙(slot)。
作为一个实施例,所述第一空口资源块在时域包括正整数个子帧(sub-frame)。
作为一个实施例,所述第一空口资源块包括一个PSFCH资源(resource)。
作为一个实施例,所述第一空口资源块包括多个PSFCH资源。
作为一个实施例,所述第一空口资源块被预留给PSFCH。
作为一个实施例,所述第一空口资源块被预留给副链路的HARQ-ACK。
作为一个实施例,所述第一空口资源块被预留给针对V2X的HARQ-ACK。
作为一个实施例,所述第一信号所占用的时频资源被用于确定所述第一空口资源块。
作为一个实施例,所述第一信号和所述第一空口资源块在时域正交。
作为一个实施例,所述第一空口资源块和所述第一信号在时域属于相互正交的时间单元。
作为一个实施例,所述第一空口资源块的起始时刻晚于所述第一信号的结束时刻。
作为一个实施例,所述第一信号所占用的时域资源被用于确定所述第一空口资源块所占用的时域资源。
作为一个实施例,所述第一信号所占用的频域资源被用于确定所述第一空口资源块所占用的频域资源。
作为一个实施例,所述第一信号所占用的频域资源被用于确定所述第一空口资源块所占用的频域资源和码域资源。
作为一个实施例,所述第一信号所占用的时频资源被用于确定所述第一空口资源块所占用的频域资源。
作为一个实施例,所述第一信号所占用的时频资源被用于确定所述第一空口资源块所占用的频域资源和码域资源。
实施例8
实施例8示例了根据本申请的一个实施例的第一比特块的示意图;如附图8所示。在实施例8中,给定信号是所述第一类信号集合中任一第一类信号或所述第二类信号集合中任一第二类信号,所述给定信号携带给定比特块集合;所述第一比特块包括给定比特子块,所述给定比特子块指示所述给定比特块集合是否被正确接收;所述给定比特块子块在所述第一比特块中的位置和所述给定信号所属的时间单元在所述第一时间窗中的位置有关。
作为一个实施例,所述给定信号所属的时间单元在所述第一时间窗中的位置被用于确定述给定比特块子块在所述第一比特块中的位置。
作为一个实施例,所述给定比特子块仅包括一个二进制比特。
作为一个实施例,所述给定比特子块包括多个二进制比特。
作为一个实施例,所述给定比特子块指示所述给定比特块集合中的每一个比特块是否被正确接收。
作为一个实施例,所述给定比特子块分别指示所述给定比特块集合中的每一个比特块是否被正确接收。
作为一个实施例,所述给定比特子块指示所述给定比特块集合中的每一个比特块均被正确接收,或者所述给定比特块集合中的至少一个比特块未被正确接收。
作为一个实施例,所述第一时间窗包括S个时间单元,S是大于1的正整数;所述第一比特块包括S个比特子块,所述S个比特子块和所述S个时间单元一一对应;所述S个比特子块中的任一比特子块被预留给在对应的时间单元中被传输的PSSCH的HARQ-ACK。
作为上述实施例的一个子实施例,所述给定比特子块是所述S个比特子块中和所述给定信号所属的时间单元对应的比特子块。
作为上述实施例的一个子实施例,对于所述S个时间单元中的任一给定时间单元,当所述第一节点在所述给定时间单元中未接收到针对所述第一节点的PSSCH,所述S个比特子块中和所述给定时间单元对应的比特子块中每个比特的值被设置成NACK。
实施例9
实施例9示例了根据本申请的一个实施例的第一信号被用于确定第一空口资源块的示意图;如附图9所示。在实施例9中,第一时间单元是所述第一信号在时域所占用的时间单元, 第一子信道是所述第一信号在频域所占用的一个子信道(sub-channel);(所述第一时间单元,所述第一子信道)对被用于确定所述第一空口资源块。
作为一个实施例,所述第一子信道是所述第一信号占用的最低的子信道。
作为一个实施例,所述第一子信道是所述第一信号占用的最高的子信道。
作为一个实施例,所述第一子信道是所述第一信号占用的起始子信道。
作为一个实施例,所述第一子信道是所述第一子信号所占用的最低的子信道。
作为一个实施例,所述第一子信道是所述第一子信号所占用的最高的子信道。
作为一个实施例,所述第一子信道是所述第一信令所占用的最低的子信道。
作为一个实施例,所述第一子信道是所述第一信令所占用的最高的子信道。
作为一个实施例,(所述第一时间单元,所述第一子信道)对是P1个候选对中的一个候选对,P1是大于1的正整数,所述P1个候选对中任一候选对包括(一个时间单元,一个子信道);所述第一空口资源块属于第一空口资源块组,所述第一空口资源块组是P2个候选空口资源块组中的一个候选空口资源块组,P2是大于1的正整数,所述P2个候选空口资源块组中的任一候选空口资源块组包括正整数个候选空口资源块;所述P1个候选对中的任一候选对和所述P2个候选空口资源块组中的一个候选空口资源块组对应;所述第一空口资源块组是所述P2个候选空口资源块组中对应于所述(所述第一时间单元,所述第一子信道)对的候选空口资源块组。
作为上述实施例的一个子实施例,所述第一空口资源块组由所述第一空口资源块组成。
作为上述实施例的一个子实施例,所述第一空口资源块组包括多个空口资源块。
作为上述实施例的一个子实施例,所述第一空口资源块组包括多个空口资源块,所述多个空口资源块中任意两个空口资源块占用相同的时频资源和不同的码域资源。
作为上述实施例的一个子实施例,所述第一空口资源块组包括多个空口资源块,所述多个空口资源块中存在两个空口资源块占用相互正交的频域资源。
作为上述实施例的一个子实施例,所述第一空口资源块组包括多个空口资源块,所述第一节点的ID(IDentity,身份)被用于从所述第一空口资源块组中确定所述第一空口资源块。
作为上述实施例的一个子实施例,所述第一空口资源块组包括多个空口资源块,所述第一信号的发送者的ID被用于从所述第一空口资源块组中确定所述第一空口资源块。
作为上述实施例的一个子实施例,所述第一比特块被用于从所述第一空口资源块组中确定所述第一空口资源块。
作为上述实施例的一个子实施例,所述P1个候选对和所述P2个候选空口资源块组之间的对应关系是预配置的。
作为上述实施例的一个子实施例,所述P1个候选对和所述P2个候选空口资源块组之间的对应关系是RRC信令配置的。
实施例10
实施例10示例了根据本申请的一个实施例的第一信号被用于确定第一空口资源块的示意图;如附图10所示。在实施例10中,所述第一信号在频域占用Q个子信道,Q是大于1的正整数;所述Q个子信道分别被用于确定Q个空口资源块,所述Q个空口资源块在时域都属于所述目标时间单元,所述Q个空口资源块在频域是连续的;所述第一空口资源块包括所述Q个空口资源块中的Q1个空口资源块,Q1是不大于所述Q的正整数。在附图10中,所述Q个子信道和所述Q个空口资源块的索引分别是#0,...,#(Q-1)。
作为一个实施例,所述Q1个空口资源块在频域是连续的。
作为一个实施例,所述第一空口资源块由所述Q1个空口资源块组成。
作为一个实施例,所述Q1等于所述Q。
作为一个实施例,所述Q1小于所述Q。
作为一个实施例,所述Q个空口资源块占用相同的时域资源。
作为一个实施例,所述第一信号所占用的时域资源被用于确定所述目标时间单元。
作为一个实施例,所述Q个子信道分别被用于确定所述Q个空口资源块占用的频域资源。
作为一个实施例,所述Q个子信道分别被用于确定所述Q个空口资源块所占用的频域资源和码域资源。
作为一个实施例,对于所述Q个空口资源块中的任一给定空口资源块,所述第一信号所占用的时域资源和所述Q个子信道中和所述给定空口资源块对应的子信道共同被用于确定所述给定空口资源块所占用的频域资源。
作为一个实施例,对于所述Q个空口资源块中的任一给定空口资源块,所述第一信号所占用的时域资源和所述Q个子信道中和所述给定空口资源块对应的子信道共同被用于确定所述给定空口资源块所占用的频域资源和码域资源。
作为一个实施例,所述第一信号在时域属于实施例9中的所述第一时间单元,Q个参考对和所述Q个子信道一一对应,所述Q个参考对中的任一参考对包括(所述第一时间单元,对应的子信道);所述Q个参考对分别被用于确定所述Q个空口资源块。
实施例11
实施例11示例了根据本申请的一个实施例的第一类信号集合,第一类索引,第二类信号集合和第二类索引的示意图;如附图11所示。在实施例11中,所述第一类信号集合中任一第一类信号指示一个第一类索引,所述第二类信号集合中任一第二类信号指示一个第二类索引;所述第一类信号集合中任一第一类信号指示的第一类索引指示所述第一节点,所述第二类信号集合中任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合。
作为一个实施例,所述第一类信号集合中任一第一类信号显式的指示对应的第一类索引。
作为一个实施例,所述第一类信号集合中任一第一类信号隐式的指示对应的第一类索引。
作为一个实施例,所述第一类信号集合中的任一给定第一类信号包括第一给定信令和第一给定子信号,所述第一给定信令包括所述第一给定子信号的调度信息;所述第一给定信令指示对应的第一类索引。
作为一个实施例,所述第一类信号集合中任意两个第一类信号指示的第一类索引的值相等。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引指示所述第一节点的ID。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引指示对应的第一类信号的目标接收者包括且仅包括所述第一节点。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引包括destination ID。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引包括层1(Layer-1)的destination ID。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引包括所述第一节点的RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述第一节点的RNTI被用于确定所述第一类信号集合中的任一第一类信号指示的第一类索引。
作为一个实施例,所述第一类信号集合中任一第一类信号指示的第一类索引包括所述第一节点的IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)。
作为一个实施例,所述第一节点的IMSI被用于确定所述第一类信号集合中的任一第一类信号指示的第一类索引。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引包括所述第一节点的S-TMSI(SAE Temporary Mobile Subscriber Identity,SAE临时移动用户识别码)。
作为一个实施例,所述第一节点的S-TMSI被用于确定所述第一类信号集合中的任一第一类信号指示的第一类索引。
作为一个实施例,所述第一类信号集合中任一第一类信号指示的第一类索引指示对应的第一类信号的目标接收者仅包括所述第一节点。
作为一个实施例,所述第一类信号集合中任一第一类信号指示的第一类索引指示对应的第一类信号携带的比特块集合的目标接收者仅包括所述第一节点,所述比特块集合包括正整数个TB或CBG。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引包括对应的第一类信号的播送类型(cast type)。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引指示对应的第一类信号是单播(unicast)传输的。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示的第一类索引指示对应的第一类信号携带的比特块集合是单播传输的,所述比特块集合包括正整数个TB或CBG。
作为一个实施例,所述第二类信号集合中任一第二类信号显式的指示对应的第二类索引。
作为一个实施例,所述第二类信号集合中任一第二类信号隐式的指示对应的第二类索引。
作为一个实施例,所述第二类信号集合中的任一给定第二类信号包括第二给定信令和第二给定子信号,所述第二给定信令包括所述第二给定子信号的调度信息;所述第二给定信令指示对应的第二类索引。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引指示对应的第二类信号的目标接收者是一个包括所述第一节点的节点集合。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引指示的节点集合包括除所述第一节点以外的至少一个节点。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合的ID。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引包括destination group ID。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引包括层1(Layer-1)的destination group ID。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引包括对应的第二类信号的播送类型(cast type)。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引指示对应的第二类信号是组播(groupcast)传输的。
作为一个实施例,所述第二类信号集合中的任一第二类信号指示的第二类索引指示对应的第二类信号携带的比特块集合是组播传输的,所述比特块集合包括正整数个TB或CBG。
作为一个实施例,任一第一类索引是一个非负整数。
作为一个实施例,任一第一类索引是一个正整数。
作为一个实施例,任一第二类索引是一个非负整数。
作为一个实施例,任一第二类索引是一个正整数。
作为一个实施例,任一第一类索引的值和任一第二类索引的值不相等。
实施例12
实施例12示例了根据本申请的一个实施例的第一信号占用的频域资源的大小和P个第一类信号中其他第一类信号占用的频域资源的大小之间关系的示意图;如附图12所示。在实施例12中,所述第一信号是所述P个第一类信号中占用的频域资源最大的一个第一类信号。
作为一个实施例,所述P个第一类信号中除所述第一信号以外的任一第一类信号所占用的频域资源的大小小于所述第一信号所占用的频域资源的大小。
作为一个实施例,所述P个第一类信号中的P3个第一类信号所占用的频域资源的大小等于所述第一信号所占用的频域资源的大小,P3是大于1的正整数,所述P3个第一类信号包 括所述第一信号。
作为上述实施例的一个子实施例,所述第一信号是所述P3个第一类信号中最早的一个第一类信号。
作为上述实施例的一个子实施例,所述第一信号是所述P3个第一类信号中最晚的一个第一类信号。
实施例13
实施例13示例了根据本申请的一个实施例的第一信号的示意图;如附图13所示。在实施例13中,所述第一信号包括所述第一信令和所述第一子信号,所述第一信令包括所述第一子信号的调度信息;所述第一信令指示所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)的信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令包括SCI。
作为一个实施例,所述第一信令包括一个SCI中的一个或多个域(field)。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令在副链路(SideLink)上被传输。
作为一个实施例,所述第一信令通过PC5接口被传输。
作为一个实施例,所述第一信令在下行链路(DownLink)上被传输。
作为一个实施例,所述第一信令是单播(Unicast)传输的。
作为一个实施例,所述第一信令是组播(Groupcast)传输的。
作为一个实施例,所述第一信令是广播(Boradcast)传输的。
作为一个实施例,所述第一子信号携带第一比特块集合,所述第一比特块集合包括整整数个比特块,所述第一比特块集合中的任一比特块包括正整数个二进制比特。
作为上述实施例的一个子实施例,所述第一比特块集合中任一比特块是一个TB。
作为上述实施例的一个子实施例,所述第一比特块集合中任一比特块是一个CB。
作为上述实施例的一个子实施例,所述第一比特块集合中任一比特块是一个CBG。
作为上述实施例的一个子实施例,所述第一比特块集合中任一比特块是一个TB或CBG。
作为一个实施例,所述第一信令从所述第一类信号集合中指示所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一信令指示所述第一信号所占用的时频资源被用于确定所述第一空口资源块。
作为一个实施例,所述第一信令显式的指示所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一信令隐式的指示所述第一信号被用于确定所述第一空口资源块。
实施例14
实施例14示例了根据本申请的一个实施例的第一信号在P个第一类信号中的位置示意图;如附图14所示。在实施例14中,所述第一信号在所述P个第一类信号中的位置是默认的。
作为一个实施例,所述句子是默认的包括:不需要信令指示的。
作为一个实施例,所述句子是默认的包括:不需要动态信令指示的。
作为一个实施例,所述句子是默认的包括:不需要更高层信令指示的。
作为一个实施例,所述句子是默认的包括:预配置的。
作为一个实施例,所述第一信号是所述P个第一类信号中最早的一个第一类信号。
作为一个实施例,所述第一信号所属的时间单元是所述P个第一类信号分别所属的时间单元中最早的一个时间单元。
实施例15
实施例15示例了根据本申请的一个实施例的第一信号在P个第一类信号中的位置示意图;如附图15所示。在实施例15中,所述第一信号是所述P个第一类信号中最晚的一个第一类信号。
作为一个实施例,所述第一信号所属的时间单元是所述P个第一类信号分别所属的时间单元中最晚的一个时间单元。
实施例16
实施例16示例了根据本申请的一个实施例的第一空口资源块集合的示意图;如附图16所示。在实施例16中,所述第一类信号集合中的任一第一类信号被用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
作为一个实施例,所述第一空口资源块集合中任一空口资源块包括时域资源和频域资源。
作为一个实施例,所述第一空口资源块集合中任一空口资源块包括时频资源和码域资源。
作为一个实施例,所述第一空口资源块集合中任一空口资源块在时频域包括正整数个RE。
作为一个实施例,所述第一空口资源块集合中任一空口资源块包括一个PSFCH资源。
作为一个实施例,所述第一空口资源块集合中存在一个空口资源块包括多个PSFCH资源。
作为一个实施例,所述第一空口资源块集合中任一空口资源块被预留给PSFCH。
作为一个实施例,所述第一空口资源块集合中任一空口资源块被预留给副链路的HARQ-ACK。
作为一个实施例,所述第一类信号集合中的任一给定第一类信号所确定的空口资源块被预留给所述给定第一类信号对应的PSFCH。
作为一个实施例,所述第一类信号集合中的任一给定第一类信号所确定的空口资源块被预留给在所述给定第一类信号所占用的时频资源中被传输的PSSCH对应的PSFCH。
作为一个实施例,所述第二类信号集合中的任一给定第二类信号所确定的空口资源块被预留给所述给定第二类信号对应的PSFCH。
作为一个实施例,所述第二类信号集合中的任一给定第二类信号所确定的空口资源块被预留在给所述给定第二类信号所占用的时频资源中被传输的PSSCH对应的PSFCH。
作为一个实施例,所述第一类信号集合中的任一第一类信号所占用的时频资源被用于确定对应的空口资源块。
作为一个实施例,所述第二类信号集合中的任一第二类信号所占用的时频资源被用于确定对应的空口资源块。
作为一个实施例,所述第一类信号集合中的任一第一类信号被用于确定对应的空口资源块的方法类似于所述第一信号被用于确定所述第一空口资源块的方法。
作为一个实施例,所述第二类信号集合中的任一第二类信号被用于确定对应的空口资源块的方法类似于所述第一信号被用于确定所述第一空口资源块的方法。
作为一个实施例,所述第一空口资源块集合中任一空口资源块属于所述目标时间单元。
作为一个实施例,所述第一空口资源块集合中任意两个空口资源块占用相同的时域资源。
作为一个实施例,所述第一空口资源块集合中任意两个空口资源块占用相互正交的频域资源。
作为一个实施例,所述第一空口资源块集合中存在两个空口资源块占用相同的时频资源和不同的码域资源。
实施例17
实施例17示例了根据本申请的一个实施例的第一信息块指示第一间隔的示意图;如附图 17所示。
作为一个实施例,所述第一信息块由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息块由RRC信令承载。
作为一个实施例,所述第一信息块由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令承载。
作为一个实施例,所述第一信息块在副链路(SideLink)上被传输。
作为一个实施例,所述第一信息块通过PC5接口被传输。
作为一个实施例,所述第一信息块在下行链路上被传输。
作为一个实施例,所述第一信息块是通过Uu接口被传输的。
作为一个实施例,所述第一信息块包括一个IE(Information Element,信息单元)中的全部或部分域(Field)中的信息。
作为一个实施例,所述第一信息块包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)中的信息。
作为一个实施例,所述第一信息块包括SIB(System Information Block,系统信息块)中的一个或多个域(Field)中的信息。
作为一个实施例,所述第一信息块包括RMSI(Remaining System Information,剩余系统信息)中的一个或多个域(Field)中的信息。
作为一个实施例,所述第一信息块是通过无线信号传输的。
作为一个实施例,所述第一信息块是从所述第一信号的发送者传输到所述第一节点的。
作为一个实施例,所述第一信息块是从所述第一节点的服务小区传输到所述第一节点的。
作为一个实施例,所述第一信息块从所述第一节点的高层传递到所述第一节点的物理层。
作为一个实施例,所述第一信息块从所述第一节点的更高层传递到所述第一节点的物理层。
作为一个实施例,所述第一信息块显式的指示所述第一间隔。
作为一个实施例,所述第一信息块隐式的指示所述第一间隔。
作为一个实施例,所述第一间隔是非负整数。
作为一个实施例,所述第一间隔是正整数。
作为一个实施例,所述第一间隔的单位是时隙(slot)。
作为一个实施例,所述第一间隔的单位是子帧(sub-frame)。
作为一个实施例,所述第一间隔的单位是本申请中的所述时间单元。
作为一个实施例,所述第一间隔的单位是正整数个多载波符号。
作为一个实施例,两个时间单元之间的时间间隔是指:所述两个时间单元中起始时刻较早的一个时间单元的结束时刻和起始时刻较晚的一个时间单元的起始时刻之间的时间间隔。
作为一个实施例,两个时间单元之间的时间间隔是指:所述两个时间单元的结束时刻之间的时间间隔。
作为一个实施例,两个时间单元之间的时间间隔是指:所述两个时间单元的起始时刻之间的时间间隔。
作为一个实施例,所述目标时间单元是第一时间单元集合中的一个时间单元,所述第一时间单元集合中的任一时间单元包括可以被用于传输PSFCH的时域资源;对于所述第一时间窗中的任一给定时间单元,所述目标时间单元是所述第一时间单元集合中起始时刻不早于所述给定时间单元的结束时刻并且和所述给定时间单元之间的时间间隔不小于所述第一间隔的最早的一个时间单元。
作为上述实施例的一个子实施例,所述第一信息块指示所述第一时间单元集合。
作为上述实施例的一个子实施例,所述句子所述第一时间窗中的任一时间单元和所述目标时间单元相关联包括:对于所述第一时间窗中的任一给定时间单元,所述目标时间单元是所述第一时间单元集合中起始时刻不早于所述给定时间单元的结束时刻并且和所述给定时间单元之间的时间间隔不小于所述第一间隔的最早的一个时间单元。
作为一个实施例,所述第一时间窗的结束时刻和所述目标时间单元的起始时刻之间的时间间隔不小于所述第一间隔。
作为一个实施例,所述第一时间窗的结束时刻和所述目标时间单元的结束时刻之间的时间间隔不小于所述第一间隔。
实施例18
实施例18示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图18所示。在附图18中,第一节点设备中的处理装置1800包括第一接收机1801和第一发送机1802。
在实施例18中,第一接收机1801在第一时间窗中接收第一类信号集合和第二类信号集合;第一发送机1802在第一空口资源块中发送第一比特块。
在实施例18中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示一个第一类索引,所述第二类信号集合中的任一第二类信号指示一个第二类索引;所述第一类信号集合中的任一第一类信号指示的第一类索引指示所述第一节点,所述第二类信号集合中的任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合。
作为一个实施例,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号所占用的频域资源的大小不小于所述P个第一类信号中除所述第一信号以外的任一第一类信号所占用的频域资源的大小。
作为一个实施例,所述第一信号包括第一信令和第一子信号,所述第一信令包括所述第一子信号的调度信息;所述第一信令指示所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号在所述P个第一类信号中的位置是默认的。
作为一个实施例,所述第一发送机1802放弃在第一空口资源块集合中除所述第一空口资源块以外的任一空口资源块中发送无线信号;其中,所述第一类信号集合中任一第一类信号被用于确定一个空口资源块,所述第二类信号集合中任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
作为一个实施例,所述第一接收机1801接收第一信息块;其中,所述第一信息块指示第一间隔;所述第一时间窗中的任一时间单元和所述目标时间单元之间的时间间隔不小于所述第一间隔。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1801包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1802包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例19
实施例19示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图19所示。在附图19中,第二节点设备中的处理装置1900包括第二发送机1901和第二接收机1902。
在实施例19中,第二发送机1901在第一时间窗中发送第一类信号集合和第二类信号集合;第二接收机1902在第一空口资源块中接收第一比特块。
在实施例19中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一类信号集合中的任一第一类信号指示一个第一类索引,所述第二类信号集合中的任一第二类信号指示一个第二类索引;所述第一类信号集合中的任一第一类信号指示的第一类索引指示所述第一节点,所述第二类信号集合中的任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合。
作为一个实施例,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号所占用的频域资源的大小不小于所述P个第一类信号中除所述第一信号以外的任一第一类信号所占用的频域资源的大小。
作为一个实施例,所述第一信号包括第一信令和第一子信号,所述第一信令包括所述第一子信号的调度信息;所述第一信令指示所述第一信号被用于确定所述第一空口资源块。
作为一个实施例,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号在所述P个第一类信号中的位置是默认的。
作为一个实施例,所述第二接收机1902在第一空口资源块子集中的每个空口资源块中监测所述第一比特块;其中,所述第二节点设备在所述第一空口资源块中接收到所述第一比特块;所述第一空口资源块子集由第一空口资源块集合中的正整数个空口资源块组成,所述第一空口资源块子集包括所述第一空口资源块;所述第一类信号集合中的任一第一类信号被用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
作为一个实施例,所述第二发送机1901发送第一信息块;其中,所述第一信息块指示第一间隔;所述第一时间窗中的任一时间单元和所述目标时间单元之间的时间间隔不小于所述第一间隔。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发送机1901包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1902包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine  Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,在第一时间窗中接收第一类信号集合和第二类信号集合;
    第一发送机,在第一空口资源块中发送第一比特块;
    其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一类信号集合中的任一第一类信号指示一个第一类索引,所述第二类信号集合中的任一第二类信号指示一个第二类索引;所述第一类信号集合中的任一第一类信号指示的第一类索引指示所述第一节点,所述第二类信号集合中的任一第二类信号指示的第二类索引指示一个包括所述第一节点的节点集合。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号所占用的频域资源的大小不小于所述P个第一类信号中除所述第一信号以外的任一第一类信号所占用的频域资源的大小。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一信号包括第一信令和第一子信号,所述第一信令包括所述第一子信号的调度信息;所述第一信令指示所述第一信号被用于确定所述第一空口资源块。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一类信号集合包括P个第一类信号,P是大于1的正整数;所述第一信号在所述P个第一类信号中的位置是默认的。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一发送机放弃在第一空口资源块集合中除所述第一空口资源块以外的任一空口资源块中发送无线信号;其中,所述第一类信号集合中的任一第一类信号被用于确定一个空口资源块,所述第二类信号集合中的任一第二类信号被用于确定一个空口资源块;所述第一空口资源块集合由所述第一类信号集合中的每个第一类信号所确定的空口资源块和所述第二类信号集合中的每个第二类信号所确定的空口资源块组成。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信息块;其中,所述第一信息块指示第一间隔;所述第一时间窗中的任一时间单元和所述目标时间单元之间的时间间隔不小于所述第一间隔。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,在第一时间窗中发送第一类信号集合和第二类信号集合;
    第二接收机,在第一空口资源块中接收第一比特块;
    其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一时间窗中接收第一类信号集合和第二类信号集合;
    在第一空口资源块中发送第一比特块;
    其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗 包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一时间窗中发送第一类信号集合和第二类信号集合;
    在第一空口资源块中接收第一比特块;
    其中,所述第一类信号集合包括正整数个第一类信号,所述第二类信号集合包括正整数个第二类信号;针对所述第一类信号集合中每个第一类信号的HARQ-ACK和针对所述第二类信号集合中每个第二类信号的HARQ-ACK被用于确定所述第一比特块;所述第一时间窗包括正整数个时间单元,所述第一空口资源块在时域属于目标时间单元;所述第一时间窗中的任一时间单元和所述目标时间单元相关联;第一信号是所述第一类信号集合中的一个第一类信号,所述第一信号被用于确定所述第一空口资源块。
PCT/CN2020/121061 2019-10-30 2020-10-15 一种被用于无线通信的节点中的方法和装置 WO2021082933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911046508.4 2019-10-30
CN201911046508.4A CN112751656B (zh) 2019-10-30 2019-10-30 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2021082933A1 true WO2021082933A1 (zh) 2021-05-06

Family

ID=75640762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121061 WO2021082933A1 (zh) 2019-10-30 2020-10-15 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (3) CN115412224B (zh)
WO (1) WO2021082933A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792326A (zh) * 2018-12-29 2019-05-21 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN109792369A (zh) * 2018-12-29 2019-05-21 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN109891981A (zh) * 2019-01-09 2019-06-14 北京小米移动软件有限公司 资源分配方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590786B2 (en) * 2012-10-14 2017-03-07 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement in wireless communication system
CN107645777B (zh) * 2016-07-22 2020-05-26 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN109672463B (zh) * 2017-10-17 2020-11-06 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN114938535B (zh) * 2017-12-15 2024-02-27 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN111586871B (zh) * 2018-02-13 2022-11-25 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110311762B (zh) * 2019-07-16 2021-04-16 北京紫光展锐通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792326A (zh) * 2018-12-29 2019-05-21 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN109792369A (zh) * 2018-12-29 2019-05-21 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统
CN109891981A (zh) * 2019-01-09 2019-06-14 北京小米移动软件有限公司 资源分配方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Sidelink physical layer procedures in NR V2X", 3GPP DRAFT; R1-1912159, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 8, XP051823238 *
OPPO: "Physical layer procedure for NR-V2X sidelink", 3GPP DRAFT; R1-1910375 PHY LAYER PROCEDURE, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 12, XP051789180 *
PANASONIC: "Discussion on physical layer procedures for sidelink in NR V2X", 3GPP DRAFT; R1-1910843, vol. RAN WG1, 7 October 2019 (2019-10-07), Chongqing, China, pages 1 - 7, XP051789627 *

Also Published As

Publication number Publication date
CN115412224B (zh) 2024-04-12
CN112751656B (zh) 2022-09-27
CN112751656A (zh) 2021-05-04
CN115412224A (zh) 2022-11-29
CN115347996A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112637810B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021082933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021077961A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112769532A (zh) 一种被用于无线通信的节点中的方法和装置
CN112910608A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112688763B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022017127A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023078080A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221800A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051624A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883270

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20883270

Country of ref document: EP

Kind code of ref document: A1