WO2021164558A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021164558A1
WO2021164558A1 PCT/CN2021/075181 CN2021075181W WO2021164558A1 WO 2021164558 A1 WO2021164558 A1 WO 2021164558A1 CN 2021075181 W CN2021075181 W CN 2021075181W WO 2021164558 A1 WO2021164558 A1 WO 2021164558A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit block
signal
priority
signaling
bits included
Prior art date
Application number
PCT/CN2021/075181
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021164558A1 publication Critical patent/WO2021164558A1/zh
Priority to US17/880,620 priority Critical patent/US20220377765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • 3GPP introduced priority information (including high priority and low priority) to support the transmission of different types of control information and data.
  • UCI especially HARQ (Hybrid Automatic Repeat reQuest) feedback information
  • HARQ Hybrid Automatic Repeat reQuest
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling includes scheduling information of the second signal
  • the third bit block includes information indicating whether the signal in the first signal group is received correctly
  • the third bit block is used to generate In the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the priority of the second bit block are the same Is used to determine the number of bits included in the first bit block.
  • the problem to be solved by this application includes: how to effectively ensure the transmission performance of high-priority control signaling or high-priority data when UCI and data of different priorities are multiplexed on one PUSCH.
  • the characteristics of the above method include: low-priority information (including low-priority control information or low-priority data) and high-priority information (including high-priority control information or high-priority data) can be replicated Used in the same channel.
  • the characteristics of the above method include: when low-priority HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement) information (Information) and high-priority data are multiplexed onto one PUSCH, The number of bits of the low-priority HARQ-ACK information carried by the PUSCH is limited; if the number of bits of the low-priority HARQ-ACK information is greater than a certain value, the low-priority HARQ-ACK information will be compressed after being compressed Mapped to PUSCH resources.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • the characteristics of the above method include: when high-priority HARQ-ACK information and data are multiplexed onto one PUSCH, the PUSCH carries all the bits of the high-priority HARQ-ACK information.
  • the benefits of the above method include: when low-priority HARQ-ACK information and high-priority data are multiplexed onto one PUSCH, restricting the low-priority HARQ-ACK information carried by the PUSCH To ensure reliable transmission of high-priority data.
  • the benefits of the above method include: by limiting the resources occupied by the low-priority UCI on the PUSCH, more transmission resources are allocated to the high-priority UCI or high-priority data.
  • the second signal includes a first sub-signal
  • the first sub-signal is a signal generated after the first bit block undergoes a first process, and the first process includes channel coding.
  • the first time-frequency resource includes a first reserved resource, and the priority of the third bit block and the priority of the second bit block are used together to determine whether the first sub-signal is in the first It is transmitted in time-frequency resources other than the reserved resources.
  • the characteristics of the above method include: when the number of HARQ-ACK information bits to be fed back is large (for example, greater than 2), high-priority HARQ-ACK information is mapped through Rate Matching On the PUSCH; the low-priority HARQ-ACK information is compressed and mapped to reserved resources (such as reserved RE (Resource Element)).
  • the benefits of the above method include: rate matching of high-priority information (including high-priority control information or high-priority data) does not depend on the transmission of low-priority control information; reducing the failure of low-priority PDCCH reception The resulting impact on high-priority information.
  • the first signaling group includes scheduling information of the first signaling group
  • the second signaling is the last signaling in the first signaling group
  • the second signaling indicates a second time frequency Resource, the second time-frequency resource and the first time-frequency resource overlap in the time domain.
  • the second signal carries a fourth bit block
  • the fifth bit block includes information indicating whether the signal in the second signal group is received correctly
  • the fifth bit block is used to generate the fourth bit Block
  • the priority of the third bit block is different from the priority of the fifth bit block
  • the fifth bit block and the third bit block are jointly used to determine the first bit block.
  • the characteristics of the above method include: high-priority HARQ-ACK CB (Codebook, codebook) (Codebook) and low-priority HARQ-ACK CB are jointly used to determine what is transmitted on the PUSCH The number of low priority HARQ-ACK information bits.
  • the fifth bit block and the third bit block are jointly used to determine the fourth bit block.
  • the characteristics of the above method include: high priority HARQ-ACK CB and low priority HARQ-ACK CB are jointly used to determine the number of high priority HARQ-ACK information bits to be transmitted on the PUSCH.
  • the characteristics of the above method include: when the number of bits included in the high-priority HARQ-ACK CB and the number of bits included in the low-priority HARQ-ACK CB are both large, the high-priority HARQ-ACK CB and the low-priority HARQ-ACK CB The HARQ-ACK CB of the first level is mapped to the PUSCH after being compressed.
  • the number of bits included in the third bit block is greater than the first value; when the third bit block is of low priority and the second bit block is of high priority, the first sub-signal is only in the first Is transmitted in a reserved resource; otherwise, the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling includes scheduling information of the second signal
  • the third bit block includes information indicating whether the signal in the first signal group is received correctly
  • the third bit block is used to generate In the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the priority of the second bit block are the same Is used to determine the number of bits included in the first bit block.
  • the second signal includes a first sub-signal
  • the first sub-signal is a signal generated after the first bit block undergoes a first process, and the first process includes channel coding.
  • the first time-frequency resource includes a first reserved resource, and the priority of the third bit block and the priority of the second bit block are used together to determine whether the first sub-signal is in the first It is transmitted in time-frequency resources other than the reserved resources.
  • the first signaling group includes scheduling information of the first signaling group
  • the second signaling is the last signaling in the first signaling group
  • the second signaling indicates a second time frequency Resource, the second time-frequency resource and the first time-frequency resource overlap in the time domain.
  • the second signal carries a fourth bit block
  • the fifth bit block includes information indicating whether the signal in the second signal group is received correctly
  • the fifth bit block is used to generate the fourth bit Block
  • the priority of the third bit block is different from the priority of the fifth bit block
  • the fifth bit block and the third bit block are jointly used to determine the first bit block.
  • the fifth bit block and the third bit block are jointly used to determine the fourth bit block.
  • the number of bits included in the third bit block is greater than the first value; when the third bit block is of low priority and the second bit block is of high priority, the first sub-signal is only in the first Is transmitted in a reserved resource; otherwise, the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the second node is a base station.
  • the second node is a user equipment.
  • the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signal group and the first signaling
  • a first transmitter sending a second signal in a first time-frequency resource, the second signal carrying a first bit block and a second bit block;
  • the first signaling includes scheduling information of the second signal
  • the third bit block includes information indicating whether the signal in the first signal group is received correctly
  • the third bit block is used to generate In the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the priority of the second bit block are the same Is used to determine the number of bits included in the first bit block.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signal group and the first signaling
  • a second receiver receiving a second signal in a first time-frequency resource, the second signal carrying a first bit block and a second bit block;
  • the first signaling includes scheduling information of the second signal
  • the third bit block includes information indicating whether the signal in the first signal group is received correctly
  • the third bit block is used to generate In the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the priority of the second bit block are the same Is used to determine the number of bits included in the first bit block.
  • this application has the following advantages:
  • the low-priority HARQ-ACK information carried by the PUSCH is restricted to ensure reliable transmission of high-priority data
  • the rate matching of high-priority information does not depend on the transmission of low-priority control information; the impact of low-priority PDCCH reception failure on high-priority information is reduced.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of the relationship between the first signaling, the second signal, the first bit block, the second bit block, and the first sub-signal according to an embodiment of the present application
  • FIG. 7 shows the priority of the third bit block according to an embodiment of the present application, the priority of the second bit block and whether the first sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • FIG. 8 shows a schematic diagram of the relationship among the second signal, the first bit block, the third bit block, the fourth bit block, and the fifth bit block according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the relationship between the third bit block, the fourth bit block and the fifth bit block according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a process of judging whether a first sub-signal is transmitted in a time-frequency resource other than the first reserved resource according to an embodiment of the present application
  • Fig. 11 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 12 shows a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node according to an embodiment of the present application, as shown in FIG. 1.
  • the first node in this application receives the first signal group in step 11; receives the first signaling in step 12; and sends the second signal in the first time-frequency resource in step 13 .
  • step 11 and step 12 in FIG. 1 does not represent a specific time sequence.
  • the second signal carries a first bit block and a second bit block;
  • the first signaling includes scheduling information of the second signal, and the third bit block includes the first signal group Information indicating whether the signal of is correctly received, the third bit block is used to generate the first bit block, and the number of bits included in the first bit block is not greater than the number of bits included in the third bit block;
  • the priority of the third bit block and the priority of the second bit block are jointly used to determine the number of bits included in the first bit block.
  • the first signal group includes a positive integer number of baseband signals.
  • the first signal group includes a positive integer number of wireless signals.
  • the second signal is a baseband signal.
  • the second signal is a wireless signal.
  • the first signal group includes a positive integer number of radio frequency signals.
  • the second signal is a radio frequency signal.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first signaling is DownLink Grant DCI signaling.
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NR-PDCCH (New Radio PDCCH, New Radio PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, narrowband PDCCH).
  • each signal in the first signal group is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared Channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the first signaling is DCI format 1_0, and the specific definition of the DCI format 1_0 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and the specific definition of DCI format 1_1 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the first signal group includes M signals
  • the third bit block includes information indicating whether each of the M signals is correctly received.
  • the third bit block is a HARQ-ACK CB, and the generation method of the third bit block refers to section 9.1 in 3GPP TS38.213.
  • the number of bits included in the third bit block is used to select the first time-frequency resource group from N time-frequency resource groups.
  • the N time-frequency resource groups are N PUCCH resource sets
  • the first time-frequency resource group is one PUCCH resource set of the N PUCCH resource sets.
  • the first time-frequency resource group is a PUCCH resource set
  • the second time-frequency resource is a PUCCH resource in the first time-frequency resource group.
  • the third bit block is used to generate the first bit block in a boundling manner.
  • all or part of the bits in the third bit block generate the first bit block through a logical AND operation.
  • the first bit block includes the third bit block.
  • the second bit block includes user data.
  • the second bit block includes user data
  • the first bit block includes control signaling
  • the maximum number of bits of the first bit block allowed to be carried on the first time-frequency resource is greater than the first value in this application.
  • the maximum number of bits of the first bit block allowed to be carried by the second signal is greater than the first value in this application.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the first bit block includes a positive integer number of bits generated by bounding all or some of the bits in the third bit block, and the number of bits included in the first bit block is less than the number of bits in the third bit block.
  • the number of bits included in a three-bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the first bit block includes a positive integer number of bits generated by bounding all or some of the bits in the third bit block, and the number of bits included in the first bit block is less than the number of bits in the third bit block.
  • the number of bits included in a three-bit block is the number of bits included in a three-bit block.
  • the number of bits included in the third bit block is greater than the first value in this application, and the maximum number of bits of the first bit block allowed to be carried on the first time-frequency resource is greater than The first value; when the priority of the third bit block is low priority and the priority of the second bit block is high priority, the first bit block includes the third bit block All or part of the bits of is a positive integer number of bits generated by bounding, and the number of bits included in the first bit block is less than the number of bits included in the third bit block.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the first bit block includes a positive integer number of bits generated by all or some of the bits in the third bit block in a bounding manner, and the number of bits included in the first bit block is equal to the number of bits in the third bit block. A value.
  • the number of bits included in the third bit block is greater than the first value in this application, and the maximum number of bits of the first bit block allowed to be carried on the first time-frequency resource is greater than The first value; when the priority of the third bit block is low priority and the priority of the second bit block is high priority, the first bit block includes the third bit block All or part of the bits of is a positive integer number of bits generated in a bounding manner, and the number of bits included in the first bit block is equal to the first value.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the first bit block includes a positive integer number of bits generated by all or some of the bits in the third bit block in a bounding manner, and the number of bits included in the first bit block is equal to the number of bits in the third bit block. A value; otherwise, the number of bits included in the first bit block is equal to the number of bits included in the third bit block.
  • the number of bits included in the third bit block is greater than the first value in this application, and the maximum number of bits of the first bit block allowed to be carried on the first time-frequency resource is greater than The first value; when the priority of the third bit block is low priority and the priority of the second bit block is high priority, the first bit block includes the third bit block A positive integer number of bits generated by bounding all or part of the bits of the first bit block, the number of bits included in the first bit block is equal to the first value; otherwise, the number of bits included in the first bit block is equal to the third The number of bits included in the bit block.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the first bit block includes a positive integer number of bits generated by all or some of the bits in the third bit block in a bounding manner, and the number of bits included in the first bit block is equal to the number of bits in the third bit block. A value; otherwise, the number of bits included in the first bit block is greater than the first value.
  • the number of bits included in the third bit block is greater than the first value in this application, and the maximum number of bits of the first bit block allowed to be carried on the first time-frequency resource is greater than The first value; when the priority of the third bit block is low priority and the priority of the second bit block is high priority, the first bit block includes the third bit block A positive integer number of bits generated by bounding all or part of the bits of the first bit block, the number of bits included in the first bit block is equal to the first value; otherwise, the number of bits included in the first bit block is greater than that of the first bit block. Numerical value.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the number of bits included in the first bit block is equal to the first value; otherwise, the number of bits included in the first bit block is greater than the first value.
  • the number of bits included in the third bit block is greater than the first value in this application, and the maximum number of bits of the first bit block allowed to be carried on the first time-frequency resource is greater than The first value; when the priority of the third bit block is low priority and the priority of the second bit block is high priority, the number of bits included in the first bit block is equal to the first bit block A value; otherwise, the number of bits included in the first bit block is greater than the first value.
  • the number of bits included in the third bit block is not greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When the level is high priority, the number of bits included in the first bit block is not greater than the first value.
  • the number of bits included in the third bit block is not greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When the level is high priority, the number of bits included in the first bit block is equal to the number of bits included in the third bit block.
  • the number of bits included in the third bit block is not greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When the level is high priority, the first bit block includes the third bit block.
  • the first bit block when the priority of the third bit block is high priority and the priority of the second bit block is high priority, the first bit block includes the For all bits, the number of bits included in the first bit block is equal to the number of bits included in the third bit block.
  • the first bit block when the priority of the third bit block is high priority and the priority of the second bit block is low priority, the first bit block includes the For all bits, the number of bits included in the first bit block is equal to the number of bits included in the third bit block.
  • the first bit block when the priority of the third bit block is low priority and the priority of the second bit block is low priority, the first bit block includes the For all bits, the number of bits included in the first bit block is equal to the number of bits included in the third bit block.
  • the first bit block when the priority of the third bit block is high priority and the priority of the second bit block is high priority, the first bit block includes the third bit block.
  • the first bit block when the priority of the third bit block is high priority and the priority of the second bit block is low priority, the first bit block includes the third bit block.
  • the first bit block when the priority of the third bit block is low priority and the priority of the second bit block is low priority, the first bit block includes the third bit block.
  • the number of bits included in the first bit block is equal to the third bit block.
  • the number of bits included in the first bit block is equal to that of the third bit block.
  • the number of bits included in the first bit block is equal to the third bit block.
  • the first time-frequency resource is reserved for the transmission of the second bit block.
  • the first time-frequency resource is a time-frequency resource belonging to an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH, New Radio PUSCH).
  • the uplink physical layer data channel is NB-PUSCH (Narrow Band PUSCH, Narrow Band PUSCH).
  • the second signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is PUSCH.
  • the uplink physical layer data channel is sPUSCH.
  • the uplink physical layer data channel is NR-PUSCH.
  • the uplink physical layer data channel is NB-PUSCH.
  • the first time-frequency resource includes a positive integer number of REs (Resource Elements).
  • the first time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain, and the first time-frequency resource includes a positive integer number of subcarriers in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Breast Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol includes CP (Cyclic Prefix).
  • the first bit block includes a positive integer number of bits.
  • the first bit block includes HARQ-ACK feedback.
  • some bits of the first bit block carry HARQ-ACK feedback.
  • all bits of the first bit block carry HARQ-ACK feedback.
  • the second bit block includes a positive integer number of bits.
  • the third bit block includes a positive integer number of bits.
  • the third bit block includes HARQ-ACK feedback.
  • all bits of the third bit block carry one HARQ-ACK CB.
  • the first bit block includes a Part 1CSI (Channel State Information) Report (report), and the specific definition of the Part 1CSI Report can be found in section 5.2.3 of 3GPP TS38.214.
  • Part 1CSI Channel State Information
  • the first bit block includes all or part of the Part 2 CSI Report.
  • the Part 2 CSI Report For the specific definition of the Part 2 CSI Report, refer to section 5.2.3 of 3GPP TS38.214.
  • the first bit block includes HARQ-ACK information, at least one of Part 1 CSI Report and Part 2 CSI Report.
  • the first bit block includes Scheduling Request (SR, scheduling request).
  • SR Scheduling Request
  • the scheduling information of the second signal includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS, DMRS (Demodulation Reference Signals, demodulation reference signals) configuration information, HARQ process number One or more of (HARQ process ID), RV (Redundancy Version), NDI, priority ⁇ .
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network, 5G Core Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • HSS Home Subscriber Server
  • UDM Un
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. The P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the UE 201 supports MIMO wireless communication.
  • the gNB203 supports MIMO wireless communication.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logic and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, a resource pool) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first bit block in this application is generated in the RRC sublayer 306.
  • the first bit block in this application is generated in the MAC sublayer 302.
  • the second bit block in this application is generated in the RRC sublayer 306.
  • the second bit block in this application is generated in the MAC sublayer 302.
  • the third bit block in this application is generated in the RRC sublayer 306.
  • the third bit block in this application is generated in the MAC sublayer 302.
  • the fourth bit block in this application is generated in the RRC sublayer 306.
  • the fourth bit block in this application is generated in the MAC sublayer 302.
  • the fifth bit block in this application is generated in the RRC sublayer 306.
  • the fifth bit block in this application is generated in the MAC sublayer 302.
  • the first signaling in this application is generated in the PHY301 or the PHY351.
  • the first signal group in this application is generated in the PHY301 or the PHY351.
  • the second signal in this application is generated in the PHY301 or the PHY351.
  • the first signaling group in this application is generated in the PHY301 or the PHY351.
  • the second signal group in this application is generated in the PHY301 or the PHY351.
  • the first sub-signal in this application is generated in the PHY301 or the PHY351.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time domain and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the communication device 450 is any parallel stream that is the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and de-interleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving the first signal group in this application and the first signaling in this application; sending the first signaling in this application in the first time-frequency resource in this application The second signal that carries the first bit block in this application and the second bit block in this application.
  • the first signaling includes scheduling information of the second signal
  • the third bit block in this application includes information indicating whether the signal in the first signal group is received correctly, and the third bit block Is used to generate the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the second bit block The priority of is jointly used to determine the number of bits included in the first bit block.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the present The first signal group in the application and the first signaling in the application; the second signal in the application is sent in the first time-frequency resource in the application, the second signal Carry the first bit block in this application and the second bit block in this application.
  • the first signaling includes scheduling information of the second signal
  • the third bit block in this application includes information indicating whether the signal in the first signal group is received correctly, and the third bit block Is used to generate the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the second bit block The priority of is jointly used to determine the number of bits included in the first bit block.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending the first signal group in this application and the first signaling in this application; receiving the first signal in the first time-frequency resource in this application The second signal that carries the first bit block in this application and the second bit block in this application.
  • the first signaling includes scheduling information of the second signal
  • the third bit block in this application includes information indicating whether the signal in the first signal group is received correctly, and the third bit block Is used to generate the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the second bit block The priority of is jointly used to determine the number of bits included in the first bit block.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending this The first signal group in the application and the first signaling in the application; the second signal in the application is received in the first time-frequency resource in the application, and the second signal is Carry the first bit block in this application and the second bit block in this application.
  • the first signaling includes scheduling information of the second signal
  • the third bit block in this application includes information indicating whether the signal in the first signal group is received correctly, and the third bit block Is used to generate the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the second bit block The priority of is jointly used to determine the number of bits included in the first bit block.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410.
  • the second communication device 450 is a UE.
  • the first communication device 450 is a base station.
  • the first communication device 410 is a UE.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the second signal in this application.
  • the antenna 452 the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the second signal in this application.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the first sub-signal in this application.
  • the antenna 452 the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the first sub-signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling group in this application.
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signaling group in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signal group in this application.
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signal group in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signal group in this application.
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, the memory 476 ⁇ at least One is used to send the second signal group in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the first node U1 and the second node U2 communicate through an air interface.
  • the dashed boxes marked F51 and F52 in the figure are optional.
  • the first node U1 receives the first signal group in step S5101; receives the second signal group in step S5102; receives the first signal group in step S511; receives the first signal group in step S512; in step S513
  • the second signal is sent in the first time-frequency resource.
  • the first node U2 sends the first signal group in step S5201; sends the second signal group in step S5202; sends the first signal group in step S521; sends the first signal group in step S522; in step S523
  • the second signal is received in the first time-frequency resource.
  • the sequence of the sending and receiving steps ⁇ S5101, S5201 ⁇ , ⁇ S5102, S5202 ⁇ , ⁇ S511, S521 ⁇ , and ⁇ S512, S522 ⁇ in FIG. 5 does not represent a specific time sequence.
  • the second signal carries a first bit block and a second bit block;
  • the first signaling includes scheduling information of the second signal, and the third bit block includes the first signal group Information indicating whether the signal is received correctly, the third bit block is used to generate the first bit block, and the number of bits included in the first bit block is not greater than the number of bits included in the third bit block;
  • the priority of the third bit block and the priority of the second bit block are jointly used to determine the number of bits included in the first bit block;
  • the second signal includes a first sub-signal, and the first The sub-signal is a signal generated after the first bit block undergoes a first process, the first process includes channel coding;
  • the first time-frequency resource includes a first reserved resource, and the priority of the third bit block Together with the priority of the second bit block, it is used to determine whether the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource;
  • the first signaling group includes the first signal group
  • the number of bits included in the third bit block is greater than the first value; when the third bit block is of low priority and the second bit block is of high priority, the first sub-signal It is only transmitted in the first reserved resource; otherwise, the first sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • the second signal carries a fourth bit block
  • the fifth bit block includes information indicating whether the signal in the second signal group is received correctly, and the fifth bit block is used to generate the The fourth bit block, the priority of the third bit block is different from the priority of the fifth bit block, and the fifth bit block and the third bit block are used together to determine the first bit block ; The fifth bit block and the third bit block are jointly used to determine the fourth bit block.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the second node U2 is a base station.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the second signal group includes a positive integer number of baseband signals.
  • the second signal group includes a positive integer number of wireless signals.
  • the second signal group includes a positive integer number of radio frequency signals.
  • the first sub-signal is a baseband signal.
  • the first sub-signal is a wireless signal.
  • the first sub-signal is a radio frequency signal.
  • each signaling in the first signaling group is dynamically configured.
  • each signaling in the first signaling group is physical layer signaling.
  • the first signaling group includes a positive integer number of DCI signaling.
  • the first signaling group includes a positive integer number of downlink granted DCI signaling.
  • each signaling in the first signaling group is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel PDCCH As a sub-embodiment of the foregoing embodiment, the downlink physical layer control channel PDCCH.
  • the downlink physical layer control channel is sPDCCH.
  • the downlink physical layer control channel is NR-PDCCH.
  • the downlink physical layer control channel is NB-PDCCH.
  • each signal in the second signal group is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is NR-PDSCH.
  • the downlink physical layer data channel is NB-PDSCH.
  • each signaling in the first signaling group is DCI format 1_0, and the specific definition of the DCI format 1_0 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • each signaling in the first signaling group is DCI format 1_1, and the specific definition of DCI format 1_1 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the second time-frequency resource is reserved for the transmission of the first bit block.
  • the second time-frequency resource is a time-frequency resource belonging to an uplink physical layer control channel (that is, an uplink channel that can only be used to carry physical layer signaling).
  • the uplink physical layer control channel is PUCCH (Physical Uplink Control Channel, Physical Uplink Shared Channel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH, short PUCCH).
  • the uplink physical layer control channel is NR-PUCCH (New Radio PUCCH, New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (Narrow Band PUCCH, Narrow Band PUCCH).
  • the second time-frequency resource includes a positive integer number of REs.
  • the second time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain
  • the first time-frequency resource includes a positive integer number of subcarriers in the frequency domain
  • the scheduling information of the first signal group includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS, DMRS configuration information, HARQ process ID, RV, NDI, priority ⁇ One or more of.
  • the first time-frequency resource and the second time-frequency resource partially overlap in the time domain.
  • the first time-frequency resource and the second time-frequency resource completely overlap in the time domain.
  • the first signal group includes M signals
  • the first signal group includes M signals
  • the M signals respectively include scheduling information of the M signals.
  • all the signaling in the first signaling group indicates that feedback information is sent in the first time domain resource.
  • the first time domain resource is a slot.
  • the first time domain resource is a sub-slot.
  • each signaling in the first signaling group includes a PDSCH-to-HARQ_feedback timing indicator (PDSCH-to-HARQ feedback timing indicator), and the PDSCH-to-HARQ
  • the HARQ_feedback timing indicator is used to determine the first time domain resource.
  • the feedback information includes HARQ-ACK information.
  • the sentence that the second signaling is the last signaling in the first signaling group includes that, from the time domain, the detection period (Monitoring Occasion) of the second signaling is later than all The detection period of other signaling in the first signaling group except for the second signaling.
  • the second signaling of the sentence is the last signaling in the first signaling group. From the time domain, the detection period of the second signaling is not earlier than the first signaling. The detection period of other signaling except the second signaling in the signaling group.
  • the sentence that the second signaling is the last signaling in the first signaling group includes that, from the time domain, the last symbol of the second signaling is later than the first signaling. The last symbol of other signaling except the second signaling in the signaling group.
  • the second signaling of the sentence is the last signaling in the first signaling group. From the time domain, the last symbol of the second signaling is not earlier than the first signaling. The last symbol of other signaling in a signaling group except the second signaling.
  • the second signaling of the sentence is the last signaling in the first signaling group.
  • the first signaling group includes multiple DCIs, and the multiple DCIs indicate the same PUCCH transmission.
  • the second signaling is the last (Last) DCI in the first signaling group.
  • the second time-frequency resource and the first time-frequency resource in the sentence overlap in the time domain, including that the second time-frequency resource is a PUCCH, and the first time-frequency resource Is a PUSCH, the third bit block and the second signaling are used together to select the second time-frequency resource from multiple PUCCH resource sets, the second time-frequency resource and the first time-frequency resource
  • the frequency resource overlaps in the time domain of at least one OFDM symbol.
  • the second signal group includes T signals
  • the fifth bit block includes information indicating whether each of the T signals is correctly received.
  • the first signal group includes M signals
  • the third bit block includes HARQ-ACK feedback information for each of the M signals.
  • the second signal group includes T signals
  • the fifth bit block includes HARQ-ACK feedback information for each of the T signals.
  • the steps in block F51 in FIG. 5 exist.
  • the step in block F51 in FIG. 5 does not exist.
  • the steps in block F52 in FIG. 5 exist.
  • the step in block F52 in FIG. 5 does not exist.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first signaling, the second signal, the first bit block, the second bit block, and the first sub-signal according to an embodiment of the present application, as shown in FIG. 6.
  • the first signaling includes scheduling information of the second signal
  • the second signal carries a first bit block and a second bit block
  • the second signal includes a first sub-signal
  • the first sub-signal The signal is a signal generated after the first bit block undergoes a first process, and the first process includes channel coding.
  • the first process includes CRC Insertion, Segmentation, Coding Block Level CRC Insertion, Channel Coding, Rate Matching, Concatenation ( Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Element, OFDM Baseband Signal Generation, Modulation Part or all of Upconversion (Modulation and Upconversion).
  • the phrase that the second signal carries a first bit block and a second bit block includes, the second signal includes a first sub-signal, and the first sub-signal is that the first bit block passes through The signal generated after the first process.
  • the phrase said second signal carries a first bit block and a second bit block, and the second signal includes a signal generated after the second bit block undergoes a second process.
  • the second process includes CRC addition, segmentation, coding block-level CRC addition, channel coding, rate matching, concatenation, scrambling, modulation, layer mapping, precoding, and mapping to resources Particles, OFDM baseband signal generation, modulation and up-conversion part or all.
  • Embodiment 7 illustrates the priority of the third bit block according to an embodiment of the present application, the priority of the second bit block and whether the first sub-signal is transmitted in time-frequency resources other than the first reserved resource. A schematic diagram of the relationship is shown in Figure 7.
  • the priority of the third bit block and the priority of the second bit block are used together to determine whether the first sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • the first time-frequency resource includes the first reserved resource.
  • the first reserved resource includes a positive integer number of reserved REs (reserved REs).
  • the first reserved resource is reserved for transmitting HARQ-ACK information.
  • the first reserved resource is reserved through puncturing.
  • the number of bits included in the third bit block is greater than the first value in this application; when the third bit block has a low priority and the second bit block has a high priority, The first sub-signal is only transmitted in the first reserved resource; otherwise, the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the first value is configured by a higher layer.
  • the first value is pre-configured.
  • the first value is equal to 2.
  • the first value is the maximum number of bits of the first information allowed to be transmitted in the first reserved resource, and the first information includes HARQ-ACK feedback information.
  • the first sub-signal of the sentence being transmitted in time-frequency resources other than the first reserved resource includes that all signals in the first sub-signal are in the It is transmitted in time-frequency resources other than the first reserved resource.
  • the first sub-signal of the sentence being transmitted in time-frequency resources other than the first reserved resource includes that a part of the signal in the first sub-signal is in the Is transmitted in the first reserved resource, and another part of the signal in the first sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When it is a high priority, the first bit block in this application includes a positive integer number of bits generated by boundling all or part of the third bit block, and the first bit block is used to generate The first sub-signal, the first sub-signal is only transmitted in the first reserved resource.
  • the first value is configured at a higher layer.
  • the first value is pre-configured.
  • the first value is equal to 2.
  • the first value is the maximum number of bits of the first information allowed to be transmitted in the first reserved resource, and the first information includes HARQ-ACK feedback information.
  • the number of bits included in the third bit block is not greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When the level is high priority, the first bit block in this application includes the third bit block, and the first bit block is used to generate the first sub-signal, and the first sub-signal is only used in Is transmitted in the first reserved resource.
  • the number of bits included in the third bit block is not greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When the level is low priority, the first bit block in this application includes the third bit block, and the first bit block is used to generate the first sub-signal, and the first sub-signal is only used in Is transmitted in the first reserved resource.
  • the first bit block in this application includes the third bit block, and the first bit block in this application One bit block is used to generate the first sub-signal, and the first sub-signal is only transmitted in the first reserved resource.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is low priority and the priority of the second bit block When the priority is low, the first bit block in this application includes the third bit block, and the first bit block is used to generate the first sub-signal, and part of the first sub-signal Or all signals are transmitted in time-frequency resources other than the first reserved resource.
  • the number of bits included in the third bit block is not greater than the first value in the present application; when the priority of the third bit block is high priority, the first number in the present application
  • a bit block includes the third bit block, and the first bit block is used to generate the first sub-signal, and part or all of the signals in the first sub-signal are outside the first reserved resource. It is transmitted in time-frequency resources.
  • the number of bits included in the third bit block is not greater than the first value in the present application; when the priority of the third bit block is high priority, the first number in the present application
  • One bit block includes the third bit block, the first bit block is used to generate the first sub-signal, and the first sub-signal is only transmitted in the first reserved resource.
  • the number of bits included in the third bit block is greater than the first value in this application; when the priority of the third bit block is high priority, the first number in this application
  • the bit block includes the third bit block, the first bit block is used to generate the first sub-signal, and some or all of the signals in the first sub-signal are outside the first reserved resource. Is transmitted in the frequency resource.
  • the number of bits included in the third bit block is not greater than the first value in the present application; when the priority of the third bit block is high priority, the first number in the present application
  • a bit block includes the third bit block, and the first bit block is used to generate the first sub-signal, and the first sub-signal is only reserved for resources for high-priority HARQ-ACK information transmission Was transmitted.
  • the first reserved resource is a resource reserved for low-priority HARQ-ACK information transmission.
  • the first reserved resource is a resource reserved for HARQ-ACK information transmission.
  • Embodiment 8 illustrates a schematic diagram of the relationship among the second signal, the first bit block, the third bit block, the fourth bit block, and the fifth bit block according to an embodiment of the present application, as shown in FIG. 8.
  • the second signal carries the first bit block and the fourth bit block
  • the fifth bit block is used to generate the fourth bit block
  • the fifth bit block and the third bit block are used together Determine the first bit block.
  • the priority of the third bit block is different from the priority of the fifth bit block.
  • the second signal includes a signal generated after the fourth bit block undergoes a third process.
  • the third process includes CRC addition, segmentation, coding block-level CRC addition, channel coding, rate matching, concatenation, scrambling, modulation, layer mapping, precoding, and mapping to resources Particles, OFDM baseband signal generation, modulation and up-conversion part or all.
  • the fifth bit block is a HARQ-ACK CB, and the manner of generating the fifth bit block refers to section 9.1 of TS38.213.
  • the number of bits included in the fifth bit block is used to select the second time-frequency resource group from N time-frequency resource groups.
  • the N time-frequency resource groups are N PUCCH resource sets
  • the second time-frequency resource group is one PUCCH resource set of the N PUCCH resource sets.
  • the fifth bit block and the third bit block are jointly used to determine the number of bits included in the first bit block.
  • the fifth bit block is used to generate the fourth bit block in a boundling manner.
  • all or part of the bits in the fifth bit block generates the fourth bit block through a logical AND operation.
  • the fourth bit block includes the fifth bit block.
  • the fourth bit block includes and only includes the fifth bit block.
  • the number of bits included in the fourth bit block is not greater than the number of bits included in the fifth bit block.
  • the sum of the number of bits included in the first bit block and the number of bits included in the fourth bit block is not greater than a second value.
  • the second value is a higher-level configuration value.
  • the second value is a pre-configured value.
  • the third bit block has a low priority and the fifth bit block has a high priority; when the number of bits included in the third bit block and the number of bits included in the fifth bit block are different When the sum is greater than the second value, the number of bits included in the first bit block is less than the number of bits included in the third bit block.
  • the number of bits included in the fourth bit block is equal to the number of bits included in the fifth bit block.
  • the second value is a higher-level configuration value.
  • the second value is a pre-configured value.
  • the sum of the number of bits included in the first bit block and the number of bits included in the fourth bit block is equal to the second value.
  • the third bit block has a low priority and the fifth bit block has a high priority; when the number of bits included in the third bit block and the number of bits included in the fifth bit block are different When the sum is not greater than the second value, the first bit block includes the third bit block.
  • the second value is a higher-level configuration value.
  • the second value is a pre-configured value.
  • the first bit block includes a positive integer number of bits generated by boundling all or part of the bits in the third bit block.
  • the first node in this application receives a second signaling group
  • the second signaling group includes scheduling information of the second signal group
  • the third signaling is the second signaling
  • the last signaling in the group, the third signaling indicates a third time-frequency resource, and the third time-frequency resource and the first time-frequency resource overlap in the time domain.
  • all the signaling in the second signaling group indicates that feedback information is sent in the second time domain resource.
  • each signaling in the second signaling group includes a PDSCH-to-HARQ_feedback timing indicator (PDSCH-to-HARQ feedback timing indicator).
  • the HARQ_feedback timing indicator is used to determine the second time domain resource.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the detection period of the third signaling is later than The detection period of other signaling in the second signaling group except the third signaling.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the detection period of the third signaling is not early The detection period of other signaling except the third signaling in the second signaling group.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the last symbol of the third signaling is late The last symbol of other signaling in the second signaling group except for the third signaling.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the last symbol of the third signaling is not Earlier than the last symbol of other signaling in the second signaling group except for the third signaling.
  • the sentence third signaling is the last signaling in the second signaling group includes, the second signaling group includes multiple DCIs, and the multiple DCIs Indicate the same PUCCH transmission time, and the third signaling is the last DCI in the second signaling group.
  • the third time-frequency resource and the first time-frequency resource in the sentence overlap in the time domain, including that the third time-frequency resource is a PUCCH, and the The first time-frequency resource is one PUSCH, and the fifth bit block and the third signaling are jointly used to select the third time-frequency resource from multiple PUCCH resource sets, and the third time-frequency resource and The first time-frequency resource overlaps in the time domain of at least one OFDM symbol.
  • the third time-frequency resource includes a positive integer number of REs.
  • the third time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain
  • the first time-frequency resource includes a positive integer number of subcarriers in the frequency domain
  • the first node in this application receives a second signaling group
  • the second signaling group includes scheduling information of the second signal group
  • the third signaling is the second signaling
  • the last signaling in the group, the third signaling indicates a third time-frequency resource, and the third time-frequency resource and the second time-frequency resource overlap in the time domain.
  • all the signaling in the second signaling group indicates that feedback information is sent in the second time domain resource.
  • each signaling in the second signaling group includes a PDSCH-to-HARQ_feedback timing indicator, and the PDSCH-to-HARQ_feedback timing indicator is used to determine the second time domain resource.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the detection period of the third signaling is later than The detection period of other signaling in the second signaling group except the third signaling.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the detection period of the third signaling is not early The detection period of other signaling except the third signaling in the second signaling group.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the last symbol of the third signaling is late The last symbol of other signaling in the second signaling group except for the third signaling.
  • the sentence that the third signaling is the last signaling in the second signaling group includes that, from the time domain, the last symbol of the third signaling is not Earlier than the last symbol of other signaling in the second signaling group except for the third signaling.
  • the sentence third signaling is the last signaling in the second signaling group includes, the second signaling group includes multiple DCIs, and the multiple DCIs Indicate the same PUCCH transmission time, and the third signaling is the last DCI in the second signaling group.
  • the third time-frequency resource and the first time-frequency resource in the sentence overlap in the time domain including that the third time-frequency resource is a PUCCH, and the The second time-frequency resource is one PUCCH, and the fifth bit block and the third signaling are jointly used to select the third time-frequency resource from multiple PUCCH resource sets, the third bit block and the third signal
  • the second signaling is jointly used to select the second time-frequency resource from multiple PUCCH resource sets, and the third time-frequency resource and the second time-frequency resource have at least one OFDM symbol time domain overlap .
  • the third time-frequency resource includes a positive integer number of REs.
  • the third time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain
  • the first time-frequency resource includes a positive integer number of subcarriers in the frequency domain
  • Embodiment 9 illustrates a schematic diagram of the relationship between the third bit block, the fourth bit block and the fifth bit block according to an embodiment of the present application, as shown in FIG. 9.
  • the fifth bit block and the third bit block are jointly used to determine the fourth bit block.
  • the third bit block has a low priority and the fifth bit block has a high priority; when the number of bits included in the third bit block and the number of bits included in the fifth bit block are different When the sum is greater than the second value, the number of bits included in the fourth bit block is less than the number of bits included in the fifth bit block.
  • the number of bits included in the first bit block is smaller than the number of bits included in the third bit block.
  • the second value is a higher-level configuration value.
  • the second value is a pre-configured value.
  • the sum of the number of bits included in the first bit block and the number of bits included in the fourth bit block is equal to the second value.
  • the third bit block has a low priority and the fifth bit block has a high priority; when the number of bits included in the third bit block and the number of bits included in the fifth bit block are different When the sum is not greater than the second value, the fourth bit block includes the fifth bit block.
  • the second value is a higher-level configuration value.
  • the second value is a pre-configured value.
  • the fourth bit block includes a positive integer number of bits generated by all or part of the bits in the fifth bit block in a bounding manner.
  • the third bit block has a low priority and the fifth bit block has a high priority; when the number of bits included in the third bit block and the number of bits included in the fifth bit block are different
  • the first parameter is used to determine the number of bits included in the first bit block and the number of bits included in the fourth bit block.
  • the second value is a higher-level configuration value.
  • the second value is a pre-configured value.
  • the first parameter is used to constrain the ratio of the number of bits included in the first bit block to the number of bits included in the fourth bit block.
  • the first parameter is used to restrict the maximum value of the number of bits included in the first bit block.
  • the first parameter is used to constrain the maximum value of the number of bits included in the fourth bit block.
  • the first parameter is used to determine the difference between the number of bits included in the third bit block and the number of bits included in the first bit block.
  • the first parameter is used to determine the difference between the number of bits included in the fifth bit block and the number of bits included in the fourth bit block.
  • Embodiment 10 illustrates a schematic diagram of a process of judging whether the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource according to an embodiment of the present application, as shown in FIG. 10.
  • the first node in this application judges whether the condition that the third bit block is low priority and the second bit block is high priority is satisfied in step S101; if so, proceed to In step S103, it is determined that the first sub-signal is only transmitted in the first reserved resource; otherwise, proceed to step S102 to determine that the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the number of bits included in the third bit block is greater than the first value.
  • the first value is configured at a higher level.
  • the first value is pre-configured.
  • the first value is equal to 2.
  • the first value is the maximum number of bits of the first information allowed to be transmitted in the first reserved resource.
  • the first information includes HARQ-ACK information.
  • the first information includes UCI.
  • the first sub-signal of the sentence is transmitted in time-frequency resources other than the first reserved resource, and all signals in the first sub-signal are in the first reserved resource. It is transmitted in other time-frequency resources.
  • the first sub-signal of the sentence being transmitted in time-frequency resources other than the first reserved resource includes that a part of the signal in the first sub-signal is in the first reserved resource Is transmitted in the first sub-signal, and another part of the signal in the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the first value is configured at the RRC layer.
  • Embodiment 11 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application, as shown in FIG. 11.
  • the processing device 1100 in the first node device includes a first receiver 1101 and a first transmitter 1102.
  • the first receiver 1101 receives the first signal group and the first signaling; the first transmitter 1102 sends the second signal in the first time-frequency resource, and the second signal carries the first signal.
  • One bit block and second bit block are included in the first receiver 1101 and the first signaling.
  • the first signaling includes scheduling information of the second signal
  • the third bit block includes information indicating whether the signal in the first signal group is received correctly
  • the third bit block Is used to generate the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the second bit block The priority of is jointly used to determine the number of bits included in the first bit block.
  • the second signal includes a first sub-signal
  • the first sub-signal is a signal generated after the first bit block undergoes a first process
  • the first process includes channel coding
  • the first time-frequency resource includes a first reserved resource
  • the priority of the third bit block and the priority of the second bit block are both used to determine whether the first sub-signal It is transmitted in time-frequency resources other than the first reserved resource.
  • the first receiver 1101 receives a first signaling group; wherein, the first signaling group includes scheduling information of the first signal group, and the second signaling is the first signaling group.
  • the last signaling in the group, the second signaling indicates a second time-frequency resource, and the second time-frequency resource and the first time-frequency resource overlap in the time domain.
  • the first receiver 1101 receives a second signal group; wherein, the second signal carries a fourth bit block, and the fifth bit block includes whether the signal in the second signal group is correctly received Indicating information, the fifth bit block is used to generate the fourth bit block, the priority of the third bit block is different from the priority of the fifth bit block, and the fifth bit block is different from the priority of the fifth bit block.
  • the third bit block is commonly used to determine the first bit block.
  • the fifth bit block and the third bit block are jointly used to determine the fourth bit block
  • the number of bits included in the third bit block is greater than the first value; when the third bit block is of low priority and the second bit block is of high priority, the first sub-signal It is only transmitted in the first reserved resource; otherwise, the first sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • the first time-frequency resource is PUSCH; the third bit block includes HARQ-ACK information, the second bit block includes user data; the third bit block includes more bits than the The first value; when the third bit block is of low priority and the second bit block is of high priority, the third bit block is used to generate the first bit block in a boundling manner, so The first sub-signal is only transmitted in the first reserved resource; otherwise, the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the first time-frequency resource is PUSCH; the third bit block includes HARQ-ACK information, the second bit block includes user data; the third bit block includes more bits than the The first value; when the third bit block is of low priority and the second bit block is of high priority, the third bit block is used to generate the first bit block in a boundling manner, so The number of bits included in the first bit block is equal to the first value; otherwise, the number of bits included in the first bit block is greater than the first value.
  • the first time-frequency resource is PUSCH; the third bit block includes HARQ-ACK information, the second bit block includes user data; the third bit block includes more bits than the The first value; when the third bit block is of low priority and the second bit block is of high priority, the third bit block is used to generate the first bit block in a boundling manner, so The number of bits included in the first bit block is equal to the first value, and the first sub-signal is only transmitted in the first reserved resource; otherwise, the number of bits included in the first bit block is greater than For the first value, the first sub-signal is transmitted in a time-frequency resource other than the first reserved resource.
  • the first time-frequency resource is PUSCH; the third bit block includes low-priority HARQ-ACK information, the fifth bit block includes high-priority HARQ-ACK information, and the first The two-bit block includes user data; the fourth bit block includes the fifth bit block, and the fifth bit block and the third bit block are jointly used to determine the first bit block; when the first bit block is When the sum of the number of bits included in one bit block and the number of bits included in the fourth bit block is not greater than the second value, the first bit block includes the third bit block; otherwise, the first bit The number of bits included in the block is equal to the difference between the second value and the number of bits included in the fourth bit block; wherein the number of bits included in the fourth bit block is less than the second value, and The second value is a higher-level configuration value.
  • the first time-frequency resource is PUSCH, and the maximum number of bits of the first bit block allowed to be carried on the PUSCH is greater than the first value;
  • the third bit block includes HARQ- ACK information, the second bit block includes user data; the number of bits included in the third bit block is greater than the first value; when the third bit block is low priority and the second bit block is high
  • the third bit block is used to generate the first bit block in a boundling manner, and the first sub-signal is only transmitted in the first reserved resource; otherwise, the first The sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • the first time-frequency resource is PUSCH, and the maximum number of bits of the first bit block allowed to be carried on the PUSCH is greater than the first value;
  • the third bit block includes HARQ- ACK information, the second bit block includes user data; the number of bits included in the third bit block is greater than the first value; when the third bit block is low priority and the second bit block is high In priority, the third bit block is used to generate the first bit block in a boundling manner, and the number of bits included in the first bit block is equal to the first value; otherwise, the first bit The number of bits included in the block is greater than the first value.
  • the first time-frequency resource is PUSCH, and the maximum number of bits of the first bit block allowed to be carried on the PUSCH is greater than the first value;
  • the third bit block includes HARQ- ACK information, the second bit block includes user data; the number of bits included in the third bit block is greater than the first value; when the third bit block is low priority and the second bit block is high In priority, the third bit block is used to generate the first bit block in a boundling manner, the number of bits included in the first bit block is equal to the first value, and the first sub-signal is only Is transmitted in the first reserved resource; otherwise, the number of bits included in the first bit block is greater than the first value, and the first sub-signal is at a time frequency other than the first reserved resource The resource is transmitted.
  • the first time-frequency resource is PUSCH, and the maximum number of bits of the first bit block allowed to be carried on the PUSCH is greater than the first value;
  • the third bit block includes low priority Level HARQ-ACK information, the fifth bit block includes high priority HARQ-ACK information, the second bit block includes user data;
  • the fourth bit block includes the fifth bit block, and the first bit block includes the fifth bit block.
  • the five-bit block and the third bit block are jointly used to determine the first bit block; when the sum of the number of bits included in the first bit block and the number of bits included in the fourth bit block is not greater than For the second value, the first bit block includes the third bit block; otherwise, the number of bits included in the first bit block is equal to the second value and the number of bits included in the fourth bit block Wherein, the number of bits included in the fourth bit block is less than the second value, and the second value is a value configured at a higher layer.
  • the first time-frequency resource is PUSCH;
  • the third bit block includes low-priority HARQ-ACK information,
  • the fifth bit block includes high-priority HARQ-ACK information, and the first The two-bit block includes user data;
  • the fifth bit block and the third bit block are used together to determine the first bit block and the fourth bit block; when the bits included in the first bit block When the sum of the number and the number of bits included in the fourth bit block is not greater than the second value, the fourth bit block includes the fifth bit block, and the first bit block includes the third bit block; Otherwise, the number of bits included in the fourth bit block is not greater than the number of bits included in the fifth bit block, and the number of bits included in the first bit block is less than the number of bits included in the third bit block ;
  • the second value is a higher-level configuration value.
  • the fifth bit block is used to generate The fourth bit block.
  • the third bit block is used to generate The first bit block.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1101 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in embodiment 4 At least one of 467 ⁇ .
  • the first transmitter 1102 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application, as shown in FIG. 12.
  • the processing device 1200 in the second node device includes a second receiver 1201 and a second transmitter 1202.
  • the second transmitter 1202 sends the first signal group and the first signaling; the second receiver 1201 receives the second signal in the first time-frequency resource, and the second signal carries the first signal.
  • One bit block and second bit block are included in Embodiment 12.
  • the first signaling includes scheduling information of the second signal
  • the third bit block includes information indicating whether the signal in the first signal group is received correctly
  • the third bit block Is used to generate the first bit block, the number of bits included in the first bit block is not greater than the number of bits included in the third bit block; the priority of the third bit block and the second bit block The priority of is jointly used to determine the number of bits included in the first bit block.
  • the second signal includes a first sub-signal
  • the first sub-signal is a signal generated after the first bit block undergoes a first process
  • the first process includes channel coding
  • the first time-frequency resource includes a first reserved resource
  • the priority of the third bit block and the priority of the second bit block are both used to determine whether the first sub-signal It is transmitted in time-frequency resources other than the first reserved resource.
  • the second transmitter 1202 sends a first signaling group; wherein, the first signaling group includes scheduling information of the first signal group, and the second signaling is the first signaling group.
  • the last signaling in the group, the second signaling indicates a second time-frequency resource, and the second time-frequency resource and the first time-frequency resource overlap in the time domain.
  • the second transmitter 1202 sends a second signal group; wherein, the second signal carries a fourth bit block, and the fifth bit block includes whether the signals in the second signal group are correctly received Indicating information, the fifth bit block is used to generate the fourth bit block, the priority of the third bit block is different from the priority of the fifth bit block, and the fifth bit block is different from the priority of the fifth bit block.
  • the third bit block is commonly used to determine the first bit block.
  • the fifth bit block and the third bit block are jointly used to determine the fourth bit block
  • the number of bits included in the third bit block is greater than the first value; when the third bit block is of low priority and the second bit block is of high priority, the first sub-signal It is only transmitted in the first reserved resource; otherwise, the first sub-signal is transmitted in time-frequency resources other than the first reserved resource.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second node device is a base station device.
  • the second receiver 1201 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, channel decoder 478, controller/processor 475, memory 476 ⁇ in embodiment 4 one.
  • the second transmitter 1202 includes at least one of ⁇ antenna 420, transmitter 418, transmission processor 416, channel encoder 477, controller/processor 475, memory 476 ⁇ in embodiment 4 one.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC) terminal, data card, internet card, in-vehicle communication equipment, low-cost mobile phone, low cost Cost of wireless communication equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, wireless communication equipment such as macro cell base stations, micro cell base stations, home base stations, relay base stations, gNB (NR Node B), NR Node B, and TRP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一信号组和第一信令;第一发送机,在第一时频资源中发送第二信号,所述第二信号携带第一比特块和第二比特块;其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G系统中,为了支持更高要求的URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)业务,比如更高可靠性(比如:目标BLER为10^-6)、更低延迟(比如:0.5-1ms)等,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#80次全会上通过了对NR(New Radio,新空口)URLLC进行增强的研究项目。为了支持URLLC业务更高可靠性和更低延迟的要求,3GPP已经同意在URLLC中引入不同优先级(Priority)的数据传输和UCI(Uplink Control Information,上行控制信息)反馈。
发明内容
在NR URLLC的讨论中,3GPP引入了优先级信息(包括高优先级(High priority)和低优先级(Low priority))以支持不同类型的控制信息和数据(Data)的传输。在3GPP的Release 15版本中,UCI(尤其是HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈信息)可以(Multiplex)和数据一起被复用(Multiplexing)在同一个信道(如,PUSCH(Physical Uplink Shared CHannel,物理上行共享信道))上以提升系统效率。然而,在引入优先级信息后如何合理地将不同优先级的控制信息和数据进行复用是一个需要解决的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是采用NR URLLC场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的NR URLLC之外的其它场景,也可以取得类似NR URLLC场景中的技术效果。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信号组和第一信令;
在第一时频资源中发送第二信号,所述第二信号携带第一比特块和第二比特块;
其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,本申请要解决的问题包括:当不同优先级的UCI和数据被复用在一个PUSCH上时,如何有效保证高优先级控制信令或高优先级数据的传输性能。
作为一个实施例,上述方法的特质包括:低优先级的信息(包括低优先级控制信息或低优先级数据)和高优先级信息(包括高优先级控制信息或高优先级数据)可以被复用到同一个信道中。
作为一个实施例,上述方法的特质包括:当低优先级HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)信息(Information)和高优先级数据被复用到一个PUSCH上时,所述PUSCH所携带的低优先级HARQ-ACK信息的比特数量受限;如果低优先级HARQ-ACK信息的比特数量大于某一特定数值,低优先级HARQ-ACK信息将在被压缩后才被映射到PUSCH资源上。
作为一个实施例,上述方法的特质包括:当高先级HARQ-ACK信息和数据被复用到一个PUSCH上时,所述PUSCH携带所述高优先级HARQ-ACK信息的全部比特。
作为一个实施例,上述方法的好处包括:当低优先级HARQ-ACK信息和高优先级数据被复用到一个 PUSCH上时,通过对所述PUSCH所携带的低优先级HARQ-ACK信息进行限制以保证高优先级数据的可靠传输。
作为一个实施例,上述方法的好处包括:通过对PUSCH上低优先级UCI所占用的资源的限制,将更多传输资源分配给高优先级UCI或高优先级数据。
根据本申请的一个方面,其特征在于,
所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码。
根据本申请的一个方面,其特征在于,
所述第一时频资源包括第一预留资源,所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一子信号是否在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,上述方法的特质包括:当要反馈的HARQ-ACK信息比特数较多(如,大于2)时,高优先级的HARQ-ACK信息通过Rate Matching(速率匹配)的方式被映射到PUSCH上;低优先级的HARQ-ACK信息则在被压缩后被映射到预留资源(如reserved RE(Resource Element))上。
作为一个实施例,上述方法的好处包括:高优先级信息(包括高优先级控制信息或高优先级数据)的速率匹配不依赖于低优先级控制信息的发送;降低低优先级PDCCH接收失败所产生的对高优先级信息的影响。
根据本申请的一个方面,其特征在于,包括:
接收第一信令组;
其中,所述第一信令组包括所述第一信号组的调度信息,第二信令是所述第一信令组中的最后一个信令,所述第二信令指示第二时频资源,所述第二时频资源和所述第一时频资源在时域上有交叠。
根据本申请的一个方面,其特征在于,包括:
接收第二信号组;
其中,所述第二信号携带第四比特块,第五比特块包括所述第二信号组中的信号是否被正确接收的指示信息,所述第五比特块被用于生成所述第四比特块,所述第三比特块的优先级和所述第五比特块的优先级不同,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块。
作为一个实施例,上述方法的特质包括:高优先级的HARQ-ACK CB(Codebook,码本)(Codebook,码本)和低优先级的HARQ-ACK CB共同被用于确定在PUSCH被传输的低优先级的HARQ-ACK信息比特数。
根据本申请的一个方面,其特征在于,
所述第五比特块和所述第三比特块共同被用于确定所述第四比特块。
作为一个实施例,上述方法的特质包括:高优先级的HARQ-ACK CB和低优先级的HARQ-ACK CB共同被用于确定在PUSCH被传输的高优先级的HARQ-ACK信息比特数。
作为一个实施例,上述方法的特质包括:当高优先级HARQ-ACK CB包括的比特数和低优先级HARQ-ACK CB包括的比特数都较多时,高优先级的HARQ-ACK CB和低优先级的HARQ-ACK CB都在被压缩后才被映射到PUSCH上。
根据本申请的一个方面,其特征在于,包括:
所述第三比特块包括的比特数大于第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信号组和第一信令;
在第一时频资源中接收第二信号,所述第二信号携带第一比特块和第二比特块;
其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被 正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
根据本申请的一个方面,其特征在于,
所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码。
根据本申请的一个方面,其特征在于,
所述第一时频资源包括第一预留资源,所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一子信号是否在所述第一预留资源以外的时频资源中被传输。
根据本申请的一个方面,其特征在于,
发送第一信令组;
其中,所述第一信令组包括所述第一信号组的调度信息,第二信令是所述第一信令组中的最后一个信令,所述第二信令指示第二时频资源,所述第二时频资源和所述第一时频资源在时域上有交叠。
根据本申请的一个方面,其特征在于,
发送第二信号组;
其中,所述第二信号携带第四比特块,第五比特块包括所述第二信号组中的信号是否被正确接收的指示信息,所述第五比特块被用于生成所述第四比特块,所述第三比特块的优先级和所述第五比特块的优先级不同,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块。
根据本申请的一个方面,其特征在于,包括:
所述第五比特块和所述第三比特块共同被用于确定所述第四比特块。
根据本申请的一个方面,其特征在于,包括:
所述第三比特块包括的比特数大于第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信号组和第一信令;
第一发送机,在第一时频资源中发送第二信号,所述第二信号携带第一比特块和第二比特块;
其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,发送第一信号组和第一信令;
第二接收机,在第一时频资源中接收第二信号,所述第二信号携带第一比特块和第二比特块;
其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
当低优先级HARQ-ACK信息和高优先级数据被复用到一个PUSCH上时,通过对所述PUSCH所携带的低优先级HARQ-ACK信息进行限制以保证高优先级数据的可靠传输;
通过对PUSCH上低优先级UCI所占用的资源的限制,将更多传输资源分配给高优先级UCI或高优先 级数据;
高优先级信息(包括高优先级控制信息或高优先级数据)的速率匹配不依赖于低优先级控制信息的发送;降低低优先级PDCCH接收失败所产生的对高优先级信息的影响。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一信令,第二信号,第一比特块,第二比特块和第一子信号之间关系的示意图;
图7示出了根据本申请的一个实施例的第三比特块的优先级,第二比特块的优先级和第一子信号是否在第一预留资源以外的时频资源中被传输之间关系的示意图;
图8示出了根据本申请的一个实施例的第二信号,第一比特块,第三比特块,第四比特块和第五比特块之间关系的示意图;
图9示出了根据本申请的一个实施例的第三比特块,第四比特块和第五比特块之间关系的示意图;
图10示出了根据本申请的一个实施例的判断第一子信号是否在第一预留资源以外的时频资源中被传输的流程的示意图;
图11示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点在步骤11中接收第一信号组;在步骤12中接收第一信令;在步骤13中在第一时频资源中发送第二信号。
在实施例1中,附图1中步骤11和步骤12的先后顺序不代表特定的时间顺序。
在实施例1中,所述第二信号携带第一比特块和第二比特块;所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第一信号组包括正整数个基带信号。
作为一个实施例,所述第一信号组包括正整数个无线信号。
作为一个实施例,所述第二信号是一个基带信号。
作为一个实施例,所述第二信号是一个无线信号。
作为一个实施例,所述第一信号组包括正整数个射频信号。
作为一个实施例,所述第二信号是一个射频信号。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink Control Information)信令。
作为一个实施例,所述第一信令是下行授予(DownLink Grant)的DCI信令。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信号组中的每个信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信号组包括M个信号,所述第三比特块包括所述M个信号中的每个信号是否被正确接收的指示信息。
作为一个实施例,所述第三比特块是一个HARQ-ACK CB,所述第三比特块的生成方式参见3GPP TS38.213中的第9.1章节。
作为一个实施例,所述第三比特块所包括的比特数被用于从N个时频资源组中选择第一时频资源组。
作为上述实施例的一个子实施例,所述N个时频资源组是N个PUCCH resource set,所述第一时频资源组是所述N个PUCCH resource set中的一个PUCCH resource set。
作为上述实施例的一个子实施例,所述第一时频资源组是一个PUCCH resource set,所述第二时频资源是所述第一时频资源组中的一个PUCCH resource。
作为一个实施例,所述第三比特块通过boundling的方式被用于生成所述第一比特块。
作为一个实施例,所述第三比特块中的全部或部分比特通过逻辑与操作生成所述第一比特块。
作为一个实施例,所述第一比特块包括所述第三比特块。
作为一个实施例,所述第二比特块包括用户数据。
作为一个实施例,所述第二比特块包括用户数据,所述第一比特块包括控制信令。
作为一个实施例,在所述第一时频资源上被允许携带的所述第一比特块的最大比特数大于本申请中的所述第一数值。
作为一个实施例,所述第二信号被允许携带的所述第一比特块的最大比特数大于本申请中的所述第一数值。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数小于所述第三比特块包括的比特数。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值,在所述第一时频资源上被允许携带的所述第一比特块的最大比特数大于所述第一数值;当所述第三比特块的优先级是低优先级 且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数小于所述第三比特块包括的比特数。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数等于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值,在所述第一时频资源上被允许携带的所述第一比特块的最大比特数大于所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数等于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数等于所述第一数值;否则,所述第一比特块包括的比特数等于所述第三比特块包括的比特数。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值,在所述第一时频资源上被允许携带的所述第一比特块的最大比特数大于所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数等于所述第一数值;否则,所述第一比特块包括的比特数等于所述第三比特块包括的比特数。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数等于所述第一数值;否则,所述第一比特块包括的比特数大于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值,在所述第一时频资源上被允许携带的所述第一比特块的最大比特数大于所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部或部分比特通过bounding的方式生成的正整数个比特,所述第一比特块包括的比特数等于所述第一数值;否则,所述第一比特块包括的比特数大于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括的比特数等于所述第一数值;否则,所述第一比特块包括的比特数大于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值,在所述第一时频资源上被允许携带的所述第一比特块的最大比特数大于所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括的比特数等于所述第一数值;否则,所述第一比特块包括的比特数大于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括的比特数不大于所述第一数值。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括的比特数等于所述第三比特块包括的比特数。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块。
作为一个实施例,当所述第三比特块的优先级是高优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块中的全部比特,所述第一比特块包括的比特数等于所述第三比特块包括的比特数。
作为一个实施例,当所述第三比特块的优先级是高优先级且所述第二比特块的优先级是低优先级时,所述第一比特块包括所述第三比特块中的全部比特,所述第一比特块包括的比特数等于所述第三比特块包括的比特数。
作为一个实施例,当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是低优先级时,所述第一比特块包括所述第三比特块中的全部比特,所述第一比特块包括的比特数等于所述第三比特块包括的比特数。
作为一个实施例,当所述第三比特块的优先级是高优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括所述第三比特块。
作为一个实施例,当所述第三比特块的优先级是高优先级且所述第二比特块的优先级是低优先级时,所述第一比特块包括所述第三比特块。
作为一个实施例,当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是低优先级时,所述第一比特块包括所述第三比特块。
作为一个实施例,当所述第三比特块的优先级是高优先级且所述第二比特块的优先级是高优先级时,所述第一比特块包括的比特数等于所述第三比特块包括的比特数和在所述第一时频资源上被允许携带的所述第一比特块的最大比特数两者中的最小值。
作为一个实施例,当所述第三比特块的优先级是高优先级且所述第二比特块的优先级是低优先级时,所述第一比特块包括的比特数等于所述第三比特块包括的比特数和在所述第一时频资源上被允许携带的所述第一比特块的最大比特数两者中的最小值。
作为一个实施例,当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是低优先级时,所述第一比特块包括的比特数等于所述第三比特块包括的比特数和在所述第一时频资源上被允许携带的所述第一比特块的最大比特数两者中的最小值。
作为一个实施例,所述第一时频资源被预留给所述第二比特块的发送。
作为一个实施例,所述第一时频资源是属于上行物理层数据信道(即能用于承载物理层数据的上行信道)的时频资源。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述第二信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。
作为一个实施例,所述第一时频资源包括正整数个RE(Resource Element,资源单元)。
作为一个实施例,所述第一时频资源在时域上包括正整数个多载波符号,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括HARQ-ACK反馈。
作为一个实施例,所述第一比特块的部分比特中承载HARQ-ACK反馈。
作为一个实施例,所述第一比特块的全部比特中承载HARQ-ACK反馈。
作为一个实施例,所述第二比特块包括正整数个比特。
作为一个实施例,所述第三比特块包括正整数个比特。
作为一个实施例,所述第三比特块包括HARQ-ACK反馈。
作为一个实施例,所述第三比特块的全部比特承载一个HARQ-ACK CB。
作为一个实施例,所述第一比特块包括Part 1CSI(Channel State Information,信道状态信息)Report(报告),所述Part 1CSI Report的具体定义参见3GPP TS38.214中的第5.2.3章节。
作为一个实施例,所述第一比特块包括全部或部分的Part 2CSI Report,所述Part 2CSI Report的具体定义参见3GPP TS38.214中的第5.2.3章节。
作为一个实施例,所述第一比特块包括HARQ-ACK信息,Part 1CSI Report和Part 2CSI Report三者中的至少之一。
作为一个实施例,所述第一比特块包括Scheduling Request(SR,调度请求)。
作为一个实施例,所述第二信号的所述调度信息包括{所占用的时域资源,所占用的频域资源,MCS,DMRS(Demodulation Reference Signals,解调参考信号)配置信息,HARQ进程号(HARQ process ID),RV(Redundancy Version,冗余版本),NDI,优先级}中的一种或多种。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因 特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个子实施例,所述UE201支持MIMO的无线通信。
作为一个子实施例,所述gNB203支持MIMO的无线通信。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源池)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第五比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第五比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或所述PHY351。
作为一个实施例,本申请中的所述第一信号组生成于所述PHY301或所述PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或所述PHY351。
作为一个实施例,本申请中的所述第一信令组生成于所述PHY301或所述PHY351。
作为一个实施例,本申请中的所述第二信号组生成于所述PHY301或所述PHY351。
作为一个实施例,本申请中的所述第一子信号生成于所述PHY301或所述PHY351。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控 制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述第一信号组和本申请中的所述第一信令;在本申请中的所述第一时频资源中发送本申请中的所述第二信号,所述第二信号携带本申请中的所述第一比特块和本申请中的所述第二比特块。所述第一信令包括所述第二信号的调度信息,本申请中的所述第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信号组和本申请中的所述第一信令;在本申请中的所述第一时频资源中发送本申请中的所述第二信号,所述第二信号携带本申请中的所述第一比特块和本申请中的所述第二比特块。所述第一信令包括所述第二信号的调度信息,本申请中的所述第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述第一信号组和本申请中的所述第一信令;在本申请中的所述第一时频资源中接收本申请中的所述第二信号,所述第二信号携带本申请中的所述第一比特块和本申请中的所述第二比特块。所述第一信令包括所述第二信号的调度信息,本申请中的所述第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信号组和本申请中的所述第一信令;在本申请中的所述第一时频资源中接收本申请中的所述第二信号,所述第二信号携带本申请中的所述第一比特块和本申请中的所述第二比特块。所述第一信令包括所述第二信号的调度信息,本申请中的所述第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,所述第二通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个基站。
作为一个实施例,所述第一通信设备410是一个UE。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第二信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一子信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一子信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令组。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令组。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信号组。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信号组。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信号组。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信号组。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间通过空中接口进行通信。图中标注为F51和F52的虚线方框部分是可选的。
第一节点U1,在步骤S5101中接收第一信令组;在步骤S5102中接收第二信号组;在步骤S511中接收第一信号组;在步骤S512中接收第一信令;在步骤S513中在第一时频资源中发送第二信号。
第一节点U2,在步骤S5201中发送第一信令组;在步骤S5202中发送第二信号组;在步骤S521中发送第一信号组;在步骤S522中发送第一信令;在步骤S523中在第一时频资源中接收第二信号。
在实施例5中,在附图5中的收发步骤对{S5101,S5201},{S5102,S5202},{S511,S521}和{S512,S522}之间的先后顺序不代表特定的时间顺序。
在实施例5中,所述第二信号携带第一比特块和第二比特块;所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成 所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数;所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码;所述第一时频资源包括第一预留资源,所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一子信号是否在所述第一预留资源以外的时频资源中被传输;所述第一信令组包括所述第一信号组的调度信息,第二信令是所述第一信令组中的最后一个信令,所述第二信令指示第二时频资源,所述第二时频资源和所述第一时频资源在时域上有交叠。
作为一个实施例,所述第三比特块包括的比特数大于第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第二信号携带第四比特块,第五比特块包括所述第二信号组中的信号是否被正确接收的指示信息,所述第五比特块被用于生成所述第四比特块,所述第三比特块的优先级和所述第五比特块的优先级不同,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块;所述第五比特块和所述第三比特块共同被用于确定所述第四比特块。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二信号组包括正整数个基带信号。
作为一个实施例,所述第二信号组包括正整数个无线信号。
作为一个实施例,所述第二信号组包括正整数个射频信号。
作为一个实施例,所述第一子信号是一个基带信号。
作为一个实施例,所述第一子信号是一个无线信号。
作为一个实施例,所述第一子信号是一个射频信号。
作为一个实施例,所述第一信令组中的每个信令是动态配置的。
作为一个实施例,所述第一信令组中的每个信令是物理层信令。
作为一个实施例,所述第一信令组包括正整数个DCI信令。
作为一个实施例,所述第一信令组包括正整数个下行授予的DCI信令。
作为一个实施例,所述第一信令组中的每个信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第二信号组中的每个信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一信令组中的每个信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令组中的每个信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二时频资源被预留给所述第一比特块的发送。
作为一个实施例,所述第二时频资源是属于上行物理层控制信道(即仅能用于承载物理层信令的上行信道)的时频资源。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control Channel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第二时频资源包括正整数个RE。
作为一个实施例,所述第二时频资源在时域上包括正整数个多载波符号,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述第一信号组的所述调度信息包括{所占用的时域资源,所占用的频域资源,MCS,DMRS配置信息,HARQ进程号,RV,NDI,优先级}中的一种或多种。
作为一个实施例,所述第一时频资源和所述第二时频资源在时域上部分重叠。
作为一个实施例,所述第一时频资源和所述第二时频资源在时域上完全重叠。
作为一个实施例,所述第一信号组包括M个信号,所述第一信令组包括M个信令,所述M个信令分别包括所述M个信号的调度信息。
作为一个实施例,所述第一信令组中的所有信令都指示在第一时域资源中发送反馈信息。
作为上述实施例的一个子实施例,所述第一时域资源是一个slot。
作为上述实施例的一个子实施例,所述第一时域资源是一个sub-slot。
作为上述实施例的一个子实施例,所述第一信令组中的每个信令包括一个PDSCH-to-HARQ_feedback timing indicator(PDSCH-to-HARQ反馈定时指示器),所述PDSCH-to-HARQ_feedback timing indicator被用于确定所述第一时域资源。
作为上述实施例的一个子实施例,所述反馈信息包括HARQ-ACK信息。
作为一个实施例,所述句子第二信令是所述第一信令组中的最后一个信令包括,从时域上看,所述第二信令的检测时段(Monitoring Occasion)晚于所述第一信令组中除所述第二信令以外的其他信令的检测时段。
作为一个实施例,所述句子第二信令是所述第一信令组中的最后一个信令包括,从时域上看,所述第二信令的检测时段不早于所述第一信令组中除所述第二信令以外的其他信令的检测时段。
作为一个实施例,所述句子第二信令是所述第一信令组中的最后一个信令包括,从时域上看,所述第二信令的最后一个符号晚于所述第一信令组中除所述第二信令以外的其他信令的最后一个符号。
作为一个实施例,所述句子第二信令是所述第一信令组中的最后一个信令包括,从时域上看,所述第二信令的最后一个符号不早于所述第一信令组中除所述第二信令以外的其他信令的最后一个符号。
作为一个实施例,所述句子第二信令是所述第一信令组中的最后一个信令包括,所述第一信令组包括多个DCI,所述多个DCI指示相同的PUCCH发送时间,所述第二信令是所述第一信令组中的最后(Last)一个DCI。
作为一个实施例,所述句子所述第二时频资源和所述第一时频资源在时域上有交叠包括,所述第二时频资源是一个PUCCH,所述第一时频资源是一个PUSCH,所述第三比特块和所述第二信令共同被用于从多个PUCCH resource set中选择所述第二时频资源,所述第二时频资源和所述第一时频资源有至少一个OFDM符号的时域交叠。
作为一个实施例,所述第二信号组包括T个信号,所述第五比特块包括所述T个信号中的每个信号是否被正确接收的指示信息。
作为一个实施例,所述第一信号组包括M个信号,所述第三比特块包括针对所述M个信号中的每个信号的HARQ-ACK反馈信息。
作为一个实施例,所述第二信号组包括T个信号,所述第五比特块包括针对所述T个信号中的每个信号的HARQ-ACK反馈信息。
作为一个实施例,附图5中的方框F51中的步骤存在。
作为一个实施例,附图5中的方框F51中的步骤不存在。
作为一个实施例,附图5中的方框F52中的步骤存在。
作为一个实施例,附图5中的方框F52中的步骤不存在。
实施例6
实施例6示例了根据本申请的一个实施例的第一信令,第二信号,第一比特块,第二比特块和第一子信号之间关系的示意图,如附图6所示。
在实施例6中,第一信令包括第二信号的调度信息,所述第二信号携带第一比特块和第二比特块,所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码。
作为一个实施例,所述第一流程包括CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)中部分或全部。
作为一个实施例,所述短语所述第二信号携带第一比特块和第二比特块包括,所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过所述第一流程后生成的信号。
作为一个实施例,所述短语所述第二信号携带第一比特块和第二比特块包括,所述第二信号包括所述第二比特块经过第二流程后生成的信号。
作为上述实施例的一个子实施例,所述第二流程包括CRC添加,分段,编码块级CRC添加,信道编码,速率匹配,串联,加扰,调制,层映射,预编码,映射到资源粒子,OFDM基带信号生成,调制上变频中部分或全部。
实施例7
实施例7示例了根据本申请的一个实施例的第三比特块的优先级,第二比特块的优先级和第一子信号是否在第一预留资源以外的时频资源中被传输之间关系的示意图,如附图7所示。
在实施例7中,第三比特块的优先级和第二比特块的优先级共同被用于确定第一子信号是否在第一预留资源以外的时频资源中被传输,本申请中的所述第一时频资源包括所述第一预留资源。
作为一个实施例,所述第一预留资源包括正整数个reserved RE(预留RE)。
作为一个实施例,所述第一预留资源被预留用于传输HARQ-ACK信息。
作为一个实施例,所述第一预留资源是通过打孔(Puncturing)的方式被预留的。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为上述实施例的一个子实施例,所述第一数值是更高层(Higher Layer)配置的。
作为上述实施例的一个子实施例,所述第一数值是预配置的。
作为上述实施例的一个子实施例,所述第一数值等于2。
作为上述实施例的一个子实施例,所述第一数值是在所述第一预留资源中被允许传输的第一信息的最大比特数量,所述第一信息包括HARQ-ACK反馈信息。
作为上述实施例的一个子实施例,所述句子所述第一子信号在所述第一预留资源以外的时频资源中被传输包括,所述第一子信号中的全部信号在所述第一预留资源以外的时频资源中被传输。
作为上述实施例的一个子实施例,所述句子所述第一子信号在所述第一预留资源以外的时频资源中被传输包括,所述第一子信号中的一部分信号在所述第一预留资源中被传输,所述第一子信号中另一部分信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,本申请中的所述第一比特块包括所述第三比特块中的全部或部分比特通过boundling的方式生成的正整数个比特,所述第一比特块被用于生成所述第一子信号,所述第一子信号仅在所述第一预留资源中被传输。
作为上述实施例的一个子实施例,所述第一数值是更高层配置的。
作为上述实施例的一个子实施例,所述第一数值是预配置的。
作为上述实施例的一个子实施例,所述第一数值等于2。
作为上述实施例的一个子实施例,所述第一数值是在所述第一预留资源中被允许传输的第一信息的最大比特数量,所述第一信息包括HARQ-ACK反馈信息。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是高优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号仅在所述第一预留资源中被传输。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是低优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号仅在所述第一预留资源中被传输。
作为一个实施例,当所述第三比特块包括的比特数不大于本申请中的所述第一数值时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号仅在所述第一预留资源中被传输。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是低优先级且所述第二比特块的优先级是低优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号中的部分或全部信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是高优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号中的部分或全部信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是高优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号仅在所述第一预留资源中被传输。
作为一个实施例,所述第三比特块包括的比特数大于本申请中的所述第一数值;当所述第三比特块的优先级是高优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号中的部分或全部信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第三比特块包括的比特数不大于本申请中的所述第一数值;当所述第三比特块的优先级是高优先级时,本申请中的所述第一比特块包括所述第三比特块,所述第一比特块被用于生成所述第一子信号,所述第一子信号仅在被预留给高优先级HARQ-ACK信息传输的资源中被传输。
作为一个实施例,所述第一预留资源是被预留给低优先级HARQ-ACK信息传输的资源。
作为一个实施例,所述第一预留资源是被预留给HARQ-ACK信息传输的资源。
实施例8
实施例8示例了根据本申请的一个实施例的第二信号,第一比特块,第三比特块,第四比特块和第五比特块之间关系的示意图,如附图8所示。
在实施例8中,第二信号携带第一比特块和第四比特块,第五比特块被用于生成所述第四比特块,所述第五比特块和第三比特块共同被用于确定所述第一比特块。
在实施例8中,所述第三比特块的优先级和所述第五比特块的优先级不同。
作为一个实施例,所述第二信号包括所述第四比特块经过第三流程后生成的信号。
作为上述实施例的一个子实施例,所述第三流程包括CRC添加,分段,编码块级CRC添加,信道编码,速率匹配,串联,加扰,调制,层映射,预编码,映射到资源粒子,OFDM基带信号生成,调制上变频中部分或全部。
作为一个实施例,所述第五比特块是一个HARQ-ACK CB,所述第五比特块的生成方式参见TS38.213的9.1章节。
作为一个实施例,所述第五比特块所包括的比特数被用于从N个时频资源组中选择第二时频资源组。
作为上述实施例的一个子实施例,所述N个时频资源组是N个PUCCH resource set,所述第二时频资源组是所述N个PUCCH resource set中的一个PUCCH resource set。
作为一个实施例,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第五比特块通过boundling的方式被用于生成所述第四比特块。
作为一个实施例,所述第五比特块中的全部或部分比特通过逻辑与操作生成所述第四比特块。
作为一个实施例,所述第四比特块包括所述第五比特块。
作为一个实施例,所述第四比特块包括且仅包括所述第五比特块。
作为一个实施例,所述第四比特块包括的比特数不大于所述第五比特块包括的比特数。
作为一个实施例,所述第一比特块包括的比特数和所述第四比特块包括的比特数之和不大于第二数值。
作为上述实施例的一个子实施例,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,所述第二数值是一个预配置的数值。
作为一个实施例,所述第三比特块是低优先级,所述第五比特块是高优先级;当所述第三比特块包括的比特数和所述第五比特块包括的比特数之和大于第二数值时,所述第一比特块包括的比特数小于所述第三比特块包括的比特数。
作为上述实施例的一个子实施例,所述第四比特块包括的比特数等于所述第五比特块包括的比特数。
作为上述实施例的一个子实施例,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,所述第二数值是一个预配置的数值。
作为上述实施例的一个子实施例,所述第一比特块包括的比特数和所述第四比特块包括的比特数之和等于所述第二数值。
作为一个实施例,所述第三比特块是低优先级,所述第五比特块是高优先级;当所述第三比特块包括的比特数和所述第五比特块包括的比特数之和不大于第二数值时,所述第一比特块包括所述第三比特块。
作为上述实施例的一个子实施例,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,所述第二数值是一个预配置的数值。
作为一个实施例,所述第一比特块包括所述第三比特块中的全部或部分比特通过boundling的方式生成的正整数个比特。
作为一个实施例,本申请中的所述第一节点接收第二信令组,所述第二信令组包括所述第二信号组的调度信息,第三信令是所述第二信令组中的最后一个信令,所述第三信令指示第三时频资源,所述第三时频资源和所述第一时频资源在时域上有交叠。
作为上述实施例的一个子实施例,所述第二信令组中的所有信令都指示在第二时域资源中发送反馈信息。
作为上述实施例的一个子实施例,所述第二信令组中的每个信令包括一个PDSCH-to-HARQ_feedback timing indicator(PDSCH-to-HARQ反馈定时指示器),所述PDSCH-to-HARQ_feedback timing indicator被用于确定第二时域资源。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的检测时段晚于所述第二信令组中除所述第三信令以外的其他信令的检测时段。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的检测时段不早于所述第二信令组中除所述第三信令以外的其他信令的检测时段。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时 域上看,所述第三信令的最后一个符号晚于所述第二信令组中除所述第三信令以外的其他信令的最后一个符号。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的最后一个符号不早于所述第二信令组中除所述第三信令以外的其他信令的最后一个符号。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,所述第二信令组包括多个DCI,所述多个DCI指示相同的PUCCH发送时间,所述第三信令是所述第二信令组中的最后一个DCI。
作为上述实施例的一个子实施例,所述句子所述第三时频资源和所述第一时频资源在时域上有交叠包括,所述第三时频资源是一个PUCCH,所述第一时频资源是一个PUSCH,所述第五比特块和所述第三信令共同被用于从多个PUCCH resource set中选择所述第三时频资源,所述第三时频资源和所述第一时频资源有至少一个OFDM符号的时域交叠。
作为上述实施例的一个子实施例,所述第三时频资源包括正整数个RE。
作为上述实施例的一个子实施例,所述第三时频资源在时域上包括正整数个多载波符号,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,本申请中的所述第一节点接收第二信令组,所述第二信令组包括所述第二信号组的调度信息,第三信令是所述第二信令组中的最后一个信令,所述第三信令指示第三时频资源,所述第三时频资源和所述第二时频资源在时域上有交叠。
作为上述实施例的一个子实施例,所述第二信令组中的所有信令都指示在第二时域资源中发送反馈信息。
作为上述实施例的一个子实施例,所述第二信令组中的每个信令包括一个PDSCH-to-HARQ_feedback timing indicator,所述PDSCH-to-HARQ_feedback timing indicator被用于确定第二时域资源。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的检测时段晚于所述第二信令组中除所述第三信令以外的其他信令的检测时段。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的检测时段不早于所述第二信令组中除所述第三信令以外的其他信令的检测时段。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的最后一个符号晚于所述第二信令组中除所述第三信令以外的其他信令的最后一个符号。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,从时域上看,所述第三信令的最后一个符号不早于所述第二信令组中除所述第三信令以外的其他信令的最后一个符号。
作为上述实施例的一个子实施例,所述句子第三信令是所述第二信令组中的最后一个信令包括,所述第二信令组包括多个DCI,所述多个DCI指示相同的PUCCH发送时间,所述第三信令是所述第二信令组中的最后一个DCI。
作为上述实施例的一个子实施例,所述句子所述第三时频资源和所述第一时频资源在时域上有交叠包括,所述第三时频资源是一个PUCCH,所述第二时频资源是一个PUCCH,所述第五比特块和所述第三信令共同被用于从多个PUCCH resource set中选择所述第三时频资源,所述第三比特块和所述第二信令共同被用于从多个PUCCH resource set中选择所述第二时频资源,所述第三时频资源和所述第二时频资源有至少一个OFDM符号的时域交叠。
作为上述实施例的一个子实施例,所述第三时频资源包括正整数个RE。
作为上述实施例的一个子实施例,所述第三时频资源在时域上包括正整数个多载波符号,所述第一时频资源在频域上包括正整数个子载波。
实施例9
实施例9示例了根据本申请的一个实施例的第三比特块,第四比特块和第五比特块之间关系的示意 图,如附图9所示。
在实施例9中,第五比特块和第三比特块共同被用于确定第四比特块。
作为一个实施例,所述第三比特块是低优先级,所述第五比特块是高优先级;当所述第三比特块包括的比特数和所述第五比特块包括的比特数之和大于第二数值时,所述第四比特块包括的比特数小于所述第五比特块包括的比特数。
作为上述实施例的一个子实施例,所述第一比特块包括的比特数小于所述第三比特块包括的比特数。
作为上述实施例的一个子实施例,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,所述第二数值是一个预配置的数值。
作为上述实施例的一个子实施例,所述第一比特块包括的比特数和所述第四比特块包括的比特数之和等于所述第二数值。
作为一个实施例,所述第三比特块是低优先级,所述第五比特块是高优先级;当所述第三比特块包括的比特数和所述第五比特块包括的比特数之和不大于第二数值时,所述第四比特块包括所述第五比特块。
作为上述实施例的一个子实施例,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,所述第二数值是一个预配置的数值。
作为一个实施例,所述第四比特块包括所述第五比特块中的全部或部分比特通过bounding的方式生成的正整数个比特。
作为一个实施例,所述第三比特块是低优先级,所述第五比特块是高优先级;当所述第三比特块包括的比特数和所述第五比特块包括的比特数之和大于第二数值时,第一参数被用于确定所述第一比特块包括的比特数和所述第四比特块包括的比特数。
作为上述实施例的一个子实施例,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,所述第二数值是一个预配置的数值。
作为上述实施例的一个子实施例,所述第一参数被用于约束所述第一比特块包括的比特数和所述第四比特块包括的比特数的比值。
作为上述实施例的一个子实施例,所述第一参数被用于约束所述第一比特块包括的比特数的最大值。
作为上述实施例的一个子实施例,所述第一参数被用于约束所述第四比特块包括的比特数的最大值。
作为上述实施例的一个子实施例,所述第一参数被用于确定所述第三比特块包括的比特数和所述第一比特块包括的比特数的差值。
作为上述实施例的一个子实施例,所述第一参数被用于确定所述第五比特块包括的比特数和所述第四比特块包括的比特数的差值。
实施例10
实施例10示例了根据本申请的一个实施例的判断第一子信号是否在第一预留资源以外的时频资源中被传输的流程的示意图,如附图10所示。
在实施例10中,本申请中的所述第一节点在步骤S101中对第三比特块是低优先级且第二比特块是高优先级的条件是否满足进行判断;如果是,则进行到步骤S103中判断第一子信号仅在第一预留资源中被传输;否则进行到步骤S102中判断第一子信号在第一预留资源以外的时频资源中被传输。
在实施例10中,所述第三比特块包括的比特数大于第一数值。
作为一个实施例,所述第一数值是更高层配置的。
作为一个实施例,所述第一数值是预配置的。
作为一个实施例,所述第一数值等于2。
作为一个实施例,所述第一数值是在所述第一预留资源中被允许传输的第一信息的最大比特数量。
作为上述实施例的一个子实施例,所述第一信息包括HARQ-ACK信息。
作为上述实施例的一个子实施例,所述第一信息包括UCI。
作为一个实施例,所述句子所述第一子信号在所述第一预留资源以外的时频资源中被传输包括,所述第一子信号中的全部信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述句子所述第一子信号在所述第一预留资源以外的时频资源中被传输包括,所述 第一子信号中的一部分信号在所述第一预留资源中被传输,所述第一子信号中另一部分信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一数值是在RRC层配置的。
实施例11
实施例11示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图,如附图11所示。在附图11中,第一节点设备中的处理装置1100包括第一接收机1101和第一发送机1102。
在实施例11中,所述第一接收机1101接收第一信号组和第一信令;所述第一发送机1102在第一时频资源中发送第二信号,所述第二信号携带第一比特块和第二比特块。
在实施例11中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码。
作为一个实施例,所述第一时频资源包括第一预留资源,所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一子信号是否在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一接收机1101接收第一信令组;其中,所述第一信令组包括所述第一信号组的调度信息,第二信令是所述第一信令组中的最后一个信令,所述第二信令指示第二时频资源,所述第二时频资源和所述第一时频资源在时域上有交叠。
作为一个实施例,所述第一接收机1101接收第二信号组;其中,所述第二信号携带第四比特块,第五比特块包括所述第二信号组中的信号是否被正确接收的指示信息,所述第五比特块被用于生成所述第四比特块,所述第三比特块的优先级和所述第五比特块的优先级不同,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块。
作为一个实施例,所述第五比特块和所述第三比特块共同被用于确定所述第四比特块
作为一个实施例,所述第三比特块包括的比特数大于第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一时频资源是PUSCH;所述第三比特块包括HARQ-ACK信息,所述第二比特块包括用户数据;所述第三比特块包括的比特数大于所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第三比特块通过boundling的方式被用于生成所述第一比特块,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一时频资源是PUSCH;所述第三比特块包括HARQ-ACK信息,所述第二比特块包括用户数据;所述第三比特块包括的比特数大于所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第三比特块通过boundling的方式被用于生成所述第一比特块,所述第一比特块所包括的比特数等于所述第一数值;否则,所述第一比特块所包括的比特数大于所述第一数值。
作为一个实施例,所述第一时频资源是PUSCH;所述第三比特块包括HARQ-ACK信息,所述第二比特块包括用户数据;所述第三比特块包括的比特数大于所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第三比特块通过boundling的方式被用于生成所述第一比特块,所述第一比特块所包括的比特数等于所述第一数值,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一比特块所包括的比特数大于所述第一数值,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一时频资源是PUSCH;所述第三比特块包括低优先级的HARQ-ACK信息,所述第五比特块包括高优先级的HARQ-ACK信息,所述第二比特块包括用户数据;所述第四比特块包括所述第五比特块,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块;当所述第一比特块 所包括的比特数和所述第四比特块所包括的比特数之和不大于第二数值时,所述第一比特块包括所述第三比特块;否则,所述第一比特块所包括的比特数等于所述第二数值与所述第四比特块所包括的比特数的差值;其中,所述第四比特块所包括的比特数小于所述第二数值,所述第二数值是一个更高层配置的数值。
作为一个实施例,所述第一时频资源是PUSCH,在所述PUSCH上被允许携带的所述第一比特块的最大比特数大于所述第一数值;所述第三比特块包括HARQ-ACK信息,所述第二比特块包括用户数据;所述第三比特块包括的比特数大于所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第三比特块通过boundling的方式被用于生成所述第一比特块,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一时频资源是PUSCH,在所述PUSCH上被允许携带的所述第一比特块的最大比特数大于所述第一数值;所述第三比特块包括HARQ-ACK信息,所述第二比特块包括用户数据;所述第三比特块包括的比特数大于所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第三比特块通过boundling的方式被用于生成所述第一比特块,所述第一比特块所包括的比特数等于所述第一数值;否则,所述第一比特块所包括的比特数大于所述第一数值。
作为一个实施例,所述第一时频资源是PUSCH,在所述PUSCH上被允许携带的所述第一比特块的最大比特数大于所述第一数值;所述第三比特块包括HARQ-ACK信息,所述第二比特块包括用户数据;所述第三比特块包括的比特数大于所述第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第三比特块通过boundling的方式被用于生成所述第一比特块,所述第一比特块所包括的比特数等于所述第一数值,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一比特块所包括的比特数大于所述第一数值,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第一时频资源是PUSCH,在所述PUSCH上被允许携带的所述第一比特块的最大比特数大于所述第一数值;所述第三比特块包括低优先级的HARQ-ACK信息,所述第五比特块包括高优先级的HARQ-ACK信息,所述第二比特块包括用户数据;所述第四比特块包括所述第五比特块,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块;当所述第一比特块所包括的比特数和所述第四比特块所包括的比特数之和不大于第二数值时,所述第一比特块包括所述第三比特块;否则,所述第一比特块所包括的比特数等于所述第二数值与所述第四比特块所包括的比特数的差值;其中,所述第四比特块所包括的比特数小于所述第二数值,所述第二数值是一个更高层配置的数值。
作为一个实施例,所述第一时频资源是PUSCH;所述第三比特块包括低优先级的HARQ-ACK信息,所述第五比特块包括高优先级的HARQ-ACK信息,所述第二比特块包括用户数据;所述第五比特块和所述第三比特块共同被用于确定所述第一比特块和所述第四比特块;当所述第一比特块所包括的比特数和所述第四比特块所包括的比特数之和不大于第二数值时,所述第四比特块包括所述第五比特块,所述第一比特块包括所述第三比特块;否则,所述第四比特块所包括的比特数不大于所述第五比特块所包括的比特数,所述第一比特块所包括的比特数小于所述第三比特块所包括的比特数;其中,所述第二数值是一个更高层配置的数值。
作为上述实施例的一个子实施例,当所述第四比特块所包括的比特数小于所述第五比特块所包括的比特数时,所述第五比特块通过boundling的方式被用于生成所述第四比特块。
作为上述实施例的一个子实施例,当所述第一比特块所包括的比特数小于所述第三比特块所包括的比特数时,所述第三比特块通过boundling的方式被用于生成所述第一比特块。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1101包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1102包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例12
实施例12示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图,如附图12 所示。在附图12中,第二节点设备中的处理装置1200包括第二接收机1201和第二发送机1202。
在实施例12中,所述第二发送机1202发送第一信号组和第一信令;所述第二接收机1201在第一时频资源中接收第二信号,所述第二信号携带第一比特块和第二比特块。
在实施例12中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
作为一个实施例,所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码。
作为一个实施例,所述第一时频资源包括第一预留资源,所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一子信号是否在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第二发送机1202发送第一信令组;其中,所述第一信令组包括所述第一信号组的调度信息,第二信令是所述第一信令组中的最后一个信令,所述第二信令指示第二时频资源,所述第二时频资源和所述第一时频资源在时域上有交叠。
作为一个实施例,所述第二发送机1202发送第二信号组;其中,所述第二信号携带第四比特块,第五比特块包括所述第二信号组中的信号是否被正确接收的指示信息,所述第五比特块被用于生成所述第四比特块,所述第三比特块的优先级和所述第五比特块的优先级不同,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块。
作为一个实施例,所述第五比特块和所述第三比特块共同被用于确定所述第四比特块
作为一个实施例,所述第三比特块包括的比特数大于第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二接收机1201包括实施例4中的{天线420,接收器418,接收处理器470,信道译码器478,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二发送机1202包括实施例4中的{天线420,发射器418,发射处理器416,信道编码器477,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信号组和第一信令;
    第一发送机,在第一时频资源中发送第二信号,所述第二信号携带第一比特块和第二比特块;
    其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第二信号包括第一子信号,所述第一子信号是所述第一比特块经过第一流程后生成的信号,所述第一流程包括信道编码。
  3. 根据权利要求2所述的第一节点设备,其特征在于,所述第一时频资源包括第一预留资源,所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一子信号是否在所述第一预留资源以外的时频资源中被传输。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,包括:
    所述第一接收机接收第一信令组;
    其中,所述第一信令组包括所述第一信号组的调度信息,第二信令是所述第一信令组中的最后一个信令,所述第二信令指示第二时频资源,所述第二时频资源和所述第一时频资源在时域上有交叠。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,包括:
    所述第一接收机接收第二信号组;
    其中,所述第二信号携带第四比特块,第五比特块包括所述第二信号组中的信号是否被正确接收的指示信息,所述第五比特块被用于生成所述第四比特块,所述第三比特块的优先级和所述第五比特块的优先级不同,所述第五比特块和所述第三比特块共同被用于确定所述第一比特块。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述第五比特块和所述第三比特块共同被用于确定所述第四比特块。
  7. 根据权利要求3至6中任一权利要求所述的第一节点设备,其特征在于,所述第三比特块包括的比特数大于第一数值;当所述第三比特块是低优先级且所述第二比特块是高优先级时,所述第一子信号仅在所述第一预留资源中被传输;否则,所述第一子信号在所述第一预留资源以外的时频资源中被传输。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,发送第一信号组和第一信令;
    第二接收机,在第一时频资源中接收第二信号,所述第二信号携带第一比特块和第二比特块;
    其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信号组和第一信令;
    在第一时频资源中发送第二信号,所述第二信号携带第一比特块和第二比特块;
    其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信号组和第一信令;
    在第一时频资源中接收第二信号,所述第二信号携带第一比特块和第二比特块;
    其中,所述第一信令包括所述第二信号的调度信息,第三比特块包括所述第一信号组中的信号是否被正确接收的指示信息,所述第三比特块被用于生成所述第一比特块,所述第一比特块包括的比特数不大于 所述第三比特块包括的比特数;所述第三比特块的优先级和所述第二比特块的优先级共同被用于确定所述第一比特块包括的比特数。
PCT/CN2021/075181 2020-02-19 2021-02-04 一种被用于无线通信的节点中的方法和装置 WO2021164558A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/880,620 US20220377765A1 (en) 2020-02-19 2022-08-03 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010102364.6A CN113285784B (zh) 2020-02-19 2020-02-19 一种被用于无线通信的节点中的方法和装置
CN202010102364.6 2020-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/880,620 Continuation US20220377765A1 (en) 2020-02-19 2022-08-03 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021164558A1 true WO2021164558A1 (zh) 2021-08-26

Family

ID=77275094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075181 WO2021164558A1 (zh) 2020-02-19 2021-02-04 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220377765A1 (zh)
CN (2) CN115065443A (zh)
WO (1) WO2021164558A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894931B2 (en) * 2020-05-08 2024-02-06 Qualcomm Incorporated Selective bundling techniques for HARQ-ACK feedback
WO2023030424A1 (zh) * 2021-09-04 2023-03-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150208404A1 (en) * 2014-01-23 2015-07-23 Humax Holdings Co., Ltd. System and method for priority data transmission on lte dual connectivity
CN108632966A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797283B (zh) * 2016-11-11 2020-11-13 北京小米移动软件有限公司 传输、获取上行harq反馈信息的方法及装置
CN112953689B (zh) * 2017-06-09 2022-03-29 上海朗帛通信技术有限公司 一种被用于可变传输格式的用户设备、基站中的方法和装置
CN111586877A (zh) * 2018-02-13 2020-08-25 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
EP3834567A4 (en) * 2018-08-10 2022-05-11 INTEL Corporation PRIORIZATION OF CONTROL AND DATA TRANSMISSION FOR DIFFERENT SERVICES
CN110708146B (zh) * 2019-11-22 2022-06-21 北京紫光展锐通信技术有限公司 Harq-ack信息反馈方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150208404A1 (en) * 2014-01-23 2015-07-23 Humax Holdings Co., Ltd. System and method for priority data transmission on lte dual connectivity
CN108632966A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 发射功率控制方法、装置、设备和存储介质
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Summary#2 on UCI enhancements for URLLC", 3GPP DRAFT; R1-1907777, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 17 May 2019 (2019-05-17), pages 1 - 20, XP051740050 *

Also Published As

Publication number Publication date
CN113285784B (zh) 2022-08-26
US20220377765A1 (en) 2022-11-24
CN115065443A (zh) 2022-09-16
CN113285784A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018166188A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220377765A1 (en) Method and device in nodes used for wireless communication
US20230232373A1 (en) Method and device in nodes used for wireless communication
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113630892B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220272722A1 (en) Method and device in a node used for wireless communication
WO2022188835A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113194535B (zh) 一种被用于无线通信的节点中的方法和装置
CN113498179A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022048509A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024055916A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21757499

Country of ref document: EP

Kind code of ref document: A1