WO2020177608A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2020177608A1
WO2020177608A1 PCT/CN2020/076941 CN2020076941W WO2020177608A1 WO 2020177608 A1 WO2020177608 A1 WO 2020177608A1 CN 2020076941 W CN2020076941 W CN 2020076941W WO 2020177608 A1 WO2020177608 A1 WO 2020177608A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signals
time
signaling
frequency resource
Prior art date
Application number
PCT/CN2020/076941
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020177608A1 publication Critical patent/WO2020177608A1/zh
Priority to US17/467,298 priority Critical patent/US20210400729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • the 5G system supports more diverse application scenarios, such as eMBB (enhanced Mobile BroadBand) to enhance mobile broadband ), URLLC (Ultra-Reliable and Low Latency Communications, ultra-high reliability and low latency communications) and mMTC (massive Machine-Type Communications, large-scale machine type communications).
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communications, ultra-high reliability and low latency communications
  • mMTC massive Machine-Type Communications, large-scale machine type communications.
  • 3GPP R (Release, version) 15 supports the adoption of different MCS (Modulation and Coding Scheme) forms and repeated transmission to improve the transmission reliability of URLLC.
  • MCS Modulation and Coding Scheme
  • the uplink control information can be transmitted on the uplink physical layer data channel.
  • the base station can ensure the transmission reliability of the uplink control information by controlling the number of REs (Resource Elements) occupied by the uplink control information on the uplink physical layer data channel.
  • the inventor discovered through research that when the uplink control information and the repeatedly transmitted uplink physical layer data channel conflict in the time domain, the transmission of uplink control information on the uplink physical layer data channel will encounter new problems, such as which uplink physical layer The data channel carries the uplink control information, how the uplink control information is allocated in different repeated transmissions, etc.
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other at will.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the problem to be solved by this application is: when uplink control information is carried on the uplink physical layer data channel of repeated transmission, how to allocate uplink control information in different repeated transmissions.
  • the characteristic of the above method is that the K first sub-signals are K repeated transmissions of the first bit block, and the second bit block carries uplink control information.
  • the foregoing method limits the total number of resource particles occupied by the second bit block in all repeated transmissions, and at the same time limits the number of resource particles occupied by the second bit block in each repeated transmission. This not only ensures the transmission reliability of the uplink control information, but also avoids that the uplink control information occupies too many resource particles in one repeated transmission, which causes the transmission performance of the first bit block to decrease.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the first value and the K Among the time-frequency resource blocks, only the number of resource particles included in the K1 time-frequency resource blocks is related.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the K1 second values are respectively and The number of resource particles included in the K1 time-frequency resource blocks is related.
  • any one of the K1 second values is related to the total number of resource particles occupied by the K1 second sub-signals.
  • the first type of value and the first offset are used to determine the total number of resource particles occupied by the K1 second sub-signals, and the first type of value and the Each of the K time-frequency resource blocks includes the number of resource particles.
  • the first information indicates the first coefficient.
  • the first information indicates the first coefficient and the K1 second coefficients.
  • the second signaling is used to determine the time-frequency resource occupied by the second wireless signal, and the second wireless signal is used to generate the second bit block.
  • the second signaling is used to determine a second air interface resource block
  • the second air interface resource block is used to determine the K1 first wireless signals
  • the characteristic of the above method is that the second air interface resource block is a PUCCH resource reserved for uplink control information, and the above method ensures that the uplink control information transmitted on the uplink physical layer data channel still meets the timeline requirements , Will not bring additional delay.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the first value and the K Among the time-frequency resource blocks, only the number of resource particles included in the K1 time-frequency resource blocks is related.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the K1 second values are respectively and The number of resource particles included in the K1 time-frequency resource blocks is related.
  • any one of the K1 second values is related to the total number of resource particles occupied by the K1 second sub-signals.
  • the first type of value and the first offset are used to determine the total number of resource particles occupied by the K1 second sub-signals, and the first type of value and the Each of the K time-frequency resource blocks includes the number of resource particles.
  • the first information indicates the first coefficient
  • the first information indicates the first coefficient and the K1 second coefficients.
  • the second signaling is used to determine the time-frequency resource occupied by the second wireless signal, and the second wireless signal is used to generate the second bit block.
  • the second signaling is used to determine a second air interface resource block
  • the second air interface resource block is used to determine the K1 first wireless signals
  • the second node is a base station.
  • the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling and the second signaling
  • the first transmitter respectively transmits K first wireless signals in K time-frequency resource blocks;
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling and the second signaling
  • the second receiver receives K first wireless signals in K time-frequency resource blocks respectively;
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • this application has the following advantages:
  • the uplink control information When the uplink control information is carried on the uplink physical layer data channel that is repeatedly transmitted, the total number of resource particles occupied by the uplink control information is limited while the number of resource particles occupied by the uplink control information in each repeated transmission is limited. This not only ensures the transmission reliability of the uplink control information, but also avoids that the uplink control information occupies too many resource particles in one repeated transmission, which causes the transmission performance of the uplink physical layer data to decrease.
  • Figure 1 shows a flow chart of first signaling, second signaling and K first wireless signals according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of resource mapping of K time-frequency resource blocks in the time-frequency domain according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of resource mapping of K time-frequency resource blocks in the time-frequency domain according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of first signaling according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of second signaling according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the relationship between K first wireless signals and K1 first wireless signals according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of the number of resource particles respectively occupied by K1 second sub-signals according to an embodiment of the present application
  • Fig. 12 shows a schematic diagram of the number of resource particles respectively occupied by K1 second sub-signals according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the number of resource particles respectively occupied by K1 second sub-signals according to an embodiment of the present application
  • Fig. 14 shows a schematic diagram of a first value according to an embodiment of the present application.
  • Fig. 15 shows a schematic diagram of a first value according to an embodiment of the present application.
  • Fig. 16 shows a schematic diagram of a first value according to an embodiment of the present application.
  • Fig. 17 shows a schematic diagram of a first value according to an embodiment of the present application.
  • FIG. 18 shows a schematic diagram of K1 second values according to an embodiment of the present application.
  • Fig. 19 shows a schematic diagram of K1 second values according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of K1 second values according to an embodiment of the present application.
  • FIG. 21 shows a schematic diagram of a first type of value and a first offset used to determine the total number of resource particles occupied by K1 second sub-signals according to an embodiment of the present application
  • FIG. 22 shows a schematic diagram of a first type of value and a first offset used to determine the total number of resource particles occupied by K1 second sub-signals according to an embodiment of the present application
  • Fig. 23 shows a schematic diagram of the first type of numerical value according to an embodiment of the present application.
  • FIG. 24 shows a schematic diagram of first information according to an embodiment of the present application.
  • FIG. 25 shows a schematic diagram of first information according to an embodiment of the present application.
  • FIG. 26 shows a schematic diagram of the timing relationship between first signaling, second signaling, K first wireless signals and second wireless signals according to an embodiment of the present application
  • FIG. 27 shows a schematic diagram of the timing relationship between first signaling, second signaling, K first wireless signals and second wireless signals according to an embodiment of the present application
  • FIG. 28 shows a schematic diagram of a second wireless signal used to generate a second bit block according to an embodiment of the present application
  • Figure 29 shows a schematic diagram of a second wireless signal being used to generate a second bit block according to an embodiment of the present application
  • FIG. 30 shows a schematic diagram of a second air interface resource block used to determine K1 first wireless signals according to an embodiment of the present application
  • FIG. 31 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 32 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of first signaling, second signaling, and K first wireless signals according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent the time sequence relationship between the characteristics of each step.
  • the first node in this application receives the first signaling and the second signaling in step 101; in step 102, respectively transmits K first wireless signals in K time-frequency resource blocks .
  • the K time-frequency resource blocks are orthogonal to each other in the time domain; the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the second sub-signal, the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value; the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the resource particle is RE (Resource Element, resource particle).
  • one resource particle occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first signaling is used to determine the K time-frequency resource blocks.
  • the first signaling indicates the K time-frequency resource blocks.
  • the first bit block carried by the K first sub-signals includes: any first sub-signal in the K first sub-signals is the order of bits in the first bit block After CRC attachment, segmentation, coding block level CRC attachment, channel coding, rate matching, concatenation, scrambling, modulation mapper (Modulation Mapper), Layer Mapper, Transform Precoder, Precoding, Resource Element Mapper, Multi-Carrier Symbol Generation, Modulation and Upconversion The output after (Modulation and Upconversion).
  • modulation mapper Modulation Mapper
  • Layer Mapper Transform Precoder
  • Precoding Precoding
  • Resource Element Mapper Multi-Carrier Symbol Generation
  • Modulation and Upconversion The output after (Modulation and Upconversion).
  • the first bit block carried by the K first sub-signals includes: any first sub-signal in the K first sub-signals is the order of bits in the first bit block After CRC attachment, segmentation, coding block-level CRC attachment, channel coding, rate matching, concatenation, scrambling, modulation mapper, layer mapper, precoding, resource particle mapper, multi-carrier symbol generation, modulation and upconversion Output.
  • the first bit block carried by the K first sub-signals includes: the first bit block is used to generate any first sub-signal of the K first sub-signals.
  • any first sub-signal in the K first sub-signals is independent of the second bit block.
  • the K first sub-signals are K repeated transmissions of the first bit block.
  • the K first sub-signals correspond to the same HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • the K first sub-signals correspond to the same NDI (New Data Indicator).
  • At least two of the K first sub-signals correspond to different RVs (Redundancy Version, redundancy version).
  • At least two of the K first sub-signals correspond to the same RV.
  • any two of the K first sub-signals correspond to different RVs.
  • any two first sub-signals in the K first sub-signals correspond to the same RV.
  • the K first sub-signals correspond to the same MCS (Modulation and Coding Scheme, modulation and coding scheme).
  • At least two of the K first sub-signals correspond to different MCSs.
  • any two of the K first sub-signals correspond to the same DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information.
  • DMRS Demodulation Reference Signals, demodulation reference signal
  • At least two of the K first sub-signals correspond to different DMRS configuration information.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the first bit block includes a positive integer number of bits.
  • the first bit block includes physical layer uplink data.
  • the first bit block includes a TB (Transport Block, transport block).
  • TB Transport Block, transport block
  • the first bit block is a TB.
  • the first bit block includes a first information bit block and a first check bit block
  • the first check bit block is determined by a CRC (Cyclic Redundancy Check) of the first information bit block. Parity check) bit block generation.
  • CRC Cyclic Redundancy Check
  • the first check bit block is a CRC bit block of the first information bit block.
  • the first check bit block is a bit block obtained by scrambling the CRC bit block of the first information bit block.
  • the size of the first bit block refers to the number of bits included in the first bit block.
  • the size of the first bit block refers to: TBS (Transport Block Size, transport block size).
  • the size of the first bit block refers to the TBS of the TB included in the first bit block.
  • the first signaling is used to determine the size of the first bit block.
  • the first signaling indicates the size of the first bit block.
  • the first signaling implicitly indicates the size of the first bit block.
  • the size of the first bit block is related to the number of resource particles included in the K time-frequency resource blocks.
  • the size of the first bit block is related to the number of resource particles included in only the earliest one of the K time-frequency resource blocks.
  • the size of the first bit block is related to the total number of resource particles included in the K time-frequency resource blocks.
  • the size of the first bit block is related to the scheduled MCS of the K first wireless signals.
  • the K1 is equal to the K.
  • the K1 is smaller than the K.
  • the K1 second sub-signals carrying the second bit block includes: any second sub-signal in the K1 second sub-signals carries the second bit block.
  • the K1 second sub-signal carrying the second bit block includes: the second bit block includes S second bit sub-blocks, S is a positive integer greater than 1, and the K1 second bit block Any second sub-signal in the two sub-signals carries a positive integer number of second-bit sub-blocks in the S second-bit sub-blocks.
  • the second bit block carried by the K1 second sub-signals includes: any second sub-signal in the K1 second sub-signals is all or part of the second bit block Bits undergo CRC attachment, channel coding, rate matching, modulation mapper, layer mapper, conversion precoder, precoding, resource particle mapper, multi-carrier symbol generation, output after modulation and up-conversion.
  • the second bit block carried by the K1 second sub-signals includes: any second sub-signal in the K1 second sub-signals is all or part of the second bit block Bits undergo CRC attachment, channel coding, rate matching, modulation mapper, layer mapper, precoding, resource particle mapper, multi-carrier symbol generation, output after modulation and up-conversion in turn.
  • the second bit block carried by the K1 second sub-signals includes: all or part of the bits in the second bit block are used to generate any one of the K1 second sub-signals The second sub signal.
  • any one of the K1 second sub-signals has nothing to do with the first bit block.
  • the second bit block includes a positive integer number of bits.
  • the second bit block carries UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the second bit block carries HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement, hybrid automatic repeat request confirmation).
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement, hybrid automatic repeat request confirmation
  • the second bit block carries SR (Scheduling Request, scheduling request).
  • the second bit block carries CRI (Channel-state information reference signals Resource Indicator, channel state information reference signal resource identifier).
  • CRI Channel-state information reference signals Resource Indicator, channel state information reference signal resource identifier
  • the second bit block carries CSI (Channel State Information, channel state information).
  • the CSI includes CRI, PMI (Precoding Matrix Indicator), RSRP (Reference Signal Received Power, Reference Signal Received Power), RSRQ (Reference Signal Received Quality, Reference Signal Received Quality), and CQI One or more of (Channel Quality Indicator).
  • the second bit block includes a second information bit block and a second check bit block, and the second check bit block is generated from a CRC bit block of the second information bit block.
  • the second check bit block is a CRC bit block of the second information bit block.
  • the second check bit block is a bit block obtained by scrambling the CRC bit block of the second information bit block.
  • the second bit block includes S second bit sub-blocks, and S is a positive integer greater than 1.
  • S is a positive integer greater than 1.
  • the predetermined second bit sub-block includes a given information bit sub-block and a given check bit sub-block, and the given check bit sub-block is generated by a CRC bit block of the given information bit sub-block.
  • the total number of resource particles occupied by the K1 second sub-signals refers to the sum of the number of resource particles respectively occupied by the K1 second sub-signals.
  • the total number of resource particles occupied by the K1 second sub-signals is related to the number of resource particles included in each of the K time-frequency resource blocks.
  • the total number of resource particles occupied by the K1 second sub-signals is equal to the first value.
  • the total number of resource particles occupied by the K1 second sub-signals is less than the first value.
  • the number of resource particles occupied by the K1 second sub-signals are respectively equal to the K1 second values.
  • the number of resource particles occupied by any one of the K1 second sub-signals is equal to the corresponding second value.
  • the number of resource particles occupied by one second sub-signal in the K1 second sub-signals is equal to the corresponding second value.
  • the number of resource particles occupied by any one of the K1 second sub-signals is less than the corresponding second value.
  • the number of resource particles occupied by one second sub-signal in the K1 second sub-signals is smaller than the corresponding second value.
  • At least one second coefficient of the K1 second coefficients is not equal to the first coefficient.
  • any second coefficient in the K1 second coefficients is not equal to the first coefficient.
  • At least one second coefficient of the K1 second coefficients is equal to the first coefficient.
  • any second coefficient in the K1 second coefficients is equal to the first coefficient.
  • one of the K1 second coefficients is larger than the first coefficient.
  • any second coefficient of the K1 second coefficients is greater than the first coefficient.
  • the total number of resource particles occupied by the K1 second sub-signals is not greater than the minimum value between the sum of the K1 second values and the first value.
  • the total number of resource particles occupied by the K1 second sub-signals is less than the minimum value between the sum of the K1 second values and the first value.
  • the total number of resource particles occupied by the K1 second sub-signals is equal to the minimum value between the sum of the K1 second values and the first value.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5G-CN (5G-Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5G-CN 5G-Core Network, 5G Core Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • HSS Home Subscriber Server, home subscriber
  • UMTS corresponds to the Universal Mobile Telecommunications System (Universal Mobile Telecommunications System).
  • EPS200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS200 provides packet switching services. However, those skilled in the art will readily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services.
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, MP3 players
  • cameras game consoles, drones, aircrafts, narrowband physical
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5G-CN/EPC210 through the S1 interface.
  • 5G-CN/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane) Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Serving Gateway) 212, and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that handles signaling between UE201 and 5G-CN/EPC210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the second node in this application includes the gNB203.
  • the first node in this application includes the UE201.
  • the user equipment in this application includes the UE201.
  • the base station equipment in this application includes the gNB203.
  • the sender of the first signaling in this application includes the gNB203.
  • the recipient of the first signaling in this application includes the UE201.
  • the sender of the second signaling in this application includes the gNB203.
  • the recipient of the second signaling in this application includes the UE201.
  • the senders of the K first wireless signals in this application include the UE201.
  • the recipients of the K first wireless signals in this application include the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for UE and gNB with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW 213 on the network side and a network layer terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request).
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the PHY301.
  • the first signaling in this application is generated in the RRC sublayer 306.
  • the first signaling in this application is generated in the MAC sublayer 302.
  • the second signaling in this application is generated in the PHY301.
  • the K first wireless signals in this application are generated in the PHY301.
  • the second wireless signal in this application is generated in the PHY301.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multiple antenna receiving processor 472, a multiple antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the communication device 450 is any parallel stream to the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receive the first signaling and the second signaling in this application; respectively send all the data in this application in the K time-frequency resource blocks in this application. Said K first wireless signals.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the second communication device 450 includes: a memory storing a computer-readable program of instructions, the computer-readable program of instructions generates actions when executed by at least one processor, and the actions include: The first signaling and the second signaling in the application; the K first wireless signals in the application are respectively sent in the K time-frequency resource blocks in the application.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: send the first signaling and the second signaling in this application; respectively receive all the K time-frequency resource blocks in this application. Said K first wireless signals.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signaling and the second signaling in the application; respectively receive the K first wireless signals in the application in the K time-frequency resource blocks in the application.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry the first bit block ,
  • the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; among the K first wireless signals, only K1 first wireless signals include K1
  • the K1 second sub-signals carry a second bit block, and the second signaling is used to determine the second bit block;
  • the number of resource particles occupied by the K1 second sub-signals The total number is not greater than the first value, and the first coefficient is used to determine the first value;
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second values, and the K1 second coefficients are respectively Used to determine the K1 second value;
  • K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the second node in this application includes the first communication device 410.
  • the first node in this application includes the second communication device 450.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One of them is used to respectively receive the K first wireless signals in this application in the K time-frequency resource blocks in this application; ⁇ the antenna 452, the transmitter 454, the transmission processing At least one of the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for each of the K in this application.
  • the K first wireless signals in this application are sent in a time-frequency resource block.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in this application;
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the second node N1 is the first node U2, which is a communication node that transmits through the air interface.
  • the steps in blocks F51 and F52 are optional.
  • the first information is sent in step S5101; the second signaling is sent in step S511; the second wireless signal is sent in step S5102; the first signaling is sent in step S512; and in step S513, respectively K first wireless signals are received in K time-frequency resource blocks.
  • the first information is received in step S5201; the second signaling is received in step S521; the second wireless signal is received in step S5202; the first signaling is received in step S522; and in step S523, respectively K first wireless signals are transmitted in K time-frequency resource blocks.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry The first bit block, the first signaling is used by the first node U2 to determine the size of the K time-frequency resource blocks and the first bit block; only among the K first wireless signals
  • the K1 first wireless signals respectively include K1 second sub-signals, the K1 second sub-signals carry a second bit block, and the second signaling is used by the first node U2 to determine the second bit block;
  • the total number of resource particles occupied by the K1 second sub-signals is not greater than a first value, and the first coefficient is used by the first node U2 to determine the first value;
  • the resources occupied by the K1 second sub-signals The number of particles is not greater than the K1 second value, and the K1 second coefficient is used by the first node U2 to determine the K1 second value;
  • K and K1 are positive integers greater than 1,
  • the K1 first wireless signals are respectively transmitted in K1 time-frequency resource blocks in the K time-frequency resource blocks.
  • the second signaling is used by the first node U2 to determine the time-frequency resource occupied by the second wireless signal, and the second wireless signal is used by the first node U2 to generate the second bit block.
  • the first value is related to the number of resource particles included in only the K1 time-frequency resource blocks in the K time-frequency resource blocks.
  • the K1 second values are respectively related to the number of resource particles included in the K1 time-frequency resource blocks.
  • any one of the K1 second values is related to the total number of resource particles occupied by the K1 second sub-signals.
  • the first type of value and the first offset are used by the first node U2 to determine the total number of resource particles occupied by the K1 second sub-signals, and the first type of value and the K The number of resource particles included in each time-frequency resource block in the time-frequency resource block is related.
  • the first information indicates the first coefficient.
  • the first information indicates the first coefficient and the K1 second coefficients.
  • the second signaling is used by the first node U2 to determine a second air interface resource block
  • the second air interface resource block is used by the first node U2 to determine the K1 first wireless signals
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NR-PDCCH (New Radio PDCCH, New Radio PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, Narrow Band PDCCH).
  • the first signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the K first wireless signals are transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the K first wireless signals are respectively transmitted on K uplink physical layer data channels (that is, uplink channels that can be used to carry physical layer data).
  • the uplink physical layer data channel is PUSCH.
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH, New Radio PUSCH).
  • the uplink physical layer data channel is NB-PUSCH (Narrow Band PUSCH, Narrow Band PUSCH).
  • Embodiment 6 illustrates a schematic diagram of resource mapping of K time-frequency resource blocks in the time-frequency domain according to an embodiment of the present application; as shown in FIG. 6.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain.
  • the indexes of the K time-frequency resource blocks are #0, ..., #K-1, respectively.
  • each of the K time-frequency resource blocks includes a positive integer number of resource particles.
  • each of the K time-frequency resource blocks includes a positive integer number of multi-carrier symbols in the time domain.
  • each of the K time-frequency resource blocks includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • each of the K time-frequency resource blocks includes a positive integer number of subcarriers in the frequency domain.
  • each of the K time-frequency resource blocks includes a positive integer number of RBs (Resource Block, resource block) in the frequency domain.
  • each of the K time-frequency resource blocks includes a positive integer number of PRBs (Physical Resource Block, physical resource block) in the frequency domain.
  • PRBs Physical Resource Block, physical resource block
  • the K is equal to 2
  • the K time-frequency resource blocks are orthogonal to each other in the time domain.
  • the K is greater than 2, and any two of the K time-frequency resource blocks are orthogonal to each other in the time domain.
  • the K time-frequency resource blocks are continuous in the time domain.
  • any two time-frequency resource blocks in the K time-frequency resource blocks include the same number of resource particles.
  • two of the K time-frequency resource blocks include different numbers of resource particles.
  • any two of the K time-frequency resource blocks include the same number of multi-carrier symbols in the time domain.
  • two of the K time-frequency resource blocks include different numbers of multi-carrier symbols in the time domain.
  • any two of the K time-frequency resource blocks include the same number of subcarriers in the frequency domain.
  • any two time-frequency resource blocks in the K time-frequency resource blocks occupy the same frequency domain resources.
  • the K time-frequency resource blocks belong to the same carrier (Carrier) in the frequency domain.
  • the K time-frequency resource blocks belong to the same BWP (Bandwidth Part, bandwidth interval) in the frequency domain.
  • the K time-frequency resource blocks respectively include time-frequency resources allocated to K PUSCHs, and the K first wireless signals in this application are respectively transmitted on the K PUSCHs.
  • Embodiment 7 illustrates a schematic diagram of resource mapping of K time-frequency resource blocks in the time-frequency domain according to an embodiment of the present application; as shown in FIG. 7.
  • two of the K time-frequency resource blocks include different numbers of subcarriers in the frequency domain.
  • time-frequency resource blocks in the K time-frequency resource blocks occupying different frequency domain resources.
  • time-frequency resource blocks in the K time-frequency resource blocks occupying frequency domain resources that are orthogonal to each other.
  • Embodiment 8 illustrates a schematic diagram of the first signaling according to an embodiment of the present application; as shown in FIG. 8.
  • the first signaling is used to determine the size of the K time-frequency resource blocks in this application and the first bit block in this application.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling is dynamic signaling used for UpLink Grant.
  • the first signaling is dynamic signaling used for Configured UL grant.
  • the first signaling is dynamic signaling used for configured UL grant activation (activation).
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes DCI used for UpLink Grant.
  • the first signaling includes DCI used for Configured UL grant.
  • the first signaling includes DCI used for configured UL grant activation.
  • the first signaling includes DCI used for Configured UL grant Type 2 (second type) activation.
  • the first signaling is UE-specific.
  • the first signaling includes DCI identified by C (Cell)-RNTI (Radio Network Temporary Identifier, radio network tentative identifier).
  • C Cell
  • RTI Radio Network Temporary Identifier, radio network tentative identifier
  • the first signaling includes DCI whose CRC is scrambled by C-RNTI (Scrambled).
  • the first signaling includes DCI identified by CS (Configured Scheduling)-RNTI.
  • the first signaling includes DCI whose CRC is scrambled by CS-RNTI (Scrambled).
  • the first signaling includes DCI identified by MCS-C-RNTI.
  • the first signaling includes DCI whose CRC is scrambled by MCS-C-RNTI.
  • the first signaling is higher layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is MAC CE (Medium Access Control Layer Control Element, Medium Access Control Layer Control Element) signaling.
  • the first signaling is used to determine the K time-frequency resource blocks.
  • the first signaling indicates the K time-frequency resource blocks.
  • the first signaling explicitly indicates the K time-frequency resource blocks.
  • the first signaling explicitly indicates each of the K time-frequency resource blocks.
  • the first signaling explicitly indicates the earliest time-frequency resource block among the K time-frequency resource blocks, and the first signaling implicitly indicates the K time-frequency resource blocks In addition to the earliest one time-frequency resource block other time-frequency resource blocks.
  • the first signaling includes a first domain, and the first domain in the first signaling indicates frequency domain resources occupied by the K time-frequency resource blocks.
  • the first field in the first signaling includes all or part of information in a Frequency domain resource assignment (frequency domain resource allocation) field.
  • the first field in the first signaling includes all or part of the information in a frequencyDomainAllocation (frequency domain allocation) field.
  • the first signaling includes a second domain
  • the second domain in the first signaling indicates time domain resources occupied by the K time-frequency resource blocks.
  • the second field in the first signaling includes all or part of information in a Time domain resource assignment (time domain resource allocation) field.
  • the second field in the first signaling includes all or part of the information in a timeDomainOffset (time domain offset) field.
  • the second field in the first signaling includes all or part of information in a timeDomainAllocation (time domain allocation) field.
  • the second field in the first signaling includes all or part of information in a periodicity (period) field.
  • Frequency domain resource assignment domain for the specific definition of the Frequency domain resource assignment domain, refer to 3GPP TS38.212.
  • frequencyDomainAllocation field refers to 3GPP TS38.331.
  • Time domain resource assignment domain for the specific definition of the Time domain resource assignment domain, refer to 3GPP TS38.212.
  • timeDomainOffset field for the specific definition of the timeDomainOffset field, refer to 3GPP TS38.331.
  • timeDomainAllocation field For the specific definition of the timeDomainAllocation field, refer to 3GPP TS38.331.
  • the first signaling indicates scheduling information of the K first wireless signals.
  • the scheduling information of the K first wireless signals includes ⁇ occupied time domain resources, occupied frequency domain resources, and occupied by each first wireless signal in the K first wireless signals One or more of scheduled MCS, DMRS configuration information, HARQ process number (process number), RV, NDI ⁇ .
  • the DMRS configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequence, mapping mode, DMRS type, cyclic shift amount ( One or more of cyclic shift), OCC (Orthogonal Cover Code), w f (k'), w t (l') ⁇ .
  • the w f (k′) and the w t (l′) are spreading sequences in the frequency domain and the time domain, respectively, and the specific definitions of the w f (k′) and the w t (l′) See section 6.4.1 of 3GPP TS38.211.
  • the first signaling explicitly indicates the scheduling information of the K first wireless signals.
  • the first signaling explicitly indicates the scheduling information of the earliest first wireless signal among the K first wireless signals, and the first signaling implicitly indicates the K first wireless signals. Scheduling information of other first wireless signals in a wireless signal except for the earliest first wireless signal.
  • the first signaling indicates the K.
  • the first signaling explicitly indicates the K.
  • the first signaling implicitly indicates the K.
  • the first signaling indicates the first offset in this application.
  • the first signaling explicitly indicates the first offset in this application.
  • the first signaling includes a third field, and the third field in the first signaling indicates the first offset in this application.
  • the third field in the first signaling includes all or part of information in a beta_offset indicator (beta offset indicator) field.
  • beta_offset indicator field refers to 3GPP TS38.212.
  • the first offset in this application is one of the P1 candidate offsets, and P1 is a positive integer greater than 1, and the first signaling starts from the P1
  • the candidate offset indicates the first offset.
  • Embodiment 9 illustrates a schematic diagram of the second signaling according to an embodiment of the present application; as shown in FIG. 9.
  • the second signaling is used to determine the second bit block in this application.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is layer 1 (L1) signaling.
  • the second signaling is layer 1 (L1) control signaling.
  • the second signaling is dynamic signaling used for DownLink Grant.
  • the second signaling includes DCI.
  • the second signaling includes DCI used for DownLink Grant.
  • the second signaling is UE-specific.
  • the second signaling includes the DCI identified by the C-RNTI.
  • the second signaling includes DCI whose CRC is scrambled by C-RNTI (Scrambled).
  • the second signaling includes DCI identified by MCS-C-RNTI.
  • the second signaling includes DCI whose CRC is scrambled by MCS-C-RNTI.
  • the second signaling includes DCI identified by SP (Semi-Persistent)-CSI (Channel State Information)-RNTI.
  • SP Semi-Persistent
  • CSI Channel State Information
  • the second signaling includes DCI whose CRC is scrambled by SP-CSI-RNTI (Scrambled).
  • the second signaling is higher layer signaling.
  • the second signaling is RRC signaling.
  • the second signaling is MAC CE signaling.
  • the second signaling used to determine the second bit block includes: the second signaling is used to determine the time frequency occupied by the second wireless signal in this application Resource, the second wireless signal is used to generate the second bit block.
  • Embodiment 10 illustrates a schematic diagram of the relationship between K first wireless signals and K1 first wireless signals according to an embodiment of the present application; as shown in FIG. 10.
  • only the K1 first wireless signals among the K first wireless signals respectively include the K1 second sub-signals in the present application.
  • the positions of the K1 wireless signals in the K wireless signals are continuous.
  • the K1 wireless signals belong to the same slot in the time domain.
  • Embodiment 11 illustrates a schematic diagram of the number of resource particles respectively occupied by the K1 second sub-signals according to an embodiment of the present application; as shown in FIG. 11.
  • the number of resource particles occupied by the K1 second sub-signals is not greater than the K1 second value in this application.
  • the number of resource elements of the second sub-signal K1 of the i-th second sub occupied signal is represented by Q i; the The total number of resource particles occupied by the K1 second sub-signal is represented by Q all .
  • the indexes of the K1 second values are #0, ..., #K1-1.
  • the i-th second sub-signal in the K1 second sub-signals corresponds to the second value #i-1.
  • the number of resource particles occupied by the i-th second sub-signal in the K1 second sub-signals is the number of resource particles occupied by the K1 second sub-signal The minimum value between the total number of resource particles and the second value corresponding to the i-th second sub-signal.
  • the number of resource particles occupied by the i-th second sub-signal in the K1 second sub-signals is the first integer and the second corresponding to the i-th second sub-signal
  • the minimum value between the numerical values; the first integer is the maximum value between the difference between the total number of resource particles occupied by the K1 second sub-signals and the second integer and 0, and the second integer is the The sum of the number of resource particles respectively occupied by the first second sub-signal to the i-1th second sub-signal in the K1 second sub-signals.
  • Embodiment 12 illustrates a schematic diagram of the number of resource particles respectively occupied by the K1 second sub-signals according to an embodiment of the present application; as shown in FIG. 12. 12 in the drawings, is not greater than for either of the K1 is a positive integer i, the number of resource elements of the second sub-signal K1 of the i-th second sub occupied signal is represented by Q i; the The total number of resource particles occupied by the K1 second sub-signal is represented by Q all .
  • the indexes of the K1 second values are #0, ..., #K1-1.
  • the i-th second sub-signal in the K1 second sub-signals corresponds to the second value #i-1.
  • the number of resource particles occupied by the i-th second sub-signal in the K1 second sub-signals is the number of resource particles occupied by the K1 second sub-signal The minimum value between the total number of resource particles and the second value corresponding to the i-th second sub-signal.
  • the number of resource particles occupied by the i-th second sub-signal in the K1 second sub-signals is a third integer corresponding to the i-th second sub-signal
  • Embodiment 13 illustrates a schematic diagram of the number of resource particles respectively occupied by the K1 second sub-signals according to an embodiment of the present application; as shown in FIG. 13.
  • the number of resource particles occupied by the K1 second sub-signals are respectively equal to the K1 second values in this application, and the K1 second coefficients in this application are respectively used for Determine the K1 second value.
  • the i-th second sub-signal in the K1 second sub-signals corresponds to the second value #i-1.
  • the number of resource particles occupied by the K1 second sub-signals is respectively equal to the product of the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals.
  • the number of resource particles occupied by any one of the K1 second sub-signals is equal to the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals The product is rounded up or down.
  • the number of resource particles occupied by one second sub-signal in the K1 second sub-signals is equal to the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals The product is rounded up.
  • the number of resource particles occupied by one second sub-signal in the K1 second sub-signals is equal to the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals The product is rounded down.
  • the number of resource particles occupied by the first K1-1 second sub-signals in the K1 second sub-signals is respectively equal to the corresponding second coefficient and the number of resource particles occupied by the K1 second sub-signals
  • the product of the total number of resource particles is rounded down, and the number of resource particles occupied by the last second sub-signal in the K1 second sub-signals is equal to the total number of resource particles occupied by the K1 second sub-signals Subtract the sum of the number of resource particles occupied by the first K1-1 second sub-signals.
  • the number of resource particles occupied by the first K1-1 second sub-signals in the K1 second sub-signals is respectively equal to the corresponding second coefficient and the number of resource particles occupied by the K1 second sub-signals
  • the product of the total number of resource particles is rounded up, and the number of resource particles occupied by the last second sub-signal in the K1 second sub-signals is equal to the total number of resource particles occupied by the K1 second sub-signals minus Remove the sum of the number of resource particles occupied by the first K1-1 second sub-signals.
  • the number of resource particles occupied by the first K1-1 second sub-signals in the K1 second sub-signals is respectively equal to the closest corresponding second coefficient and the number of resource particles occupied by the K1 second sub-signals.
  • a positive integer of the product of the total number of occupied resource particles, the number of resource particles occupied by the last second sub-signal in the K1 second sub-signals is equal to the number of resource particles occupied by the K1 second sub-signals The total number is subtracted from the sum of the number of resource particles occupied by the first K1-1 second sub-signals.
  • the rounding up of the given value is equal to the smallest integer not less than the given value.
  • the rounding down of a given value is equal to the largest integer not greater than the given value.
  • Embodiment 14 illustrates a schematic diagram of the first value according to an embodiment of the present application; as shown in FIG. 14.
  • the first value is equal to the first coefficient in this application multiplied by a first reference value and then rounded up; the first reference value and the K time-frequency resource blocks in this application Only the number of resource particles included in the K1 time-frequency resource blocks is related to.
  • the first reference value is equal to the sum of K1 first RE numbers, and the K1 first RE numbers are respectively related to the number of resource particles included in the K1 time-frequency resource blocks.
  • the K1 time-frequency resource blocks and K1 PUSCHs correspond one-to-one, and the K1 first wireless signals in this application are respectively transmitted on the K1 PUSCHs.
  • the indexes of the K1 first RE numbers are #0,..., #K1-1, respectively.
  • the first value is a positive integer.
  • the first coefficient is a non-negative real number.
  • the first coefficient is a non-negative real number not greater than 1.
  • the first coefficient is a positive real number.
  • the first coefficient is a positive real number not greater than 1.
  • the first coefficient is one of ⁇ 0.5, 0.65, 0.8, 1 ⁇ .
  • the first coefficient is a higher layer parameter (higher layer parameter) scaling.
  • the first coefficient is ⁇ .
  • the first value and the first coefficient are linearly related.
  • the first value is independent of the number of resource particles included in any time-frequency resource block that does not belong to the K1 time-frequency resource blocks in the K time-frequency resource blocks in this application.
  • the first value is related to the number of resource particles included in any time-frequency resource block in the K1 time-frequency resource blocks.
  • the first value is related to the number of resource particles included in any time-frequency resource block in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the first value is related to the total number of resource particles included in the K1 time-frequency resource blocks.
  • the first value is related to the total number of resource particles included in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the reference signal includes DMRS.
  • the reference signal includes PTRS (Phase-Tracking Reference Signal).
  • the first reference value is independent of the number of resource particles included in any time-frequency resource block that does not belong to the K1 time-frequency resource blocks in the K time-frequency resource blocks in the present application.
  • the first reference value is related to the total number of resource particles included in the K1 time-frequency resource blocks that are not allocated to reference signals.
  • the first reference value is equal to the total number of resource particles included in the K1 time-frequency resource blocks that are not allocated to a reference signal.
  • the number of the K1 first REs is respectively related to the number of resource particles included in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the given first RE number is equal to the number of multi-carrier symbols allocated to the corresponding PUSCH located in the time domain.
  • the given first RE number is equal to the number of multi-carrier symbols represented by all small dot-filled squares in a given timing frequency resource block, which are allocated to all The total number of REs that correspond to the PUSCH and are not allocated to the PTRS, and the given timing-frequency resource block is a time-frequency resource block corresponding to the given first number of REs among the K1 time-frequency resource blocks.
  • the given first RE number is any first RE number among the K1 first RE numbers.
  • the given first RE number is equal to the multi-carrier symbols allocated to the corresponding PUSCH without including the corresponding The total number of REs allocated to the corresponding PUSCH and not allocated to the PTRS on all multi-carrier symbols of the DMRS of the PUSCH.
  • the number of the given first RE is equal to the multi-carrier symbols represented by all the dot-filled and horizontal-line filled squares in the given timing frequency resource block.
  • the total number of REs allocated to the corresponding PUSCH and not allocated to the PTRS, and the given timing-frequency resource block is the time-frequency resource corresponding to the given first number of REs in the K1 time-frequency resource blocks Piece.
  • the given first RE number is any first RE number among the K1 first RE numbers.
  • Embodiment 15 illustrates a schematic diagram of the first value according to an embodiment of the present application; as shown in FIG. 15.
  • the first value is equal to the first coefficient in this application multiplied by the first reference value in Embodiment 14 and then rounded up, and then the first reference RE number is subtracted.
  • the first reference RE number is a non-negative integer.
  • the number of the first reference REs is the number of REs occupied by the HARQ-ACK in the K1 time-frequency resource blocks.
  • the number of first reference REs is the number of REs occupied by HARQ-ACK in the K1 time-frequency resource blocks and the REs occupied by CSI part 1 in the K1 time-frequency resource blocks The sum of the numbers.
  • the specific definition of the CSI part 1 refer to 3GPP TS38.212.
  • Embodiment 16 illustrates a schematic diagram of the first value according to an embodiment of the present application; as shown in FIG. 16.
  • the first value is equal to the first coefficient in this application multiplied by the second reference value, and then multiplied by the ratio of the K1 in this application to the K in this application and then upwards Rounding up;
  • the second reference value is related to the number of resource particles included in the K time-frequency resource blocks in this application.
  • the second reference value is equal to the sum of the number of K1 second REs, and the number of K1 second REs is respectively related to the number of resource particles included in the K time-frequency resource blocks.
  • the K time-frequency resource blocks have a one-to-one correspondence with the K PUSCHs, and the K first wireless signals in this application are respectively transmitted on the K PUSCHs.
  • the indexes of the K1 second RE numbers are #0,..., #K1-1, respectively.
  • the first value is related to the ratio of the K1 to the K.
  • the first value is related to the number of resource particles included in any time-frequency resource block in the K time-frequency resource blocks.
  • the first value is related to the number of resource particles included in any time-frequency resource block in the K time-frequency resource blocks that are not allocated to reference signals.
  • the first value is related to the total number of resource particles included in the K time-frequency resource blocks.
  • the first value is related to the total number of resource particles included in the K time-frequency resource blocks that are not allocated to the reference signal.
  • the second reference value is related to the total number of resource particles included in the K time-frequency resource blocks that are not allocated to a reference signal.
  • the second reference value is equal to the total number of resource particles included in the K time-frequency resource blocks that are not allocated to a reference signal.
  • the number of the K second REs is respectively related to the number of resource particles included in the K time-frequency resource blocks that are not allocated to the reference signal.
  • the given second RE number is equal to the number of multi-carrier symbols allocated to the corresponding PUSCH located in the time domain.
  • the given second RE number is equal to the number of multi-carrier symbols represented by all small dot-filled squares in a given timing frequency resource block, which are allocated to all The total number of REs that correspond to the PUSCH and are not allocated to the PTRS, and the given timing-frequency resource block is a time-frequency resource block corresponding to the given second number of REs among the K time-frequency resource blocks.
  • the given second RE number is any second RE number among the K second RE numbers.
  • the given second RE number is equal to the number of multi-carrier symbols allocated to the corresponding PUSCH without including the corresponding The total number of REs allocated to the corresponding PUSCH and not allocated to the PTRS on all multi-carrier symbols of the DMRS of the PUSCH.
  • the number of the given second RE is equal to the multi-carrier symbols represented by all the dots-filled and horizontal-line-filled squares in the given timing frequency resource block
  • the total number of REs allocated to the corresponding PUSCH and not allocated to PTRS, and the given timing-frequency resource block is the time-frequency resource corresponding to the given second number of REs in the K time-frequency resource blocks Piece.
  • the given second RE number is any second RE number among the K second RE numbers.
  • Embodiment 17 illustrates a schematic diagram of the first value according to an embodiment of the present application; as shown in FIG. 17.
  • the first value is equal to the first coefficient in this application multiplied by the second reference value in Example 16, and then multiplied by the K1 in this application and the K1 in this application.
  • the ratio of K is then rounded up, and then the first reference RE number in Embodiment 15 is subtracted.
  • Embodiment 18 illustrates a schematic diagram of the second value of K1 according to an embodiment of the present application; as shown in FIG. 18.
  • the K1 second coefficients in this application are respectively used to determine the K1 second values.
  • the K1 second value corresponds to the K1 reference value, and any one of the K1 second values is equal to the corresponding second coefficient multiplied by the corresponding reference value and then rounded up; the K1
  • the reference values are respectively related to the number of resource particles included in the K1 time-frequency resource blocks in this application.
  • the K1 time-frequency resource blocks and K1 PUSCHs correspond one-to-one, and the K1 first wireless signals in this application are respectively transmitted on the K1 PUSCHs.
  • FIG. 1 the K1 second coefficients in this application are respectively used to determine the K1 second values.
  • the K1 second value corresponds to the K1 reference value, and any one of the K1 second values is equal to the corresponding second coefficient multiplied by the corresponding reference value and then rounded up; the
  • the indexes of the K1 second value, the K1 second coefficient, and the K1 reference value are #0,..., #K1-1, respectively.
  • the second value #i corresponds to the second coefficient #i and the reference value #i.
  • the K1 second values are respectively positive integers.
  • any two second values in the K1 second values are equal.
  • the K1 second coefficients are respectively non-negative real numbers.
  • the K1 second coefficients are non-negative real numbers not greater than 1.
  • the K1 second coefficients are positive real numbers respectively.
  • the K1 second coefficients are positive real numbers not greater than one.
  • any two second coefficients in the K1 second coefficients are equal.
  • any one of the K1 second coefficients is one of ⁇ 0.5, 0.65, 0.8, 1 ⁇ .
  • the K1 second coefficients are all configured by higher layer signaling.
  • the K1 second coefficients are all configured by higher layer parameters.
  • the K1 second coefficients are respectively configured semi-statically.
  • any second coefficient in the K1 second coefficients has nothing to do with the number of REs included in any time-frequency resource block in the K time-frequency resource blocks in this application.
  • any second coefficient of the K1 second coefficients has nothing to do with the K1.
  • any second coefficient of the K1 second coefficients has nothing to do with the K.
  • any second coefficient of the K1 second coefficients has nothing to do with the ratio of the K1 to the K.
  • the K1 second values are linearly related to the K1 second coefficients.
  • any one of the K1 second values and any one of the K time-frequency resource blocks in this application includes any time-frequency resource block that does not belong to the K1 time-frequency resource blocks The number of resource particles is irrelevant.
  • any one of the K1 second values has nothing to do with the total number of resource particles occupied by the K1 second sub-signals in this application.
  • the K1 second values are respectively related to the number of resource particles included in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the K1 reference values are respectively related to the number of resource particles included in the K1 time-frequency resource blocks that are not allocated to reference signals.
  • any one of the K1 reference values is equal to the number of resource particles included in the corresponding time-frequency resource block that are not allocated to the reference signal.
  • the given reference value is equal to the earliest one in the time domain of the multi-carrier symbols allocated to the corresponding PUSCH.
  • the reference value #i is equal to the multi-carrier symbol represented by all the dot-filled squares in the time-frequency resource block #i and is allocated to PUSCH#i and The total number of REs not allocated to PTRS;
  • the time-frequency resource block #i is the time-frequency resource block corresponding to the reference value #i among the K1 time-frequency resource blocks, and
  • the PUSCH#i is the The PUSCH corresponding to the time-frequency resource block #i among the K1 PUSCHs.
  • the given reference value is any one of the K1 given reference values.
  • the given reference value is equal to all the multi-carrier symbols allocated to the corresponding PUSCH excluding the DMRS of the corresponding PUSCH. On the carrier symbol, the total number of REs allocated to the corresponding PUSCH and not allocated to the PTRS.
  • the reference value #i is equal to the multi-carrier symbols represented by all dot-filled and horizontal-line-filled squares in the time-frequency resource block #i.
  • PUSCH#i is the total number of REs that are not allocated to PTRS.
  • the time-frequency resource block #i is the time-frequency resource block corresponding to the reference value #i among the K1 time-frequency resource blocks.
  • the PUSCH# i is the PUSCH corresponding to the time-frequency resource block #i among the K1 PUSCHs.
  • the given reference value is any one of the K1 given reference values.
  • Embodiment 19 illustrates a schematic diagram of the second value of K1 according to an embodiment of the present application; as shown in FIG. 19.
  • the K1 second coefficients in the present application are respectively used to determine the K1 second value, and the K1 second value is equal to the K1 reference value in Example 18.
  • the K1 third reference RE numbers are respectively non-negative integers.
  • any third reference RE number among the K1 third reference RE numbers is the number of REs occupied by HARQ-ACK in the corresponding time-frequency resource block.
  • the number of any third reference RE in the number of K1 third reference REs is the sum of the number of REs occupied by HARQ-ACK and CSI part 1 in the corresponding time-frequency resource block.
  • Embodiment 20 illustrates a schematic diagram of the second value of K1 according to an embodiment of the present application; as shown in FIG. 20.
  • the K1 second coefficients in this application are respectively used to determine the K1 second value. Any one of the K1 second values is equal to the product of the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals in this application, rounded up or down.
  • the K1 second coefficients have a one-to-one correspondence with the K1 third RE numbers, and any second coefficient in the K1 second coefficients is the sum of the corresponding third RE numbers and the K1 third RE numbers
  • the ratio of the K1 third RE numbers are positive integers.
  • the number of the K1 third REs is respectively related to the number of resource particles included in the K1 time-frequency resource blocks in this application.
  • the K1 time-frequency resource blocks and K1 PUSCHs correspond one-to-one, and the K1 first wireless signals in this application are respectively transmitted on the K1 PUSCHs.
  • the indexes of the K1 second value, the K1 second coefficient, and the K1 third RE number are #0,...,#K1-1, respectively.
  • the second value #i corresponds to the second coefficient #i and the third RE number #i.
  • any one of the K1 second values is linearly related to the total number of resource particles occupied by the K1 second sub-signals.
  • any one of the K1 second values is equal to the product of the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals.
  • the first K1-1 second values of the K1 second values are respectively equal to the product of the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals, which is taken down
  • the last second value in the K1 second values is equal to the total number of resource particles occupied by the K1 second sub-signals minus the sum of the previous K1-1 second values.
  • the first K1-1 second values of the K1 second values are respectively equal to the product of the corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals, rounded up.
  • the last second value in the K1 second values is equal to the total number of resource particles occupied by the K1 second sub-signals minus the sum of the previous K1-1 second values.
  • the first K1-1 second values of the K1 second values are respectively equal to the product of the closest corresponding second coefficient and the total number of resource particles occupied by the K1 second sub-signals.
  • a positive integer the last second value of the K1 second values is equal to the total number of resource particles occupied by the K1 second sub-signals minus the sum of the previous K1-1 second values.
  • the first signaling in this application is used to determine the K1 second coefficients.
  • the first signaling in this application implicitly indicates the K1 second coefficients.
  • the first signaling in this application and the second signaling in this application are jointly used to determine the K1 second coefficients.
  • any one of the K1 second coefficients is related to the K1.
  • any second coefficient of the K1 second coefficients is 1/K1.
  • the K1 second coefficients are respectively related to the number of resource particles included in the K1 time-frequency resource blocks.
  • the K1 second coefficients are respectively related to the number of resource particles included in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the number of the K1 third REs is respectively related to the number of resource particles included in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the number of the K1 third REs is respectively the number of resource particles included in the K1 time-frequency resource blocks that are not allocated to the reference signal.
  • the given third RE number is equal to the number of multi-carrier symbols allocated to the corresponding PUSCH located in the time domain.
  • the third RE number #i is equal to the multi-carrier symbol represented by all the dot-filled squares in the time-frequency resource block #i and is allocated to PUSCH# i and the total number of REs that are not allocated to PTRS;
  • the time-frequency resource block #i is the time-frequency resource block corresponding to the third RE number #i among the K1 time-frequency resource blocks,
  • the PUSCH# i is the PUSCH corresponding to the time-frequency resource block #i among the K1 PUSCHs.
  • the given third RE number is any third RE number among the K1 third RE numbers.
  • the given third RE number is equal to the multi-carrier symbols allocated to the corresponding PUSCH without including the corresponding The total number of REs allocated to the corresponding PUSCH and not allocated to the PTRS on all multi-carrier symbols of the DMRS of the PUSCH.
  • the third RE number #i is equal to the multi-carrier symbol represented by all dot-filled and horizontal-line-filled squares in the time-frequency resource block #i.
  • the total number of REs allocated to PUSCH#i and not allocated to PTRS; the time-frequency resource block #i is the time-frequency resource block corresponding to the third RE number #i among the K1 time-frequency resource blocks,
  • the PUSCH#i is the PUSCH corresponding to the time-frequency resource block #i among the K1 PUSCHs.
  • the given third RE number is any third RE number among the K1 third RE numbers.
  • Embodiment 21 illustrates a schematic diagram of the first type of value and the first offset used to determine the total number of resource particles occupied by K1 second sub-signals according to an embodiment of the present application; as shown in FIG. 21.
  • the total number of resource particles occupied by the K1 second sub-signals is the product of the first-type value and the first offset and rounded up to the first value in this application. The minimum value between a value.
  • the total number of resource particles occupied by the K1 second sub-signals is related to the number of resource particles included in each of the K time-frequency resource blocks.
  • the total number of resource particles occupied by the K1 second sub-signals is related to the number of resource particles included in any time-frequency resource block in the K1 time-frequency resource blocks, and is related to the K time-frequency resource blocks.
  • the frequency resource block is related to the number of resource particles included in any time-frequency resource block that does not belong to the K1 time-frequency resource blocks.
  • the total number of resource particles occupied by the K1 second sub-signals is related to the number of resource particles included in any time-frequency resource block in the K time-frequency resource blocks that are not allocated to the reference signal.
  • the total number of resource particles occupied by the K1 second sub-signals is related to the total number of resource particles included in the K time-frequency resource blocks.
  • the total number of resource particles occupied by the K1 second sub-signals is related to the total number of resource particles included in the K time-frequency resource blocks that are not allocated to reference signals.
  • the first offset is a non-negative real number.
  • the first offset is greater than one.
  • the first offset is equal to 1.
  • the first offset is less than one.
  • the first offset is equal to zero.
  • the first offset is greater than zero.
  • the first offset is
  • the first offset is
  • the first offset is
  • the first offset is
  • the first offset is determined by higher layer parameters betaOffsetACK-Index1, betaOffsetACK-Index2 and betaOffsetACK-Index3.
  • betaOffsetACK-Index1, betaOffsetACK-Index2 and betaOffsetACK-Index3 refer to section 9.3 of 3GPP TS38.213 and 3GPP TS38.331.
  • the first offset is determined by higher layer parameters betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2.
  • betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2 can be found in section 9.3 of 3GPP TS38.213 and 3GPP TS38.331.
  • the first offset is determined by higher layer parameters betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2.
  • betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2 refer to section 9.3 of 3GPP TS38.213 and 3GPP TS38.331.
  • Embodiment 22 illustrates a schematic diagram in which the first type of value and the first offset are used to determine the total number of resource particles occupied by K1 second sub-signals according to an embodiment of the present application; as shown in FIG. 22.
  • the total number of resource particles occupied by the K1 second sub-signals is ⁇ the product of the first-type value and the first offset is rounded up, the first in this application A value, the minimum value of the sum of the K1 second values in this application ⁇ .
  • the indexes of the K1 second values are #0, ..., #K1-1, respectively.
  • Embodiment 23 illustrates a schematic diagram of the first type of numerical value according to an embodiment of the present application; as shown in FIG. 23.
  • the first type of value is equal to the product of the first type of reference value and the number of bits included in the second bit block in this application; the first type of reference value is equal to the product of the second bit block in this application;
  • the number of resource particles included in any time-frequency resource block in the K time-frequency resource blocks is related, and the first-type reference value is related to the number of bits included in the first bit block in this application.
  • the first type of reference value is a positive real number.
  • the first-type reference value is related to the total number of resource particles included in the K time-frequency resource blocks that are not allocated to reference signals.
  • the first-type reference value is proportional to the total number of resource particles included in the K time-frequency resource blocks that are not allocated to a reference signal.
  • the first type of reference value is inversely proportional to the number of bits included in the first bit block.
  • the first-type reference value is equal to
  • the C UL-SCH is the number of code blocks included in the first bit block
  • the K r is the number of bits included in the rth code block
  • the Is the total number of multi-carrier symbols allocated to K PUSCHs, the Is the number of REs that can be occupied by UCI on the l-th multi-carrier symbol.
  • the K first wireless signals in this application are respectively transmitted on the K PUSCHs.
  • Embodiment 24 illustrates a schematic diagram of the first information according to an embodiment of the present application; as shown in FIG. 24.
  • the first information indicates the first coefficient in this application.
  • the first information indicates only the first coefficient among the first coefficient and the K1 second coefficients in this application.
  • the first information explicitly indicates the first coefficient.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC signaling.
  • the first information is carried by MAC CE signaling.
  • the first information includes all or part of the information in the uci-OnPUSCH field.
  • the first information includes all or part of the information in the uci-OnPUSCH field in the PUSCH-Config IE (Information Element).
  • the first information includes all or part of the information in the uci-OnPUSCH field in the ConfiguredGrantConfig IE.
  • the first information includes all or part of the information in UCI-OnPUSCH.
  • the first information includes all or part of the information in CG-UCI-OnPUSCH.
  • PUSCH-Config IE refers to 3GPP TS38.331.
  • Configured Grant Configure IE for the specific definition of the Configured Grant Configure IE, refer to 3GPP TS38.331.
  • Embodiment 25 illustrates a schematic diagram of the first information according to an embodiment of the present application; as shown in FIG. 25.
  • the first information indicates the first coefficient in this application and the K1 second coefficient in this application.
  • the first information explicitly indicates the first coefficient and the K1 second coefficients.
  • the first information indicates the first coefficient and the first reference coefficient, and any second coefficient in the K1 second coefficients is equal to the first reference coefficient.
  • Embodiment 26 illustrates a schematic diagram of the timing relationship between the first signaling, the second signaling, K first wireless signals and the second wireless signals according to an embodiment of the present application; as shown in FIG. 26.
  • the second signaling is earlier than the second wireless signal in the time domain
  • the second wireless signal is earlier than the first signaling in the time domain
  • the first signaling It is earlier than the K first wireless signals in the time domain.
  • the second signaling is no later than the first signaling in the time domain.
  • the start time of the time domain resource occupied by the second signaling is no later than the start time of the time domain resource occupied by the first signaling.
  • the end time of the time domain resource occupied by the second signaling is no later than the end time of the time domain resource occupied by the first signaling.
  • the end time of the time domain resource occupied by the second signaling is no later than the start time of the time domain resource occupied by the first signaling.
  • the second wireless signal is no later than the K first wireless signals in the time domain.
  • the end time of the time domain resources occupied by the second wireless signal is not later than the start time of the time domain resources occupied by the K first wireless signals.
  • Embodiment 27 illustrates a schematic diagram of the timing relationship between the first signaling, the second signaling, K first wireless signals and the second wireless signals according to an embodiment of the present application; as shown in FIG. 27.
  • the second signaling is earlier than the first signaling in the time domain
  • the first signaling is earlier than the second wireless signal in the time domain
  • the second wireless signal is It is earlier than the K first wireless signals in the time domain.
  • Embodiment 28 illustrates a schematic diagram of the second wireless signal being used to generate the second bit block according to an embodiment of the present application; as shown in FIG. 28.
  • the second signaling in this application indicates the scheduling information of the second wireless signal
  • the second bit block indicates whether the second wireless signal is received correctly.
  • the second signaling indicates the time-frequency resource occupied by the second wireless signal.
  • the second signaling explicitly indicates the time-frequency resource occupied by the second wireless signal.
  • the second signaling implicitly indicates the time-frequency resource occupied by the second wireless signal.
  • the scheduling information of the second wireless signal includes one of ⁇ occupied time domain resources, occupied frequency domain resources, scheduled MCS, DMRS configuration information, HARQ process ID, RV, NDI ⁇ Kind or more.
  • using the second wireless signal to generate the second bit block includes: the second bit block indicates whether the second wireless signal is correctly received.
  • the second wireless signal being used to generate the second bit block includes: the second wireless signal includes a third bit block, the third bit block includes a TB; The two-bit block indicates whether the third-bit block is received correctly.
  • the second wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the second wireless signal is transmitted on the PDSCH.
  • Embodiment 29 illustrates a schematic diagram of using a second wireless signal to generate a second bit block according to an embodiment of the present application; as shown in FIG. 29.
  • the second wireless signal includes a first reference signal
  • the second signaling in this application indicates configuration information of the first reference signal.
  • the measurement for the first reference signal is used to generate the second bit block.
  • the second wireless signal includes DMRS.
  • the second wireless signal includes CSI-RS (Channel-State Information Reference Signals, channel state information reference signals).
  • CSI-RS Channel-State Information Reference Signals, channel state information reference signals.
  • the configuration information of the first reference signal includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequence, mapping mode, DMRS type, cyclic shift amount ( One or more of cyclic shift), OCC, w f (k'), w t (l') ⁇ .
  • the w f (k′) and the w t (l′) are spreading sequences in the frequency domain and the time domain, respectively, and the specific definitions of the w f (k′) and the w t (l′) See section 7.4.1 of 3GPP TS38.211.
  • the measurement for the first reference signal is used to generate the first channel quality
  • the second bit block carries the first channel quality
  • the first channel quality includes CQI.
  • the first channel quality includes CRI.
  • the first channel quality includes PMI.
  • the first channel quality includes RSRP.
  • the first channel quality includes RSRQ.
  • the second signaling indicates the index of the reference signal resource corresponding to the first reference signal.
  • the reference signal resource corresponding to the first reference signal includes a CSI-RS resource.
  • the use of the second wireless signal to generate the second bit block includes: measurement of the second wireless signal is used to generate the second bit block.
  • Embodiment 30 illustrates a schematic diagram of a second air interface resource block used to determine K1 first wireless signals according to an embodiment of the present application; as shown in FIG. 30.
  • the second air interface resource block includes one time-frequency resource block.
  • the second air interface resource block includes one time-frequency resource block and one code domain resource.
  • the one code domain resource includes pseudo-random sequences (pseudo-random sequences), low-PAPR sequences (low-PAPR sequences), cyclic shift (cyclic shift), OCC (Orthogonal Cover Code, orthogonal Mask), OCC length, OCC index, orthogonal sequence (orthogonal sequence), One or more of w i (m) and w n (m). Said Is a pseudo-random sequence or a low peak-to-average ratio sequence, and the w i (m) and w n (m) are orthogonal sequences, respectively. Said For specific definitions of the w i (m) and the w n (m), refer to section 6.3.2 of 3GPP TS38.211.
  • the second air interface resource block includes a positive integer number of resource particles in the time-frequency domain.
  • the second air interface resource block includes a positive integer number of multi-carrier symbols in the time domain.
  • the second air interface resource block includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the second air interface resource block includes a positive integer number of subcarriers in the frequency domain.
  • the second air interface resource block includes a positive integer number of RBs in the frequency domain.
  • the second air interface resource block includes a positive integer number of PRBs in the frequency domain.
  • the second air interface resource block is a PUCCH (Physical Uplink Control CHannel, physical uplink control channel) resource.
  • PUCCH Physical Uplink Control CHannel, physical uplink control channel
  • the second air interface resource block is reserved for the second bit block.
  • the second air interface resource block is reserved for information carried by the second bit block.
  • the second signaling in this application indicates the second air interface resource block.
  • the second signaling in this application explicitly indicates the second air interface resource block.
  • the second signaling in this application implicitly indicates the second air interface resource block.
  • the second signaling in this application includes a fourth field, and the fourth field in the second signaling indicates the second air interface resource block.
  • the fourth field in the second signaling includes all or part of information in a PUCCH resource indicator (PUCCH resource indicator) field.
  • PUCCH resource indicator PUCCH resource indicator
  • the fourth field in the second signaling includes all or part of the information in the PDSCH-to-HARQ_feedback timing indicator (PDSCH to HARQ feedback interval indicator) field.
  • the specific definition of the PUCCH resource indicator field refer to 3GPP TS38.212.
  • DSCH-to-HARQ_feedback timing indicator field For the specific definition of the DSCH-to-HARQ_feedback timing indicator field, refer to 3GPP TS38.212.
  • the second signaling indicates the index of the second air interface resource block, and the index of the second air interface resource block is a PUCCH resource (resource) index (index).
  • the second air interface resource block being used to determine the K1 first wireless signals includes: the second air interface resource block being used to determine that the K1 wireless signals are in the K The position in the wireless signal.
  • the second air interface resource block being used to determine the K1 first wireless signals includes: the second air interface resource block being used to determine the K1 time-frequency resource blocks.
  • the second air interface resource block being used to determine the K1 first wireless signals includes: the second air interface resource block being used to determine that the K1 time-frequency resource blocks are in the The position in K time-frequency resource blocks.
  • the second air interface resource block used to determine the K1 first wireless signals includes: the start time of the time domain resources occupied by the K1 first wireless signals is not earlier than all The start time of the time domain resource occupied by the second air interface resource block.
  • the second air interface resource block is used to determine that the K1 first wireless signals include: the end time of the time domain resources occupied by the K1 first wireless signals is not later than the The end time of the time domain resource occupied by the second air interface resource block.
  • the second air interface resource block used to determine the K1 first wireless signals includes: the start time of the time domain resources occupied by the K1 time-frequency resource blocks is no earlier than all The start time of the time domain resource occupied by the second air interface resource block.
  • the second air interface resource block is used to determine that the K1 first wireless signals include: the end time of the time domain resources occupied by the K1 time-frequency resource blocks is not later than the The end time of the time domain resource occupied by the second air interface resource block.
  • Embodiment 31 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 31.
  • the processing device 3100 in the first node device includes a first receiver 3101 and a first transmitter 3102.
  • the first receiver 3101 receives the first signaling and the second signaling; the first transmitter 3102 transmits K first wireless signals in K time-frequency resource blocks, respectively.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry The first bit block, the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; out of the K first wireless signals, only K1 first wireless signals
  • the K1 second sub-signals occupy The total number of resource particles of is not greater than the first value, and the first coefficient is used to determine the first value; the number of resource particles occupied by the K1 second sub-signals is not greater than K1 second values, and K1 The second coefficient is used to determine the K1 second value; K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the first value and the K time-frequency resource blocks are Is only related to the number of resource particles included in the K1 time-frequency resource blocks.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the K1 second values are respectively the same as the K1 time-frequency resource blocks.
  • the resource block includes the number of resource particles.
  • any one of the K1 second values is related to the total number of resource particles occupied by the K1 second sub-signals.
  • the first type of value and the first offset are used to determine the total number of resource particles occupied by the K1 second sub-signals, and the first type of value and the K time-frequency resource blocks It is related to the number of resource particles included in each time-frequency resource block.
  • the first receiver 3101 receives first information; wherein, the first information indicates the first coefficient.
  • the first receiver 3101 receives first information; wherein, the first information indicates the first coefficient and the K1 second coefficients.
  • the first receiver 3101 receives a second wireless signal; wherein, the second signaling is used to determine the time-frequency resource occupied by the second wireless signal, and the second wireless signal is Used to generate the second bit block.
  • the second signaling is used to determine a second air interface resource block, and the second air interface resource block is used to determine the K1 first wireless signals.
  • the first node device 3100 is user equipment.
  • the first node device 3100 is a relay node.
  • the first receiver 3101 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in embodiment 4 At least one of 467 ⁇ .
  • the first transmitter 3102 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 32 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 32.
  • the processing device 3200 in the second node device includes a second transmitter 3201 and a second receiver 3202.
  • the second transmitter 3201 sends the first signaling and the second signaling; the second receiver 3202 receives K first wireless signals in K time-frequency resource blocks, respectively.
  • the K time-frequency resource blocks are orthogonal to each other in the time domain;
  • the K first wireless signals respectively include K first sub-signals, and the K first sub-signals all carry The first bit block, the first signaling is used to determine the size of the K time-frequency resource blocks and the first bit block; out of the K first wireless signals, only K1 first wireless signals
  • the K1 second sub-signals occupy The total number of resource particles of is not greater than the first value, and the first coefficient is used to determine the first value; the number of resource particles occupied by the K1 second sub-signals is not greater than K1 second values, and K1 The second coefficient is used to determine the K1 second value; K and K1 are positive integers greater than 1, and the K1 is not greater than the K.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the first value and the K time-frequency resource blocks are Is only related to the number of resource particles included in the K1 time-frequency resource blocks.
  • the K1 first wireless signals are respectively sent in K1 time-frequency resource blocks in the K time-frequency resource blocks, and the K1 second values are respectively the same as the K1 time-frequency resource blocks.
  • the resource block includes the number of resource particles.
  • any one of the K1 second values is related to the total number of resource particles occupied by the K1 second sub-signals.
  • the first type of value and the first offset are used to determine the total number of resource particles occupied by the K1 second sub-signals, and the first type of value and the K time-frequency resource blocks It is related to the number of resource particles included in each time-frequency resource block.
  • the second transmitter 3201 sends first information; wherein, the first information indicates the first coefficient.
  • the second transmitter 3201 sends first information; wherein, the first information indicates the first coefficient and the K1 second coefficients.
  • the second transmitter 3201 sends a second wireless signal; wherein, the second signaling is used to determine the time-frequency resource occupied by the second wireless signal, and the second wireless signal is Used to generate the second bit block.
  • the second signaling is used to determine a second air interface resource block, and the second air interface resource block is used to determine the K1 first wireless signals.
  • the second node device 3200 is a base station device.
  • the second node device 3200 is a relay node.
  • the second transmitter 3201 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second receiver 3202 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point, transmitter and receiver node) and other wireless communications equipment.
  • gNB NR Node B
  • NR Node B NR Node B
  • TRP Transmitter Receiver Point, transmitter and receiver node

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令和第二信令;分别在K个时频资源块中发送K个第一无线信号。所述K个时频资源块在时域正交;所述第一信令指示所述K个时频资源块;所述K个第一无线信号中仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号占用的资源粒子总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号占用的资源粒子数分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值。在重复传输的物理层数据信道上承载控制信息时,上述方法保证了数据与控制信息的可靠性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
和传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统相比,5G系统支持更加多样的应用场景,比如eMBB(enhanced Mobile BroadBand,增强移动宽带),URLLC(Ultra-Reliable and Low Latency Communications,超高可靠性和低延迟通信)和mMTC(massive Machine-Type Communications,大规模机器类型通信)。和其他应用场景相比,URLLC对传输可靠性和延时都有更高的要求。3GPP R(Release,版本)15支持采用不同的MCS(Modulation and Coding Scheme,调制编码方式)表格和重复传输来提高URLLC的传输可靠性。
传统的LTE系统中,当上行控制信息和上行物理层数据信道在时域冲突时,上行控制信息可以在上行物理层数据信道上传输。基站可以通过控制上行控制信息在上行物理层数据信道上占用的RE(Resource Element)的数量来保证上行控制信息的传输可靠性。
发明内容
发明人通过研究发现,当上行控制信息和重复传输的上行物理层数据信道在时域冲突时,上行控制信息在上行物理层数据信道上的传输会遇到新的问题,比如在哪些上行物理层数据信道上承载上行控制信息,上行控制信息如何在不同的重复传输中分配等。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令和第二信令;
分别在K个时频资源块中发送K个第一无线信号;
其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,本申请要解决的问题是:在重复传输的上行物理层数据信道上承载上行控制信息时,如何在不同的重复传输中分配上行控制信息。
作为一个实施例,上述方法的特质在于:所述K个第一子信号是所述第一比特块的K次重复传输,所述第二比特块携带上行控制信息。上述方法限制了所述第二比特块在所有的重复传输中占用的资源粒子的总数,同时限制了所述第二比特块在每一次重复传输中占用的资源粒子的数量。这样不仅保证了上行控制信息的传输可靠性,也避免了上行控制信息在一次重复传输中占用过多的资源粒子而导致所述第一比特块的传输性能下降。
根据本申请的一个方面,其特征在于,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述第一数值和所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。
根据本申请的一个方面,其特征在于,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述K1个第二数值分别和所述K1个时频资源块包括的资源粒子的数量有关。
根据本申请的一个方面,其特征在于,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用的资源粒子的总数有关。
根据本申请的一个方面,其特征在于,第一类数值和第一偏移量被用于确定所述K1个第二子信号所占用的资源粒子的总数,所述第一类数值和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量有关。
根据本申请的一个方面,其特征在于,包括:
接收第一信息;
其中,所述第一信息指示所述第一系数。
根据本申请的一个方面,其特征在于,包括:
接收第一信息;
其中,所述第一信息指示所述第一系数和所述K1个第二系数。
根据本申请的一个方面,其特征在于,包括:
接收第二无线信号;
其中,所述第二信令被用于确定所述第二无线信号所占用的时频资源,所述第二无线信号被用于生成所述第二比特块。
根据本申请的一个方面,其特征在于,所述第二信令被用于确定第二空口资源块,所述第二空口资源块被用于确定所述K1个第一无线信号。
作为一个实施例,上述方法的特质在于:所述第二空口资源块是预留给上行控制信息的PUCCH资源,上述方法保证了在上行物理层数据信道上传输的上行控制信息仍然满足时间线要求,不会带来额外的延时。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令和第二信令;
分别在K个时频资源块中接收K个第一无线信号;
其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
根据本申请的一个方面,其特征在于,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述第一数值和所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。
根据本申请的一个方面,其特征在于,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述K1个第二数值分别和所述K1个时频资源块包括的资源粒子的数量有关。
根据本申请的一个方面,其特征在于,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用的资源粒子的总数有关。
根据本申请的一个方面,其特征在于,第一类数值和第一偏移量被用于确定所述K1个第二子信号所占用的资源粒子的总数,所述第一类数值和所述K个时频资源块中的每个时频 资源块包括的资源粒子的数量有关。
根据本申请的一个方面,其特征在于,包括:
发送第一信息;
其中,所述第一信息指示所述第一系数;
根据本申请的一个方面,其特征在于,包括:
发送第一信息;
其中,所述第一信息指示所述第一系数和所述K1个第二系数。
根据本申请的一个方面,其特征在于,包括:
发送第二无线信号;
其中,所述第二信令被用于确定所述第二无线信号所占用的时频资源,所述第二无线信号被用于生成所述第二比特块。
根据本申请的一个方面,其特征在于,所述第二信令被用于确定第二空口资源块,所述第二空口资源块被用于确定所述K1个第一无线信号。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令和第二信令;
第一发送机,分别在K个时频资源块中发送K个第一无线信号;
其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,发送第一信令和第二信令;
第二接收机,分别在K个时频资源块中接收K个第一无线信号;
其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在重复传输的上行物理层数据信道上承载上行控制信息时,在限制上行控制信息占用的资源粒子的总数的同时限制上行控制信息在每一次重复传输中占用的资源粒子的数量。这样不仅保证了上行控制信息的传输可靠性,也避免了上行控制信息在一次重复传输中占用过多的资源粒子而导致上行物理层数据的传输性能下降。
保证了在上行物理层数据信道上传输的上行控制信息仍然满足时间线要求,不会带来额外的延时。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第二信令和K个第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的K个时频资源块在时频域的资源映射的示意图;
图7示出了根据本申请的一个实施例的K个时频资源块在时频域的资源映射的示意图;
图8示出了根据本申请的一个实施例的第一信令的示意图;
图9示出了根据本申请的一个实施例的第二信令的示意图;
图10示出了根据本申请的一个实施例的K个第一无线信号和K1个第一无线信号之间的关系的示意图;
图11示出了根据本申请的一个实施例的K1个第二子信号分别所占用的资源粒子的数量的示意图;
图12示出了根据本申请的一个实施例的K1个第二子信号分别所占用的资源粒子的数量的示意图;
图13示出了根据本申请的一个实施例的K1个第二子信号分别所占用的资源粒子的数量的示意图;
图14示出了根据本申请的一个实施例的第一数值的示意图;
图15示出了根据本申请的一个实施例的第一数值的示意图;
图16示出了根据本申请的一个实施例的第一数值的示意图;
图17示出了根据本申请的一个实施例的第一数值的示意图;
图18示出了根据本申请的一个实施例的K1个第二数值的示意图;
图19示出了根据本申请的一个实施例的K1个第二数值的示意图;
图20示出了根据本申请的一个实施例的K1个第二数值的示意图;
图21示出了根据本申请的一个实施例的第一类数值和第一偏移量被用于确定K1个第二子信号所占用的资源粒子的总数的示意图;
图22示出了根据本申请的一个实施例的第一类数值和第一偏移量被用于确定K1个第二子信号所占用的资源粒子的总数的示意图;
图23示出了根据本申请的一个实施例的第一类数值的示意图;
图24示出了根据本申请的一个实施例的第一信息的示意图;
图25示出了根据本申请的一个实施例的第一信息的示意图;
图26示出了根据本申请的一个实施例的第一信令,第二信令,K个第一无线信号和第二无线信号之间的时序关系的示意图;
图27示出了根据本申请的一个实施例的第一信令,第二信令,K个第一无线信号和第二无线信号之间的时序关系的示意图;
图28示出了根据本申请的一个实施例的第二无线信号被用于生成第二比特块的示意图;
图29示出了根据本申请的一个实施例的第二无线信号被用于生成第二比特块的示意图;
图30示出了根据本申请的一个实施例的第二空口资源块被用于确定K1个第一无线信号的示意图;
图31示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图32示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令,第二信令和K个第一无线信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特点的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令和第二信令;在步骤102中分别在K个时频资源块中发送K个第一无线信号。其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述资源粒子是RE(Resource Element,资源粒子)。
作为一个实施例,一个所述资源粒子在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一信令被用于确定所述K个时频资源块。
作为一个实施例,所述第一信令指示所述K个时频资源块。
作为一个实施例,所述所述K个第一子信号均携带第一比特块包括:所述K个第一子信号中的任一第一子信号是所述第一比特块中的比特依次经过CRC附着(Attachment),分段(Segmentation),编码块级CRC附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),转换预编码器(transform precoder),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,所述所述K个第一子信号均携带第一比特块包括:所述K个第一子信号中的任一第一子信号是所述第一比特块中的比特依次经过CRC附着,分段,编码块级CRC附着,信道编码,速率匹配,串联,加扰,调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,所述所述K个第一子信号均携带第一比特块包括:所述第一比特块被用于生成所述K个第一子信号中的任一第一子信号。
作为一个实施例,所述K个第一子信号中的任一第一子信号和所述第二比特块无关。
作为一个实施例,所述K个第一子信号是所述第一比特块的K次重复传输。
作为一个实施例,所述K个第一子信号对应相同的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number)。
作为一个实施例,所述K个第一子信号对应相同的NDI(New Data Indicator,新数据指示)。
作为一个实施例,所述K个第一子信号中至少有两个第一子信号对应不同RV(Redundancy Version,冗余版本)。
作为一个实施例,所述K个第一子信号中至少有两个第一子信号对应相同RV。
作为一个实施例,所述K个第一子信号中任意两个第一子信号对应不同的RV。
作为一个实施例,所述K个第一子信号中任意两个第一子信号对应相同的RV。
作为一个实施例,所述K个第一子信号对应相同的MCS(Modulation and Coding Scheme,调制编码方式)。
作为一个实施例,所述K个第一子信号中至少有两个第一子信号对应不同的MCS。
作为一个实施例,所述K个第一子信号中任意两个第一子信号对应相同的DMRS(DeModulation Reference Signals,解调参考信号)配置信息。
作为一个实施例,所述K个第一子信号中至少有两个第一子信号对应不同的DMRS配置信息。
作为一个实施例,所述K个第一子信号中至少有一个第一子信号所在的PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)不包括DMRS。
作为一个实施例,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括物理层上行数据。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块是一个TB。
作为一个实施例,所述第一比特块包括第一信息比特块和第一校验比特块,所述第一校验比特块由所述第一信息比特块的CRC(Cyclic Redundancy Check,循环冗余校验)比特块生成。
作为上述实施例的一个子实施例,所述第一校验比特块是所述第一信息比特块的CRC比特块。
作为上述实施例的一个子实施例,所述第一校验比特块是所述第一信息比特块的CRC比特块经过扰码之后的比特块。
作为一个实施例,所述第一比特块的大小是指:所述第一比特块包括的比特的数量。
作为一个实施例,所述第一比特块的大小是指:TBS(Transport Block Size,传输块大小)。
作为一个实施例,所述第一比特块的大小是指:所述第一比特块包括的TB的TBS。
作为一个实施例,所述第一信令被用于确定所述第一比特块的大小。
作为一个实施例,所述第一信令指示所述第一比特块的大小。
作为一个实施例,所述第一信令隐式的指示所述第一比特块的大小。
作为一个实施例,所述第一比特块的大小和所述K个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第一比特块的大小和所述K个时频资源块中的仅最早的一个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第一比特块的大小和所述K个时频资源块包括的资源粒子的总数有关。
作为一个实施例,所述第一比特块的大小和所述K个第一无线信号的被调度的MCS有关。
作为一个实施例,所述K1等于所述K。
作为一个实施例,所述K1小于所述K。
作为一个实施例,所述所述K1个第二子信号携带第二比特块包括:所述K1个第二子信号中的任一第二子信号携带所述第二比特块。
作为一个实施例,所述所述K1个第二子信号携带第二比特块包括:所述第二比特块包括S个第二比特子块,S是大于1的正整数;所述K1个第二子信号中的任一第二子信号携带所述S个第二比特子块中的正整数个第二比特子块。
作为一个实施例,所述所述K1个第二子信号携带第二比特块包括:所述K1个第二子信号中的任一第二子信号是所述第二比特块中的全部或部分比特依次经过CRC附着,信道编码,速率匹配,调制映射器,层映射器,转换预编码器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,所述所述K1个第二子信号携带第二比特块包括:所述K1个第二子信号中的任一第二子信号是所述第二比特块中的全部或部分比特依次经过CRC附着,信道编码,速率匹配,调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,所述所述K1个第二子信号携带第二比特块包括:所述第二比特块中的全部或部分比特被用于生成所述K1个第二子信号中的任一第二子信号。
作为一个实施例,所述K1个第二子信号中的任一第二子信号和所述第一比特块无关。
作为一个实施例,所述第二比特块包括正整数个比特。
作为一个实施例,所述第二比特块携带UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第二比特块携带HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement,混合自动重传请求确认)。
作为一个实施例,所述第二比特块携带SR(Scheduling Request,调度请求)。
作为一个实施例,所述第二比特块携带CRI(Channel-state information reference signals Resource Indicator,信道状态信息参考信号资源标识)。
作为一个实施例,所述第二比特块携带CSI(Channel State Information,信道状态信息)。
作为一个实施例,所述CSI包括CRI,PMI(Precoding Matrix Indicator,预编码矩阵标识),RSRP(Reference Signal Received Power,参考信号接收功率),RSRQ(Reference Signal Received Quality,参考信号接收质量)和CQI(Channel Quality Indicator,信道质量标识)中的一种或多种。
作为一个实施例,所述第二比特块包括第二信息比特块和第二校验比特块,所述第二校验比特块由所述第二信息比特块的CRC比特块生成。
作为上述实施例的一个子实施例,所述第二校验比特块是所述第二信息比特块的CRC比特块。
作为上述实施例的一个子实施例,所述第二校验比特块是所述第二信息比特块的CRC比特块经过扰码之后的比特块。
作为一个实施例,所述第二比特块包括S个第二比特子块,S是大于1的正整数;所述S个第二比特子块中存在给定第二比特子块,所述给定第二比特子块包括给定信息比特子块和给定校验比特子块,所述给定校验比特子块由所述给定信息比特子块的CRC比特块生成。
作为一个实施例,所述所述K1个第二子信号所占用的资源粒子的总数是指:所述K1个第二子信号分别所占用的资源粒子的数量之和。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量都有关。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数等于所述第一数值。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数小于所述第一数值。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的数量分别等于所述K1个第二数值。
作为一个实施例,所述K1个第二子信号中任一第二子信号所占用的资源粒子的数量等于对应的第二数值。
作为一个实施例,所述K1个第二子信号中存在一个第二子信号所占用的资源粒子的数量等于对应的第二数值。
作为一个实施例,所述K1个第二子信号中任一第二子信号所占用的资源粒子的数量小于对应的第二数值。
作为一个实施例,所述K1个第二子信号中存在一个第二子信号所占用的资源粒子的数量小于对应的第二数值。
作为一个实施例,所述K1个第二系数中的至少一个第二系数不等于所述第一系数。
作为一个实施例,所述K1个第二系数中的任一第二系数不等于所述第一系数。
作为一个实施例,所述K1个第二系数中的至少一个第二系数等于所述第一系数。
作为一个实施例,所述K1个第二系数中任一第二系数等于所述第一系数。
作为一个实施例,所述K1个第二系数中存在一个第二系数大于所述第一系数。
作为一个实施例,所述K1个第二系数中任一第二系数大于所述第一系数。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数不大于所述K1个第二数值的和与所述第一数值之间的最小值。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数小于所述K1个第二数值的和与所述第一数值之间的最小值。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数等于所述K1个第二数值的和与所述第一数值之间的最小值。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME/AMF/UPF211提供承载和 连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述用户设备包括所述UE201。
作为一个实施例,本申请中的所述基站设备包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第二信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第二信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述K个第一无线信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述K个第一无线信号的接收者包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述K个第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459 基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述第一信令和所述第二信令;分别在本申请中的所述K个时频资源块中发送本申请中的所述K个第一无线信号。其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令和所述第二信令;分别在本申请中的所述K个时频资源块中发送本申请中的所述K个第一无线信号。其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述第一信令和所述第二信令;分别在本申请中的所述K个时频资源块中接收本申请中的所述K个第一无线信号。其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信 号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令和所述第二信令;分别在本申请中的所述K个时频资源块中接收本申请中的所述K个第一无线信号。其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于分别在本申请中的所述K个时频资源块中接收本申请中的所述K个第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于分别在本申请中的所述K个时频资源块中发送本申请中的所述K个第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点N1是第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51和F52中的步骤分别是可选的。
对于第二节点N1,在步骤S5101中发送第一信息;在步骤S511中发送第二信令;在步骤S5102中发送第二无线信号;在步骤S512中发送第一信令;在步骤S513中分别在K个时频资源块中接收K个第一无线信号。
对于第一节点U2,在步骤S5201中接收第一信息;在步骤S521中接收第二信令;在步骤S5202中接收第二无线信号;在步骤S522中接收第一信令;在步骤S523中分别在K个时频资源块中发送K个第一无线信号。
在实施例5中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被所述第一节点U2用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被第一节点U2用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被第一节点U2用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被第一节点U2用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送。所述第二信令被第一节点U2用于确定所述第二无线信号所占用的时频资源,所述第二无线信号被第一节点U2用于生成所述第二比特块。
作为一个实施例,所述第一数值和所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第二数值分别和所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用的资源粒子的总数有关。
作为一个实施例,第一类数值和第一偏移量被第一节点U2用于确定所述K1个第二子信号所占用的资源粒子的总数,所述第一类数值和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第一信息指示所述第一系数。
作为一个实施例,所述第一信息指示所述第一系数和所述K1个第二系数。
作为一个实施例,所述第二信令被第一节点U2用于确定第二空口资源块,所述第二空口资源块被第一节点U2用于确定所述K1个第一无线信号。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述K个第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述K个第一无线信号分别在K个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述上行物理层数据信道是PUSCH。
作为一个实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为一个实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
实施例6
实施例6示例了根据本申请的一个实施例的K个时频资源块在时频域的资源映射的示意图;如附图6所示。在实施例6中,所述K个时频资源块在时域两两相互正交。在附图6中,所述K个时频资源块的索引分别是#0,...,#K-1。
作为一个实施例,所述K个时频资源块中的每个时频资源块包括正整数个资源粒子。
作为一个实施例,所述K个时频资源块中的每个时频资源块在时域包括正整数个多载波符号。
作为一个实施例,所述K个时频资源块中的每个时频资源块在时域包括正整数个连续的多载波符号。
作为一个实施例,所述K个时频资源块中的每个时频资源块在频域包括正整数个子载波。
作为一个实施例,所述K个时频资源块中的每个时频资源块在频域包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述K个时频资源块中的每个时频资源块在频域包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述K等于2,所述K个时频资源块在时域相互正交。
作为一个实施例,所述K大于2,所述K个时频资源块中的任意两个时频资源块在时域相互正交。
作为一个实施例,所述K个时频资源块在时域是连续的。
作为一个实施例,所述K个时频资源块中存在两个时频资源块在时域不连续。
作为一个实施例,所述K个时频资源块中任意两个时频资源块包括相同数量的资源粒子。
作为一个实施例,所述K个时频资源块中有两个时频资源块包括的资源粒子的数量不同。
作为一个实施例,所述K个时频资源块中任意两个时频资源块在时域包括的多载波符号的数量相同。
作为一个实施例,所述K个时频资源块中有两个时频资源块在时域包括的多载波符号的 数量不同。
作为一个实施例,所述K个时频资源块中任意两个时频资源块在频域包括的子载波的数量相同。
作为一个实施例,所述K个时频资源块中任意两个时频资源块占用相同的频域资源。
作为一个实施例,所述K个时频资源块在频域属于同一个载波(Carrier)。
作为一个实施例,所述K个时频资源块在频域属于同一个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述K个时频资源块分别包括被分配给K个PUSCH的时频资源,本申请中的所述K个第一无线信号分别在所述K个PUSCH上传输。
实施例7
实施例7示例了根据本申请的一个实施例的K个时频资源块在时频域的资源映射的示意图;如附图7所示。
作为一个实施例,所述K个时频资源块中有两个时频资源块在频域包括的子载波的数量不同。
作为一个实施例,所述K个时频资源块中存在两个时频资源块占用不同的频域资源。
作为一个实施例,所述K个时频资源块中存在两个时频资源块占用相互正交的频域资源。
实施例8
实施例8示例了根据本申请的一个实施例的第一信令的示意图;如附图8所示。在实施例8中,所述第一信令被用于确定本申请中的所述K个时频资源块和本申请中的所述第一比特块的大小。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第一信令是用于Configured UL grant(配置上行授予)的动态信令。
作为一个实施例,所述第一信令是用于Configured UL grant激活(activation)的动态信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括用于上行授予(UpLink Grant)的DCI。
作为一个实施例,所述第一信令包括用于Configured UL grant的DCI。
作为一个实施例,所述第一信令包括用于Configured UL grant激活的DCI。
作为一个实施例,所述第一信令包括用于Configured UL grant Type 2(第二类型)激活的DCI。
作为一个实施例,所述第一信令是用户特定(UE-specific)的。
作为一个实施例,所述第一信令包括被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所标识的DCI。
作为一个实施例,所述第一信令包括CRC被C-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令包括被CS(Configured Scheduling,配置调度)-RNTI所标识的DCI。
作为一个实施例,所述第一信令包括CRC被CS-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令包括被MCS-C-RNTI所标识的DCI。
作为一个实施例,所述第一信令包括CRC被MCS-C-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令被用于确定所述K个时频资源块。
作为一个实施例,所述第一信令指示所述K个时频资源块。
作为一个实施例,所述第一信令显式的指示所述K个时频资源块。
作为一个实施例,所述第一信令显式的指示所述K个时频资源块中的每个时频资源块。
作为一个实施例,所述第一信令显式的指示所述K个时频资源块中最早的一个时频资源块,所述第一信令隐式的指示所述K个时频资源块中除了所述最早的一个时频资源块以外的其他时频资源块。
作为一个实施例,所述第一信令包括第一域,所述第一信令中的所述第一域指示所述K个时频资源块所占用的频域资源。
作为上述实施例的一个子实施例,所述第一信令中的所述第一域包括Frequency domain resource assignment(频域资源分配)域(field)中的全部或部分信息。
作为上述实施例的一个子实施例,所述第一信令中的所述第一域包括frequencyDomainAllocation(频域分配)域(field)中的全部或部分信息。
作为一个实施例,所述第一信令包括第二域,所述第一信令中的所述第二域指示所述K个时频资源块所占用的时域资源。
作为上述实施例的一个子实施例,所述第一信令中的所述第二域包括Time domain resource assignment(时域资源分配)域(field)中的全部或部分信息。
作为上述实施例的一个子实施例,所述第一信令中的所述第二域包括timeDomainOffset(时域偏移量)域(field)中的全部或部分信息。
作为上述实施例的一个子实施例,所述第一信令中的所述第二域包括timeDomainAllocation(时域分配)域(field)中的全部或部分信息。
作为上述实施例的一个子实施例,所述第一信令中的所述第二域包括periodicity(周期)域(field)中的全部或部分信息。
作为一个实施例,所述Frequency domain resource assignment域的具体定义参见3GPP TS38.212。
作为一个实施例,所述frequencyDomainAllocation域的具体定义参见3GPP TS38.331。
作为一个实施例,所述Time domain resource assignment域的具体定义参见3GPP TS38.212。
作为一个实施例,所述timeDomainOffset域的具体定义参见3GPP TS38.331。
作为一个实施例,所述timeDomainAllocation域的具体定义参见3GPP TS38.331。
作为一个实施例,所述periodicity域的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一信令指示所述K个第一无线信号的调度信息。
作为一个实施例,所述K个第一无线信号的调度信息包括所述K个第一无线信号中每个第一无线无线信号的{所占用的时域资源,所占用的频域资源,被调度的MCS,DMRS配置信息,HARQ进程号(process number),RV,NDI}中的一种或多种。
作为一个实施例,所述DMRS配置信息包括所述DMRS的{所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),w f(k′),w t(l′)}中的一种或多种。所述w f(k′)和所述w t(l′)分别是频域和时域上的扩频序列,所述w f(k′)和所述w t(l′)的具体定义参见3GPP TS38.211的6.4.1章节。
作为一个实施例,所述第一信令显式的指示所述K个第一无线信号的调度信息。
作为一个实施例,所述第一信令显式的指示所述K个第一无线信号中最早的一个第一无线信号的调度信息,所述第一信令隐式的指示所述K个第一无线信号中除了所述最早的一个第一无线信号以外的其他第一无线信号的调度信息。
作为一个实施例,所述第一信令指示所述K。
作为一个实施例,所述第一信令显式的指示所述K。
作为一个实施例,所述第一信令隐式的指示所述K。
作为一个实施例,所述第一信令指示本申请中的所述第一偏移量。
作为一个实施例,所述第一信令显式的指示本申请中的所述第一偏移量。
作为一个实施例,所述第一信令包括第三域,所述第一信令中的所述第三域指示本申请中的所述第一偏移量。
作为上述实施例的一个子实施例,所述第一信令中的所述第三域包括beta_offset indicator(beta偏移量指示)域(field)中的全部或部分信息。
作为一个实施例,所述beta_offset indicator域的具体定义参见3GPP TS38.212。
作为一个实施例,本申请中的所述第一偏移量是P1个候选偏移量中的一个候选偏移量,P1是大于1的正整数;所述第一信令从所述P1个候选偏移量中指示所述第一偏移量。
实施例9
实施例9示例了根据本申请的一个实施例的第二信令的示意图;如附图9所示。在实施例9中,所述第二信令被用于确定本申请中的所述第二比特块。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是层1(L1)信令。
作为一个实施例,所述第二信令是层1(L1)的控制信令。
作为一个实施例,所述第二信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令包括用于下行授予(DownLink Grant)的DCI。
作为一个实施例,所述第二信令是用户特定(UE-specific)的。
作为一个实施例,所述第二信令包括被C-RNTI所标识的DCI。
作为一个实施例,所述第二信令包括CRC被C-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第二信令包括被MCS-C-RNTI所标识的DCI。
作为一个实施例,所述第二信令包括CRC被MCS-C-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第二信令包括被SP(Semi-Persistent,准静态)-CSI(Channel State Information,信道状态信息)-RNTI所标识的DCI。
作为一个实施例,所述第二信令包括CRC被SP-CSI-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第二信令是更高层(higher layer)信令。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令是MAC CE信令。
作为一个实施例,所述所述第二信令被用于确定所述第二比特块包括:所述第二信令被用于确定本申请中的所述第二无线信号所占用的时频资源,所述第二无线信号被用于生成所述第二比特块。
实施例10
实施例10示例了根据本申请的一个实施例的K个第一无线信号和K1个第一无线信号之间的关系的示意图;如附图10所示。在实施例10中,所述K个第一无线信号中的仅所述K1个第一无线信号分别包括本申请中的所述K1个第二子信号。
作为一个实施例,所述K1个无线信号在所述K个无线信号中的位置是连续的。
作为一个实施例,所述K1个无线信号在时域上属于同一个时隙(slot)。
实施例11
实施例11示例了根据本申请的一个实施例的K1个第二子信号分别所占用的资源粒子的 数量的示意图;如附图11所示。在实施例11中,所述K1个第二子信号所占用的资源粒子的数量分别不大于本申请中的所述K1个第二数值。在附图11中,对于任一不大于所述K1的正整数i,所述K1个第二子信号中的第i个第二子信号所占用的资源粒子的数量用Q i表示;所述K1个第二子信号所占用的资源粒子的总数用Q all表示。所述K1个第二数值的索引分别是#0,...,#K1-1。所述K1个第二子信号中的第i个第二子信号和第二数值#i-1对应。
在实施例11中,当所述i等于1时,所述K1个第二子信号中的第i个第二子信号所占用的资源粒子的数量是所述K1个第二子信号所占用的资源粒子的总数和所述第i个第二子信号对应的第二数值之间的最小值。当所述i大于1时,所述K1个第二子信号中的第i个第二子信号所占用的资源粒子的数量是第一整数和所述第i个第二子信号对应的第二数值之间的最小值;所述第一整数是所述K1个第二子信号所占用的资源粒子的总数与第二整数的差和0之间的最大值,所述第二整数是所述K1个第二子信号中的第1个第二子信号到第i-1个第二子信号分别所占用的资源粒子的数量之和。
实施例12
实施例12示例了根据本申请的一个实施例的K1个第二子信号分别所占用的资源粒子的数量的示意图;如附图12所示。在附图12中,对于任一不大于所述K1的正整数i,所述K1个第二子信号中的第i个第二子信号所占用的资源粒子的数量用Q i表示;所述K1个第二子信号所占用的资源粒子的总数用Q all表示。所述K1个第二数值的索引分别是#0,...,#K1-1。所述K1个第二子信号中的第i个第二子信号和第二数值#i-1对应。
在实施例12中,当所述i等于K1时,所述K1个第二子信号中的第i个第二子信号所占用的资源粒子的数量是所述K1个第二子信号所占用的资源粒子的总数和所述第i个第二子信号对应的第二数值之间的最小值。当所述i小于所述K1时,所述K1个第二子信号中的第i个第二子信号所占用的资源粒子的数量是第三整数和所述第i个第二子信号对应的第二数值之间的最小值;所述第三整数是所述K1个第二子信号所占用的资源粒子的总数与第四整数的差和0之间的最大值,所述第四整数是所述K1个第二子信号中的第i+1个第二子信号到第K1个第二子信号分别所占用的资源粒子的数量之和。
实施例13
实施例13示例了根据本申请的一个实施例的K1个第二子信号分别所占用的资源粒子的数量的示意图;如附图13所示。在实施例13中,所述K1个第二子信号所占用的资源粒子的数量分别等于本申请中的所述K1个第二数值,本申请中的所述K1个第二系数分别被用于确定所述K1个第二数值。在附图13中,对于任一不大于所述K1的正整数i,所述K1个第二子信号中的第i个第二子信号和第二数值#i-1对应。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的数量分别等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积。
作为一个实施例,所述K1个第二子信号中任一第二子信号所占用的资源粒子的数量等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向上取整或者向下取整。
作为一个实施例,所述K1个第二子信号中存在一个第二子信号所占用的资源粒子的数量等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向上取整。
作为一个实施例,所述K1个第二子信号中存在一个第二子信号所占用的资源粒子的数量等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向下取整。
作为一个实施例,所述K1个第二子信号中的前K1-1个第二子信号所占用的资源粒子的数量分别等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向下取整,所述K1个第二子信号中的最后一个第二子信号所占用的资源粒子的数量等于所述K1个第二子信号所占用的资源粒子的总数减去所述前K1-1个第二子信号分别所占用的资源粒 子的数量之和。
作为一个实施例,所述K1个第二子信号中的前K1-1个第二子信号所占用的资源粒子的数量分别等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向上取整,所述K1个第二子信号中的最后一个第二子信号所占用的资源粒子的数量等于所述K1个第二子信号所占用的资源粒子的总数减去所述前K1-1个第二子信号分别所占用的资源粒子的数量之和。
作为一个实施例,所述K1个第二子信号中的前K1-1个第二子信号所占用的资源粒子的数量分别等于最接近对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积的正整数,所述K1个第二子信号中的最后一个第二子信号所占用的资源粒子的数量等于所述K1个第二子信号所占用的资源粒子的总数减去所述前K1-1个第二子信号分别所占用的资源粒子的数量之和。
作为一个实施例,给定数值的向上取整等于不小于所述给定数值的最小整数。
作为一个实施例,给定数值的向下取整等于不大于所述给定数值的最大整数。
实施例14
实施例14示例了根据本申请的一个实施例的第一数值的示意图;如附图14所示。在实施例14中,所述第一数值等于本申请中的所述第一系数乘以第一参考数值后向上取整;所述第一参考数值和本申请中所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。所述第一参考数值等于K1个第一RE数之和,所述K1个第一RE数分别和所述K1个时频资源块包括的资源粒子的数量有关。所述K1个时频资源块和K1个PUSCH一一对应,本申请中的所述K1个第一无线信号分别在所述K1个PUSCH上传输。在附图14中,所述K1个第一RE数的索引分别是#0,...,#K1-1。
作为一个实施例,所述第一数值是正整数。
作为一个实施例,所述第一系数是非负实数。
作为一个实施例,所述第一系数是不大于1的非负实数。
作为一个实施例,所述第一系数是正实数。
作为一个实施例,所述第一系数是不大于1的正实数。
作为一个实施例,所述第一系数是{0.5,0.65,0.8,1}中之一。
作为一个实施例,所述第一系数是更高层参数(higher layer parameter)scaling。
作为一个实施例,所述更高层参数scaling的具体定义参见3GPP TS38.212的6.3.2章节和3GPP TS38.331。
作为一个实施例,所述第一系数是α。
作为一个实施例,所述α的具体定义参见3GPP TS38.212的6.3.2章节。
作为一个实施例,所述第一数值和所述第一系数线性相关。
作为一个实施例,所述第一数值和本申请中的所述K个时频资源块中不属于所述K1个时频资源块的任一时频资源块包括的资源粒子的数量无关。
作为一个实施例,所述第一数值和所述K1个时频资源块中任一时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第一数值和所述K1个时频资源块中任一时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述第一数值和所述K1个时频资源块包括的资源粒子的总数有关。
作为一个实施例,所述第一数值和所述K1个时频资源块包括的未被分配给参考信号的资源粒子的总数有关。
作为一个实施例,所述参考信号包括DMRS。
作为一个实施例,所述参考信号包括PTRS(Phase-Tracking Reference Signal,相位跟踪参考信号)。
作为一个实施例,所述第一参考数值和所述本申请中的K个时频资源块中不属于所述K1个时频资源块的任一时频资源块包括的资源粒子的数量无关。
作为一个实施例,所述第一参考数值和所述K1个时频资源块包括的未被分配给参考信号的资源粒子的总数有关。
作为一个实施例,所述第一参考数值等于所述K1个时频资源块包括的未被分配给参考信号的资源粒子的总数。
作为一个实施例,所述K1个第一RE数分别和所述K1个时频资源块包括的未被分配给的参考信号的资源粒子的数量有关。
作为一个实施例,对于所述K1个第一RE数中的一个给定第一RE数,所述给定第一RE数等于被分配给对应的PUSCH的多载波符号中在时域上位于所述对应的PUSCH的最早的DMRS符号之后并且不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图14中,所述给定第一RE数等于在给定时频资源块中所有小点填充的方格所代表的多载波符号上被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数,所述给定时频资源块是所述K1个时频资源块中和所述给定第一RE数对应的时频资源块。
作为上述实施例的一个子实施例,所述给定第一RE数是所述K1个第一RE数中的任一第一RE数。
作为一个实施例,对于所述K1个第一RE数中的一个给定第一RE数,所述给定第一RE数等于被分配给对应的PUSCH的多载波符号中不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图14中,所述给定第一RE数等于在给定时频资源块中所有小点填充和横线填充的方格所代表的多载波符号上被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数,所述给定时频资源块是所述K1个时频资源块中和所述给定第一RE数对应的时频资源块。
作为上述实施例的一个子实施例,所述给定第一RE数是所述K1个第一RE数中的任一第一RE数。
实施例15
实施例15示例了根据本申请的一个实施例的第一数值的示意图;如附图15所示。在实施例15中,所述第一数值等于本申请中的所述第一系数乘以实施例14中的所述第一参考数值后向上取整,再减去第一参考RE数,所述第一参考RE数是非负整数。
作为一个实施例,所述第一参考RE数是HARQ-ACK在所述K1个时频资源块中所占用的RE的数量。
作为一个实施例,所述第一参考RE数是HARQ-ACK在所述K1个时频资源块中所占用的RE的数量和CSI part 1在所述K1个时频资源块中所占用的RE的数量之和。
作为一个实施例,所述CSI part 1的具体定义参见3GPP TS38.212。
实施例16
实施例16示例了根据本申请的一个实施例的第一数值的示意图;如附图16所示。在实施例16中,所述第一数值等于本申请中的所述第一系数乘以第二参考数值,再乘以本申请中的所述K1与本申请中的所述K的比值后向上取整向上取整;所述第二参考数值和本申请中的所述K个时频资源块包括的资源粒子的数量有关。所述第二参考数值等于K1个第二RE数之和,所述K1个第二RE数分别和所述K个时频资源块包括的资源粒子的数量有关。所述K个时频资源块和K个PUSCH一一对应,本申请中的所述K个第一无线信号分别在所述K个PUSCH上传输。在附图16中,所述K1个第二RE数的索引分别是#0,...,#K1-1。
作为一个实施例,所述第一数值和所述K1与所述K的比值有关。
作为一个实施例,所述第一数值和所述K个时频资源块中任一时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第一数值和所述K个时频资源块中任一时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述第一数值和所述K个时频资源块包括的资源粒子的总数有关。
作为一个实施例,所述第一数值和所述K个时频资源块包括的未被分配给参考信号的资源粒子的总数有关。
作为一个实施例,所述第二参考数值和所述K个时频资源块包括的未被分配给参考信号的资源粒子的总数有关。
作为一个实施例,所述第二参考数值等于所述K个时频资源块包括的未被分配给参考信号的资源粒子的总数。
作为一个实施例,所述K个第二RE数分别和所述K个时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,对于所述K个第二RE数中的一个给定第二RE数,所述给定第二RE数等于被分配给对应的PUSCH的多载波符号中在时域上位于所述对应的PUSCH的最早的DMRS符号之后并且不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图16中,所述给定第二RE数等于在给定时频资源块中所有小点填充的方格所代表的多载波符号上被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数,所述给定时频资源块是所述K个时频资源块中和所述给定第二RE数对应的时频资源块。
作为上述实施例的一个子实施例,所述给定第二RE数是所述K个第二RE数中的任一第二RE数。
作为一个实施例,对于所述K个第二RE数中的一个给定第二RE数,所述给定第二RE数等于被分配给对应的PUSCH的多载波符号中不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图16中,所述给定第二RE数等于在给定时频资源块中所有小点填充和横线填充的方格所代表的多载波符号上被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数,所述给定时频资源块是所述K个时频资源块中和所述给定第二RE数对应的时频资源块。
作为上述实施例的一个子实施例,所述给定第二RE数是所述K个第二RE数中的任一第二RE数。
实施例17
实施例17示例了根据本申请的一个实施例的第一数值的示意图;如附图17所示。在实施例17中,所述第一数值等于本申请中的所述第一系数乘以实施例16中的所述第二参考数值,再乘以本申请中的所述K1与本申请中的所述K的比值后向上取整,再减去实施例15中的所述第一参考RE数。
实施例18
实施例18示例了根据本申请的一个实施例的K1个第二数值的示意图;如附图18所示。在实施例18中,本申请中的所述K1个第二系数分别被用于确定所述K1个第二数值。所述K1个第二数值和K1个参考数值一一对应,所述K1个第二数值中的任一第二数值等于对应的第二系数乘以对应的参考数值后向上取整;所述K1个参考数值分别和本申请中的所述K1个时频资源块包括的资源粒子的数量有关。所述K1个时频资源块和K1个PUSCH一一对应, 本申请中的所述K1个第一无线信号分别在所述K1个PUSCH上传输。在附图18中,所述K1个第二数值,所述K1个第二系数和所述K1个参考数值的索引分别是#0,...,#K1-1。对于任一小于所述K1的非负整数i,第二数值#i和第二系数#i以及参考数值#i对应。
作为一个实施例,所述K1个第二数值分别是正整数。
作为一个实施例,所述K1个第二数值中存在两个不相等的第二数值。
作为一个实施例,所述K1个第二数值中任意两个第二数值相等。
作为一个实施例,所述K1个第二系数分别是非负实数。
作为一个实施例,所述K1个第二系数分别是不大于1的非负实数。
作为一个实施例,所述K1个第二系数分别是正实数。
作为一个实施例,所述K1个第二系数分别是不大于1的正实数。
作为一个实施例,所述K1个第二系数中存在两个不相等的第二系数。
作为一个实施例,所述K1个第二系数中任意两个第二系数相等。
作为一个实施例,所述K1个第二系数中的任一第二系数是{0.5,0.65,0.8,1}中之一。
作为一个实施例,所述K1个第二系数均由更高层(higher layer)信令配置。
作为一个实施例,所述K1个第二系数均由更高层参数(higher layer parameter)配置。
作为一个实施例,所述K1个第二系数分别是半静态(semi statically)配置的。
作为一个实施例,所述K1个第二系数中的任一第二系数和本申请中的所述K个时频资源块中的任一时频资源块包括的RE的数量无关。
作为一个实施例,所述K1个第二系数中任一第二系数和所述K1无关。
作为一个实施例,所述K1个第二系数中任一第二系数和所述K无关。
作为一个实施例,所述K1个第二系数中任一第二系数与所述K1和所述K的比值无关。
作为一个实施例,所述K1个第二数值分别和所述K1个第二系数线性相关。
作为一个实施例,所述K1个第二数值中任一第二数值和本申请中的所述K个时频资源块中不属于所述K1个时频资源块的任一时频资源块包括的资源粒子的数量无关。
作为一个实施例,所述K1个第二数值中任一第二数值和本申请中的所述K1个第二子信号所占用的资源粒子的总数无关。
作为一个实施例,所述K1个第二数值分别和所述K1个时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述K1个参考数值分别和所述K1个时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述K1个参考数值中的任一参考数值等于对应的时频资源块包括的未被分配给参考信号的资源粒子的数量。
作为一个实施例,对于所述K1个参考数值中的一个给定参考数值,所述给定参考数值等于被分配给对应的PUSCH的多载波符号中在时域上位于所述对应的PUSCH的最早的DMRS符号之后并且不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图18中,参考数值#i等于在时频资源块#i中所有小点填充的方格所代表的多载波符号上被分配给PUSCH#i并且未被分配给PTRS的RE的总数;所述时频资源块#i是所述K1个时频资源块中和所述参考数值#i对应的时频资源块,所述PUSCH#i是所述K1个PUSCH中和所述时频资源块#i对应的PUSCH。
作为上述实施例的一个子实施例,所述给定参考数值是所述K1个给定参考数值中的任一给定参考数值。
作为一个实施例,对于所述K1个参考数值中的一个给定参考数值,所述给定参考数值等于被分配给对应的PUSCH的多载波符号中不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图18中,参考数值#i等于在时频资源块#i中所有 小点填充和横线填充的方格所代表的多载波符号上被分配给PUSCH#i并且未被分配给PTRS的RE的总数,所述时频资源块#i是所述K1个时频资源块中和所述参考数值#i对应的时频资源块,所述PUSCH#i是所述K1个PUSCH中和所述时频资源块#i对应的PUSCH。
作为上述实施例的一个子实施例,所述给定参考数值是所述K1个给定参考数值中的任一给定参考数值。
实施例19
实施例19示例了根据本申请的一个实施例的K1个第二数值的示意图;如附图19所示。在实施例19中,本申请中的所述K1个第二系数分别被用于确定所述K1个第二数值,所述K1个第二数值和实施例18中的所述K1个参考数值一一对应,所述K1个第二数值和K1个第三参考RE数一一对应。所述K1个第二数值中的任一第二数值等于对应的第二系数乘以对应的参考数值后向上取整,再减去对应的第三参考RE数。所述K1个第三参考RE数分别是非负整数。
作为一个实施例,所述K1个第三参考RE数中的任一第三参考RE数是HARQ-ACK在对应的时频资源块中所占用的RE的数量。
作为一个实施例,所述K1个第三参考RE数中的任一第三参考RE数是HARQ-ACK和CSI part 1在对应的时频资源块中所占用的RE的数量之和。
实施例20
实施例20示例了根据本申请的一个实施例的K1个第二数值的示意图;如附图20所示。在实施例20中,本申请中的所述K1个第二系数分别被用于确定所述K1个第二数值。所述K1个第二数值中任一第二数值等于对应的第二系数和本申请中的所述K1个第二子信号所占用的资源粒子的总数的乘积向上取整或者向下取整。所述K1个第二系数和K1个第三RE数一一对应,所述K1个第二系数中的任一第二系数是对应的第三RE数和所述K1个第三RE数之和的比值;所述K1个第三RE数分别是正整数。所述K1个第三RE数分别和本申请中的所述K1个时频资源块包括的资源粒子的数量有关。所述K1个时频资源块和K1个PUSCH一一对应,本申请中的所述K1个第一无线信号分别在所述K1个PUSCH上传输。在附图20中,所述K1个第二数值,所述K1个第二系数和所述K1个第三RE数的索引分别是#0,...,#K1-1。对于任一小于所述K1的非负整数i,第二数值#i和第二系数#i以及第三RE数#i对应。
作为一个实施例,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用的资源粒子的总数线性相关。
作为一个实施例,所述K1个第二数值中的任一第二数值等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积。
作为一个实施例,所述K1个第二数值中存在一个第二数值等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向上取整。
作为一个实施例,所述K1个第二数值中存在一个第二数值等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向下取整。
作为一个实施例,所述K1个第二数值中的前K1-1个第二数值分别等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向下取整,所述K1个第二数值中的最后一个第二数值等于所述K1个第二子信号所占用的资源粒子的总数减去所述前K1-1个第二数值之和。
作为一个实施例,所述K1个第二数值中的前K1-1个第二数值分别等于对应的第二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积向上取整,所述K1个第二数值中的最后一个第二数值等于所述K1个第二子信号所占用的资源粒子的总数减去所述前K1-1个第二数值之和。
作为一个实施例,所述K1个第二数值中的前K1-1个第二数值分别等于最接近对应的第 二系数和所述K1个第二子信号所占用的资源粒子的总数的乘积的正整数,所述K1个第二数值中的最后一个第二数值等于所述K1个第二子信号所占用的资源粒子的总数减去所述前K1-1个第二数值之和。
作为一个实施例,本申请中的所述第一信令被用于确定所述K1个第二系数。
作为一个实施例,本申请中的所述第一信令隐式的指示所述K1个第二系数。
作为一个实施例,本申请中的所述第一信令和本申请中的所述第二信令共同被用于确定所述K1个第二系数。
作为一个实施例,所述K1个第二系数中的任一第二系数和所述K1有关。
作为一个实施例,所述K1个第二系数中的任一第二系数是1/K1。
作为一个实施例,所述K1个第二系数分别和所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第二系数分别和所述K1个时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述K1个第三RE数分别和所述K1个时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述K1个第三RE数分别是所述K1个时频资源块包括的未被分配给参考信号的资源粒子的数量。
作为一个实施例,对于所述K1个第三RE数中的一个给定第三RE数,所述给定第三RE数等于被分配给对应的PUSCH的多载波符号中在时域上位于所述对应的PUSCH的最早的DMRS符号之后并且不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图20中,第三RE数#i等于在时频资源块#i中所有小点填充的方格所代表的多载波符号上被分配给PUSCH#i并且未被分配给PTRS的RE的总数;所述时频资源块#i是所述K1个时频资源块中和所述第三RE数#i对应的时频资源块,所述PUSCH#i是所述K1个PUSCH中和所述时频资源块#i对应的PUSCH。
作为上述实施例的一个子实施例,所述给定第三RE数是所述K1个第三RE数中的任一第三RE数。
作为一个实施例,对于所述K1个第三RE数中的一个给定第三RE数,所述给定第三RE数等于被分配给对应的PUSCH的多载波符号中不包括所述对应的PUSCH的DMRS的所有多载波符号上,被分配给所述对应的PUSCH并且未被分配给PTRS的RE的总数。
作为上述实施例的一个子实施例,在附图20中,第三RE数#i等于在时频资源块#i中所有小点填充和横线填充的方格所代表的多载波符号上被分配给PUSCH#i并且未被分配给PTRS的RE的总数;所述时频资源块#i是所述K1个时频资源块中和所述第三RE数#i对应的时频资源块,所述PUSCH#i是所述K1个PUSCH中和所述时频资源块#i对应的PUSCH。
作为上述实施例的一个子实施例,所述给定第三RE数是所述K1个第三RE数中的任一第三RE数。
实施例21
实施例21示例了根据本申请的一个实施例的第一类数值和第一偏移量被用于确定K1个第二子信号所占用的资源粒子的总数的示意图;如附图21所示。在实施例21中,所述K1个第二子信号所占用的资源粒子的总数是所述第一类数值和所述第一偏移量的乘积向上取整后与本申请中的所述第一数值之间的最小值。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量都有关。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数和所述K1个时频资源块中任一时频资源块包括的资源粒子的数量有关,并且和所述K个时频资源块中不属于所述 K1个时频资源块的任一时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数和所述K个时频资源块中任一时频资源块包括的未被分配给参考信号的资源粒子的数量有关。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数和所述K个时频资源块包括的资源粒子的总数有关。
作为一个实施例,所述K1个第二子信号所占用的资源粒子的总数和所述K个时频资源块包括的未被分配给参考信号的资源粒子的总数有关。
作为一个实施例,所述第一偏移量是非负实数。
作为一个实施例,所述第一偏移量大于1。
作为一个实施例,所述第一偏移量等于1。
作为一个实施例,所述第一偏移量小于1。
作为一个实施例,所述第一偏移量等于0。
作为一个实施例,所述第一偏移量大于0。
作为一个实施例,所述第一偏移量是
Figure PCTCN2020076941-appb-000001
作为一个实施例,所述
Figure PCTCN2020076941-appb-000002
的具体定义参见3GPP TS38.212的6.3.2章节。
作为一个实施例,所述第一偏移量是
Figure PCTCN2020076941-appb-000003
作为一个实施例,所述
Figure PCTCN2020076941-appb-000004
的具体定义参见3GPP TS38.212的6.3.2章节。
作为一个实施例,所述第一偏移量是
Figure PCTCN2020076941-appb-000005
作为一个实施例,所述
Figure PCTCN2020076941-appb-000006
的具体定义参见3GPP TS38.212的6.3.2章节。
作为一个实施例,所述第一偏移量是
Figure PCTCN2020076941-appb-000007
作为一个实施例,所述
Figure PCTCN2020076941-appb-000008
的具体定义参见3GPP TS36.212(V15.3.0)的5.2章节。
作为一个实施例,所述第一偏移量由更高层参数(higher layer parameter)betaOffsetACK-Index1,betaOffsetACK-Index2和betaOffsetACK-Index3确定。
作为一个实施例,所述更高层参数betaOffsetACK-Index1,betaOffsetACK-Index2和betaOffsetACK-Index3的具体定义参见3GPP TS38.213的9.3章节和3GPP TS38.331。
作为一个实施例,所述第一偏移量由更高层参数(higher layer parameter)betaOffsetCSI-Part1-Index1和betaOffsetCSI-Part1-Index2确定。
作为一个实施例,所述更高层参数betaOffsetCSI-Part1-Index1和betaOffsetCSI-Part1-Index2的具体定义参见3GPP TS38.213的9.3章节和3GPP TS38.331。
作为一个实施例,所述第一偏移量由更高层参数(higher layer parameter)betaOffsetCSI-Part2-Index1和betaOffsetCSI-Part2-Index2确定。
作为一个实施例,所述更高层参数betaOffsetCSI-Part2-Index1和betaOffsetCSI-Part2-Index2的具体定义参见3GPP TS38.213的9.3章节和3GPP TS38.331。
实施例22
实施例22示例了根据本申请的一个实施例的第一类数值和第一偏移量被用于确定K1个第二子信号所占用的资源粒子的总数的示意图;如附图22所示。在实施例22中,所述K1个第二子信号所占用的资源粒子的总数是{所述第一类数值和所述第一偏移量的乘积向上取整,本申请中的所述第一数值,本申请中的所述K1个第二数值之和}三者之间的最小值。在附图22中,所述K1个第二数值的索引分别是#0,...,#K1-1。
实施例23
实施例23示例了根据本申请的一个实施例的第一类数值的示意图;如附图23所示。在实施例23中,所述第一类数值等于第一类参考数值和本申请中的所述第二比特块包括的比特的数量的乘积;所述第一类参考数值和本申请中的所述K个时频资源块中任一时频资源块包 括的资源粒子的数量有关,所述第一类参考数值和本申请中的所述第一比特块包括的比特的数量有关。
作为一个实施例,所述第一类参考数值是正实数。
作为一个实施例,所述第一类参考数值和所述K个时频资源块包括的未被分配给参考信号的资源粒子的总数有关。
作为一个实施例,所述第一类参考数值和所述K个时频资源块包括的未被分配给参考信号的资源粒子的总数成正比。
作为一个实施例,所述第一类参考数值和所述第一比特块包括的比特的数量成反比。
作为上述实施例的一个子实施例,所述第一类参考数值等于
Figure PCTCN2020076941-appb-000009
所述C UL-SCH是所述第一比特块包括的码块的数量,所述K r是第r个码块包括的比特的数量,所述
Figure PCTCN2020076941-appb-000010
是被分配给K个PUSCH的多载波符号的总数,所述
Figure PCTCN2020076941-appb-000011
是第l个多载波符号上可以被UCI占用的RE的数量。本申请中的所述K个第一无线信号分别在所述K个PUSCH上传输。所述C UL-SCH,所述K r,和所述
Figure PCTCN2020076941-appb-000012
的具体定义参见3GPP TS38.212的6.3.2.4章节。
实施例24
实施例24示例了根据本申请的一个实施例的第一信息的示意图;如附图24所示。在实施例24中,所述第一信息指示本申请中的所述第一系数。
作为一个实施例,所述第一信息指示所述第一系数和本申请中的所述K1个第二系数中的仅所述第一系数。
作为一个实施例,所述第一信息显式的指示所述第一系数。
作为一个实施例,所述第一信息由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息由RRC信令承载。
作为一个实施例,所述第一信息由MAC CE信令承载。
作为一个实施例,所述第一信息包括uci-OnPUSCH域(field)中的全部或部分信息。
作为一个实施例,所述第一信息包括PUSCH-Config IE(Information Element,信息单元)中的uci-OnPUSCH域(field)中的全部或部分信息。
作为一个实施例,所述第一信息包括ConfiguredGrantConfig IE中的uci-OnPUSCH域(field)中的全部或部分信息。
作为一个实施例,所述第一信息包括UCI-OnPUSCH中的全部或部分信息。
作为一个实施例,所述第一信息包括CG-UCI-OnPUSCH中的全部或部分信息。
作为一个实施例,所述uci-OnPUSCH域的具体定义参见3GPP TS38.331。
作为一个实施例,所述PUSCH-Config IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述UCI-OnPUSCH的具体定义参见3GPP TS38.331。
作为一个实施例,所述CG-UCI-OnPUSCH的具体定义参见3GPP TS38.331。
实施例25
实施例25示例了根据本申请的一个实施例的第一信息的示意图;如附图25所示。在实施例25中,所述第一信息指示本申请中的所述第一系数和本申请中的所述K1个第二系数。
作为一个实施例,所述第一信息显式的指示所述第一系数和所述K1个第二系数。
作为一个实施例,所述第一信息指示所述第一系数和第一参考系数,所述K1个第二系数中的任一第二系数等于所述第一参考系数。
实施例26
实施例26示例了根据本申请的一个实施例的第一信令,第二信令,K个第一无线信号和第二无线信号之间的时序关系的示意图;如附图26所示。在实施例26中,所述第二信令在时域上早于所述第二无线信号,所述第二无线信号在时域上早于所述第一信令,所述第一信令在时域上早于所述K个第一无线信号。
作为一个实施例,所述第二信令在时域上不晚于所述第一信令。
作为一个实施例,所述第二信令所占用的时域资源的起始时刻不晚于所述第一信令所占用的时域资源的起始时刻。
作为一个实施例,所述第二信令所占用的时域资源的结束时刻不晚于所述第一信令所占用的时域资源的结束时刻。
作为一个实施例,所述第二信令所占用的时域资源的结束时刻不晚于所述第一信令所占用的时域资源的起始时刻。
作为一个实施例,所述第二无线信号在时域上不晚于所述K个第一无线信号。
作为一个实施例,所述第二无线信号所占用的时域资源的结束时刻不晚于所述K个第一无线信号所占用的时域资源的起始时刻。
实施例27
实施例27示例了根据本申请的一个实施例的第一信令,第二信令,K个第一无线信号和第二无线信号之间的时序关系的示意图;如附图27所示。在实施例27中,所述第二信令在时域上早于所述第一信令,所述第一信令在时域上早于所述第二无线信号,所述第二无线信号在时域上早于所述K个第一无线信号。
实施例28
实施例28示例了根据本申请的一个实施例的第二无线信号被用于生成第二比特块的示意图;如附图28所示。在实施例28中,本申请中的所述第二信令指示所述第二无线信号的调度信息,所述第二比特块指示所述第二无线信号是否被正确接收。
作为一个实施例,所述第二信令指示所述第二无线信号所占用的时频资源。
作为一个实施例,所述第二信令显式的指示所述第二无线信号所占用的时频资源。
作为一个实施例,所述第二信令隐式的指示所述第二无线信号所占用的时频资源。
作为一个实施例,所述第二无线信号的调度信息包括{所占用的时域资源,所占用的频域资源,被调度的MCS,DMRS配置信息,HARQ进程号,RV,NDI}中的一种或多种。
作为一个实施例,所述所述第二无线信号被用于生成所述第二比特块包括:所述第二比特块指示所述第二无线信号是否被正确接收。
作为一个实施例,所述所述第二无线信号被用于生成所述第二比特块包括:所述第二无线信号包括第三比特块,所述第三比特块包括一个TB;所述第二比特块指示所述第三比特块是否被正确接收。
作为一个实施例,所述第二无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第二无线信号在PDSCH上传输。
实施例29
实施例29示例了根据本申请的一个实施例的第二无线信号被用于生成第二比特块的示意图;如附图29所示。在实施例29中,所述第二无线信号包括第一参考信号,本申请中的所述第二信令指示所述第一参考信号的配置信息。针对所述第一参考信号的测量被用于生成所述第二比特块。
作为一个实施例,所述第二无线信号包括DMRS。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)。
作为一个实施例,所述第一参考信号的配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),OCC,w f(k′),w t(l′)}中的一种或多种。所述w f(k′)和所述w t(l′)分别是频域和时域上的扩频序列,所述w f(k′)和所述w t(l′)的具体定义参见3GPP TS38.211的7.4.1章节。
作为一个实施例,针对所述第一参考信号的测量被用于生成第一信道质量,所述第二比特块携带所述第一信道质量。
作为上述实施例的一个子实施例,所述第一信道质量包括CQI。
作为上述实施例的一个子实施例,所述第一信道质量包括CRI。
作为上述实施例的一个子实施例,所述第一信道质量包括PMI。
作为上述实施例的一个子实施例,所述第一信道质量包括RSRP。
作为上述实施例的一个子实施例,所述第一信道质量包括RSRQ。
作为一个实施例,所述第二信令指示所述第一参考信号对应的参考信号资源的索引。
作为一个实施例,所述第一参考信号对应的参考信号资源包括CSI-RS resource。
作为一个实施例,所述所述第二无线信号被用于生成所述第二比特块包括:针对所述第二无线信号的测量被用于生成所述第二比特块。
实施例30
实施例30示例了根据本申请的一个实施例的第二空口资源块被用于确定K1个第一无线信号的示意图;如附图30所示。
作为一个实施例,所述第二空口资源块包括一个时频资源块。
作为一个实施例,所述第二空口资源块包括一个时频资源块和一个码域资源。
作为一个实施例,所述一个码域资源包括伪随机序列(pseudo-random sequences),低峰均比序列(low-PAPR sequences),循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),OCC长度,OCC索引,正交序列(orthogonal sequence),
Figure PCTCN2020076941-appb-000013
w i(m)和w n(m)中的一种或多种。所述
Figure PCTCN2020076941-appb-000014
是伪随机序列或低峰均比序列,所述w i(m)和所述w n(m)分别是正交序列。所述
Figure PCTCN2020076941-appb-000015
所述w i(m)和所述w n(m)的具体定义参见3GPP TS38.211的6.3.2章节。
作为一个实施例,所述第二空口资源块在时频域包括正整数个资源粒子。
作为一个实施例,所述第二空口资源块在时域包括正整数个多载波符号。
作为一个实施例,所述第二空口资源块在时域包括正整数个连续的多载波符号。
作为一个实施例,所述第二空口资源块在频域包括正整数个子载波。
作为一个实施例,所述第二空口资源块在频域包括正整数个RB。
作为一个实施例,所述第二空口资源块在频域包括正整数个PRB。
作为一个实施例,所述第二空口资源块是一个PUCCH(Physical Uplink Control CHannel,物理上行控制信道)资源(resource)。
作为一个实施例,所述第二空口资源块被预留给所述第二比特块。
作为一个实施例,所述第二空口资源块被预留给所述第二比特块所携带的信息。
作为一个实施例,本申请中的所述第二信令指示所述第二空口资源块。
作为一个实施例,本申请中的所述第二信令显式的指示所述第二空口资源块。
作为一个实施例,本申请中的所述第二信令隐式的指示所述第二空口资源块。
作为一个实施例,本申请中的所述第二信令包括第四域,所述第二信令中的所述第四域指示所述第二空口资源块。
作为上述实施例的一个子实施例,所述第二信令中的所述第四域包括PUCCH resource indicator(PUCCH资源指示)域(field)中的全部或部分信息。
作为上述实施例的一个子实施例,所述第二信令中的所述第四域包括 PDSCH-to-HARQ_feedback timing indicator(PDSCH至HARQ反馈间隔指示)域(field)中的全部或部分信息。
作为一个实施例,所述PUCCH resource indicator域的具体定义参见3GPP TS38.212。
作为一个实施例,所述DSCH-to-HARQ_feedback timing indicator域的具体定义参见3GPP TS38.212。
作为一个实施例,所述第二信令指示所述第二空口资源块的索引,所述第二空口资源块的索引是PUCCH资源(resource)索引(index)。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述第二空口资源块被用于确定所述K1个无线信号在所述K个无线信号中的位置。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述第二空口资源块被用于确定所述K1个时频资源块。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述第二空口资源块被用于确定所述K1个时频资源块在所述K个时频资源块中的位置。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述K1个第一无线信号所占用的时域资源的起始时刻不早于所述第二空口资源块所占用的时域资源的起始时刻。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述K1个第一无线信号所占用的时域资源的结束时刻不晚于所述第二空口资源块所占用的时域资源的结束时刻。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述K1个时频资源块所占用的时域资源的起始时刻不早于所述第二空口资源块所占用的时域资源的起始时刻。
作为一个实施例,所述所述第二空口资源块被用于确定所述K1个第一无线信号包括:所述K1个时频资源块所占用的时域资源的结束时刻不晚于所述第二空口资源块所占用的时域资源的结束时刻。
实施例31
实施例31示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图31所示。在附图31中,第一节点设备中的处理装置3100包括第一接收机3101和第一发送机3102。
在实施例31中,第一接收机3101接收第一信令和第二信令;第一发送机3102分别在K个时频资源块中发送K个第一无线信号。
在实施例31中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述第一数值和所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述K1个第二数值分别和所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用 的资源粒子的总数有关。
作为一个实施例,第一类数值和第一偏移量被用于确定所述K1个第二子信号所占用的资源粒子的总数,所述第一类数值和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第一接收机3101接收第一信息;其中,所述第一信息指示所述第一系数。
作为一个实施例,所述第一接收机3101接收第一信息;其中,所述第一信息指示所述第一系数和所述K1个第二系数。
作为一个实施例,所述第一接收机3101接收第二无线信号;其中,所述第二信令被用于确定所述第二无线信号所占用的时频资源,所述第二无线信号被用于生成所述第二比特块。
作为一个实施例,所述第二信令被用于确定第二空口资源块,所述第二空口资源块被用于确定所述K1个第一无线信号。
作为一个实施例,所述第一节点设备3100是用户设备。
作为一个实施例,所述第一节点设备3100是中继节点。
作为一个实施例,所述第一接收机3101包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机3102包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例32
实施例32示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图32所示。在附图32中,第二节点设备中的处理装置3200包括第二发送机3201和第二接收机3202。
在实施例32中,第二发送机3201发送第一信令和第二信令;第二接收机3202分别在K个时频资源块中接收K个第一无线信号。
在实施例32中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
作为一个实施例,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述第一数值和所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述K1个第二数值分别和所述K1个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用的资源粒子的总数有关。
作为一个实施例,第一类数值和第一偏移量被用于确定所述K1个第二子信号所占用的资源粒子的总数,所述第一类数值和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量有关。
作为一个实施例,所述第二发送机3201发送第一信息;其中,所述第一信息指示所述第一系数。
作为一个实施例,所述第二发送机3201发送第一信息;其中,所述第一信息指示所述第一系数和所述K1个第二系数。
作为一个实施例,所述第二发送机3201发送第二无线信号;其中,所述第二信令被用于确定所述第二无线信号所占用的时频资源,所述第二无线信号被用于生成所述第二比特块。
作为一个实施例,所述第二信令被用于确定第二空口资源块,所述第二空口资源块被用于确定所述K1个第一无线信号。
作为一个实施例,所述第二节点设备3200是基站设备。
作为一个实施例,所述第二节点设备3200是中继节点。
作为一个实施例,所述第二发送机3201包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机3202包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令和第二信令;
    第一发送机,分别在K个时频资源块中发送K个第一无线信号;
    其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述第一数值和所述K个时频资源块中的仅所述K1个时频资源块包括的资源粒子的数量有关。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述K1个第一无线信号分别在所述K个时频资源块中的K1个时频资源块中被发送,所述K1个第二数值分别和所述K1个时频资源块包括的资源粒子的数量有关。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述K1个第二数值中的任一第二数值和所述K1个第二子信号所占用的资源粒子的总数有关。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,第一类数值和第一偏移量被用于确定所述K1个第二子信号所占用的资源粒子的总数,所述第一类数值和所述K个时频资源块中的每个时频资源块包括的资源粒子的数量有关。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信息;其中,所述第一信息指示所述第一系数;或者所述第一信息指示所述第一系数和所述K1个第二系数。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第二无线信号;其中,所述第二信令被用于确定所述第二无线信号所占用的时频资源,所述第二无线信号被用于生成所述第二比特块。
  8. 根据权利要求1至7中任一权利要求所述的第一节点设备,其特征在于,所述第二信令被用于确定第二空口资源块,所述第二空口资源块被用于确定所述K1个第一无线信号。
  9. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,发送第一信令和第二信令;
    第二接收机,分别在K个时频资源块中接收K个第一无线信号;
    其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令和第二信令;
    分别在K个时频资源块中发送K个第一无线信号;
    其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个 时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令和第二信令;
    分别在K个时频资源块中接收K个第一无线信号;
    其中,所述K个时频资源块在时域两两相互正交;所述K个第一无线信号分别包括K个第一子信号,所述K个第一子信号均携带第一比特块,所述第一信令被用于确定所述K个时频资源块和所述第一比特块的大小;所述K个第一无线信号中的仅K1个第一无线信号分别包括K1个第二子信号,所述K1个第二子信号携带第二比特块,所述第二信令被用于确定所述第二比特块;所述K1个第二子信号所占用的资源粒子的总数不大于第一数值,第一系数被用于确定所述第一数值;所述K1个第二子信号所占用的资源粒子的数量分别不大于K1个第二数值,K1个第二系数分别被用于确定所述K1个第二数值;K和K1分别是大于1的正整数,所述K1不大于所述K。
PCT/CN2020/076941 2019-03-07 2020-02-27 一种被用于无线通信的节点中的方法和装置 WO2020177608A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/467,298 US20210400729A1 (en) 2019-03-07 2021-09-06 Method and device in node used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910172564.6 2019-03-07
CN201910172564.6A CN111669823B (zh) 2019-03-07 2019-03-07 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/467,298 Continuation US20210400729A1 (en) 2019-03-07 2021-09-06 Method and device in node used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020177608A1 true WO2020177608A1 (zh) 2020-09-10

Family

ID=72337177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076941 WO2020177608A1 (zh) 2019-03-07 2020-02-27 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20210400729A1 (zh)
CN (1) CN111669823B (zh)
WO (1) WO2020177608A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116896788A (zh) * 2020-09-23 2023-10-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114389775B (zh) * 2020-10-22 2024-06-11 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150468A (zh) * 2008-04-28 2011-08-10 诺基亚西门子通信公司 对资源量的链路调制和编码方案的方法和设备
CN102946632A (zh) * 2011-08-15 2013-02-27 中兴通讯股份有限公司 一种多天线系统的上行功率控制方法及用户终端
WO2018056786A1 (ko) * 2016-09-26 2018-03-29 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971261B2 (en) * 2010-06-02 2015-03-03 Samsung Electronics Co., Ltd. Method and system for transmitting channel state information in wireless communication systems
KR101757383B1 (ko) * 2010-06-29 2017-07-26 삼성전자주식회사 반송파 결합을 지원하는 셀룰러 무선통신 시스템에서 단말의 csi 전송 방법 및 장치
US9048986B2 (en) * 2011-08-12 2015-06-02 Qualcomm Incorporated Mitigation of lost resource allocation synchronization between a user equipment (UE) and an evolved node B (eNodeB)
CN103391583B (zh) * 2012-05-10 2016-08-10 中国移动通信集团公司 一种传输资源分配方法、装置及系统和基站设备
CN111082915B (zh) * 2016-08-14 2022-05-31 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
US10321386B2 (en) * 2017-01-06 2019-06-11 At&T Intellectual Property I, L.P. Facilitating an enhanced two-stage downlink control channel in a wireless communication system
US10411770B2 (en) * 2017-05-22 2019-09-10 Wisig Networks Multiple input multiple output (MIMO) communication system with transmit diversity
CN109309553B (zh) * 2017-07-27 2021-03-09 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
EP3955488B1 (en) * 2017-11-15 2023-10-18 LG Electronics Inc. Method for receiving uplink control information of base station in wireless communication system and base station using the method
US20200014457A1 (en) * 2018-07-03 2020-01-09 Google Llc Multi-Layer NOMA Wireless Communication for Repeating Transmission of a Transport Block
US11540258B2 (en) * 2019-07-31 2022-12-27 Qualcomm Incorporated Construction and mapping of compact uplink control information (UCI) over physical uplink shared channel (PUSCH)
US11792805B2 (en) * 2020-05-27 2023-10-17 Qualcomm Incorporated Method and apparatus for non-coherent PUCCH transmission
US20220045789A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Transport block mapping across slots
EP4210237A4 (en) * 2020-09-30 2023-10-25 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR DIVERSITY COMMUNICATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150468A (zh) * 2008-04-28 2011-08-10 诺基亚西门子通信公司 对资源量的链路调制和编码方案的方法和设备
CN102946632A (zh) * 2011-08-15 2013-02-27 中兴通讯股份有限公司 一种多天线系统的上行功率控制方法及用户终端
WO2018056786A1 (ko) * 2016-09-26 2018-03-29 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding(Release 15)", 3GPP TS 38.212 V15.0.01, 31 March 2018 (2018-03-31), XP051450466, DOI: 20200509104644A *

Also Published As

Publication number Publication date
US20210400729A1 (en) 2021-12-23
CN111669823B (zh) 2022-11-25
CN111669823A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020029861A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020156246A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN117545088A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113498075B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113765636B (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020147553A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113453345A (zh) 一种被用于无线通信的节点中的方法和装置
CN116321478A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193741A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766155

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20766155

Country of ref document: EP

Kind code of ref document: A1