WO2022193644A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022193644A1
WO2022193644A1 PCT/CN2021/125392 CN2021125392W WO2022193644A1 WO 2022193644 A1 WO2022193644 A1 WO 2022193644A1 CN 2021125392 W CN2021125392 W CN 2021125392W WO 2022193644 A1 WO2022193644 A1 WO 2022193644A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit block
index
signaling
block
air interface
Prior art date
Application number
PCT/CN2021/125392
Other languages
English (en)
French (fr)
Inventor
刘铮
杨中志
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Priority to EP21931219.6A priority Critical patent/EP4311330A1/en
Publication of WO2022193644A1 publication Critical patent/WO2022193644A1/zh
Priority to US18/467,945 priority patent/US20240008043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a method and apparatus used in a wireless communication system, especially a method and apparatus for transmitting wireless signals in a wireless communication system supporting a cellular network.
  • eMBB Enhance Mobile Broadband, enhanced mobile broadband
  • URLLC Ultra Reliable and Low Latency Communication, ultra-high reliability and ultra-low latency communication
  • MCS Modulation and Coding Scheme
  • downlink control information signaling can indicate whether the scheduled service is a low priority (Low Priority) or a high priority (High Priority), wherein the low priority corresponds to the URLLC service, and the high priority corresponds to the eMBB service.
  • Low Priority Low Priority
  • High Priority High Priority
  • the URLLC-enhanced WI (Work Item) of NR Release 17 was passed at the 3GPP RAN#86 plenary session.
  • multiplexing Multiplexing of different services within a UE (User Equipment, user equipment) (Intra-UE) is a key point that needs to be studied.
  • An embodiment of the present application proposes a method used in a first node for wireless communication, including:
  • receiving first information receiving first signaling and second signaling
  • the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the second signaling is used to determine the second bit block; The first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; all bits in the third bit block and in the fourth bit block
  • the target air interface resource block corresponds to a target index, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, and the fourth bit block is the second bit block or the the output of the second bit block after the second operation; when the target index is equal to the second index, the third bit block is the output of the first bit block after the first operation, the first The four-bit block is the second bit block; the first bit block corresponds to the first index, and the second bit block corresponds to the second index.
  • An embodiment of the present application proposes a method used in a second node for wireless communication, including:
  • sending first information sending first signaling and second signaling
  • the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the second signaling is used to determine the second bit block; The first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; all bits in the third bit block and in the fourth bit block
  • the target air interface resource block corresponds to a target index, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, and the fourth bit block is the second bit block or the the output of the second bit block after the second operation; when the target index is equal to the second index, the third bit block is the output of the first bit block after the first operation, the first The four-bit block is the second bit block; the first bit block corresponds to the first index, and the second bit block corresponds to the second index.
  • An embodiment of the present application proposes a first node device used for wireless communication, including:
  • a first receiver receiving the first information, and receiving the first signaling and the second signaling;
  • a first transmitter sending a first signal in the target air interface resource block, where the first signal carries the third bit block and the fourth bit block;
  • the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the second signaling is used to determine the second bit block; The first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; all bits in the third bit block and in the fourth bit block
  • the target air interface resource block corresponds to a target index, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, and the fourth bit block is the second bit block or the the output of the second bit block after the second operation; when the target index is equal to the second index, the third bit block is the output of the first bit block after the first operation, the first The four-bit block is the second bit block; the first bit block corresponds to the first index, and the second bit block corresponds to the second index.
  • An embodiment of the present application proposes a second node device used for wireless communication, including:
  • a second transmitter sending the first information, sending the first signaling and the second signaling
  • a second receiver receiving a first signal in the target air interface resource block, where the first signal carries the third bit block and the fourth bit block;
  • the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the second signaling is used to determine the second bit block; The first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; all bits in the third bit block and in the fourth bit block
  • the target air interface resource block corresponds to a target index, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, and the fourth bit block is the second bit block or the the output of the second bit block after the second operation; when the target index is equal to the second index, the third bit block is the output of the first bit block after the first operation, the first The four-bit block is the second bit block; the first bit block corresponds to the first index, and the second bit block corresponds to the second index.
  • FIG. 1 shows a process flow diagram of a first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to another embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to another embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to another embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to another embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a process of determining a third bit block and a fourth bit block according to another embodiment of the present application
  • FIG. 7 shows the relationship between the first signaling, the first index, the first bit block and the first type of HARQ-ACK and the second signaling, the second index, the second according to another embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between the number of bits included in the first bit block, the number of bits included in the second bit block and the target index according to another embodiment of the present application;
  • FIG. 9 shows a schematic diagram of a process for determining whether the first signaling or the second signaling is used to indicate a target air interface resource block according to another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the relationship between the first air interface resource block, the second air interface resource block and the target index according to another embodiment of the present application
  • FIG. 11 shows a structural block diagram of a processing apparatus in a first node device according to another embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a processing apparatus in a second node device according to another embodiment of the present application.
  • an embodiment of the present application proposes a solution, which is used in a method in a first node of wireless communication, including: receiving first information; receiving first signaling and second signaling; A first signal is sent in the block, and the first signal carries a third bit block and a fourth bit block; wherein the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the second signaling is used to determine the second bit block; the first bit block is used to generate the third bit block; the second bit block is used to generate the the fourth bit block; all bits in the third bit block and all bits in the fourth bit block are input into the output after the first channel coding is used to generate the first signal; the target air interface resource block Corresponding to the target index, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, and the fourth bit block is the second bit block or the
  • the uplink (Uplink) is used as an example; the embodiments of the present application are also applicable to the downlink (Downlink) transmission scenario and the side link (Sidelink) transmission scenario, and obtain technologies similar to those in the uplink. Effect.
  • using a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments in the user equipment of the present application and the features in the embodiments may be applied to the base station, and vice versa.
  • the embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
  • the interpretation of the terms in this application refers to the definition of the normative protocol of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers).
  • the problems to be solved in this application include: when UCIs with different priorities (eg, HARQ-ACK (Hybrid Automatic Repeat reQuest Acknowledgement, Hybrid Automatic Repeat Request Acknowledgement)) are multiplexed on the same PUCCH for transmission , how to ensure the reliability requirements of the UCIs with different priorities.
  • HARQ-ACK Hybrid Automatic Repeat reQuest Acknowledgement, Hybrid Automatic Repeat Request Acknowledgement
  • the problem to be solved in this application includes: when UCIs with different priorities are multiplexed on the same PUCCH, how to ensure higher transmission reliability of UCIs with higher priorities.
  • the problems to be solved in this application include: different service types (eg, URLLC or eMBB) have different requirements on the transmission reliability of UCI; when UCI (eg, HARQ-ACK) for different service types is When using the same physical channel (eg, PUCCH) for transmission, how to ensure the reliability of the UCI for different service types.
  • UCI eg, HARQ-ACK
  • PUCCH physical channel
  • the problem to be solved by this application includes: when UCIs with different priorities (eg, HARQ-ACK) are multiplexed on the same PUCCH for transmission, how to use the priority corresponding to the same PUCCH The transmission resources allocated to the UCIs of different priorities are determined.
  • priorities eg, HARQ-ACK
  • the problems to be solved in this application include: different service types (eg, URLLC or eMBB) have different requirements on the transmission reliability of UCI; when UCI (eg, HARQ-ACK) for different service types is When using the same physical channel (eg, PUCCH) for transmission, how to determine the transmission resources allocated to the UCI for different service types according to the service type corresponding to the same physical channel.
  • different service types eg, URLLC or eMBB
  • UCI eg, HARQ-ACK
  • PUCCH Physical channel
  • the problem to be solved by this application includes: when different types of UCI (eg, HARQ-ACK) are multiplexed on the same physical channel for transmission, how to Transmission resources allocated to the different classes of UCI are determined.
  • UCI eg, HARQ-ACK
  • the problem to be solved in this application includes: when different types of UCIs (eg, HARQ-ACK) are multiplexed on the same physical channel for transmission, how to ensure the reliability of the different types of UCIs Require.
  • UCIs eg, HARQ-ACK
  • the essence of the above method is: when the high-priority UCI is multiplexed on the physical channel reserved for the low-priority UCI for transmission, by increasing the transmitted data related to the high-priority UCI bits (eg, additional coding for the high-priority UCI or adding additional check bits, etc.) to increase the transmission resources used for the high-priority UCI in the physical channel to ensure the high-priority UCI transmission performance.
  • the transmitted data related to the high-priority UCI bits eg, additional coding for the high-priority UCI or adding additional check bits, etc.
  • the essence of the above method is: when the low-priority UCI is multiplexed on the physical channel reserved for the high-priority UCI for transmission, by reducing the transmitted data related to the low-priority UCI information bits to limit the transmission resources in the physical channel that are used for the low priority UCI.
  • the above-mentioned method has the advantage of ensuring that the high-priority UCI has higher transmission reliability.
  • the above method has the advantage that: when the high-priority UCI is multiplexed on the physical channel reserved for the low-priority UCI, the transmission reliability required by the high-priority UCI is guaranteed.
  • the advantage of the above method is that: when the low-priority UCI is multiplexed on the physical channel reserved for the high-priority UCI, the information bits related to the low-priority UCI to be transmitted are limited , to avoid the problem that low-priority information occupies too much high-priority transmission resources.
  • the method in this application has the following advantages:
  • the information bits related to the low-priority UCI are limited to be transmitted, which avoids the excessive use of low-priority information.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application receives the first information in step 101; receives the first signaling and the second signaling in step 102; and sends in the target air interface source block in step 103 first signal.
  • the first signal carries a third bit block and a fourth bit block; the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first a block of bits; the second signaling is used to determine a second block of bits; the first block of bits is used to generate the third block of bits; the second block of bits is used to generate the fourth block of bits bit block; all bits in the third bit block and all bits in the fourth bit block are input into the first channel-coded output and are used to generate the first signal; the target air interface resource block and target index Correspondingly, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the The first bit block, the fourth bit block is the second bit block or the output of the second bit block after the second operation; when the target index is equal to the second index, the third bit block The bit block is the output of the first bit block after the first operation, and the fourth bit block
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a baseband signal.
  • the first signaling is RRC (Radio Resource Control, radio resource control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling includes one or more fields (Field) in an RRC layer signaling.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer (Physical Layer) signaling.
  • the first signaling includes a physical layer signaling.
  • the first signaling includes higher layer (Higher Layer) signaling.
  • the first signaling is DCI (Downlink Control Information, Downlink Control Information) signaling.
  • DCI Downlink Control Information, Downlink Control Information
  • the first signaling includes one or more fields (Field) in a DCI.
  • the first signaling includes one or more fields in an IE (Information Element, information element).
  • IE Information Element, information element
  • the first signaling is a downlink scheduling signaling (DownLink Grant Signalling).
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, Narrow Band PDCCH).
  • the first signaling is DCI format 1_0, and for the specific definition of the DCI format 1_0, see Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and for the specific definition of the DCI format 1_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 1_2, and for the specific definition of the DCI format 1_2, see Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is signaling used for scheduling downlink physical layer data channels.
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, Narrow Band PDSCH).
  • the second signaling is RRC layer signaling.
  • the second signaling includes one or more fields in an RRC layer signaling.
  • the second signaling is dynamically configured.
  • the second signaling is physical layer signaling.
  • the second signaling includes a physical layer signaling.
  • the second signaling includes higher layer signaling.
  • the second signaling is DCI.
  • the second signaling includes one or more fields in a DCI.
  • the second signaling includes one or more fields in an IE.
  • the second signaling is a downlink scheduling signaling.
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling is signaling used for scheduling downlink physical layer data channels.
  • the second signaling is DCI format 1_0, and for the specific definition of the DCI format 1_0, see Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format 1_1, and for the specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format 1_2, and for the specific definition of the DCI format 1_2, see Section 7.3.1.2 in 3GPP TS38.212.
  • the target air interface resource block includes a positive integer number of REs (Resource Element, resource element).
  • one of the REs occupies one multi-carrier symbol in the time domain and occupies one subcarrier in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing) symbol (Symbol).
  • the multi-carrier symbols are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the multi-carrier symbols are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the target air interface resource block includes a positive integer number of subcarriers (Subcarriers) in the frequency domain.
  • the target air interface resource block includes a positive integer number of PRBs (Physical Resource Block, physical resource blocks) in the frequency domain.
  • PRBs Physical Resource Block, physical resource blocks
  • the target air interface resource block includes a positive integer number of RBs (Resource block, resource block) in the frequency domain.
  • the target air interface resource block includes a positive integer number of multi-carrier symbols in the time domain.
  • the target air interface resource block includes a positive integer number of slots (slots) in the time domain.
  • the target air interface resource block includes a positive integer number of sub-slots in the time domain.
  • the target air interface resource block includes a positive integer number of milliseconds (ms) in the time domain.
  • the target air interface resource block includes a positive integer number of discontinuous time slots in the time domain.
  • the target air interface resource block includes a positive integer number of consecutive time slots in the time domain.
  • the target air interface resource block includes a positive integer number of sub-frames (sub-frames) in the time domain.
  • the target air interface resource block is configured by higher layer signaling.
  • the target air interface resource block is configured by RRC signaling.
  • the target air interface resource block is configured by MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the target air interface resource block includes a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the target air interface resource block includes a PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the target air interface resource block includes one sPUSCH.
  • the target air interface resource block includes one NB-PUSCH.
  • the target air interface resource block includes a PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • the target air interface resource block includes resources scheduled on the uplink.
  • the target air interface resource block includes resources scheduled on the Sidelink.
  • the first bit block includes HARQ-ACK.
  • the first bit block includes a CSI (Channel State Information, channel state information) report (Report).
  • CSI Channel State Information, channel state information
  • the first bit block includes an SR (Scheduling Request, uplink scheduling request).
  • the first bit block includes a TB (Transport Block, transport block).
  • TB Transport Block, transport block
  • the first bit block includes a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the second bit block includes HARQ-ACK.
  • the second block of bits includes a CSI report.
  • the second bit block includes SR.
  • the second bit block includes one TB.
  • the second bit block includes a CBG.
  • the third bit block includes HARQ-ACK.
  • the third bit block includes a CSI report.
  • the third bit block includes SR.
  • the third bit block includes one TB.
  • the third bit block includes a CBG.
  • the third bit block includes bits related to HARQ-ACK.
  • the third bit block includes bits related to CSI reporting.
  • the third bit block includes SR-related bits.
  • the fourth bit block includes HARQ-ACK.
  • the fourth bit block includes a CSI report.
  • the fourth bit block includes SR.
  • the fourth bit block includes one TB.
  • the fourth bit block includes a CBG.
  • the fourth bit block includes bits related to HARQ-ACK.
  • the fourth bit block includes bits related to CSI reporting.
  • the fourth bit block includes SR-related bits.
  • the HARQ-ACK in this application includes one HARQ-ACK bit.
  • the HARQ-ACK in this application includes a HARQ-ACK codebook (Codebook).
  • the HARQ-ACK in this application includes a HARQ-ACK sub-codebook (Sub-codebook).
  • Sub-codebook HARQ-ACK sub-codebook
  • the HARQ-ACK in this application includes a positive integer number of bits.
  • the HARQ-ACK in this application includes a positive integer number of bits, and each bit in the positive integer number of bits indicates ACK (Acknowledgement, positive acknowledgement) or NACK (NotAcknowledgement, negative acknowledgement).
  • the HARQ-ACK in this application includes bits used to indicate whether a block of bits or a signaling is correctly received.
  • the first bit block includes a positive integer number of bits.
  • the second bit block includes a positive integer number of bits.
  • the third bit block includes a positive integer number of bits.
  • the fourth bit block includes a positive integer number of bits.
  • the third bit block includes all or part of the bits in the first bit block.
  • the fourth bit block includes all or part of the bits in the second bit block.
  • the coding scheme (Coding scheme) adopted for the first channel coding includes Polar code (Polar code).
  • the coding scheme adopted for the first channel coding includes block code (Block code).
  • the first channel coding includes a channel coding related operation.
  • the first signal includes all the bits in the third bit block and all the bits in the fourth bit block that are input into the output after the first channel encoding, all or part of the bits in sequence After CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) addition (CRC Insertion), segmentation (Segmentation), coding block-level CRC addition (CRC Insertion), channel coding (Channel Coding), rate matching (Rate Matching), concatenation (Concatenation), scrambling (Scrambling), modulation (Modulation), layer mapping (Layer Mapping), precoding (Precoding), mapping to resource element (Mapping to Resource Element), multi-carrier symbol generation (Generation), modulation up-conversion (Modulation and Upconversion) after some or all of the output.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • CRC Insertion CRC Insertion
  • segmentation Segmentation
  • channel coding Channel Coding
  • the target index is an index of the target air interface resource block in a target air interface resource block set; the target air interface resource block set includes a plurality of air interface resource blocks.
  • the target index is used to determine a target air interface resource block set; the target air interface resource block set includes a positive integer number of air interface resource blocks; the target air interface resource block is one of the target air interface resource blocks in the target air interface resource block set An air interface resource block.
  • the first signaling or the second signaling is used to determine the target air interface resource block from the target air interface resource block set.
  • the target air interface resource block set is a first air interface resource block set or a second air interface resource block set.
  • the target air interface resource block includes one of a high-priority PUCCH or a low-priority PUCCH.
  • the target air interface resource block set includes a PUCCH resource set (PUCCH resource set).
  • PUCCH resource set PUCCH resource set
  • the target air interface resource block set includes a positive integer number of PUCCH resources (PUCCH resource(s)).
  • the target index is a priority index.
  • the target index is equal to 0 or 1.
  • the target index is equal to a numerical value.
  • the target index is used to determine one of a plurality of priorities (Priority).
  • the plurality of priorities includes high priority and low priority.
  • the target index is used to determine one service type among multiple service types (Service Type).
  • the plurality of service types include URLLC and eMBB.
  • the multiple service types include services on different links.
  • the target index is used to determine one QoS among multiple QoSs (Quality of Service, quality of service).
  • the first index is a priority index.
  • the first index is equal to 0 or 1.
  • the first index is equal to a numerical value.
  • the first index is used to determine one of a plurality of priorities.
  • the first index is used to determine one service type among multiple service types.
  • the first index is used to determine one QoS of a plurality of QoS.
  • the second index is a priority index.
  • the second index is equal to 0 or 1.
  • the second index is equal to a numerical value.
  • the second index is used to determine one of a plurality of priorities.
  • the second index is used to determine one service type among multiple service types.
  • the second index is used to determine one QoS of the plurality of QoSs.
  • the first index is equal to 1, and the second index is equal to 0.
  • the first index is equal to 0, and the second index is equal to 1.
  • the first index indicates high priority
  • the second index indicates low priority
  • the first index indicates a low priority
  • the second index indicates a high priority
  • the first index indicates the URLLC service type
  • the second index indicates the eMBB service type
  • the first index indicates the eMBB service type
  • the second index indicates the URLLC service type
  • the first index and the second index respectively indicate one QoS.
  • the first bit block includes HARQ-ACK corresponding to the first signaling.
  • the first signaling indicates the first index
  • the first bit block includes the HARQ-ACK corresponding to the first signaling
  • the first signaling is used to indicate a semi-persistent scheduling (Semi-Persistent Scheduling, SPS) release (Release), and the HARQ-ACK corresponding to the first signaling indicates whether the first signaling received correctly.
  • SPS semi-persistent Scheduling
  • the first node receives a fifth bit block; the first signaling includes scheduling information of the fifth bit block, and the HARQ-ACK corresponding to the first signaling indicates the fifth bit Whether the block was received correctly.
  • the first signaling is used to indicate the release of semi-persistent scheduling
  • the first bit block includes information indicating whether the first signaling is correctly received.
  • the first node receives a fifth bit block; the first signaling includes scheduling information of the fifth bit block, and the first bit block includes whether the fifth bit block is correctly received instruction information.
  • the scheduling information includes occupied time domain resources, occupied frequency domain resources, MCS, DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic Retransmission request) process number, RV (Redundancy Version, redundancy version), NDI (New Data Indicator, new data indication), transmitting antenna port, corresponding TCI (Transmission Configuration Indicator, transmission configuration indication) state (state) at least one of.
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic Retransmission request
  • RV Redundancy Version
  • NDI New Data Indicator, new data indication
  • TCI Transmission Configuration Indicator, transmission configuration indication
  • state at least one of.
  • the second bit block includes HARQ-ACK corresponding to the second signaling.
  • the second signaling indicates the second index
  • the second bit block includes the HARQ-ACK corresponding to the second signaling
  • the second signaling is used to indicate SPS release (Release), and the HARQ-ACK corresponding to the second signaling indicates whether the first signaling is correctly received.
  • the first node receives a sixth bit block; the second signaling includes scheduling information of the sixth bit block, and the HARQ-ACK corresponding to the second signaling indicates the sixth bit Whether the block was received correctly.
  • the second signaling is used to indicate semi-persistent scheduling release, and the second bit block includes indication information whether the second signaling is correctly received.
  • the first node receives a sixth bit block; the second signaling includes scheduling information of the sixth bit block, and the second bit block includes whether the sixth bit block is correctly received instruction information.
  • the first node receives a first signaling group; the first signaling group includes the first signaling; all signaling in the first signaling group indicates the first signaling group index; the first bit block includes a first bit sub-block group; a bit sub-block in the first bit sub-block group indicates a signaling in the first signaling group or is Let a bit block of a signaling schedule in the group be received correctly.
  • the first node receives a first signaling group; the first signaling group includes the first signaling; all signaling in the first signaling group indicates the first signaling group index; the first bit block includes a first bit sub-block group; the first signaling group includes i signaling; the first bit sub-block group includes i bit sub-blocks; the first bit sub-block The i-th bit sub-block in the block group indicates whether the i-th signaling in the first signaling group or a bit block scheduled by the i-th signaling in the first signaling group is correctly received ; the i is a positive integer.
  • the first signaling is the last (last) signaling in the first signaling group.
  • the first signaling is monitored on the serving cell with the largest serving cell index (Serving cell index) in the last PDCCH monitoring occasion (PDCCH monitoring occasion) in the first signaling group signaling.
  • Serving cell index serving cell index
  • PDCCH monitoring occasion PDCCH monitoring occasion
  • the first node receives a second signaling group; the second signaling group includes the second signaling; all signaling in the second signaling group indicates the second signaling group index; the second bit block includes a second bit sub-block group; a bit sub-block in the second bit sub-block group indicates a signaling in the second signaling group or is Let a bit block of a signaling schedule in the group be received correctly.
  • the first node receives a second signaling group; the second signaling group includes the second signaling; all signaling in the second signaling group indicates the second signaling group index; the second bit block includes a second bit sub-block group; the second signaling group includes i signaling; the second bit sub-block group includes i bit sub-blocks; the second bit sub-block
  • the i-th bit sub-block in the block group indicates whether the i-th signaling in the second signaling group or a bit block scheduled by the i-th signaling in the second signaling group is correctly received ; the i is a positive integer.
  • the second signaling is the last signaling in the second signaling group.
  • the second signaling is the signaling monitored on the serving cell with the largest serving cell index in the last PDCCH monitoring occasion in the second signaling group.
  • the fourth bit block is an output of the second bit block after the second operation, and the bits included in the fourth bit block
  • the number of bits included in the third bit block is not less than the number of bits included in the second bit block; when the target index is the second index, the number of bits included in the third bit block is not greater than the number of bits included in the first bit block. number of bits.
  • At least one of the first bit block, the second bit block, the first signaling or the second signaling is used by the first node to perform judgment to determine the target Whether the index is the first index or the second index.
  • one of the first signaling and the second signaling and the sum of the number of bits included in the third bit block and the number of bits included in the fourth bit block are common is used to determine the target air interface resource block.
  • the first information is a higher layer signaling.
  • the first information includes one or more fields in an RRC signaling.
  • the first information includes one or more fields in a MACCE signaling.
  • the first information includes one or more fields in an IE.
  • the first information is configuration information indicated by higher layer signaling.
  • the first information includes configuration information indicated by an RRC signaling.
  • the first information includes configuration information indicated by a MAC CE signaling.
  • the first information includes configuration information indicated by one or more fields in an IE.
  • the first information is information indicated by one or more higher layer parameters.
  • the first information explicitly indicates that the first signaling includes the first field.
  • the first information implicitly indicates that the first signaling includes the first field.
  • the first domain is a domain in the DCI.
  • the first field includes at least one bit.
  • the first field is a frequency hopping flag (Frequency hopping flag) field.
  • the first field is a second downlink assignment index (2nd downlink assignment index) field.
  • the first field is a field of precoding information and number of layers.
  • the first field is a CBG transmission information (CBG transmission information, CBGTI) field.
  • CBG transmission information CBG transmission information, CBGTI
  • the first field is a Priority indicator field.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5GNR, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) system.
  • the 5GNR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System) 200 by some other suitable term.
  • the EPS 200 may include one or more UE201, NG-RAN (Next Generation Radio Access Network, Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network, 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • NG-RAN Next Generation Radio Access Network, Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network, 5G core network
  • HSS Home Subscriber Server,
  • the EPS may interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • the NG-RAN includes NR Node Bs (gNBs) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • gNB203 can also be called base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS, Basic Service Set), extended service set (Extended Service Set, ESS), TRP (Transmitter Receiver Point, sending and receiving nodes) or some other suitable term.
  • gNB 203 provides UE 201 with an access point to EPC/5G-CN 210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, Personal Digital Assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, GPS, multimedia devices, video devices, digital audio players (eg, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, Wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs Personal Digital Assistants
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213 .
  • the MME/AMF/UPF 211 is the control node that handles signaling between the UE 201 and the EPC/5G-CN 210 .
  • MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, which is itself connected to the P-GW213.
  • P-GW 213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230 .
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet-switched streaming service.
  • the UE 201 corresponds to the first node in this application.
  • the UE241 corresponds to the second node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE241 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • Embodiment 3 shows a schematic diagram of the radio protocol architecture of the user plane and the control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, and Figure 3 shows three layers for a first communication node device (UE, gNB or V2X (vehicle to everything, vehicle) RSU (Road Side Unit, Road Side Unit) in wireless communication technology) and the second communication node device (gNB, RSU in UE or V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1. Layer 2 and Layer 3.
  • Layer 1 is the lowest layer and implements various PHY (Physical Layer, physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304, the sublayers are terminated at the second communication node device.
  • MAC Medium Access Control, Media Access Control
  • RLC Radio Link Control, Radio Link Layer Control Protocol
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC sublayer 306 in layer 3 (the L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device .
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350
  • L2 L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating in a connection Application layer at one end (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first bit block in this application is generated in the RRC sublayer 306 .
  • the first bit block in this application is generated in the MAC sublayer 302 .
  • the first bit block in this application is generated in the MAC sublayer 352 .
  • the first bit block in this application is generated in the PHY 301 .
  • the first bit block in this application is generated in the PHY 351 .
  • the second bit block in this application is generated in the RRC sublayer 306 .
  • the second bit block in this application is generated in the MAC sublayer 302 .
  • the second bit block in this application is generated in the MAC sublayer 352 .
  • the second bit block in this application is generated in the PHY 301 .
  • the second bit block in this application is generated in the PHY351.
  • the third bit block in this application is generated in the RRC sublayer 306 .
  • the third bit block in this application is generated in the MAC sublayer 302 .
  • the third bit block in this application is generated in the MAC sublayer 352 .
  • the third bit block in this application is generated in the PHY 301 .
  • the third bit block in this application is generated in the PHY351.
  • the fourth bit block in this application is generated in the RRC sublayer 306 .
  • the fourth bit block in this application is generated in the MAC sublayer 302 .
  • the fourth bit block in this application is generated in the MAC sublayer 352 .
  • the fourth bit block in this application is generated in the PHY 301 .
  • the fourth bit block in this application is generated in the PHY 351 .
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated in the PHY 301 .
  • the first signaling in this application is generated in the PHY 351 .
  • the second signaling in this application is generated in the RRC sublayer 306 .
  • the second signaling in this application is generated in the MAC sublayer 302 .
  • the second signaling in this application is generated in the MAC sublayer 352 .
  • the second signaling in this application is generated in the PHY 301 .
  • the second signaling in this application is generated in the PHY 351 .
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate Forward Error Correction (FEC) at the second communication device 450, as well as based on various modulation schemes (e.g., Binary Phase Shift Keying) Keying, BPSK), Quadrature Phase-Shift Keying (Quadrature Phase-Shift Keying, QPSK), M Phase Shift Keying (Multiple Phase Shift Keying, M-PSK), M Quadrature Amplitude Modulation (Multiple Quadrature Amplitude Modulation, M- QAM)) mapping of signal clusters.
  • FEC Forward Error Correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to subcarriers, multiplexes with reference signals (eg, pilots) in the time and/or frequency domains, and then uses an Inverse Fast Fourier Transform , IFFT) to generate the physical channel carrying the time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT Inverse Fast Fourier Transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receive processor 458 after multi-antenna detection Any spatial stream to which the second communication device 450 is the destination.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450
  • the receive function at the second communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in the present application includes the second communication device 450
  • the second node in the present application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a base station device.
  • the first node is a relay node
  • the second node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for performing error detection using the ACK and/or NACK protocol to support HARQ operate.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the second communication device 450 means at least: receiving the first information in this application; receiving the first signaling in this application and the second signaling in this application; all the information in this application.
  • the first signal in this application is sent in the target air interface resource block, and the first signal carries the third bit block in this application and the fourth bit block in this application;
  • a piece of information indicates that the first signaling includes the first field in this application; the first signaling is used to determine the first bit block in this application; the second signaling is used for Determine the second bit block in this application; the first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; the third bit block All bits in the bit block and all bits in the fourth bit block are input to the first channel-coded output in the present application and are used to generate the first signal; the target air interface resource block and the corresponds to the target index of , the target index is equal to the first index in this application or the second index in this application, and the first index is not equal to the second index; when the target index When equal to the first index, the third bit block is the first bit block, the fourth bit block is the second bit block, or the second bit block passes through the first bit block in this application.
  • the output after the second operation when the target index is equal to the second index, the third bit block is the output of the first bit block after the first operation in this application, and the fourth bit block is the output after the first operation in this application.
  • the bit block is the second bit block; the first bit block corresponds to the first index, and the second bit block corresponds to the second index.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: receiving this the first information in the application; receive the first signaling in this application and the second signaling in this application; send all the information in this application in the target air interface resource block in this application the first signal, where the first signal carries the third bit block in the present application and the fourth bit block in the present application; wherein the first information indicates that the first signaling includes the present application the first field in ; the first signaling is used to determine the first bit block in this application; the second signaling is used to determine the second bit block in this application; the first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; all bits in the third bit block and the fourth bit block All bits in this application are input into the first channel coded output in this application and used to generate the first signal; the target air interface resource block corresponds to the target index in this application, and the target
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the first communication device 410 means at least: sending the first information in this application; sending the first signaling in this application and the second signaling in this application; all the information in this application.
  • the first signal carries the third bit block in the present application and the fourth bit block in the present application; wherein the first signal A piece of information indicates that the first signaling includes the first field in this application; the first signaling is used to determine the first bit block in this application; the second signaling is used for Determine the second bit block in this application; the first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; the third bit block All bits in the bit block and all bits in the fourth bit block are input to the first channel-coded output in the present application and are used to generate the first signal; the target air interface resource block and the corresponds to the target index of , the target index is equal to the first index in this application or the second index in this application, and the first index is not equal to the second index; when the target index When equal to the first index, the third bit block is the first bit block, the fourth bit block is the second bit block, or the second bit block passes through the first bit block in this
  • the output after the second operation when the target index is equal to the second index, the third bit block is the output of the first bit block after the first operation in this application, and the fourth bit block is the output after the first operation in this application.
  • the bit block is the second bit block; the first bit block corresponds to the first index, and the second bit block corresponds to the second index.
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory for storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending this the first information in the application; send the first signaling in this application and the second signaling in this application; receive all the information in this application in the target air interface resource block in this application the first signal, where the first signal carries the third bit block in the present application and the fourth bit block in the present application; wherein the first information indicates that the first signaling includes the present application the first field in ; the first signaling is used to determine the first bit block in this application; the second signaling is used to determine the second bit block in this application; the first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block; all bits in the third bit block and the fourth bit block All bits in this application are input into the first channel coded output in this application and used to generate the first signal; the target air interface resource block corresponds to the target index in this application, and the target
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receive processor 458, the receive processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, the memory 476 ⁇ One of them is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receive processor 458, the receive processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, the memory 476 ⁇ One is used to send the second signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the first signal in the present application in the target air interface resource block in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, the controller/processor 475, the memory 476 ⁇ One of them is used to receive the first signal in this application in the target air interface resource block in this application.
  • Embodiment 5 illustrates a flowchart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the sequence between the two pairs of steps ⁇ S521, S511 ⁇ and ⁇ S522, S512 ⁇ does not represent a specific time domain relationship.
  • the first node U1 receives the first information in step S510; receives the second signaling in step S511; receives the first signaling in step S512; and sends the first signal in the target air interface resource block in step S513.
  • the second node U2 sends the first information in step S520; sends the second signaling in step S521; sends the first signaling in step S522; and receives the first signal in the target air interface resource block in step S523.
  • the first signal carries a third bit block and a fourth bit block; the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first a block of bits; the second signaling is used to determine a second block of bits; the first block of bits is used to generate the third block of bits; the second block of bits is used to generate the fourth block of bits bit block; all bits in the third bit block and all bits in the fourth bit block are input into the first channel-coded output and are used to generate the first signal; the target air interface resource block and target index Correspondingly, the target index is equal to the first index or the second index, and the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the The first bit block, the fourth bit block is the second bit block or the output of the second bit block after the second operation; when the target index is equal to the second index, the third bit block The bit block is the output of the first bit block after the first operation, and the fourth bit block
  • the block corresponds to the second index; the first bit block includes a first type of HARQ-ACK; the second bit block includes a second type of HARQ-ACK; the first type of HARQ-ACK is different from the first type of HARQ-ACK
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the target index.
  • the first signaling is used to determine a first air interface resource block; the second signaling is used to determine a second air interface resource block; the first air interface resource block and The relative positional relationship of the second air interface resource in the time domain is used to determine whether the target index is the first index or the second index.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 comprises a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a companion link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between the base station equipment and the user equipment.
  • the first signaling includes a Priority Indicator field; the Priority Indicator field in the first signaling indicates the first index.
  • the second signaling includes a Priority Indicator field; the Priority Indicator field in the second signaling indicates the second index.
  • a signaling format (Format) of the first signaling implicitly indicates the first index.
  • the signaling format of the second signaling implicitly indicates the second index.
  • the RNTI Radio Network Tempory Identity, Radio Network Tempory Identity
  • the RNTI implicitly indicates the first index
  • the RNTI of the second signaling implicitly indicates the second index.
  • all HARQ-ACKs included in the first bit block have the same priority.
  • all HARQ-ACKs included in the first bit block have the same service type.
  • the first bit block includes only HARQ-ACK.
  • the first bit block includes indication information whether the first signaling is correctly received.
  • the first bit block includes indication information of whether a bit block scheduled by the first signaling is correctly received.
  • all HARQ-ACKs included in the second bit block have the same priority.
  • all HARQ-ACKs included in the second bit block have the same service type.
  • the second bit block includes only HARQ-ACK.
  • the second bit block further includes UCI other than HARQ-ACK.
  • the second bit block includes indication information whether the second signaling is correctly received.
  • the second bit block includes indication information of whether a bit block scheduled by the second signaling is correctly received.
  • Embodiment 6 illustrates a schematic diagram of the process of determining the third bit block and the fourth bit block according to an embodiment of the present application, as shown in FIG. 6 .
  • the first node in the present application determines in step S61 whether the target index is the first index or the second index; if the target index is the first index, it proceeds to step S62 to determine: the third bit The block is the first bit block, the fourth bit block is the output of the second bit block or the second bit block after the second operation, and the number of bits included in the fourth bit block is not greater than the number of bits included in the second bit block; If the target index is the second index, proceed to step S63 to determine: the third bit block is the output of the first bit block after the first operation, and the number of bits included in the third bit block is not less than the number of bits included in the first bit block , the fourth bit block is the second bit block.
  • the first operation includes a second encoding.
  • the second operation includes one or more of logical AND, logical OR, XOR, or delete bit operations.
  • the second operation includes a second encoding.
  • the first operation includes one or more of logical AND, logical OR, XOR, or delete bit operations.
  • the second encoding includes channel encoding.
  • the coding scheme (Coding scheme) adopted by the second coding includes Polar code (Polar code) or block code (Block code).
  • the second encoding includes performing a repetition code (Repetition code) encoding operation on some or all of the bits input into the second encoding.
  • a repetition code Repetition code
  • the second encoding includes an operation of generating and adding check bits.
  • the first operation includes an operation of generating and adding check bits.
  • the sentence that the third bit block is the output of the first bit block after the first operation includes: the third bit block is that some or all of the bits in the first bit block are Enter the second encoded output.
  • the sentence that the third bit block is the output of the first bit block after the first operation includes: the third bit block is that some or all of the bits in the first bit block are inputting the output after the second encoding; the second encoding includes generating check bits for the part or all of the bits in the input first bit block; the third bit block includes the check bits in the third bit block part or all of it.
  • the sentence that the third bit block is the output of the first bit block after the first operation includes: the third bit block is that some or all of the bits in the first bit block are The output after the first operation is input.
  • the sentence that the fourth bit block is the second bit block or the output of the second bit block after the second operation includes: the fourth bit block is the second bit block Some or all of the bits in are input to the output after the second operation.
  • the sentence that the fourth bit block is the second bit block or the output of the second bit block after the second operation includes: the fourth bit block is the second bit block Some or all of the bits in are input to the second encoded output.
  • the sentence that the fourth bit block is the second bit block or the output of the second bit block after the second operation includes: the fourth bit block is the second bit block .
  • the number of bits included in the fourth bit block is equal to the number of bits included in the second bit block; when the target index is the At the second index, the number of bits included in the third bit block is greater than the number of bits included in the first bit block.
  • the fourth bit block is an output of the second bit block after the second operation, and the bits included in the fourth bit block
  • the number of bits included in the third bit block is less than the number of bits included in the second bit block; when the target index is the second index, the number of bits included in the third bit block is greater than the number of bits included in the first bit block quantity.
  • the fourth bit block is an output of the second bit block after the second operation, and the bits included in the fourth bit block
  • the number of bits included in the third bit block is less than the number of bits included in the second bit block; when the target index is the second index, the number of bits included in the third bit block is equal to the number of bits included in the first bit block. quantity.
  • Embodiment 7 illustrates the relationship between the first signaling, the first index, the first bit block and the first type of HARQ-ACK and the second signaling, the second index, the second bit according to an embodiment of the present application
  • a schematic diagram of the relationship between blocks and the second type of HARQ-ACK is shown in FIG. 7 .
  • the first signaling indicates the first index
  • the first signaling is used to determine the first bit block
  • the first bit block includes the first type of HARQ-ACK
  • the first type of HARQ-ACK corresponds to the first index
  • the second signaling indicates the second index
  • the second signaling is used to determine the second bit block
  • the second bit block includes the second type of HARQ-ACK
  • the second type of HARQ-ACK corresponds to the second index.
  • the first type of HARQ-ACK is different from the second type of HARQ-CK.
  • the first type of HARQ-ACK includes ACK or NACK.
  • the second type of HARQ-ACK includes ACK or NACK.
  • the priority index corresponding to the first type of HARQ-ACK is equal to 1.
  • the priority index corresponding to the first type of HARQ-ACK is equal to 0.
  • the priority index corresponding to the second type of HARQ-ACK is equal to 1.
  • the priority index corresponding to the second type of HARQ-ACK is equal to 0.
  • the first type of HARQ-ACK and the second type of HARQ-CK are HARQ-ACKs of different priorities respectively.
  • the different priorities are high priority and low priority, respectively.
  • the first type of HARQ-ACK and the second type of HARQ-CK are respectively HARQ-ACK used for different service types.
  • the different service types are URLLC and eMBB respectively.
  • the different service types are services on different links respectively.
  • the first type of HARQ-ACK and the second type of HARQ-CK are respectively HARQ-ACKs corresponding to services with different QoS.
  • the first type of HARQ-ACK includes indication information indicating whether the signaling of the first index is correctly received.
  • the first type HARQ-ACK includes information indicating whether a first type bit block is correctly received; a signaling indicating the first index includes scheduling information of the first type bit block .
  • the first type of bit block includes a high priority TB.
  • the first type of bit block includes a low priority TB.
  • the first type of bit block includes a high priority CBG.
  • the first type of bit block includes a low priority CBG.
  • the first type of bit block includes a TB of URLLC service.
  • the first type of bit block includes a TB of an eMBB service.
  • the second type of HARQ-ACK includes indication information indicating whether the signaling of the second index is correctly received.
  • the second type of HARQ-ACK includes information indicating whether a second type of bit block is correctly received; a signaling indicating the second type of index includes scheduling information of the one second type of bit block .
  • the second type of bit block includes a high priority TB.
  • the second type of bit block includes a low priority TB.
  • the second type of bit block includes a high-priority CBG.
  • the second type of bit block includes a low priority CBG.
  • the second type of bit block includes a TB of URLLC service.
  • the second type of bit block includes a TB of an eMBB service.
  • the second type of bit blocks and the first type of bit blocks are bit blocks of different types.
  • the second type of bit blocks and the first type of bit blocks are respectively bit blocks of different QoS.
  • the first signaling explicitly indicates the first index.
  • the first signaling implicitly indicates the first index.
  • a field in the first signaling indicates the first index.
  • the second signaling explicitly indicates the second index.
  • the second signaling implicitly indicates the second index.
  • a field in the second signaling indicates the second index.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the number of bits included in the first bit block, the number of bits included in the second bit block and the target index according to an embodiment of the present application, as shown in FIG. 8 .
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the target index.
  • the size relationship between the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine whether the target index is the first index or the second index.
  • the size relationship between the number of bits included in the first bit block and the first threshold is used to determine whether the target index is the first index or the second index; the first index Threshold is a positive integer.
  • the size relationship between the number of bits included in the second bit block and the second threshold is used to determine whether the target index is the first index or the second index; the second Threshold is a positive integer.
  • the target index is the first index; when the number of bits included in the first bit block is different When greater than the number of bits included in the second bit block, the target index is the second index.
  • the target index is the first index; when the first bit block When the number of included bits is smaller than the number of bits included in the second bit block, the target index is the second index.
  • the target index is the second index; when the first bit block includes The target index is the first index when the number of bits is not greater than the number of bits included in the second bit block.
  • the target index is the second index; when the first bit block When the number of included bits is smaller than the number of bits included in the second bit block, the target index is the first index.
  • the target index is the first index; when the number of bits included in the second bit block is not greater than the When the second threshold is used, the target index is the second index; the second threshold is a positive integer.
  • the target index is the second index; when the number of bits included in the second bit block is not greater than the When the second threshold is used, the target index is the first index; the second threshold is a positive integer.
  • the target index is the first index; when the number of bits included in the first bit block is not greater than the When the first threshold is used, the target index is the second index; the first threshold is a positive integer.
  • the target index when the number of bits included in the first bit block is greater than a first threshold, the target index is the second index; when the number of bits included in the first bit block is not greater than the When the first threshold is used, the target index is the first index; the first threshold is a positive integer.
  • Embodiment 9 illustrates a schematic diagram of a process of determining whether the first signaling or the second signaling is used to indicate a target air interface resource block according to an embodiment of the present application, as shown in FIG. 9 .
  • the first node in the present application determines in step S91 whether the target index is the first index or the second index; if the target index is the first index, it proceeds to step S92 to determine: the first information Let the target air interface resource block be indicated from the first air interface resource block set; if the target index is the second index, go to step S93 to determine: the second signaling indicates the target air interface resource block from the second air interface resource block set.
  • the first air interface resource block set includes one PUCCH resource set.
  • the second air interface resource block set is one PUCCH resource set.
  • the first set of air interface resource blocks includes a positive integer number of air interface resource blocks.
  • the second air interface resource block set includes a positive integer number of air interface resource blocks.
  • the first air interface resource block set includes a positive integer number of PUCCH resources.
  • the second air interface resource block set includes a positive integer number of PUCCH resources.
  • the first air interface resource block set includes a positive integer number of air interface resource blocks; the second air interface resource block set includes a positive integer number of air interface resource blocks; the first air interface resource block set includes the positive The integer number of air interface resource blocks and the positive integer number of air interface resource blocks included in the second air interface resource block set are respectively reserved for different types of UCIs.
  • the first air interface resource block set includes a positive integer number of PUCCHs; the second air interface resource block set includes a positive integer number of PUCCHs; the first air interface resource block set includes the positive integer number of PUCCHs and
  • the positive integer number of PUCCHs included in the second air interface resource block set are respectively reserved for different types of UCIs.
  • the first air interface resource block set includes PUCCH reserved for high-priority UCI; the second air interface resource block set includes PUCCH reserved for low-priority UCI.
  • the first air interface resource block set includes PUCCH reserved for low-priority UCI; the second air interface resource block set includes PUCCH reserved for high-priority UCI.
  • the first air interface resource block set includes PUCCH reserved for high-priority HARQ-ACK; the second air interface resource block set includes PUCCH reserved for low-priority HARQ-ACK.
  • the first air interface resource block set includes PUCCH reserved for low-priority HARQ-ACK; the second air interface resource block set includes PUCCH reserved for high-priority HARQ-ACK.
  • the first air interface resource block set includes PUCCH reserved for URLLC service type UCI; the second air interface resource block set includes PUCCH reserved for eMBB service type UCI.
  • the first air interface resource block set includes PUCCH reserved for eMBB service type UCI; the second air interface resource block set includes PUCCH reserved for URLLC service type UCI.
  • the target index is the first index; the first signaling explicitly indicates the target air interface resource block from the first air interface resource block set.
  • the target index is the second index; the second signaling explicitly indicates the target air interface resource block from the second air interface resource block set.
  • the target index is the first index; the first signaling implicitly indicates the target air interface resource block from the first air interface resource block set.
  • the target index is the second index; the second signaling implicitly indicates the target air interface resource block from the second air interface resource block set.
  • the target index is the first index
  • the first signaling implicitly indicates the target air interface resource block from the first air interface resource block set
  • the value indicated by one field is equal to the index of the target air interface resource block in the first air interface resource block set.
  • the target index is the second index
  • the second signaling implicitly indicates the target air interface resource block from the second air interface resource block set
  • the value indicated by one field is equal to the index of the target air interface resource block in the second air interface resource block set.
  • one of the first signaling and the second signaling and the sum of the number of bits included in the third bit block and the number of bits included in the fourth bit block are common is used to determine the target air interface resource block.
  • the target index is the first index
  • N1 numerical ranges correspond to N1 air interface resource block sets respectively
  • the first numerical range is one of the N1 numerical ranges
  • the first air interface resource block set is the air interface resource block set corresponding to the first value range in the N1 air interface resource block sets
  • the sum of the number of bits included in the third bit block and the number of bits included in the fourth bit block is equal to a value in the first value range
  • the first signaling indicates the target air interface resource block from the first air interface resource block set.
  • the target index is the second index; N2 numerical ranges correspond to N2 air interface resource block sets respectively; the second numerical range is one of the N2 numerical ranges; the second air interface resource block set is the air interface resource block set corresponding to the second value range in the N2 air interface resource block sets; the sum of the number of bits included in the third bit block and the number of bits included in the fourth bit block is equal to a value in the second value range; the second signaling indicates the target air interface resource block from the second air interface resource block set.
  • the N1 air interface resource block sets include N1 PUCCH resource sets.
  • the N2 air interface resource block sets include N2 PUCCH resource sets.
  • the N1 is equal to a positive integer.
  • the N2 is equal to a positive integer.
  • the N1 is equal to one.
  • the N1 is equal to 2.
  • the N1 is equal to three.
  • the N1 is equal to four.
  • the N2 is equal to one.
  • the N2 is equal to two.
  • the N2 is equal to three.
  • the N2 is equal to four.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the first air interface resource block, the second air interface resource block and the target index according to an embodiment of the present application, as shown in FIG. 10 .
  • the relative positional relationship between the first air interface resource block and the second air interface resource in the time domain is used to determine whether the target index is the first index or the second index.
  • the first signaling in this application is used to determine the first air interface resource block; the second signaling in this application is used to determine the second air interface resource block.
  • the relative positional relationship between the first air interface resource block and the second air interface resource block in the phrase includes the starting time of the first air interface resource block and the second air interface resource The sequence of the starting moments of the blocks in the time domain.
  • the phrase relative positional relationship between the first air interface resource block and the second air interface resource block in the time domain includes the expiry time of the first air interface resource block and the second air interface resource block.
  • the order of the deadlines in the time domain includes the expiry time of the first air interface resource block and the second air interface resource block.
  • the target index is the first index
  • the target index is the second index
  • the target index is the first index
  • the target index is the second index
  • the target index is the first index; when the expiration time of the first air interface resource block is When the expiration time is not earlier than the expiration time of the second air interface resource block, the target index is the second index.
  • the target index is the first index; when the first air interface resource block When the expiration time of the second air interface resource block is later than the expiration time of the second air interface resource block, the target index is the second index.
  • the time-frequency resources occupied by the first air interface resource block and the time-frequency resources occupied by the first air interface resource block satisfy a first set of conditions.
  • the time domain resources occupied by the first air interface resource block and the time domain resources occupied by the first air interface resource block satisfy a first set of conditions.
  • the first air interface resource block includes a first channel; the second air interface resource block includes a second channel; the first channel and the second channel satisfy a first set of conditions.
  • the first channel is a physical channel.
  • the second channel is a physical channel.
  • the first air interface resource block includes a first channel; the first channel is a PUCCH or PUSCH; the second air interface resource block includes a second channel; the second channel is a PUCCH or PUSCH ; The first channel and the second channel satisfy the first condition set.
  • the first air interface resource block includes one PUCCH; the second air interface resource block includes one PUCCH; the one PUCCH included in the first air interface resource block and the second air interface resource block include The one PUCCH satisfies the first set of conditions.
  • the phrase satisfying the first condition set includes: satisfying all conditions in the first condition set.
  • the first condition set includes a positive integer number of conditions.
  • the first set of conditions includes timeline conditions.
  • the first condition set includes a timeline condition; for a detailed description of the timeline condition, refer to Section 9.2.5 in 3GPP TS38.213.
  • the first set of conditions includes conditions under which the third bit block and the fourth bit block are allowed to be multiplexed on the same channel for transmission.
  • the one channel is one physical channel.
  • the one channel is one PUCCH.
  • the one channel is one PUSCH.
  • the expiration time of the second air interface resource block is not later than the first time; the first time is related to the expiration time of the first air interface resource block.
  • the first moment is the expiration moment of the first air interface resource block.
  • the first time is after the cut-off time of the first air interface resource block; the time interval between the first time and the cut-off time of the first air interface resource block is equal to Time domain resource occupied by a positive integer number of multicarrier symbols.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block, and the first air interface resource block and the second air interface resource are in The relative positional relationship in the time domain is collectively used to determine whether the target index is the first index or the second index.
  • the target index is the first index; when the number of bits included in the first bit block is not greater than the number of bits included in the second bit block and the first air interface resource When the start time of the block is earlier than the start time of the second air interface resource block, the target index is the second index.
  • Embodiment 11 illustrates a structural block diagram of a processing apparatus in a first node device, as shown in FIG. 11 .
  • the first node device processing apparatus 1100 includes a first receiver 1101 and a first transmitter 1102 .
  • the first node device 1100 is user equipment.
  • the first node device 1100 is a relay node.
  • the first node device 1100 is an in-vehicle communication device.
  • the first node device 1100 is a user equipment supporting V2X communication.
  • the first node device 1100 is a relay node supporting V2X communication.
  • the first receiver 1101 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data in FIG. 4 of the present application at least one of sources 467.
  • the first receiver 1101 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data in FIG. 4 of the present application At least the first five of the sources 467.
  • the first receiver 1101 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data in FIG. 4 of the present application At least the first four of the sources 467.
  • the first receiver 1101 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data in FIG. 4 of the present application At least the first three of source 467.
  • the first receiver 1101 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data in FIG. 4 of the present application At least the first two of the sources 467.
  • the first transmitter 1102 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least one of the data sources 467.
  • the first transmitter 1102 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first five of the data sources 467.
  • the first transmitter 1102 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first four of the data sources 467.
  • the first transmitter 1102 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first three of the data sources 467.
  • the first transmitter 1102 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmit processor 468, controller/processor 459, memory 460 and At least the first two of the data sources 467.
  • the first receiver 1101 receives the first information, and receives the first signaling and the second signaling; the first transmitter 1102 sends the first signal in the target air interface resource block, so the first signal carries a third bit block and a fourth bit block; the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the first signaling Two signaling is used to determine the second block of bits; the first block of bits is used to generate the third block of bits; the second block of bits is used to generate the fourth block of bits; the third All bits in the bit block and all bits in the fourth bit block are input into the output after the first channel coding is used to generate the first signal; the target air interface resource block corresponds to a target index, and the target index is equal to the first index or the second index, the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, the The fourth bit block is the second bit block or the output of the second bit block
  • the first bit block includes a first type of HARQ-ACK; the second bit block includes a second type of HARQ-ACK; the first type of HARQ-ACK is different from the second type of HARQ-ACK CK; the first type of HARQ-ACK corresponds to the first index; the second type of HARQ-ACK corresponds to the second index; the first signaling indicates the first index; the second Let indicates the second index.
  • the number of bits included in the fourth bit block is not greater than the number of bits included in the second bit block; when the target index is the When the second index is set, the number of bits included in the third bit block is not less than the number of bits included in the first bit block.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the target index.
  • the first signaling indicates the first index
  • the second signaling indicates the second index
  • the first signaling Indicate the target air interface resource block from the first air interface resource block set
  • the second signaling indicates the target air interface resource block from the second air interface resource block set .
  • the first signaling is used to determine a first air interface resource block; the second signaling is used to determine a second air interface resource block; the first air interface resource block and the second air interface
  • the relative positional relationship of resources in the time domain is used to determine whether the target index is the first index or the second index.
  • the first operation includes a second encoding
  • the second operation includes one or more of logical AND, logical OR, XOR, or delete bit operations.
  • the target air interface resource block includes one PUCCH; the first signal is sent in the one PUCCH, and the first signal carries the third bit block and the fourth bit block;
  • the first signaling and the second signaling are respectively one DCI; the first signaling is used to determine the first bit block; the second signaling is used to determine the second bit block ; the first bit block is used to generate the third bit block; the second bit block is used to generate the fourth bit block;
  • the first bit block includes the first type of HARQ-ACK ;
  • the second bit block includes the second type of HARQ-ACK;
  • the first index and the second index are priority indexes, respectively;
  • the first index is equal to 1; the second index is equal to 0;
  • the first type of HARQ-ACK corresponds to the first index; the second type of HARQ-ACK corresponds to the second index;
  • the first signaling indicates the first index;
  • the second signaling indicates the second index; all bits in the third bit block and all bits in the fourth bit block are input
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus in a second node device, as shown in FIG. 12 .
  • the second node device processing apparatus 1200 includes a second transmitter 1201 and a second receiver 1202 .
  • the second node device 1200 is user equipment.
  • the second node device 1200 is a base station.
  • the second node device 1200 is a relay node.
  • the second node device 1200 is an in-vehicle communication device.
  • the second node device 1200 is a user equipment supporting V2X communication.
  • the second transmitter 1201 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. at least one.
  • the second transmitter 1201 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. at least the top five.
  • the second transmitter 1201 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. At least the first four.
  • the second transmitter 1201 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. At least the first three.
  • the second transmitter 1201 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. At least the first two.
  • the second receiver 1202 includes the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. at least one.
  • the second receiver 1202 includes the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. at least the top five.
  • the second receiver 1202 includes the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. At least the first four.
  • the second receiver 1202 includes the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. At least the first three.
  • the second receiver 1202 includes the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, the controller/processor 475 and the memory 476 in FIG. 4 of the present application. At least the first two.
  • the second transmitter 1201 sends the first information, and sends the first signaling and the second signaling; the second receiver 1202 receives the first signal in the target air interface resource block, so the first signal carries a third bit block and a fourth bit block; the first information indicates that the first signaling includes a first field; the first signaling is used to determine the first bit block; the first signaling Two signaling is used to determine the second block of bits; the first block of bits is used to generate the third block of bits; the second block of bits is used to generate the fourth block of bits; the third All bits in the bit block and all bits in the fourth bit block are input into the output after the first channel coding is used to generate the first signal; the target air interface resource block corresponds to a target index, and the target index is equal to the first index or the second index, the first index is not equal to the second index; when the target index is equal to the first index, the third bit block is the first bit block, the The fourth bit block is the second bit block or the output of the second bit block
  • the first bit block includes a first type of HARQ-ACK; the second bit block includes a second type of HARQ-ACK; the first type of HARQ-ACK is different from the second type of HARQ-ACK CK; the first type of HARQ-ACK corresponds to the first index; the second type of HARQ-ACK corresponds to the second index; the first signaling indicates the first index; the second Let indicates the second index.
  • the number of bits included in the fourth bit block is not greater than the number of bits included in the second bit block; when the target index is the When the second index is set, the number of bits included in the third bit block is not less than the number of bits included in the first bit block.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the target index.
  • the first signaling indicates the first index
  • the second signaling indicates the second index
  • the first signaling Indicate the target air interface resource block from the first air interface resource block set
  • the second signaling indicates the target air interface resource block from the second air interface resource block set .
  • the first signaling is used to determine a first air interface resource block; the second signaling is used to determine a second air interface resource block; the first air interface resource block and the second air interface
  • the relative positional relationship of resources in the time domain is used to determine whether the target index is the first index or the second index.
  • the first operation includes a second encoding
  • the second operation includes one or more of logical AND, logical OR, XOR, or delete bit operations.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC (LTE enhancements for Machine Type Communications) devices, NB-IoT devices, vehicle-mounted devices Communication equipment, aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT (Narrow Band Internet of Things) devices, in-vehicle communication devices, Wireless communication equipment such as aircraft, aircraft, drones, and remote control aircraft.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote control Airplanes and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS (Global Navigation Satellite System, Global Navigation Satellite System) system), relay satellites, satellite base stations, air base stations and other wireless communication equipment.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及无线通信技术领域,提出了一种被用于无线通信的节点中的方法和装置。被用于无线通信的第一节点设备,包括:第一接收机,接收第一信息,接收第一信令和第二信令;第一发射机,在目标空口资源块中发送第一信号,第一信号携带第三比特块和第四比特块;其中,第一比特块被用于生成第三比特块;第二比特块被用于生成第四比特块;第三比特块中所有比特和第四比特块中所有比特被输入第一信道编码后的输出被用于生成第一信号;当目标索引等于第一索引时,第三比特块是第一比特块,第四比特块是第二比特块或者第二比特块经过第二操作后的输出;当目标索引等于第二索引时,第三比特块是第一比特块经过第一操作后的输出。

Description

一种被用于无线通信的节点中的方法和装置
相关申请的交叉引用
本申请基于申请号为“CN202110288299.5”、申请日为2021年3月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请的实施例涉及无线通信技术领域,特别涉及一种被用于无线通信系统中的方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G系统中,eMBB(Enhance Mobile Broadband,增强型移动宽带),和URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)是两大典型业务类型(Service Type)。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)NR(New Radio,新空口)Release 15中已针对URLLC业务的更低目标BLER(Block Error Ratio,块误码率)要求(10^-5),定义了一个新的调制编码方式(MCS,Modulation and Coding Scheme)表。为了支持更高要求的URLLC业务,比如更高可靠性(比如:目标BLER为10^-6)、更低延迟(比如:0.5-1ms)等,在3GPP NR Release 16中,DCI(Downlink Control Information,下行控制信息)信令可以指示所调度的业务是低优先级(Low Priority)还是高优先级(High Priority),其中低优先级对应URLLC业务,高优先级对应eMBB业务。一个低优先级的传输与一个高优先级的传输在时域上重叠时,高优先级的传输被执行,而低优先级的传输被放弃。
在3GPP RAN#86次全会上通过了NR Release 17的URLLC增强的WI(Work Item,工作项目)。其中,对UE(User Equipment,用户设备)内(Intra-UE)不同业务的复用(Multiplexing)是需要研究一个重点。
发明内容
本申请实施例提出了一种被用于无线通信的第一节点中的方法,包括:
接收第一信息;接收第一信令和第二信令;
在目标空口资源块中发送第一信号,所述第一信号携带第三比特块和第四比特块;
其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
本申请实施例提出了一种被用于无线通信的第二节点中的方法,包括:
发送第一信息;发送第一信令和第二信令;
在目标空口资源块中接收第一信号,所述第一信号携带第三比特块和第四比特块;
其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
本申请实施例提出了一种被用于无线通信的第一节点设备,包括:
第一接收机,接收第一信息,接收第一信令和第二信令;
第一发射机,在目标空口资源块中发送第一信号,所述第一信号携带第三比特块和第四比特块;
其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
本申请实施例提出了一种被用于无线通信的第二节点设备,包括:
第二发射机,发送第一信息,发送第一信令和第二信令;
第二接收机,在目标空口资源块中接收第一信号,所述第一信号携带第三比特块和第四比特块;
其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目 的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的另一个实施例的网络架构的示意图;
图3示出了根据本申请的另一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的另一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的另一个实施例的信号传输流程图;
图6示出了根据本申请的另一个实施例的确定第三比特块和第四比特块的流程的示意图;
图7示出了根据本申请的另一个实施例的第一信令,第一索引,第一比特块和第一类HARQ-ACK之间的关系以及第二信令,第二索引,第二比特块和第二类HARQ-ACK之间的关系的示意图;
图8示出了根据本申请的另一个实施例的第一比特块包括的比特的数量,第二比特块包括的比特的数量和目标索引之间关系的示意图;
图9示出了根据本申请的另一个实施例的判断第一信令还是第二信令被用于指示目标空口资源块的流程的示意图;
图10示出了根据本申请的另一个实施例的第一空口资源块,第二空口资源块和目标索引之间关系的示意图;
图11示出了根据本申请的另一个实施例的第一节点设备中的处理装置的结构框图;
图12示出了根据本申请的另一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
在NRURLLC项目的讨论中,高优先级UCI(Uplink Control Information,上行控制信息)对可靠性(Reliability)的要求(Requirement)要高于低优先级UCI;当不同优先级(Priority)的UCI被复用到同一个PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)上时,如何确保不同优先级的UCI对可靠性要求的是一个需要解决的关键问题。
针对上述问题,本申请实施例提出了一种解决方案,被用于无线通信的第一节点中的方法,包括:接收第一信息;接收第一信令和第二信令;在目标空口资源块中发送第一信号,所述第一信号携带第三比特块和第四比特块;其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。上述问题描述中,采用上行链路(Uplink)作为一个例子;本申请实施例也同样适用于下行链路(Downlink)传输场景和伴随链路(Sidelink)传输场景,取得类似上行链路中的技术效果。此外,不同场景(包括但不限于上行链路、下行链路、伴随链路)采用统一解决方案还有助于降低硬件复杂度和成本。需要说明的是,在 不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
作为一个实施例,本申请要解决的问题包括:当不同优先级的UCI(如,HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgement,混合自动重传请求确认))被复用到同一个PUCCH上进行传输时,如何确保所述不同优先级的UCI对可靠性的要求。
作为一个实施例,本申请要解决的问题包括:当不同优先级的UCI被复用到同一个PUCCH上时,如何确保高优先级UCI具有更高的传输可靠性。
作为一个实施例,本申请要解决的问题包括:不同业务类型(如,URLLC或eMBB)对UCI的传输可靠性具有不同的要求;当针对不同业务类型的UCI(如,HARQ-ACK)被复用到同一个物理信道(如,PUCCH)上进行传输时,如何确保所述针对不同业务类型的UCI的可靠性。
作为一个实施例,本申请要解决的问题包括:当不同优先级的UCI(如,HARQ-ACK)被复用到同一个PUCCH上进行传输时,如何根据所述同一个PUCCH所对应的优先级确定分配给所述不同优先级的UCI的传输资源。
作为一个实施例,本申请要解决的问题包括:不同业务类型(如,URLLC或eMBB)对UCI的传输可靠性具有不同的要求;当针对不同业务类型的UCI(如,HARQ-ACK)被复用到同一个物理信道(如,PUCCH)上进行传输时,如何根据所述同一个物理信道所对应的业务类型确定分配给所述针对不同业务类型的UCI的传输资源。
作为一个实施例,本申请要解决的问题包括:当不同类别的UCI(如,HARQ-ACK)被复用到同一个物理信道上进行传输时,如何根据所述同一个物理信道所对应的类别确定分配给所述不同类别的UCI的传输资源。
作为一个实施例,本申请要解决的问题包括:当不同类别的UCI(如,HARQ-ACK)被复用到同一个物理信道上进行传输时,如何确保所述不同类别的UCI对可靠性的要求。
作为一个实施例,上述方法的实质在于:当高优先级UCI被复用到被预留给低优先级UCI的物理信道上进行传输时,通过增加被传输的与所述高优先级UCI有关的比特(如,针对所述高优先级UCI进行额外编码或添加额外校验比特等)来增加所述物理信道中被用于所述高优先级UCI的传输资源以确保所述高优先级UCI的传输性能。
作为一个实施例,上述方法的实质在于:当低优先级UCI被复用到被预留给高优先级UCI的物理信道上进行传输时,通过减少被传输的与所述低优先级UCI有关的信息比特来限制所述物理信道中被用于所述低优先级UCI的传输资源。
作为一个实施例,上述方法的好处在于:确保了高优先级UCI具有更高的传输可靠性。
作为一个实施例,上述方法的好处在于:当高优先级UCI被复用到被预留给低优先级UCI的物理信道上时,保证了高优先级UCI所需要的的传输可靠性。
作为一个实施例,上述方法的好处在于:当低优先级UCI被复用到被预留给高优先级UCI 的物理信道上时,对被传输的与低优先级UCI有关的信息比特进行了限制,避免了低优先级信息过多地占用高优先级传输资源的问题。
作为一个实施例,本申请中的方法具备如下优势:
-允许不同类别的UCI被复用到同一个物理信道上;
-确保了高优先级UCI具有更高的传输可靠性;
-当高优先级UCI被复用到被预留给低优先级UCI的物理信道上时,保证了高优先级UCI所需要的的传输可靠性;
-当低优先级UCI被复用到被预留给高优先级UCI的物理信道上时,对被传输的与低优先级UCI有关的信息比特进行了限制,避免了低优先级信息过多地占用高优先级传输资源的问题。
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信息;在步骤102中接收第一信令和第二信令;在步骤103中在目标空口源块中发送第一信号。
在实施例1中,所述第一信号携带第三比特块和第四比特块;所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线电资源控制)层信令。
作为一个实施例,所述第一信令包括一个RRC层信令中的一个或多个域(Field)。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层(Physical Layer)信令。
作为一个实施例,所述第一信令包括一个物理层信令。
作为一个实施例,所述第一信令包括更高层(Higher Layer)信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息元素)中的一个或多个域。
作为一个实施例,所述第一信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是被用于调度下行物理层数据信道的信令。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared Channel,物理下行链路共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第二信令是RRC层信令。
作为一个实施例,所述第二信令包括一个RRC层信令中的一个或多个域。
作为一个实施例,所述第二信令是动态配置的。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令包括一个物理层信令。
作为一个实施例,所述第二信令包括更高层信令。
作为一个实施例,所述第二信令是DCI。
作为一个实施例,所述第二信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第二信令包括一个IE中的一个或多个域。
作为一个实施例,所述第二信令是一个下行调度信令。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第二信令是被用于调度下行物理层数据信道的信令。
作为一个实施例,所述第二信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述目标空口资源块包括正整数个RE(Resource Element,资源粒子)。
作为一个实施例,一个所述RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述目标空口资源块在频域包括正整数个子载波(Subcarrier)。
作为一个实施例,所述目标空口资源块在频域包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述目标空口资源块在频域包括正整数个RB(Resource block,资源块)。
作为一个实施例,所述目标空口资源块在时域包括正整数个多载波符号。
作为一个实施例,所述目标空口资源块在时域包括正整数个时隙(slot)。
作为一个实施例,所述目标空口资源块在时域包括正整数个子时隙(sub-slot)。
作为一个实施例,所述目标空口资源块在时域包括正整数个毫秒(ms)。
作为一个实施例,所述目标空口资源块在时域包括正整数个不连续的时隙。
作为一个实施例,所述目标空口资源块在时域包括正整数个连续的时隙。
作为一个实施例,所述目标空口资源块在时域包括正整数个子帧(sub-frame)。
作为一个实施例,所述目标空口资源块由更高层信令配置。
作为一个实施例,所述目标空口资源块由RRC信令配置。
作为一个实施例,所述目标空口资源块由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令配置。
作为一个实施例,所述目标空口资源块包括一个PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述目标空口资源块包括一个PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述目标空口资源块包括一个sPUSCH。
作为一个实施例,所述目标空口资源块包括一个NB-PUSCH。
作为一个实施例,所述目标空口资源块包括一个PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述目标空口资源块包括Uplink上调度的资源。
作为一个实施例,所述目标空口资源块包括Sidelink上调度的资源。
作为一个实施例,所述第一比特块包括HARQ-ACK。
作为一个实施例,所述第一比特块包括CSI(Channel State Information,信道状态信息)报告(Report)。
作为一个实施例,所述第一比特块包括SR(Scheduling Request,上行调度请求)。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块包括一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第二比特块包括HARQ-ACK。
作为一个实施例,所述第二比特块包括CSI报告。
作为一个实施例,所述第二比特块包括SR。
作为一个实施例,所述第二比特块包括一个TB。
作为一个实施例,所述第二比特块包括一个CBG。
作为一个实施例,所述第三比特块包括HARQ-ACK。
作为一个实施例,所述第三比特块包括CSI报告。
作为一个实施例,所述第三比特块包括SR。
作为一个实施例,所述第三比特块包括一个TB。
作为一个实施例,所述第三比特块包括一个CBG。
作为一个实施例,所述第三比特块包括与HARQ-ACK有关的比特。
作为一个实施例,所述第三比特块包括与CSI报告有关的比特。
作为一个实施例,所述第三比特块包括与SR有关的比特。
作为一个实施例,所述第四比特块包括HARQ-ACK。
作为一个实施例,所述第四比特块包括CSI报告。
作为一个实施例,所述第四比特块包括SR。
作为一个实施例,所述第四比特块包括一个TB。
作为一个实施例,所述第四比特块包括一个CBG。
作为一个实施例,所述第四比特块包括与HARQ-ACK有关的比特。
作为一个实施例,所述第四比特块包括与CSI报告有关的比特。
作为一个实施例,所述第四比特块包括与SR有关的比特。
作为一个实施例,本申请中的所述HARQ-ACK包括一个HARQ-ACK比特。
作为一个实施例,本申请中的所述HARQ-ACK包括一个HARQ-ACK码本(Codebook)。
作为一个实施例,本申请中的所述HARQ-ACK包括一个HARQ-ACK子码本(Sub-codebook)。
作为一个实施例,本申请中的所述HARQ-ACK包括正整数个比特。
作为一个实施例,本申请中的所述HARQ-ACK包括正整数个比特,所述正整数个比特中的每一个比特指示ACK(Acknowledgement,肯定确认)或者NACK(NotAcknowledgement,否定确认)。
作为一个实施例,本申请中的所述HARQ-ACK包括被用于指示一个比特块或一个信令是否被正确接收的比特。
作为一个实施例,所述第一比特块包括与正整数个比特。
作为一个实施例,所述第二比特块包括与正整数个比特。
作为一个实施例,所述第三比特块包括与正整数个比特。
作为一个实施例,所述第四比特块包括与正整数个比特。
作为一个实施例,所述第三比特块包括所述第一比特块中的全部或部分比特。
作为一个实施例,所述第四比特块包括所述第二比特块中的全部或部分比特。
作为一个实施例,所述第一信道编码采用的编码方案(Coding scheme)包括Polar码(Polar code)。
作为一个实施例,所述第一信道编码采用的编码方案包括块码(Block code)。
作为一个实施例,所述第一信道编码包括一个信道编码的相关操作。
作为一个实施例,所述第一信号包括所述第三比特块中所有比特和所述第四比特块中所有比特被输入所述第一信道编码后的所述输出中的全部或部分比特依次经过CRC(Cyclic Redundancy Check,循环冗余校验)添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),多载波符号生成(Generation),调制上变频(Modulation and Upconversion)中的部分或全部之后的输出。
作为一个实施例,所述目标索引是所述目标空口资源块在目标空口资源块集合中的索引;所述目标空口资源块集合包括多个空口资源块。
作为一个实施例,所述目标索引被用于确定目标空口资源块集合;所述目标空口资源块集合包括正整数个空口资源块;所述目标空口资源块是所述目标空口资源块集合中的一个空口资源块。
作为上述实施例的一个子实施例,所述第一信令或所述第二信令被用于从所述目标空口资源块集合中确定所述目标空口资源块。
作为上述实施例的一个子实施例,所述目标空口资源块集合是第一空口资源块集合或者第二空口资源块集合。
作为一个实施例,所述目标空口资源块包括一个高优先级PUCCH或一个低优先级PUCCH两者中之一。
作为一个实施例,所述目标空口资源块集合包括一个PUCCH资源集(PUCCH resource set)。
作为一个实施例,所述目标空口资源块集合包括正整数个PUCCH资源(PUCCH resource(s))。
作为一个实施例,所述目标索引是优先级索引(Priority index)。
作为一个实施例,所述目标索引等于0或1。
作为一个实施例,所述目标索引等于一个数值。
作为一个实施例,所述目标索引被用于确定多个优先级(Priority)中的一个优先级。
作为一个实施例,所述多个优先级包括高优先级和低优先级。
作为一个实施例,所述目标索引被用于确定多个业务类型(Service Type)中的一个业务类型。
作为一个实施例,所述多个业务类型包括URLLC和eMBB。
作为一个实施例,所述多个业务类型包括不同链路上的业务。
作为一个实施例,所述目标索引被用于确定多个QoS(Quality of Service,服务质量)中的一个QoS。
作为一个实施例,所述第一索引是优先级索引。
作为一个实施例,所述第一索引等于0或1。
作为一个实施例,所述第一索引等于一个数值。
作为一个实施例,所述第一索引被用于确定多个优先级中的一个优先级。
作为一个实施例,所述第一索引被用于确定多个业务类型中的一个业务类型。
作为一个实施例,所述第一索引被用于确定多个QoS中的一个QoS。
作为一个实施例,所述第二索引是优先级索引。
作为一个实施例,所述第二索引等于0或1。
作为一个实施例,所述第二索引等于一个数值。
作为一个实施例,所述第二索引被用于确定多个优先级中的一个优先级。
作为一个实施例,所述第二索引被用于确定多个业务类型中的一个业务类型。
作为一个实施例,所述第二索引被用于确定多个QoS中的一个QoS。
作为一个实施例,所述第一索引等于1,所述第二索引等于0。
作为一个实施例,所述第一索引等于0,所述第二索引等于1。
作为一个实施例,所述第一索引指示高优先级,所述第二索引指示低优先级。
作为一个实施例,所述第一索引指示低优先级,所述第二索引指示高优先级。
作为一个实施例,所述第一索引指示URLLC业务类型,所述第二索引指示eMBB业务类型。
作为一个实施例,所述第一索引指示eMBB业务类型,所述第二索引指示URLLC业务类型。
作为一个实施例,所述第一索引和所述第二索引分别指示一个QoS。
作为一个实施例,所述第一比特块包括所述第一信令对应的HARQ-ACK。
作为一个实施例,所述第一信令指示所述第一索引;所述第一比特块包括所述第一信令对应的HARQ-ACK。
作为一个实施例,所述第一信令被用于指示半静态调度(Semi-Persistent Scheduling,SPS)释放(Release),所述第一信令对应的HARQ-ACK指示所述第一信令是否被正确接收。
作为一个实施例,所述第一节点接收第五比特块;所述第一信令包括所述第五比特块的调度信息,所述第一信令对应的HARQ-ACK指示所述第五比特块是否被正确接收。
作为一个实施例,所述第一信令被用于指示半静态调度释放,所述第一比特块包括所述第一信令是否被正确接收的指示信息。
作为一个实施例,所述第一节点接收第五比特块;所述第一信令包括所述第五比特块的调度信息,所述第一比特块包括所述第五比特块是否被正确接收的指示信息。
作为一个实施例,所述调度信息包括所占用的时域资源,所占用的频域资源,MCS,DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),发送天线端口,所对应的TCI(Transmission Configuration Indicator,传输配置指示)状态(state)中的至少之一。
作为一个实施例,所述第二比特块包括所述第二信令对应的HARQ-ACK。
作为一个实施例,所述第二信令指示所述第二索引;所述第二比特块包括所述第二信令对应的HARQ-ACK。
作为一个实施例,所述第二信令被用于指示SPS释放(Release),所述第二信令对应的HARQ-ACK指示所述第一信令是否被正确接收。
作为一个实施例,所述第一节点接收第六比特块;所述第二信令包括所述第六比特块的调度信息,所述第二信令对应的HARQ-ACK指示所述第六比特块是否被正确接收。
作为一个实施例,所述第二信令被用于指示半静态调度释放,所述第二比特块包括所述第二信令是否被正确接收的指示信息。
作为一个实施例,所述第一节点接收第六比特块;所述第二信令包括所述第六比特块的调度信息,所述第二比特块包括所述第六比特块是否被正确接收的指示信息。
作为一个实施例,所述第一节点接收第一信令组;所述第一信令组包括所述第一信令;所述第一信令组中的所有信令都指示所述第一索引;所述第一比特块包括第一比特子块组;所述第一比特子块组中的一个比特子块指示所述第一信令组中的一个信令或者被所述第一信令组中的一个信令调度的一个比特块是否被正确接收。
作为一个实施例,所述第一节点接收第一信令组;所述第一信令组包括所述第一信令;所述第一信令组中的所有信令都指示所述第一索引;所述第一比特块包括第一比特子块组;所述第一信令组包括i个信令;所述第一比特子块组包括i个比特子块;所述第一比特子块组中的第i个比特子块指示所述第一信令组中的第i个信令或者被所述第一信令组中的第i个信令调度的一个比特块是否被正确接收;所述i是一个正整数。
作为一个实施例,所述第一信令是所述第一信令组中的最后(last)一个信令。
作为一个实施例,所述第一信令是所述第一信令组中的在最后一个PDCCH监测时机(PDCCH monitoring occasion)中具有最大服务小区索引(Serving cell index)的服务小区上监测到的信令。
作为一个实施例,所述第一节点接收第二信令组;所述第二信令组包括所述第二信令;所述第二信令组中的所有信令都指示所述第二索引;所述第二比特块包括第二比特子块组;所述第二比特子块组中的一个比特子块指示所述第二信令组中的一个信令或者被所述第二信令组中的一个信令调度的一个比特块是否被正确接收。
作为一个实施例,所述第一节点接收第二信令组;所述第二信令组包括所述第二信令;所述第二信令组中的所有信令都指示所述第二索引;所述第二比特块包括第二比特子块组;所述第二信令组包括i个信令;所述第二比特子块组包括i个比特子块;所述第二比特子块组中的第i个比特子块指示所述第二信令组中的第i个信令或者被所述第二信令组中的第i个信令调度的一个比特块是否被正确接收;所述i是一个正整数。
作为一个实施例,所述第二信令是所述第二信令组中的最后一个信令。
作为一个实施例,所述第二信令是所述第二信令组中的在最后一个PDCCH监测时机中具有最大服务小区索引的服务小区上监测到的信令。
作为一个实施例,当所述目标索引是所述第一索引时,所述第四比特块是所述第二比特块经过所述第二操作后的输出,所述第四比特块包括的比特的数量不小于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量不大于所述第一比特块包括的比特的数量。
作为一个实施例,所述第一比特块,所述第二比特块,所述第一信令或所述第二信令中至少之一被所述第一节点用于执行判断确定所述目标索引是所述第一索引还是所述第二索引。
作为一个实施例,所述第一信令和所述第二信令两者中之一以及所述第三比特块包括的比特的数量和所述第四比特块包括的比特的数量之和共同被用于确定所述目标空口资源块。
作为一个实施例,所述第一信息是一个更高层信令。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信息包括一个MACCE信令中的一个或多个域。
作为一个实施例,所述第一信息包括一个IE中的一个或多个域。
作为一个实施例,所述第一信息是更高层信令所指示的配置信息。
作为一个实施例,所述第一信息包括一个RRC信令所指示的配置信息。
作为一个实施例,所述第一信息包括一个MAC CE信令所指示的配置信息。
作为一个实施例,所述第一信息包括一个IE中的一个或多个域所指示的配置信息。
作为一个实施例,所述第一信息是一个或多个更高层参数(higher layer parameter)所指示的信息。
作为一个实施例,所述第一信息显式指示所述第一信令包括所述第一域。
作为一个实施例,所述第一信息隐式指示所述第一信令包括所述第一域。
作为一个实施例,所述第一域是DCI中的一个域。
作为一个实施例,所述第一域包括至少一个比特。
作为一个实施例,所述第一域是跳频标识(Frequency hopping flag)域。
作为一个实施例,所述第一域是第二下行分派索引(2nd downlink assignment index)域。
作为一个实施例,所述第一域是预编码信息和层数(Precoding information and number of layers)域。
作为一个实施例,所述第一域是CBG传输信息(CBG transmission information,CBGTI)域。
作为一个实施例,所述第一域是优先级指示器(Priority indicator)域。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了5GNR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5GNR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE201,NG-RAN(Next Generation Radio Access Network,下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS,Basic Service Set)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmitter Receiver Point,发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SessionInitiationProtocol,SIP)电话、膝上型计算机、个人数字助理(Personal Digital Assistant,PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单 元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
实施例3
实施例3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X(vehicle to everything,车用无线通信技术)中的RSU(Road Side Unit,路侧单元))和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(Physical Layer,物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层 354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY351。
作为一个实施例,本申请中的所述第二比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY351。
作为一个实施例,本申请中的所述第三比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第三比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第三比特块生成于所述PHY351。
作为一个实施例,本申请中的所述第四比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第四比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第四比特块生成于所述PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(Forward Error Correction,FEC),以及基于各种调制方案(例如,二元相移键控(Binary Phase Shift Keying,BPSK)、正交相移键控(Quadrature Phase-Shift Keying,QPSK)、M相移键控(Multiple Phase Shift Keying,M-PSK)、M正交振幅调制(Multiple Quadrature Amplitude Modulation,M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(Inverse Fast Fourier Transform,IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(Fast Fourier Transform,FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑 信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配 置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述第一信息;接收本申请中的所述第一信令和本申请中的所述第二信令;在本申请中的所述目标空口资源块中发送本申请中的所述第一信号,所述第一信号携带本申请中的所述第三比特块和本申请中的所述第四比特块;其中,所述第一信息指示所述第一信令包括本申请中的所述第一域;所述第一信令被用于确定本申请中的所述第一比特块;所述第二信令被用于确定本申请中的所述第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入本申请中的所述第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和本申请中的所述目标索引对应,所述目标索引等于本申请中的所述第一索引或本申请中的所述第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过本申请中的所述第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过本申请中的所述第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信息;接收本申请中的所述第一信令和本申请中的所述第二信令;在本申请中的所述目标空口资源块中发送本申请中的所述第一信号,所述第一信号携带本申请中的所述第三比特块和本申请中的所述第四比特块;其中,所述第一信息指示所述第一信令包括本申请中的所述第一域;所述第一信令被用于确定本申请中的所述第一比特块;所述第二信令被用于确定本申请中的所述第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入本申请中的所述第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和本申请中的所述目标索引对应,所述目标索引等于本申请中的所述第一索引或本申请中的所述第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过本申请中的所述第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过本申请中的所述第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述第一信息;发送本申请中的所述第一信令和本申请中的所述第二信令;在本申请中的所述目标空口资源块中接收本申请中的所述第一信号,所述第一信号携带本申请中的所述第三比特块和本申请中的所述第四比特块;其中,所述第一信息指示所述第一信令包括本申请中的所述第一域;所述第一信令被用于确定本申请中的所述第一比特块;所述第二信令被用于确定本申请中的所述第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特 块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入本申请中的所述第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和本申请中的所述目标索引对应,所述目标索引等于本申请中的所述第一索引或本申请中的所述第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过本申请中的所述第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过本申请中的所述第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信息;发送本申请中的所述第一信令和本申请中的所述第二信令;在本申请中的所述目标空口资源块中接收本申请中的所述第一信号,所述第一信号携带本申请中的所述第三比特块和本申请中的所述第四比特块;其中,所述第一信息指示所述第一信令包括本申请中的所述第一域;所述第一信令被用于确定本申请中的所述第一比特块;所述第二信令被用于确定本申请中的所述第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入本申请中的所述第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和本申请中的所述目标索引对应,所述目标索引等于本申请中的所述第一索引或本申请中的所述第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过本申请中的所述第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过本申请中的所述第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一 被用于在本申请中的所述目标空口资源块中发送本申请中的所述第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述目标空口资源块中接收本申请中的所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信。特别地,在附图5中{S521,S511}和{S522,S512}两个步骤对之间的先后顺序不代表特定的时域关系。
第一节点U1,在步骤S510中接收第一信息;在步骤S511中接收第二信令;在步骤S512中接收第一信令;在步骤S513中在目标空口资源块中发送第一信号。
第二节点U2,在步骤S520中发送第一信息;在步骤S521中发送第二信令;在步骤S522中发送第一信令;在步骤S523中在目标空口资源块中接收第一信号。
在实施例5中,所述第一信号携带第三比特块和第四比特块;所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应;所述第一比特块包括第一类HARQ-ACK;所述第二比特块包括第二类HARQ-ACK;所述第一类HARQ-ACK不同于所述第二类HARQ-CK;所述第一类HARQ-ACK对应所述第一索引;所述第二类HARQ-ACK对应所述第二索引;所述第一信令指示所述第一索引;所述第二信令指示所述第二索引;当所述目标索引是所述第一索引时,所述第四比特块包括的比特的数量不大于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量不小于所述第一比特块包括的比特的数量;当所述目标索引是所述第一索引时,所述第一信令从第一空口资源块集合中指示所述目标空口资源块;当所述目标索引是所述第二索引时,所述第二信令从第二空口资源块集合中指示所述目标空口资源块;所述第一操作包括第二编码;所述第二操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
作为实施例5的一个子实施例,所述第一比特块包括的比特的数量和所述第二比特块包括的比特的数量两者中至少之一被用于确定所述目标索引。
作为实施例5的一个子实施例,所述第一信令被用于确定第一空口资源块;所述第二信令被用于确定第二空口资源块;所述第一空口资源块和所述第二空口资源在时域的相对位置关系被用于确定所述目标索引是所述第一索引还是所述第二索引。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括伴随链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第一信令包括Priority Indicator域;所述第一信令中的所述Priority Indicator域指示所述第一索引。
作为一个实施例,所述第二信令包括Priority Indicator域;所述第二信令中的所述Priority Indicator域指示所述第二索引。
作为一个实施例,所述第一信令的信令格式(Format)隐式指示所述第一索引。
作为一个实施例,所述第二信令的信令格式隐式指示所述第二索引。
作为一个实施例,所述第一信令的RNTI(无线网络临时标识,Radio Network Tempory Identity)隐式指示所述第一索引。
作为一个实施例,所述第二信令的RNTI隐式指示所述第二索引。
作为一个实施例,所述第一比特块中包括的所有HARQ-ACK都具有相同的优先级。
作为一个实施例,所述第一比特块中包括的所有HARQ-ACK都具有相同的业务类型。
作为一个实施例,所述第一比特块仅包括HARQ-ACK。
作为一个实施例,所述第一比特块包括所述第一信令是否被正确接收的指示信息。
作为一个实施例,所述第一比特块包括所述第一信令调度的一个比特块是否被正确接收的指示信息。
作为一个实施例,所述第二比特块中包括的所有HARQ-ACK都具有相同的优先级。
作为一个实施例,所述第二比特块中包括的所有HARQ-ACK都具有相同的业务类型。
作为一个实施例,所述第二比特块仅包括HARQ-ACK。
作为一个实施例,所述第二比特块还包括HARQ-ACK之外的UCI。
作为一个实施例,所述第二比特块包括所述第二信令是否被正确接收的指示信息。
作为一个实施例,所述第二比特块包括所述第二信令调度的一个比特块是否被正确接收的指示信息。
实施例6
实施例6示例了根据本申请的一个实施例的确定第三比特块和第四比特块的流程的示意图,如附图6所示。
在实施例6中,本申请中的所述第一节点在步骤S61中判断目标索引是第一索引还是第二索引;如果目标索引是第一索引,则进到步骤S62中确定:第三比特块是第一比特块,第四比特块是第二比特块或者第二比特块经过第二操作后的输出,第四比特块包括的比特的数量不大于第二比特块包括的比特的数量;如果目标索引是第二索引,进到步骤S63中确定:第三比特块是第一比特块经过第一操作后的输出,第三比特块包括的比特的数量不小于第一比特块包括的比特的数量,第四比特块是第二比特块。
作为一个实施例,所述第一操作包括第二编码。
作为一个实施例,所述第二操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
作为一个实施例,所述第二操作包括第二编码。
作为一个实施例,所述第一操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
作为一个实施例,所述第二编码包括信道编码。
作为一个实施例,所述第二编码采用的编码方案(Coding scheme)包括Polar码(Polar code)或块码(Block code)。
作为一个实施例,所述第二编码包括对被输入所述第二编码的比特中的部分或全部执行重复码(Repetition code)编码操作。
作为一个实施例,所述第二编码包括生成并添加校验比特的操作。
作为一个实施例,所述第一操作包括生成并添加校验比特的操作。
作为一个实施例,所述句子所述第三比特块是所述第一比特块经过第一操作后的输出包括:所述第三比特块是所述第一比特块中的部分或全部比特被输入第二编码后的输出。
作为一个实施例,所述句子所述第三比特块是所述第一比特块经过第一操作后的输出包括:所述第三比特块是所述第一比特块中的部分或全部比特被输入第二编码后的输出;所述第二编码包括针对被输入的所述第一比特块中的所述部分或全部比特生成校验比特;所述第三比特块包括所述校验比特中的部分或全部。
作为一个实施例,所述句子所述第三比特块是所述第一比特块经过第一操作后的输出包括:所述第三比特块是所述第一比特块中的部分或全部比特被输入所述第一操作后的输出。
作为一个实施例,所述句子所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出包括:所述第四比特块是所述第二比特块中的部分或全部比特被输入所述第二操作后的输出。
作为一个实施例,所述句子所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出包括:所述第四比特块是所述第二比特块中的部分或全部比特被输入第二编码后的输出。
作为一个实施例,所述句子所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出包括:所述第四比特块是所述第二比特块。
作为一个实施例,当所述目标索引是所述第一索引时,所述第四比特块包括的比特的数量等于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量大于所述第一比特块包括的比特的数量。
作为一个实施例,当所述目标索引是所述第一索引时,所述第四比特块是所述第二比特块经过所述第二操作后的输出,所述第四比特块包括的比特的数量小于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量大于所述第一比特块包括的比特的数量。
作为一个实施例,当所述目标索引是所述第一索引时,所述第四比特块是所述第二比特块经过所述第二操作后的输出,所述第四比特块包括的比特的数量小于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量等于 所述第一比特块包括的比特的数量。
实施例7
实施例7示例了根据本申请的一个实施例的第一信令,第一索引,第一比特块和第一类HARQ-ACK之间的关系以及第二信令,第二索引,第二比特块和第二类HARQ-ACK之间的关系的示意图,如附图7所示。
在实施例7中,第一信令指示第一索引,第一信令被用于确定第一比特块,第一比特块包括第一类HARQ-ACK,第一类HARQ-ACK对应第一索引;第二信令指示第二索引,第二信令被用于确定第二比特块,第二比特块包括第二类HARQ-ACK,第二类HARQ-ACK对应第二索引。
作为一个实施例,所述第一类HARQ-ACK不同于所述第二类HARQ-CK。
作为一个实施例,所述第一类HARQ-ACK包括ACK或者NACK。
作为一个实施例,所述第二类HARQ-ACK包括ACK或者NACK。
作为一个实施例,所述第一类HARQ-ACK对应的优先级索引等于1。
作为一个实施例,所述第一类HARQ-ACK对应的优先级索引等于0。
作为一个实施例,所述第二类HARQ-ACK对应的优先级索引等于1。
作为一个实施例,所述第二类HARQ-ACK对应的优先级索引等于0。
作为一个实施例,所述第一类HARQ-ACK与所述第二类HARQ-CK分别是不同优先级的HARQ-ACK。
作为一个实施例,所述不同优先级分别是高优先级和低优先级。
作为一个实施例,所述第一类HARQ-ACK与所述第二类HARQ-CK分别是被用于不同业务类型的HARQ-ACK。
作为一个实施例,所述不同业务类型分别是URLLC和eMBB。
作为一个实施例,所述不同业务类型分别是不同链路上的业务。
作为一个实施例,所述第一类HARQ-ACK与所述第二类HARQ-CK分别是不同QoS的业务对应的HARQ-ACK。
作为一个实施例,所述第一类HARQ-ACK包括一个指示所述第一索引的信令是否被正确接收的指示信息。
作为一个实施例,所述第一类HARQ-ACK包括一个第一类比特块是否被正确接收的指示信息;一个指示所述第一索引的信令包括所述一个第一类比特块的调度信息。
作为一个实施例,所述第一类比特块包括一个高优先级TB。
作为一个实施例,所述第一类比特块包括一个低优先级TB。
作为一个实施例,所述第一类比特块包括一个高优先级CBG。
作为一个实施例,所述第一类比特块包括一个低优先级CBG。
作为一个实施例,所述第一类比特块包括一个URLLC业务的TB。
作为一个实施例,所述第一类比特块包括一个eMBB业务的TB。
作为一个实施例,所述第二类HARQ-ACK包括一个指示所述第二索引的信令是否被正确接收的指示信息。
作为一个实施例,所述第二类HARQ-ACK包括一个第二类比特块是否被正确接收的指示信息;一个指示所述第二索引的信令包括所述一个第二类比特块的调度信息。
作为一个实施例,所述第二类比特块包括一个高优先级TB。
作为一个实施例,所述第二类比特块包括一个低优先级TB。
作为一个实施例,所述第二类比特块包括一个高优先级CBG。
作为一个实施例,所述第二类比特块包括一个低优先级CBG。
作为一个实施例,所述第二类比特块包括一个URLLC业务的TB。
作为一个实施例,所述第二类比特块包括一个eMBB业务的TB。
作为一个实施例,所述第二类比特块与所述第一类比特块是不同类别的比特块。
作为一个实施例,所述第二类比特块与所述第一类比特块分别是不同QoS的比特块。
作为一个实施例,所述第一信令显式指示所述第一索引。
作为一个实施例,所述第一信令隐式指示所述第一索引。
作为一个实施例,所述第一信令中的一个域指示所述第一索引。
作为一个实施例,所述第二信令显式指示所述第二索引。
作为一个实施例,所述第二信令隐式指示所述第二索引。
作为一个实施例,所述第二信令中的一个域指示所述第二索引。
实施例8
实施例8示例了根据本申请的一个实施例的第一比特块包括的比特的数量,第二比特块包括的比特的数量和目标索引之间关系的示意图,如附图8所示。
在实施例8中,第一比特块包括的比特的数量和第二比特块包括的比特的数量两者中至少之一被用于确定目标索引。
作为一个实施例,所述第一比特块包括的比特的数量和所述第二比特块包括的比特的数量之间的大小关系被用于确定所述目标索引是所述第一索引还是所述第二索引。
作为一个实施例,所述第一比特块包括的比特的数量和第一阈值之间的大小关系被用于确定所述目标索引是所述第一索引还是所述第二索引;所述第一阈值是一个正整数。
作为一个实施例,所述第二比特块包括的比特的数量和第二阈值之间的大小关系被用于确定所述目标索引是所述第一索引还是所述第二索引;所述第二阈值是一个正整数。
当所述第一比特块包括的比特的数量大于所述第二比特块包括的比特的数量时,所述目标索引是所述第一索引;当所述第一比特块包括的比特的数量不大于所述第二比特块包括的比特的数量时,所述目标索引是所述第二索引。
作为一个实施例,当所述第一比特块包括的比特的数量不小于所述第二比特块包括的比特的数量时,所述目标索引是所述第一索引;当所述第一比特块包括的比特的数量小于所述第二比特块包括的比特的数量时,所述目标索引是所述第二索引。
作为一个实施例,当所述第一比特块包括的比特的数量大于所述第二比特块包括的比特的数量时,所述目标索引是所述第二索引;当所述第一比特块包括的比特的数量不大于所述第二比特块包括的比特的数量时,所述目标索引是所述第一索引。
作为一个实施例,当所述第一比特块包括的比特的数量不小于所述第二比特块包括的比特的数量时,所述目标索引是所述第二索引;当所述第一比特块包括的比特的数量小于所述第二比特块包括的比特的数量时,所述目标索引是所述第一索引。
作为一个实施例,当所述第二比特块包括的比特的数量大于第二阈值时,所述目标索引是所述第一索引;当所述第二比特块包括的比特的数量不大于所述第二阈值时,所述目标索引是所述第二索引;所述第二阈值是一个正整数。
作为一个实施例,当所述第二比特块包括的比特的数量大于第二阈值时,所述目标索引是所述第二索引;当所述第二比特块包括的比特的数量不大于所述第二阈值时,所述目标索引是所述第一索引;所述第二阈值是一个正整数。
作为一个实施例,当所述第一比特块包括的比特的数量大于第一阈值时,所述目标索引是所述第一索引;当所述第一比特块包括的比特的数量不大于所述第一阈值时,所述目标索引是所述第二索引;所述第一阈值是一个正整数。
作为一个实施例,当所述第一比特块包括的比特的数量大于第一阈值时,所述目标索引是所述第二索引;当所述第一比特块包括的比特的数量不大于所述第一阈值时,所述目标索引是所述第一索引;所述第一阈值是一个正整数。
实施例9
实施例9示例了根据本申请的一个实施例的判断第一信令还是第二信令被用于指示目标空口资源块的流程的示意图,如附图9所示。
在实施例9中,本申请中的所述第一节点在步骤S91中判断目标索引是第一索引还是第二索引;如果目标索引是第一索引,则进到步骤S92中确定:第一信令从第一空口资源块集合中指示目标空口资源块;如果目标索引是第二索引,进到步骤S93中确定:第二信令从第二空口资源块集合中指示目标空口资源块。
作为一个实施例,所述第一空口资源块集合包括一个PUCCH资源集。
作为一个实施例,所述第二空口资源块集合一个PUCCH资源集。
作为一个实施例,所述第一空口资源块集合包括正整数个空口资源块。
作为一个实施例,所述第二空口资源块集合包括正整数个空口资源块。
作为一个实施例,所述第一空口资源块集合包括正整数个PUCCH资源。
作为一个实施例,所述第二空口资源块集合包括正整数个PUCCH资源。
作为一个实施例,所述第一空口资源块集合包括正整数个空口资源块;所述第二空口资源块集合包括正整数个空口资源块;所述第一空口资源块集合包括的所述正整数个空口资源块和所述第二空口资源块集合包括的所述正整数个空口资源块分别被预留给不同类别UCI。
作为一个实施例,所述第一空口资源块集合包括正整数个PUCCH;所述第二空口资源块集合包括正整数个PUCCH;所述第一空口资源块集合包括的所述正整数个PUCCH和所述第二空口资源块集合包括的所述正整数个PUCCH分别被预留给不同类别UCI。
作为一个实施例,所述第一空口资源块集合包括被预留给高优先级UCI的PUCCH;所述第二空口资源块集合包括被预留给低优先级UCI的PUCCH。
作为一个实施例,所述第一空口资源块集合包括被预留给低优先级UCI的PUCCH;所述第二空口资源块集合包括被预留给高优先级UCI的PUCCH。
作为一个实施例,所述第一空口资源块集合包括被预留给高优先级HARQ-ACK的PUCCH;所述第二空口资源块集合包括被预留给低优先级HARQ-ACK的PUCCH。
作为一个实施例,所述第一空口资源块集合包括被预留给低优先级HARQ-ACK的PUCCH;所述第二空口资源块集合包括被预留给高优先级HARQ-ACK的PUCCH。
作为一个实施例,所述第一空口资源块集合包括被预留给URLLC业务类型UCI的PUCCH;所述第二空口资源块集合包括被预留给eMBB业务类型UCI的PUCCH。
作为一个实施例,所述第一空口资源块集合包括被预留给eMBB业务类型UCI的PUCCH; 所述第二空口资源块集合包括被预留给URLLC业务类型UCI的PUCCH。
作为一个实施例,所述目标索引是所述第一索引;所述第一信令从所述第一空口资源块集合中显式指示所述目标空口资源块。
作为一个实施例,所述目标索引是所述第二索引;所述第二信令从所述第二空口资源块集合中显式指示所述目标空口资源块。
作为一个实施例,所述目标索引是所述第一索引;所述第一信令从所述第一空口资源块集合中隐式指示所述目标空口资源块。
作为一个实施例,所述目标索引是所述第二索引;所述第二信令从所述第二空口资源块集合中隐式指示所述目标空口资源块。
作为一个实施例,所述目标索引是所述第一索引;所述第一信令从所述第一空口资源块集合中隐式指示所述目标空口资源块;所述第一信令中的一个域指示的数值等于所述目标空口资源块在所述第一空口资源块集合中的索引。
作为一个实施例,所述目标索引是所述第二索引;所述第二信令从所述第二空口资源块集合中隐式指示所述目标空口资源块;所述第二信令中的一个域指示的数值等于所述目标空口资源块在所述第二空口资源块集合中的索引。
作为一个实施例,所述第一信令和所述第二信令两者中之一以及所述第三比特块包括的比特的数量和所述第四比特块包括的比特的数量之和共同被用于确定所述目标空口资源块。
作为一个实施例,所述目标索引是所述第一索引;N1个数值范围分别对应N1个空口资源块集合;第一数值范围是所述N1个数值范围中之一;第一空口资源块集合是所述N1个空口资源块集合中与所述第一数值范围相对应的空口资源块集合;所述第三比特块包括的比特的数量和所述第四比特块包括的比特的数量之和等于所述第一数值范围中的一个数值;所述第一信令从所述第一空口资源块集合中指示所述目标空口资源块。
作为一个实施例,所述目标索引是所述第二索引;N2个数值范围分别对应N2个空口资源块集合;第二数值范围是所述N2个数值范围中之一;第二空口资源块集合是所述N2个空口资源块集合中与所述第二数值范围相对应的空口资源块集合;所述第三比特块包括的比特的数量和所述第四比特块包括的比特的数量之和等于所述第二数值范围中的一个数值;所述第二信令从所述第二空口资源块集合中指示所述目标空口资源块。
作为一个实施例,所述N1个空口资源块集合包括N1个PUCCH资源集。
作为一个实施例,所述N2个空口资源块集合包括N2个PUCCH资源集。
作为一个实施例,所述N1等于一个正整数。
作为一个实施例,所述N2等于一个正整数。
作为一个实施例,所述N1等于1。
作为一个实施例,所述N1等于2。
作为一个实施例,所述N1等于3。
作为一个实施例,所述N1等于4。
作为一个实施例,所述N2等于1。
作为一个实施例,所述N2等于2。
作为一个实施例,所述N2等于3。
作为一个实施例,所述N2等于4。
实施例10
实施例10示例了根据本申请的一个实施例的第一空口资源块,第二空口资源块和目标索引之间关系的示意图,如附图10所示。
在实施例10中,第一空口资源块和第二空口资源在时域的相对位置关系被用于确定所述目标索引是所述第一索引还是所述第二索引。
在实施例10中,本申请中的所述第一信令被用于确定所述第一空口资源块;本申请中的所述第二信令被用于确定所述第二空口资源块。
作为一个实施例,所述短语所述第一空口资源块与所述第二空口资源块在时域的相对位置关系包括,所述第一空口资源块的起始时刻与所述第二空口资源块的起始时刻在时域的先后顺序。
作为一个实施例,所述短语所述第一空口资源块与所述第二空口资源块在时域的相对位置关系包括,所述第一空口资源块的截止时刻与所述第二空口资源块的截止时刻在时域的先后顺序。
作为一个实施例,当所述第一空口资源块的起始时刻早于所述第二空口资源块的起始时刻时,所述目标索引是所述第一索引;当所述第一空口资源块的起始时刻不早于所述第二空口资源块的起始时刻时,所述目标索引是所述第二索引。
作为一个实施例,当所述第一空口资源块的起始时刻不晚于所述第二空口资源块的起始时刻时,所述目标索引是所述第一索引;当所述第一空口资源块的起始时刻晚于所述第二空口资源块的起始时刻时,所述目标索引是所述第二索引。
作为一个实施例,当所述第一空口资源块的截止时刻早于所述第二空口资源块的截止时刻时,所述目标索引是所述第一索引;当所述第一空口资源块的截止时刻不早于所述第二空口资源块的截止时刻时,所述目标索引是所述第二索引。
作为一个实施例,当所述第一空口资源块的截止时刻不晚于所述第二空口资源块的截止时刻时,所述目标索引是所述第一索引;当所述第一空口资源块的截止时刻晚于所述第二空口资源块的截止时刻时,所述目标索引是所述第二索引。
作为一个实施例,所述第一空口资源块所占用时频资源与所述第一空口资源块所占用时频资源满足第一条件集合。
作为一个实施例,所述第一空口资源块所占用时域资源与所述第一空口资源块所占用时域资源满足第一条件集合。
作为一个实施例,所述第一空口资源块包括第一信道;所述第二空口资源块包括第二信道;所述第一信道与所述第二信道满足第一条件集合。
作为一个实施例,所述第一信道是一个物理信道。
作为一个实施例,所述第二信道是一个物理信道。
作为一个实施例,所述第一空口资源块包括第一信道;所述第一信道是一个PUCCH或PUSCH;所述第二空口资源块包括第二信道;所述第二信道是一个PUCCH或PUSCH;所述第一信道与所述第二信道满足第一条件集合。
作为一个实施例,所述第一空口资源块包括一个PUCCH;所述第二空口资源块包括一个PUCCH;所述第一空口资源块包括的所述一个PUCCH与所述第二空口资源块包括的所述一个PUCCH满足第一条件集合。
作为一个实施例,所述短语满足第一条件集合包括:满足所述第一条件集合中的所有条件。
作为一个实施例,所述第一条件集合包括正整数个条件。
作为一个实施例,所述第一条件集合包括时间线条件(timeline conditions)。
作为一个实施例,所述第一条件集合包括时间线条件;所述时间线条件的具体描述参见3GPP TS38.213中的第9.2.5章节。
作为一个实施例,所述第一条件集合包括所述第三比特块和所述第四比特块被允许复用到同一个信道上进行传输的条件。
作为上述实施例的一个子实施例,所述一个信道是一个物理信道。
作为上述实施例的一个子实施例,所述一个信道是一个PUCCH。
作为上述实施例的一个子实施例,所述一个信道是一个PUSCH。
作为一个实施例,所述第二空口资源块的截止时刻不晚于第一时刻;所述第一时刻与所述第一空口资源块的截止时刻有关。
作为上述实施例的一个子实施例,所述第一时刻是所述第一空口资源块的截止时刻。
作为上述实施例的一个子实施例,所述第一时刻在所述第一空口资源块的截止时刻之后;所述第一时刻与所述第一空口资源块的截止时刻之间的时间间隔等于正整数个多载波符号占用的时域资源。
作为一个实施例,所述第一比特块包括的比特的数量和所述第二比特块包括的比特的数量两者中至少之一以及所述第一空口资源块和所述第二空口资源在时域的相对位置关系共同被用于确定所述目标索引是所述第一索引还是所述第二索引。
作为一个实施例,当所述第一比特块包括的比特的数量大于所述第二比特块包括的比特的数量或者所述第一空口资源块的起始时刻不晚于所述第二空口资源块的起始时刻时,所述目标索引是所述第一索引;当所述第一比特块包括的比特的数量不大于所述第二比特块包括的比特的数量并且所述第一空口资源块的起始时刻早于所述第二空口资源块的起始时刻时,所述目标索引是所述第二索引。
实施例11
实施例11示例了一个第一节点设备中的处理装置的结构框图,如附图11所示。在附图11中,第一节点设备处理装置1100包括第一接收机1101和第一发射机1102。
作为一个实施例,所述第一节点设备1100是用户设备。
作为一个实施例,所述第一节点设备1100是中继节点。
作为一个实施例,所述第一节点设备1100是车载通信设备。
作为一个实施例,所述第一节点设备1100是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1100是支持V2X通信的中继节点。
作为一个实施例,所述第一接收机1101包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1101包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1101包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1101包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1101包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1102包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1102包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1102包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1102包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1102包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
在实施例11中,所述第一接收机1101,接收第一信息,接收第一信令和第二信令;所述第一发射机1102,在目标空口资源块中发送第一信号,所述第一信号携带第三比特块和第四比特块;所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为一个实施例,所述第一比特块包括第一类HARQ-ACK;所述第二比特块包括第二类HARQ-ACK;所述第一类HARQ-ACK不同于所述第二类HARQ-CK;所述第一类HARQ-ACK对应所述第一索引;所述第二类HARQ-ACK对应所述第二索引;所述第一信令指示所述第一索引;所述第二信令指示所述第二索引。
作为一个实施例,当所述目标索引是所述第一索引时,所述第四比特块包括的比特的数量不大于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量不小于所述第一比特块包括的比特的数量。
作为一个实施例,所述第一比特块包括的比特的数量和所述第二比特块包括的比特的数量两者中至少之一被用于确定所述目标索引。
作为一个实施例,所述第一信令指示所述第一索引,所述第二信令指示所述第二索引;当所述目标索引是所述第一索引时,所述第一信令从第一空口资源块集合中指示所述目标空口资源块;当所述目标索引是所述第二索引时,所述第二信令从第二空口资源块集合中指示所述目标空口资源块。
作为一个实施例,所述第一信令被用于确定第一空口资源块;所述第二信令被用于确定第二空口资源块;所述第一空口资源块和所述第二空口资源在时域的相对位置关系被用于确定所述目标索引是所述第一索引还是所述第二索引。
作为一个实施例,所述第一操作包括第二编码;所述第二操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
作为一个实施例,所述目标空口资源块包括一个PUCCH;所述第一信号在所述一个PUCCH中被发送,所述第一信号携带所述第三比特块和所述第四比特块;所述第一信令和所述第二信令分别是一个DCI;所述第一信令被用于确定所述第一比特块;所述第二信令被用于确定所述第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第一比特块包括所述第一类HARQ-ACK;所述第二比特块包括所述第二类HARQ-ACK;所述第一索引和所述第二索引分别是优先级索引;所述第一索引等于1;所述第二索引等于0;所述第一类HARQ-ACK对应所述第一索引;所述第二类HARQ-ACK对应所述第二索引;所述第一信令指示所述第一索引;所述第二信令指示所述第二索引;所述第三比特块中所有比特和所述第四比特块中所有比特被输入所述第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和所述目标索引对应,所述目标索引等于所述第一索引或所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过所述第二操作后的输出,所述第四比特块包括的比特的数量不大于所述第二比特块包括的比特的数量;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过所述第一操作后的输出,所述第三比特块包括的比特的数量大于所述第一比特块包括的比特的数量,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应;所述第一操作包括所述第二编码,所述第二操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
实施例12
实施例12示例了一个第二节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第二节点设备处理装置1200包括第二发射机1201和第二接收机1202。
作为一个实施例,所述第二节点设备1200是用户设备。
作为一个实施例,所述第二节点设备1200是基站。
作为一个实施例,所述第二节点设备1200是中继节点。
作为一个实施例,所述第二节点设备1200是车载通信设备。
作为一个实施例,所述第二节点设备1200是支持V2X通信的用户设备。
作为一个实施例,所述第二发射机1201包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1201包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1201包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1201包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1201包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1202包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1202包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1202包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1202包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1202包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
在实施例12中,所述第二发射机1201,发送第一信息,发送第一信令和第二信令;所述第二接收机1202,在目标空口资源块中接收第一信号,所述第一信号携带第三比特块和第四比特块;所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
作为一个实施例,所述第一比特块包括第一类HARQ-ACK;所述第二比特块包括第二类HARQ-ACK;所述第一类HARQ-ACK不同于所述第二类HARQ-CK;所述第一类HARQ-ACK对应所述第一索引;所述第二类HARQ-ACK对应所述第二索引;所述第一信令指示所述第一索引;所述第二信令指示所述第二索引。
作为一个实施例,当所述目标索引是所述第一索引时,所述第四比特块包括的比特的数量不大于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量不小于所述第一比特块包括的比特的数量。
作为一个实施例,所述第一比特块包括的比特的数量和所述第二比特块包括的比特的数量两者中至少之一被用于确定所述目标索引。
作为一个实施例,所述第一信令指示所述第一索引,所述第二信令指示所述第二索引;当所述目标索引是所述第一索引时,所述第一信令从第一空口资源块集合中指示所述目标空口资源块;当所述目标索引是所述第二索引时,所述第二信令从第二空口资源块集合中指示所述目标空口资源块。
作为一个实施例,所述第一信令被用于确定第一空口资源块;所述第二信令被用于确定第二空口资源块;所述第一空口资源块和所述第二空口资源在时域的相对位置关系被用于确定所述目标索引是所述第一索引还是所述第二索引。
作为一个实施例,所述第一操作包括第二编码;所述第二操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC(LTE enhancements for Machine Type Communications,增强型机器类型通信)设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT(Narrow Band Internet of Things,窄带物联网)设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS(Global Navigation Satellite System,全球导航卫星系统),中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,包括:
    第一接收机,接收第一信息,接收第一信令和第二信令;
    第一发射机,在目标空口资源块中发送第一信号,所述第一信号携带第三比特块和第四比特块;
    其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
  2. 根据权利要求1所述的第一节点设备,其中,所述第一比特块包括第一类HARQ-ACK;所述第二比特块包括第二类HARQ-ACK;所述第一类HARQ-ACK不同于所述第二类HARQ-CK;所述第一类HARQ-ACK对应所述第一索引;所述第二类HARQ-ACK对应所述第二索引;所述第一信令指示所述第一索引;所述第二信令指示所述第二索引。
  3. 根据权利要求1或2所述的第一节点设备,其中,当所述目标索引是所述第一索引时,所述第四比特块包括的比特的数量不大于所述第二比特块包括的比特的数量;当所述目标索引是所述第二索引时,所述第三比特块包括的比特的数量不小于所述第一比特块包括的比特的数量。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其中,所述第一比特块包括的比特的数量和所述第二比特块包括的比特的数量两者中至少之一被用于确定所述目标索引。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其中,所述第一信令指示所述第一索引,所述第二信令指示所述第二索引;当所述目标索引是所述第一索引时,所述第一信令从第一空口资源块集合中指示所述目标空口资源块;当所述目标索引是所述第二索引时,所述第二信令从第二空口资源块集合中指示所述目标空口资源块。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其中,所述第一信令被用于确定第一空口资源块;所述第二信令被用于确定第二空口资源块;所述第一空口资源块和所述第二空口资源在时域的相对位置关系被用于确定所述目标索引是所述第一索引还是所述第二索引。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其中,所述第一操作包括第二编码;所述第二操作包括逻辑与,逻辑或,异或,或者删除比特操作中的一种或多种。
  8. 一种被用于无线通信的第二节点设备,包括:
    第二发射机,发送第一信息,发送第一信令和第二信令;
    第二接收机,在目标空口资源块中接收第一信号,所述第一信号携带第三比特块和第四 比特块;
    其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
  9. 一种被用于无线通信的第一节点中的方法,包括:
    接收第一信息;接收第一信令和第二信令;
    在目标空口资源块中发送第一信号,所述第一信号携带第三比特块和第四比特块;
    其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
  10. 一种被用于无线通信的第二节点中的方法,包括:
    发送第一信息;发送第一信令和第二信令;
    在目标空口资源块中接收第一信号,所述第一信号携带第三比特块和第四比特块;
    其中,所述第一信息指示所述第一信令包括第一域;所述第一信令被用于确定第一比特块;所述第二信令被用于确定第二比特块;所述第一比特块被用于生成所述第三比特块;所述第二比特块被用于生成所述第四比特块;所述第三比特块中所有比特和所述第四比特块中所有比特被输入第一信道编码后的输出被用于生成所述第一信号;所述目标空口资源块和目标索引对应,所述目标索引等于第一索引或第二索引,所述第一索引不等于所述第二索引;当所述目标索引等于所述第一索引时,所述第三比特块是所述第一比特块,所述第四比特块是所述第二比特块或者所述第二比特块经过第二操作后的输出;当所述目标索引等于所述第二索引时,所述第三比特块是所述第一比特块经过第一操作后的输出,所述第四比特块是所述第二比特块;所述第一比特块和所述第一索引对应,所述第二比特块和所述第二索引对应。
PCT/CN2021/125392 2021-03-18 2021-10-21 一种被用于无线通信的节点中的方法和装置 WO2022193644A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21931219.6A EP4311330A1 (en) 2021-03-18 2021-10-21 Method and apparatus used in node for wireless communication
US18/467,945 US20240008043A1 (en) 2021-03-18 2023-09-15 Method and device used in node for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110288299.5A CN113498195B (zh) 2021-03-18 2021-03-18 一种被用于无线通信的节点中的方法和装置
CN202110288299.5 2021-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,945 Continuation US20240008043A1 (en) 2021-03-18 2023-09-15 Method and device used in node for wireless communication

Publications (1)

Publication Number Publication Date
WO2022193644A1 true WO2022193644A1 (zh) 2022-09-22

Family

ID=77997425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125392 WO2022193644A1 (zh) 2021-03-18 2021-10-21 一种被用于无线通信的节点中的方法和装置

Country Status (4)

Country Link
US (1) US20240008043A1 (zh)
EP (1) EP4311330A1 (zh)
CN (1) CN113498195B (zh)
WO (1) WO2022193644A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498195B (zh) * 2021-03-18 2023-07-18 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436130A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 组下行控制信息的发送方法及装置
CN111698065A (zh) * 2019-03-15 2020-09-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112333776A (zh) * 2019-07-20 2021-02-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112351493A (zh) * 2019-08-07 2021-02-09 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113498195A (zh) * 2021-03-18 2021-10-12 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715283B2 (en) * 2017-10-02 2020-07-14 Kt Corporation Apparatus and method of transmitting and receiving HARQ ACK/NACK information for new radio
WO2019134083A1 (en) * 2018-01-04 2019-07-11 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method
JP7133015B2 (ja) * 2018-02-07 2022-09-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号を送信もしくは受信する方法ならびにそのための装置
CN111314033B (zh) * 2018-12-25 2021-08-27 维沃移动通信有限公司 一种上行控制信息uci的传输方法及终端
US11323231B2 (en) * 2019-02-12 2022-05-03 Samsung Electronics Co., Ltd. Adapting a number of repetitions for a physical uplink control channel
AR118568A1 (es) * 2019-04-02 2021-10-20 Ericsson Telefon Ab L M Determinación de recursos uci dependientes de prioridad
CN114097189A (zh) * 2019-06-20 2022-02-25 苹果公司 无线通信系统中的harq-ack传输和重传
CN112187424B (zh) * 2019-07-04 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111800236B (zh) * 2019-07-05 2022-02-08 维沃移动通信有限公司 处理harq-ack的方法及设备
CN111835480B (zh) * 2019-07-05 2021-11-19 维沃移动通信有限公司 一种uci传输方法、接收方法、终端和网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436130A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 组下行控制信息的发送方法及装置
CN111698065A (zh) * 2019-03-15 2020-09-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112333776A (zh) * 2019-07-20 2021-02-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112351493A (zh) * 2019-08-07 2021-02-09 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113498195A (zh) * 2021-03-18 2021-10-12 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS38.212
3GPP TS38.213
HUAWEI, HISILICON: "UCI enhancements for URLLC", 3GPP DRAFT; R1-1903955, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 2 April 2019 (2019-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 7, XP051707070 *
QUALCOMM INCORPORATED: "Enhancements to Scheduling and HARQ operation for NR-U", 3GPP DRAFT; R1-1912940, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823703 *

Also Published As

Publication number Publication date
US20240008043A1 (en) 2024-01-04
CN113498195A (zh) 2021-10-12
CN113498195B (zh) 2023-07-18
EP4311330A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240008043A1 (en) Method and device used in node for wireless communication
WO2022188835A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113677032B (zh) 一种被用于无线通信的节点中的方法和装置
CN113765636B (zh) 一种被用于无线通信的节点中的方法和装置
CN113543231B (zh) 一种被用于无线通信的节点中的方法和装置
CN114900213A (zh) 一种被用于无线通信的节点中的方法和装置
CN113949483B (zh) 一种被用于无线通信的节点中的方法和装置
CN113597015B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022048509A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113573414B (zh) 一种被用于无线通信的节点中的方法和装置
CN114095136B (zh) 一种被用于无线通信的节点中的方法和装置
CN115603857B (zh) 一种被用于无线通信的节点中的方法和装置
CN114257346B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022206460A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113692061A (zh) 一种被用于无线通信的节点中的方法和装置
CN114095134A (zh) 一种被用于无线通信的节点中的方法和装置
CN114448578A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021931219

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021931219

Country of ref document: EP

Effective date: 20231018