WO2021088617A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021088617A1
WO2021088617A1 PCT/CN2020/121351 CN2020121351W WO2021088617A1 WO 2021088617 A1 WO2021088617 A1 WO 2021088617A1 CN 2020121351 W CN2020121351 W CN 2020121351W WO 2021088617 A1 WO2021088617 A1 WO 2021088617A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bit block
signaling
air interface
signal group
Prior art date
Application number
PCT/CN2020/121351
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021088617A1 publication Critical patent/WO2021088617A1/zh
Priority to US17/732,543 priority Critical patent/US20220255675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission scheme and device of an accompanying link in wireless communication.
  • V2X Vehicle-to-Everything
  • 3GPP has also started standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP has identified and defined 4 Use Case Groups for 5G V2X services, including: Vehicles Platnooning, Support for Extended Sensors, Semi/Full Auto Driving (Advanced Driving) and Remote Driving (Remote Driving).
  • SI Study Item
  • NR V2X has now agreed to SL (Sidelink, companion link) HARQ (Hybrid Automatic Repeat reQuest) feedback and sending SL HARQ feedback on PUCCH (Physical Uplink Control CHannel).
  • this application discloses a solution.
  • the companion link is used as an example; this application is also applicable to other contention-based transmission scenarios such as transmission on unlicensed spectrum, transmission based on configured grant, and scheduled grant based on scheduling.
  • This application is also applicable to uplink transmission scenarios and downlink transmission scenarios, and achieves similar technical effects in accompanying links.
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa.
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • the explanation of the term (Terminology) in this application refers to the definition of the TS36 series of 3GPP specifications.
  • the explanation of the terms in this application refers to the definition of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers) specification protocol.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the first signal group is The sender of is different from the target receiver of the second signal group
  • the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is received correctly
  • the size of the first bit block is related to whether the first bit block set includes a second bit block, and the second bit block is related to whether the second signal group is correctly received.
  • the problem to be solved in this application is: how to transmit SL HARQ feedback and DL HARQ feedback on the uplink control channel.
  • the problem to be solved by this application is: considering that SL HARQ feedback and DL HARQ feedback may be multiplexed on the same uplink control channel resource, how to determine the size of the DL HARQ codebook (Codebook).
  • the problem to be solved by this application is: considering that SL HARQ feedback and DL HARQ feedback may be multiplexed on the same uplink control channel resource, how to determine the size of the SL HARQ codebook (Codebook).
  • the problem to be solved in this application is: considering that SL HARQ feedback and DL HARQ feedback may be multiplexed on the same uplink control channel resource, how to determine the size of the DL HARQ codebook and the SL HARQ codebook (Codebook )the size of.
  • the essence of the above method is whether the HARQ codebooks on two links (such as SL and DL) are multiplexed on one PUCCH and used to determine the size of the HARQ codebook on one of the links.
  • the advantage of using the above method is that, considering that some signaling may be missed detection, if the HARQ codebook size is dynamically determined by the signaling, it may lead to inconsistent understanding of the codebook size at the transceiver end.
  • the proposed method It can still ensure the consistency of the codebook size at the receiving end and the receiving end when the detection is missed, and improve the transmission reliability.
  • the essence of the above method is whether the HARQ codebooks on two links (such as SL and DL) are multiplexed on one PUCCH and used to determine the size of the HARQ codebooks on the two links.
  • the advantage of using the above method is that, considering that some signaling may be missed detection, if the HARQ codebook size is dynamically determined by the signaling, it may lead to inconsistent understanding of the codebook size at the transceiver end.
  • the proposed method It can still ensure the consistency of the codebook size at the receiving end and the receiving end when the detection is missed, and improve the transmission reliability.
  • the essence of the above method is that the first signaling group is a group of DCI signaling for DL scheduling, the second signal group is a group of PDSCH (Physical Downlink Shared Channel), and the second signaling group is a group of PDSCH (Physical Downlink Shared Channel).
  • the first signaling group is a group of DCI signaling for DL scheduling
  • the second signal group is a group of PDSCH (Physical Downlink Shared Channel)
  • the second signaling group is a group of PDSCH (Physical Downlink Shared Channel).
  • the group is a group of SL-scheduled DCI signaling
  • the second signal group is a group of PSSCH (Physical Sidelink Shared Channel)
  • the first air interface resource group is PUCCH
  • the first set of bit blocks is UCI (Uplink Control Information, uplink control information)
  • the first bit block is the DL HARQ codebook
  • the second bit block is the SL HARQ codebook; whether the SL HARQ codebook and the DL HARQ codebook are multiplexed on the same PUCCH to determine DL
  • the size of the HARQ codebook is a group of SL-scheduled DCI signaling
  • the second signal group is a group of PSSCH (Physical Sidelink Shared Channel)
  • the first air interface resource group is PUCCH
  • the first set of bit blocks is UCI (Uplink Control Information, uplink control information)
  • the first bit block is the DL HARQ codebook
  • the second bit block is the SL HARQ codebook; whether the
  • the HARQ codebook size is dynamically determined by the signaling, it may cause inconsistent understanding of the codebook size between the transceiver and the receiver.
  • the proposed method can When the detection is missed, the consistency of the understanding of the codebook size by the receiving and sending end is still ensured, and the transmission reliability is improved.
  • the above method is characterized in that it includes:
  • the third signal group is used to determine whether the second signal group is received correctly.
  • the above method is characterized in that the first bit block set includes only the first bit block of the first bit block and the second bit block, and the first signaling The last signaling in the group is used to indicate the first air interface resource group, and the last signaling in the first signaling group is used to determine the size of the first bit block.
  • the above method is characterized in that it includes:
  • the second bit block set includes a third bit block, and the third bit block is used to indicate whether the second signal group is received correctly; the last signal in the second signaling group is It is used to indicate the second air interface resource group, and the last signaling in the second signaling group is used to determine the size of the third bit block.
  • the above method is characterized in that the first bit block set includes the first bit block and the second bit block, and the first signaling group and the second signaling group The last signaling in is used to indicate the first air interface resource group, and the size of the first bit block is equal to a first positive integer.
  • the above method is characterized in that it includes:
  • the second information is used to determine the first positive integer.
  • the above method is characterized in that it includes:
  • the first information is used to indicate N air interface resource group sets, any one of the N air interface resource group sets includes a positive integer number of air interface resource groups, and N is a positive integer greater than 1;
  • the first air interface resource group is an air interface resource group in a first air interface resource group set, and the first air interface resource group set is an air interface resource group set in the N air interface resource group sets.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the target receiver is the target receiver of the second signal group
  • the sender of the second signal group is the target receiver of the second signal group
  • the target receiver of the second signal group is the target receiver of the second signal group.
  • the second node is different;
  • the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is correctly received;
  • the size of the first bit block is related to the first bit block. Whether a bit block set includes a second bit block is related to whether the second bit block is correctly received.
  • the above method is characterized in that the first bit block set includes only the first bit block of the first bit block and the second bit block, and the first signaling The last signaling in the group is used to indicate the first air interface resource group, and the last signaling in the first signaling group is used to determine the size of the first bit block.
  • the above method is characterized in that it includes:
  • the second bit block set includes a third bit block, and the third bit block is used to indicate whether the second signal group is received correctly; the last signal in the second signaling group is It is used to indicate the second air interface resource group, and the last signaling in the second signaling group is used to determine the size of the third bit block.
  • the above method is characterized in that the first bit block set includes the first bit block and the second bit block, and the first signaling group and the second signaling group The last signaling in is used to indicate the first air interface resource group, and the size of the first bit block is equal to a first positive integer.
  • the above method is characterized in that it includes:
  • the second information is used to determine the first positive integer.
  • the above method is characterized in that it includes:
  • the first information is used to indicate N air interface resource group sets, and any one of the N air interface resource group sets includes a positive integer number of air interface resource groups, and N is a positive integer greater than 1;
  • the first air interface resource group is an air interface resource group in a first air interface resource group set, and the first air interface resource group set is an air interface resource group set in the N air interface resource group sets.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signal group; receives the first signal group; receives the second signal group;
  • the first transmitter sends the second signal group; sends the first set of bit blocks in the first air interface resource group;
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the first signal group is The sender of is different from the target receiver of the second signal group
  • the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is received correctly
  • the size of the first bit block is related to whether the first bit block set includes a second bit block, and the second bit block is related to whether the second signal group is correctly received.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter transmits the first signaling group; transmits the first signal group; transmits the second signaling group;
  • the second receiver receives the first set of bit blocks in the first air interface resource group
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the target receiver is the target receiver of the second signal group
  • the sender of the second signal group is the target receiver of the second signal group
  • the target receiver of the second signal group is the target receiver of the second signal group.
  • the second node is different;
  • the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is correctly received;
  • the size of the first bit block is related to the first bit block. Whether a bit block set includes a second bit block is related to whether the second bit block is correctly received.
  • the method in this application has the following advantages:
  • This application proposes a scheme for transmitting SL HARQ feedback and DL HARQ feedback on the uplink control channel.
  • This application proposes a scheme for determining the size of the HARQ codebook (Codebook) when the SL HARQ feedback and DL HARQ feedback may be multiplexed on the same uplink control channel resource.
  • Fig. 1 shows a flowchart of a first signaling group, a first signal group, a second signaling group, a second signal group, and a first bit block set according to an embodiment of the present application;
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of the size of the first bit block according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of the size of the first bit block according to another embodiment of the present application.
  • Fig. 8 shows a schematic diagram of the size of a second bit block according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the size of the second bit block according to another embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a first positive integer according to an embodiment of the present application.
  • Fig. 11 shows a schematic diagram of a first positive integer according to another embodiment of the present application.
  • FIG. 12 shows a schematic diagram of determining a first air interface resource group set according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of determining a first air interface resource group set according to another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of determining a first air interface resource group set according to another embodiment of the present application.
  • Fig. 15 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 16 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first signaling group, the first signal group, the second signaling group, the second signal group, and the first bit block set according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node in this application receives the first signal group in step 101; receives the first signal group in step 102; receives the second signal group in step 103; and in step 104
  • the second signal group is transmitted in the first air interface resource group in step 105;
  • the first bit block set is transmitted in the first air interface resource group; wherein the first signaling group is used to indicate the scheduling information of the first signal group, and
  • the second signaling group is used to indicate the scheduling information of the second signal group, and the sender of the first signal group and the target receiver of the second signal group are different;
  • the first bit block set includes the first signal group A bit block, the first bit block is related to whether the first signal group is correctly received;
  • the size of the first bit block is related to whether the first bit block set includes a second bit block, the first bit block
  • the two-bit block is related to whether the second signal group is received correctly.
  • any signaling in the first signaling group is physical layer signaling.
  • any signaling in the first signaling group is dynamically configured.
  • any signaling in the first signaling group is DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • any signaling in the first signaling group is used to schedule DL transmission.
  • any signaling in the first signaling group is downlink grant (DL grant) DCI signaling.
  • DL grant downlink grant
  • the first signaling group is transmitted through a downlink physical layer control channel.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, Narrow Band PDCCH).
  • the first signaling group is transmitted through a radio interface (Radio Interface) between the user equipment and the base station equipment.
  • a radio interface Radio Interface
  • the first signaling group is transmitted through a Uu interface.
  • the sender of the first signaling group is a serving cell of the first node.
  • any signal in the first signal group carries data.
  • any signal in the first signal group carries a transport block (TB, Transport Block).
  • the first signal group is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared Channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the number of signaling included in the first signaling group is the same as the number of signals included in the first signal group.
  • the number of signaling included in the first signaling group is not greater than the number of signals included in the first signaling group.
  • the first signal group explicitly indicates the scheduling information of the first signal group.
  • the first signal group implicitly indicates the scheduling information of the first signal group.
  • the first signaling group includes K1 first type signaling, the first signal group includes K1 first type signals, and the K1 first type signaling is used to indicate all The scheduling information of K1 signals of the first type, K1 is a positive integer.
  • the K1 first-type signals respectively explicitly indicate the scheduling information of the K1 first-type signals.
  • the K1 first-type signals implicitly indicate the scheduling information of the K1 first-type signals.
  • the first given signal is any signal in the first signal group
  • the scheduling information of the first given signal includes occupied time domain resources, occupied frequency domain resources, HARQ( Hybrid Automatic Repeat reQuest) process number, DAI (Downlink Assignment Index, downlink assignment index).
  • the first given signal is any signal in the first signal group
  • the scheduling information of the first given signal includes occupied time domain resources, occupied frequency domain resources, MCS( Modulation and Coding Scheme, modulation and coding scheme), DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number, RV (Redundancy Version, redundancy version) , At least one of NDI (New Data Indicator), DAI (Downlink Assignment Index, downlink assignment index), transmitting antenna port, corresponding multi-antenna-related transmission and corresponding multi-antenna-related reception.
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • RV Redundancy Version, redundancy version
  • At least one of NDI New Data Indicator
  • DAI Downlink Assignment Index
  • the configuration information of the DMRS includes RS (Reference Signal) sequence, mapping mode, DMRS type, occupied time domain resources, occupied frequency domain resources, occupied code domain resources, and cyclic displacement ( cyclic shift), at least one of OCC (Orthogonal Cover Code, orthogonal mask).
  • RS Reference Signal
  • mapping mode mapping mode
  • DMRS type mapping mode
  • occupied time domain resources occupied frequency domain resources
  • occupied code domain resources occupied code domain resources
  • cyclic displacement cyclic shift
  • at least one of OCC Orthogonal Cover Code
  • any signaling in the second signaling group is physical layer signaling.
  • any signaling in the second signaling group is dynamically configured.
  • any signaling in the second signaling group is DCI signaling.
  • any signaling in the second signaling group is used to schedule SL (SideLink, companion link) transmission.
  • any signaling in the second signaling group is sidelink grant (Sidelink grant) DCI signaling.
  • the second signaling group is transmitted through a downlink physical layer control channel.
  • the second signaling group is transmitted through a radio interface (Radio Interface) between the user equipment and the base station equipment.
  • a radio interface Radio Interface
  • the second signaling group is transmitted through the Uu interface.
  • the sender of the second signaling group is the serving cell of the first node.
  • any signal in the second signal group carries data.
  • any signal in the second signal group carries a transport block (TB, Transport Block).
  • the second signal group is transmitted on a sidelink (Sidelink) data channel.
  • the sidelink data channel is SL-SCH (Sidelink Shared Channel).
  • the sidelink data channel is PSSCH (Physical Sidelink Shared Channel, physical sidelink shared channel).
  • the second signal group is transmitted through a wireless interface between user equipment.
  • the second signal group is transmitted through a wireless interface accompanied by a link (Sidelink).
  • the second signal group is transmitted through the PC5 interface.
  • the number of signaling included in the second signaling group is the same as the number of signals included in the second signal group.
  • the number of signaling included in the second signaling group is not greater than the number of signals included in the second signal group.
  • the second signal group explicitly indicates the scheduling information of the second signal group.
  • the second signal group implicitly indicates the scheduling information of the second signal group.
  • the second signal group includes K2 second type signals
  • the second signal group includes K2 second type signals
  • the K2 second type signals are respectively used to indicate
  • K2 is a positive integer
  • the K2 second-type signals respectively explicitly indicate the scheduling information of the K2 second-type signals.
  • the K2 second-type signals respectively implicitly indicate the scheduling information of the K2 second-type signals.
  • the second given signal is any signal in the second signal group
  • the scheduling information of the second given signal includes the occupied time-frequency resources, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic Retransmission request) process number, DAI (Downlink Assignment Index, Downlink Assignment Index).
  • the second given signal is any signal in the second signal group
  • the scheduling information of the second given signal includes occupied time domain resources, occupied frequency domain resources, HARQ( Hybrid Automatic Repeat reQuest) process number, DAI (Downlink Assignment Index, downlink assignment index).
  • the second given signal is any signal in the second signal group
  • the scheduling information of the second given signal includes occupied time domain resources, occupied frequency domain resources, MCS( Modulation and Coding Scheme, modulation and coding scheme), DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number, RV (Redundancy Version, redundancy version) , At least one of NDI (New Data Indicator), DAI (Downlink Assignment Index, downlink assignment index), transmitting antenna port, corresponding multi-antenna-related transmission and corresponding multi-antenna-related reception.
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • RV Redundancy Version, redundancy version
  • At least one of NDI New Data Indicator
  • DAI Downlink Assignment Index
  • the configuration information of the DMRS includes RS (Reference Signal) sequence, mapping mode, DMRS type, occupied time domain resources, occupied frequency domain resources, occupied code domain resources, and cyclic displacement ( cyclic shift), at least one of OCC (Orthogonal Cover Code, orthogonal mask).
  • RS Reference Signal
  • mapping mode mapping mode
  • DMRS type mapping mode
  • occupied time domain resources occupied frequency domain resources
  • occupied code domain resources occupied code domain resources
  • cyclic displacement cyclic shift
  • at least one of OCC Orthogonal Cover Code
  • the first air interface resource group includes at least one of time domain resources, frequency domain resources or code domain resources.
  • the first air interface resource group includes time domain resources and frequency domain resources.
  • the first air interface resource group includes time domain resources, frequency domain resources, and code domain resources.
  • the first air interface resource group includes a positive integer number of multi-carrier symbols in the time domain.
  • the first air interface resource group includes a positive integer number of subcarriers in the frequency domain.
  • the first air interface resource group includes a positive integer number of RBs (Resource Block, physical resource block) in the frequency domain.
  • the first air interface resource group includes a positive integer number of REs.
  • the first air interface resource group is used for uplink control channel transmission.
  • the first air interface resource group is used for PUCCH (Physical Uplink Control Channel) transmission.
  • PUCCH Physical Uplink Control Channel
  • the first bit block set includes a positive integer number of bit blocks, and any bit block in the first bit block set includes a positive integer number of bits.
  • the first bit block includes a positive integer number of bits
  • the second bit block includes a positive integer number of bits
  • the first bit block includes a DL HARQ codebook
  • the second bit block includes an SL HARQ codebook
  • the first bit block includes DL HARQ bits
  • the second bit block includes SL HARQ bits
  • the last signaling in the second signaling group is used to determine the size of the second bit block.
  • the size of the second bit block is pre-configured (Pre-configured).
  • the size of the second bit block is configurable.
  • At least one signaling in the first signaling group is used to indicate whether the first bit block set includes a second bit block.
  • At least one signaling in the second signaling group is used to indicate whether the first bit block set includes a second bit block.
  • At least one of the first signaling group and the second signaling group is used to indicate whether the first bit block set includes a second bit block.
  • the last signaling in the first signaling group is used to indicate whether the first bit block set includes a second bit block.
  • the last signaling in the second signaling group is used to indicate whether the first bit block set includes a second bit block.
  • the last signaling in the first signaling group and the second signaling group is used to indicate whether the first bit block set includes a second bit block.
  • the last signaling in the first signaling group indicates a first time window
  • the last signaling in the second signaling group indicates a second time window
  • the first time window and Whether the second time window is orthogonal is used to determine whether the first bit block set includes a second bit block.
  • the first time window and the second time window are orthogonal, and the first bit block set includes the first bit block and the second bit block Of only the first bit block.
  • the first time window and the second time window are non-orthogonal, and the first bit block set includes the first bit block and the second bit block.
  • the first air interface resource group belongs to the first time window in the time domain.
  • the second air interface resource group belongs to the second time window in the time domain.
  • the last signaling in the first signaling group indicates a first time window
  • the last signaling in the second signaling group indicates a second time window
  • the first time window and Whether the second time windows overlap is used to determine whether the first bit block set includes a second bit block.
  • the first time window and the second time window are non-overlapping, and the first bit block set includes one of the first bit block and the second bit block Only the first bit block.
  • the first time window and the second time window overlap, and the first bit block set includes the first bit block and the second bit block.
  • the first air interface resource group belongs to the first time window in the time domain.
  • the second air interface resource group belongs to the second time window in the time domain.
  • the last signaling in the first signaling group indicates a first time window
  • the last signaling in the second signaling group indicates a second time window
  • the first time window and Whether the second time windows are the same is used to determine whether the first bit block set includes a second bit block.
  • the first time window and the second time window are different, and the first bit block set includes only one of the first bit block and the second bit block.
  • the first bit block is not limited to one of the first bit block and the second bit block.
  • the first time window and the second time window are the same, and the first bit block set includes the first bit block and the second bit block.
  • the first air interface resource group belongs to the first time window in the time domain.
  • the second air interface resource group belongs to the second time window in the time domain.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols.
  • the first time window includes a time slot (Slot).
  • the first time window includes one subframe (Subframe).
  • the first time window includes a mini-slot.
  • the second time window includes a positive integer number of consecutive multi-carrier symbols.
  • the second time window includes a time slot (Slot).
  • the second time window includes one subframe (Subframe).
  • the second time window includes a mini-slot.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Breast Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol includes CP (Cyclic Prefix).
  • the meaning of "the first bit block is related to whether the first signal group is correctly received" includes: the HARQ codebook (codebook) for the first signal group is used to generate the first signal group One bit block.
  • the first bit block is related to whether the first signal group is correctly received. means that: the first bit block is used to indicate at least one signal in the first signal group Is it received correctly?
  • the value of the first bit block has nothing to do with whether the second signal group is received correctly.
  • the meaning of "the second bit block is related to whether the second signal group is correctly received" includes: the HARQ codebook for the second signal group is used to generate the first signal group Two-bit block.
  • the meaning of "the second bit block is related to whether the second signal group is correctly received" includes: the second bit block is used to indicate at least one signal in the second signal group Is it received correctly?
  • the second bit block has nothing to do with whether the first signal group is received correctly.
  • the value of the second bit block has nothing to do with whether the first signal group is received correctly.
  • the size of a given bit block is the number of bits included in the given bit block.
  • the size of a given bit block is a positive integer.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function, user plane function
  • S-GW Service Gateway
  • P-GW Packet Date Network Gateway
  • MME/AMF/UPF211 is a control node that processes signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the UE 241 corresponds to the second node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE 241 corresponds to the third node in this application.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the MAC sublayer 352.
  • the first information in this application is generated in the PHY301.
  • the first information in this application is generated in the PHY351.
  • the second information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the MAC sublayer 302.
  • the second information in this application is generated in the MAC sublayer 352.
  • the second information in this application is generated in the PHY301.
  • the second information in this application is generated in the PHY351.
  • the first signaling group in this application is generated in the PHY301.
  • the first signaling group in this application is generated in the PHY351.
  • the first signal group in this application is generated in the PHY301.
  • the first signal group in this application is generated in the PHY351.
  • the second signaling group in this application is generated in the PHY301.
  • the second signaling group in this application is generated in the PHY351.
  • the second signal group in this application is generated in the PHY301.
  • the second signal group in this application is generated in the PHY351.
  • the third signal group in this application is generated in the PHY301.
  • the third signal group in this application is generated in the PHY351.
  • the first bit block set in this application is generated in the PHY301.
  • the first bit block set in this application is generated in the PHY351.
  • the second bit block set in this application is generated in the PHY301.
  • the second bit block set in this application is generated in the PHY351.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the second communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M-phase shift keying (M-PSK), and M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial flow of the destination.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450, and the second node in this application includes the first communication device 410.
  • the first node is user equipment
  • the second node is user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgement (ACK) and/or negative acknowledgement (NACK) )
  • the protocol performs error detection to support HARQ operations.
  • the third node in this application includes the first communication device 410.
  • the first node is user equipment
  • the second node is user equipment
  • the third node is base station equipment.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving the first signaling group; receiving the first signal group; receiving the second signaling group; sending the second signal group; sending the first set of bit blocks in the first air interface resource group; Wherein, the first signaling group is used to indicate the scheduling information of the first signal group, the second signaling group is used to indicate the scheduling information of the second signal group, and the first signal group is The sender of is different from the target receiver of the second signal group; the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is received correctly; The size of the first bit block is related to whether the first bit block set includes a second bit block, and the second bit block is related to whether the second signal group is correctly received.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: receiving the first A signaling group; receiving a first signal group; receiving a second signaling group; sending a second signal group; sending a first set of bit blocks in the first air interface resource group; wherein the first signaling group is used for Indicate the scheduling information of the first signal group, the second signaling group is used to indicate the scheduling information of the second signal group, the sender of the first signal group and the target of the second signal group
  • the receiver is different; the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is correctly received; the size of the first bit block is related to the first bit block Whether the block set includes a second bit block is related to whether the second signal group is correctly received.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: send a first signaling group; send a first signal group; send a second signaling group; receive a first set of bit blocks in a first air interface resource group; wherein, the first The signaling group is used to indicate the scheduling information of the first signal group, the second signaling group is used to indicate the scheduling information of the second signal group, and the target receiver of the first signaling group is the A target receiver of the second signal group, the sender of the second signal group is the target receiver of the second signal group, and the target receiver of the second signal group is different from the second node;
  • the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is correctly received; the size of the first bit block and whether the first bit block set includes The second bit block is related to whether the
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first A signaling group; sending a first signal group; sending a second signaling group; receiving a first set of bit blocks in a first air interface resource group; wherein the first signaling group is used to indicate the first signal Group scheduling information, the second signaling group is used to indicate the scheduling information of the second signaling group, the target recipient of the first signaling group is the target recipient of the second signaling group, the The sender of the second signal group is the target receiver of the second signaling group, and the target receiver of the second signal group is different from the second node; the first bit block set includes the first bit block , The first bit block is related to whether the first signal group is correctly received; the size of the first bit block is related to whether the first bit block set includes a second bit block, and the second bit block It is related to whether the second signal group is received correctly.
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first message in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second information in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the second information in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling group in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signaling group in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signal group in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signal group in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling group in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the second signaling group in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the third signal group in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the third signal group in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the second signal group in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the second signal group in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the first set of bit blocks in this application in the first air interface resource group in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One of them is used to receive the first set of bit blocks in this application in the first air interface resource group in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the second set of bit blocks in this application in the second air interface resource group in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One of them is used to receive the second set of bit blocks in this application in the second air interface resource group in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the U01 between the first node and the second node N01 is a communication over the air interface.
  • the dashed box F1 is optional.
  • the first information For the first node U01, received in step S10, the first information; receiving a second message in step S11; receiving a first signaling set in step S12; receiving a first signal set in step S13; S14 received in step The second signaling group; the second signal group is sent in step S15; the third signal group is received in step S16; the first bit block set is sent in the first air interface resource group in step S17; The second set of bit blocks is sent in the two air interface resource group.
  • step S20 transmitting a first message; transmitting the second information in step S21; transmitting a first signaling set in step S22; transmitting a first signal set at step S23; step S24 transmits The second signaling group; in step S25, the first set of bit blocks is received in the first air interface resource group; in step S26, the second set of bit blocks is received in the second air interface resource group.
  • the third node U02 For the third node U02, receiving a second signal set in step S30; the third signal group transmitted in step S31.
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the The sender of the first signal group is different from the target receiver of the second signal group
  • the first bit block set includes a first bit block, whether the first bit block and the first signal group are received correctly Relevant
  • the size of the first bit block is related to whether the first bit block set includes a second bit block
  • the second bit block is related to whether the second signal group is correctly received.
  • the third signal group is used by the first node U01 to determine whether the second signal group is received correctly.
  • the second information is used by the first node U01 to determine the first positive integer.
  • the first information is used to indicate N air interface resource group sets, and any one of the N air interface resource group sets includes a positive integer number of air interface resource groups, and N is a positive integer greater than 1;
  • the first air interface resource group is an air interface resource group in a first air interface resource group set, and the first air interface resource group set is an air interface resource group set in the N air interface resource group sets.
  • the first bit block set includes only the first bit block among the first bit block and the second bit block, and a dashed box F1 exists.
  • the first bit block set includes only the first bit block among the first bit block and the second bit block, and the dashed box F1 does not exist.
  • the first bit block set includes the first bit block and the second bit block, and the dashed box F1 does not exist.
  • the dashed box F1 exists; the second bit block set includes a third bit block, and the third bit block is used to indicate whether the second signal group is correctly received; the second signal Let the last signaling in the group be used to indicate the second air interface resource group, and the last signaling in the second signaling group is used by the first node U01 to determine the third bit block size.
  • the target recipient of the first signaling group is the target recipient of the second signaling group
  • the sender of the second signaling group is the target recipient of the second signaling group
  • the target receiver of the second signal group is different from the second node.
  • the method in the first node further includes:
  • the third signaling group is used to indicate configuration information of the second signal group.
  • the first transmitter further sends a third signaling group; wherein, the third signaling group is used to indicate configuration information of the second signal group.
  • the third signal group explicitly indicates the configuration information of the second signal group.
  • the third signal group implicitly indicates the configuration information of the second signal group.
  • the third signaling group includes K2 third-type signaling
  • the second signal group includes K2 second-type signals
  • the K2 third-type signaling are respectively used to indicate In the configuration information of the K2 second-type signals, K2 is a positive integer.
  • the K2 third-type signals respectively explicitly indicate the configuration information of the K2 second-type signals.
  • the K2 third-type signals respectively implicitly indicate the configuration information of the K2 second-type signals.
  • the time-frequency resources occupied by the K2 third-type signals are respectively associated with the K2 second-type signals.
  • the configuration information of the second signal group includes priority (Priority), frequency domain resources occupied, target (Destination) identity (ID), and source (Source) identity (Identity). ,ID).
  • the configuration information of the second signal group includes priority (Priority), occupied frequency domain resources, occupied time domain resources, modulation and coding scheme (MCS), and resource reservation (Resource Reservation). ), retransmission index (Retransmission index), DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information, transmit antenna ports (Antenna Ports), transmit power indication, destination (Identity, ID), source (Source) Identification (Identity, ID), HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number, NDI (New Data Indicator, new data indicator), redundancy version (RV, Redundancy Version) at least one.
  • priority Priority
  • occupied frequency domain resources occupied time domain resources
  • MCS modulation and coding scheme
  • Resource Reservation Resource Reservation
  • the third signaling group is transmitted on a sidelink control channel.
  • the sidelink control channel is SL-CCH (Sidelink Control Channel, sidelink control channel).
  • the sidelink control channel is PSCCH (Physical Sidelink Control CHannel, physical sidelink control channel).
  • any signaling in the third signaling group is physical layer signaling.
  • any signaling in the third signaling group is multicast (Groupcast) or unicast (Unicast).
  • the third signaling group is transmitted on a side link (Sidelink).
  • any signaling in the third signaling group includes SCI (Sidelink Control Information) signaling.
  • any signaling in the third signaling group carries SCI.
  • the third signaling group is transmitted through a wireless interface between user equipments.
  • the third signaling group is transmitted through a wireless interface with a sidelink.
  • the third signaling group is transmitted through the PC5 interface.
  • the number of signaling included in the third signaling group is the same as the number of signals included in the second signal group.
  • the number of signaling included in the third signaling group is not greater than the number of signals included in the second signal group.
  • the last (last) signaling in a given signaling group is the last received signaling in the given signaling group.
  • the last (last) signaling in a given signaling group is the last signaling in the given signaling group.
  • the arrangement criterion of the signaling in the given signaling group includes early to late in the time domain.
  • the arrangement criterion of the signaling in the given signaling group includes the frequency domain first and then the time domain.
  • the signaling in the given signaling group is arranged in the order from morning to night in the time domain.
  • the signaling in the given signaling group is arranged in the order of the frequency domain first, and then the time domain.
  • the signaling in the given signaling group is arranged in the order from low to high in the frequency domain first, and from morning to night in the time domain.
  • the signaling in the given signaling group is arranged in the order from high to low in the frequency domain first, and from morning to night in the time domain.
  • the given signaling group includes the first signaling group and the second signaling group.
  • the given signaling group includes the first signaling group.
  • the given signaling group includes the second signaling group.
  • the third signal group carries HARQ bits for the second signal group.
  • the third signal group is used to indicate whether the second signal group is received correctly.
  • the third signal group explicitly indicates whether the second signal group is received correctly.
  • the third signal group implicitly indicates whether the second signal group is received correctly.
  • the second signal group includes K2 signals of the second type
  • the third signal group includes K2 signals of the third type
  • the K2 signals of the third type are used to indicate the K2 signals respectively. Whether the second type of signal is received correctly, K2 is a positive integer.
  • the K2 third-type signals respectively explicitly indicate whether the K2 second-type signals are received correctly.
  • the K2 third-type signals respectively implicitly indicate whether the K2 second-type signals are received correctly.
  • the K2 third-type signals respectively carry HARQ bits for the K2 second-type signals.
  • the third signal group is transmitted on PSFCH (Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel
  • the method in the third node includes:
  • the third signal group is used by the first node U01 to determine whether the second signal group is received correctly.
  • the time-frequency resource occupied by the third signal group is associated with the time-frequency resource occupied by the second signal group.
  • the time-frequency resource occupied by the third signal group can be inferred according to the time-frequency resource occupied by the second signal group.
  • the time-frequency resource occupied by the second signal group implicitly indicates the time-frequency resource occupied by the third signal group.
  • the third node includes:
  • the third receiver receives the second signal group
  • the third transmitter sends the third signal group
  • the third signal group is used by the first node U01 to determine whether the second signal group is received correctly.
  • the method in the third node further includes:
  • the third signaling group is used to indicate the scheduling information of the second signal group.
  • the third receiver further receives a third signaling group; wherein, the third signaling group is used to indicate the scheduling information of the second signal group.
  • the second air interface resource group includes at least one of time domain resources, frequency domain resources, or code domain resources.
  • the second air interface resource group includes time domain resources and frequency domain resources.
  • the second air interface resource group includes time domain resources, frequency domain resources, and code domain resources.
  • the second air interface resource group includes a positive integer number of multi-carrier symbols in the time domain.
  • the second air interface resource group includes a positive integer number of subcarriers in the frequency domain.
  • the second air interface resource group includes a positive integer number of RBs (Resource Block, physical resource block) in the frequency domain.
  • the second air interface resource group includes a positive integer number of REs.
  • the second bit block set includes a positive integer number of bit blocks, and any bit block in the second bit block set includes a positive integer number of bits.
  • the third bit block includes a positive integer number of bits.
  • the third bit block includes an SL HARQ codebook.
  • the third bit block includes SL HARQ bits.
  • the third bit block includes a HARQ codebook for the second signal group.
  • the third bit block is used to indicate whether each signal in the second signal group is received correctly.
  • the first bit block set includes only the first bit block of the first bit block and the second bit block, and the last signaling in the second signaling group is Used to indicate the second air interface resource group.
  • the last signaling in the second signaling group explicitly indicates the second air interface resource group.
  • the last signaling in the second signaling group implicitly indicates the second air interface resource group.
  • the last signaling in the second signaling group is used to indicate the second air interface resource group from the second air interface resource group set, and the second air interface resource group
  • the set includes a positive integer number of air interface resource groups, and the second air interface resource group is an air interface resource group in the second air interface resource group set.
  • the last signaling in the second signaling group indicates the index of the second air interface resource group in the second air interface resource group set, and the second air interface resource group set It includes a positive integer number of air interface resource groups, and the second air interface resource group is an air interface resource group in the second air interface resource group set.
  • the second air interface resource group set is an air interface resource group set that includes the second air interface resource group in the N air interface resource group sets; the size of the third bit block is used to obtain data from the The second air interface resource group set is determined from the N air interface resource group sets.
  • the last signaling in the second signaling group includes a first field
  • the first field included in the last signaling in the second signaling group indicates a second parameter
  • the The second parameter is a positive integer
  • the second parameter is used by the first node U01 to determine the size of the third bit block.
  • the size of the third bit block is a positive integer multiple of the second parameter.
  • the size of the third bit block is the second parameter.
  • the size of the third bit block is the product of the second parameter and the maximum number of CBG (Code Block Group, code block groups).
  • the second parameter is equal to the number of signaling included in the second signaling group.
  • the second parameter is equal to the number of signals included in the second signal group.
  • the second parameter is total DAI (Downlink assignment index, downlink assignment index).
  • the first field included in the last signaling in the second signaling group is a Downlink assignment index field (Field).
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC signaling.
  • the first information is carried by MAC CE signaling.
  • the first information includes all or part of an IE (Information Element, information element) in one RRC signaling.
  • IE Information Element, information element
  • the first information includes multiple IEs in one RRC signaling.
  • the first information includes PUCCH-Config IE, and the specific definition of the PUCCH-Config IE can be found in section 6.3.2 of 3GPP TS38.331.
  • the first information and the second information belong to the same IE in one RRC signaling.
  • the first information explicitly indicates the N air interface resource group sets.
  • the first information implicitly indicates the N air interface resource group sets.
  • the first information indicates configuration information of each air interface resource group in the set of N air interface resource groups.
  • any air interface resource group in the set of N air interface resource groups includes at least one of time domain resources, frequency domain resources, or code domain resources.
  • any air interface resource group in the set of N air interface resource groups includes time domain resources and frequency domain resources.
  • any air interface resource group in the set of N air interface resource groups includes time domain resources, frequency domain resources, and code domain resources.
  • any air interface resource group in the set of N air interface resource groups includes a positive integer number of multi-carrier symbols in the time domain.
  • any air interface resource group in the N air interface resource group sets includes a positive integer number of subcarriers in the frequency domain.
  • any air interface resource group in the set of N air interface resource groups includes a positive integer number of RBs (Resource Block, physical resource block) in the frequency domain.
  • any air interface resource group in the set of N air interface resource groups includes a positive integer number of REs.
  • the configuration information of any air interface resource group in the set of N air interface resource groups includes occupied time domain resources, occupied code domain resources, occupied frequency domain resources, and corresponding antenna ports At least one of the group.
  • the configuration information of any air interface resource group in the N air interface resource group sets includes the initial multi-carrier symbol occupied, the number of multi-carrier symbols occupied, and the status of pre-frequency hopping or non-frequency hopping Starting PRB (Physical Resource Block), starting PRB after frequency hopping, number of PRBs occupied, frequency hopping setting, CS (Cyclic Shift, cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask) Code), OCC length, at least one of the corresponding antenna port group and the maximum code rate (Code Rate).
  • any air interface resource group in the set of N air interface resource groups is reserved for UCI (Uplink Control Information, uplink control information) transmission.
  • UCI Uplink Control Information, uplink control information
  • each air interface resource group set in the N air interface resource group sets includes time-frequency resources belonging to an uplink physical layer control channel (that is, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel that is, an uplink channel that can only be used to carry physical layer signaling.
  • any air interface resource group set in the N air interface resource group sets is a PUCCH resource set, and the specific definition of the PUCCH resource set can be found in section 9.2.1 of 3GPP TS38.213.
  • the N air interface resource group sets respectively correspond to the N value ranges in a one-to-one correspondence.
  • any value in the N value ranges is a positive integer.
  • any value in the N value ranges is a positive real number.
  • the first information is used to indicate the N value ranges.
  • the first information explicitly indicates the N value ranges.
  • the first information implicitly indicates the N value ranges.
  • the N value ranges are respectively the ranges of the number of bits that can be sent in the N air interface resource group sets.
  • the N value ranges are respectively the ranges of the number of UCI bits that can be sent in the N air interface resource group sets.
  • the first air interface resource group set is an air interface resource group set that includes the first air interface resource group in the N air interface resource group sets, and the first value range is the N A value range corresponding to the first air interface resource group set among the value ranges; the number of bits included in the first bit block set belongs to the first value range.
  • the first information is used to indicate M thresholds
  • the M thresholds are used by the first node U01 to determine the N value ranges
  • M is a positive integer.
  • Embodiment 6 illustrates a schematic diagram of determining the size of the first bit block according to an embodiment of the present application, as shown in FIG. 6.
  • the first bit block set in this application includes only the first bit block among the first bit block and the second bit block in this application.
  • the last signaling in the first signaling group is used to indicate the first air interface resource group in this application, and the last signaling in the first signaling group is used to determine the first bit The size of the block.
  • the first bit block set includes only the first bit block of the first bit block and the second bit block, and the last signaling in the first signaling group is Used to indicate the first air interface resource group.
  • the last signaling in the first signaling group explicitly indicates the first air interface resource group.
  • the last signaling in the first signaling group implicitly indicates the first air interface resource group.
  • the last signaling in the first signaling group is used to indicate the first air interface resource group from the first air interface resource group set, and the first air interface resource group
  • the set includes a positive integer number of air interface resource groups, and the first air interface resource group is an air interface resource group in the first air interface resource group set.
  • the last signaling in the first signaling group indicates the index of the first air interface resource group in the first air interface resource group set, and the first air interface resource group set It includes a positive integer number of air interface resource groups, and the first air interface resource group is an air interface resource group in the first air interface resource group set.
  • the last signaling in the first signaling group includes a first field, the first field included in the last signaling in the first signaling group indicates a first parameter, and the The first parameter is a positive integer, and the first parameter is used to determine the size of the first bit block.
  • the size of the first bit block is a positive integer multiple of the first parameter.
  • the size of the first bit block is the first parameter.
  • the size of the first bit block is the product of the first parameter and the maximum number of CBG (Code Block Group, code block groups).
  • the first parameter is equal to the number of signaling included in the first signaling group.
  • the first parameter is equal to the number of signals included in the first signal group.
  • the first parameter is total DAI (Downlink assignment index, downlink assignment index).
  • the first field included in the last signaling in the first signaling group is a Downlink assignment index field (Field).
  • the first bit block set includes only the first bit block of the first bit block and the second bit block, and the last signaling in the first signaling group is It is used to indicate the first air interface resource group, and the last signaling in the first signaling group is used to determine the size of the first bit block.
  • the first bit block set includes only the first bit block of the first bit block and the second bit block, and the first bit block is used to indicate the first bit block. Whether the signal group is received correctly.
  • the first bit block includes a HARQ codebook for the first signal group.
  • the first bit block is used to indicate whether each signal in the first signal group is received correctly.
  • Embodiment 7 illustrates a schematic diagram of the size of the first bit block according to another embodiment of the present application, as shown in FIG. 7.
  • the first bit block set in the present application includes the first bit block and the second bit block in the present application, and the first signaling group and the second bit block in the present application
  • the last signaling in the second signaling group is used to indicate the first air interface resource group in this application, and the size of the first bit block is equal to a first positive integer.
  • the first positive integer is pre-configured.
  • the first positive integer is configurable.
  • the second information is used to determine the first positive integer.
  • the last signaling in the first signaling group and the second signaling group is the last signaling in the first signaling group.
  • the last signaling in the first signaling group and the second signaling group is the last signaling in the second signaling group.
  • the first bit block set includes the first bit block and the second bit block, and the last signaling in the first signaling group and the second signaling group is used To indicate the first air interface resource group.
  • the last signaling in the first signaling group and the second signaling group explicitly indicates the first air interface resource group.
  • the last signaling in the first signaling group and the second signaling group implicitly indicates the first air interface resource group.
  • the last signaling in the first signaling group and the second signaling group is used to indicate the first air interface resource group from the first air interface resource group set
  • the first air interface resource group set includes a positive integer number of air interface resource groups, and the first air interface resource group is an air interface resource group in the first air interface resource group set.
  • the last signaling in the first signaling group and the second signaling group indicates the index of the first air interface resource group in the first air interface resource group set
  • the first air interface resource group set includes a positive integer number of air interface resource groups
  • the first air interface resource group is an air interface resource group in the first air interface resource group set.
  • the first bit block set includes the first bit block and the second bit block
  • the fourth bit block is used to indicate whether the first signal group is received correctly
  • the first bit block The last signaling in the signaling group is used to determine the size of the fourth bit block
  • the first positive integer and the fourth bit block are jointly used to determine the first bit block.
  • the fourth bit block includes a HARQ codebook for the first signal group.
  • the fourth bit block is used to indicate whether each signal in the first signal group is received correctly.
  • the first positive integer is equal to the size of the fourth bit block, and the first bit block and the fourth bit block are the same.
  • the first positive integer is smaller than the size of the fourth bit block, and the fourth bit block includes the first bit block.
  • the first positive integer is greater than the size of the fourth bit block, and the first bit block includes the fourth bit block.
  • the first positive integer is greater than the size of the fourth bit block
  • the fourth bit block is concatenated with a positive integer number of 0 bits to obtain the first bit block.
  • the number of integer zero bits is equal to the size of the first bit block minus the size of the fourth bit block.
  • the first positive integer is greater than the size of the fourth bit block
  • the fourth bit block is concatenated with a positive integer number of 1 bits to obtain the first bit block.
  • the number of integer 1 bits is equal to the size of the first bit block minus the size of the fourth bit block.
  • the last signaling in the first signaling group includes a first field, the first field included in the last signaling in the first signaling group indicates a first parameter, and the The first parameter is a positive integer, and the first parameter is used to determine the size of the fourth bit block.
  • the size of the fourth bit block is a positive integer multiple of the first parameter.
  • the size of the fourth bit block is the first parameter.
  • the size of the fourth bit block is the product of the first parameter and the maximum number of CBG (Code Block Group, code block groups).
  • the first parameter is equal to the number of signaling included in the first signaling group.
  • the first parameter is equal to the number of signals included in the first signal group.
  • the first parameter is total DAI (Downlink assignment index, downlink assignment index).
  • the first field included in the last signaling in the first signaling group is a Downlink assignment index field (Field).
  • Embodiment 8 illustrates a schematic diagram of the size of the second bit block according to an embodiment of the present application, as shown in FIG. 8.
  • the first bit block set in the present application includes the first bit block and the second bit block in the present application, and the first signaling group and the second bit block in the present application
  • the last signaling in the second signaling group is the last signaling in the second signaling group, and the last signaling in the second signaling group is used to indicate the first signaling in this application.
  • An air interface resource group, the size of the first bit block is equal to a first positive integer, and the last signaling in the second signaling group is used to determine the size of the second bit block.
  • the last signaling in the first signaling group and the second signaling group is the last signaling in the second signaling group, and the last signaling in the second signaling group
  • the last signaling includes a first field, and the first field included in the last signaling in the second signaling group indicates a second parameter, the second parameter is a positive integer, and the second parameter is used for Determine the size of the second bit block.
  • the size of the second bit block is the same as the size of the third bit block.
  • the size of the second bit block is a positive integer multiple of the second parameter.
  • the size of the second bit block is the second parameter.
  • the size of the second bit block is the product of the second parameter and the maximum number of CBG (Code Block Group, code block groups).
  • the second parameter is equal to the number of signaling included in the second signaling group.
  • the second parameter is equal to the number of signals included in the second signal group.
  • the second parameter is total DAI (Downlink assignment index, downlink assignment index).
  • the first field included in the last signaling in the second signaling group is a Downlink assignment index field (Field).
  • the last signaling in the second signaling group is used to determine the size of the second bit block.
  • Embodiment 9 illustrates a schematic diagram of the size of the second bit block according to another embodiment of the present application, as shown in FIG. 9.
  • the first bit block set in the present application includes the first bit block and the second bit block in the present application, and the first signaling group and the second bit block in the present application
  • the last signaling in the second signaling group is used to indicate the first air interface resource group in this application
  • the size of the first bit block is equal to a first positive integer
  • the size of the second bit block is The size is equal to the second positive integer.
  • the second positive integer is pre-configured.
  • the second positive integer is configurable.
  • the second information is used to determine the second positive integer.
  • the third bit block is used to indicate whether the second signal group is correctly received, and the last signal in the second signal group is used to determine the size of the third bit block;
  • the size of the second bit block is equal to a second positive integer, and the second positive integer and the third bit block are jointly used to determine the second bit block.
  • the second positive integer is equal to the size of the third bit block, and the second bit block is the same as the third bit block.
  • the second positive integer is smaller than the size of the third bit block, and the third bit block includes the second bit block.
  • the second positive integer is greater than the size of the third bit block, and the second bit block includes the third bit block.
  • the second positive integer is greater than the size of the third bit block
  • the third bit block is concatenated with a positive integer number of 0 bits to obtain the second bit block.
  • the number of integer zero bits is equal to the size of the second bit block minus the size of the third bit block.
  • the second positive integer is greater than the size of the third bit block
  • the third bit block is concatenated with a positive integer number of 1 bits to obtain the second bit block.
  • the number of integer 1 bits is equal to the size of the second bit block minus the size of the third bit block.
  • Embodiment 10 illustrates a schematic diagram of the first positive integer according to an embodiment of the present application, as shown in FIG. 10.
  • the second information in this application is used to determine the first positive integer.
  • the second information is semi-statically configured.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information is carried by MAC CE signaling.
  • the second information includes an IE (Information Element, information element) in one RRC signaling.
  • IE Information Element, information element
  • the second information includes all or part of an IE in an RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the second information is used to indicate the first positive integer.
  • the second information explicitly indicates the first positive integer.
  • the second information implicitly indicates the first positive integer.
  • the size of the second bit block is equal to a second positive integer
  • the second information is used to determine the first positive integer and the second positive integer.
  • the second information is used to indicate the first positive integer and the second positive integer.
  • the second information explicitly indicates the first positive integer and the second positive integer.
  • the second information implicitly indicates the first positive integer and the second positive integer.
  • the first positive integer is a positive integer.
  • the second positive integer is a positive integer.
  • Embodiment 11 illustrates a schematic diagram of the first positive integer according to another embodiment of the present application, as shown in FIG. 11.
  • the N first-type coefficients respectively correspond to the N air interface resource group sets in this application, and the N first-type coefficients are all positive integers; the first positive integers are all One of the N first-type coefficients corresponds to the first air interface resource group set in the present application.
  • the N first-type coefficients are pre-configured.
  • the N first-type coefficients are configurable.
  • the second information is used to determine the N first-type coefficients.
  • the second information is used to indicate the N first-type coefficients.
  • the second information explicitly indicates the N coefficients of the first type.
  • the second information implicitly indicates the N first-type coefficients.
  • the N second-type coefficients respectively correspond to the N air interface resource group sets one-to-one, and the N second-type coefficients are all positive integers; the size of the second bit block is equal to the second positive integer.
  • the second positive integer is a second-type coefficient corresponding to the first air interface resource group set among the N second-type coefficients.
  • the second information is used to determine the N first-type coefficients and the N second-type coefficients.
  • the second information is used to indicate the N first-type coefficients and the N second-type coefficients.
  • the second information explicitly indicates the N coefficients of the first type and the N coefficients of the second type.
  • the second information implicitly indicates the N first-type coefficients and the N second-type coefficients.
  • the N air interface resource group sets correspond to N value ranges respectively
  • the N first-type coefficients and the N second-type coefficients are in one-to-one correspondence
  • the N The first type coefficients and the N second type coefficients are respectively added to obtain N positive integers
  • the N positive integers belong to the N value ranges respectively.
  • the N positive integers are not greater than the maximum value of the N value ranges, respectively.
  • the N positive integers are respectively equal to the maximum value of the N value ranges.
  • Embodiment 12 illustrates a schematic diagram of determining the first air interface resource group set according to an embodiment of the present application, as shown in FIG. 12.
  • the first bit block set in this application includes only the first bit block of the first bit block and the second bit block in this application.
  • the last signaling in the first signaling group is used to determine the size of the first bit block, and the size of the first bit block is used to obtain data from the N air interfaces in this application.
  • the first air interface resource group set is determined in the resource group set.
  • the N air interface resource group sets correspond to N value ranges respectively; the size of the first bit block belongs to the first value range of the N value ranges,
  • the first air interface resource group set is an air interface resource group set corresponding to the first value range among the N air interface resource group sets.
  • Embodiment 13 illustrates a schematic diagram of determining the first air interface resource group set according to another embodiment of the present application, as shown in FIG. 13.
  • the first bit block set in the present application includes the first bit block and the second bit block in the present application, and the first positive integer and the second bit block are The sum of the sizes is used to determine the first air interface resource group set from the N air interface resource group sets in this application.
  • the size of the second bit block is equal to the second positive integer.
  • the last signaling in the second signaling group is used to determine the size of the second bit block.
  • the N air interface resource group sets correspond to N value ranges respectively; the sum of the size of the first positive integer and the second bit block belongs to the N value ranges
  • the second value range of, the first air interface resource group set is an air interface resource group set corresponding to the second value range among the N air interface resource group sets.
  • Embodiment 14 illustrates a schematic diagram of determining the first air interface resource group set according to another embodiment of the present application, as shown in FIG. 14.
  • the first bit block set in this application includes the first bit block and the second bit block in this application; the third bit block is used to indicate the Whether the second signal group is received correctly, the last signal in the second signal group in this application is used to determine the size of the third bit block; the fourth bit block is used to indicate the size of the third bit block in this application Whether the first signal group is correctly received, the last signal in the first signal group in this application is used to determine the size of the fourth bit block; The sum of the size and the size of the fourth bit block is used to determine the first air interface resource group set from the N air interface resource group sets in this application.
  • the N air interface resource group sets correspond to N value ranges respectively; the sum of the size of the third bit block and the size of the fourth bit block belongs to the In the third value range of the N value ranges, the first air interface resource group set is an air interface resource group set corresponding to the third value range in the N air interface resource group sets.
  • Embodiment 15 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 15.
  • the first node device processing apparatus 1200 includes a first receiver 1201 and a first transmitter 1202.
  • the first node device 1200 is user equipment.
  • the first node device 1200 is a relay node.
  • the first node device 1200 is a base station.
  • the first node device 1200 is a vehicle-mounted communication device.
  • the first node device 1200 is a user equipment that supports V2X communication.
  • the first node device 1200 is a relay node supporting V2X communication.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least one of the sources 467.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the top five in source 467.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application.
  • Source 467 at least the first four.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the first three of Source 467.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application.
  • Source 467 at least the first two.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the At least one of the data sources 467.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the At least the top five of the data sources 467.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the At least the first four of the data sources 467.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the At least the first three of the data sources 467.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the At least the first two of the data sources 467.
  • the first receiver 1201 receives the first signaling group; receives the first signal group; receives the second signaling group;
  • the first transmitter 1202 sends the second signal group; sends the first bit block set in the first air interface resource group;
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the The sender of the first signal group is different from the target receiver of the second signal group
  • the first bit block set includes a first bit block, whether the first bit block and the first signal group are received correctly Relevant
  • the size of the first bit block is related to whether the first bit block set includes a second bit block
  • the second bit block is related to whether the second signal group is correctly received.
  • the first receiver 1201 also receives a third signal group; wherein, the third signal group is used to determine whether the second signal group is received correctly.
  • the first bit block set includes only the first bit block of the first bit block and the second bit block, and the last signaling in the first signaling group is It is used to indicate the first air interface resource group, and the last signaling in the first signaling group is used to determine the size of the first bit block.
  • the first transmitter 1202 also sends a second bit block set in the second air interface resource group; wherein, the second bit block set includes a third bit block, and the third bit block is used To indicate whether the second signal group is correctly received; the last signal in the second signal group is used to indicate the second air interface resource group, and the last signal in the second signal group Let is used to determine the size of the third bit block.
  • the first bit block set includes the first bit block and the second bit block, and the last signaling in the first signaling group and the second signaling group is used For indicating the first air interface resource group, the size of the first bit block is equal to a first positive integer.
  • the first receiver 1201 also receives second information; wherein, the second information is used to determine the first positive integer.
  • the first receiver 1201 also receives first information; wherein, the first information is used to indicate N air interface resource group sets, and any one air interface resource in the N air interface resource group sets
  • the group set includes a positive integer number of air interface resource groups, and N is a positive integer greater than 1.
  • the first air interface resource group is an air interface resource group in the first air interface resource group set, and the first air interface resource group set is the An air interface resource group set in N air interface resource group sets.
  • Embodiment 16 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 16.
  • the second node device processing apparatus 1300 includes a second transmitter 1301 and a second receiver 1302.
  • the second node device 1300 is user equipment.
  • the second node device 1300 is a base station.
  • the second node device 1300 is a relay node.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least one.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first five.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first four.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first three.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first two.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of the present application. At least one.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of the present application. At least the first five.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of the present application. At least the first four.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of the present application. At least the first three.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in Figure 4 of the present application. At least the first two.
  • the second transmitter 1301 sends the first signaling group; sends the first signal group; sends the second signaling group;
  • the second receiver 1302 receives the first set of bit blocks in the first air interface resource group
  • the first signaling group is used to indicate the scheduling information of the first signal group
  • the second signaling group is used to indicate the scheduling information of the second signal group
  • the first signaling group is used to indicate the scheduling information of the second signal group.
  • the target receiver of the signal group is the target receiver of the second signal group
  • the sender of the second signal group is the target receiver of the second signal group
  • the target of the second signal group The receiver and the second node are different;
  • the first bit block set includes a first bit block, and the first bit block is related to whether the first signal group is correctly received;
  • the size of the first bit block It is related to whether the first bit block set includes a second bit block, and the second bit block is related to whether the second signal group is correctly received.
  • the first bit block set includes only the first bit block of the first bit block and the second bit block, and the last signaling in the first signaling group is It is used to indicate the first air interface resource group, and the last signaling in the first signaling group is used to determine the size of the first bit block.
  • the second receiver 1302 also receives a second set of bit blocks in the second air interface resource group; wherein, the second set of bit blocks includes a third bit block, and the third bit block is used To indicate whether the second signal group is correctly received; the last signal in the second signal group is used to indicate the second air interface resource group, and the last signal in the second signal group Let is used to determine the size of the third bit block.
  • the first bit block set includes the first bit block and the second bit block, and the last signaling in the first signaling group and the second signaling group is used For indicating the first air interface resource group, the size of the first bit block is equal to a first positive integer.
  • the second transmitter 1301 also sends second information; wherein the second information is used to determine the first positive integer.
  • the second transmitter 1301 also sends first information; wherein, the first information is used to indicate N air interface resource group sets, and any one air interface resource in the N air interface resource group sets
  • the group set includes a positive integer number of air interface resource groups, and N is a positive integer greater than 1.
  • the first air interface resource group is an air interface resource group in the first air interface resource group set, and the first air interface resource group set is the An air interface resource group set in N air interface resource group sets.
  • the first node equipment in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, etc.
  • the second node device in this application includes but is not limited to mobile phones, tablets, notebooks, internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, etc. Wireless communication equipment.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, and remote controls Airplanes and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, air Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令组,接收第一信号组,接收第二信令组,发送第二信号组,然后在第一空口资源组中发送第一比特块集合。所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的伴随链路的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务识别和定义了4大用例组(Use Case Group),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上通过了NR V2X的技术研究工作项目(SI,Study Item)。NR V2X目前已经同意SL(Sidelink,伴随链路)HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈,以及在PUCCH(Physical Uplink Control CHannel,物理上行控制信道)上发送SL HARQ反馈。
发明内容
如何在上行控制信道上传输SL HARQ反馈和DL HARQ反馈是一个关键的研究方向。
针对上述问题,本申请公开了一种解决方案。上述问题描述中,采用伴随链路作为一个例子;本申请也同样适用于其他基于竞争的传输场景例如非授权频谱上的传输、基于配置授予(Configured Grant)的传输、基于调度授予(Scheduled Grant)的传输等,本申请也同样适用于上行链路传输场景和下行链路传输场景,取得类似伴随链路中的技术效果。此外,不同场景(包括但不限于伴随链路、其他基于竞争的传输、上行链路、下行链路)采用统一解决方案还有助于降低硬件复杂度和成本。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令组;
接收第一信号组;
接收第二信令组;
发送第二信号组;
在第一空口资源组中发送第一比特块集合;
其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于 指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为一个实施例,本申请要解决的问题是:如何在上行控制信道上传输SL HARQ反馈和DL HARQ反馈。
作为一个实施例,本申请要解决的问题是:考虑到SL HARQ反馈和DL HARQ反馈可能复用在一个相同的上行控制信道资源上,如何确定DL HARQ码本(Codebook)的大小。
作为一个实施例,本申请要解决的问题是:考虑到SL HARQ反馈和DL HARQ反馈可能复用在一个相同的上行控制信道资源上,如何确定SL HARQ码本(Codebook)的大小。
作为一个实施例,本申请要解决的问题是:考虑到SL HARQ反馈和DL HARQ反馈可能复用在一个相同的上行控制信道资源上,如何确定DL HARQ码本的大小和SL HARQ码本(Codebook)的大小。
作为一个实施例,上述方法的实质在于,两个链路(比如SL和DL)上的HARQ码本是否复用在一个PUCCH上被用于确定其中一个链路上的HARQ码本的大小。采用上述方法的好处在于,考虑到部分信令有可能被错过检测(miss detection),这时如果由信令动态确定HARQ码本大小可能会导致收发端对码本大小存在理解不一致,所提方法可以在错过检测时仍然保证收发端对码本大小理解的一致性,提高传输可靠性。
作为一个实施例,上述方法的实质在于,两个链路(比如SL和DL)上的HARQ码本是否复用在一个PUCCH上被用于确定这两个链路上的HARQ码本的大小。采用上述方法的好处在于,考虑到部分信令有可能被错过检测(miss detection),这时如果由信令动态确定HARQ码本大小可能会导致收发端对码本大小存在理解不一致,所提方法可以在错过检测时仍然保证收发端对码本大小理解的一致性,提高传输可靠性。
作为一个实施例,上述方法的实质在于,第一信令组是一组DL调度的DCI信令,第二信号组是一组PDSCH(Physical Downlink Shared CHannel,物理下行共享信道),第二信令组是一组SL调度的DCI信令,第二信号组是一组PSSCH(Physical Sidelink Shared Channel,物理伴随链路共享信道),第一空口资源组是PUCCH,第一比特块集合是UCI(Uplink Control Information,上行控制信息),第一比特块是DL HARQ码本,第二比特块是SL HARQ码本;SL HARQ码本是否和DL HARQ码本复用在一个相同的PUCCH上被用于确定DL HARQ码本的大小。采用上述方法的好处在于,其中部分信令有可能被错过检测(miss detection),这时如果由信令动态确定HARQ码本大小可能会导致收发端对码本大小存在理解不一致,所提方法可以在错过检测时仍然保证收发端对码本大小理解的一致性,提高传输可靠性。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信号组;
其中,所述第三信号组被用于确定所述第二信号组是否被正确接收。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二空口资源组中发送第二比特块集合;
其中,所述第二比特块集合包括第三比特块,所述第三比特块被用于指示所述第二信号组是否被正确接收;所述第二信令组中的最后一个信令被用于指示所述第二空口资源组,所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块集合包括所述第一比特块和所述第二比特块,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述 第一空口资源组,所述第一比特块的所述大小等于第一正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信息;
其中,所述第二信息被用于确定所述第一正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信息;
其中,所述第一信息被用于指示N个空口资源组集合,所述N个空口资源组集合中的任意一个空口资源组集合包括正整数个空口资源组,N是大于1的正整数;所述第一空口资源组是第一空口资源组集合中的一个空口资源组,所述第一空口资源组集合是所述N个空口资源组集合中的一个空口资源组集合。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令组;
发送第一信号组;
发送第二信令组;
在第一空口资源组中接收第一比特块集合;
其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二空口资源组中接收第二比特块集合;
其中,所述第二比特块集合包括第三比特块,所述第三比特块被用于指示所述第二信号组是否被正确接收;所述第二信令组中的最后一个信令被用于指示所述第二空口资源组,所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块集合包括所述第一比特块和所述第二比特块,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一比特块的所述大小等于第一正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信息;
其中,所述第二信息被用于确定所述第一正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信息;
其中,所述第一信息被用于指示N个空口资源组集合,所述N个空口资源组集合中的任意一个空口资源组集合包括正整数个空口资源组,N是大于1的正整数;所述第一空口资源组是第一空口资源组集合中的一个空口资源组,所述第一空口资源组集合是所述N个空口资源组集合中的一个空口资源组集合。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令组;接收第一信号组;接收第二信令组;
第一发射机,发送第二信号组;在第一空口资源组中发送第一比特块集合;
其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令组;发送第一信号组;发送第二信令组;
第二接收机,在第一空口资源组中接收第一比特块集合;
其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为一个实施例,本申请中的方法具备如下优势:
-本申请提出了一种在上行控制信道上传输SL HARQ反馈和DL HARQ反馈的方案。
-本申请提出了一种SL HARQ反馈和DL HARQ反馈可能复用在一个相同的上行控制信道资源的情况下,一种确定HARQ码本(Codebook)的大小的方案。
-在本申请所提的方法中,可以在错过检测部分信令时仍然保证收发端对码本大小理解的一致性,提高传输可靠性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令组、第一信号组、第二信令组、第二信号组和第一比特块集合的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一比特块的大小的示意图;
图7示出了根据本申请的另一个实施例的第一比特块的大小的示意图;
图8示出了根据本申请的一个实施例的第二比特块的大小的示意图;
图9示出了根据本申请的另一个实施例的第二比特块的大小的示意图;
图10示出了根据本申请的一个实施例的第一正整数的示意图;
图11示出了根据本申请的另一个实施例的第一正整数的示意图;
图12示出了根据本申请的一个实施例的第一空口资源组集合的确定的示意图;
图13示出了根据本申请的另一个实施例的第一空口资源组集合的确定的示意图;
图14示出了根据本申请的另一个实施例的第一空口资源组集合的确定的示意图;
图15示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图16示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令组、第一信号组、第二信令组、第二信号组和第一比特块集合的流程图,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令组;在步骤102中接收第一信号组;在步骤103中接收第二信令组;在步骤104中发送第二信号组;在步骤105中在第一空口资源组中发送第一比特块集合;其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为一个实施例,所述第一信令组中的任一信令都是物理层信令。
作为一个实施例,所述第一信令组中的任一信令都是动态配置的。
作为一个实施例,所述第一信令组中的任一信令都是DCI(Downlink Control Information)信令。
作为一个实施例,所述第一信令组中的任一信令被用于调度DL传输。
作为一个实施例,所述第一信令组中的任一信令都是下行授予(DL grant)DCI信令。
作为一个实施例,所述第一信令组通过下行物理层控制信道传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令组通过用户设备和基站设备之间的无线接口(Radio Interface)传输。
作为一个实施例,所述第一信令组是通过Uu接口传输的。
作为一个实施例,所述第一信令组的发送者是所述第一节点的服务小区。
作为一个实施例,所述第一信号组中的任一信号携带数据。
作为一个实施例,所述第一信号组中的任一信号携带传输块(TB,Transport Block)。
作为一个实施例,所述第一信号组在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一信令组包括的信令的数量和所述第一信号组包括的信号的数量相同。
作为一个实施例,所述第一信令组包括的信令的数量不大于所述第一信号组包括的信号的数量。
作为一个实施例,所述第一信令组显式的指示所述第一信号组的调度信息。
作为一个实施例,所述第一信令组隐式的指示所述第一信号组的调度信息。
作为一个实施例,所述第一信令组包括K1个第一类信令,所述第一信号组包括K1个第一类信号,所述K1个第一类信令分别被用于指示所述K1个第一类信号的调度信息,K1是正整数。
作为上述实施例的一个子实施例,所述K1个第一类信令分别显式的指示所述K1个第一类信号的调度信息。
作为上述实施例的一个子实施例,所述K1个第一类信令分别隐式的指示所述K1个第一类信号的调度信息。
作为一个实施例,第一给定信号是所述第一信号组中的任一信号,所述第一给定信号的调度信息包括所占用的时域资源,所占用的频域资源,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,DAI(Downlink Assignment Index,下行分配索引)。
作为一个实施例,第一给定信号是所述第一信号组中的任一信号,所述第一给定信号的调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),DAI(Downlink Assignment Index,下行分配索引),发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为一个实施例,所述DMRS的配置信息包括RS(Reference Signal)序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)中的至少之一。
作为一个实施例,所述第二信令组中的任一信令都是物理层信令。
作为一个实施例,所述第二信令组中的任一信令都是动态配置的。
作为一个实施例,所述第二信令组中的任一信令都是DCI信令。
作为一个实施例,所述第二信令组中的任一信令被用于调度SL(SideLink,伴随链路)传输。
作为一个实施例,所述第二信令组中的任一信令都是伴随链路授予(Sidelink grant)DCI信令。
作为一个实施例,所述第二信令组通过下行物理层控制信道传输。
作为一个实施例,所述第二信令组通过用户设备和基站设备之间的无线接口(Radio Interface)传输。
作为一个实施例,所述第二信令组是通过Uu接口传输的。
作为一个实施例,所述第二信令组的发送者是所述第一节点的服务小区。
作为一个实施例,所述第二信号组中的任一信号携带数据。
作为一个实施例,所述第二信号组中的任一信号携带传输块(TB,Transport Block)。
作为一个实施例,所述第二信号组在伴随链路(Sidelink)数据信道上传输。
作为一个实施例,所述伴随链路(Sidelink)数据信道是SL-SCH(Sidelink Shared CHannel,伴随链路共享信道)。
作为一个实施例,所述伴随链路(Sidelink)数据信道是PSSCH(Physical Sidelink Shared Channel,物理伴随链路共享信道)。
作为一个实施例,所述第二信号组通过用户设备之间的无线接口传输。
作为一个实施例,所述第二信号组通过伴随链路(Sidelink)的无线接口传输。
作为一个实施例,所述第二信号组通过PC5接口传输的。
作为一个实施例,所述第二信令组包括的信令的数量和所述第二信号组包括的信号的数量相同。
作为一个实施例,所述第二信令组包括的信令的数量不大于所述第二信号组包括的信号的数量。
作为一个实施例,所述第二信令组显式的指示所述第二信号组的调度信息。
作为一个实施例,所述第二信令组隐式的指示所述第二信号组的调度信息。
作为一个实施例,所述第二信令组包括K2个第二类信令,所述第二信号组包括K2个第二类信号,所述K2个第二类信令分别被用于指示所述K2个第二类信号的调度信息,K2是正整数。
作为上述实施例的一个子实施例,所述K2个第二类信令分别显式的指示所述K2个第二类信号的调度信息。
作为上述实施例的一个子实施例,所述K2个第二类信令分别隐式的指示所述K2个第二类信号的调度信息。
作为一个实施例,第二给定信号是所述第二信号组中的任一信号,所述第二给定信号的调度信息包括所占用的时频资源,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,DAI(Downlink Assignment Index,下行分配索引)。
作为一个实施例,第二给定信号是所述第二信号组中的任一信号,所述第二给定信号的调度信息包括所占用的时域资源,所占用的频域资源,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,DAI(Downlink Assignment Index,下行分配索引)。
作为一个实施例,第二给定信号是所述第二信号组中的任一信号,所述第二给定信号的调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),DAI(Downlink Assignment Index,下行分配索引),发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为一个实施例,所述DMRS的配置信息包括RS(Reference Signal)序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)中的至少之一。
作为一个实施例,所述第一空口资源组包括时域资源,频域资源或者码域资源中的至少之一。
作为一个实施例,所述第一空口资源组包括时域资源和频域资源。
作为一个实施例,所述第一空口资源组包括时域资源,频域资源和码域资源。
作为一个实施例,所述第一空口资源组在时域上包括正整数个多载波符号。
作为一个实施例,所述第一空口资源组在频域上包括正整数个子载波。
作为一个实施例,所述第一空口资源组在频域上包括正整数个RB(Resource Block,物理资源块)。
作为一个实施例,所述第一空口资源组包括正整数个RE。
作为一个实施例,所述第一空口资源组被用于上行控制信道传输。
作为一个实施例,所述第一空口资源组被用于PUCCH(Physical Uplink Control CHannel, 物理上行控制信道)传输。
作为一个实施例,所述第一比特块集合包括正整数个比特块,所述第一比特块集合中的任一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括正整数个比特,所述第二比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括DL HARQ码本(codebook),所述第二比特块包括SL HARQ码本。
作为一个实施例,所述第一比特块包括DL HARQ比特,所述第二比特块包括SL HARQ比特。
作为一个实施例,所述第二信令组中的最后一个信令被用于确定所述第二比特块的大小。
作为一个实施例,所述第二比特块的大小是预配置的(Pre-configured)。
作为一个实施例,所述第二比特块的大小是可配置的。
作为一个实施例,所述第一信令组中的至少一个信令被用于指示所述第一比特块集合是否包括第二比特块。
作为一个实施例,所述第二信令组中的至少一个信令被用于指示所述第一比特块集合是否包括第二比特块。
作为一个实施例,所述第一信令组和所述第二信令组中的至少一个信令被用于指示所述第一比特块集合是否包括第二比特块。
作为一个实施例,所述第一信令组中的最后一个信令被用于指示所述第一比特块集合是否包括第二比特块。
作为一个实施例,所述第二信令组中的最后一个信令被用于指示所述第一比特块集合是否包括第二比特块。
作为一个实施例,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述第一比特块集合是否包括第二比特块。
作为一个实施例,所述第一信令组中的最后一个信令指示第一时间窗,所述第二信令组中的最后一个信令指示第二时间窗,所述第一时间窗和所述第二时间窗是否正交被用于确定所述第一比特块集合是否包括第二比特块。
作为上述实施例的一个子实施例,所述第一时间窗和所述第二时间窗是正交的,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块。
作为上述实施例的一个子实施例,所述第一时间窗和所述第二时间窗是非正交的,所述第一比特块集合包括所述第一比特块和所述第二比特块。
作为上述实施例的一个子实施例,所述第一空口资源组在时域上属于所述第一时间窗。
作为上述实施例的一个子实施例,所述第二空口资源组在时域上属于所述第二时间窗。
作为一个实施例,所述第一信令组中的最后一个信令指示第一时间窗,所述第二信令组中的最后一个信令指示第二时间窗,所述第一时间窗和所述第二时间窗是否重叠被用于确定所述第一比特块集合是否包括第二比特块。
作为上述实施例的一个子实施例,所述第一时间窗和所述第二时间窗是非重叠的,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块。
作为上述实施例的一个子实施例,所述第一时间窗和所述第二时间窗是重叠的,所述第一比特块集合包括所述第一比特块和所述第二比特块。
作为上述实施例的一个子实施例,所述第一空口资源组在时域上属于所述第一时间窗。
作为上述实施例的一个子实施例,所述第二空口资源组在时域上属于所述第二时间窗。
作为一个实施例,所述第一信令组中的最后一个信令指示第一时间窗,所述第二信令组中的最后一个信令指示第二时间窗,所述第一时间窗和所述第二时间窗是否相同被用于确定所述第一比特块集合是否包括第二比特块。
作为上述实施例的一个子实施例,所述第一时间窗和所述第二时间窗不相同,所述第一 比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块。
作为上述实施例的一个子实施例,所述第一时间窗和所述第二时间窗相同,所述第一比特块集合包括所述第一比特块和所述第二比特块。
作为上述实施例的一个子实施例,所述第一空口资源组在时域上属于所述第一时间窗。
作为上述实施例的一个子实施例,所述第二空口资源组在时域上属于所述第二时间窗。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述第一时间窗包括一个时隙(Slot)。
作为一个实施例,所述第一时间窗包括一个子帧(Subframe)。
作为一个实施例,所述第一时间窗包括一个小时隙(mini-slot)。
作为一个实施例,所述第二时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述第二时间窗包括一个时隙(Slot)。
作为一个实施例,所述第二时间窗包括一个子帧(Subframe)。
作为一个实施例,所述第二时间窗包括一个小时隙(mini-slot)。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,“所述第一比特块与所述第一信号组是否被正确接收有关”的意思包括:针对所述第一信号组的HARQ码本(codebook)被用于生成所述第一比特块。
作为一个实施例,“所述第一比特块与所述第一信号组是否被正确接收有关”的意思包括:所述第一比特块包括针对所述第一信号组的HARQ码本(codebook)中的部分或全部比特。
作为一个实施例,“所述第一比特块与所述第一信号组是否被正确接收有关”的意思包括:所述第一比特块被用于指示所述第一信号组中的部分或者全部信号是否被正确接收。
作为一个实施例,“所述第一比特块与所述第一信号组是否被正确接收有关”的意思包括:所述第一比特块被用于指示所述第一信号组中的至少一个信号是否被正确接收。
作为一个实施例,所述第一比特块和所述第二信号组是否被正确接收无关。
作为一个实施例,所述第一比特块的值和所述第二信号组是否被正确接收无关。
作为一个实施例,“所述第二比特块与所述第二信号组是否被正确接收有关”的意思包括:针对所述第二信号组的HARQ码本(codebook)被用于生成所述第二比特块。
作为一个实施例,“所述第二比特块与所述第二信号组是否被正确接收有关”的意思包括:所述第二比特块包括针对所述第二信号组的HARQ码本中的部分或全部比特。
作为一个实施例,“所述第二比特块与所述第二信号组是否被正确接收有关”的意思包括:所述第二比特块被用于指示所述第二信号组中的部分或者全部信号是否被正确接收。
作为一个实施例,“所述第二比特块与所述第二信号组是否被正确接收有关”的意思包括:所述第二比特块被用于指示所述第二信号组中的至少一个信号是否被正确接收。
作为一个实施例,所述第二比特块和所述第一信号组是否被正确接收无关。
作为一个实施例,所述第二比特块的值和所述第一信号组是否被正确接收无关。
作为一个实施例,给定比特块的大小是所述给定比特块包括的比特数量。
作为一个实施例,给定比特块的大小是正整数。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第三节点。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对 第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY351。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述PHY351。
作为一个实施例,本申请中的所述第一信令组生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令组生成于所述PHY351。
作为一个实施例,本申请中的所述第一信号组生成于所述PHY301。
作为一个实施例,本申请中的所述第一信号组生成于所述PHY351。
作为一个实施例,本申请中的所述第二信令组生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令组生成于所述PHY351。
作为一个实施例,本申请中的所述第二信号组生成于所述PHY301。
作为一个实施例,本申请中的所述第二信号组生成于所述PHY351。
作为一个实施例,本申请中的所述第三信号组生成于所述PHY301。
作为一个实施例,本申请中的所述第三信号组生成于所述PHY351。
作为一个实施例,本申请中的所述第一比特块集合生成于所述PHY301。
作为一个实施例,本申请中的所述第一比特块集合生成于所述PHY351。
作为一个实施例,本申请中的所述第二比特块集合生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块集合生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器 416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首 先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,本申请中的所述第三节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备,所述第三节点是基站设备。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令组;接收第一信号组;接收第二信令组;发送第二信号组;在第一空口资源组中发送第一比特块集合;其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令组;接收第一信号组;接收第二信令组;发送第二信号组;在第一空口资源组中发送第一比特块集合;其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令组;发送第一信号组;发送第二信令组;在第一空口资源组中接收第一比特块集合;其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令组;发送第一信号组;发送第二信令组;在第一空口资源组中接收第一比特块集合;其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令组。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令组。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信号组。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申 请中的所述第一信号组。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令组。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令组。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第三信号组。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第三信号组。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第二信号组。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二信号组。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一空口资源组中发送本申请中的所述第一比特块集合。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一空口资源组中接收本申请中的所述第一比特块集合。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二空口资源组中发送本申请中的所述第二比特块集合。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二空口资源组中接收本申请中的所述第二比特块集合。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中, 第一节点U01和 第二节点N01之间是通过空中接口进行通信。在附图5中,虚线方框F1是可选的。
对于 第一节点U01,在步骤S10中接收第一信息;在步骤S11中接收第二信息;在步骤S12中接收第一信令组;在步骤S13中接收第一信号组;在步骤S14中接收第二信令组;在步骤S15中发送第二信号组;在步骤S16中接收第三信号组;在步骤S17中在第一空口资源组中发送第一比特块集合;在步骤S18中在第二空口资源组中发送第二比特块集合。
对于 第二节点N01,在步骤S20中发送第一信息;在步骤S21中发送第二信息;在步骤S22中发送第一信令组;在步骤S23中发送第一信号组;在步骤S24中发送第二信令组;在步骤S25中在第一空口资源组中接收第一比特块集合;在步骤S26中在第二空口资源组中接收第二比特块集合。
对于 第三节点U02,在步骤S30中接收第二信号组;在步骤S31中发送第三信号组。
在实施例5中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目 标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。所述第三信号组被所述第一节点U01用于确定所述第二信号组是否被正确接收。所述第二信息被所述第一节点U01用于确定所述第一正整数。所述第一信息被用于指示N个空口资源组集合,所述N个空口资源组集合中的任意一个空口资源组集合包括正整数个空口资源组,N是大于1的正整数;所述第一空口资源组是第一空口资源组集合中的一个空口资源组,所述第一空口资源组集合是所述N个空口资源组集合中的一个空口资源组集合。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,虚线方框F1存在。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,虚线方框F1不存在。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块,虚线方框F1不存在。
作为一个实施例,虚线方框F1存在;所述第二比特块集合包括第三比特块,所述第三比特块被用于指示所述第二信号组是否被正确接收;所述第二信令组中的最后一个信令被用于指示所述第二空口资源组,所述第二信令组中的最后一个信令被所述第一节点U01用于确定所述第三比特块的大小。
作为一个实施例,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同。
作为一个实施例,所述第一节点中的方法还包括:
发送第三信令组;
其中,所述第三信令组被用于指示所述第二信号组的配置信息。
作为上述实施例的一个子实施例,所述第一发射机还发送第三信令组;其中,所述第三信令组被用于指示所述第二信号组的配置信息。
作为上述实施例的一个子实施例,所述第三信令组显式的指示所述第二信号组的配置信息。
作为上述实施例的一个子实施例,所述第三信令组隐式的指示所述第二信号组的配置信息。
作为一个实施例,所述第三信令组包括K2个第三类信令,所述第二信号组包括K2个第二类信号,所述K2个第三类信令分别被用于指示所述K2个第二类信号的配置信息,K2是正整数。
作为上述实施例的一个子实施例,所述K2个第三类信令分别显式的指示所述K2个第二类信号的配置信息。
作为上述实施例的一个子实施例,所述K2个第三类信令分别隐式的指示所述K2个第二类信号的配置信息。
作为上述实施例的一个子实施例,所述K2个第三类信令所占用的时频资源分别和所述K2个第二类信号关联。
作为一个实施例,所述第二信号组的所述配置信息包括优先级(Priority),所占用的频域资源,目标(Destination)身份识别(Identity,ID),源(Source)身份识别(Identity,ID)。
作为一个实施例,所述第二信号组的所述配置信息包括优先级(Priority),所占用的频域资源,所占用的时域资源,调制编码方式(MCS),资源预留(Resource Reservation),重传索引(Retransmission index),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,发送天线端口(Antenna Ports),发送功率指示,目标(Destination)身份识别(Identity,ID),源(Source)身份识别(Identity,ID),HARQ(Hybrid Automatic Repeat reQuest, 混合自动重传请求)进程号,NDI(New Data Indicator,新数据指示),冗余版本(RV,Redundancy Version)中的至少之一。
作为一个实施例,所述第三信令组在伴随链路(Sidelink)控制信道上传输。
作为一个实施例,所述伴随链路(Sidelink)控制信道是SL-CCH(Sidelink Control CHannel,伴随链路控制信道)。
作为一个实施例,所述伴随链路(Sidelink)控制信道是PSCCH(Physical Sidelink Control CHannel,物理伴随链路控制信道)。
作为一个实施例,所述第三信令组中的任一信令都是物理层信令。
作为一个实施例,所述第三信令组中的任一信令是组播的(Groupcast)或者单播的(Unicast)。
作为一个实施例,所述第三信令组在伴随链路(Sidelink)上传输。
作为一个实施例,所述第三信令组中的任一信令都包括SCI(Sidelink Control Information,伴随链路控制信息)信令。
作为一个实施例,所述第三信令组中的任一信令都承载SCI。
作为一个实施例,所述第三信令组通过用户设备之间的无线接口传输。
作为一个实施例,所述第三信令组通过伴随链路(Sidelink)的无线接口传输。
作为一个实施例,所述第三信令组通过PC5接口传输的。
作为一个实施例,所述第三信令组包括的信令的数量和所述第二信号组包括的信号的数量相同。
作为一个实施例,所述第三信令组包括的信令的数量不大于所述第二信号组包括的信号的数量。
作为一个实施例,给定信令组中的最后(last)一个信令是所述给定信令组中最后一个接收到的信令。
作为一个实施例,给定信令组中的最后(last)一个信令是所述给定信令组中排在最后的一个信令。
作为上述实施例的一个子实施例,所述给定信令组中的信令的排列准则包括时域上由早到晚。
作为上述实施例的一个子实施例,所述给定信令组中的信令的排列准则包括先频域后时域。
作为上述实施例的一个子实施例,所述给定信令组中的信令是按照在时域上由早到晚的顺序进行排列的。
作为上述实施例的一个子实施例,所述给定信令组中的信令是按照先频域后时域的顺序进行排列的。
作为上述实施例的一个子实施例,所述给定信令组中的信令是按照先频域上由低到高,后时域上由早到晚的顺序进行排列的。
作为上述实施例的一个子实施例,所述给定信令组中的信令是按照先频域上由高到低,后时域上由早到晚的顺序进行排列的。
作为上述实施例的一个子实施例,所述给定信令组包括所述第一信令组和所述第二信令组。
作为上述实施例的一个子实施例,所述给定信令组包括所述第一信令组。
作为上述实施例的一个子实施例,所述给定信令组包括所述第二信令组。
作为一个实施例,所述第三信号组携带针对所述第二信号组的HARQ比特。
作为一个实施例,所述第三信号组被用于指示所述第二信号组是否被正确接收。
作为一个实施例,所述第三信号组显式的指示所述第二信号组是否被正确接收。
作为一个实施例,所述第三信号组隐式的指示所述第二信号组是否被正确接收。
作为一个实施例,所述第二信号组包括K2个第二类信号,所述第三信号组包括K2个第 三类信号,所述K2个第三类信号分别被用于指示所述K2个第二类信号是否被正确接收,K2是正整数。
作为上述实施例的一个子实施例,所述K2个第三类信号分别显式的指示所述K2个第二类信号是否被正确接收。
作为上述实施例的一个子实施例,所述K2个第三类信号分别隐式的指示所述K2个第二类信号是否被正确接收。
作为上述实施例的一个子实施例,所述K2个第三类信号分别携带针对所述K2个第二类信号的HARQ比特。
作为一个实施例,所述第三信号组在PSFCH(Physical Sidelink Feedback Channel,物理伴随链路反馈信道)上传输。
作为一个实施例,所述第三节点中的方法包括:
接收第二信号组;
发送第三信号组;
其中,所述第三信号组被所述第一节点U01用于确定所述第二信号组是否被正确接收。
作为上述实施例的一个子实施例,所述第三信号组所占用的时频资源和所述第二信号组所占用的时频资源相关联。
作为上述实施例的一个子实施例,根据所述第二信号组所占用的时频资源可以推断出所述第三信号组所占用的时频资源。
作为上述实施例的一个子实施例,所述第二信号组所占用的时频资源隐式的(Implicitly)指示所述第三信号组所占用的时频资源。
作为上述实施例的一个子实施例,所述第三节点包括:
第三接收机,接收第二信号组;
第三发射机,发送第三信号组;
其中,所述第三信号组被所述第一节点U01用于确定所述第二信号组是否被正确接收。
作为一个实施例,所述第三节点中的方法还包括:
接收第三信令组;
其中,所述第三信令组被用于指示所述第二信号组的调度信息。
作为上述实施例的一个子实施例,所述第三接收机还接收第三信令组;其中,所述第三信令组被用于指示所述第二信号组的调度信息。
作为一个实施例,所述第二空口资源组包括时域资源,频域资源或者码域资源中的至少之一。
作为一个实施例,所述第二空口资源组包括时域资源和频域资源。
作为一个实施例,所述第二空口资源组包括时域资源,频域资源和码域资源。
作为一个实施例,所述第二空口资源组在时域上包括正整数个多载波符号。
作为一个实施例,所述第二空口资源组在频域上包括正整数个子载波。
作为一个实施例,所述第二空口资源组在频域上包括正整数个RB(Resource Block,物理资源块)。
作为一个实施例,所述第二空口资源组包括正整数个RE。
作为一个实施例,所述第二比特块集合包括正整数个比特块,所述第二比特块集合中的任一比特块包括正整数个比特。
作为一个实施例,所述第三比特块包括正整数个比特。
作为一个实施例,所述第三比特块包括SL HARQ码本。
作为一个实施例,所述第三比特块包括SL HARQ比特。
作为一个实施例,所述第三比特块包括针对所述第二信号组的HARQ码本(codebook)。
作为一个实施例,所述第三比特块被用于指示所述第二信号组中的每个信号是否被正确接收。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第二信令组中的最后一个信令被用于指示所述第二空口资源组。
作为上述实施例的一个子实施例,所述第二信令组中的最后一个信令显式的指示所述第二空口资源组。
作为上述实施例的一个子实施例,所述第二信令组中的最后一个信令隐式的指示所述第二空口资源组。
作为上述实施例的一个子实施例,所述第二信令组中的最后一个信令被用于从第二空口资源组集合中指示所述第二空口资源组,所述第二空口资源组集合包括正整数个空口资源组,所述第二空口资源组是所述第二空口资源组集合中的一个空口资源组。
作为上述实施例的一个子实施例,所述第二信令组中的最后一个信令指示所述第二空口资源组在第二空口资源组集合中的索引,所述第二空口资源组集合包括正整数个空口资源组,所述第二空口资源组是所述第二空口资源组集合中的一个空口资源组。
作为一个实施例,第二空口资源组集合是所述N个空口资源组集合中包括所述第二空口资源组的一个空口资源组集合;所述第三比特块的大小被用于从所述N个空口资源组集合中确定所述第二空口资源组集合。
作为一个实施例,所述第二信令组中的最后一个信令包括第一域,所述第二信令组中的最后一个信令包括的所述第一域指示第二参数,所述第二参数是正整数,所述第二参数被所述第一节点U01用于确定所述第三比特块的大小。
作为上述实施例的一个子实施例,所述第三比特块的所述大小是所述第二参数的正整数倍。
作为上述实施例的一个子实施例,所述第三比特块的所述大小是所述第二参数。
作为上述实施例的一个子实施例,所述第三比特块的所述大小是所述第二参数和最大CBG(Code Block Group,码块组)数量的乘积。
作为上述实施例的一个子实施例,所述第二参数等于所述第二信令组包括的信令的数量。
作为上述实施例的一个子实施例,所述第二参数等于所述第二信号组包括的信号的数量。
作为上述实施例的一个子实施例,所述第二参数是total DAI(Downlink assignment index,下行分配索引)。
作为上述实施例的一个子实施例,所述第二信令组中的最后一个信令包括的所述第一域是Downlink assignment index域(Field)。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC信令承载。
作为一个实施例,所述第一信息由MAC CE信令承载。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE(Information Element,信息单元)的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信息包括PUCCH-Config IE,所述PUCCH-Config IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信息和所述第二信息属于一个RRC信令中的同一个IE。
作为一个实施例,所述第一信息显式的指示所述N个空口资源组集合。
作为一个实施例,所述第一信息隐式的指示所述N个空口资源组集合。
作为一个实施例,所述第一信息指示所述N个空口资源组集合中的每个空口资源组的配置信息。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组包括时域资源,频域资源或者码域资源中的至少之一。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组包括时域资源和频域资源。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组包括时域资源,频域资源和码域资源。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组在时域上包括正整数个多载波符号。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组在频域上包括正整数个子载波。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组在频域上包括正整数个RB(Resource Block,物理资源块)。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组包括正整数个RE。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组中的至少之一。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组的配置信息包括所占的起始多载波符号,所占的多载波符号数量,跳频前或不跳频情况的起始PRB(Physical Resource Block,物理资源块),跳频后的起始PRB,所占的PRB数量,跳频设置,CS(Cyclic Shift,循环移位),OCC(Orthogonal Cover Code,正交掩码),OCC长度,所对应的天线端口组和最大码率(Code Rate)中的至少之一。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组被预留用于UCI(Uplink Control Information,上行控制信息)的传输。
作为一个实施例,所述N个空口资源组集合中的每个空口资源组集合包括属于上行物理层控制信道(即仅能用于承载物理层信令的上行信道)的时频资源。
作为一个实施例,所述N个空口资源组集合中的任一空口资源组集合是PUCCH resource set,所述PUCCH resource set的具体定义参见3GPP TS38.213中的第9.2.1章节。
作为一个实施例,所述N个空口资源组集合分别和N个取值范围一一对应。
作为上述实施例的一个子实施例,所述N个取值范围中的任一取值都是正整数。
作为上述实施例的一个子实施例,所述N个取值范围中的任一取值都是正实数。
作为上述实施例的一个子实施例,所述第一信息被用于指示所述N个取值范围。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述N个取值范围。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述N个取值范围。
作为上述实施例的一个子实施例,所述N个取值范围分别是所述N个空口资源组集合中可以发送的比特的数量的范围。
作为上述实施例的一个子实施例,所述N个取值范围分别是所述N个空口资源组集合中可以发送的UCI比特的数量的范围。
作为上述实施例的一个子实施例,第一空口资源组集合是所述N个空口资源组集合中包括所述第一空口资源组的一个空口资源组集合,第一取值范围是所述N个取值范围中与所述 第一空口资源组集合对应的一个取值范围;所述第一比特块集合包括的比特数量属于所述第一取值范围。
作为上述实施例的一个子实施例,所述第一信息被用于指示M个阈值,所述M个阈值被所述第一节点U01用于确定所述N个取值范围,M是正整数。
实施例6
实施例6示例了根据本申请的一个实施例的第一比特块的大小的确定的示意图,如附图6所示。
在实施例6中,本申请中的所述第一比特块集合包括所述第一比特块和本申请中的所述第二比特块中的仅所述第一比特块,本申请中的所述第一信令组中的最后一个信令被用于指示本申请中的所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组。
作为上述实施例的一个子实施例,所述第一信令组中的最后一个信令显式的指示所述第一空口资源组。
作为上述实施例的一个子实施例,所述第一信令组中的最后一个信令隐式的指示所述第一空口资源组。
作为上述实施例的一个子实施例,所述第一信令组中的最后一个信令被用于从第一空口资源组集合中指示所述第一空口资源组,所述第一空口资源组集合包括正整数个空口资源组,所述第一空口资源组是所述第一空口资源组集合中的一个空口资源组。
作为上述实施例的一个子实施例,所述第一信令组中的最后一个信令指示所述第一空口资源组在第一空口资源组集合中的索引,所述第一空口资源组集合包括正整数个空口资源组,所述第一空口资源组是所述第一空口资源组集合中的一个空口资源组。
作为一个实施例,所述第一信令组中的最后一个信令包括第一域,所述第一信令组中的最后一个信令包括的所述第一域指示第一参数,所述第一参数是正整数,所述第一参数被用于确定所述第一比特块的所述大小。
作为上述实施例的一个子实施例,所述第一比特块的所述大小是所述第一参数的正整数倍。
作为上述实施例的一个子实施例,所述第一比特块的所述大小是所述第一参数。
作为上述实施例的一个子实施例,所述第一比特块的所述大小是所述第一参数和最大CBG(Code Block Group,码块组)数量的乘积。
作为上述实施例的一个子实施例,所述第一参数等于所述第一信令组包括的信令的数量。
作为上述实施例的一个子实施例,所述第一参数等于所述第一信号组包括的信号的数量。
作为上述实施例的一个子实施例,所述第一参数是total DAI(Downlink assignment index,下行分配索引)。
作为上述实施例的一个子实施例,所述第一信令组中的最后一个信令包括的所述第一域是Downlink assignment index域(Field)。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一比特块被用于指示所述第一信号组是否被正确接收。
作为上述实施例的一个子实施例,所述第一比特块包括针对所述第一信号组的HARQ码本(codebook)。
作为上述实施例的一个子实施例,所述第一比特块被用于指示所述第一信号组中的每个 信号是否被正确接收。
实施例7
实施例7示例了根据本申请的另一个实施例的第一比特块的大小的示意图,如附图7所示。
在实施例7中,本申请中的所述第一比特块集合包括所述第一比特块和本申请中的所述第二比特块,本申请中的所述第一信令组和所述第二信令组中的最后一个信令被用于指示本申请中的所述第一空口资源组,所述第一比特块的所述大小等于第一正整数。
作为一个实施例,所述第一正整数是预配置的(Pre-configured)。
作为一个实施例,所述第一正整数是可配置的。
作为一个实施例,所述第二信息被用于确定所述第一正整数。
作为一个实施例,所述第一信令组和所述第二信令组中的最后一个信令是所述第一信令组中的最后一个信令。
作为一个实施例,所述第一信令组和所述第二信令组中的最后一个信令是所述第二信令组中的最后一个信令。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述第一空口资源组。
作为上述实施例的一个子实施例,所述第一信令组和所述第二信令组中的最后一个信令显式的指示所述第一空口资源组。
作为上述实施例的一个子实施例,所述第一信令组和所述第二信令组中的最后一个信令隐式的指示所述第一空口资源组。
作为上述实施例的一个子实施例,所述第一信令组和所述第二信令组中的最后一个信令被用于从第一空口资源组集合中指示所述第一空口资源组,所述第一空口资源组集合包括正整数个空口资源组,所述第一空口资源组是所述第一空口资源组集合中的一个空口资源组。
作为上述实施例的一个子实施例,所述第一信令组和所述第二信令组中的最后一个信令指示所述第一空口资源组在第一空口资源组集合中的索引,所述第一空口资源组集合包括正整数个空口资源组,所述第一空口资源组是所述第一空口资源组集合中的一个空口资源组。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块,第四比特块被用于指示所述第一信号组是否被正确接收,所述第一信令组中的最后一个信令被用于确定所述第四比特块的所述大小,所述第一正整数和所述第四比特块被共同用于确定所述第一比特块。
作为上述实施例的一个子实施例,所述第四比特块包括针对所述第一信号组的HARQ码本(codebook)。
作为上述实施例的一个子实施例,所述第四比特块被用于指示所述第一信号组中的每个信号是否被正确接收。
作为上述实施例的一个子实施例,所述第一正整数等于所述第四比特块的大小,所述第一比特块和所述第四比特块相同。
作为上述实施例的一个子实施例,所述第一正整数小于所述第四比特块的大小,所述第四比特块包括所述第一比特块。
作为上述实施例的一个子实施例,所述第一正整数大于所述第四比特块的大小,所述第一比特块包括所述第四比特块。
作为上述实施例的一个子实施例,所述第一正整数大于所述第四比特块的大小,所述第四比特块和正整数个0比特串联之后得到所述第一比特块,所述正整数个0比特的数量等于所述第一比特块的大小减去所述第四比特块的大小。
作为上述实施例的一个子实施例,所述第一正整数大于所述第四比特块的大小,所述第四比特块和正整数个1比特串联之后得到所述第一比特块,所述正整数个1比特的数量等于所述第一比特块的大小减去所述第四比特块的大小。
作为一个实施例,所述第一信令组中的最后一个信令包括第一域,所述第一信令组中的最后一个信令包括的所述第一域指示第一参数,所述第一参数是正整数,所述第一参数被用于确定所述第四比特块的所述大小。
作为上述实施例的一个子实施例,所述第四比特块的所述大小是所述第一参数的正整数倍。
作为上述实施例的一个子实施例,所述第四比特块的所述大小是所述第一参数。
作为上述实施例的一个子实施例,所述第四比特块的所述大小是所述第一参数和最大CBG(Code Block Group,码块组)数量的乘积。
作为上述实施例的一个子实施例,所述第一参数等于所述第一信令组包括的信令的数量。
作为上述实施例的一个子实施例,所述第一参数等于所述第一信号组包括的信号的数量。
作为上述实施例的一个子实施例,所述第一参数是total DAI(Downlink assignment index,下行分配索引)。
作为上述实施例的一个子实施例,所述第一信令组中的最后一个信令包括的所述第一域是Downlink assignment index域(Field)。
实施例8
实施例8示例了根据本申请的一个实施例的第二比特块的大小的示意图,如附图8所示。
在实施例8中,本申请中的所述第一比特块集合包括本申请中的所述第一比特块和所述第二比特块,本申请中的所述第一信令组和所述第二信令组中的最后一个信令是所述第二信令组中的最后一个信令,所述第二信令组中的最后一个信令被用于指示本申请中的所述第一空口资源组,所述第一比特块的所述大小等于第一正整数,所述第二信令组中的最后一个信令被用于确定所述第二比特块的大小。
作为一个实施例,所述第一信令组和所述第二信令组中的最后一个信令是所述第二信令组中的最后一个信令,所述第二信令组中的最后一个信令包括第一域,所述第二信令组中的最后一个信令包括的所述第一域指示第二参数,所述第二参数是正整数,所述第二参数被用于确定所述第二比特块的大小。
作为上述实施例的一个子实施例,所述第二比特块的所述大小和所述第三比特块的所述大小相同。
作为上述实施例的一个子实施例,所述第二比特块的所述大小是所述第二参数的正整数倍。
作为上述实施例的一个子实施例,所述第二比特块的所述大小是所述第二参数。
作为上述实施例的一个子实施例,所述第二比特块的所述大小是所述第二参数和最大CBG(Code Block Group,码块组)数量的乘积。
作为上述实施例的一个子实施例,所述第二参数等于所述第二信令组包括的信令的数量。
作为上述实施例的一个子实施例,所述第二参数等于所述第二信号组包括的信号的数量。
作为上述实施例的一个子实施例,所述第二参数是total DAI(Downlink assignment index,下行分配索引)。
作为上述实施例的一个子实施例,所述第二信令组中的最后一个信令包括的所述第一域是Downlink assignment index域(Field)。
作为一个实施例,所述第二信令组中的最后一个信令被用于确定所述第二比特块的大小。
实施例9
实施例9示例了根据本申请的另一个实施例的第二比特块的大小的示意图,如附图9所示。
在实施例9中,本申请中的所述第一比特块集合包括本申请中的所述第一比特块和所述第二比特块,本申请中的所述第一信令组和所述第二信令组中的最后一个信令被用于指示本申请中的所述第一空口资源组,所述第一比特块的所述大小等于第一正整数,所述第二比特块的大小等于第二正整数。
作为一个实施例,所述第二正整数是预配置的(Pre-configured)。
作为一个实施例,所述第二正整数是可配置的。
作为一个实施例,所述第二信息被用于确定所述第二正整数。
作为一个实施例,第三比特块被用于指示所述第二信号组是否被正确接收,所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小;所述第二比特块的大小等于第二正整数,所述第二正整数和所述第三比特块被共同用于确定所述第二比特块。
作为上述实施例的一个子实施例,所述第二正整数等于所述第三比特块的大小,所述第二比特块和所述第三比特块相同。
作为上述实施例的一个子实施例,所述第二正整数小于所述第三比特块的大小,所述第三比特块包括所述第二比特块。
作为上述实施例的一个子实施例,所述第二正整数大于所述第三比特块的大小,所述第二比特块包括所述第三比特块。
作为上述实施例的一个子实施例,所述第二正整数大于所述第三比特块的大小,所述第三比特块和正整数个0比特串联之后得到所述第二比特块,所述正整数个0比特的数量等于所述第二比特块的大小减去所述第三比特块的大小。
作为上述实施例的一个子实施例,所述第二正整数大于所述第三比特块的大小,所述第三比特块和正整数个1比特串联之后得到所述第二比特块,所述正整数个1比特的数量等于所述第二比特块的大小减去所述第三比特块的大小。
实施例10
实施例10示例了根据本申请的一个实施例的第一正整数的示意图,如附图10所示。
在实施例10中,本申请中的所述第二信息被用于确定所述第一正整数。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由更高层信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息由MAC CE信令承载。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE(Information Element,信息单元)。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第二信息被用于指示所述第一正整数。
作为一个实施例,所述第二信息显式的指示所述第一正整数。
作为一个实施例,所述第二信息隐式的指示所述第一正整数。
作为一个实施例,所述第二比特块的大小等于第二正整数,所述第二信息被用于确定所述第一正整数和所述第二正整数。
作为上述实施例的一个子实施例,所述第二信息被用于指示所述第一正整数和所述第二正整数。
作为上述实施例的一个子实施例,所述第二信息显式的指示所述第一正整数和所述第二正整数。
作为上述实施例的一个子实施例,所述第二信息隐式的指示所述第一正整数和所述第二正整数。
作为一个实施例,所述第一正整数是正整数。
作为一个实施例,所述第二正整数是正整数。
实施例11
实施例11示例了根据本申请的另一个实施例的第一正整数的示意图,如附图11所示。
在实施例11中,N个第一类系数分别与本申请中的所述N个空口资源组集合一一对应,所述N个第一类系数都是正整数;所述第一正整数是所述N个第一类系数中与本申请中的所述第一空口资源组集合对应的一个第一类系数。
作为一个实施例,所述N个第一类系数是预配置的(Pre-configured)。
作为一个实施例,所述N个第一类系数是可配置的。
作为一个实施例,所述第二信息被用于确定所述N个第一类系数。
作为一个实施例,所述第二信息被用于指示所述N个第一类系数。
作为一个实施例,所述第二信息显式的指示所述N个第一类系数。
作为一个实施例,所述第二信息隐式的指示所述N个第一类系数。
作为一个实施例,N个第二类系数分别与所述N个空口资源组集合一一对应,所述N个第二类系数都是正整数;所述第二比特块的大小等于第二正整数,所述第二正整数是所述N个第二类系数中与所述第一空口资源组集合对应的一个第二类系数。
作为一个实施例,所述第二信息被用于确定所述N个第一类系数和所述N个第二类系数。
作为一个实施例,所述第二信息被用于指示所述N个第一类系数和所述N个第二类系数。
作为一个实施例,所述第二信息显式的指示所述N个第一类系数和所述N个第二类系数。
作为一个实施例,所述第二信息隐式的指示所述N个第一类系数和所述N个第二类系数。
作为一个实施例,所述N个空口资源组集合分别和N个取值范围一一对应,所述N个第一类系数和所述N个第二类系数一一对应,所述N个第一类系数和所述N个第二类系数分别相加之后得到N个正整数,所述N个正整数分别属于所述N个取值范围。
作为上述实施例的一个子实施例,所述N个正整数分别不大于所述N个取值范围的最大值。
作为上述实施例的一个子实施例,所述N个正整数分别等于所述N个取值范围的最大值。
实施例12
实施例12示例了根据本申请的一个实施例的第一空口资源组集合的确定的示意图,如附图12所示。
在实施例12中,本申请中的所述第一比特块集合包括本申请中的所述第一比特块和所述第二比特块中的仅所述第一比特块,本申请中的所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小,所述第一比特块的所述大小被用于从本申请中的所述N个空口资源组集合中确定所述第一空口资源组集合。
作为一个实施例,所述N个空口资源组集合分别和N个取值范围一一对应;所述第一比特块的所述大小属于所述N个取值范围中的第一取值范围,所述第一空口资源组集合是所述N个空口资源组集合中与所述第一取值范围对应的一个空口资源组集合。
实施例13
实施例13示例了根据本申请的另一个实施例的第一空口资源组集合的确定的示意图,如附图13所示。
在实施例13中,本申请中的所述第一比特块集合包括本申请中的所述第一比特块和所述第二比特块,所述第一正整数和所述第二比特块的大小之和被用于从本申请中的所述N个空口资源组集合中确定所述第一空口资源组集合。
作为一个实施例,所述第二比特块的所述大小等于所述第二正整数。
作为一个实施例,所述第二信令组中的最后一个信令被用于确定所述第二比特块的所述 大小。
作为一个实施例,所述N个空口资源组集合分别和N个取值范围一一对应;所述第一正整数和所述第二比特块的大小之和属于所述N个取值范围中的第二取值范围,所述第一空口资源组集合是所述N个空口资源组集合中与所述第二取值范围对应的一个空口资源组集合。
实施例14
实施例14示例了根据本申请的另一个实施例的第一空口资源组集合的确定的示意图,如附图14所示。
在实施例14中,本申请中的所述第一比特块集合包括本申请中的所述第一比特块和所述第二比特块;第三比特块被用于指示本申请中的所述第二信号组是否被正确接收,本申请中的所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小;第四比特块被用于指示本申请中的所述第一信号组是否被正确接收,本申请中的所述第一信令组中的最后一个信令被用于确定所述第四比特块的大小;所述第三比特块的所述大小和所述第四比特块的所述大小之和被用于从本申请中的所述N个空口资源组集合中确定所述第一空口资源组集合。
作为一个实施例,所述N个空口资源组集合分别和N个取值范围一一对应;所述第三比特块的所述大小和所述第四比特块的所述大小之和属于所述N个取值范围中的第三取值范围,所述第一空口资源组集合是所述N个空口资源组集合中与所述第三取值范围对应的一个空口资源组集合。
实施例15
实施例15示例了一个第一节点设备中的处理装置的结构框图,如附图15所示。在附图15中,第一节点设备处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备1200是用户设备。
作为一个实施例,所述第一节点设备1200是中继节点。
作为一个实施例,所述第一节点设备1200是基站。
作为一个实施例,所述第一节点设备1200是车载通信设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的中继节点。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467 中的至少之一。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
第一接收机1201,接收第一信令组;接收第一信号组;接收第二信令组;
第一发射机1202,发送第二信号组;在第一空口资源组中发送第一比特块集合;
在实施例15中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为一个实施例,所述第一接收机1201还接收第三信号组;其中,所述第三信号组被用于确定所述第二信号组是否被正确接收。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
作为一个实施例,所述第一发射机1202还在第二空口资源组中发送第二比特块集合;其中,所述第二比特块集合包括第三比特块,所述第三比特块被用于指示所述第二信号组是否被正确接收;所述第二信令组中的最后一个信令被用于指示所述第二空口资源组,所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一比特块的所述大小等于第一正整数。
作为一个实施例,所述第一接收机1201还接收第二信息;其中,所述第二信息被用于确定所述第一正整数。
作为一个实施例,所述第一接收机1201还接收第一信息;其中,所述第一信息被用于指示N个空口资源组集合,所述N个空口资源组集合中的任意一个空口资源组集合包括正整数个空口资源组,N是大于1的正整数;所述第一空口资源组是第一空口资源组集合中的一个空口资源组,所述第一空口资源组集合是所述N个空口资源组集合中的一个空口资源组集合。
实施例16
实施例16示例了一个第二节点设备中的处理装置的结构框图,如附图16所示。在附图16中,第二节点设备处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备1300是用户设备。
作为一个实施例,所述第二节点设备1300是基站。
作为一个实施例,所述第二节点设备1300是中继节点。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
第二发射机1301,发送第一信令组;发送第一信号组;发送第二信令组;
第二接收机1302,在第一空口资源组中接收第一比特块集合;
在实施例16中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
作为一个实施例,所述第二接收机1302还在第二空口资源组中接收第二比特块集合;其中,所述第二比特块集合包括第三比特块,所述第三比特块被用于指示所述第二信号组是否被正确接收;所述第二信令组中的最后一个信令被用于指示所述第二空口资源组,所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小。
作为一个实施例,所述第一比特块集合包括所述第一比特块和所述第二比特块,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一比特块的所述大小等于第一正整数。
作为一个实施例,所述第二发射机1301还发送第二信息;其中,所述第二信息被用于确定所述第一正整数。
作为一个实施例,所述第二发射机1301还发送第一信息;其中,所述第一信息被用于指示N个空口资源组集合,所述N个空口资源组集合中的任意一个空口资源组集合包括正整数个空口资源组,N是大于1的正整数;所述第一空口资源组是第一空口资源组集合中的一个空口资源组,所述第一空口资源组集合是所述N个空口资源组集合中的一个空口资源组集合。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。 相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令组;接收第一信号组;接收第二信令组;
    第一发射机,发送第二信号组;在第一空口资源组中发送第一比特块集合;
    其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一接收机还接收第三信号组;其中,所述第三信号组被用于确定所述第二信号组是否被正确接收。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一比特块集合包括所述第一比特块和所述第二比特块中的仅所述第一比特块,所述第一信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一信令组中的最后一个信令被用于确定所述第一比特块的所述大小。
  4. 根据权利要求3所述的第一节点设备,其特征在于,所述第一发射机还在第二空口资源组中发送第二比特块集合;其中,所述第二比特块集合包括第三比特块,所述第三比特块被用于指示所述第二信号组是否被正确接收;所述第二信令组中的最后一个信令被用于指示所述第二空口资源组,所述第二信令组中的最后一个信令被用于确定所述第三比特块的大小。
  5. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一比特块集合包括所述第一比特块和所述第二比特块,所述第一信令组和所述第二信令组中的最后一个信令被用于指示所述第一空口资源组,所述第一比特块的所述大小等于第一正整数。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述第一接收机还接收第二信息;其中,所述第二信息被用于确定所述第一正整数。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机还接收第一信息;其中,所述第一信息被用于指示N个空口资源组集合,所述N个空口资源组集合中的任意一个空口资源组集合包括正整数个空口资源组,N是大于1的正整数;所述第一空口资源组是第一空口资源组集合中的一个空口资源组,所述第一空口资源组集合是所述N个空口资源组集合中的一个空口资源组集合。
  8. 一种用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信令组;发送第一信号组;发送第二信令组;
    第二接收机,在第一空口资源组中接收第一比特块集合;
    其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
  9. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令组;
    接收第一信号组;
    接收第二信令组;
    发送第二信号组;
    在第一空口资源组中发送第一比特块集合;
    其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示所述第二信号组的调度信息,所述第一信号组的发送者和所述第二信号组的目标接收者不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确 接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
  10. 一种用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令组;
    发送第一信号组;
    发送第二信令组;
    在第一空口资源组中接收第一比特块集合;
    其中,所述第一信令组被用于指示所述第一信号组的调度信息,所述第二信令组被用于指示第二信号组的调度信息,所述第一信令组的目标接收者是所述第二信令组的目标接收者,所述第二信号组的发送者是所述第二信令组的目标接收者,所述第二信号组的目标接收者和所述第二节点不同;所述第一比特块集合包括第一比特块,所述第一比特块与所述第一信号组是否被正确接收有关;所述第一比特块的大小与所述第一比特块集合是否包括第二比特块有关,所述第二比特块与所述第二信号组是否被正确接收有关。
PCT/CN2020/121351 2019-11-09 2020-10-16 一种被用于无线通信的节点中的方法和装置 WO2021088617A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/732,543 US20220255675A1 (en) 2019-11-09 2022-04-29 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911090976.1A CN112788770B (zh) 2019-11-09 2019-11-09 一种被用于无线通信的节点中的方法和装置
CN201911090976.1 2019-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,543 Continuation US20220255675A1 (en) 2019-11-09 2022-04-29 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021088617A1 true WO2021088617A1 (zh) 2021-05-14

Family

ID=75749368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121351 WO2021088617A1 (zh) 2019-11-09 2020-10-16 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220255675A1 (zh)
CN (2) CN112788770B (zh)
WO (1) WO2021088617A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098896A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Acknowledgement signaling for radio access networks
WO2019098893A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Feedback signaling processes for radio access networks
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质
WO2019194711A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Power control for feedback signaling

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499887B (zh) * 2008-01-28 2012-04-04 电信科学技术研究院 半静态资源调度方法及系统、重传选择调度方法及系统
CN102413505A (zh) * 2010-09-21 2012-04-11 夏普株式会社 下行ack/nack反馈资源分配方法以及相应的基站和用户设备
EP2445279B1 (en) * 2010-10-21 2018-12-05 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
CN103370970B (zh) * 2010-11-03 2016-11-09 三星电子株式会社 具有载波聚合的下行链路的tdd系统中的harq-ack信息生成及harq-ack信号功率控制
CN103229447B (zh) * 2011-01-02 2016-01-20 Lg电子株式会社 基于tdd的无线通信系统中用于ack/nack发送的方法和装置
CN103178942B (zh) * 2011-12-21 2016-08-03 华为技术有限公司 信令传输方法、基站和用户设备
CN110838891B (zh) * 2012-08-03 2022-09-16 苹果公司 用于上行链路控制信息传输的方法、设备和介质
CN103929266B (zh) * 2013-01-15 2019-08-09 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端
CN104104466A (zh) * 2013-04-03 2014-10-15 华为技术有限公司 一种发送和接收广播信道的方法、系统及设备
BR112017015115A2 (pt) * 2015-01-13 2018-03-13 Ericsson Telefon Ab L M terminais sem fio, nós de redes de comunicação sem fio, e métodos de operação dos mesmos

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098893A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Feedback signaling processes for radio access networks
WO2019098896A1 (en) * 2017-11-17 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Acknowledgement signaling for radio access networks
WO2019194711A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Power control for feedback signaling
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Sidelink resource allocation mode 1", 3GPP DRAFT; R1-1910055, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 19, XP051788862 *

Also Published As

Publication number Publication date
CN112788770B (zh) 2022-08-19
CN112788770A (zh) 2021-05-11
CN115066034A (zh) 2022-09-16
US20220255675A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113630892B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093880A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051561A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20885919

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2022)