WO2021052165A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021052165A1
WO2021052165A1 PCT/CN2020/112798 CN2020112798W WO2021052165A1 WO 2021052165 A1 WO2021052165 A1 WO 2021052165A1 CN 2020112798 W CN2020112798 W CN 2020112798W WO 2021052165 A1 WO2021052165 A1 WO 2021052165A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
signaling
tdd configuration
type
carrier
Prior art date
Application number
PCT/CN2020/112798
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021052165A1 publication Critical patent/WO2021052165A1/zh
Priority to US17/691,053 priority Critical patent/US11817979B2/en
Priority to US18/241,832 priority patent/US20230412436A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • the 3GPP NR Rel-16 system has agreed to adopt a standard-based repeated transmission transmission scheme in the uplink transmission.
  • a standard (Nominal) repeated transmission crosses the boundary of the time slot or At the time of switching between uplink and downlink (DL/UL switching point)
  • this standard repeated transmission is divided into two actual repeated transmissions.
  • this application discloses a solution.
  • repeated transmission is used as an example; this application is also applicable to, for example, a single (ie, non-repetitive) transmission scenario to achieve similar technical effects in repeated transmission.
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa.
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • the explanation of the term (Terminology) in this application refers to the definition of the TS36 series of 3GPP specifications.
  • the explanation of the terms in this application refers to the definition of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers) specification protocol.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol group includes a positive integer number of multi-carrier symbols, Any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, the target TDD configuration is used to determine the first symbol group from the first symbol set, the The first signaling implicitly indicates the target TDD configuration; the operation is sending, or the operation is receiving.
  • the problem to be solved in this application is: considering the influence of flexible symbols and dynamic uplink and downlink configuration, how to design a repeated transmission scheme is a key problem that needs to be solved.
  • the problem to be solved in this application is: considering the influence of flexible symbols and dynamic uplink and downlink configuration, the design of uplink and downlink configuration or the configuration of multi-carrier symbol types referred to in the repeated transmission scheme is required A key problem solved.
  • the essence of the above method is that the first wireless signal is the PUSCH, the first signaling is the DCI signaling for scheduling the PUSCH, and the first symbol group is the multi-carrier symbol (that is, the first symbol set) indicated by the DCI signaling.
  • the target TDD configuration is used to determine the multi-carrier symbols actually occupied by the PUSCH transmission, and the DCI signaling implicitly indicates the target TDD configuration.
  • the essence of the above method is that the first wireless signal is the PDSCH, the first signaling is the DCI signaling for scheduling the PDSCH, and the first symbol group is the multi-carrier symbol (that is, the first symbol set) indicated by the DCI signaling.
  • the target TDD configuration is used to determine the multi-carrier symbols actually occupied by the PDSCH transmission, and the DCI signaling implicitly indicates the target TDD configuration.
  • the essence of the above method is that the first wireless signal is PUSCH/PDSCH, the first signaling is the DCI signaling for scheduling PUSCH/PDSCH, and the first symbol group is the multi-carrier symbols indicated by the DCI signaling (that is, the first A symbol set) of the multi-carrier symbols actually occupied by the PUSCH/PDSCH, the target TDD configuration is used to determine the multi-carrier symbols actually occupied by the PUSCH/PDSCH transmission, and the DCI signaling implicitly indicates the target TDD configuration.
  • the advantage of using the above method is that different TDD configurations can be used for uplink and downlink transmissions to meet the different requirements for reliability and delay of downlink transmission and uplink transmission.
  • the above method is characterized in that it includes:
  • the first information is carried by higher layer signaling, and the first information is used to determine the first TDD configuration; when the type of the first signaling includes the first type, the target TDD configuration is The first TDD configuration; when the type of the first signaling includes the second type, the target TDD configuration is the second TDD configuration.
  • the essence of the above method is that the target TDD configuration is semi-static configuration, the first type is eMBB service, and the second type is URLLC service.
  • the above method is characterized in that, when the type of the first signaling includes the second type, the first wireless signal includes K sub-signals, and the K sub-signals all carry The first bit block; K is a positive integer greater than 1, and the first bit block includes a positive integer number of bits.
  • the above method is characterized in that only when the first signaling is DCI signaling used for uplink grant, the first signaling implicitly indicates the target TDD configuration.
  • the above method is characterized in that it includes:
  • the second signaling is carried by physical layer signaling; when the type of the first signaling includes the first type, the target TDD configuration is the first TDD configuration, and the second A slot format and the target TDD configuration are used together to determine the first symbol group from the first symbol set; when the type of the first signaling includes the second type, The target TDD configuration is the second TDD configuration, and only the target TDD configuration of the first slot format and the target TDD configuration is used to determine the first symbol from the first symbol set Group, or the first time slot format and the target TDD configuration are used together to determine the first symbol group from the first symbol set.
  • the above method is characterized in that it includes:
  • the second symbol set includes a positive integer number of multi-carrier symbols
  • the second symbol group includes a positive integer number of multi-carrier symbols
  • the first Any one of the multi-carrier symbols in the two symbol groups belongs to the second symbol set, and the number of multi-carrier symbols included in the second symbol group is not greater than the number of multi-carrier symbols included in the second symbol set.
  • the essence of the above method is that the first symbol group is the multi-carrier symbol for monitoring the PDCCH, and the TDD configuration used to determine the multi-carrier symbol for monitoring the PDCCH is the first TDD configuration, regardless of the type of the first signaling. .
  • the above method is characterized in that it includes:
  • the operation is receiving; the first signaling is used to indicate the first time-frequency resource group, and the second bit block is used to indicate whether the first wireless signal is received correctly; no matter what The type of the first signaling includes the first type or the second type, and only the first TDD configuration is used for all of the first TDD configuration and the second TDD configuration.
  • the above behavior judges whether to send the second bit block in the first time-frequency resource group.
  • the essence of the above method is that the first time-frequency resource group is the PUCCH resource for sending HARQ-ACK, and is used to determine whether this PUCCH resource can send UCI.
  • the TDD configuration is the first TDD configuration, which is different from the first TDD configuration. The type of order is irrelevant.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol group includes a positive integer number of multi-carrier symbols, Any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, the target TDD configuration is used to determine the first symbol group from the first symbol set, the The first signaling implicitly indicates the target TDD configuration; the execution is reception, or the execution is transmission.
  • the above method is characterized in that it includes:
  • the first information is carried by higher layer signaling, and the first information is used to determine the first TDD configuration; when the type of the first signaling includes the first type, the target TDD configuration is The first TDD configuration; when the type of the first signaling includes the second type, the target TDD configuration is the second TDD configuration.
  • the above method is characterized in that, when the type of the first signaling includes the second type, the first wireless signal includes K sub-signals, and the K sub-signals all carry The first bit block; K is a positive integer greater than 1, and the first bit block includes a positive integer number of bits.
  • the above method is characterized in that only when the first signaling is DCI signaling used for uplink grant, the first signaling implicitly indicates the target TDD configuration.
  • the above method is characterized in that it includes:
  • the second signaling is carried by physical layer signaling; when the type of the first signaling includes the first type, the target TDD configuration is the first TDD configuration, and the second A slot format and the target TDD configuration are used together to determine the first symbol group from the first symbol set; when the type of the first signaling includes the second type, The target TDD configuration is the second TDD configuration, and only the target TDD configuration of the first slot format and the target TDD configuration is used to determine the first symbol from the first symbol set Group, or the first time slot format and the target TDD configuration are used together to determine the first symbol group from the first symbol set.
  • the above method is characterized in that it includes:
  • the first signaling is sent in only the second symbol group in the second symbol set; regardless of whether the type of the first signaling includes the first type or the second type Type, only the first TDD configuration of the first TDD configuration and the second TDD configuration is used to determine the second symbol group from the second symbol set; the second symbol set includes A positive integer number of multi-carrier symbols, the second symbol group includes a positive integer number of multi-carrier symbols, any multi-carrier symbol in the second symbol group belongs to the second symbol set, and the second symbol group includes The number of multi-carrier symbols in is not greater than the number of multi-carrier symbols included in the second symbol set.
  • the above method is characterized in that it includes:
  • the operation is receiving; the first signaling is used to determine the first time-frequency resource group, and the second bit block is used to determine whether the first wireless signal is received correctly; no matter what The type of the first signaling includes the first type or the second type, and only the first TDD configuration is used for all of the first TDD configuration and the second TDD configuration.
  • the act judges whether to receive the second bit block in the first time-frequency resource group.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving first signaling, where the first signaling is used to indicate a first set of symbols
  • a first transceiver which operates a first wireless signal in only a first symbol group in the first symbol set
  • the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol group includes a positive integer number of multi-carrier symbols, Any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, the target TDD configuration is used to determine the first symbol group from the first symbol set, the The first signaling implicitly indicates the target TDD configuration; the operation is sending, or the operation is receiving.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends first signaling, where the first signaling is used to indicate the first symbol set;
  • a second transceiver which executes the first wireless signal in only the first symbol group in the first symbol set
  • the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol group includes a positive integer number of multi-carrier symbols, Any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, the target TDD configuration is used to determine the first symbol group from the first symbol set, the The first signaling implicitly indicates the target TDD configuration; the execution is reception, or the execution is transmission.
  • the method in this application has the following advantages:
  • This application proposes a repetitive transmission scheme taking into account the influence of flexible symbols and dynamic uplink and downlink configuration.
  • TDD configurations can be used for uplink and downlink transmissions to meet different requirements for reliability and delay of downlink transmission and uplink transmission.
  • Fig. 1 shows a flow chart of the first signaling and the first wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of determining a first symbol group according to an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of determining a target TDD configuration according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of determining a target TDD configuration according to another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the relationship between the type of the first signaling and the first wireless signal according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of the relationship between the type of the first signaling and the first wireless signal according to another embodiment of the present application.
  • FIG. 12 shows a schematic diagram of the relationship between the first type, the second type, and the first symbol group according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the relationship between the first type, the second type, and the first symbol group according to another embodiment of the present application
  • Fig. 14 shows a schematic diagram of determining a second symbol group according to an embodiment of the present application.
  • FIG. 15 shows a schematic diagram of determining whether to send a second bit block in a first time-frequency resource group according to an embodiment of the present application
  • Fig. 16 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first signaling and the first wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step. It should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node in this application receives first signaling in step 101, and the first signaling is used to indicate a first symbol set; in step 102, the first symbol Only the first symbol group in the set operates the first wireless signal; wherein the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols The first symbol group includes a positive integer number of multi-carrier symbols, any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group Not greater than the number of multi-carrier symbols included in the first symbol set; a target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, and the target TDD configuration is used to retrieve The first symbol group is determined in the first symbol set, and the first signaling implicitly indicates the target TDD configuration; the operation is sending, or the operation is receiving.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information, Downlink Control Information) signaling.
  • DCI Downlink Control Information, Downlink Control Information
  • the first signaling is an uplink grant (UpLink Grant) DCI signaling, and the operation is sending.
  • UpLink Grant UpLink Grant
  • the first signaling is DownLink Grant DCI signaling, and the operation is receiving.
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, Narrow Band PDCCH).
  • the operation is receiving, the first signaling is DCI format 1_0, and the specific definition of DCI format 1_0 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the operation is receiving, the first signaling is DCI format 1_1, and the specific definition of DCI format 1_1 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the operation is sending, the first signaling is DCI format 0_0, and the specific definition of DCI format 0_0 can be found in section 7.3.1.1 of 3GPP TS38.212.
  • the operation is sending, the first signaling is DCI format 0_1, and the specific definition of the DCI format 0_1 refers to section 7.3.1.1 in 3GPP TS38.212.
  • the number of multi-carrier symbols included in the first symbol set is smaller than the number of multi-carrier symbols included in the first symbol set.
  • any multi-carrier symbol in the first symbol group is a multi-carrier symbol in the first symbol set.
  • the first symbol group is the first symbol set, and the number of multi-carrier symbols included in the first symbol group is equal to the number of multi-carrier symbols included in the first symbol set.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Breast Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol includes CP (Cyclic Prefix).
  • the first signaling explicitly indicates the first symbol set.
  • the first signaling implicitly indicates the first symbol set.
  • the first signaling includes a first field, and the first field included in the first signaling is used to indicate a first symbol set.
  • the first field included in the first signaling explicitly indicates a first symbol set.
  • the first field included in the first signaling includes a positive integer number of bits.
  • the first field included in the first signaling implicitly indicates a first symbol set.
  • the first domain included in the first signaling is the Time domain resource assignment domain.
  • the Time domain resource assignment domain please refer to Article 7.3 of 3GPP TS38.212. 1 chapter.
  • the operation is sending.
  • the operation is receiving.
  • the operation is sending, and the first wireless signal includes uplink data.
  • the operation is sending, and the first wireless signal includes sending of an uplink physical layer data channel.
  • the operation is receiving, and the first wireless signal includes downlink data.
  • the operation is receiving, and the first wireless signal includes sending of a downlink physical layer data channel.
  • the operation is sending, and the first wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the operation is receiving, and the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the uplink physical layer data channel is PUSCH (Physical Uplink Shared Channel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NPUSCH (Narrow Band PUSCH, Narrow Band PUSCH).
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared Channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NPDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the first wireless signal carries a first bit block, and the first bit block includes a positive integer number of bits.
  • the first bit block includes a transport block (TB, Transport Block).
  • TB Transport Block
  • the first bit block includes a positive integer number of transmission blocks.
  • only the first symbol group in the first symbol set is used to operate the first bit block.
  • the first symbol set there is a multi-carrier symbol in the first symbol set that does not belong to the first symbol group, and any multi-carrier symbol outside the first symbol group in the first symbol set is not used To operate the first bit block.
  • the scheduling information of the first wireless signal includes occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme, modulation and coding scheme), DMRS (DeModulation Reference Signals, solution).
  • the configuration information of the reference signal includes HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number, RV (Redundancy Version), NDI (New Data Indicator), number of repeated transmissions, At least one of the time domain resources occupied by the repeated transmission, the transmission antenna port, the corresponding multi-antenna related transmission and the corresponding multi-antenna related reception.
  • the occupied time domain resources included in the scheduling information of the first wireless signal include the first symbol set.
  • the occupied frequency domain resources included in the scheduling information of the first wireless signal include frequency domain resources occupied by the first wireless signal.
  • the configuration information of the DMRS included in the scheduling information of the first wireless signal includes RS (Reference Signal) sequence, mapping mode, DMRS type, and occupied time domain Resource, occupied frequency domain resource, occupied code domain resource, at least one of cyclic shift (cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask).
  • RS Reference Signal
  • mapping mode mapping mode
  • DMRS type mapping mode
  • occupied time domain Resource occupied frequency domain resource
  • occupied code domain resource at least one of cyclic shift (cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask).
  • the multi-antenna-related reception is spatial reception parameters (Spatial Rx parameters).
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a reception analog beamforming matrix.
  • the multi-antenna related reception is to receive an analog beamforming vector.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna-related reception is spatial filtering.
  • the multi-antenna-related transmission is a spatial transmission parameter (Spatial Tx parameter).
  • the multi-antenna related transmission is a transmission beam.
  • the multi-antenna-related transmission is a transmission beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming vector.
  • the multi-antenna related transmission is a transmission beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the spatial transmit parameter includes transmit antenna port, transmit antenna port group, transmit beam, transmit analog beamforming matrix, transmit analog beamforming vector, transmit beamforming matrix, and transmit beam One or more of shaping vector and transmission spatial filtering (spatial filtering).
  • the spatial receiving parameter includes receiving beam, receiving analog beamforming matrix, receiving analog beamforming vector, receiving beamforming matrix, receiving beamforming vector, and receiving spatial filtering (spatial). filtering).
  • the target TDD configuration is TDD (Time Division Duplex, Time Division Duplex) configuration.
  • the target TDD configuration is slot format.
  • the target TDD configuration is semi-static configuration.
  • the target TDD configuration is a configuration of the type of multi-carrier symbols in the TDD system.
  • the types of the multi-carrier symbols include UL (UpLink, uplink) symbols, DL (DownLink, downlink) symbols, and Flexible (flexible) symbols.
  • the target TDD configuration is used to indicate the type of each multi-carrier symbol in the first symbol set.
  • the target TDD configuration explicitly indicates the type of each multi-carrier symbol in the first symbol set.
  • the target TDD configuration implicitly indicates the type of each multi-carrier symbol in the first symbol set.
  • the target TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the length of the slot configuration period and the length of the slot configuration period.
  • the type of each multi-carrier symbol determines the type of each multi-carrier symbol in the first symbol set.
  • the time slot configuration period includes a positive integer number of time slots.
  • the time slot configuration period includes a positive integer number of multi-carrier symbols.
  • the first multi-carrier symbol and the second multi-carrier symbol are multi-carrier symbols with the same position in two time slot configuration periods, and the first multi-carrier symbol and the second multi-carrier symbol are The types of carrier symbols are the same.
  • the first multi-carrier symbol and the second multi-carrier symbol are respectively the i-th multi-carrier symbol in two slot configuration periods, and the first multi-carrier symbol and the second multi-carrier symbol are The types of the multi-carrier symbols are the same, and i is a positive integer not greater than the number of multi-carrier symbols included in the slot configuration period.
  • the target TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the length of the slot configuration period and the length of the slot configuration period.
  • the type of each multi-carrier symbol determines the type of each multi-carrier symbol in each slot.
  • the target TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the type and the type of each multi-carrier symbol in the slot configuration period.
  • Configuration Period a slot configuration period
  • the position of the first symbol set in the slot configuration period determines the type of each multi-carrier symbol in the first symbol set.
  • a given multi-carrier symbol is any one of the multi-carrier symbols in the first symbol set, and the given multi-carrier symbol is the j-th multi-carrier symbol in the slot configuration period.
  • Carrier symbol, the type of the given multi-carrier symbol is the type of the j-th multi-carrier symbol in the slot configuration period, and j is a positive value not greater than the number of multi-carrier symbols included in the slot configuration period Integer.
  • the first signaling in the sentence implicitly indicates that the target TDD configuration includes: the target TDD configuration is one of M TDD configurations, and the first signaling implicitly follows
  • the M TDD configurations indicate the target TDD configuration, and M is a positive integer greater than 1.
  • the first signaling in the sentence implicitly indicates that the target TDD configuration includes: whether the target TDD configuration is the first TDD configuration or the second TDD configuration, and the first signaling implicitly Indicate whether the target TDD configuration is the first TDD configuration or the second TDD configuration.
  • the first signaling in the sentence implicitly indicating the target TDD configuration includes: any bit in the first signaling does not explicitly indicate the target TDD configuration.
  • the first signaling in the sentence implicitly indicating the target TDD configuration includes: the target TDD configuration is associated with the type of the first signaling.
  • the implicit indication of the target TDD configuration by the first signaling in the sentence includes: the target TDD configuration is associated with a DCI format (Format) corresponding to the first signaling.
  • the first signaling in the sentence implicitly indicates that the target TDD configuration includes: the target TDD configuration is associated with the RNTI (Radio Network Temporary Indentifier, wireless network) corresponding to the first signaling Tentative identification).
  • RNTI Radio Network Temporary Indentifier, wireless network
  • the implicit indication of the target TDD configuration by the first signaling in the sentence includes: the target TDD configuration is associated with the load size corresponding to the first signaling.
  • the payload size is the number of information bits.
  • the payload size is the number of information bits including padding bits.
  • the implicit indication of the target TDD configuration by the first signaling in the sentence includes: the target TDD configuration is associated with the priority corresponding to the first signaling.
  • the implicit indication of the target TDD configuration by the first signaling in the sentence includes: the target TDD configuration is associated with a traffic type (Traffic Type) corresponding to the first signaling.
  • Traffic Type Traffic Type
  • the first signaling in the sentence implicitly indicates that the target TDD configuration includes: the target TDD configuration is associated with the grant type corresponding to the first signaling, and the grant type is uplink Grant or down grant.
  • the sentence that the first signaling implicitly indicates the target TDD configuration includes: the target TDD configuration is associated with the transmission scheme of the first wireless signal scheduled by the first signaling .
  • the first signaling in the sentence implicitly indicates that the target TDD configuration includes: the first signaling includes a first set of domains, and the first domain included in the first signaling
  • the set implicitly indicates the target TDD configuration
  • the first field set included in the first signaling includes a positive integer number of fields
  • the field includes a positive integer number of bits.
  • the first set of domains included in the first signaling includes one domain.
  • the first domain set included in the first signaling includes multiple domains.
  • the first domain set included in the first signaling indicates a DCI format (format).
  • the first domain set included in the first signaling indicates an RNTI.
  • the first domain set included in the first signaling indicates an RNTI.
  • the first domain set included in the first signaling is used to determine the load size.
  • the first domain set included in the first signaling explicitly indicates the load size.
  • the first domain set included in the first signaling implicitly indicates a load size.
  • the first domain set included in the first signaling is used to determine the priority.
  • the first domain set included in the first signaling explicitly indicates the priority.
  • the first domain set included in the first signaling implicitly indicates the priority.
  • the first domain set included in the first signaling is used to determine a traffic type (Traffic Type).
  • the first domain set included in the first signaling explicitly indicates a service type (Traffic Type).
  • the first domain set included in the first signaling implicitly indicates a service type (Traffic Type).
  • the first domain set included in the first signaling indicates a grant type, and the grant type is an uplink grant or a downlink grant.
  • the first domain set included in the first signaling is used to determine a transmission scheme of the first wireless signal.
  • the first domain set included in the first signaling explicitly indicates a transmission scheme of the first wireless signal.
  • the first domain set included in the first signaling implicitly indicates a transmission scheme of the first wireless signal.
  • the type of the first signaling includes a DCI format (format).
  • the type of the first signaling includes RNTI.
  • the type of the first signaling includes load size.
  • the type of the first signaling includes priority.
  • the type of the first signaling includes a traffic type (Traffic Type).
  • the type of the first signaling includes a grant type, and the grant type is an uplink grant or a downlink grant.
  • the type of the first signaling includes a transmission scheme of the first wireless signal.
  • the transmission scheme of the first wireless signal includes whether to repeat the transmission, the number of repeated transmissions, whether to allow repeated transmission in a time slot, the maximum number of repeated transmissions in a time slot, multiple repetitions Whether the positions of the respective start multi-carrier symbols in the corresponding time slots are the same, one or a combination of multiple transmission schemes are repeated.
  • the sending scheme of the first wireless signal includes whether to send repeatedly (with or without repetitions).
  • the transmission scheme of the first wireless signal includes the number of repetitions (Number of Repetitions).
  • the transmission scheme of the first wireless signal includes whether to allow repeated transmission in a time slot.
  • the transmission scheme of the first wireless signal includes a maximum number of repeated transmissions in one time slot.
  • the sending scheme of the first wireless signal includes repeatedly sending whether the positions of the respective start multi-carrier symbols in the corresponding time slots are the same for multiple times.
  • the transmission scheme of the first wireless signal includes a repetitive transmission scheme
  • the repetitive transmission scheme includes slot-based repetitions, and mini-slot-based repetitions (mini-slot-based repetitions). Slot based repetitions, multi-segment transmission.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server, home subscriber server
  • Internet service 230 Internet
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function, user plane function
  • S-GW Service Gateway
  • P-GW Packet Date Network Gateway
  • MME/AMF/UPF211 is a control node that processes signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the UE 241 corresponds to the second node in this application.
  • the gNB203 corresponds to the second node in this application.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture used for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearer (DRB, Data Radio Bearer) To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the third information in this application is generated in the RRC sublayer 306.
  • the third information in this application is generated in the MAC sublayer 302.
  • the first signaling in this application is generated in the PHY301.
  • the second signaling in this application is generated in the PHY301.
  • the monitoring in this application is generated in the PHY301.
  • the first wireless signal in this application is generated in the PHY301.
  • the second bit block in this application is generated in the PHY301.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the second communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M-phase shift keying (M-PSK), and M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450, and the second node in this application includes the first communication device 410.
  • the first node is user equipment
  • the second node is user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgement (ACK) and/or negative acknowledgement (NACK) )
  • the protocol performs error detection to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving first signaling, the first signaling being used to indicate a first symbol set; operating the first radio in only a first symbol group in the first symbol set Signal; wherein the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol group includes a positive integer number of multi-carrier Symbol, any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set.
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, and the target TDD configuration is used to determine the first symbol group from the first symbol
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: receiving the first A signaling, the first signaling is used to indicate a first symbol set; the first wireless signal is operated in only the first symbol group in the first symbol set; wherein the first signaling is used To indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, the first symbol group includes a positive integer number of multi-carrier symbols, any one of the first symbol group The multi-carrier symbols all belong to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set; the target TDD configuration is used to determine the The type of each multi-carrier symbol in the first symbol set, the target TDD configuration is used to determine the first symbol group from the first symbol set, and the first signaling implicitly indicates the Target TDD configuration; the
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending first signaling, the first signaling being used to indicate a first symbol set; performing first wireless in only a first symbol group in the first symbol set Signal; wherein the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol group includes a positive integer number of multi-carrier Symbol, any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set.
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, and the target TDD configuration is used to determine the first symbol group from the first symbol set
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first A signaling, the first signaling is used to indicate a first symbol set; the first wireless signal is executed in only the first symbol group in the first symbol set; wherein the first signaling is used To indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, the first symbol group includes a positive integer number of multi-carrier symbols, any one of the first symbol group The multi-carrier symbols all belong to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set; the target TDD configuration is used to determine the The type of each multi-carrier symbol in the first symbol set, the target TDD configuration is used to determine the first symbol group from the first symbol set, and the first signaling implicitly indicates the Target TDD configuration; the
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first message in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the second signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the third information in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the third message in this application.
  • At least one of the sources 467 ⁇ is used to monitor the first signaling in this application in only the second symbol group in the second symbol set in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first wireless signal in the application in only the first symbol group in the first symbol set in the application, and the operation is receiving.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used to transmit the first wireless signal in the application in only the first symbol group in the first symbol set in the application, and the execution is transmission.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the first wireless signal in the application in only the first symbol group in the first symbol set in the application, and the operation is transmission.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the first wireless signal in the application in only the first symbol group in the first symbol set in the application, and the execution is receiving.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for the behavior in this application to determine whether to send the second bit block in the first time-frequency resource group.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the second bit block in this application in the first time-frequency resource group in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to abandon sending the second bit block in this application in the first time-frequency resource group in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the first node and the second node N01 between U02 is a communication over the air interface.
  • the dashed box F1 is optional, one and only one of F2 and F3 is optional, and F4, F5, and F6 are optional.
  • step S20 For the first node U02, received in step S20, the first information; receiving a second signaling in step S21; receiving third information in step S22; only the second group of symbols in a second set of symbols in the step S23
  • the first signaling is monitored in step S24; the first signaling is received in step S24; the first wireless signal is transmitted in only the first symbol group in the first symbol set in step S25; in step S26, the first symbol set is The first wireless signal is received only in the first symbol group; in step S27, it is determined whether to send the second bit block in the first time-frequency resource group; in step S28, the second bit block is sent in the first time-frequency resource group ; In step S29, giving up sending the second bit block in the first time-frequency resource group.
  • step S10 transmitting a first message; transmitting the second signaling in step S11; third information transmitted in step S12; first signaling transmitted in step S13; step S14 in the first
  • the first wireless signal is received in only the first symbol group in a symbol set; in step S15, the first wireless signal is transmitted in only the first symbol group in the first symbol set; in step S16, it is determined whether it is in the first time
  • the second bit block is received in the frequency resource group; the second bit block is received in the first time-frequency resource group in step S17; the receiving of the second bit block in the first time-frequency resource group is abandoned in step S18.
  • the first signaling is used to indicate a first symbol set; the first signaling is used to indicate scheduling information of the first wireless signal; the first symbol set includes a positive integer Multi-carrier symbols, the first symbol group includes a positive integer number of multi-carrier symbols, any multi-carrier symbol in the first symbol group belongs to the first symbol set, and the first symbol group includes multiple The number of carrier symbols is not greater than the number of multi-carrier symbols included in the first symbol set; the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, and the target TDD configuration is used When determining the first symbol group from the first symbol set, the first signaling implicitly indicates the target TDD configuration; the first information is carried by higher layer signaling, and the first information Is used to determine the first TDD configuration; when the type of the first signaling includes the first type, the target TDD configuration is the first TDD configuration; when the type of the first signaling includes the first type In the second type, the target TDD configuration is the second TDD configuration.
  • the second signaling is used to indicate the first time slot format; the second signaling is carried by physical layer signaling; when the type of the first signaling includes the first type, the The target TDD configuration is the first TDD configuration, and the first slot format and the target TDD configuration are used together to determine the first symbol group from the first symbol set; when the first symbol When the type of order includes the second type, the target TDD configuration is the second TDD configuration, and only the target TDD configuration of the first time slot format and the target TDD configuration is used for The first symbol group is determined from the first symbol set, or the first slot format and the target TDD configuration are jointly used to determine the first symbol group from the first symbol set.
  • the third information is used to indicate a second symbol set; the first signaling is sent in only a second symbol group in the second symbol set; regardless of whether the type of the first signaling includes Is the first type or the second type, and only the first TDD configuration of the first TDD configuration and the second TDD configuration is used to determine the The second symbol group; the second symbol set includes a positive integer number of multi-carrier symbols, the second symbol group includes a positive integer number of multi-carrier symbols, and any multi-carrier symbol in the second symbol group belongs to the A second symbol set, where the number of multi-carrier symbols included in the second symbol set is not greater than the number of multi-carrier symbols included in the second symbol set.
  • the operation in this application is receiving; the first signaling is used to indicate the first time-frequency resource group, and the second bit block is used to indicate whether the first wireless signal is received correctly; Regardless of whether the type of the first signaling includes the first type or the second type, only the first TDD configuration of the first TDD configuration and the second TDD configuration is used Based on the behavior, it is determined whether to send the second bit block in the first time-frequency resource group.
  • the operation in this application is sending, and the execution in this application is receiving; the dashed box F2 exists, and the dashed box F3 does not exist.
  • the operation in this application is receiving, and the execution in this application is sending; the dashed box F2 does not exist, and the dashed box F3 exists.
  • the dashed box F2 exists, and the dashed box F3 does not exist.
  • the dashed box F2 does not exist, and the dashed box F3 exists.
  • the dashed box F2 exists, the dashed box F3 does not exist, and the dashed box F4, F5, and F6 do not exist.
  • the dashed box F2 does not exist
  • the dashed box F3 does not exist
  • the dashed box F4, F5, and F6 do not exist.
  • the dashed box F2 does not exist, the dashed box F3 exists, the dashed box F4 exists, and only one of the dashed boxes F5 and F6 exists.
  • the dashed box F2 does not exist
  • the dashed box F3 exists
  • the dashed box F4 exists
  • the dashed box F5 exists
  • the dashed box F6 does not exist.
  • the dashed box F2 does not exist, the dashed box F3 exists, the dashed box F4 exists, the dashed box F5 does not exist, and the dashed box F6 exists.
  • the first information is semi-statically configured.
  • the first information is carried by RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information is carried by MAC CE signaling.
  • the first information includes one or more IEs (Information Elements) in one RRC signaling.
  • the first information includes all or part of an IE in an RRC signaling.
  • the first information includes a partial field of an IE in an RRC signaling.
  • the first information includes multiple IEs in one RRC signaling.
  • the first information includes one IE in one RRC signaling.
  • the first information includes tdd-UL-DL-ConfigurationCommon.
  • the first information includes tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigDedicated.
  • the first information includes part or all of the fields of IE TDD-UL-DL-Config.
  • the first information includes a partial field of IE TDD-UL-DL-Config.
  • the first information includes IE TDD-UL-DL-Config.
  • the first information is used to indicate the first TDD configuration.
  • the first information explicitly indicates the first TDD configuration.
  • the first information implicitly indicates the first TDD configuration.
  • the first TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), and the first information indicates a part of the slot configuration period or Types of all multi-carrier symbols.
  • the first information includes tdd-UL-DL-ConfigurationCommon, the first TDD configuration is pattern1, the time slot configuration period is P, the pattern1 and the P
  • tdd-UL-DL-ConfigurationCommon the first TDD configuration is pattern1
  • P the time slot configuration period
  • P the pattern1 and the P
  • the first information includes tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigDedicated
  • the first TDD configuration includes pattern1 and pattern2
  • the time slot configuration period is P+P2
  • the specific definitions of the pattern1, the pattern2, the P and the P2 refer to Chapter 11.1 in 3GPP TS38.213.
  • the time slot configuration period includes one time slot.
  • the time slot configuration period includes a positive integer number of time slots.
  • the time slot configuration period includes a positive integer number of multi-carrier symbols.
  • the first information indicates the types of all multi-carrier symbols in the time slot configuration period.
  • the first information indicates the type of part of the multi-carrier symbols in the time slot configuration period.
  • the first information indicates the type of part of the multi-carrier symbols in the time slot configuration period, and the types of other multi-carrier symbols in the time slot configuration period are predefined.
  • the first information indicates multi-carrier symbols whose types are DL and UL in the time slot configuration period.
  • the first information indicates the multi-carrier symbols whose types are DL and UL in the time slot configuration period, except for the multi-carrier symbols indicated by the first information in the time slot configuration period.
  • the type of multi-carrier symbols other than the symbol is Flexible.
  • the first information indicates a positive integer number of multi-carrier symbols in the time slot configuration period, except for the multi-carrier symbols indicated by the first information in the time slot configuration period.
  • the type of the other multi-carrier symbols is Flexible.
  • the first information indicates a positive integer number of multi-carrier symbols in the slot configuration period
  • the type of the multi-carrier symbol indicated by the first information is DL, UL, and Flexible.
  • At least one of the types of multi-carrier symbols other than the multi-carrier symbols indicated by the first information in the slot configuration period is Flexible.
  • the first information indicates a positive integer number of multi-carrier symbols in the slot configuration period
  • the type of the multi-carrier symbol indicated by the first information is DL, UL, and Flexible.
  • At least DL and UL, and the type of the other multi-carrier symbols in the slot configuration period except the multi-carrier symbol indicated by the first information is Flexible.
  • the method in the first node further includes:
  • the second information is carried by higher layer signaling, and the second information is used to determine the second TDD configuration.
  • the first receiver further receives second information; wherein, the second information is carried by higher layer signaling, and the second information is used to determine the second TDD configuration.
  • the method in the second node further includes:
  • the second information is carried by higher layer signaling, and the second information is used to determine the second TDD configuration.
  • the second transmitter also sends second information (R16URLLC UL/DL SFI);
  • the second information is carried by higher layer signaling, and the second information is used to determine the second TDD configuration.
  • the second information is semi-statically configured.
  • the second information is carried by RRC signaling.
  • the second information is carried by MAC CE signaling.
  • the second information includes one or more IEs in one RRC signaling.
  • the second information includes all or part of an IE in an RRC signaling.
  • the second information includes a partial field of an IE in an RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the second information includes one IE in one RRC signaling.
  • the second information includes a partial field of IE TDD-UL-DL-Config.
  • the second information and the first information both belong to the same IE in RRC signaling.
  • both the second information and the first information belong to IE TDD-UL-DL-Config in RRC signaling.
  • the second information and the first information belong to two IEs in RRC signaling, respectively.
  • the second information is used to indicate the second TDD configuration.
  • the second information explicitly indicates the second TDD configuration.
  • the second information implicitly indicates the second TDD configuration.
  • the second TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), and the second information indicates a part of the slot configuration period or Types of all multi-carrier symbols.
  • the time slot configuration period indicated by the second TDD configuration is the same as the time slot configuration period indicated by the first TDD configuration.
  • the time slot configuration period indicated by the second TDD configuration is different from the time slot configuration period indicated by the first TDD configuration.
  • the time slot configuration period includes one time slot.
  • the time slot configuration period includes a positive integer number of time slots.
  • the time slot configuration period includes a positive integer number of multi-carrier symbols.
  • the second information indicates the types of all multi-carrier symbols in the time slot configuration period.
  • the second information indicates the type of part of the multi-carrier symbols in the time slot configuration period.
  • the second information indicates the type of some of the multi-carrier symbols in the time slot configuration period, and the types of other multi-carrier symbols in the time slot configuration period are predefined.
  • the second information indicates multi-carrier symbols whose types are DL and UL in the slot configuration period.
  • the second information indicates the multi-carrier symbols whose types are DL and UL in the time slot configuration period, except for the multi-carrier symbols indicated by the second information in the time slot configuration period.
  • the type of multi-carrier symbols other than the symbol is Flexible.
  • the second information indicates a positive integer number of multi-carrier symbols in the time slot configuration period, except for the multi-carrier symbols indicated by the second information in the time slot configuration period.
  • the type of the other multi-carrier symbols is Flexible.
  • the second information indicates a positive integer number of multi-carrier symbols in the slot configuration period
  • the type of the multi-carrier symbol indicated by the second information is DL, UL, and Flexible.
  • At least one of the types of multi-carrier symbols other than the multi-carrier symbols indicated by the second information in the slot configuration period is Flexible.
  • the second information indicates a positive integer number of multi-carrier symbols in the slot configuration period
  • the type of the multi-carrier symbol indicated by the second information is DL, UL, and Flexible. At least DL and UL, the type of the other multi-carrier symbols in the slot configuration period except the multi-carrier symbol indicated by the second information is Flexible.
  • the second signaling is dynamically configured.
  • the second signaling is physical layer signaling.
  • the second signaling is DCI signaling.
  • the second signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling indicates a slot format (Slot Format).
  • the second signaling is DCI format 2_0, and the specific definition of the DCI format 2_0 can be found in section 7.3.1.3 of 3GPP TS38.212.
  • the first node is configured to monitor (Monitor) the second signaling.
  • the method in the first node further includes:
  • the fourth information indicates a first identifier
  • the second signaling carries the first identifier
  • the first receiver further receives fourth information; wherein the fourth information indicates a first identifier, and the second signaling carries the first identifier.
  • the method in the second node further includes:
  • the fourth information indicates a first identifier
  • the second signaling carries the first identifier
  • the second receiver further sends fourth information; wherein the fourth information indicates a first identifier, and the second signaling carries the first identifier.
  • the fourth information is used to configure the first node to monitor the second signaling.
  • the fourth information is semi-statically configured.
  • the fourth information is carried by RRC signaling.
  • the fourth information is carried by MAC CE signaling.
  • the fourth information includes one or more IEs in one RRC signaling.
  • the fourth information includes all or part of one IE in one RRC signaling.
  • the fourth information includes the SFI-RNTI field in the IE SlotFormatIndicator of RRC signaling.
  • the IE SlotFormatIndicator and the SFI-RNTI field refer to section 6.3.2 in 3GPP TS38.331 .
  • the first identifier is SFI-RNTI.
  • the first identifier is a non-negative integer.
  • the first identifier is a signaling identifier of the second signaling.
  • the second signaling is a DCI signaling identified by the first identifier.
  • the first identifier is used to generate an RS (Reference Signal) sequence of DMRS (DeModulation Reference Signals, demodulation reference signal) of the second signaling.
  • RS Reference Signal
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • the CRC (Cyclic Redundancy Check, cyclic redundancy check) bit sequence of the second signaling is scrambled by the first identifier.
  • the monitoring refers to blind detection, that is, receiving a signal and performing a decoding operation.
  • CRC Cyclic Redundancy Check
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to coherent detection, that is, in a given timing frequency resource, a DMRS RS sequence of a physical layer channel where a given wireless signal is located is used for coherent reception, and the signal obtained after the coherent reception is measured. energy.
  • coherent detection that is, in a given timing frequency resource, a DMRS RS sequence of a physical layer channel where a given wireless signal is located is used for coherent reception, and the signal obtained after the coherent reception is measured. energy.
  • the energy of the signal obtained after the coherent reception is greater than the first given threshold, it is judged that the given wireless signal is received; otherwise, it is judged that the given wireless signal is not received.
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to energy detection, that is, sensing the energy of a wireless signal in a given timing frequency resource and averaging it over time to obtain received energy.
  • energy detection sensing the energy of a wireless signal in a given timing frequency resource and averaging it over time to obtain received energy.
  • the received energy is greater than the second given threshold, it is determined that the given wireless signal is received; otherwise, it is determined that the given wireless signal is not received.
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to coherent detection, that is, coherent reception is performed with a sequence of a given wireless signal in a given timing frequency resource, and the energy of the signal obtained after the coherent reception is measured.
  • coherent detection that is, coherent reception is performed with a sequence of a given wireless signal in a given timing frequency resource, and the energy of the signal obtained after the coherent reception is measured.
  • the energy of the signal obtained after the coherent reception is greater than the third given threshold, it is judged that the given wireless signal is received; otherwise, it is judged that the given wireless signal is not received.
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to blind detection, that is, receiving a signal and performing a decoding operation.
  • the detection is determined.
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to coherent detection, that is, in a given timing frequency resource, a DMRS RS sequence of a physical layer channel where a given wireless signal is located is used for coherent reception, and the signal obtained after the coherent reception is measured. energy.
  • coherent detection that is, in a given timing frequency resource, a DMRS RS sequence of a physical layer channel where a given wireless signal is located is used for coherent reception, and the signal obtained after the coherent reception is measured. energy.
  • the energy of the signal obtained after the coherent reception is greater than the first given threshold, it is judged that the given wireless signal is detected (detected); otherwise, it is judged that the given wireless signal is not detected (detected).
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to energy detection, that is, sensing the energy of a wireless signal in a given timing frequency resource and averaging it over time to obtain received energy.
  • energy detection sensing the energy of a wireless signal in a given timing frequency resource and averaging it over time to obtain received energy.
  • the received energy is greater than the second given threshold, it is judged that the given wireless signal is detected (detected); otherwise, it is judged that the given wireless signal is not detected (detected).
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the monitoring refers to coherent detection, that is, coherent reception is performed with a sequence of a given wireless signal in a given timing frequency resource, and the energy of the signal obtained after the coherent reception is measured.
  • coherent detection that is, coherent reception is performed with a sequence of a given wireless signal in a given timing frequency resource, and the energy of the signal obtained after the coherent reception is measured.
  • the energy of the signal obtained after the coherent reception is greater than the third given threshold, it is determined that the given wireless signal is detected (detected); otherwise, it is determined that the given wireless signal is not detected (detected).
  • the given wireless signal is the second signaling.
  • the given wireless signal is the first signaling.
  • the first time slot format is Slot Format.
  • the first time slot format is a time slot format of one time slot.
  • the first slot format indicates the type of each multi-carrier symbol in a slot.
  • the first slot format indicates the type of a positive integer number of multi-carrier symbols.
  • the first time slot format is the time slot of each time slot in some time slots (A Number of) starting from a time slot in which the first node monitors the second signaling Format (Slot Format).
  • the value of the first time slot format is a non-negative integer other than 255.
  • the value of the first time slot format is a non-negative integer less than 255.
  • the second signaling explicitly indicates the format of the first time slot.
  • the second signaling implicitly indicates the format of the first time slot.
  • the second signaling indicates a positive integer number of SFI (Slot Format Indicator) values
  • the first time slot format corresponds to one SFI value among the positive integer number of SFI values Time slot format.
  • the third information is semi-statically configured.
  • the third information is carried by RRC signaling.
  • the third information is carried by MAC CE signaling.
  • the third information includes one or more IEs in one RRC signaling.
  • the third information includes all or part of an IE in an RRC signaling.
  • the third information includes a partial field of an IE in an RRC signaling.
  • the third information includes multiple IEs in one RRC signaling.
  • the third information includes one IE in one RRC signaling.
  • the third information includes.
  • the third information includes part or all of the domains of the IE.
  • the third information includes a partial domain of the IE.
  • the third information includes part or all of the fields of IE PDCCH-ConfigSIB1.
  • IE PDCCH-ConfigSIB1 For the specific definition of IE PDCCH-ConfigSIB1, please refer to section 6.3.2 of 3GPP TS38.331.
  • the third information includes part or all of the fields of the IE PDCCH-ConfigCommon, and the specific definition of the IE PDCCH-ConfigCommon can be found in section 6.3.2 of 3GPP TS38.331.
  • the third information includes part or all of the fields of the IE PDCCH-Config, and the specific definition of the IE PDCCH-Config can be found in section 6.3.2 of 3GPP TS38.331.
  • the third information includes the IE ControlResourceSet, and the specific definition of the IE ControlResourceSet refers to section 6.3.2 of 3GPP TS38.331.
  • the third information includes IE PDCCH-Config and IE ControlResourceSet.
  • the third information explicitly indicates the second symbol set.
  • the third information implicitly indicates the second symbol set.
  • the first time-frequency resource group includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time-frequency resource group includes a positive integer number of subcarriers in the frequency domain.
  • the first time-frequency resource group includes a positive integer number of RBs (Resource Block, resource block) in the frequency domain.
  • the first time-frequency resource group includes a positive integer number of REs (Resource Elements, resource particles).
  • the first time-frequency resource group is a time-frequency resource allocated to PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the first signaling explicitly indicates the first time-frequency resource group.
  • the first signaling implicitly indicates the first time-frequency resource group.
  • the first signaling includes a second domain, and the second domain included in the first signaling is used to determine the first time-frequency resource group.
  • the second field included in the first signaling includes a positive integer number of bits.
  • the second field included in the first signaling is used to indicate the first time-frequency resource group from a first time-frequency resource group set, and the first time-frequency resource group
  • the set of frequency resource groups includes a positive integer number of time-frequency resource groups, and the first time-frequency resource group is a time-frequency resource group in the first time-frequency resource group set.
  • the second field included in the first signaling indicates the index of the first time-frequency resource group in the first time-frequency resource group set, and the first time-frequency resource group
  • the resource group set includes a positive integer number of time-frequency resource groups, and the first time-frequency resource group is a time-frequency resource group in the first time-frequency resource group set.
  • the second domain included in the first signaling is the PUCCH resource indicator, and the specific definition of the PUCCH resource indicator can be found in section 9.2.3 of 3GPP TS38.213.
  • the second bit block carries HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement) feedback for the first wireless signal.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • Embodiment 6 illustrates a schematic diagram of determining the first symbol group according to an embodiment of the present application, as shown in FIG. 6.
  • the target TDD configuration in this application is used to determine the first symbol group from the first symbol set in this application.
  • the first symbol group is the first symbol set.
  • the operation and the target TDD configuration are used to determine the first symbol group from the first symbol set.
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set; the operation and the type of each multi-carrier symbol in the first symbol set The type is used to determine the first symbol group from the first symbol set.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, The given symbol does not belong to the first symbol group.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, The given symbol belongs to the first symbol group.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a flexible symbol, The given symbol belongs to the first symbol group.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a flexible symbol, The given symbol does not belong to the first symbol group.
  • the operation is receiving; when the first node is not configured to monitor DCI format 2_0, a given symbol is a multi-carrier symbol in the first symbol set, and when the target TDD configuration When used to determine that the type of the given symbol is a Flexible symbol, the given symbol belongs to the first symbol group.
  • the operation is receiving; the first symbol set includes a plurality of symbol subsets, and any symbol subset in the plurality of symbol subsets includes a positive integer number of multi-carrier symbols; a given symbol subset Is one of the plurality of symbol subsets; when the target TDD configuration is used to determine that the type of at least one multi-carrier symbol in the given symbol subset is a UL symbol, the given symbol subset includes None of the multi-carrier symbols belong to the first symbol group.
  • the multiple symbol subsets belong to multiple time slots, respectively.
  • the operation is sending; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, The given symbol does not belong to the first symbol group.
  • the operation is sending; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, The given symbol belongs to the first symbol group.
  • the operation is sending; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a flexible symbol, The given symbol belongs to the first symbol group.
  • the operation is sending; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a flexible symbol, The given symbol does not belong to the first symbol group.
  • the operation is sending; when the first node is not configured to monitor DCI format 2_0, a given symbol is a multi-carrier symbol in the first symbol set, and when the target TDD configuration When used to determine that the type of the given symbol is a Flexible symbol, the given symbol belongs to the first symbol group.
  • the operation is sending; the first symbol set includes a plurality of symbol subsets, and any symbol subset in the plurality of symbol subsets includes a positive integer number of multi-carrier symbols; a given symbol subset Is one of the plurality of symbol subsets; when the target TDD configuration is used to determine that the type of at least one multi-carrier symbol in the given symbol subset is a DL symbol, the given symbol subset includes None of the multi-carrier symbols belong to the first symbol group.
  • the multiple symbol subsets belong to multiple time slots, respectively.
  • the first node is configured to monitor the second signaling; the given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration indicates the type of the given symbol When it is Flexible, whether the given symbol belongs to the first symbol group is related to whether the second signaling is detected (detected).
  • the first node when the first node detects the second signaling, whether the given symbol belongs to the first symbol group and the second signaling indicates The type of the given symbol is related.
  • the given symbol belongs to the first symbol group.
  • the first node is configured to monitor the second signaling, and the first node detects the second signaling; the given symbol is one of the first symbol set Multi-carrier symbols; the operation is receiving, and the first node does not expect the type of the given symbol indicated by the second signaling to be a UL symbol.
  • the first node receives the second signaling.
  • the second signaling is DCI format 2_0, and the second signaling indicates a slot format value other than 255 to indicate the format of the slot to which the given symbol belongs .
  • the first node is configured to monitor the second signaling, and the first node detects the second signaling; the given symbol is one of the first symbol set Multi-carrier symbols; the operation is sending, and the first node does not expect the type of the given symbol indicated by the second signaling to be a DL symbol.
  • the first node receives the second signaling.
  • the second signaling is DCI format 2_0, and the second signaling indicates a slot format value other than 255 to indicate the format of the slot to which the given symbol belongs .
  • the first node is configured to monitor the second signaling, and the first node detects the second signaling; the given symbol is one of the first symbol set Multi-carrier symbols; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, the first node does not expect the type of the given symbol indicated by the second signaling to be UL symbol.
  • the first node receives the second signaling.
  • the second signaling is DCI format 2_0, and the second signaling indicates a slot format value other than 255 to indicate the format of the slot to which the given symbol belongs .
  • the first node is configured to monitor the second signaling, and the first node detects the second signaling; the given symbol is one of the first symbol set Multi-carrier symbols; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, the first node does not expect the type of the given symbol indicated by the second signaling to be DL symbol.
  • the first node receives the second signaling.
  • the second signaling is DCI format 2_0, and the second signaling indicates a slot format value other than 255 to indicate the format of the slot to which the given symbol belongs .
  • the first node is configured to monitor the second signaling, and the first node detects the second signaling; the given symbol is one of the first symbol set Multi-carrier symbols; when the target TDD configuration is used to determine that the type of the given symbol is a Flexible symbol, whether the given symbol belongs to the first symbol group and the second signaling indicated It depends on the type of the given symbol.
  • the first node receives the second signaling.
  • the second signaling is DCI format 2_0, and the second signaling indicates a slot format value other than 255 to indicate the format of the slot to which the given symbol belongs .
  • the given symbol belongs to the first symbol group.
  • the operation is receiving; the first node does not expect to detect (does not expect to detect), and the second signaling indicates that the type of the given symbol is a UL symbol.
  • the operation is sending; the first node does not expect to detect (does not expect to detect), and the second signaling indicates that the type of the given symbol is a DL symbol.
  • the operation is receiving; if and only if the second signaling indicates that the type of the given symbol is a DL symbol, the given symbol belongs to the first A symbol group; when the second signaling indicates that the type of the given symbol is UL symbol or Flexible, the given symbol does not belong to the first symbol group.
  • the operation is receiving; if and only if the second signaling indicates that the type of the given symbol is DL symbol or Flexible, the given symbol belongs to all The first symbol group; when the second signaling indicates that the type of the given symbol is a UL symbol, the given symbol does not belong to the first symbol group.
  • the operation is sending; if and only if the second signaling indicates that the type of the given symbol is a UL symbol, the given symbol belongs to the first A symbol group; when the second signaling indicates that the type of the given symbol is a DL symbol or Flexible, the given symbol does not belong to the first symbol group.
  • the operation is sending; if and only if the second signaling indicates that the type of the given symbol is UL symbol or Flexible, the given symbol belongs to all The first symbol group; when the second signaling indicates that the type of the given symbol is a DL symbol, the given symbol does not belong to the first symbol group.
  • Embodiment 7 illustrates a schematic diagram of determining the first symbol group according to another embodiment of the present application, as shown in FIG. 7.
  • the first time slot format and the target TDD configuration in this application are jointly used to determine the first symbol group from the first symbol set in this application.
  • the operation, the first slot format, and the target TDD configuration are jointly used to determine the first symbol group from the first symbol set.
  • the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set
  • the first slot format is used to indicate each symbol in the first symbol set.
  • Types of multi-carrier symbols; the type of each multi-carrier symbol in the first symbol set determined by the operation and the target TDD configuration and the first time slot format indicated The type of each multi-carrier symbol in a symbol set is commonly used to determine the first symbol group from the first symbol set.
  • a given symbol is a multi-carrier symbol in the first set of symbols; the operation is receiving, and the first node does not expect the data of the given symbol indicated by the first slot format
  • the type is UL symbol.
  • a given symbol is a multi-carrier symbol in the first set of symbols; the operation is sending, and the first node does not expect the data of the given symbol indicated by the first slot format
  • the type is DL symbol.
  • a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, the first node does not It is expected that the type of the given symbol indicated by the first slot format is a UL symbol.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, and When the type of the given symbol indicated by the first slot format is a DL symbol, the given symbol belongs to the first symbol group.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, and When the type of the given symbol indicated by the first time slot format is a Flexible symbol, the given symbol belongs to the first symbol group.
  • the operation is receiving; a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a DL symbol, and When the type of the given symbol indicated by the first slot format is a UL symbol, the given symbol does not belong to the first symbol group.
  • a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, the first node does not It is expected that the type of the given symbol indicated by the first slot format is a DL symbol.
  • the operation is sending; the given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, and When the type of the given symbol indicated by the first slot format is a UL symbol, the given symbol belongs to the first symbol group.
  • the operation is sending; the given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, and When the type of the given symbol indicated by the first time slot format is a Flexible symbol, the given symbol belongs to the first symbol group.
  • the operation is sending; the given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a UL symbol, and When the type of the given symbol indicated by the first slot format is a DL symbol, the given symbol does not belong to the first symbol group.
  • a given symbol is a multi-carrier symbol in the first symbol set; when the target TDD configuration is used to determine that the type of the given symbol is a flexible symbol, whether the given symbol is Belonging to the first symbol group is related to the type of the given symbol indicated by the first slot format.
  • the given symbol belongs to the first symbol group.
  • the operation is receiving; the first node does not expect to detect (does not expect to detect), and the first slot format indicates that the type of the given symbol is a UL symbol .
  • the operation is sending; the first node does not expect to detect (does not expect to detect) the first slot format indicates that the type of the given symbol is a DL symbol .
  • the operation is receiving; if and only if the first slot format indicates that the type of the given symbol is a DL symbol, the given symbol belongs to the The first symbol group; when the first slot format indicates that the type of the given symbol is UL symbol or Flexible, the given symbol does not belong to the first symbol group.
  • the operation is receiving; if and only if the first slot format indicates that the type of the given symbol is DL symbol or Flexible, the given symbol belongs to The first symbol group; when the first slot format indicates that the type of the given symbol is a UL symbol, the given symbol does not belong to the first symbol group.
  • the operation is sending; if and only if the first slot format indicates that the type of the given symbol is a UL symbol, the given symbol belongs to the The first symbol group; when the first slot format indicates that the type of the given symbol is a DL symbol or Flexible, the given symbol does not belong to the first symbol group.
  • the operation is sending; if and only if the first slot format indicates that the type of the given symbol is UL symbol or Flexible, the given symbol belongs to The first symbol group; when the first slot format indicates that the type of the given symbol is a DL symbol, the given symbol does not belong to the first symbol group.
  • Embodiment 8 illustrates a schematic diagram of determining the target TDD configuration according to an embodiment of the present application, as shown in FIG. 8.
  • the target TDD configuration is the first TDD configuration in this application; when the type of the first signaling is When the type includes the second type, the target TDD configuration is the second TDD configuration.
  • the type of the first signaling includes a DCI format (format), and the first type and the second type are respectively different DCI formats.
  • the operation is sending, and the first type is DCI format 0_0 or DCI format 0_1.
  • the operation is receiving, and the first type is DCI format 1_0 or DCI format 1_1.
  • the type of the first signaling includes RNTI.
  • the first type is C (Cell)-RNTI, CS (Configured Scheduling, configured scheduling)-RNTI or SP (Semi-Persistent, semi-permanent)-CSI (Channel State) Information, channel state information)-one of RNTI.
  • the first type is one of C-RNTI, CS-RNTI, SP-CSI-RNTI, or MCS-C-RNTI.
  • the second type is MCS (Modulation and Coding Scheme)-C-RNTI.
  • the second type is not any one of C-RNTI, CS-RNTI, SP-CSI-RNTI, or MCS-C-RNTI.
  • the second type is not any one of C-RNTI, CS-RNTI, or SP-CSI-RNTI.
  • the type of the first signaling includes load size.
  • the first type and the second type are respectively different load sizes.
  • the type of the first signaling includes priority.
  • the first type and the second type have different priorities, respectively.
  • the type of the first signaling includes a traffic type (Traffic Type).
  • the first type and the second type are respectively different service types.
  • the type of the first signaling includes a grant type, and the grant type is an uplink grant or a downlink grant.
  • the first type is a downlink grant
  • the second type is an uplink grant
  • the first type is an uplink grant
  • the second type is a downlink grant
  • the type of the first signaling includes a transmission scheme of the first wireless signal.
  • the first type and the second type are respectively different transmission schemes.
  • the transmission scheme includes whether to repeat transmission, the number of repeated transmissions, whether to allow repeated transmission in a time slot, the maximum number of repeated transmissions in a time slot, and the number of repeated transmissions respectively. Whether the positions of the starting multi-carrier symbols in the corresponding time slots are the same, one or more combinations in the scheme of repeated transmission.
  • the sending scheme includes whether to send repeatedly (with or without repetitions).
  • the first type includes non-repetitive transmission
  • the second type includes repeated transmission
  • the transmission scheme includes the number of repetitions (Number of Repetitions).
  • the first type includes that the number of repeated transmissions is 1, and the second type includes that the number of repeated transmissions is greater than one.
  • the transmission scheme includes whether to allow repeated transmission in a time slot.
  • the first type includes that repeated transmission is not allowed in one time slot
  • the second type includes that repeated transmission is allowed in one time slot
  • the transmission scheme includes the maximum number of repeated transmissions in one time slot.
  • the maximum number of repeated transmissions included in the first type in one time slot is 1, and the maximum number of repeated transmissions included in the second type in one time slot is greater than 1.
  • the transmission scheme includes repeatedly transmitting whether the positions of the respective start multi-carrier symbols in the corresponding time slots are the same for multiple times.
  • the first type includes multiple repeated transmissions of respective start multi-carrier symbols whose positions in the corresponding time slots are the same
  • the second type includes multiple repeated transmissions.
  • the position of the starting multi-carrier symbol in the corresponding time slot is different.
  • the transmission scheme includes a repetitive transmission scheme, and the repetitive transmission scheme includes slot-based repetitions, and mini-slot-based repetitions. repetitions), multi-segment transmission.
  • the first type includes repetitive transmission based on time slots
  • the second type includes repetitive transmission based on small time slots or multiple segments of repeated transmission.
  • the first TDD configuration is TDD configuration.
  • the first TDD configuration is a slot format (Slot Format).
  • the first TDD configuration is semi-static configuration.
  • the first TDD configuration is a configuration of the type of multi-carrier symbols in the TDD system.
  • the first TDD configuration is used to indicate the type of each multi-carrier symbol in the first symbol set.
  • the first TDD configuration explicitly indicates the type of each multi-carrier symbol in the first symbol set.
  • the first TDD configuration implicitly indicates the type of each multi-carrier symbol in the first symbol set.
  • the first TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the length of the slot configuration period and the length of the slot configuration period To determine the type of each multi-carrier symbol in the first symbol set.
  • Configuration Period a slot configuration period
  • the time slot configuration period includes one time slot.
  • the time slot configuration period includes a positive integer number of time slots.
  • the time slot configuration period includes a positive integer number of multi-carrier symbols.
  • the first multi-carrier symbol and the second multi-carrier symbol are multi-carrier symbols with the same position in two time slot configuration periods, and the first multi-carrier symbol and the second multi-carrier symbol are The types of carrier symbols are the same.
  • the first multi-carrier symbol and the second multi-carrier symbol are respectively the i-th multi-carrier symbol in two slot configuration periods, and the first multi-carrier symbol and the second multi-carrier symbol are The types of the multi-carrier symbols are the same, and i is a positive integer not greater than the number of multi-carrier symbols included in the slot configuration period.
  • the first TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the length of the slot configuration period and the length of the slot configuration period
  • Configuration Period a slot configuration period
  • the type of each multi-carrier symbol determines the type of each multi-carrier symbol in each slot.
  • the first TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the type of each multi-carrier symbol in the slot configuration period And the position of the first symbol set in the slot configuration period to determine the type of each multi-carrier symbol in the first symbol set.
  • Configuration Period a slot configuration period
  • a given multi-carrier symbol is any one of the multi-carrier symbols in the first symbol set, and the given multi-carrier symbol is the j-th multi-carrier symbol in the slot configuration period.
  • Carrier symbol, the type of the given multi-carrier symbol is the type of the j-th multi-carrier symbol in the slot configuration period, and j is a positive value not greater than the number of multi-carrier symbols included in the slot configuration period Integer.
  • the second TDD configuration is TDD configuration.
  • the second TDD configuration is a slot format (Slot Format).
  • the second TDD configuration is semi-static configuration.
  • the second TDD configuration is a configuration of the type of multi-carrier symbols in the TDD system.
  • the second TDD configuration is used to indicate the type of each multi-carrier symbol in the first symbol set.
  • the second TDD configuration explicitly indicates the type of each multi-carrier symbol in the first symbol set.
  • the second TDD configuration implicitly indicates the type of each multi-carrier symbol in the first symbol set.
  • the second TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), based on the length of the slot configuration period and the length of the slot configuration period To determine the type of each multi-carrier symbol in the first symbol set.
  • Configuration Period a slot configuration period
  • the time slot configuration period includes one time slot.
  • the time slot configuration period includes a positive integer number of time slots.
  • the time slot configuration period includes a positive integer number of multi-carrier symbols.
  • the third multi-carrier symbol and the fourth multi-carrier symbol are multi-carrier symbols with the same position in two time slot configuration periods, and the third multi-carrier symbol and the fourth multi-carrier symbol are The types of carrier symbols are the same.
  • the third multi-carrier symbol and the fourth multi-carrier symbol are respectively the i-th multi-carrier symbol in two slot configuration periods, and the third multi-carrier symbol and the fourth multi-carrier symbol are The types of the multi-carrier symbols are the same, and i is a positive integer not greater than the number of multi-carrier symbols included in the slot configuration period.
  • the second TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), based on the length of the slot configuration period and the length of the slot configuration period
  • Configuration Period a slot configuration period
  • the type of each multi-carrier symbol determines the type of each multi-carrier symbol in each slot.
  • the second TDD configuration indicates the type of each multi-carrier symbol in a slot configuration period (Configuration Period), according to the type of each multi-carrier symbol in the slot configuration period And the position of the first symbol set in the slot configuration period to determine the type of each multi-carrier symbol in the first symbol set.
  • Configuration Period a slot configuration period
  • a given multi-carrier symbol is any one of the multi-carrier symbols in the first symbol set, and the given multi-carrier symbol is the j-th multi-carrier symbol in the slot configuration period.
  • Carrier symbol, the type of the given multi-carrier symbol is the type of the j-th multi-carrier symbol in the slot configuration period, and j is a positive value not greater than the number of multi-carrier symbols included in the slot configuration period Integer.
  • the second TDD configuration is different from the first TDD configuration.
  • the second TDD configuration and the first TDD configuration are independently configured.
  • the second TDD configuration and the first TDD configuration are configured by two higher layer information respectively.
  • the second TDD configuration is predefined.
  • the second TDD configuration is pre-configured (Pre-configured).
  • Embodiment 9 illustrates a schematic diagram of determining the target TDD configuration according to another embodiment of the present application, as shown in FIG. 9.
  • the first signaling in this application is DCI signaling for uplink grant
  • the first signaling implicitly indicates the target TDD configuration.
  • the operation is receiving and the target TDD configuration is fixed to the first TDD configuration.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the type of the first signaling and the first wireless signal according to an embodiment of the present application, as shown in FIG. 10.
  • the first wireless signal when the type of the first signaling includes the second type in this application, the first wireless signal includes K sub-signals, and the K sub-signals all carry the first bit Block; K is a positive integer greater than 1, and the first bit block includes a positive integer number of bits.
  • the first bit block includes a transport block (TB, Transport Block).
  • TB transport block
  • the first bit block includes a positive integer number of transmission blocks.
  • the K sub-signals are respectively K repeated transmissions of the first bit block.
  • a given sub-signal is any one of the K sub-signals, and the first bit block sequentially undergoes CRC insertion (CRC Insertion), channel coding (Channel Coding), and rate matching (Rate Matching), Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Element, OFDM Baseband Signal Generation, Modulation Up-Conversion After Modulation and Upconversion), the given stator signal is obtained.
  • a given sub-signal is any one of the K sub-signals, and the first bit block sequentially undergoes CRC insertion (CRC Insertion), channel coding (Channel Coding), and rate matching (Rate Matching), Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Virtual Resource Blocks, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resources Blocks, OFDM Baseband Signal Generation, and Modulation and Upconversion to obtain the given stator signal.
  • CRC Insertion CRC Insertion
  • Channel Coding Channel coding
  • Rate Matching Rate Matching
  • the given sub-signal is any one of the K sub-signals
  • the first bit block is sequentially subjected to CRC insertion (CRC Insertion), segmentation, and coding block-level CRC insertion (CRC Insertion). ), Channel Coding, Rate Matching, Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Particles ( Mapping to Resource Element, OFDM Baseband Signal Generation, and Modulation and Upconversion to obtain the given stator signal.
  • the first signaling indicates K0, K0 is a positive integer, and the K is a positive integer not less than the K0.
  • the K0 is greater than 1.
  • the K0 is equal to 1.
  • the K0 is equal to the K.
  • the K0 is smaller than the K.
  • the K0 is the number of normal (Nominal) repeated transmissions
  • the K is the number of actual repeated transmissions.
  • two of the K sub-signals have different positions in the time slot to which they belong.
  • two of the K sub-signals have different redundancy versions (RV, Redundancy Version).
  • the K sub-signals correspond to the same HARQ process number (Process Number).
  • Embodiment 11 illustrates a schematic diagram of the relationship between the type of the first signaling and the first wireless signal according to another embodiment of the present application, as shown in FIG. 11.
  • the first wireless signal when the type of the first signaling includes the first type in this application, the first wireless signal includes K1 sub-signals, and the K1 sub-signals all carry the second bit Block; K1 is a positive integer, and the second bit block includes a positive integer number of bits.
  • the K1 is equal to 1.
  • the K1 is greater than one.
  • the K1 is equal to 1, and the K1 sub-signals are a single transmission of the second bit block.
  • the K1 is greater than 1, and the K1 sub-signals are respectively K1 repeated transmissions of the second bit block.
  • the second bit block includes a transport block (TB, Transport Block).
  • TB Transport Block
  • the second bit block includes a positive integer number of transmission blocks.
  • the K1 is equal to 1, and the K1 sub-signals are one transmission of the first bit block.
  • the K1 is greater than 1, and the K1 sub-signals are respectively K1 repeated transmissions of the first bit block.
  • the given sub-signal is any one of the K1 sub-signals
  • the second bit block is sequentially subjected to CRC insertion (CRC Insertion), channel coding (Channel Coding), and rate matching (Rate Matching), Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Element, OFDM Baseband Signal Generation, Modulation Up-Conversion After Modulation and Upconversion), the given stator signal is obtained.
  • the given sub-signal is any one of the K1 sub-signals
  • the second bit block is sequentially subjected to CRC insertion (CRC Insertion), channel coding (Channel Coding), and rate matching (Rate Matching), Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Virtual Resource Blocks, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resources Blocks, OFDM Baseband Signal Generation, and Modulation and Upconversion to obtain the given stator signal.
  • the given sub-signal is any one of the K1 sub-signals
  • the second bit block is sequentially subjected to CRC insertion (CRC Insertion), segmentation, and coding block-level CRC insertion (CRC Insertion). ), Channel Coding, Rate Matching, Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Particles ( Mapping to Resource Element, OFDM Baseband Signal Generation, and Modulation and Upconversion to obtain the given stator signal.
  • the first signaling indicates the K1.
  • the K1 is greater than one.
  • the K1 is equal to 1.
  • the K1 is the actual number of repeated transmissions.
  • the K1 is greater than 1, and any two sub-signals of the K1 sub-signals belong to different time slots.
  • the K1 is greater than 1, and any two sub-signals of the K1 sub-signals have the same position in the time slot to which they belong.
  • the K1 is greater than 1, and there are two sub-signals in the K1 sub-signals that have different redundancy versions (RV, Redundancy Version).
  • the K1 is greater than 1, and the K1 sub-signals correspond to the same HARQ process number (Process Number).
  • Embodiment 12 illustrates a schematic diagram of the relationship between the first type, the second type, and the first symbol group according to an embodiment of the present application, as shown in FIG. 12.
  • the target TDD configuration in this application is the first TDD configuration in this application
  • the first time slot format and the target TDD configuration in this application are jointly used to determine the first symbol group from the first symbol set in this application
  • the target TDD configuration is the second TDD configuration in this application, and only the target TDD configuration of the first time slot format and the target TDD configuration is used Determining the first symbol group from the first symbol set.
  • Embodiment 13 illustrates a schematic diagram of the relationship between the first type, the second type, and the first symbol group according to another embodiment of the present application, as shown in FIG. 13.
  • the target TDD configuration in this application is the first TDD configuration in this application
  • the first time slot format and the target TDD configuration in this application are jointly used to determine the first symbol group from the first symbol set in this application
  • the target TDD configuration is the second TDD configuration in this application
  • the first time slot format and the target TDD configuration are used together to retrieve the data from the first symbol
  • the first symbol group is determined in the set.
  • Embodiment 14 illustrates a schematic diagram of determining the second symbol group according to an embodiment of the present application, as shown in FIG. 14.
  • the first TDD configuration in this application is And only the first TDD configuration of the second TDD configuration is used to determine the second symbol group from the second symbol set in this application.
  • the second symbol group is the second symbol set.
  • a given symbol is a multi-carrier symbol in the second symbol set; when the first TDD configuration indicates that the type of the given symbol is UL, the given symbol does not belong to the The second symbol group.
  • a given symbol is a multi-carrier symbol in the second symbol set; when the first TDD configuration indicates that the type of the given symbol is DL, the given symbol belongs to the first set of symbols. Two symbol group.
  • a given symbol is a multi-carrier symbol in the second symbol set; when the first TDD configuration indicates that the type of the given symbol is Flexible, the given symbol belongs to the first symbol. Two symbol group.
  • a given symbol is a multi-carrier symbol in the second symbol set; when the first TDD configuration indicates that the type of the given symbol is Flexible, the given symbol does not belong to the The second symbol group.
  • a given symbol is a multi-carrier symbol in the second symbol set; when the first TDD configuration indicates that the type of the given symbol is Flexible, whether the given symbol belongs to the The second symbol group is related to DCI format 2_0.
  • whether the given symbol belongs to the second symbol group is related to the type of the given symbol indicated by the DCI format 2_0.
  • the given symbol Belongs to the second symbol group.
  • an SFI index domain value in DCI format 2_0 when an SFI index domain value in DCI format 2_0 is not detected, it indicates that the type of the given symbol is UL or Flexible, and no DCI signaling is detected When indicating that the given symbol is used for uplink transmission, the given symbol belongs to the second symbol group.
  • Embodiment 15 illustrates a schematic diagram of judging whether to send the second bit block in the first time-frequency resource group according to an embodiment of the present application, as shown in FIG. 15.
  • the first TDD configuration in this application is And only the first TDD configuration in the second TDD configuration is used in the behavior to determine whether to send the second bit block in the first time-frequency resource group.
  • the first TDD configuration indicates that the types of the multi-carrier symbols included in the first time-frequency resource group are all DL, abandon sending the second bit in the first time-frequency resource group Piece.
  • the first TDD configuration indicates that the type of the multi-carrier symbol included in the first time-frequency resource group is DL or Flexible
  • sending the second time-frequency resource group in the first time-frequency resource group is abandoned. Bit block.
  • the first TDD configuration indicates that the type of a multi-carrier symbol included in the first time-frequency resource group is DL, abandon sending the second bit in the first time-frequency resource group Piece.
  • the first TDD configuration indicates that the type of a multi-carrier symbol included in the first time-frequency resource group is DL or Flexible
  • sending the first time-frequency resource group in the first time-frequency resource group is abandoned. Two-bit block.
  • the second bit block is sent in the first time-frequency resource group .
  • the second bit is sent in the first time-frequency resource group Piece.
  • Embodiment 16 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 16.
  • the first node device processing apparatus 1200 includes a first transceiver 1201 and a first receiver 1202.
  • the first node device 1200 is user equipment.
  • the first node device 1200 is a relay node.
  • the first node device 1200 is a base station.
  • the first node device 1200 is a vehicle-mounted communication device.
  • the first node device 1200 is a user equipment that supports V2X communication.
  • the first node device 1200 is a relay node supporting V2X communication.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a multi-antenna receiving processor 458, and a transmitting processor 468, At least one of the processor 456, the controller/processor 459, the memory 460, and the data source 467 is received.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a multi-antenna receiving processor 458, and a transmitting processor 468, At least the first seven of the processor 456, the controller/processor 459, the memory 460, and the data source 467 are received.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a multi-antenna receiving processor 458, and a transmitting processor 468, At least the first six of the processor 456, the controller/processor 459, the memory 460, and the data source 467 are received.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a multi-antenna receiving processor 458, and a transmitting processor 468, At least the first four of the processor 456, the controller/processor 459, the memory 460, and the data source 467 are received.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a transmission processor 468, and a controller/processor 459, At least the first five of the multi-antenna receiving processor 458, the receiving processor 456, the memory 460, and the data source 467.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a transmission processor 468, and a controller/processor 459, At least the first four of the multi-antenna receiving processor 458, the receiving processor 456, the memory 460, and the data source 467.
  • the first transceiver 1201 includes the antenna 452 in Figure 4 of the present application, a transmitter/receiver 454, a multi-antenna transmitter processor 457, a transmission processor 468, and a controller/processor 459, At least the first three of the multi-antenna receiving processor 458, the receiving processor 456, the memory 460, and the data source 467.
  • the first receiver 1202 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least one of the sources 467.
  • the first receiver 1202 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. At least the top five in source 467.
  • the first receiver 1202 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application.
  • Source 467 at least the first four.
  • the first receiver 1202 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the first three of Source 467.
  • the first receiver 1202 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application.
  • Source 467 at least the first two.
  • the first receiver 1202 receives first signaling, where the first signaling is used to indicate a first set of symbols;
  • the first transceiver 1201 operates the first wireless signal in only the first symbol group in the first symbol set;
  • the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol set includes a positive integer number of multi-carrier symbols. Multi-carrier symbols, any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set.
  • the number of carrier symbols; the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, and the target TDD configuration is used to determine the first symbol from the first symbol set Group, the first signaling implicitly indicates the target TDD configuration; the operation is sending, or the operation is receiving.
  • the first receiver 1202 also receives first information; wherein, the first information is carried by higher layer signaling, and the first information is used to determine the first TDD configuration; When the type of a signaling includes the first type, the target TDD configuration is the first TDD configuration; when the type of the first signaling includes the second type, the target TDD configuration is the second TDD Configuration.
  • the first wireless signal when the type of the first signaling includes the second type, the first wireless signal includes K sub-signals, and the K sub-signals all carry the first bit block; K is greater than A positive integer of 1, and the first bit block includes a positive integer number of bits.
  • the first signaling only when the first signaling is DCI signaling used for uplink grant, the first signaling implicitly indicates the target TDD configuration.
  • the first receiver 1202 also receives second signaling, which is used to indicate the first time slot format; wherein, the second signaling is carried by physical layer signaling;
  • the target TDD configuration is the first TDD configuration
  • the first time slot format and the target TDD configuration are both used to slave
  • the first symbol group is determined in the first symbol set;
  • the target TDD configuration is the second TDD configuration, and the first Only the target TDD configuration of a slot format and the target TDD configuration is used to determine the first symbol group from the first symbol set, or the first slot format and the target TDD
  • the configuration is commonly used to determine the first symbol group from the first symbol set.
  • the first receiver 1202 also receives third information, and the third information is used to indicate a second symbol set; the second symbol set is monitored in the second symbol set.
  • First signaling wherein, regardless of whether the type of the first signaling includes the first type or the second type, only the first TDD configuration and the second TDD configuration are The first TDD configuration is used to determine the second symbol group from the second symbol set; the second symbol set includes a positive integer number of multi-carrier symbols, and the second symbol group includes a positive integer number of multi-carriers Symbol, any one of the multi-carrier symbols in the second symbol group belongs to the second symbol set, and the number of multi-carrier symbols included in the second symbol group is not greater than the number of multi-carrier symbols included in the second symbol set quantity.
  • the first transceiver 1201 also determines whether to send the second bit block in the first time-frequency resource group; if so, send the second bit block in the first time-frequency resource group; If not, give up sending the second bit block in the first time-frequency resource group; wherein, the operation is receiving; the first signaling is used to indicate the first time-frequency resource group, so The second bit block is used to indicate whether the first wireless signal is received correctly; regardless of whether the type of the first signaling includes the first type or the second type, the first Only the first TDD configuration of the TDD configuration and the second TDD configuration is used in the behavior to determine whether to send the second bit block in the first time-frequency resource group.
  • Embodiment 17 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 17.
  • the second node device processing apparatus 1300 includes a second transmitter 1301 and a second transceiver 1302.
  • the second node device 1300 is user equipment.
  • the second node device 1300 is a base station.
  • the second node device 1300 is a relay node.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least one.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first five.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first four.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first three.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 shown in FIG. 4 of the present application. At least the first two.
  • the second transceiver 1302 includes the antenna 420 shown in FIG. 4 of the present application, the transmitter/receiver 418, the multi-antenna transmitting processor 471, the multi-antenna receiving processor 472, the transmitting processor 416, and the receiving At least one of the processor 470, the controller/processor 475, and the memory 476.
  • the second transceiver 1302 includes the antenna 420 shown in FIG. 4 of the present application, the transmitter/receiver 418, the multi-antenna transmitting processor 471, the multi-antenna receiving processor 472, the transmitting processor 416, and the receiving At least the first seven of the processor 470, the controller/processor 475, and the memory 476.
  • the second transceiver 1302 includes the antenna 420 shown in FIG. 4 of the present application, the transmitter/receiver 418, the multi-antenna transmitting processor 471, the multi-antenna receiving processor 472, the transmitting processor 416, and the receiving At least the first six of the processor 470, the controller/processor 475, and the memory 476.
  • the second transceiver 1302 includes the antenna 420 shown in FIG. 4 of the present application, the transmitter/receiver 418, the multi-antenna transmitting processor 471, the multi-antenna receiving processor 472, the transmitting processor 416, and the receiving At least the first four of the processor 470, the controller/processor 475, and the memory 476.
  • the second transceiver 1302 includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the At least the first five of the antenna transmitting processor 471, the transmitting processor 416, and the memory 476.
  • the second transceiver 1302 includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the At least the first four of the antenna transmitting processor 471, the transmitting processor 416, and the memory 476.
  • the second transceiver 1302 includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the At least the first three of the antenna transmitting processor 471, the transmitting processor 416, and the memory 476.
  • the second transmitter 1301 sends first signaling, where the first signaling is used to indicate the first symbol set;
  • the second transceiver 1302 performs the first wireless signal in only the first symbol group in the first symbol set
  • the first signaling is used to indicate the scheduling information of the first wireless signal; the first symbol set includes a positive integer number of multi-carrier symbols, and the first symbol set includes a positive integer number of multi-carrier symbols. Multi-carrier symbols, any one of the multi-carrier symbols in the first symbol group belongs to the first symbol set, and the number of multi-carrier symbols included in the first symbol group is not greater than the number of multi-carrier symbols included in the first symbol set.
  • the number of carrier symbols; the target TDD configuration is used to determine the type of each multi-carrier symbol in the first symbol set, and the target TDD configuration is used to determine the first symbol from the first symbol set Group, the first signaling implicitly indicates the target TDD configuration; the execution is reception, or the execution is transmission.
  • the second transmitter 1301 also sends first information; wherein, the first information is carried by higher-layer signaling, and the first information is used to determine the first TDD configuration; when the first information is When the type of a signaling includes the first type, the target TDD configuration is the first TDD configuration; when the type of the first signaling includes the second type, the target TDD configuration is the second TDD Configuration.
  • the first wireless signal when the type of the first signaling includes the second type, the first wireless signal includes K sub-signals, and the K sub-signals all carry the first bit block; K is greater than A positive integer of 1, and the first bit block includes a positive integer number of bits.
  • the first signaling only when the first signaling is DCI signaling used for uplink grant, the first signaling implicitly indicates the target TDD configuration.
  • the second transmitter 1301 also sends second signaling, which is used to indicate the first time slot format; wherein, the second signaling is carried by physical layer signaling;
  • the target TDD configuration is the first TDD configuration, and the first time slot format and the target TDD configuration are both used to slave
  • the first symbol group is determined in the first symbol set;
  • the target TDD configuration is the second TDD configuration, and the first Only the target TDD configuration of a slot format and the target TDD configuration is used to determine the first symbol group from the first symbol set, or the first slot format and the target TDD
  • the configuration is commonly used to determine the first symbol group from the first symbol set.
  • the second transmitter 1301 also sends third information, and the third information is used to determine the second symbol set; wherein, the first signaling in the second symbol set is only Is sent in the second symbol group; regardless of whether the type of the first signaling includes the first type or the second type, only one of the first TDD configuration and the second TDD configuration is The first TDD configuration is used to determine the second symbol group from the second symbol set; the second symbol set includes a positive integer number of multi-carrier symbols, and the second symbol group includes a positive integer number of multi-carrier symbols. Carrier symbol, any one of the multi-carrier symbols in the second symbol group belongs to the second symbol set, and the number of multi-carrier symbols included in the second symbol group is not greater than the number of multi-carrier symbols included in the second symbol set The number of symbols.
  • the second transceiver 1302 also determines whether to receive a second bit block in the first time-frequency resource group; if so, receive the second bit block in the first time-frequency resource group; If not, give up receiving the second bit block in the first time-frequency resource group; wherein, the operation is receiving; the first signaling is used to determine the first time-frequency resource group, so The second bit block is used to determine whether the first wireless signal is received correctly; regardless of whether the type of the first signaling includes the first type or the second type, the first Only the first TDD configuration of the TDD configuration and the second TDD configuration is used in the behavior to determine whether to receive the second bit block in the first time-frequency resource group.
  • the first node equipment in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, etc.
  • the second node device in this application includes but is not limited to mobile phones, tablets, notebooks, internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, etc. Wireless communication equipment.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, airplanes, drones, and remote controls Airplanes and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, air Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令被用于指示第一符号集合;然后在所述第一符号集合中的仅第一符号组中操作第一无线信号。所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G系统中,为了支持更高要求的URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)业务,比如更高可靠性(比如:目标BLER为10^-6)、更低延迟(比如:0.5-1ms)等,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#80次全会上通过了NR(New Radio,新空口)Release 16的URLLC增强的SI(Study Item,研究项目)。如何实现PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)/PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)的更低传输时延和更高的传输可靠性是一个研究重点。为了支持URLLC业务更高可靠性和更低延迟的要求,3GPP NR Rel-16系统已经同意在上行传输中采纳基于标准重复发送的传输方案,当一次标准(Nominal)重复发送跨时隙的边界或者跨上下行切换时刻(DL/UL switching point)时,这一次标准重复发送被分成两次实际重复发送。
发明内容
在3GPP NR系统中已经引入了灵活(Flexible)符号(Symbol)和动态的上下行配置,那么在考虑到灵活符号和动态的上下行配置的影响下,如何设计重复传输方案是一个需要解决的关键问题。
针对上述问题,本申请公开了一种解决方案。上述问题描述中,采用重复传输作为一个例子;本申请也同样适用于例如单次(即非重复)传输场景,取得类似重复传输中的技术效果。此外,不同场景(包括但不限于重复传输场景和单次传输)采用统一解决方案还有助于降低硬件复杂度和成本。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于指示第一符号集合;
在所述第一符号集合中的仅第一符号组中操作第一无线信号;
其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
作为一个实施例,本申请要解决的问题是:在考虑到灵活符号和动态的上下行配置的 影响下,如何设计重复传输方案是需要解决的一个关键问题。
作为一个实施例,本申请要解决的问题是:在考虑到灵活符号和动态的上下行配置的影响下,在重复传输方案中所参考的上下行配置的设计或者多载波符号类型的配置是需要解决的一个关键问题。
作为一个实施例,上述方法的实质在于,第一无线信号是PUSCH,第一信令是调度PUSCH的DCI信令,第一符号组是DCI信令指示的多载波符号(即第一符号集合)中被PUSCH实际占用的多载波符号,目标TDD配置被用于确定PUSCH发送实际占用的多载波符号,DCI信令隐式的指示目标TDD配置。采用上述方法的好处在于,可以针对不同的业务类型的传输采用不同的TDD配置,以满足不同业务类型对可靠性和延迟的要求。
作为一个实施例,上述方法的实质在于,第一无线信号是PDSCH,第一信令是调度PDSCH的DCI信令,第一符号组是DCI信令指示的多载波符号(即第一符号集合)中被PDSCH实际占用的多载波符号,目标TDD配置被用于确定PDSCH发送实际占用的多载波符号,DCI信令隐式的指示目标TDD配置。采用上述方法的好处在于,可以针对不同的业务类型的传输采用不同的TDD配置,以满足不同业务类型对可靠性和延迟的要求。
作为一个实施例,上述方法的实质在于,第一无线信号是PUSCH/PDSCH,第一信令是调度PUSCH/PDSCH的DCI信令,第一符号组是DCI信令指示的多载波符号(即第一符号集合)中被PUSCH/PDSCH实际占用的多载波符号,目标TDD配置被用于确定PUSCH/PDSCH发送实际占用的多载波符号,DCI信令隐式的指示目标TDD配置。采用上述方法的好处在于,可以针对上下行传输分别采用不同的TDD配置,以满足下行传输和上行传输对可靠性和延迟的不同要求。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信息;
其中,所述第一信息由更高层信令承载,所述第一信息被用于确定第一TDD配置;当所述第一信令的类型包括第一类型时,所述目标TDD配置是所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。
作为一个实施例,上述方法的实质在于,目标TDD配置是半静态配置的,第一类型是eMBB业务,第二类型是URLLC业务。
根据本申请的一个方面,上述方法的特征在于,当所述第一信令的所述类型包括所述第二类型时,所述第一无线信号包括K个子信号,所述K个子信号都携带第一比特块;K是大于1的正整数,所述第一比特块包括正整数个比特。
根据本申请的一个方面,上述方法的特征在于,只有当所述第一信令是用于上行授予的DCI信令时,所述第一信令隐式的指示所述目标TDD配置。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令,所述第二信令被用于指示第一时隙格式;
其中,所述第二信令由物理层信令承载;当所述第一信令的所述类型包括所述第一类型时,所述目标TDD配置是所述第一TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,或者所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息,所述第三信息被用于指示第二符号集合;
在所述第二符号集合中的仅第二符号组中监测所述第一信令;
其中,无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从所述第二符号集合中确定所述第二符号组;所述第二符号集合包括正整数个多载波符号,所述第二符号组包括正整数 个多载波符号,所述第二符号组中的任意一个多载波符号都属于所述第二符号集合,所述第二符号组包括的多载波符号的数量不大于所述第二符号集合包括的多载波符号的数量。
作为一个实施例,上述方法的实质在于,第一符号组是监测PDCCH的多载波符号,被用于确定监测PDCCH的多载波符号的TDD配置是第一TDD配置,与第一信令的类型无关。
根据本申请的一个方面,上述方法的特征在于,包括:
判断是否在第一时频资源组中发送第二比特块;如果是,在所述第一时频资源组中发送所述第二比特块;如果否,放弃在所述第一时频资源组中发送所述第二比特块;
其中,所述操作是接收;所述第一信令被用于指示所述第一时频资源组,所述第二比特块被用于指示所述第一无线信号是否被正确接收;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中发送第二比特块。
作为一个实施例,上述方法的实质在于,第一时频资源组是发送HARQ-ACK的PUCCH资源,被用于确定这个PUCCH资源是否可以发送UCI的TDD配置是第一TDD配置,与第一信令的类型无关。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于指示第一符号集合;
在所述第一符号集合中的仅第一符号组中执行第一无线信号;
其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信息;
其中,所述第一信息由更高层信令承载,所述第一信息被用于确定第一TDD配置;当所述第一信令的类型包括第一类型时,所述目标TDD配置是所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。
根据本申请的一个方面,上述方法的特征在于,当所述第一信令的所述类型包括所述第二类型时,所述第一无线信号包括K个子信号,所述K个子信号都携带第一比特块;K是大于1的正整数,所述第一比特块包括正整数个比特。
根据本申请的一个方面,上述方法的特征在于,只有当所述第一信令是用于上行授予的DCI信令时,所述第一信令隐式的指示所述目标TDD配置。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信令,所述第二信令被用于指示第一时隙格式;
其中,所述第二信令由物理层信令承载;当所述第一信令的所述类型包括所述第一类型时,所述目标TDD配置是所述第一TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,或者所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息,所述第三信息被用于确定第二符号集合;
其中,所述第一信令在所述第二符号集合中的仅第二符号组中被发送;无论所述第一信 令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从所述第二符号集合中确定所述第二符号组;所述第二符号集合包括正整数个多载波符号,所述第二符号组包括正整数个多载波符号,所述第二符号组中的任意一个多载波符号都属于所述第二符号集合,所述第二符号组包括的多载波符号的数量不大于所述第二符号集合包括的多载波符号的数量。
根据本申请的一个方面,上述方法的特征在于,包括:
判断是否在第一时频资源组中接收第二比特块;如果是,在所述第一时频资源组中接收所述第二比特块;如果否,放弃在所述第一时频资源组中接收所述第二比特块;
其中,所述操作是接收;所述第一信令被用于确定所述第一时频资源组,所述第二比特块被用于确定所述第一无线信号是否被正确接收;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中接收第二比特块。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于指示第一符号集合;
第一收发机,在所述第一符号集合中的仅第一符号组中操作第一无线信号;
其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令被用于指示第一符号集合;
第二收发机,在所述第一符号集合中的仅第一符号组中执行第一无线信号;
其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
作为一个实施例,本申请中的方法具备如下优势:
-本申请提出了在考虑到灵活符号和动态的上下行配置的影响下的一种重复传输方案。
-本申请提出了在考虑到灵活符号和动态的上下行配置的影响下,关于在重复传输方案中所参考的上下行配置的设计或者多载波符号类型的配置的一种方案。
-在本申请所提的方法中,可以针对不同的业务类型的传输采用不同的TDD配置,以满足不同业务类型对可靠性和延迟的要求。
-在本申请所提的方法中,可以针对上下行传输分别采用不同的TDD配置,以满足下行传输和上行传输对可靠性和延迟的不同要求。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目 的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的的示意图;
图7示出了根据本申请的一个实施例的第一符号组的确定的示意图;
图8示出了根据本申请的一个实施例的目标TDD配置的确定的示意图;
图9示出了根据本申请的另一个实施例的目标TDD配置的确定的示意图;
图10示出了根据本申请的一个实施例的第一信令的类型和第一无线信号的关系的示意图;
图11示出了根据本申请的另一个实施例的第一信令的类型和第一无线信号的关系的示意图;
图12示出了根据本申请的一个实施例的第一类型、第二类型和第一符号组的关系示意图;
图13示出了根据本申请的另一个实施例的第一类型、第二类型和第一符号组的关系的示意图;
图14示出了根据本申请的一个实施例的确定第二符号组的示意图;
图15示出了根据本申请的一个实施例的判断是否在第一时频资源组中发送第二比特块的示意图;
图16示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图17示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一无线信号的流程图,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令,所述第一信令被用于指示第一符号集合;在步骤102中在所述第一符号集合中的仅第一符号组中操作第一无线信号;其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是上行授予(UpLink Grant)的DCI信令,所述操作是发送。
作为一个实施例,所述第一信令是下行授予(DownLink Grant)的DCI信令,所述操作 是接收。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述操作是接收,所述第一信令是DCI format 1_0,所述DCI format1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述操作是接收,所述第一信令是DCI format 1_1,所述DCI format1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述操作是发送,所述第一信令是DCI format 0_0,所述DCI format0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述操作是发送,所述第一信令是DCI format 0_1,所述DCI format0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一符号组包括的多载波符号的数量小于所述第一符号集合包括的多载波符号的数量。
作为一个实施例,所述第一符号组中的任意一个多载波符号都是所述第一符号集合中的一个多载波符号。
作为一个实施例,所述第一符号组是所述第一符号集合,所述第一符号组包括的多载波符号的数量等于所述第一符号集合包括的多载波符号的数量。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一信令显式的指示第一符号集合。
作为一个实施例,所述第一信令隐式的指示第一符号集合。
作为一个实施例,所述第一信令包括第一域,所述第一信令包括的所述第一域被用于指示第一符号集合。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域显式的指示第一符号集合。
作为上述实施例的一个子实施例,所所述第一信令包括的所述第一域包括正整数个比特。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域隐式的指示第一符号集合。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域是Time domain resource assignment域,所述Time domain resource assignment域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为一个实施例,所述操作是发送。
作为一个实施例,所述操作是接收。
作为一个实施例,所述操作是发送,所述第一无线信号包括上行数据。
作为一个实施例,所述操作是发送,所述第一无线信号包括上行物理层数据信道的发送。
作为一个实施例,所述操作是接收,所述第一无线信号包括下行数据。
作为一个实施例,所述操作是接收,所述第一无线信号包括下行物理层数据信道的发送。
作为一个实施例,所述操作是发送,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述操作是接收,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NPUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NPDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一无线信号携带第一比特块,所述第一比特块包括正整数个比特。
作为上述一个实施例的子实施例,所述第一比特块包括一个传输块(TB,Transport Block)。
作为上述一个实施例的子实施例,所述第一比特块包括正整数个传输块。
作为一个实施例,所述第一符号集合中的仅所述第一符号组被用于操作所述第一比特块。
作为一个实施例,所述第一符号集合中存在一个多载波符号不属于所述第一符号组,所述第一符号集合中所述第一符号组之外的任意一个多载波符号不被用于操作所述第一比特块。
作为一个实施例,所述第一无线信号的所述调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),重复发送次数,第一次重复发送所占用的时域资源,发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述第一无线信号的所述调度信息包括的所述所占用的时域资源包括所述第一符号集合。
作为上述实施例的一个子实施例,所述第一无线信号的所述调度信息包括的所述所占用的频域资源包括所述第一无线信号所占用的频域资源。
作为上述实施例的一个子实施例,所述第一无线信号的所述调度信息包括的所述DMRS的所述配置信息包括RS(Reference Signal)序列,映射方式,DMRS类型,所占用的时域资源, 所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)中的至少之一。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameter)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameter)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameter)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述目标TDD配置是TDD(Time Division Duplex,时分双工)configuration。
作为一个实施例,所述目标TDD配置是slot format。
作为一个实施例,所述目标TDD配置是半静态(semi-static)配置的。
作为一个实施例,所述目标TDD配置是TDD系统中对于多载波符号的类型的配置。
作为一个实施例,所述多载波符号的类型包括UL(UpLink,上行)符号,DL(DownLink,下行)符号和Flexible(灵活)符号。
作为一个实施例,所述目标TDD配置被用于指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述目标TDD配置显式的指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述目标TDD配置隐式的指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述目标TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期的长度和一个时隙配置周期内的每个多 载波符号的类型来确定所述第一符号集合中的每个多载波符号的类型。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个多载波符号。
作为上述实施例的一个子实施例,第一多载波符号和第二多载波符号分别是两个时隙配置周期中位置相同的多载波符号,所述第一多载波符号和所述第二多载波符号的类型相同。
作为上述实施例的一个子实施例,第一多载波符号和第二多载波符号分别是两个时隙配置周期中的第i个多载波符号,所述第一多载波符号和所述第二多载波符号的类型相同,i是不大于所述时隙配置周期包括的多载波符号数量的正整数。
作为一个实施例,所述目标TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期的长度和一个时隙配置周期内的每个多载波符号的类型来确定每个时隙中的每个多载波符号的类型。
作为一个实施例,所述目标TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期内的每个多载波符号的类型和所述第一符号集合在所述时隙配置周期内的位置来确定所述第一符号集合中的每个多载波符号的类型。
作为上述实施例的一个子实施例,给定多载波符号是所述第一符号集合中的任意一个多载波符号,所述给定多载波符号是所述时隙配置周期内的第j个多载波符号,所述给定多载波符号的类型是所述时隙配置周期内的所述第j个多载波符号的类型,j是不大于所述时隙配置周期包括的多载波符号数量的正整数。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置是M个TDD配置中之一,所述第一信令隐式的从所述M个TDD配置中指示所述目标TDD配置,M是大于1的正整数。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置是第一TDD配置或者第二TDD配置,所述第一信令隐式的指示所述目标TDD配置是所述第一TDD配置还是所述第二TDD配置。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述第一信令中的任意比特不显式的指示所述目标TDD配置。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令的类型。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令对应的DCI格式(Format)。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令对应的RNTI(Radio Network Temporary Indentifier,无线网络暂定标识)。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令对应的负载尺寸。
作为一个实施例,所述负载尺寸是信息比特的数量。
作为一个实施例,所述负载尺寸是包括填充比特的信息比特的数量。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令对应的优先级。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令对应的业务类型(Traffic Type)。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令对应的授予类型,所述授予类型是上行授予或者下行授予。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述目标TDD配置被关联到所述第一信令调度的所述第一无线信号的发送方案。
作为一个实施例,所述句子所述第一信令隐式的指示所述目标TDD配置包括:所述第一 信令包括第一域集合,所述第一信令包括的所述第一域集合隐式的指示所述目标TDD配置,所述第一信令包括的所述第一域集合包括正整数个域,所述域包括正整数个比特。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合包括一个域。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合包括多个域。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合指示DCI格式(format)。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合指示RNTI。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合指示RNTI。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合被用于确定负载尺寸。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合显式的指示负载尺寸。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合隐式的指示负载尺寸。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合被用于确定优先级。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合显式的指示优先级。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合隐式的指示优先级。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合被用于确定业务类型(Traffic Type)。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合显式的指示业务类型(Traffic Type)。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合隐式的指示业务类型(Traffic Type)。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合指示授予类型,所述授予类型是上行授予或者下行授予。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合被用于确定所述第一无线信号的发送方案。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合显式的指示所述第一无线信号的发送方案。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域集合隐式的指示所述第一无线信号的发送方案。
作为一个实施例,所述第一信令的类型包括DCI格式(format)。
作为一个实施例,所述第一信令的类型包括RNTI。
作为一个实施例,所述第一信令的类型包括负载尺寸。
作为一个实施例,所述第一信令的类型包括优先级。
作为一个实施例,所述第一信令的类型包括业务类型(Traffic Type)。
作为一个实施例,所述第一信令的类型包括授予类型,所述授予类型是上行授予或者下行授予。
作为一个实施例,所述第一信令的类型包括所述第一无线信号的发送方案。
作为一个实施例,所述第一无线信号的所述发送方案包括是否重复发送,重复发送的次数,在一个时隙内是否允许重复发送,在一个时隙内的最大重复发送次数,多次重复发送分别的起始多载波符号在对应的时隙中的位置是否相同,重复发送的方案中的一个或者多个的组合。
作为一个实施例,所述第一无线信号的所述发送方案包括是否重复发送(with or without repetitions)。
作为一个实施例,所述第一无线信号的所述发送方案包括重复发送的次数(Number of Repetitions)。
作为一个实施例,所述第一无线信号的所述发送方案包括在一个时隙内是否允许重复发送。
作为一个实施例,所述第一无线信号的所述发送方案包括在一个时隙内的最大重复发送次数。
作为一个实施例,所述第一无线信号的所述发送方案包括多次重复发送分别的起始多载波符号在对应的时隙中的位置是否相同。
作为一个实施例,所述第一无线信号的所述发送方案包括重复发送的方案,所述重复发送的方案包括基于时隙的重复发送(slot based repetitions),基于小时隙的重复发送(mini-slot based repetitions),多段重复发送(multi-segment transmission)。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述监测生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468, 接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410 处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令被用于指示第一符号集合;在所述第一符号集合中的仅第一符号组中操作第一无线信号;其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于指示第一符号集合;在所述第一符号集合中的仅第一符号组中操作第一无线信号;其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令,所述第一信令被用于指示第一符号集合;在所述第一符号集合中的仅第一符号组中执行第一无线信号;其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于指示第一符号集合;在所述第一符号集合中的仅第一符号组中执行第一无线信号;其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第三信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第三信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二符号集合中的仅所述第二符号组中监测本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述 接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一符号集合中的仅所述第一符号组中接收本申请中的所述第一无线信号,所述操作是接收。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一符号集合中的仅所述第一符号组中发送本申请中的所述第一无线信号,所述执行是发送。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一符号集合中的仅所述第一符号组中发送本申请中的所述第一无线信号,所述操作是发送。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一符号集合中的仅所述第一符号组中接收本申请中的所述第一无线信号,所述执行是接收。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的所述行为判断是否在第一时频资源组中发送第二比特块。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一时频资源组中发送本申请中的所述第二比特块。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于放弃在本申请中的所述第一时频资源组中发送本申请中的所述第二比特块。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中, 第一节点U02和 第二节点N01之间是通过空中接口进行通信。在附图5中,虚线方框F1是可选的,F2和F3中有且仅有一个是可选的,F4、F5和F6是可选的。
对于 第一节点U02,在步骤S20中接收第一信息;在步骤S21中接收第二信令;在步骤S22中接收第三信息;在步骤S23中在第二符号集合中的仅第二符号组中监测第一信令;在步骤S24中接收第一信令;在步骤S25中在第一符号集合中的仅第一符号组中发送第一无线信号;在步骤S26中在第一符号集合中的仅第一符号组中接收第一无线信号;在步骤S27中判断是否在第一时频资源组中发送第二比特块;在步骤S28中在第一时频资源组中发送第二比特块;在步骤S29中放弃在第一时频资源组中发送第二比特块。
对于 第二节点N01,在步骤S10中发送第一信息;在步骤S11中发送第二信令;在步骤S12中发送第三信息;在步骤S13中发送第一信令;在步骤S14中在第一符号集合中的仅第一符号组中接收第一无线信号;在步骤S15中在第一符号集合中的仅第一符号组中发送第一无线信号;在步骤S16中判断是否在第一时频资源组中接收第二比特块;在步骤S17中在第一时频资源组中接收第二比特块;在步骤S18中放弃在第一时频资源组中接收第二比特块。
在实施例5中,所述第一信令被用于指示第一符号集合;所述第一信令被用于指示所述 第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述第一信息由更高层信令承载,所述第一信息被用于确定第一TDD配置;当所述第一信令的类型包括第一类型时,所述目标TDD配置是所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。所述第二信令被用于指示第一时隙格式;所述第二信令由物理层信令承载;当所述第一信令的所述类型包括所述第一类型时,所述目标TDD配置是所述第一TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,或者所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。所述第三信息被用于指示第二符号集合;所述第一信令在所述第二符号集合中的仅第二符号组中被发送;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从所述第二符号集合中确定所述第二符号组;所述第二符号集合包括正整数个多载波符号,所述第二符号组包括正整数个多载波符号,所述第二符号组中的任意一个多载波符号都属于所述第二符号集合,所述第二符号组包括的多载波符号的数量不大于所述第二符号集合包括的多载波符号的数量。本申请中的所述操作是接收;所述第一信令被用于指示所述第一时频资源组,所述第二比特块被用于指示所述第一无线信号是否被正确接收;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中发送第二比特块。
作为一个实施例,本申请中的所述操作是发送,本申请中的所述执行是接收;虚线方框F2存在,虚线方框F3不存在。
作为一个实施例,本申请中的所述操作是接收,本申请中的所述执行是发送;虚线方框F2不存在,虚线方框F3存在。
作为一个实施例,虚线方框F2存在,虚线方框F3不存在。
作为一个实施例,虚线方框F2不存在,虚线方框F3存在。
作为一个实施例,虚线方框F2存在,虚线方框F3不存在,虚线方框F4、F5和F6都不存在。
作为一个实施例,虚线方框F2不存在,虚线方框F3存在,虚线方框F4、F5和F6都不存在。
作为一个实施例,虚线方框F2不存在,虚线方框F3存在,虚线方框F4存在,虚线方框F5和F6中有且仅有一个存在。
作为一个实施例,虚线方框F2不存在,虚线方框F3存在,虚线方框F4存在,虚线方框F5存在,虚线方框F6不存在。
作为一个实施例,虚线方框F2不存在,虚线方框F3存在,虚线方框F4存在,虚线方框F5不存在,虚线方框F6存在。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息由MAC CE信令承载。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第一信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE。
作为一个实施例,所述第一信息包括tdd-UL-DL-ConfigurationCommon。
作为一个实施例,所述第一信息包括tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigDedicated。
作为一个实施例,所述第一信息包括IE TDD-UL-DL-Config的部分或全部域。
作为一个实施例,所述第一信息包括IE TDD-UL-DL-Config的部分域。
作为一个实施例,所述第一信息包括IE TDD-UL-DL-Config。
作为一个实施例,所述第一信息被用于指示第一TDD配置。
作为一个实施例,所述第一信息显式的指示第一TDD配置。
作为一个实施例,所述第一信息隐式的指示第一TDD配置。
作为一个实施例,所述第一TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,所述第一信息指示所述时隙配置周期内的部分或者全部多载波符号的类型。
作为上述实施例的一个子实施例,所述第一信息包括tdd-UL-DL-ConfigurationCommon,所述第一TDD配置是pattern1,所述时隙配置周期是P,所述pattern1和所述P的具体定义参见3GPP TS38.213中的第11.1章节。
作为上述实施例的一个子实施例,所述第一信息包括tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigDedicated,所述第一TDD配置包括pattern1和pattern2,所述时隙配置周期是P+P2,所述pattern1、所述pattern2、所述P和所述P2的具体定义参见3GPP TS38.213中的第11.1章节。
作为上述实施例的一个子实施例,所述时隙配置周期包括一个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个多载波符号。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内的全部多载波符号的类型。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内的部分多载波符号的类型。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内的部分多载波符号的类型,所述时隙配置周期内的其他多载波符号的类型是预定义的。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内类型是DL和UL的多载波符号。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内类型是DL和UL的多载波符号,所述时隙配置周期内除了所述第一信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内的正整数个多载波符号,所述时隙配置周期内除了所述第一信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内的正整数个多载波符号,所述第一信息指示的多载波符号的类型是DL、UL和Flexible中的至少之一,所述时隙配置周期内除了所述第一信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为上述实施例的一个子实施例,所述第一信息指示所述时隙配置周期内的正整数个多载波符号,所述第一信息指示的多载波符号的类型是DL、UL和Flexible中的至少DL和UL, 所述时隙配置周期内除了所述第一信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为一个实施例,所述第一节点中的方法还包括:
接收第二信息;
其中,所述第二信息由更高层信令承载,所述第二信息被用于确定所述第二TDD配置。
作为一个实施例,所述第一接收机还接收第二信息;其中,所述第二信息由更高层信令承载,所述第二信息被用于确定所述第二TDD配置。
作为一个实施例,所述第二节点中的方法还包括:
发送第二信息(R16URLLC UL/DL SFI);
其中,所述第二信息由更高层信令承载,所述第二信息被用于确定所述第二TDD配置。
作为一个实施例,所述第二发射机还发送第二信息(R16URLLC UL/DL SFI);
其中,所述第二信息由更高层信令承载,所述第二信息被用于确定所述第二TDD配置。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息由MAC CE信令承载。
作为一个实施例,所述第二信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第二信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE。
作为一个实施例,所述第二信息包括IE TDD-UL-DL-Config的部分域。
作为一个实施例,所述第二信息和所述第一信息都属于RRC信令中的同一个IE。
作为一个实施例,所述第二信息和所述第一信息都属于RRC信令中的IE TDD-UL-DL-Config。
作为一个实施例,所述第二信息和所述第一信息分别属于RRC信令中的两个IE。
作为一个实施例,所述第二信息被用于指示第二TDD配置。
作为一个实施例,所述第二信息显式的指示第二TDD配置。
作为一个实施例,所述第二信息隐式的指示第二TDD配置。
作为一个实施例,所述第二TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,所述第二信息指示所述时隙配置周期内的部分或者全部多载波符号的类型。
作为上述实施例的一个子实施例,所述第二TDD配置指示的所述时隙配置周期和所述第一TDD配置指示的所述时隙配置周期相同。
作为上述实施例的一个子实施例,所述第二TDD配置指示的所述时隙配置周期和所述第一TDD配置指示的所述时隙配置周期不同。
作为上述实施例的一个子实施例,所述时隙配置周期包括一个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个多载波符号。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内的全部多载波符号的类型。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内的部分多载波符号的类型。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内的部分多载波符号的类型,所述时隙配置周期内的其他多载波符号的类型是预定义的。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内类型是DL和UL的多载波符号。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内类型是DL和UL的多载波符号,所述时隙配置周期内除了所述第二信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内的正整数个多载波符号,所述时隙配置周期内除了所述第二信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内的正整数个多载波符号,所述第二信息指示的多载波符号的类型是DL、UL和Flexible中的至少之一,所述时隙配置周期内除了所述第二信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为上述实施例的一个子实施例,所述第二信息指示所述时隙配置周期内的正整数个多载波符号,所述第二信息指示的多载波符号的类型是DL、UL和Flexible中的至少DL和UL,所述时隙配置周期内除了所述第二信息指示的多载波符号之外的其他多载波符号的类型是Flexible。
作为一个实施例,所述第二信令是动态配置的。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是DCI信令。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第二信令指示时隙格式(Slot Format)。
作为一个实施例,所述第二信令是DCI format 2_0,所述DCI format 2_0的具体定义参见3GPP TS38.212中的第7.3.1.3章节。
作为一个实施例,所述第一节点被配置为监测(Monitor)所述第二信令。
作为一个实施例,所述第一节点中的方法还包括:
接收第四信息;
其中,所述第四信息指示第一标识,所述第二信令携带所述第一标识。
作为一个实施例,所述第一接收机还接收第四信息;其中,所述第四信息指示第一标识,所述第二信令携带所述第一标识。
作为一个实施例,所述第二节点中的方法还包括:
发送第四信息;
其中,所述第四信息指示第一标识,所述第二信令携带所述第一标识。
作为一个实施例,所述第二接收机还发送第四信息;其中,所述第四信息指示第一标识,所述第二信令携带所述第一标识。
作为一个实施例,所述第四信息被用于配置所述第一节点监测所述第二信令。
作为一个实施例,所述第四信息是半静态配置的。
作为一个实施例,所述第四信息由RRC信令承载。
作为一个实施例,所述第四信息由MAC CE信令承载。
作为一个实施例,所述第四信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第四信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第四信息包括RRC信令的IE SlotFormatIndicator中的SFI-RNTI域,所述IE SlotFormatIndicator和所述SFI-RNTI域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一标识是SFI-RNTI。
作为一个实施例,所述第一标识是非负整数。
作为一个实施例,所述第一标识是所述第二信令的信令标识。
作为一个实施例,所述第二信令是一个被所述第一标识所标识的DCI信令。
作为一个实施例,所述第一标识被用于生成所述第二信令的DMRS(DeModulation Reference Signals,解调参考信号)的RS(Reference Signal,参考信号)序列。
作为一个实施例,所述第二信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被所述第一标识所加扰。
作为一个实施例,所述监测(Monitor)是指盲检测,即接收信号并执行译码操作,当根据CRC(Cyclic Redundancy Check,循环冗余校验)比特确定译码正确时则判断接收到给定无线信号;否则判断未接收到给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测是指相干检测,即在给定时频资源中用给定无线信号所在的物理层信道的DMRS的RS序列进行相干接收,并测量所述相干接收后得到的信号的能量。当所述相干接收后得到的信号的能量大于第一给定阈值时,判断接收到所述给定无线信号;否则判断未接收到所述给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测是指能量检测,即在给定时频资源中感知(Sense)无线信号的能量并在时间上平均,以获得接收能量。当所述接收能量大于第二给定阈值时,判断接收到给定无线信号;否则判断未接收到给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测是指相干检测,即在给定时频资源中用给定无线信号的序列进行相干接收,并测量所述相干接收后得到的信号的能量。当所述相干接收后得到的信号的能量大于第三给定阈值时,判断接收到所述给定无线信号;否则判断未接收到所述给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测(Monitor)是指盲检测,即接收信号并执行译码操作,当根据CRC(Cyclic Redundancy Check,循环冗余校验)比特确定译码正确时则判断检测(detect)到给定无线信号;否则判断未检测(detect)到给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测是指相干检测,即在给定时频资源中用给定无线信号所在的物理层信道的DMRS的RS序列进行相干接收,并测量所述相干接收后得到的信号的能量。当所述相干接收后得到的信号的能量大于第一给定阈值时,判断检测(detect)到所述给定无线信号;否则判断未检测(detect)到所述给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测是指能量检测,即在给定时频资源中感知(Sense)无线信号的能量并在时间上平均,以获得接收能量。当所述接收能量大于第二给定阈值时,判断检测(detect)到给定无线信号;否则判断未检测(detect)到给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述监测是指相干检测,即在给定时频资源中用给定无线信号的序列进行相干接收,并测量所述相干接收后得到的信号的能量。当所述相干接收后得到的信号的能量大于第三给定阈值时,判断检测(detect)到所述给定无线信号;否则判断未检测(detect) 到所述给定无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二信令。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一信令。
作为一个实施例,所述第一时隙格式是Slot Format。
作为一个实施例,所述第一时隙格式是一个时隙的时隙格式。
作为一个实施例,所述第一时隙格式指示一个时隙中的每个多载波符号的类型。
作为一个实施例,所述第一时隙格式指示正整数个多载波符号的类型。
作为一个实施例,所述第一时隙格式是从所述第一节点监测到所述第二信令的一个时隙开始的一些时隙(A Number of)中的每个时隙的时隙格式(Slot Format)。
作为一个实施例,所述第一时隙格式的值是一个255之外的非负整数。
作为一个实施例,所述第一时隙格式的值是一个小于255的非负整数。
作为一个实施例,所述第二信令显式的指示第一时隙格式。
作为一个实施例,所述第二信令隐式的指示第一时隙格式。
作为一个实施例,所述第二信令指示正整数个SFI(Slot Format Indicator,时隙格式指示)值,所述第一时隙格式是所述正整数个SFI值中的一个SFI值所对应的时隙格式。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由RRC信令承载。
作为一个实施例,所述第三信息由MAC CE信令承载。
作为一个实施例,所述第三信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第三信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE。
作为一个实施例,所述第三信息包括。
作为一个实施例,所述第三信息包括IE的部分或全部域。
作为一个实施例,所述第三信息包括IE的部分域。
作为一个实施例,所述第三信息包括IE PDCCH-ConfigSIB1的部分或全部域,所述IE PDCCH-ConfigSIB1的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第三信息包括IE PDCCH-ConfigCommon的部分或全部域,所述IE PDCCH-ConfigCommon的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第三信息包括IE PDCCH-Config的部分或全部域,所述IE PDCCH-Config的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第三信息包括IE ControlResourceSet,所述IE ControlResourceSet的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第三信息包括IE PDCCH-Config和IE ControlResourceSet。
作为一个实施例,所述第三信息显式的指示第二符号集合。
作为一个实施例,所述第三信息隐式的指示第二符号集合。
作为一个实施例,所述第二符号集合中存在一个多载波符号不属于所述第二符号组,不在所述第二符号集合中所述第二符号组之外的任意一个多载波符号中监测所述第一信令。
作为一个实施例,所述第一时频资源组在时域上包括正整数个多载波符号。
作为一个实施例,所述第一时频资源组在频域上包括正整数个子载波。
作为一个实施例,所述第一时频资源组在频域上包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第一时频资源组包括正整数个RE(Resource Element,资源粒子)。
作为一个实施例,所述第一时频资源组是被分配给PUCCH(Physical Uplink Control CHannel,物理上行控制信道)的时频资源。
作为一个实施例,所述第一信令显式的指示所述第一时频资源组。
作为一个实施例,所述第一信令隐式的指示所述第一时频资源组。
作为一个实施例,所述第一信令包括第二域,所述第一信令包括的所述第二域被用于确定所述第一时频资源组。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域包括正整数个比特。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域被用于从第一时频资源组集合中指示所述第一时频资源组,所述第一时频资源组集合包括正整数个时频资源组,所述第一时频资源组是所述第一时频资源组集合中的一个时频资源组。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域指示所述第一时频资源组在第一时频资源组集合中的索引,所述第一时频资源组集合包括正整数个时频资源组,所述第一时频资源组是所述第一时频资源组集合中的一个时频资源组。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域是PUCCH resource indicator,所述PUCCH resource indicator的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述第二比特块中承载针对所述第一无线信号的HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)反馈。
实施例6
实施例6示例了根据本申请的一个实施例的第一符号组的确定的示意图,如附图6所示。
在实施例6中,本申请中的所述目标TDD配置被用于从本申请中的所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述第一符号组是所述第一符号集合。
作为一个实施例,所述第一符号集合中存在一个多载波符号不属于所述第一符号组。
作为一个实施例,所述操作和所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型;所述操作和所述第一符号集合中的每个多载波符号的所述类型被用于从所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号时,所述给定符号不属于所述第一符号组。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是DL符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号不属于所述第一符号组。
作为一个实施例,所述操作是接收;当所述第一节点不被配置为监测DCI format 2_0时,给定符号是所述第一符号集合中的一个多载波符号,当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是接收;所述第一符号集合包括多个符号子集,所述多个符号子集中的任意一个符号子集包括正整数个多载波符号;给定符号子集是所述多个符号子集中之一;当所述目标TDD配置被用于确定所述给定符号子集中的至少一个多载波符号的类型是UL符号时,所述给定符号子集所包括的多载波符号都不属于所述第一符号组。
作为上述实施例的一个子实施例,所述多个符号子集分别属于多个时隙。
作为上述实施例的一个子实施例,不存在一个多载波符号属于所述多个符号子集中的两个符号子集。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是DL符号时,所述给定符号不属于所述第一符号组。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号不属于所述第一符号组。
作为一个实施例,所述操作是发送;当所述第一节点不被配置为监测DCI format 2_0时,给定符号是所述第一符号集合中的一个多载波符号,当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是发送;所述第一符号集合包括多个符号子集,所述多个符号子集中的任意一个符号子集包括正整数个多载波符号;给定符号子集是所述多个符号子集中之一;当所述目标TDD配置被用于确定所述给定符号子集中的至少一个多载波符号的类型是DL符号时,所述给定符号子集所包括的多载波符号都不属于所述第一符号组。
作为上述实施例的一个子实施例,所述多个符号子集分别属于多个时隙。
作为上述实施例的一个子实施例,不存在一个多载波符号属于所述多个符号子集中的两个符号子集。
作为一个实施例,所述第一节点被配置为监测第二信令;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置指示所述给定符号的类型是Flexible时,所述给定符号是否属于所述第一符号组与是否检测(detect)到第二信令有关。
作为上述实施例的一个子实施例,当所述第一节点检测(detect)到所述第二信令时,所述给定符号是否属于所述第一符号组与所述第二信令指示的所述给定符号的类型有关。
作为上述实施例的一个子实施例,当所述第一节点没有检测(detect)到所述第二信令时,所述给定符号属于所述第一符号组。
作为一个实施例,所述第一节点被配置为监测第二信令,并且所述第一节点检测(detect)到所述第二信令;给定符号是所述第一符号集合中的一个多载波符号;所述操作是接收,所述第一节点不期望所述第二信令指示的所述给定符号的类型是UL符号。
作为上述实施例的一个子实施例,所述第一节点接收所述第二信令。
作为上述实施例的一个子实施例,所述第二信令是DCI format 2_0,所述第二信令指示一个255之外的时隙格式值来表示所述给定符号所属的时隙的格式。
作为一个实施例,所述第一节点被配置为监测第二信令,并且所述第一节点检测(detect)到所述第二信令;给定符号是所述第一符号集合中的一个多载波符号;所述操作是发送,所述第一节点不期望所述第二信令指示的所述给定符号的类型是DL符号。
作为上述实施例的一个子实施例,所述第一节点接收所述第二信令。
作为上述实施例的一个子实施例,所述第二信令是DCI format 2_0,所述第二信令指示一个255之外的时隙格式值来表示所述给定符号所属的时隙的格式。
作为一个实施例,所述第一节点被配置为监测第二信令,并且所述第一节点检测(detect)到所述第二信令;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置 被用于确定所述给定符号的类型是DL符号时,所述第一节点不期望所述第二信令指示的所述给定符号的类型是UL符号。
作为上述实施例的一个子实施例,所述第一节点接收所述第二信令。
作为上述实施例的一个子实施例,所述第二信令是DCI format 2_0,所述第二信令指示一个255之外的时隙格式值来表示所述给定符号所属的时隙的格式。
作为一个实施例,所述第一节点被配置为监测第二信令,并且所述第一节点检测(detect)到所述第二信令;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号时,所述第一节点不期望所述第二信令指示的所述给定符号的类型是DL符号。
作为上述实施例的一个子实施例,所述第一节点接收所述第二信令。
作为上述实施例的一个子实施例,所述第二信令是DCI format 2_0,所述第二信令指示一个255之外的时隙格式值来表示所述给定符号所属的时隙的格式。
作为一个实施例,所述第一节点被配置为监测第二信令,并且所述第一节点检测(detect)到所述第二信令;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号是否属于所述第一符号组与所述第二信令指示的所述给定符号的类型有关。
作为上述实施例的一个子实施例,所述第一节点接收所述第二信令。
作为上述实施例的一个子实施例,所述第二信令是DCI format 2_0,所述第二信令指示一个255之外的时隙格式值来表示所述给定符号所属的时隙的格式。
作为上述实施例的一个子实施例,当所述第二信令指示所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是接收;所述第一节点不期望检测到(does not expect to detect)所述第二信令指示所述给定符号的类型是UL符号。
作为上述实施例的一个子实施例,所述操作是发送;所述第一节点不期望检测到(does not expect to detect)所述第二信令指示所述给定符号的类型是DL符号。
作为上述实施例的一个子实施例,所述操作是接收;当且仅当所述第二信令指示所述给定符号的所述类型是DL符号时,所述给定符号属于所述第一符号组;当所述第二信令指示所述给定符号的所述类型是UL符号或者Flexible时,所述给定符号不属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是接收;当且仅当所述第二信令指示所述给定符号的所述类型是DL符号或者Flexible时,所述给定符号属于所述第一符号组;当所述第二信令指示所述给定符号的所述类型是UL符号时,所述给定符号不属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是发送;当且仅当所述第二信令指示所述给定符号的所述类型是UL符号时,所述给定符号属于所述第一符号组;当所述第二信令指示所述给定符号的所述类型是DL符号或者Flexible时,所述给定符号不属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是发送;当且仅当所述第二信令指示所述给定符号的所述类型是UL符号或者Flexible时,所述给定符号属于所述第一符号组;当所述第二信令指示所述给定符号的所述类型是DL符号时,所述给定符号不属于所述第一符号组。
实施例7
实施例7示例了根据本申请的另一个实施例的第一符号组的确定的示意图,如附图7所示。
在实施例7中,本申请中的所述第一时隙格式和所述目标TDD配置共同被用于从本申请中的所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述操作、所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述第一时隙格式被用于指示所述第一符号集合中的每个多载波符号的类型;所述 操作、所述目标TDD配置所确定的所述第一符号集合中的每个多载波符号的所述类型和所述第一时隙格式所指示的所述第一符号集合中的每个多载波符号的所述类型共同被用于从所述第一符号集合中确定所述第一符号组。
作为一个实施例,给定符号是所述第一符号集合中的一个多载波符号;所述操作是接收,所述第一节点不期望所述第一时隙格式指示的所述给定符号的类型是UL符号。
作为一个实施例,给定符号是所述第一符号集合中的一个多载波符号;所述操作是发送,所述第一节点不期望所述第一时隙格式指示的所述给定符号的类型是DL符号。
作为一个实施例,给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是DL符号时,所述第一节点不期望所述第一时隙格式指示的所述给定符号的类型是UL符号。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是DL符号,并且所述第一时隙格式指示的所述给定符号的类型是DL符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是DL符号,并且所述第一时隙格式指示的所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是接收;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是DL符号,并且所述第一时隙格式指示的所述给定符号的类型是UL符号时,所述给定符号不属于所述第一符号组。
作为一个实施例,给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号时,所述第一节点不期望所述第一时隙格式指示的所述给定符号的类型是DL符号。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号,并且所述第一时隙格式指示的所述给定符号的类型是UL符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号,并且所述第一时隙格式指示的所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为一个实施例,所述操作是发送;给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是UL符号,并且所述第一时隙格式指示的所述给定符号的类型是DL符号时,所述给定符号不属于所述第一符号组。
作为一个实施例,给定符号是所述第一符号集合中的一个多载波符号;当所述目标TDD配置被用于确定所述给定符号的类型是Flexible符号时,所述给定符号是否属于所述第一符号组与所述第一时隙格式指示的所述给定符号的类型有关。
作为上述实施例的一个子实施例,当所述第一时隙格式指示所述给定符号的类型是Flexible符号时,所述给定符号属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是接收;所述第一节点不期望检测到(does not expect to detect)所述第一时隙格式指示所述给定符号的类型是UL符号。
作为上述实施例的一个子实施例,所述操作是发送;所述第一节点不期望检测到(does not expect to detect)所述第一时隙格式指示所述给定符号的类型是DL符号。
作为上述实施例的一个子实施例,所述操作是接收;当且仅当所述第一时隙格式指示所述给定符号的所述类型是DL符号时,所述给定符号属于所述第一符号组;当所述第一时隙格式指示所述给定符号的所述类型是UL符号或者Flexible时,所述给定符号不属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是接收;当且仅当所述第一时隙格式指示所述给定符号的所述类型是DL符号或者Flexible时,所述给定符号属于所述第一符号组;当 所述第一时隙格式指示所述给定符号的所述类型是UL符号时,所述给定符号不属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是发送;当且仅当所述第一时隙格式指示所述给定符号的所述类型是UL符号时,所述给定符号属于所述第一符号组;当所述第一时隙格式指示所述给定符号的所述类型是DL符号或者Flexible时,所述给定符号不属于所述第一符号组。
作为上述实施例的一个子实施例,所述操作是发送;当且仅当所述第一时隙格式指示所述给定符号的所述类型是UL符号或者Flexible时,所述给定符号属于所述第一符号组;当所述第一时隙格式指示所述给定符号的所述类型是DL符号时,所述给定符号不属于所述第一符号组。
实施例8
实施例8示例了根据本申请的一个实施例的目标TDD配置的确定的示意图,如附图8所示。
在实施例8中,当本申请中的所述第一信令的类型包括第一类型时,所述目标TDD配置是本申请中的所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。
作为一个实施例,所述第一信令的类型包括DCI格式(format),所述第一类型和所述第二类型分别是不同的DCI格式。
作为上述实施例的一个子实施例,所述操作是发送,所述第一类型是DCI格式0_0或者DCI格式0_1。
作为上述实施例的一个子实施例,所述操作是接收,所述第一类型是DCI格式1_0或者DCI格式1_1。
作为一个实施例,所述第一信令的类型包括RNTI。
作为上述实施例的一个子实施例,所述第一类型是C(Cell,小区)-RNTI、CS(Configured Scheduling,配置的调度)-RNTI或者SP(Semi-Persistent,半永久)-CSI(Channel State Information,信道状态信息)-RNTI中之一。
作为上述实施例的一个子实施例,所述第一类型是C-RNTI、CS-RNTI、SP-CSI-RNTI或者MCS-C-RNTI中之一。
作为上述实施例的一个子实施例,所述第二类型是MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI。
作为上述实施例的一个子实施例,所述第二类型不是C-RNTI、CS-RNTI、SP-CSI-RNTI或者MCS-C-RNTI中的任意一个。
作为上述实施例的一个子实施例,所述第二类型不是C-RNTI、CS-RNTI或者SP-CSI-RNTI中的任意一个。
作为一个实施例,所述第一信令的类型包括负载尺寸。
作为上述实施例的一个子实施例,所述第一类型和所述第二类型分别是不同的负载尺寸。
作为一个实施例,所述第一信令的类型包括优先级。
作为上述实施例的一个子实施例,所述第一类型和所述第二类型分别是不同的优先级。
作为一个实施例,所述第一信令的类型包括业务类型(Traffic Type)。
作为上述实施例的一个子实施例,所述第一类型和所述第二类型分别是不同的业务类型。
作为一个实施例,所述第一信令的类型包括授予类型,所述授予类型是上行授予或者下行授予。
作为上述实施例的一个子实施例,所述第一类型是下行授予,所述第二类型是上行授予。
作为上述实施例的一个子实施例,所述第一类型是上行授予,所述第二类型是下行授予。
作为一个实施例,所述第一信令的类型包括所述第一无线信号的发送方案。
作为上述实施例的一个子实施例,所述第一类型和所述第二类型分别是不同的发送方案。
作为上述实施例的一个子实施例,所述发送方案包括是否重复发送,重复发送的次数,在一个时隙内是否允许重复发送,在一个时隙内的最大重复发送次数,多次重复发送分别的起始多载波符号在对应的时隙中的位置是否相同,重复发送的方案中的一个或者多个的组合。
作为上述实施例的一个子实施例,所述发送方案包括是否重复发送(with or without repetitions)。
作为上述实施例的一个子实施例,所述第一类型包括不重复发送,所述第二类型包括重复发送。
作为上述实施例的一个子实施例,所述发送方案包括重复发送的次数(Number of Repetitions)。
作为上述实施例的一个子实施例,所述第一类型包括重复发送的次数是1,所述第二类型包括重复发送的次数大于1。
作为上述实施例的一个子实施例,所述发送方案包括在一个时隙内是否允许重复发送。
作为上述实施例的一个子实施例,所述第一类型包括在一个时隙内不允许重复发送,所述第二类型包括在一个时隙内允许重复发送。
作为上述实施例的一个子实施例,所述发送方案包括在一个时隙内的最大重复发送次数。
作为上述实施例的一个子实施例,所述第一类型包括在一个时隙内的最大重复发送次数是1,所述第二类型包括在一个时隙内的最大重复发送次数大于1。
作为上述实施例的一个子实施例,所述发送方案包括多次重复发送分别的起始多载波符号在对应的时隙中的位置是否相同。
作为上述实施例的一个子实施例,所述第一类型包括多次重复发送分别的起始多载波符号在对应的时隙中的位置是相同的,所述第二类型包括多次重复发送分别的起始多载波符号在对应的时隙中的位置是不同的。
作为上述实施例的一个子实施例,所述发送方案包括重复发送的方案,所述重复发送的方案包括基于时隙的重复发送(slot based repetitions),基于小时隙的重复发送(mini-slot based repetitions),多段重复发送(multi-segment transmission)。
作为上述实施例的一个子实施例,所述第一类型包括基于时隙的重复发送,所述第二类型包括基于小时隙的重复发送或者多段重复发送。
作为一个实施例,所述第一TDD配置是TDD configuration。
作为一个实施例,所述第一TDD配置是时隙格式(Slot Format)。
作为一个实施例,所述第一TDD配置是半静态(semi-static)配置的。
作为一个实施例,所述第一TDD配置是TDD系统中对于多载波符号的类型的配置。
作为一个实施例,所述第一TDD配置被用于指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述第一TDD配置显式的指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述第一TDD配置隐式的指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述第一TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期的长度和一个时隙配置周期内的每个多载波符号的类型来确定所述第一符号集合中的每个多载波符号的类型。
作为上述实施例的一个子实施例,所述时隙配置周期包括一个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个多载波符号。
作为上述实施例的一个子实施例,第一多载波符号和第二多载波符号分别是两个时隙配置周期中位置相同的多载波符号,所述第一多载波符号和所述第二多载波符号的类型相同。
作为上述实施例的一个子实施例,第一多载波符号和第二多载波符号分别是两个时隙配 置周期中的第i个多载波符号,所述第一多载波符号和所述第二多载波符号的类型相同,i是不大于所述时隙配置周期包括的多载波符号数量的正整数。
作为一个实施例,所述第一TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期的长度和一个时隙配置周期内的每个多载波符号的类型来确定每个时隙中的每个多载波符号的类型。
作为一个实施例,所述第一TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期内的每个多载波符号的类型和所述第一符号集合在所述时隙配置周期内的位置来确定所述第一符号集合中的每个多载波符号的类型。
作为上述实施例的一个子实施例,给定多载波符号是所述第一符号集合中的任意一个多载波符号,所述给定多载波符号是所述时隙配置周期内的第j个多载波符号,所述给定多载波符号的类型是所述时隙配置周期内的所述第j个多载波符号的类型,j是不大于所述时隙配置周期包括的多载波符号数量的正整数。
作为一个实施例,所述第二TDD配置是TDD configuration。
作为一个实施例,所述第二TDD配置是时隙格式(Slot Format)。
作为一个实施例,所述第二TDD配置是半静态(semi-static)配置的。
作为一个实施例,所述第二TDD配置是TDD系统中对于多载波符号的类型的配置。
作为一个实施例,所述第二TDD配置被用于指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述第二TDD配置显式的指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述第二TDD配置隐式的指示所述第一符号集合中的每个多载波符号的类型。
作为一个实施例,所述第二TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期的长度和一个时隙配置周期内的每个多载波符号的类型来确定所述第一符号集合中的每个多载波符号的类型。
作为上述实施例的一个子实施例,所述时隙配置周期包括一个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个时隙。
作为上述实施例的一个子实施例,所述时隙配置周期包括正整数个多载波符号。
作为上述实施例的一个子实施例,第三多载波符号和第四多载波符号分别是两个时隙配置周期中位置相同的多载波符号,所述第三多载波符号和所述第四多载波符号的类型相同。
作为上述实施例的一个子实施例,第三多载波符号和第四多载波符号分别是两个时隙配置周期中的第i个多载波符号,所述第三多载波符号和所述第四多载波符号的类型相同,i是不大于所述时隙配置周期包括的多载波符号数量的正整数。
作为一个实施例,所述第二TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期的长度和一个时隙配置周期内的每个多载波符号的类型来确定每个时隙中的每个多载波符号的类型。
作为一个实施例,所述第二TDD配置指示一个时隙(Slot)配置周期(Configuration Period)内的每个多载波符号的类型,根据所述时隙配置周期内的每个多载波符号的类型和所述第一符号集合在所述时隙配置周期内的位置来确定所述第一符号集合中的每个多载波符号的类型。
作为上述实施例的一个子实施例,给定多载波符号是所述第一符号集合中的任意一个多载波符号,所述给定多载波符号是所述时隙配置周期内的第j个多载波符号,所述给定多载波符号的类型是所述时隙配置周期内的所述第j个多载波符号的类型,j是不大于所述时隙配置周期包括的多载波符号数量的正整数。
作为一个实施例,所述第二TDD配置和所述第一TDD配置不相同。
作为一个实施例,所述第二TDD配置和所述第一TDD配置是独立配置的。
作为一个实施例,所述第二TDD配置和所述第一TDD配置分别由两个更高层信息配置。
作为一个实施例,所述第二TDD配置是预定义的。
作为一个实施例,所述第二TDD配置是预配置的(Pre-configured)。
实施例9
实施例9示例了根据本申请的另一个实施例的目标TDD配置的确定的示意图,如附图9所示。
在实施例9中,只有当本申请中的所述第一信令是用于上行授予的DCI信令时,所述第一信令隐式的指示所述目标TDD配置。
作为一个实施例,当所述第一信令是用于下行授予的DCI信令时,所述操作是接收并且所述目标TDD配置固定为所述第一TDD配置。
实施例10
实施例10示例了根据本申请的一个实施例的第一信令的类型和第一无线信号的关系的示意图,如附图10所示。
在实施例10中,当所述第一信令的所述类型包括本申请中的所述第二类型时,所述第一无线信号包括K个子信号,所述K个子信号都携带第一比特块;K是大于1的正整数,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括一个传输块(TB,Transport Block)。
作为一个实施例,所述第一比特块包括正整数个传输块。
作为一个实施例,所述K个子信号分别是所述第一比特块的K次重复发送。
作为一个实施例,给定子信号是所述K个子信号中的任意一个子信号,所述第一比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述给定子信号。
作为一个实施例,给定子信号是所述K个子信号中的任意一个子信号,所述第一比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述给定子信号。
作为一个实施例,给定子信号是所述K个子信号中的任意一个子信号,所述第一比特块依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述给定子信号。
作为一个实施例,所述第一信令指示K0,K0是正整数,所述K是不小于所述K0的正整数。
作为上述实施例的一个子实施例,所述K0大于1。
作为上述实施例的一个子实施例,所述K0等于1。
作为上述实施例的一个子实施例,所述K0等于所述K。
作为上述实施例的一个子实施例,所述K0小于所述K。
作为上述实施例的一个子实施例,所述K0是标准(Nominal)重复发送的次数,所述K是实际重复发送的次数。
作为一个实施例,所述K个子信号中存在两个子信号属于同一个时隙。
作为一个实施例,所述K个子信号中存在两个子信号分别在所属的时隙中的位置不相同。
作为一个实施例,所述K个子信号中存在两个子信号的冗余版本(RV,Redundancy Version)不同。
作为一个实施例,所述K个子信号对应同一个HARQ进程号(Process Number)。
实施例11
实施例11示例了根据本申请的另一个实施例的第一信令的类型和第一无线信号的关系的示意图,如附图11所示。
在实施例11中,当所述第一信令的所述类型包括本申请中的所述第一类型时,所述第一无线信号包括K1个子信号,所述K1个子信号都携带第二比特块;K1是正整数,所述第二比特块包括正整数个比特。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K1大于1。
作为一个实施例,所述K1等于1,所述K1个子信号是所述第二比特块的单次发送。
作为一个实施例,所述K1大于1,所述K1个子信号分别是所述第二比特块的K1次重复发送。
作为一个实施例,所述第二比特块包括一个传输块(TB,Transport Block)。
作为一个实施例,所述第二比特块包括正整数个传输块。
作为一个实施例,所述K1等于1,所述K1个子信号是所述第一比特块的一次发送。
作为一个实施例,所述K1大于1,所述K1个子信号分别是所述第一比特块的K1次重复发送。
作为一个实施例,给定子信号是所述K1个子信号中的任意一个子信号,所述第二比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述给定子信号。
作为一个实施例,给定子信号是所述K1个子信号中的任意一个子信号,所述第二比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述给定子信号。
作为一个实施例,给定子信号是所述K1个子信号中的任意一个子信号,所述第二比特块依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述给定子信号。
作为一个实施例,所述第一信令指示所述K1。
作为上述实施例的一个子实施例,所述K1大于1。
作为上述实施例的一个子实施例,所述K1等于1。
作为上述实施例的一个子实施例,所述K1是实际重复发送的次数。
作为一个实施例,所述K1大于1,所述K1个子信号中的任意两个子信号分别属于不同的时隙。
作为一个实施例,所述K1大于1,所述K1个子信号中的任意两个子信号分别在所属的时隙中的位置相同。
作为一个实施例,所述K1大于1,所述K1个子信号中存在两个子信号的冗余版本(RV, Redundancy Version)不同。
作为一个实施例,所述K1大于1,所述K1个子信号对应同一个HARQ进程号(Process Number)。
实施例12
实施例12示例了根据本申请的一个实施例的第一类型、第二类型和第一符号组的关系的示意图,如附图12所示。
在实施例12中,当本申请中的所述第一信令的所述类型包括所述第一类型时,本申请中的所述目标TDD配置是本申请中的所述第一TDD配置,本申请中的所述第一时隙格式和所述目标TDD配置共同被用于从本申请中的所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是本申请中的所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组。
实施例13
实施例13示例了根据本申请的另一个实施例的第一类型、第二类型和第一符号组的关系的示意图,如附图13所示。
在实施例13中,当本申请中的所述第一信令的所述类型包括所述第一类型时,本申请中的所述目标TDD配置是本申请中的所述第一TDD配置,本申请中的所述第一时隙格式和所述目标TDD配置共同被用于从本申请中的所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是本申请中的所述第二TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
实施例14
实施例14示例了根据本申请的一个实施例的确定第二符号组的示意图,如附图14所示。
在实施例14中,无论本申请中的所述第一信令的所述类型包括的是本申请中的所述第一类型还是所述第二类型,本申请中的所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从本申请中的所述第二符号集合中确定所述第二符号组。
作为一个实施例,所述第二符号组是所述第二符号集合。
作为一个实施例,所述第二符号集合中存在一个多载波符号不属于所述第二符号组。
作为一个实施例,给定符号是所述第二符号集合中的一个多载波符号;当所述第一TDD配置指示所述给定符号的类型是UL时,所述给定符号不属于所述第二符号组。
作为一个实施例,给定符号是所述第二符号集合中的一个多载波符号;当所述第一TDD配置指示所述给定符号的类型是DL时,所述给定符号属于所述第二符号组。
作为一个实施例,给定符号是所述第二符号集合中的一个多载波符号;当所述第一TDD配置指示所述给定符号的类型是Flexible时,所述给定符号属于所述第二符号组。
作为一个实施例,给定符号是所述第二符号集合中的一个多载波符号;当所述第一TDD配置指示所述给定符号的类型是Flexible时,所述给定符号不属于所述第二符号组。
作为一个实施例,给定符号是所述第二符号集合中的一个多载波符号;当所述第一TDD配置指示所述给定符号的类型是Flexible时,所述给定符号是否属于所述第二符号组与DCI format 2_0有关。
作为上述实施例的一个子实施例,所述给定符号是否属于所述第二符号组与DCI format2_0指示所述给定符号的类型有关。
作为上述实施例的一个子实施例,当且仅当DCI format 2_0中的一个SFI索引域值(SFI-index field value)指示所述给定符号的所述类型是DL时,所述给定符号属于所述第二符号组。
作为上述实施例的一个子实施例,当DCI format 2_0中的一个SFI索引域值指示所述给定符号的所述类型是UL时,所述给定符号不属于所述第二符号组。
作为上述实施例的一个子实施例,当DCI format 2_0中的一个SFI索引域值指示所述给定符号的所述类型是Flexible时,所述给定符号不属于所述第二符号组。
作为上述实施例的一个子实施例,当没有检测(detect)到DCI format 2_0中的一个SFI索引域值指示所述给定符号的所述类型是UL或者Flexible,并且没有检测到一个DCI信令指示所述给定符号被用于上行发送时,所述给定符号属于所述第二符号组。
实施例15
实施例15示例了根据本申请的一个实施例的判断是否在第一时频资源组中发送第二比特块的示意图,如附图15所示。
在实施例15中,无论本申请中的所述第一信令的所述类型包括的是本申请中的所述第一类型还是所述第二类型,本申请中的所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中发送第二比特块。
作为一个实施例,当所述第一TDD配置指示所述第一时频资源组包括的多载波符号的类型都是DL时,放弃在所述第一时频资源组中发送所述第二比特块。
作为一个实施例,当所述第一TDD配置指示所述第一时频资源组包括的多载波符号的类型是DL或Flexible时,放弃在所述第一时频资源组中发送所述第二比特块。
作为一个实施例,当所述第一TDD配置指示所述第一时频资源组包括的一个多载波符号的类型是DL时,放弃在所述第一时频资源组中发送所述第二比特块。
作为一个实施例,当所述第一TDD配置指示所述第一时频资源组包括的一个多载波符号的类型是DL或Flexible时,放弃在所述第一时频资源组中发送所述第二比特块。
作为一个实施例,当所述第一TDD配置指示所述第一时频资源组包括的多载波符号的类型都是UL时,在所述第一时频资源组中发送所述第二比特块。
作为一个实施例,当所述第一TDD配置指示所述第一时频资源组包括的多载波符号的类型是UL或Flexible时,在所述第一时频资源组中发送所述第二比特块。
实施例16
实施例16示例了一个第一节点设备中的处理装置的结构框图,如附图16所示。在附图16中,第一节点设备处理装置1200包括第一收发机1201和第一接收机1202。
作为一个实施例,所述第一节点设备1200是用户设备。
作为一个实施例,所述第一节点设备1200是中继节点。
作为一个实施例,所述第一节点设备1200是基站。
作为一个实施例,所述第一节点设备1200是车载通信设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的中继节点。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,多天线接收处理器458,发射处理器468,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,多天线接收处理器458,发射处理器468,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前七者。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,多天线接收处理器458,发射处理器468,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前六者。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,多天线接收处理器458,发射处理器468,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,多天线接收处理器 458,接收处理器456,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,多天线接收处理器458,接收处理器456,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一收发机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,多天线接收处理器458,接收处理器456,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1202包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1202包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1202包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1202包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1202包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
第一接收机1202,接收第一信令,所述第一信令被用于指示第一符号集合;
第一收发机1201,在所述第一符号集合中的仅第一符号组中操作第一无线信号;
在实施例16中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
作为一个实施例,所述第一接收机1202还接收第一信息;其中,所述第一信息由更高层信令承载,所述第一信息被用于确定第一TDD配置;当所述第一信令的类型包括第一类型时,所述目标TDD配置是所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。
作为一个实施例,当所述第一信令的所述类型包括所述第二类型时,所述第一无线信号包括K个子信号,所述K个子信号都携带第一比特块;K是大于1的正整数,所述第一比特块包括正整数个比特。
作为一个实施例,只有当所述第一信令是用于上行授予的DCI信令时,所述第一信令隐式的指示所述目标TDD配置。
作为一个实施例,所述第一接收机1202还接收第二信令,所述第二信令被用于指示第一时隙格式;其中,所述第二信令由物理层信令承载;当所述第一信令的所述类型包括所述第一类型时,所述目标TDD配置是所述第一TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,或者所述 第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述第一接收机1202还接收第三信息,所述第三信息被用于指示第二符号集合;在所述第二符号集合中的仅第二符号组中监测所述第一信令;其中,无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从所述第二符号集合中确定所述第二符号组;所述第二符号集合包括正整数个多载波符号,所述第二符号组包括正整数个多载波符号,所述第二符号组中的任意一个多载波符号都属于所述第二符号集合,所述第二符号组包括的多载波符号的数量不大于所述第二符号集合包括的多载波符号的数量。
作为一个实施例,所述第一收发机1201还判断是否在第一时频资源组中发送第二比特块;如果是,在所述第一时频资源组中发送所述第二比特块;如果否,放弃在所述第一时频资源组中发送所述第二比特块;其中,所述操作是接收;所述第一信令被用于指示所述第一时频资源组,所述第二比特块被用于指示所述第一无线信号是否被正确接收;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中发送第二比特块。
实施例17
实施例17示例了一个第二节点设备中的处理装置的结构框图,如附图17所示。在附图17中,第二节点设备处理装置1300包括第二发射机1301和第二收发机1302。
作为一个实施例,所述第二节点设备1300是用户设备。
作为一个实施例,所述第二节点设备1300是基站。
作为一个实施例,所述第二节点设备1300是中继节点。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,多天线接收处理器472,发射处理器416,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,多天线接收处理器472,发射处理器416,接收处理器470,控制器/处理器475和存储器476中的至少前七者。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,多天线接收处理器472,发射处理器416,接收处理器470,控制器/处理器475和存储器476中的至少前六者。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,多天线接收处理器472,发射处理器416,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,多天线发射处理器471,发射处理器416和存储器476中的至少前五者。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收 器418,多天线接收处理器472,接收处理器470,控制器/处理器475,多天线发射处理器471,发射处理器416和存储器476中的至少前四者。
作为一个实施例,所述第二收发机1302包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,多天线发射处理器471,发射处理器416和存储器476中的至少前三者。
第二发射机1301,发送第一信令,所述第一信令被用于指示第一符号集合;
第二收发机1302,在所述第一符号集合中的仅第一符号组中执行第一无线信号;
在实施例17中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
作为一个实施例,所述第二发射机1301还发送第一信息;其中,所述第一信息由更高层信令承载,所述第一信息被用于确定第一TDD配置;当所述第一信令的类型包括第一类型时,所述目标TDD配置是所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。
作为一个实施例,当所述第一信令的所述类型包括所述第二类型时,所述第一无线信号包括K个子信号,所述K个子信号都携带第一比特块;K是大于1的正整数,所述第一比特块包括正整数个比特。
作为一个实施例,只有当所述第一信令是用于上行授予的DCI信令时,所述第一信令隐式的指示所述目标TDD配置。
作为一个实施例,所述第二发射机1301还发送第二信令,所述第二信令被用于指示第一时隙格式;其中,所述第二信令由物理层信令承载;当所述第一信令的所述类型包括所述第一类型时,所述目标TDD配置是所述第一TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,或者所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
作为一个实施例,所述第二发射机1301还发送第三信息,所述第三信息被用于确定第二符号集合;其中,所述第一信令在所述第二符号集合中的仅第二符号组中被发送;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从所述第二符号集合中确定所述第二符号组;所述第二符号集合包括正整数个多载波符号,所述第二符号组包括正整数个多载波符号,所述第二符号组中的任意一个多载波符号都属于所述第二符号集合,所述第二符号组包括的多载波符号的数量不大于所述第二符号集合包括的多载波符号的数量。
作为一个实施例,所述第二收发机1302还判断是否在第一时频资源组中接收第二比特块;如果是,在所述第一时频资源组中接收所述第二比特块;如果否,放弃在所述第一时频资源组中接收所述第二比特块;其中,所述操作是接收;所述第一信令被用于确定所述第一时频资源组,所述第二比特块被用于确定所述第一无线信号是否被正确接收;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中接收第二比特块。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光 盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于指示第一符号集合;
    第一收发机,在所述第一符号集合中的仅第一符号组中操作第一无线信号;
    其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一接收机还接收第一信息;其中,所述第一信息由更高层信令承载,所述第一信息被用于确定第一TDD配置;当所述第一信令的类型包括第一类型时,所述目标TDD配置是所述第一TDD配置;当所述第一信令的所述类型包括第二类型时,所述目标TDD配置是第二TDD配置。
  3. 根据权利要求2所述的第一节点设备,其特征在于,当所述第一信令的所述类型包括所述第二类型时,所述第一无线信号包括K个子信号,所述K个子信号都携带第一比特块;K是大于1的正整数,所述第一比特块包括正整数个比特。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,只有当所述第一信令是用于上行授予的DCI信令时,所述第一信令隐式的指示所述目标TDD配置。
  5. 根据权利要求2至4中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机还接收第二信令,所述第二信令被用于指示第一时隙格式;其中,所述第二信令由物理层信令承载;当所述第一信令的所述类型包括所述第一类型时,所述目标TDD配置是所述第一TDD配置,所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组;当所述第一信令的所述类型包括所述第二类型时,所述目标TDD配置是所述第二TDD配置,所述第一时隙格式和所述目标TDD配置中的仅所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,或者所述第一时隙格式和所述目标TDD配置共同被用于从所述第一符号集合中确定所述第一符号组。
  6. 根据权利要求2至5中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机还接收第三信息,所述第三信息被用于指示第二符号集合;在所述第二符号集合中的仅第二符号组中监测所述第一信令;其中,无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于从所述第二符号集合中确定所述第二符号组;所述第二符号集合包括正整数个多载波符号,所述第二符号组包括正整数个多载波符号,所述第二符号组中的任意一个多载波符号都属于所述第二符号集合,所述第二符号组包括的多载波符号的数量不大于所述第二符号集合包括的多载波符号的数量。
  7. 根据权利要求2至6中任一权利要求所述的第一节点设备,其特征在于,所述第一收发机还判断是否在第一时频资源组中发送第二比特块;如果是,在所述第一时频资源组中发送所述第二比特块;如果否,放弃在所述第一时频资源组中发送所述第二比特块;其中,所述操作是接收;所述第一信令被用于指示所述第一时频资源组,所述第二比特块被用于指示所述第一无线信号是否被正确接收;无论所述第一信令的所述类型包括的是所述第一类型还是所述第二类型,所述第一TDD配置和所述第二TDD配置中的仅所述第一TDD配置被用于所述行为判断是否在第一时频资源组中发送第二比特块。
  8. 一种用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令被用于指示第一符号集合;
    第二收发机,在所述第一符号集合中的仅第一符号组中执行第一无线信号;
    其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括 正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
  9. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于指示第一符号集合;
    在所述第一符号集合中的仅第一符号组中操作第一无线信号;
    其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述操作是发送,或者,所述操作是接收。
  10. 一种用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于指示第一符号集合;
    在所述第一符号集合中的仅第一符号组中执行第一无线信号;
    其中,所述第一信令被用于指示所述第一无线信号的调度信息;所述第一符号集合包括正整数个多载波符号,所述第一符号组包括正整数个多载波符号,所述第一符号组中的任意一个多载波符号都属于所述第一符号集合,所述第一符号组包括的多载波符号的数量不大于所述第一符号集合包括的多载波符号的数量;目标TDD配置被用于确定所述第一符号集合中的每个多载波符号的类型,所述目标TDD配置被用于从所述第一符号集合中确定所述第一符号组,所述第一信令隐式的指示所述目标TDD配置;所述执行是接收,或者,所述执行是发送。
PCT/CN2020/112798 2019-09-18 2020-09-01 一种被用于无线通信的节点中的方法和装置 WO2021052165A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/691,053 US11817979B2 (en) 2019-09-18 2022-03-09 Method and device in nodes used for wireless communication
US18/241,832 US20230412436A1 (en) 2019-09-18 2023-09-01 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910882776.3 2019-09-18
CN201910882776.3A CN112532357B (zh) 2019-09-18 2019-09-18 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/691,053 Continuation US11817979B2 (en) 2019-09-18 2022-03-09 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021052165A1 true WO2021052165A1 (zh) 2021-03-25

Family

ID=74883349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112798 WO2021052165A1 (zh) 2019-09-18 2020-09-01 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (2) US11817979B2 (zh)
CN (3) CN114389761A (zh)
WO (1) WO2021052165A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502789B2 (en) * 2019-09-24 2022-11-15 Shanghai Langbo Communication Technology Company Limited Method and device in node used for wireless communication
WO2023188912A1 (ja) * 2022-03-30 2023-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711837B2 (en) * 2020-01-14 2023-07-25 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN115134051B (zh) * 2021-03-25 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117640040A (zh) * 2022-08-15 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028751A1 (en) * 2017-08-10 2019-02-14 Zte Corporation SYSTEMS AND METHODS FOR INDICATING AND DETERMINING CHANNEL STRUCTURE INFORMATION

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846963B (zh) * 2010-11-02 2020-01-14 Lg电子株式会社 在无线通信系统中发射/接收上行链路控制信息的方法和装置
KR101165643B1 (ko) * 2010-12-20 2012-07-17 엘지전자 주식회사 Ack/nack 전송방법 및 사용자기기와, ack/nack 수신방법 및 기지국
KR102031094B1 (ko) * 2012-04-30 2019-10-11 엘지전자 주식회사 무선 통신 시스템에서 무선 자원의 동적 할당 방법 및 이를 위한 장치
JP6074715B2 (ja) * 2013-01-17 2017-02-08 サン パテント トラスト Dciを使用しての動的なtddアップリンク/ダウンリンク構成
WO2014182237A1 (en) * 2013-05-10 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for signaling in dynamic time division duplex systems
US10425962B2 (en) * 2016-12-14 2019-09-24 Qualcomm Incorporated PUCCH design with flexible symbol configuration
CN112492692A (zh) * 2017-02-27 2021-03-12 上海朗帛通信技术有限公司 一种ue、基站中的用于下行信息传输的方法和装置
CN108811120B (zh) * 2017-05-05 2023-05-02 中兴通讯股份有限公司 数据传输方法及装置
EP3688915B1 (en) * 2017-09-28 2023-02-22 Telefonaktiebolaget LM Ericsson (Publ) Nprach formats for nb-iot transmission in tdd mode
JP2020530729A (ja) * 2017-10-27 2020-10-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける装置の動作方法及び前記方法を利用する装置
US10827468B2 (en) * 2017-11-30 2020-11-03 Mediatek Inc. UE behaviour on resource assignment collision between coreset/search space and SFI assignment
CN112751659B (zh) * 2018-02-14 2022-05-17 华为技术有限公司 通信方法和无线装置
US20220287093A1 (en) * 2019-08-16 2022-09-08 Interdigital Patent Holdings, Inc. Channel access for unlicensed spectrum in mmw operation
KR20220044598A (ko) * 2019-08-16 2022-04-08 콘비다 와이어리스, 엘엘씨 다중-trp 및 다중-패널 송신을 이용한 빔 실패 검출 및 복구
WO2021040585A1 (en) * 2019-08-26 2021-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Harq codebook structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028751A1 (en) * 2017-08-10 2019-02-14 Zte Corporation SYSTEMS AND METHODS FOR INDICATING AND DETERMINING CHANNEL STRUCTURE INFORMATION

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Configuration of Flexible TDD DL UL Patterns", 3GPP DRAFT; R1-1904139 CONFIGURATION OF FLEXIBLE TDD DL UL PATTERNS, vol. RAN WG1, 3 April 2019 (2019-04-03), Xi an , China, pages 1 - 5, XP051707139 *
HUAWEI, HISILICON: "TDD configurations for MSR considerations", 3GPP DRAFT; R4-1810162, vol. RAN WG4, 10 August 2018 (2018-08-10), Gothenburg , Sweden, pages 1 - 6, XP051579169 *
NTT DOCOMO , INC.: "Consideration on NR TDD configuration", 3GPP DRAFT; R4-1804978_TDD CONFIG, vol. RAN WG4, 20 April 2018 (2018-04-20), pages 1 - 5, XP051418547 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502789B2 (en) * 2019-09-24 2022-11-15 Shanghai Langbo Communication Technology Company Limited Method and device in node used for wireless communication
US20230023580A1 (en) * 2019-09-24 2023-01-26 Shanghai Langbo Communication Technology Company Limited Method and device in node used for wireless communication
US11791954B2 (en) * 2019-09-24 2023-10-17 Shanghai Langbo Communication Technology Company Limited Method and device in node used for wireless communication
US20230412327A1 (en) * 2019-09-24 2023-12-21 Shanghai Langbo Communication Technology Company Limited Method and device in node used for wireless communication
WO2023188912A1 (ja) * 2022-03-30 2023-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法

Also Published As

Publication number Publication date
CN114448577B (zh) 2024-03-05
US20220200831A1 (en) 2022-06-23
CN114448577A (zh) 2022-05-06
CN114389761A (zh) 2022-04-22
US20230412436A1 (en) 2023-12-21
CN112532357B (zh) 2022-03-01
US11817979B2 (en) 2023-11-14
CN112532357A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240008043A1 (en) Method and device used in node for wireless communication
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022188835A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021197043A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022048509A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113949483B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022242618A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865283

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20865283

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20865283

Country of ref document: EP

Kind code of ref document: A1