WO2023143225A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023143225A1
WO2023143225A1 PCT/CN2023/072517 CN2023072517W WO2023143225A1 WO 2023143225 A1 WO2023143225 A1 WO 2023143225A1 CN 2023072517 W CN2023072517 W CN 2023072517W WO 2023143225 A1 WO2023143225 A1 WO 2023143225A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
transport block
antenna ports
signaling
antenna
Prior art date
Application number
PCT/CN2023/072517
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023143225A1 publication Critical patent/WO2023143225A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • Supporting the transmission of multiple transport blocks on the same PUSCH is an effective means to enhance uplink (Uplink, UL) transmission performance.
  • uplink Uplink, UL
  • how to determine the mapping relationship between transmission blocks and antenna ports during repeated transmissions is an important aspect that needs to be considered.
  • the present application discloses a solution.
  • the above description uses the uplink as an example; this application is also applicable to other scenarios, such as downlink (Downlink), sidelink (sidelink), IoT (Internet of Things, Internet of Things), Internet of Vehicles , NTN (non-terrestrial networks, non-terrestrial network), shared spectrum (shared spectrum), etc., and achieved similar technical effects.
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost, or improve performance.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first wireless channel
  • the target antenna port set is formed by all antenna ports mapped on the second wireless channel A set formed by all antenna ports used to map the target transport block
  • the first signaling is used to determine transmission on the second radio channel
  • the set of target antenna ports is the same as that in the second radio channel whether the first transport block is sent on the channel
  • the target antenna port set is the same as the first the sets of antenna ports are the same
  • the target set of antenna ports comprises one of the first set of antenna ports at least one antenna port outside.
  • the benefits of the above method include: improved transmission performance.
  • the benefits of the above method include: reducing BLER (BLock Error Rate, block error rate).
  • the advantages of the above method include: improving resource utilization.
  • the advantages of the above method include: improving uplink coverage performance.
  • the advantages of the above method include: improving spectrum efficiency.
  • the above-mentioned method is characterized in that,
  • the set of target antenna ports includes at least one of the antenna ports used on the first radio channel and mapping the antenna ports of the first transport block.
  • the above-mentioned method is characterized in that,
  • the target antenna port The number of antenna ports included in the set is greater than the number of antenna ports included in the first set of antenna ports.
  • the above-mentioned method is characterized in that,
  • the target antenna port set includes a number of antenna ports equal to the first antenna ports The number of antenna ports included in the set.
  • the above-mentioned method is characterized in that,
  • the set of target antenna ports is related to whether the first transport block is transmitted on the second radio channel only when all the conditions in the first set of conditions are met; the first set of conditions includes and Conditions related to at least one of MCS, transport layer, and TDW.
  • the above-mentioned method is characterized in that,
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • one condition in the first set of conditions includes: the The spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • the above-mentioned method is characterized in that,
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel; in the first condition set One of the conditions includes: the L1 is not smaller than the L2.
  • the above-mentioned method is characterized in that,
  • One condition in the first set of conditions includes: from the perspective of time domain, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • the advantages of the above method include: avoiding transmission performance degradation caused by improper antenna port switching.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first wireless channel
  • the target antenna port set is formed by all antenna ports mapped on the second wireless channel A set formed by all antenna ports used to map the target transport block
  • the first signaling is used to determine transmission on the second radio channel
  • the set of target antenna ports is the same as that in the second radio channel whether the first transport block is sent on the channel
  • the target antenna port set is the same as the first the sets of antenna ports are the same
  • the target set of antenna ports comprises one of the first set of antenna ports at least one antenna port outside.
  • the above-mentioned method is characterized in that,
  • the set of target antenna ports includes at least one of the antenna ports used on the first radio channel and mapping the antenna ports of the first transport block.
  • the above-mentioned method is characterized in that,
  • the target set of antenna ports includes a larger number of antenna ports than the first antenna ports The number of antenna ports included in the set.
  • the above-mentioned method is characterized in that,
  • the target antenna port set includes a number of antenna ports equal to the first antenna ports The number of antenna ports included in the set.
  • the above-mentioned method is characterized in that,
  • the set of target antenna ports is related to whether the first transport block is transmitted on the second radio channel only when all the conditions in the first set of conditions are met; the first set of conditions includes and Conditions related to at least one of MCS, transport layer, and TDW.
  • the above-mentioned method is characterized in that,
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • one condition in the first set of conditions includes: the The spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • the above-mentioned method is characterized in that,
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel; in the first condition set One of the conditions includes: the L1 is not smaller than the L2.
  • the above-mentioned method is characterized in that,
  • One condition in the first set of conditions includes: from the perspective of time domain, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • the present application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first transceiver receives the first signaling, or sends the first signaling
  • a first transmitter transmitting a first transport block and a target transport block on a first radio channel, and transmitting at least the latter of said first transport block and said target transport block on a second radio channel;
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first wireless channel
  • the target antenna port set is formed by all antenna ports mapped on the second wireless channel A set formed by all antenna ports used to map the target transport block
  • the first signaling is used to determine transmission on the second radio channel
  • the set of target antenna ports is the same as that in the second radio channel whether the first transport block is sent on the channel
  • the target antenna port set is the same as the first the sets of antenna ports are the same
  • the target set of antenna ports comprises one of the first set of antenna ports at least one antenna port outside.
  • the present application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transceiver sends the first signaling, or receives the first signaling
  • a second receiver for receiving a first transport block and a target transport block on a first radio channel, and receiving at least the latter of said first transport block and said target transport block on a second radio channel;
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first wireless channel
  • the target antenna port set is formed by all antenna ports mapped on the second wireless channel A set formed by all antenna ports used to map the target transport block
  • the first signaling is used to determine transmission on the second radio channel
  • the set of target antenna ports is the same as that in the second radio channel whether the first transport block is sent on the channel
  • the target antenna port set is the same as the first the sets of antenna ports are the same
  • the target set of antenna ports comprises one of the first set of antenna ports at least one antenna port outside.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 6 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the relationship between the first signaling, a bitmap, K bit groups and K HARQ process indexes according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between a first condition set and a target antenna port set according to an embodiment of the present application
  • FIG. 9 shows a schematic illustration of a condition in the first set of conditions according to an embodiment of the present application.
  • Figure 10 shows the relationship between whether the first wireless channel and the second wireless channel belong to the same actual TDW in the time domain and whether the first transport block is sent on the second wireless channel according to an embodiment of the present application schematic diagram
  • Fig. 11 shows the first node according to one embodiment of the present application, the second signaling and the communication between the first wireless channel and the second wireless channel a schematic diagram of the relationship;
  • Fig. 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application receives the first signaling or sends the first signaling in step 101, and sends the first transmission block and the target transmission block on the first wireless channel in step 102 block, sending at least the latter of said first transport block and said target transport block on a second radio channel in step 103; or, sending the first transport block and target transport block on a first radio channel in step 111
  • the first signaling is received or the first signaling is sent, and in step 113, at least the latter of the first transport block and the target transport block is sent on a second wireless channel.
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first wireless channel
  • the target antenna port set is formed by the second A set formed by all antenna ports used to map the target transport block on the radio channel
  • the first signaling is used to determine transmission on the second radio channel
  • the set of target antenna ports is the same as that in the Whether the first transmission block is sent on the second wireless channel
  • the target antenna port set is the same as said first set of antenna ports is the same
  • said target set of antenna ports includes said first At least one antenna port outside the set of antenna ports.
  • the first signaling is physical layer signaling.
  • the first signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the first signaling is DCI signaling.
  • the first signaling is one of DCI format 0_0, DCI format 0_1 or DCI format 0_2.
  • the first signaling is one of DCI format 0_1 or DCI format 0_2.
  • the first signaling is DCI format 0_0, and for a specific definition of the DCI format 0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_1, and for a specific definition of the DCI format 0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_2, and for a specific definition of the DCI format 0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is one of DCI format 1_0, DCI format 1_1 or DCI format 1_2.
  • the first signaling is DCI format 1_0, and for a specific definition of the DCI format 1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and for a specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_2, and for a specific definition of the DCI format 1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling includes one or more fields (fields) in a DCI format.
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling is higher layer (higher layer) signaling.
  • the first signaling is RRC signaling.
  • the first signaling includes one or more fields in one RRC signaling.
  • the first signaling includes an IE (Information Element, information element).
  • the first signaling includes one or more fields in one IE.
  • the first signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signaling includes one or more fields in one MAC CE signaling.
  • the first signaling includes a DFI flag field, and the value of the DFI flag field in the first signaling is 1.
  • the first wireless channel is a physical layer uplink channel.
  • the second wireless channel is a physical layer uplink channel.
  • the first wireless channel is a physical layer uplink shared channel.
  • the second wireless channel is a physical layer uplink shared channel.
  • the first radio channel is a physical layer uplink control channel.
  • the second radio channel is a physical layer uplink control channel.
  • the first wireless channel is PUSCH (Physical uplink shared channel).
  • the second radio channel is PUSCH.
  • the first wireless channel is PSSCH (Physical sidelink shared channel).
  • the second radio channel is PSSCH.
  • the first radio channel and the second radio channel are two repetitions (repetitions) of the same PUSCH respectively.
  • the first wireless channel and the second wireless channel are scheduled by the same DCI signaling.
  • the first radio channel and the second radio channel are two PUSCHs scheduled by the same DCI signaling.
  • both the coded bits generated by the first transmission block and the coded bits generated by the target transmission block are sent on the first wireless channel.
  • both the codeword generated by the first transmission block and the codeword generated by the target transmission block are sent on the first wireless channel.
  • the first transmission block undergoes CRC attachment, code block segmentation, code block CRC attachment, channel coding, rate matching, code block level Code block concatenation, Scrambling, Modulation, Layer mapping, Transform precoding, Precoding, resource block mapping, multi-carrier symbol generation, modulation up-conversion
  • CRC attachment CRC attachment
  • code block segmentation Code block segmentation
  • code block CRC attachment channel coding
  • Channel coding Channel coding
  • Rate matching Rate matching
  • the coded bit sequence jointly generated by the first transport block and the target transport block is scrambled, modulated, layer mapped, antenna port mapped (Antenna port mapping), and mapped to a virtual resource block (Mapping to virtual resource blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from virtual to physical resource blocks), generating multi-carrier symbols, and at least part of the output after modulation and up-conversion is sent on the first wireless channel.
  • the coded bit sequence jointly generated by the first transmission block and the target transmission block includes: the first transmission block is subjected to CRC attachment (CRC attachment), code block segmentation (Code block segmentation), Code block CRC attachment, channel coding (Channel coding), rate matching (Rate matching), code block concatenation (Code block concatenation) after at least part of the output, and the target transport block is subjected to CRC attachment (CRC attachment) , code block segmentation (Code block segmentation), code block CRC addition, channel coding (Channel coding), rate matching (Rate matching), code block concatenation (Code block concatenation) after at least part of the output.
  • At least the latter of the coded bits generated by the first transmission block and the coded bits generated by the target transmission block is sent on the second wireless channel.
  • At least the latter of the codeword generated by the first transmission block and the codeword generated by the target transmission block is sent on the second wireless channel.
  • the first transmission block undergoes CRC attachment, code block segmentation, code block CRC attachment, channel coding, rate matching, code block level Code block concatenation, Scrambling, Modulation, Layer mapping, Transform precoding, Precoding, resource block mapping, multi-carrier symbol generation, modulation
  • CRC attachment CRC attachment
  • code block segmentation Code block segmentation
  • code block CRC attachment channel coding
  • Channel coding Channel coding
  • Rate matching Rate matching
  • Code block concatenation Scrambling, Modulation, Layer mapping
  • Transform precoding Precoding, resource block mapping, multi-carrier symbols
  • the coded bit sequence generated by at least the latter of the first transport block and the target transport block is scrambled, modulated, layer mapped, and antenna port mapped (Antenna port mapping), and mapped to a virtual resource block (Mapping to virtual resource blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from virtual to physical resource blocks), multi-carrier symbol generation, at least part of the output after modulation and up-conversion is on the second wireless channel is sent.
  • the encoded bit sequence generated by at least the latter of the first transmission block and the target transmission block includes: the first transmission block undergoes CRC attachment, code block segmentation (Code block segmentation), code block CRC addition, channel coding (Channel coding), rate matching (Rate matching), code block concatenation (Code block concatenation) after at least part of the output, and, the target transport block is appended by CRC (CRC attachment), code block segmentation (Code block segmentation), code block CRC addition, channel coding (Channel coding), rate matching (Rate matching), code block concatenation (Code block concatenation) after at least part of the output two at least the latter of the
  • the first node receives the first signaling.
  • the first node sends the first signaling.
  • the first transmission block includes multiple bits.
  • the first transport block is a transport block (Transport Block, TB).
  • the first transmission block includes at least one code block (Code Block)
  • the target transport block includes multiple bits.
  • the target transport block is a transport block (Transport Block, TB).
  • the target transmission block includes at least one code block (Code Block)
  • the antenna ports in this application are defined in such a way that the channel using one antenna port to transmit one symbol can be deduced from the channel using this antenna port to transmit another symbol.
  • the antenna port in this application includes a logical transmission channel defined by a reference signal.
  • one antenna port is associated with one reference signal.
  • different antenna ports are respectively used to map different transmission layers.
  • the modulation symbols generated by the target transmission block are mapped to at least one transmission layer, and the modulation symbols generated by the target transmission block are mapped to Each transport layer to be mapped to one antenna port in the first antenna port set.
  • the modulation symbols generated by the target transport block are mapped to at least one transmission layer, and each of the modulation symbols generated by the target transport block is mapped to The transport layer is mapped to one antenna port in the set of target antenna ports.
  • the modulation symbols are complex-valued modulation symbols (Complex-valued modulation symbols).
  • the modulation symbol generated by the target transmission block is subjected to CRC attachment (CRC attachment), code block segmentation (Code block segmentation), code block CRC attachment, and channel coding (Channel coding) by the target transmission block.
  • CRC attachment CRC attachment
  • code block segmentation code block segmentation
  • code block CRC attachment code block CRC attachment
  • channel coding Channel coding
  • Rate matching Rate matching
  • the output after at least part of the code block concatenation is obtained after scrambling (Scrambling) and modulation (Modulation).
  • the target transmission block is mapped to a codeword (codeword), modulation symbols (modulation symbols) for the codeword are mapped to at least one transmission layer, for Each transmission layer to which the modulation symbol of the one codeword is mapped is mapped to one antenna port in the first set of antenna ports.
  • codeword codeword
  • modulation symbols modulation symbols
  • the target transport block is mapped to a codeword
  • the modulation symbols for the one codeword are mapped to at least one transmission layer
  • all the modulation symbols for the one codeword is mapped to one antenna port in the set of target antenna ports.
  • modulation symbols generated by the first transmission block are mapped to at least one transmission layer, and the modulation symbols generated by the first transmission block Each transport layer mapped to is mapped to an antenna port used for mapping the first transport block on the first radio channel.
  • the modulation generated by the first transmission block Symbols (modulation symbols) are mapped to at least one transmission layer, and each transmission layer to which the modulation symbols generated by the first transmission block are mapped is mapped to the second radio channel used for mapping on one antenna port of the first transmission block.
  • the modulation symbols are complex-valued modulation symbols (Complex-valued modulation symbols).
  • the modulation symbols generated by the first transmission block are subjected to CRC attachment (CRC attachment), code block segmentation (Code block segmentation), code block CRC attachment, and channel coding (Channel coding) by the first transmission block. ), rate matching (Rate matching), at least part of the output after code block concatenation (Code block concatenation) is obtained after scrambling (Scrambling) and modulation (Modulation).
  • the first transmission block is mapped to a codeword (codeword), and modulation symbols (modulation symbols) for the codeword are mapped to at least one transmission layer,
  • Each transport layer to which the modulation symbols for the one codeword are mapped is mapped to one antenna port used for mapping the first transport block on the first radio channel.
  • the first transport block is mapped to a code word (codeword)
  • the modulation symbols (modulation symbols) for the one codeword are mapped to at least one transmission layer
  • each transmission layer to which the modulation symbols for the one codeword is mapped is mapped to the An antenna port that is used to map the first transport block on the second radio channel.
  • a codeword in this application includes coded bits.
  • one transport block is mapped to at most 4 antenna ports.
  • the first signaling is used to indicate transmission on the second wireless channel.
  • the first signaling is used to indicate configuration information of signal transmission on the first wireless channel.
  • the first signaling is used to indicate configuration information of signal transmission on the second wireless channel.
  • the first signaling is used to determine whether to send the first transmission block on the second wireless channel.
  • the first signaling is used to indicate whether to send the first transmission block on the second wireless channel.
  • the first signaling explicitly indicates whether to send the first transport block on the second wireless channel.
  • the first signaling implicitly indicates whether to send the first transport block on the second wireless channel.
  • the first signaling includes a first bit; when the value of the first bit is 0, both the first transport block and the target transport block are transmitted on the second radio channel sending; when the value of the first bit is 1, only the latter of the first transport block and the target transport block is sent on the second radio channel.
  • the first signaling includes a first bit; when the value of the first bit is 1, both the first transport block and the target transport block are transmitted on the second wireless channel sending; when the value of the first bit is 0, only the latter of the first transport block and the target transport block is sent on the second radio channel.
  • the first signaling further includes a target bit, and a value of the target bit is 0.
  • the value of the target bit in the first signaling is 0, indicating that the target transport block is not correctly decoded.
  • the first bit and the target bit in the first signaling are mapped to different codewords of the same HARQ process.
  • the first signaling is used to indicate CG-DFI.
  • the first signaling is used to indicate new transmission under the same HARQ process number as that used for sending the first transmission block.
  • the target antenna port set includes the first antenna port set All antenna ports of and outside the first set of antenna ports At least one antenna port.
  • the target set of antenna ports does not include the first set of antenna ports any antenna port in the .
  • At least one antenna port in the first set of antenna ports does not belong to The set of target antenna ports.
  • the second antenna port set is a set formed by all antenna ports used to map the first transmission block on the first wireless channel.
  • the target set of antenna ports is the same as the second set of antenna ports .
  • the target antenna port set includes the second antenna port set at least one antenna port.
  • the target antenna port set is the first antenna port set and the The union of the second sets of antenna ports.
  • the target antenna port set includes the first antenna port set and at least one antenna port in the second set of antenna ports.
  • the first antenna port set and the second antenna port set have no intersection.
  • the target transport block when only the latter of the first transport block and the target transport block is transmitted on the second wireless channel: at least two repetitions of the target transport block are transmitted on the second sent over the wireless channel.
  • the target transport block is subjected to at least channel coding to obtain a reference coding bit sequence; on the first wireless channel, all antenna ports in the first antenna port set are used to map the reference coding bit sequence A bit sequence; on the second wireless channel, all antenna ports in the target antenna port set are used to map the reference coded bit sequence.
  • the target transport block is subjected to at least channel coding to obtain a reference coded bit sequence, and the reference coded bit sequence is subjected to at least rate matching to obtain a first coded bit sequence; on the first wireless channel, the All antenna ports in the first set of antenna ports are used to map the first encoded bit sequence; when both the first transport block and the target transport block are transmitted on the second radio channel, the all antenna ports in the set of target antenna ports are used to map said first coded bit sequence; when said first transport block and only the latter of said target transport block are transmitted on said second radio channel , the reference coded bit sequence undergoes at least rate matching to obtain a second coded bit sequence, the target antenna port set includes at least one antenna port in the first antenna port set and the second antenna port set, the All antenna ports in the first set of antenna ports are used to map the first coded bit sequence, and the at least one antenna port in the second set of antenna ports is used to map the second coded bit sequence.
  • the target transport block is subjected to at least channel coding and rate matching to obtain a reference coded bit sequence; on the first wireless channel, all antenna ports in the first antenna port set are used to map the the reference coded bit sequence; when both the first transport block and the target transport block are transmitted on the second radio channel, all antenna ports in the target antenna port set are used to map the reference a coded bit sequence; said reference coded bit sequence being used to determine a second coded bit sequence when only the latter of said first transport block and said target transport block are transmitted on said second radio channel,
  • the target antenna port set includes at least one antenna port in the first antenna port set and the second antenna port set, and all antenna ports in the first antenna port set are used to map the reference coding bits sequence, the at least one antenna port in the second set of antenna ports is used to map the second coded bit sequence.
  • the target transport block undergoes at least CRC attachment (CRC attachment), code block segmentation (Code block segmentation), code block CRC attachment, channel coding (Channel coding), rate matching (Rate matching), code block level At least part of the code block concatenation is used to obtain the reference coded bit sequence.
  • CRC attachment CRC attachment
  • code block segmentation Code block segmentation
  • code block CRC attachment channel coding
  • Channel coding Channel coding
  • Rate matching Rate matching
  • code block level At least part of the code block concatenation is used to obtain the reference coded bit sequence.
  • the reference coded bit sequence is subjected to at least a first operation to obtain the second coded bit sequence.
  • the first operation includes rate matching.
  • the first operation includes an assignment operation.
  • the first operation includes at least one of punching, shortening, and zero padding.
  • the first operation includes at least one of bit deletion and zero padding.
  • the second coded bit sequence is the reference coded bit sequence.
  • the reference coded bit sequence is a codeword (codeword).
  • the first encoded bit sequence is a codeword (codeword).
  • the second encoded bit sequence is a codeword (codeword).
  • the expression "used to map the reference coded bit sequence” includes: being used to map modulation symbols generated by the reference coded bit sequence.
  • the expression "used to map the reference coded bit sequence” includes: used to map an output of the reference coded bit sequence after at least scrambling and modulation.
  • the expression "used to map the reference coded bit sequence” includes: being used to map the reference coded bit sequence through at least one of scrambling, modulation, layer mapping, transform precoding, and precoding output after the section.
  • the expression "used to map the first coded bit sequence” includes: being used to map modulation symbols generated by the first coded bit sequence.
  • the expression "used to map the first coded bit sequence” includes: used to map an output of the first coded bit sequence after at least scrambling and modulation.
  • the expression "used to map the first coded bit sequence” includes: used to map the first coded bit sequence through scrambling, modulation, layer mapping, transform precoding, precoding at least part of the following output.
  • the expression "used to map the second coded bit sequence” includes: being used to map the modulation symbols generated by the second coded bit sequence.
  • the expression "used to map the second coded bit sequence” includes: used to map an output of the second coded bit sequence after at least scrambling and modulation.
  • the expression "used to map the second coded bit sequence” includes: being used to map the second coded bit sequence through scrambling, modulation, layer mapping, transform precoding, precoding at least part of the following output.
  • the first antenna port set includes one antenna port.
  • the first antenna port set includes 2 antenna ports.
  • the first antenna port set includes 3 antenna ports.
  • the first antenna port set includes 4 antenna ports.
  • the first antenna port set includes 5 antenna ports.
  • the first antenna port set includes 6 antenna ports.
  • the first antenna port set includes 7 antenna ports.
  • the target antenna port set includes one antenna port.
  • the target antenna port set includes 2 antenna ports.
  • the target antenna port set includes 3 antenna ports.
  • the target antenna port set includes 4 antenna ports.
  • the target antenna port set includes 5 antenna ports.
  • the target antenna port set includes 6 antenna ports.
  • the target antenna port set includes 7 antenna ports.
  • the target antenna port set includes 8 antenna ports.
  • the first transport block is mapped to a first codeword
  • the target transport block is mapped to a second codeword
  • the first transport block is mapped to the The first codeword
  • the target transport block is mapped to the second codeword
  • the target transport block is mapped on the second radio channel to the first codeword.
  • the first codeword is codeword 0 (codeword 0), and the second codeword is codeword 1 (codeword 1).
  • the first codeword is codeword 1
  • the second codeword is codeword 0.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the spectral efficiency of the first MCS is Not lower than the spectral efficiency of the second MCS.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the index of the first MCS is not less than the index of the second MCS
  • the first transport block on the first radio channel is mapped to L1 transport layers, and the target transport block is mapped to L2 transport layers on the first radio channel, the L1 is not smaller than said L2.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the index of the first MCS is less than The index of the second MCS.
  • the first transport block on the first radio channel is mapped to L1 transport layers, and the target transport block is mapped to L2 transport layers on the first radio channel, the L1 is smaller than said L2.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the index of the first MCS is greater than The index of the second MCS.
  • the first transport block on the first radio channel is mapped to L1 transport layers
  • the target transport block is mapped to L2 transport layers on the first radio channel
  • the L1 is larger than said L2.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the index of the first MCS is not greater than the index of the second MCS
  • the first transport block on the first radio channel is mapped to L1 transport layers, and the target transport block is mapped to L2 transport layers on the first radio channel, the L1 is not larger than said L2.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the index of the first MCS is equal to The index of the second MCS
  • the first transport block on the first radio channel is mapped to L1 transport layers
  • the target transport block is mapped to L2 transport layers on the first radio channel
  • the L1 is equal to the L2.
  • the L1 is a positive integer
  • the L2 is a positive integer
  • the L1 is not greater than 2.
  • the L1 is not greater than 4.
  • the L1 is not greater than 8.
  • the L2 is not greater than 2.
  • the L2 is no greater than 4.
  • the L2 is not greater than 8.
  • the sum of the L1 and the L2 is not greater than 4.
  • the sum of the L1 and the L2 is not greater than 8.
  • both the L1 and the L2 are configurable.
  • both the L1 and the L2 are obtained from the first signaling instruction.
  • both the L1 and the L2 are obtained from the second signaling indication in this application.
  • both the first MCS and the second MCS are configurable.
  • both the first MCS and the second MCS are obtained from the first signaling instruction.
  • both the first MCS and the second MCS are obtained from the second signaling instruction in this application.
  • the second wireless channel is within an actual TDW (actual TDW) to which the first wireless channel belongs.
  • the second wireless channel is outside an actual TDW (actual TDW) to which the first wireless channel belongs.
  • the first signaling is received/sent before the second wireless channel.
  • the first signaling is received/sent before the first wireless channel.
  • the receiving/sending of the first signaling is before the second wireless channel, and the latest time domain symbol occupied by the receiving/sending of the first signaling is the same as that of the first wireless channel
  • the interval between the earliest time-domain symbols occupied is less than N2 time-domain symbols, so Said N2 is a positive integer.
  • the time-domain symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the time domain symbols in this application are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • the time domain symbols in this application are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the time-domain symbols in this application are FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbols.
  • the N2 is less than 5.
  • said N2 is equal to 5.
  • said N2 is equal to 10.
  • the N2 is equal to 11.
  • the N2 is equal to 12.
  • said N2 is equal to 23.
  • said N2 is equal to 36.
  • the first signaling is received/sent after the first wireless channel.
  • the time domain resource occupied by the receiving/sending of the first signaling overlaps with the time domain resource occupied by the first wireless channel.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System, Evolved Packet System) 200 by some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment, User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213 .
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210 .
  • MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP Internet Protocol, Internet Protocol
  • P-GW 213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device supporting a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • both the first node and the second node in this application correspond to the UE 201 , for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The communication node device (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated by the PHY351.
  • the second signaling in this application is generated in the RRC sublayer 306 .
  • the second signaling in this application is generated in the MAC sublayer 302 .
  • the second signaling in this application is generated in the MAC sublayer 352 .
  • the second signaling in this application is generated by the PHY301.
  • the second signaling in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • the data Upper layer packets are provided to controller/processor 459 from source 467 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving the first signaling, or sending the first signaling; sending the first transmission block and the target transmission block on the first wireless channel, and sending the first transmission block on the second wireless channel at least the latter of a transport block and the target transport block; wherein the first set of antenna ports is the set of all antenna ports used to map the target transport block on the first radio channel,
  • the target antenna port set is a set formed by all antenna ports used to map the target transport block on the second radio channel; the first signaling is used to determine the antenna ports on the second radio channel sending, the target antenna port set is related to whether the first transmission block is transmitted on the second wireless channel; when both the first transmission block and the target transmission block are on the second wireless channel When transmitted, the target set of antenna ports is the same as the first set of antenna ports; when only
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory for storing computer-readable instruction programs, and the computer The program of readable instructions produces actions when executed by at least one processor, the actions comprising: receiving a first signaling, or sending a first signaling; sending a first transport block and a target transport block on a first wireless channel, Sending at least the latter of the first transport block and the target transport block on a second radio channel; wherein the first set of antenna ports is determined by the A set formed by all antenna ports of the block, and a target antenna port set is a set formed by all antenna ports used to map the target transmission block on the second radio channel; the first signaling is used For determining transmission on the second radio channel, the set of target antenna ports is related to whether the first transmission block is transmitted on the second radio channel; when the first transmission block and the target transmission When all blocks are transmitted on the second wireless channel, the target set of antenna ports is the same as the first set of antenna ports; when only the latter of the first transport block and the target transport block are in the When being sent on the second
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending the first signaling, or receiving the first signaling; the second receiver, receiving the first transmission block and the target transmission block on the first wireless channel, and receiving the first transmission block and the target transmission block on the second wireless channel receiving at least the latter of the first transport block and the target transport block; wherein the first set of antenna ports is composed of all antenna ports used to map the target transport block on the first wireless channel
  • the formed set, the target antenna port set is a set formed by all antenna ports used to map the target transport block on the second radio channel; the first signaling is used to determine the first For transmission on two wireless channels, the set of target antenna ports is related to whether the first transmission block is transmitted on the second wireless channel; when both the first transmission block and the target transmission block are in the When transmitted on a second radio channel, the set of target
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first A signaling, or, receiving the first signaling; a second receiver, receiving the first transmission block and the target transmission block on the first wireless channel, and receiving the first transmission block and the target transmission block on the second wireless channel At least the latter of the transport blocks; wherein the first set of antenna ports is the set of all antenna ports used to map the target transport block on the first radio channel, and the target set of antenna ports is formed by the A set of all antenna ports used to map the target transport block on the second radio channel; the first signaling is used to determine transmission on the second radio channel, and the target antenna port The set is related to whether the first transport block is sent on the second radio channel; when both the first transport block and the target transport block are sent on the second radio channel, the target The set of antenna ports is the same as the first set of antenna ports; when only the latter of the first transport block and the target
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the second signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the first signaling in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One of them is used to receive the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the second signaling in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One of them is used to receive the second signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to perform transmission on said first wireless channel in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to perform reception on said first radio channel in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to perform transmission on said second wireless channel in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to perform reception on said second radio channel in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • FIG. 5 only one of the steps in the dashed box F1 and the steps in the dashed box F2 exists.
  • the first node U1 receives the first signaling in step S511, or sends the first signaling in step S512; sends the first transmission block and the target transmission block on the first wireless channel in step S513; in step S514 sending at least the latter of the first transport block and the target transport block on a second wireless channel.
  • the second node U2 sends the first signaling in step S521, or receives the first signaling in step S522; receives the first transmission block and the target transmission block on the first wireless channel in step S523; in step S524 receiving at least the latter of the first transport block and the target transport block on a second wireless channel.
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first wireless channel, and the target antenna port set is formed by the second A set formed by all antenna ports used to map the target transport block on the radio channel; the first signaling is used to determine transmission on the second radio channel, and the set of target antenna ports is the same as that in the Whether the first transmission block is sent on the second wireless channel; when the first transmission block and the target transmission block are both sent on the second wireless channel, the target antenna port set is the same as said first set of antenna ports is the same; when said first transport block and only the latter of said target transport block are transmitted on said second radio channel, said target set of antenna ports includes said first At least one antenna port outside the antenna port set, the number of antenna ports included in the target antenna port set is equal to or greater than the number of antenna ports included in the first antenna port set; only if the number of antenna ports included in the first condition set When all conditions are met, the target antenna port set is related to whether the first transmission block is sent on the second wireless channel;
  • the set of target antenna ports includes at least one The first wireless channel is used to map the antenna port of the first transmission block.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the first transmission block uses a second MCS on the first wireless channel
  • One condition in a set of conditions includes: the spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • one condition in the first set of conditions includes: from a time domain perspective, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • the first transport block on the first radio channel is mapped to L1 transport layers, and the target transport block is mapped to L2 transport layers on the first radio channel Layer; one condition in the first set of conditions includes: the L1 is not smaller than the L2.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a user equipment-to-user wireless interface.
  • the problem to be solved in this application includes: how to flexibly adjust the corresponding relationship between transmission blocks and antenna ports.
  • the problem to be solved in this application includes: how to determine the transmission mode of the transport block on the PUSCH repetition according to the instruction of the DFI.
  • the problem to be solved in this application includes: how to enhance the transmission performance of dual codewords in the uplink.
  • the steps in the dotted box F1 exist, and the steps in the dotted box F2 do not exist.
  • the steps in the dotted box F1 do not exist, and the steps in the dotted box F2 exist.
  • Embodiment 6 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 6 .
  • the communication between the first node U3 and the second node U4 is performed through an air interface.
  • FIG. 6 only one of the steps in the dashed box F3 and the steps in the dashed box F4 exists.
  • the first node U3 sends the first transport block and the target transport block on the first wireless channel in step S611; receives the first signaling in step S612, or sends the first signaling in step S613; in step S614 sending at least the latter of the first transport block and the target transport block on a second wireless channel.
  • the second node U4 receives the first transport block and the target transport block on the first wireless channel in step S621; sends the first signaling in step S622, or receives the first signaling in step S623; in step S624 receiving at least the latter of the first transport block and the target transport block on a second wireless channel.
  • the first antenna port set is a set formed by all antenna ports used to map the target transport block on the first radio channel, and the target antenna port set is formed by the second A set formed by all antenna ports used to map the target transport block on the radio channel; the first signaling is used to determine transmission on the second radio channel, and the set of target antenna ports is the same as that in the Whether the first transmission block is sent on the second wireless channel; when the first transmission block and the target transmission block are both sent on the second wireless channel, the target antenna port set is the same as said first set of antenna ports is the same; when said first transport block and only the latter of said target transport block are transmitted on said second radio channel, said target set of antenna ports includes said first At least one antenna port outside the antenna port set, the number of antenna ports included in the target antenna port set is equal to or greater than the number of antenna ports included in the first antenna port set; only if the number of antenna ports included in the first condition set When all conditions are met, the target antenna port set is only compatible with the It is related to whether the first transmission block is sent
  • the set of target antenna ports includes at least one of the The first wireless channel is used to map the antenna port of the first transmission block.
  • the first transmission block uses a first MCS on the first wireless channel
  • the target transmission block uses a second MCS on the first wireless channel
  • the first transmission block uses a second MCS on the first wireless channel
  • One condition in a set of conditions includes: the spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • one condition in the first set of conditions includes: from a time domain perspective, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • the first transport block on the first radio channel is mapped to L1 transport layers, and the target transport block is mapped to L2 transport layers on the first radio channel Layer; one condition in the first set of conditions includes: the L1 is not smaller than the L2.
  • the first node U3 is the first node in this application.
  • the second node U4 is the second node in this application.
  • the first node U3 is a UE.
  • the first node U3 is a base station.
  • the second node U4 is a base station.
  • the second node U4 is a UE.
  • the air interface between the second node U4 and the first node U3 is a Uu interface.
  • the air interface between the second node U4 and the first node U3 includes a cellular link.
  • the air interface between the second node U4 and the first node U3 is a PC5 interface.
  • the air interface between the second node U4 and the first node U3 includes a side link.
  • the air interface between the second node U4 and the first node U3 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U4 and the first node U3 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U4 and the first node U3 includes a user equipment-to-user wireless interface.
  • the steps in the dashed box F3 are present, and the steps in the dashed box F4 are absent.
  • the steps in the dotted box F3 do not exist, and the steps in the dotted box F4 exist.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first signaling according to an embodiment of the present application, a bit map, K bit groups and K HARQ process indexes, as shown in FIG. 7 .
  • the first signaling includes a bitmap (bitmap), the bitmap includes K bit groups, and each bit group in the K bit groups is composed of M bits;
  • the K bit groups are respectively mapped to K HARQ process indices (HARQ process indices); the K is a positive integer greater than 1, and the M is a positive integer.
  • said K is equal to 16.
  • said K is equal to 32.
  • said K is equal to 8.
  • the K is not greater than 1024.
  • the M is equal to 1.
  • said M is equal to 2.
  • said M is equal to 3.
  • said M is equal to 4.
  • said M is not greater than 64.
  • the M is greater than 1, and the M bits included in each bit group of the K bit groups are respectively mapped to M codewords.
  • all included bits are mapped to the same HARQ process index.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first condition set and the target antenna port set according to an embodiment of the present application, as shown in FIG. 8 .
  • the target antenna port set is related to whether the first transmission block is sent on the second wireless channel; the The first set of conditions includes conditions related to at least one of MCS, transport layer, and TDW.
  • the target antenna port set is always the same as the first antenna port set.
  • the first set of conditions includes only one condition.
  • the first set of conditions includes multiple conditions.
  • the first set of conditions includes conditions related to MCS.
  • the first set of conditions includes conditions related to the transport layer.
  • the first set of conditions includes conditions related to both the MCS and the transport layer.
  • the first set of conditions includes at least one condition related to the MCS and at least one condition related to the transport layer.
  • the first set of conditions includes conditions related to TDW.
  • the first condition set includes conditions related to the TDW to which the first wireless channel belongs in the time domain.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the One condition in the first set of conditions includes: the L1 is not smaller than the L2.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the One condition in the first set of conditions includes: the L1 is greater than the L2.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the One condition in the first set of conditions includes: said L1 is equal to said L2.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the One condition in the first set of conditions includes: the L1 is smaller than the L2.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the A condition in the first set of conditions includes: the L1 is not greater than the L2.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • the first condition set One condition includes: the spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • the first condition set One condition includes: the spectral efficiency of the first MCS is higher than the spectral efficiency of the second MCS.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • the first condition set One condition includes: the spectral efficiency of the first MCS is equal to the spectral efficiency of the second MCS.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • in the first condition set A condition includes: the spectral efficiency of the first MCS is lower than that of the first MCS 2. Spectral efficiency of MCS.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • the first condition set One condition includes: the spectral efficiency of the first MCS is not higher than the spectral efficiency of the second MCS.
  • the first MCS is indicated by a DCI format.
  • the second MCS is indicated by a DCI format.
  • the first MCS and the second MCS are indicated by the same DCI format.
  • the first MCS is configured by RRC signaling.
  • the second MCS is configured by RRC signaling.
  • the target antenna port set is related to whether the first transmission block is sent on the second wireless channel; the second A set of conditions is related to at least one of MCS (Modulation and coding scheme, modulation and coding strategy), transmission layer, and TDW (time domain window, time domain window).
  • MCS Modulation and coding scheme, modulation and coding strategy
  • TDW time domain window, time domain window
  • Embodiment 9 illustrates a schematic illustration of a condition in the first set of conditions according to an embodiment of the present application, as shown in FIG. 9 .
  • one condition in the first set of conditions includes: from a time domain perspective, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • one actual TDW includes at least one time-domain symbol.
  • one actual TDW includes at least one time slot (slot).
  • one actual TDW includes continuous time domain resources.
  • the time-domain resource occupied by the first wireless channel is included in an actual TDW (actual TDW) to which it belongs.
  • the target antenna port set is always the same as the first antenna port set.
  • the first radio channel and the second radio channel are respectively two adjacent repetitions (repetitions) of a PUSCH.
  • the first radio channel and the second radio channel are respectively used for two consecutive PUSCH transmissions in multiple repetitions of one PUSCH transmission.
  • the first wireless channel is before the second wireless channel.
  • the first wireless channel and the second wireless channel do not overlap.
  • the first node is configured to enable DM-RS (Dedicated demodulation reference signal, dedicated demodulation reference signal) bundling (Bundling) for PUSCH.
  • DM-RS Dedicated demodulation reference signal, dedicated demodulation reference signal
  • bundling bundling
  • PUSCH-DMRS-Bundling is enabled.
  • the actual TDW is a time domain window (time domain window, TDW).
  • the first node may be configured with one or more nominal (nominal) TDWs, each nominal TDW includes at least one actual TDW, and each actual TDW is within a nominal TDW.
  • the multiple actual TDWs included have no time domain overlap with each other.
  • events that cause power consistency and phase continuity to not be maintained trigger an actual TDW.
  • the event causing power consistency and phase continuity to be unmaintainable includes: frequency hopping.
  • the event causing power consistency and phase continuity to be unmaintainable includes: a downlink related event.
  • the event that causes power consistency and phase continuity to be unmaintainable includes: tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated based downlink time slots or downlink time slots for unpaired spectrum Link reception or downlink monitoring.
  • the event causing power consistency and phase continuity to be unmaintainable includes: the interval between any two consecutive PUSCH transmissions, or the interval between any two consecutive PUCCH transmissions exceeds 13 symbols.
  • the event that causes power consistency and phase continuity to be unmaintainable includes: the interval between any two consecutive PUSCH transmissions or the interval between any two consecutive PUCCH transmissions does not exceed 13 symbols, But there is scheduling of other uplink transmissions between two consecutive PUSCH transmissions or two consecutive PUCCH transmissions.
  • the event that causes power consistency and phase continuity to be unmaintainable includes: PUSCH repetition type A or PUSCH repetition type B or a PUSCH transmission in PUSCH transmission based on cross-slot TB processing is discarded or canceled.
  • the event causing power consistency and phase continuity to be unmaintainable includes: one PUCCH transmission in multiple repetitions of PUCCH transmission is discarded or canceled.
  • the event that causes power consistency and phase continuity to be unmaintainable includes: any two continuous PUSCH transmissions for PUSCH repetition type A (PUSCH repetition type A) or PUSCH repetition type B (PUSCH repetition type B) , when two SRS resource sets are configured in SRS ResourceSetToAddModList or SRS-ResourceSetToAddModListDCI-0-2, the higher layer parameter usage in SRS ResourceSet is set to "codebook” or "noncodebook", and different SRS resource sets are associated for PUSCH Two PUSCH transmissions of repetition type A or PUSCH repetition type B.
  • the event that causes power consistency and phase continuity to be unmaintainable includes: for any two consecutive PUCCH transmissions of PUCCH repetition, when the PUCCH resources used for PUCCH transmission include the first and second spatial relationships, Different spatial relationships are used for the two PUCCH transmissions of the PUCCH repetition.
  • the event causing power consistency and phase continuity to be unmaintainable includes: performing uplink timing adjustment in response to a timing advance command (timing advance command).
  • the actual TDW is a time domain window used to limit power consistency and phase continuity.
  • the first node in the same actual TDW to which the first wireless channel and the second wireless channel belong in the time domain, the first node should maintain constrained power consistency and phase continuity.
  • the first condition set includes a condition that the spectral efficiency of the first MCS is equal to the spectral efficiency of the second MCS.
  • Embodiment 10 illustrates the relationship between whether the first wireless channel and the second wireless channel belong to the same actual TDW in the time domain and whether the first transmission block is sent on the second wireless channel according to an embodiment of the present application
  • the schematic diagram as shown in Figure 10.
  • the first signaling is used to determine whether the second wireless channel belongs to a new TDW in the time domain (relative to the actual TDW to which the first wireless channel belongs in the time domain) Actual TDW; when only the latter of said first transport block and said target transport block are transmitted on said second radio channel, said second radio channel belongs to (relative to said first A new actual TDW in terms of the actual TDW to which a wireless channel belongs in the time domain.
  • the first radio channel and the second radio channel belong to the same Actual TDW; when only the latter of said first transport block and said target transport block are transmitted on said second radio channel, said second radio channel belongs to (relative to said first A new actual TDW in terms of the actual TDW to which a wireless channel belongs in the time domain.
  • an event causing power consistency and phase continuity to be unmaintainable is triggered.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first node, the second signaling, and the first wireless channel and the second wireless channel according to an embodiment of the present application, as shown in FIG. 11 .
  • the first node in this application receives or sends second signaling, where the second signaling is used to determine the first wireless channel and the second wireless channel.
  • the second signaling is physical layer signaling.
  • the second signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the second signaling is DCI signaling.
  • the second signaling is one of DCI format 0_0, DCI format 0_1 or DCI format 0_2.
  • the second signaling is one of DCI format 0_1 or DCI format 0_2.
  • the second signaling is DCI format 0_0, and for a specific definition of the DCI format 0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 0_1, and for a specific definition of the DCI format 0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 0_2, and for a specific definition of the DCI format 0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is one of DCI format 1_0, DCI format 1_1 or DCI format 1_2.
  • the second signaling is DCI format 1_0, and for a specific definition of the DCI format 1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format 1_1, and for a specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format 1_2, and for a specific definition of the DCI format 1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling includes one or more fields (fields) in a DCI format.
  • the second signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the second signaling is higher layer (higher layer) signaling.
  • the second signaling is RRC signaling.
  • the second signaling includes one or more fields in one RRC signaling.
  • the second signaling includes an IE (Information Element, information element).
  • the second signaling includes one or more fields in one IE.
  • the second signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the second signaling includes one or more fields in one MAC CE signaling.
  • the CRC of the second signaling is scrambled by the CS-RNTI.
  • the value of the NDI (new data indicator) field for the enabled transport block in the second signaling is set to 0.
  • the second signaling includes a DFI flag field, and the value of the DFI flag field in the second signaling is set to 0.
  • the second signaling includes an information element ConfiguredGrantConfig.
  • the second signaling includes at least one field in the information element ConfiguredGrantConfig.
  • the second signaling is used to indicate an uplink configuration grant (UL configured grant), and both the first radio channel and the second radio channel correspond to the uplink configuration grant PUSCH.
  • the second signaling is used to activate an uplink configuration grant (UL configured grant), and both the first radio channel and the second radio channel correspond to the uplink configuration grant PUSCH.
  • UL configured grant uplink configuration grant
  • the second signaling is used to schedule the first wireless channel and the second wireless channel.
  • the second signaling is used to indicate scheduling information of the first wireless channel and the second wireless channel.
  • the scheduling information includes ⁇ occupied time domain resource, occupied frequency domain resource, used antenna port, adopted MCS (Modulation and coding scheme, modulation and coding strategy), TPC command, At least one of the adopted HARQ process number, airspace relationship, and adopted precoding ⁇ .
  • MCS Modulation and coding scheme, modulation and coding strategy
  • TPC command At least one of the adopted HARQ process number, airspace relationship, and adopted precoding ⁇ .
  • the second signaling is used to indicate the first MCS and the second MCS.
  • the second signaling is the first signaling.
  • the second signaling is signaling other than the first signaling.
  • Embodiment 12 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 12 .
  • the first The node device processing apparatus 1200 includes a first transceiver 1203
  • the first transceiver 1203 includes a first receiver 1201 and a first transmitter 1202 .
  • the first node device 1200 is a base station.
  • the first node device 1200 is a user equipment.
  • the first node device 1200 is a relay node.
  • the first node device 1200 is a vehicle communication device.
  • the first node device 1200 is a user equipment supporting V2X communication.
  • the first node device 1200 is a relay node supporting V2X communication.
  • the first node device 1200 is a user equipment that supports operations on a shared frequency spectrum.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least one of the sources 467.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first five of sources 467 .
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first four of sources 467 .
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first three of sources 467 .
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first two of sources 467 .
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467 .
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of the data sources 467 .
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of the data sources 467 .
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of the data sources 467 .
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of the data sources 467 .
  • the first receiver 1201 receives the first signaling, or the first transmitter 1202 sends the first signaling; the first transmitter 1202 transmits the first signaling on the first wireless channel sending a first transport block and a target transport block, sending at least the latter of the first transport block and the target transport block on a second radio channel; wherein the first set of antenna ports is provided by the first radio channel A set of all antenna ports used to map the target transport block on the channel, the target antenna port set is formed by all antenna ports used to map the target transport block on the second wireless channel set; the first signaling is used to determine transmission on the second radio channel, and the set of target antenna ports is related to whether the first transport block is transmitted on the second radio channel; when the When both the first transmission block and the target transmission block are sent on the second wireless channel, the target antenna port set is the same as the first antenna port set; when the first transmission block and the When only the latter of the target transport blocks are transmitted on the second radio channel, the target set of antenna ports includes at least one antenna port other than the first set of
  • the set of target antenna ports includes at least one The channel is used to map the antenna port of the first transport block.
  • the number of antenna ports included in the target antenna port set is greater than the The number of antenna ports included in the first antenna port set.
  • the number of antenna ports included in the target antenna port set is equal to the The number of antenna ports included in the first antenna port set.
  • the target antenna port set is related to whether the first transmission block is sent on the second wireless channel; the second A set of conditions includes at least one of MCS, transport layer, and TDW one of the relevant conditions.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • the first condition set One condition includes: the spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • one condition in the first set of conditions includes: viewed from the time domain, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the One condition in the first set of conditions includes: the L1 is not smaller than the L2.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 13 .
  • the second node device processing apparatus 1300 includes a second transceiver 1303
  • the second transceiver 1303 includes a second transmitter 1301 and a second receiver 1302 .
  • the second node device 1300 is user equipment.
  • the second node device 1300 is a base station.
  • the second node device 1300 is a satellite device.
  • the second node device 1300 is a relay node.
  • the second node device 1300 is a vehicle communication device.
  • the second node device 1300 is a user equipment supporting V2X communication.
  • the second node device 1300 is a user equipment that supports operations on a shared frequency spectrum.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second transmitter 1301 sends the first signaling, or, the second receiver 1302 receives the first signaling; the second receiver 1302, on the first wireless channel receiving a first transport block and a target transport block, receiving at least the latter of the first transport block and the target transport block on a second radio channel; wherein the first set of antenna ports is provided by the A set of all antenna ports used to map the target transport block on the channel, the target antenna port set is formed by all antenna ports used to map the target transport block on the second wireless channel set; the first signaling is used to determine the transmission on the second radio channel, so The target antenna port set is related to whether the first transmission block is transmitted on the second wireless channel; when both the first transmission block and the target transmission block are transmitted on the second wireless channel , the set of target antenna ports is the same as the first set of antenna ports; when only the latter of the first transport block and the target transport block are transmitted on the second radio channel, the target The set of antenna ports includes at least one antenna port other than the first set of antenna ports
  • the set of target antenna ports includes at least one The channel is used to map the antenna port of the first transport block.
  • the number of antenna ports included in the target antenna port set is greater than the The number of antenna ports included in the first antenna port set.
  • the number of antenna ports included in the target antenna port set is equal to the The number of antenna ports included in the first antenna port set.
  • the target antenna port set is related to whether the first transmission block is sent on the second wireless channel;
  • the second A condition set includes conditions related to at least one of MCS, transport layer, and TDW.
  • the first transmission block adopts a first MCS on the first wireless channel
  • the target transmission block adopts a second MCS on the first wireless channel
  • the first condition set One condition includes: the spectral efficiency of the first MCS is not lower than the spectral efficiency of the second MCS.
  • one condition in the first set of conditions includes: viewed from the time domain, the second wireless channel is outside the actual TDW to which the first wireless channel belongs.
  • the first transport block is mapped to L1 transport layers on the first radio channel, and the target transport block is mapped to L2 transport layers on the first radio channel;
  • the One condition in the first set of conditions includes: the L1 is not smaller than the L2.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一收发机,接收第一信令,或者,发送第一信令;第一发射机,在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
支持多个传输块在同一个PUSCH上传输的是增强上行链路(Uplink,UL)传输性能的一种有效手段。对于PUSCH的多次重复传输,如何确定重复传输时传输块与天线端口之间的映射关系是一个需要考虑的重要方面。
发明内容
针对上述问题,本申请公开了一种解决方案。需要说明的是,上述描述采用上行链路作为例子;本申请也同样适用于其他场景,比如下行链路(Downlink),旁链路(sidelink),IoT(Internet of Things,物联网),车联网,NTN(non-terrestrial networks,非地面网络),共享频谱(shared spectrum)等,并取得类似的技术效果。此外,不同场景(包括但不限于上行链路,下行链路,旁链路,IoT,车联网,NTN,共享频谱)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,或者,发送第一信令;
在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;
其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为一个实施例,上述方法的好处包括:提高了传输性能。
作为一个实施例,上述方法的好处包括:降低了BLER(BLock Error Rate,误块率)。作为一个实施例,上述方法的好处包括:提高了资源利用率。
作为一个实施例,上述方法的好处包括:提高了上行覆盖性能。
作为一个实施例,上述方法的好处包括:提高了频谱效率。
根据本申请的一个方面,上述方法的特征在于,
当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
根据本申请的一个方面,上述方法的特征在于,
当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口 集合所包括的天线端口的数量大于所述第一天线端口集合所包括的天线端口的数量。
根据本申请的一个方面,上述方法的特征在于,
当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量等于所述第一天线端口集合所包括的天线端口的数量。
根据本申请的一个方面,上述方法的特征在于,
仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
根据本申请的一个方面,上述方法的特征在于,
所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
根据本申请的一个方面,上述方法的特征在于,
在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
根据本申请的一个方面,上述方法的特征在于,
所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
作为一个实施例,上述方法的好处包括:避免了不当的天线端口切换所导致的传输性能下降。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,或者,接收第一信令;
在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;
其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
根据本申请的一个方面,上述方法的特征在于,
当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
根据本申请的一个方面,上述方法的特征在于,
当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量大于所述第一天线端口集合所包括的天线端口的数量。
根据本申请的一个方面,上述方法的特征在于,
当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量等于所述第一天线端口集合所包括的天线端口的数量。
根据本申请的一个方面,上述方法的特征在于,
仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
根据本申请的一个方面,上述方法的特征在于,
所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
根据本申请的一个方面,上述方法的特征在于,
在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
根据本申请的一个方面,上述方法的特征在于,
所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一收发机,接收第一信令,或者,发送第一信令;
第一发射机,在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;
其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二收发机,发送第一信令,或者,接收第一信令;
第二接收机,在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;
其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的信号传输流程图;
图7示出了根据本申请的一个实施例的第一信令,一个比特图,K个比特组以及K个HARQ进程索引之间关系的示意图;
图8示出了根据本申请的一个实施例的第一条件集合与目标天线端口集合之间关系的示意图;
图9示出了根据本申请的一个实施例的第一条件集合中的一个条件的说明示意图;
图10示出了根据本申请的一个实施例的第一无线信道和第二无线信道在时域上是否属于同一个实际TDW,与在第二无线信道上第一传输块是否被发送之间关系的示意图;
图11示出了根据本申请的一个实施例的第一节点,第二信令以及第一无线信道和第二无线信道之间 关系的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点,在步骤101中接收第一信令或者发送第一信令,在步骤102中在第一无线信道上发送第一传输块和目标传输块,在步骤103中在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;或者,在步骤111中在第一无线信道上发送第一传输块和目标传输块,在步骤112中接收第一信令或者发送第一信令,在步骤113中在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者。
在实施例1中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第一信令是DCI信令。
作为一个实施例,所述第一信令是DCI format 0_0,DCI format 0_1或DCI format 0_2中之一。
作为一个实施例,所述第一信令是DCI format 0_1或DCI format 0_2中之一。
作为一个实施例,所述第一信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_2,所述DCI format 0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 1_0,DCI format 1_1或DCI format 1_2中之一。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括一个IE中的一个或多个域。
作为一个实施例,所述第一信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信令包括DFI flag域,所述第一信令中的所述DFI flag域的值为1。
作为一个实施例,所述第一无线信道是物理层上行链路信道。
作为一个实施例,所述第二无线信道是物理层上行链路信道。
作为一个实施例,所述第一无线信道是物理层上行链路共享信道。
作为一个实施例,所述第二无线信道是物理层上行链路共享信道。
作为一个实施例,所述第一无线信道是物理层上行链路控制信道。
作为一个实施例,所述第二无线信道是物理层上行链路控制信道。
作为一个实施例,所述第一无线信道是PUSCH(Physical uplink shared channel)。
作为一个实施例,所述第二无线信道是PUSCH。
作为一个实施例,所述第一无线信道是PSSCH(Physical sidelink sharedchannel)。
作为一个实施例,所述第二无线信道是PSSCH。
作为一个实施例,所述第一无线信道和所述第二无线信道分别是同一个PUSCH的两次重复(repetitions)。
作为一个实施例,所述第一无线信道和所述第二无线信道是同一个DCI信令所调度的。
作为一个实施例,所述第一无线信道和所述第二无线信道是同一个DCI信令所调度的两个PUSCH。
作为一个实施例,所述第一传输块所生成的编码比特和所述目标传输块所生成的编码比特都在所述第一无线信道上被发送。
作为一个实施例,所述第一传输块所生成的码字和所述目标传输块所生成的码字都在所述第一无线信道上被发送。
作为一个实施例,所述第一传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transformprecoding),预编码(Precoding),资源块映射,多载波符号生成,调制上变频中的至少部分之后的输出,以及,所述目标传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transformprecoding),预编码(Precoding),资源块映射,多载波符号生成,调制上变频中的至少部分之后的输出都在所述第一无线信道上被发送。
作为一个实施例,所述第一传输块和所述目标传输块共同生成的编码比特序列经过扰码,调制,层映射,天线端口映射(Antenna port mapping),映射到虚拟资源块(Mapping to virtual resource blocks),从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks),多载波符号生成,调制上变频中的至少部分之后的输出在所述第一无线信道上被发送。
作为一个实施例,所述第一传输块和所述目标传输块共同生成的所述编码比特序列包括:所述第一传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分之后的输出,以及,所述目标传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分之后的输出。
作为一个实施例,所述第一传输块所生成的编码比特和所述目标传输块所生成的编码比特中的至少后者所述第二无线信道上被发送。
作为一个实施例,所述第一传输块所生成的码字和所述目标传输块所生成的码字中的至少后者所述第二无线信道上被发送。
作为一个实施例,所述第一传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transform precoding),预编码(Precoding),资源块映射,多载波符号生成,调制上变频中的至少部分之后的输出,以及,所述目标传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transformprecoding),预编码(Precoding),资源块映射,多载波符号生成,调制上变频中的至少部分之后的输出两者中的至少后者在所述第二无线信道上被发送。
作为一个实施例,所述第一传输块和所述目标传输块中的至少后者生成的编码比特序列经过扰码,调制,层映射,天线端口映射(Antenna port mapping),映射到虚拟资源块(Mapping to virtual resource blocks),从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks),多载波符号生成,调制上变频中的至少部分之后的输出在所述第二无线信道上被发送。
作为一个实施例,所述第一传输块和所述目标传输块中的至少后者生成的所述编码比特序列包括:所述第一传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分之后的输出,以及,所述目标传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分之后的输出两者中的至少后者。
作为一个实施例,所述第一节点接收所述第一信令。
作为一个实施例,所述第一节点发送所述第一信令。
作为一个实施例,所述第一传输块包括多个比特。
作为一个实施例,所述第一传输块是一个传输块(Transport Block,TB)。
作为一个实施例,所述第一传输块包括至少一个码块(Code Block)
作为一个实施例,所述目标传输块包括多个比特。
作为一个实施例,所述目标传输块是一个传输块(Transport Block,TB)。
作为一个实施例,所述目标传输块包括至少一个码块(Code Block)
作为一个实施例,本申请中的所述天线端口以如下方式定义:使用一个天线端口来传送一个符号的信道可以通过使用这个天线端口来传送另一个符号的信道来推断出。
作为一个实施例,本申请中的所述天线端口包括由参考信号所定义的逻辑发射通道。
作为一个实施例,一个所述天线端口关联到一个参考信号。
作为一个实施例,不同的天线端口分别被用于映射不同的传输块层(transmission layers)。
作为一个实施例,在所述第一无线信道上:所述目标传输块所生成的调制符号(modulation symbols)被映射到至少一个传输层,所述目标传输块所生成的所述调制符号所映射到的每个传输层被映射到所述第一天线端口集合中的一个天线端口上。
作为一个实施例,在所述第二无线信道上:所述目标传输块所生成的调制符号被映射到至少一个传输层,所述目标传输块所生成的所述调制符号所映射到的每个传输层被映射到所述目标天线端口集合中的一个天线端口上。
作为一个实施例,所述调制符号是复数调制符号(Complex-valued modulation symbols)。
作为一个实施例,所述目标传输块所生成的调制符号由所述目标传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分之后的输出再经过扰码(Scrambling)和调制(Modulation)后得到。
作为一个实施例,在所述第一无线信道上:所述目标传输块映射到一个码字(codeword),针对所述一个码字的调制符号(modulation symbols)被映射到至少一个传输层,针对所述一个码字的所述调制符号所映射到的每个传输层被映射到所述第一天线端口集合中的一个天线端口上。
作为一个实施例,在所述第二无线信道上:所述目标传输块映射到一个码字,针对所述一个码字的调制符号被映射到至少一个传输层,针对所述一个码字的所述调制符号所映射到的每个传输层被映射到所述目标天线端口集合中的一个天线端口上。
作为一个实施例,在所述第一无线信道上:所述第一传输块所生成的调制符号(modulation symbols)被映射到至少一个传输层,所述第一传输块所生成的所述调制符号所映射到的每个传输层被映射到在所述第一无线信道上被用于映射所述第一传输块的一个天线端口上。
作为一个实施例,当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时:在所述第二无线信道上:所述第一传输块所生成的调制符号(modulation symbols)被映射到至少一个传输层,所述第一传输块所生成的所述调制符号所映射到的每个传输层被映射到在所述第二无线信道上被用于映射所述第一传输块的一个天线端口上。
作为一个实施例,所述调制符号是复数调制符号(Complex-valued modulation symbols)。
作为一个实施例,所述第一传输块所生成的调制符号由所述第一传输块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分之后的输出再经过扰码(Scrambling)和调制(Modulation)后得到。
作为一个实施例,在所述第一无线信道上:所述第一传输块映射到一个码字(codeword),针对所述一个码字的调制符号(modulation symbols)被映射到至少一个传输层,针对所述一个码字的所述调制符号所映射到的每个传输层被映射到在所述第一无线信道上被用于映射所述第一传输块的一个天线端口上。
作为一个实施例,当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时:在所述第二无线信道上:所述第一传输块映射到一个码字(codeword),针对所述一个码字的调制符号(modulation symbols)被映射到至少一个传输层,针对所述一个码字的所述调制符号所映射到的每个传输层被映射到在所述第二无线信道上被用于映射所述第一传输块的一个天线端口上。
作为一个实施例,本申请中的一个码字包括编码后的比特。
作为一个实施例,一个传输块被映射到至多4个天线端口。
作为一个实施例,所述第一信令被用于指示所述第二无线信道上的发送。
作为一个实施例,所述第一信令被用于指示所述第一无线信道上的信号发送的配置信息。
作为一个实施例,所述第一信令被用于指示所述第二无线信道上的信号发送的配置信息。
作为一个实施例,所述第一信令被用于确定是否在所述第二无线信道上发送所述第一传输块。
作为一个实施例,所述第一信令被用于指示是否在所述第二无线信道上发送所述第一传输块。
作为一个实施例,所述第一信令显式指示是否在所述第二无线信道上发送所述第一传输块。
作为一个实施例,所述第一信令隐式指示是否在所述第二无线信道上发送所述第一传输块。
作为一个实施例,所述第一信令包括第一比特;当所述第一比特的值为0时,所述第一传输块和所述目标传输块都在所述第二无线信道上被发送;当所述第一比特的值为1时,所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送。
作为一个实施例,所述第一信令包括第一比特;当所述第一比特的值为1时,所述第一传输块和所述目标传输块都在所述第二无线信道上被发送;当所述第一比特的值为0时,所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送。
作为一个实施例,所述第一信令还包括目标比特,所述目标比特的值为0。
作为一个实施例,所述第一信令中的所述目标比特的所述值为0指示所述目标传输块未被正确译码。
作为一个实施例,所述第一信令中的所述第一比特和所述目标比特映射到同一个HARQ进程的不同码字。
作为一个实施例,所述第一信令被用于指示CG-DFI。
作为一个实施例,所述第一信令被用于指示与所述第一传输块的发送所采用的HARQ进程号相同的HARQ进程号下的新的传输。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括所述第一天线端口集合中的所有天线端口以及所述第一天线端口集合之外的 至少一个天线端口。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合不包括所述第一天线端口集合中的任何天线端口。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述第一天线端口集合中的至少一个天线端口不属于所述目标天线端口集合。
作为一个实施例,第二天线端口集合是由在所述第一无线信道上被用于映射所述第一传输块的所有天线端口所构成的集合。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合与所述第二天线端口集合相同。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括所述第二天线端口集合中的至少一个天线端口。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合是所述第一天线端口集合和所述第二天线端口集合的并集。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括所述第一天线端口集合中的至少一个天线端口和所述第二天线端口集合中的至少一个天线端口。
作为一个实施例,所述第一天线端口集合和所述第二天线端口集合无交集。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标传输块的至少两次重复在所述第二无线信道上被发送。
作为一个实施例,所述目标传输块经过至少信道编码后得到参考编码比特序列;在所述第一无线信道上,所述第一天线端口集合中的所有天线端口被用于映射所述参考编码比特序列;在所述第二无线信道上,所述目标天线端口集合中的所有天线端口被用于映射所述参考编码比特序列。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述参考编码比特序列的至少两次重复在所述第二无线信道上被发送。
作为一个实施例,所述目标传输块经过至少信道编码后得到参考编码比特序列,所述参考编码比特序列经过至少速率匹配后得到第一编码比特序列;在所述第一无线信道上,所述第一天线端口集合中的所有天线端口被用于映射所述第一编码比特序列;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合中的所有天线端口被用于映射所述第一编码比特序列;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述参考编码比特序列经过至少速率匹配后得到第二编码比特序列,所述目标天线端口集合包括所述第一天线端口集合和所述第二天线端口集合中的至少一个天线端口,所述第一天线端口集合中的所有天线端口被用于映射所述第一编码比特序列,所述第二天线端口集合中的所述至少一个天线端口被用于映射所述第二编码比特序列。
作为一个实施例,所述目标传输块经过至少信道编码和速率匹配后得到参考编码比特序列;在所述第一无线信道上,所述第一天线端口集合中的所有天线端口被用于映射所述参考编码比特序列;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合中的所有天线端口被用于映射所述参考编码比特序列;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述参考编码比特序列被用于确定第二编码比特序列,所述目标天线端口集合包括所述第一天线端口集合和所述第二天线端口集合中的至少一个天线端口,所述第一天线端口集合中的所有天线端口被用于映射所述参考编码比特序列,所述第二天线端口集合中的所述至少一个天线端口被用于映射所述第二编码比特序列。
作为一个实施例,所述目标传输块经过至少CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation)中的至少部分后得到参考编码比特序列。
作为一个实施例,所述参考编码比特序列经过至少第一操作后得到所述第二编码比特序列。
作为一个实施例,所述第一操作包括速率匹配。
作为一个实施例,所述第一操作包括赋值操作。
作为一个实施例,所述第一操作包括打孔,缩短,补零中的至少之一。
作为一个实施例,所述第一操作包括删除比特和补零中的至少之一。
作为一个实施例,所述第二编码比特序列是所述参考编码比特序列。
作为一个实施例,所述参考编码比特序列是一个码字(codeword)。
作为一个实施例,所述第一编码比特序列是一个码字(codeword)。
作为一个实施例,所述第二编码比特序列是一个码字(codeword)。
作为一个实施例,所述表述“被用于映射所述参考编码比特序列”包括:被用于映射所述参考编码比特序列所生成的调制符号。
作为一个实施例,所述表述“被用于映射所述参考编码比特序列”包括:被用于映射所述参考编码比特序列经过至少加扰和调制后的输出。
作为一个实施例,所述表述“被用于映射所述参考编码比特序列”包括:被用于映射所述参考编码比特序列经过加扰,调制,层映射,变换预编码,预编码中的至少部分之后的输出。
作为一个实施例,所述表述“被用于映射所述第一编码比特序列”包括:被用于映射所述第一编码比特序列所生成的调制符号。
作为一个实施例,所述表述“被用于映射所述第一编码比特序列”包括:被用于映射所述第一编码比特序列经过至少加扰和调制后的输出。
作为一个实施例,所述表述“被用于映射所述第一编码比特序列”包括:被用于映射所述第一编码比特序列经过加扰,调制,层映射,变换预编码,预编码中的至少部分之后的输出。
作为一个实施例,所述表述“被用于映射所述第二编码比特序列”包括:被用于映射所述第二编码比特序列所生成的调制符号。
作为一个实施例,所述表述“被用于映射所述第二编码比特序列”包括:被用于映射所述第二编码比特序列经过至少加扰和调制后的输出。
作为一个实施例,所述表述“被用于映射所述第二编码比特序列”包括:被用于映射所述第二编码比特序列经过加扰,调制,层映射,变换预编码,预编码中的至少部分之后的输出。
作为一个实施例,所述第一天线端口集合包括1个天线端口。
作为一个实施例,所述第一天线端口集合包括2个天线端口。
作为一个实施例,所述第一天线端口集合包括3个天线端口。
作为一个实施例,所述第一天线端口集合包括4个天线端口。
作为一个实施例,所述第一天线端口集合包括5个天线端口。
作为一个实施例,所述第一天线端口集合包括6个天线端口。
作为一个实施例,所述第一天线端口集合包括7个天线端口。
作为一个实施例,所述目标天线端口集合包括1个天线端口。
作为一个实施例,所述目标天线端口集合包括2个天线端口。
作为一个实施例,所述目标天线端口集合包括3个天线端口。
作为一个实施例,所述目标天线端口集合包括4个天线端口。
作为一个实施例,所述目标天线端口集合包括5个天线端口。
作为一个实施例,所述目标天线端口集合包括6个天线端口。
作为一个实施例,所述目标天线端口集合包括7个天线端口。
作为一个实施例,所述目标天线端口集合包括8个天线端口。
作为一个实施例,在所述第一无线信道上:所述第一传输块被映射到第一个码字,所述目标传输块被映射到第二个码字。
作为一个实施例,当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时:在所述第二无线信道上,所述第一传输块被映射到所述第一个码字,所述目标传输块被映射到所述第二个码字。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:在所述第二无线信道上所述目标传输块被映射到所述第一个码字。
作为一个实施例,所述第一个码字是码字0(codeword 0),所述第二个码字是码字1(codeword 1)。
作为一个实施例,所述第一个码字是码字1,所述第二个码字是码字0。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS,所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS,所述第一MCS的索引不小于所述第二MCS的索引。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上,所述L1不小于所述L2。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS,所述第一MCS的索引小于所述第二MCS的索引。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上,所述L1小于所述L2。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS,所述第一MCS的索引大于所述第二MCS的索引。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上,所述L1大于所述L2。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS,所述第一MCS的索引不大于所述第二MCS的索引。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上,所述L1不大于所述L2。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS,所述第一MCS的索引等于所述第二MCS的索引。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上,所述L1等于所述L2。
作为一个实施例,所述L1是正整数,所述L2是正整数。
作为一个实施例,所述L1不大于2。
作为一个实施例,所述L1不大于4。
作为一个实施例,所述L1不大于8。
作为一个实施例,所述L2不大于2。
作为一个实施例,所述L2不大于4。
作为一个实施例,所述L2不大于8。
作为一个实施例,所述L1与所述L2之和不大于4。
作为一个实施例,所述L1与所述L2之和不大于8。
作为一个实施例,所述L1和所述L2都是可配置的。
作为一个实施例,所述L1和所述L2都是由所述第一信令指示得到的。
作为一个实施例,所述L1和所述L2都是由本申请中的所述第二信令指示得到的。
作为一个实施例,所述第一MCS和所述第二MCS都是可配置的。
作为一个实施例,所述第一MCS和所述第二MCS都是由所述第一信令指示得到的。
作为一个实施例,所述第一MCS和所述第二MCS都是由本申请中的所述第二信令指示得到的。
作为一个实施例,从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW(actual TDW)之内。
作为一个实施例,从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW(actual TDW)之外。
作为一个实施例,所述第一信令的接收/发送在所述第二无线信道之前。
作为一个实施例,所述第一信令的接收/发送在所述第一无线信道之前。
作为一个实施例,所述第一信令的接收/发送在所述第二无线信道之前,所述第一信令的接收/发送所占用的最晚的时域符号与所述第一无线信道所占用的最早的时域符号之间的间隔小于N2个时域符号,所 述N2是正整数。
作为一个实施例,本申请中的所述时域符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,本申请中的所述时域符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,本申请中的所述时域符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,本申请中的所述时域符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述N2小于5。
作为一个实施例,所述N2等于5。
作为一个实施例,所述N2等于10。
作为一个实施例,所述N2等于11。
作为一个实施例,所述N2等于12。
作为一个实施例,所述N2等于23。
作为一个实施例,所述N2等于36。
作为一个实施例,所述第一信令的接收/发送在所述第一无线信道之后。
作为一个实施例,所述第一信令的接收/发送所占用的时域资源与所述第一无线信道所占用的时域资源有交叠。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。 P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数 据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,或者,发送第一信令;在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机 可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,或者,发送第一信令;在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令,或者,接收第一信令;第二接收机,在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,或者,接收第一信令;第二接收机,在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一无线信道上执行发送。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一无线信道上执行接收。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二无线信道上执行发送。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二无线信道上执行接收。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。在附图5中,虚线方框F1中的步骤和虚线方框F2中的步骤二者中仅存在一者。
第一节点U1,在步骤S511中接收第一信令,或者,在步骤S512中发送第一信令;在步骤S513中在第一无线信道上发送第一传输块和目标传输块;在步骤S514中在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者。
第二节点U2,在步骤S521中发送第一信令,或者,在步骤S522中接收第一信令;在步骤S523中在第一无线信道上接收第一传输块和目标传输块;在步骤S524中在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者。
在实施例5中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口,所述目标天线端口集合所包括的天线端口的数量等于或大于所述第一天线端口集合所包括的天线端口的数量;仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
作为实施例5的一个子实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
作为实施例5的一个子实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
作为实施例5的一个子实施例,所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
作为实施例5的一个子实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,本申请要解决的问题包括:如何灵活地调整传输块与天线端口之间的对应关系。
作为一个实施例,本申请要解决的问题包括:如何根据DFI的指示确定PUSCH repetition上传输块的发送方式。
作为一个实施例,本申请要解决的问题包括:如何增强上行链路中双码字的传输性能。
作为一个实施例,虚线方框F1中的步骤存在,虚线方框F2中的步骤不存在。
作为一个实施例,虚线方框F1中的步骤不存在,虚线方框F2中的步骤存在。
实施例6
实施例6示例了根据本申请的一个实施例的信号传输流程图,如附图6所示。在附图6中,第一节点U3和第二节点U4之间是通过空中接口进行通信的。在附图6中,虚线方框F3中的步骤和虚线方框F4中的步骤二者中仅存在一者。
第一节点U3,在步骤S611中在第一无线信道上发送第一传输块和目标传输块;在步骤S612中接收第一信令,或者,在步骤S613中发送第一信令;在步骤S614中在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者。
第二节点U4,在步骤S621中在第一无线信道上接收第一传输块和目标传输块;在步骤S622中发送第一信令,或者,在步骤S623中接收第一信令;在步骤S624中在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者。
在实施例6中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口,所述目标天线端口集合所包括的天线端口的数量等于或大于所述第一天线端口集合所包括的天线端口的数量;仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在 所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
作为实施例6的一个子实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
作为实施例6的一个子实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
作为实施例6的一个子实施例,所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
作为实施例6的一个子实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
作为一个实施例,所述第一节点U3是本申请中的所述第一节点。
作为一个实施例,所述第二节点U4是本申请中的所述第二节点。
作为一个实施例,所述第一节点U3是一个UE。
作为一个实施例,所述第一节点U3是一个基站。
作为一个实施例,所述第二节点U4是一个基站。
作为一个实施例,所述第二节点U4是一个UE。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U4和所述第一节点U3之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,虚线方框F3中的步骤存在,虚线方框F4中的步骤不存在。
作为一个实施例,虚线方框F3中的步骤不存在,虚线方框F4中的步骤存在。
实施例7
实施例7示例了根据本申请的一个实施例的第一信令,一个比特图,K个比特组以及K个HARQ进程索引之间关系的示意图,如附图7所示。
在实施例7中,所述第一信令包括一个比特图(bitmap),所述一个比特图包括K个比特组,所述K个比特组中的每个比特组由M个比特构成;所述K个比特组分别映射到K个HARQ进程索引(HARQ process indices);所述K是大于1的正整数,所述M是正整数。
作为一个实施例,所述K等于16。
作为一个实施例,所述K等于32。
作为一个实施例,所述K等于8。
作为一个实施例,所述K不大于1024。
作为一个实施例,所述M等于1。
作为一个实施例,所述M等于2。
作为一个实施例,所述M等于3。
作为一个实施例,所述M等于4。
作为一个实施例,所述M不大于64。
作为一个实施例,所述M大于1,所述K个比特组中的每个比特组所包括的M个比特分别映射到M个码字。
作为一个实施例,对于所述K个比特组中的任一比特组,所包括的所有比特映射到同一个HARQ进程索引。
实施例8
实施例8示例了根据本申请的一个实施例的第一条件集合与目标天线端口集合之间关系的示意图,如附图8所示。
在实施例8中,仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
作为一个实施例,当所述第一条件集合中的任一条件不被满足时,所述目标天线端口集合总是与所述第一天线端口集合相同。
作为一个实施例,所述第一条件集合包括仅一个条件。
作为一个实施例,所述第一条件集合包括多个条件。
作为一个实施例,所述第一条件集合包括与MCS有关的条件。
作为一个实施例,所述第一条件集合包括与传输层有关的条件。
作为一个实施例,所述第一条件集合包括与MCS和传输层均有关的条件。
作为一个实施例,所述第一条件集合包括与至少一个与MCS有关的条件以及至少一个与传输层有关的条件。
作为一个实施例,所述第一条件集合包括与TDW有关的条件。
作为一个实施例,所述第一条件集合包括与所述第一无线信道在时域上所属的TDW有关的条件。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1大于所述L2。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1等于所述L2。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1小于所述L2。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不大于所述L2。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率高于所述第二MCS的频谱效率。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率等于所述第二MCS的频谱效率。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率低于所述第 二MCS的频谱效率。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不高于所述第二MCS的频谱效率。
作为一个实施例,所述第一MCS是DCI格式所指示的。
作为一个实施例,所述第二MCS是DCI格式所指示的。
作为一个实施例,所述第一MCS和所述第二MCS是同一个DCI格式所指示的。
作为一个实施例,所述第一MCS是RRC信令所配置的。
作为一个实施例,所述第二MCS是RRC信令所配置的。
作为一个实施例,仅当第一条件集合中存在至少一个条件被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS(Modulation and coding scheme,调制与编码策略),传输层,TDW(time domain window,时域窗)中的至少之一有关。
实施例9
实施例9示例了根据本申请的一个实施例的第一条件集合中的一个条件的说明示意图,如附图9所示。
在实施例9中,所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
作为一个实施例,一个所述实际TDW包括至少一个时域符号。
作为一个实施例,一个所述实际TDW包括至少一个时隙(slot)。
作为一个实施例,一个所述实际TDW包括连续的时域资源。
作为一个实施例,所述第一无线信道所占用的时域资源被包括在所属的实际TDW(actual TDW)之中。
作为一个实施例,当所述第二无线信道和所述第一无线信道在时域上属于同一个实际TDW时,所述目标天线端口集合总与所述第一天线端口集合相同。
作为一个实施例,所述第一无线信道和所述第二无线信道分别是一个PUSCH的两次相邻的重复(repetitions)。
作为一个实施例,所述第一无线信道和所述第二无线信道分别用于一个PUSCH传输的多次重复中的两次连续的PUSCH传输。
作为一个实施例,从时域上看,所述第一无线信道在所述第二无线信道之前。
作为一个实施例,从时域上看,所述第一无线信道和所述第二无线信道无交叠。
作为一个实施例,所述第一节点被配置了启用针对PUSCH的DM-RS(Dedicated demodulation reference signal,专用解调参考信号)捆绑(Bundling)。
作为一个实施例,PUSCH-DMRS-Bundling被使能。
作为一个实施例,所述实际TDW是一个时域窗(time domain window,TDW)。
作为一个实施例,所述第一节点可以被配置一个或多个名义(nominal)TDW,每个名义TDW包括至少一个实际TDW,每个实际TDW在一个名义TDW之内。
作为一个实施例,在一个包括多个实际TDW的名义TDW之内,所包括的所述多个实际TDW相互之间无时域交叠。
作为一个实施例,导致功率一致性和相位连续性无法维持的事件会触发一个实际TDW。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:跳频。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:下行链路相关事件。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:针对非配对频谱的基于tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated的下行链路时隙或下行链路接收或下行链路监控。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:任何两个连续PUSCH传输之间的间隔,或任何两个连续PUCCH传输之间的间隔超过13个符号。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:任何两个连续的PUSCH传输之间的间隔或任何两个连续的PUCCH传输之间的间隔不超过13个符号,但在两个连续的PUSCH传输或两个连续的PUCCH传输之间存在其他上行链路传输的调度。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:PUSCH重复类型A或PUSCH重复类型B或基于跨时隙TB处理的PUSCH传输中的一次PUSCH传输被丢弃或取消。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:PUCCH传输的多次重复中的一次PUCCH传输被丢弃或取消。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:对于PUSCH重复类型A(PUSCH repetition type A)或PUSCH重复类型B(PUSCH repetition type B)的任何两个连续PUSCH传输,当在SRS ResourceSetToAddModList或SRS-ResourceSetToAddModListDCI-0-2中配置两个SRS资源集时,SRS ResourceSet中的更高层参数usage被设置为“codebook”或“noncodebook”,不同的SRS资源集关联用于PUSCH重复类型A或PUSCH重复类型B的两个PUSCH传输。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:对于PUCCH重复的任何两个连续PUCCH传输,当用于PUCCH传输的PUCCH资源包括第一和第二空间关系时,不同的空间关系用于所述PUCCH重复的所述两个PUCCH传输。
作为一个实施例,所述导致功率一致性和相位连续性无法维持的事件包括:响应定时提前命令(timing advance command)进行上行链路定时调整。
作为一个实施例,所述实际TDW是被用于限制功率一致性和相位连续性的时域窗。
作为一个实施例,在所述第一无线信道和所述第二无线信道在时域所属的所述同一个实际TDW内,所述第一节点应保持限制功率一致性和相位连续性。
作为一个实施例,所述第一条件集合包括所述第一MCS的频谱效率等于所述第二MCS的频谱效率这一条件。
实施例10
实施例10示例了根据本申请的一个实施例的第一无线信道和第二无线信道在时域上是否属于同一个实际TDW,与在第二无线信道上第一传输块是否被发送之间关系的示意图,如附图10所示。
在实施例10中,所述第一无线信道和所述第二无线信道在时域上是否属于同一个实际TDW(actual TDW)与在所述第二无线信道上所述第一传输块是否被发送有关。
作为一个实施例,所述第一信令被用于确定所述第二无线信道在时域上是否属于(相对于所述第一无线信道在时域上所属的实际TDW而言的)新的实际TDW;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述第二无线信道在时域上属于(相对于所述第一无线信道在时域上所属的实际TDW而言的)新的实际TDW。
作为一个实施例,当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述第一无线信道和所述第二无线信道在时域属于同一个实际TDW;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述第二无线信道在时域上属于(相对于所述第一无线信道在时域上所属的实际TDW而言的)新的实际TDW。
作为一个实施例,基于所述第一信令的指示,导致功率一致性和相位连续性无法维持的事件被触发。
实施例11
实施例11示例了根据本申请的一个实施例的第一节点,第二信令以及第一无线信道和第二无线信道之间关系的示意图,如附图11所示。
在实施例11中,本申请中的所述第一节点接收或发送第二信令,所述第二信令被用于确定所述第一无线信道和所述第二无线信道。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第二信令是DCI信令。
作为一个实施例,所述第二信令是DCI format 0_0,DCI format 0_1或DCI format 0_2中之一。
作为一个实施例,所述第二信令是DCI format 0_1或DCI format 0_2中之一。
作为一个实施例,所述第二信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 0_2,所述DCI format 0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 1_0,DCI format 1_1或DCI format 1_2中之一。
作为一个实施例,所述第二信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第二信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第二信令是更高层(higher layer)信令。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第二信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第二信令包括一个IE中的一个或多个域。
作为一个实施例,所述第二信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第二信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第二信令的CRC被CS-RNTI加扰。
作为一个实施例,所述第二信令中针对被使能的传输块的NDI(new data indicator)域的值被设置为0。
作为一个实施例,所述第二信令包括DFI flag域,所述第二信令中的所述DFI flag域的值被设置为0。
作为一个实施例,所述第二信令包括信息元素ConfiguredGrantConfig。
作为一个实施例,所述第二信令包括信息元素ConfiguredGrantConfig中的至少一个域。
作为一个实施例,所述第二信令被用于指示上行链路配置授予(UL configured grant),所述第一无线信道和所述第二无线信道都是对应所述上行链路配置授予的PUSCH。
作为一个实施例,所述第二信令被用于激活上行链路配置授予(UL configured grant),所述第一无线信道和所述第二无线信道都是对应所述上行链路配置授予的PUSCH。
作为一个实施例,所述第二信令被用于调度所述第一无线信道和所述第二无线信道。
作为一个实施例,所述第二信令被用于指示所述第一无线信道和所述第二无线信道的调度信息。
作为一个实施例,所述调度信息包括{所占用的时域资源,所占用的频域资源,所使用的天线端口,所采用的MCS(Modulation and coding scheme,调制与编码策略),TPC命令,所采用的HARQ进程号,空域关系,所采用的预编码}中的至少之一。
作为一个实施例,所述第二信令被用于指示所述第一MCS和所述第二MCS。
作为一个实施例,所述第二信令是所述第一信令。
作为一个实施例,所述第二信令是所述第一信令之外的信令。
实施例12
实施例12示例了一个第一节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第一 节点设备处理装置1200包括第一收发机1203,所述第一收发机1203包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备1200是基站。
作为一个实施例,所述第一节点设备1200是用户设备。
作为一个实施例,所述第一节点设备1200是中继节点。
作为一个实施例,所述第一节点设备1200是车载通信设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备1200是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
在实施例12中,所述第一接收机1201,接收第一信令,或者,所述第一发射机1202,发送第一信令;所述第一发射机1202,在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量大于所述第一天线端口集合所包括的天线端口的数量。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量等于所述第一天线端口集合所包括的天线端口的数量。
作为一个实施例,仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少 之一有关的条件。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
作为一个实施例,所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
实施例13
实施例13示例了一个第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300包括第二收发机1303,所述第二收发机1303包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备1300是用户设备。
作为一个实施例,所述第二节点设备1300是基站。
作为一个实施例,所述第二节点设备1300是卫星设备。
作为一个实施例,所述第二节点设备1300是中继节点。
作为一个实施例,所述第二节点设备1300是车载通信设备。
作为一个实施例,所述第二节点设备1300是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1300是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
在实施例13中,所述第二发射机1301,发送第一信令,或者,所述第二接收机1302,接收第一信令;所述第二接收机1302,在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所 述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量大于所述第一天线端口集合所包括的天线端口的数量。
作为一个实施例,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量等于所述第一天线端口集合所包括的天线端口的数量。
作为一个实施例,仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
作为一个实施例,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
作为一个实施例,所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
作为一个实施例,在所述第一无线信道上所述第一传输块映射到L1个传输层上,在所述第一无线信道上所述目标传输块映射到L2个传输层上;所述第一条件集合中的一个条件包括:所述L1不小于所述L2。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一收发机,接收第一信令,或者,发送第一信令;
    第一发射机,在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;
    其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
  2. 根据权利要求1所述的第一节点,其特征在于,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合包括至少一个在所述第一无线信道上被用于映射所述第一传输块的天线端口。
  3. 根据权利要求1或2所述的第一节点,其特征在于,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量大于所述第一天线端口集合所包括的天线端口的数量。
  4. 根据权利要求1或2所述的第一节点,其特征在于,当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时:所述目标天线端口集合所包括的天线端口的数量等于所述第一天线端口集合所包括的天线端口的数量。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,仅当第一条件集合中的所有条件都被满足时,所述目标天线端口集合才与在所述第二无线信道上所述第一传输块是否被发送有关;所述第一条件集合包括与MCS,传输层,TDW中的至少之一有关的条件。
  6. 根据权利要求5所述的第一节点,其特征在于,所述第一传输块在所述第一无线信道上采用第一MCS,所述目标传输块在所述第一无线信道上采用第二MCS;所述第一条件集合中的一个条件包括:所述第一MCS的频谱效率不低于所述第二MCS的频谱效率。
  7. 根据权利要求5或6所述的第一节点,其特征在于,所述第一条件集合中的一个条件包括:从时域上看,所述第二无线信道在所述第一无线信道所属的实际TDW之外。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二收发机,发送第一信令,或者,接收第一信令;
    第二接收机,在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;
    其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,或者,发送第一信令;
    在第一无线信道上发送第一传输块和目标传输块,在第二无线信道上发送所述第一传输块和所述目标传输块中的至少后者;
    其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无 线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,或者,接收第一信令;
    在第一无线信道上接收第一传输块和目标传输块,在第二无线信道上接收所述第一传输块和所述目标传输块中的至少后者;
    其中,第一天线端口集合是由在所述第一无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合,目标天线端口集合是由在所述第二无线信道上被用于映射所述目标传输块的所有天线端口所构成的集合;所述第一信令被用于确定所述第二无线信道上的发送,所述目标天线端口集合与在所述第二无线信道上所述第一传输块是否被发送有关;当所述第一传输块和所述目标传输块都在所述第二无线信道上被发送时,所述目标天线端口集合与所述第一天线端口集合相同;当所述第一传输块和所述目标传输块中的仅后者在所述第二无线信道上被发送时,所述目标天线端口集合包括所述第一天线端口集合之外的至少一个天线端口。
PCT/CN2023/072517 2022-01-26 2023-01-17 一种被用于无线通信的节点中的方法和装置 WO2023143225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210091812.6A CN116566557A (zh) 2022-01-26 2022-01-26 一种被用于无线通信的节点中的方法和装置
CN202210091812.6 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023143225A1 true WO2023143225A1 (zh) 2023-08-03

Family

ID=87470545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072517 WO2023143225A1 (zh) 2022-01-26 2023-01-17 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116566557A (zh)
WO (1) WO2023143225A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025495A (zh) * 2011-11-07 2014-09-03 瑞典爱立信有限公司 用于发射和接收用于移动无线通信的下行链路控制信息的方法和布置
CN108633062A (zh) * 2017-03-26 2018-10-09 上海朗帛通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置
CN110266452A (zh) * 2018-03-12 2019-09-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020010506A1 (zh) * 2018-07-10 2020-01-16 华为技术有限公司 上报信道状态信息的方法和装置
US20200328781A1 (en) * 2012-01-21 2020-10-15 Huawei Technologies Co.,Ltd. Method and apparatus for transmitting data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025495A (zh) * 2011-11-07 2014-09-03 瑞典爱立信有限公司 用于发射和接收用于移动无线通信的下行链路控制信息的方法和布置
US20200328781A1 (en) * 2012-01-21 2020-10-15 Huawei Technologies Co.,Ltd. Method and apparatus for transmitting data
CN108633062A (zh) * 2017-03-26 2018-10-09 上海朗帛通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置
CN110266452A (zh) * 2018-03-12 2019-09-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020010506A1 (zh) * 2018-07-10 2020-01-16 华为技术有限公司 上报信道状态信息的方法和装置

Also Published As

Publication number Publication date
CN116566557A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US11770229B2 (en) Method and device in communication node used for wireless communication with multiple antenna panels
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230254824A1 (en) Method and device in nodes used for wireless communication
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115665871A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023051032A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116318527A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088397A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103831A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207705A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746107

Country of ref document: EP

Kind code of ref document: A1