WO2023143500A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023143500A1
WO2023143500A1 PCT/CN2023/073531 CN2023073531W WO2023143500A1 WO 2023143500 A1 WO2023143500 A1 WO 2023143500A1 CN 2023073531 W CN2023073531 W CN 2023073531W WO 2023143500 A1 WO2023143500 A1 WO 2023143500A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
configuration
wireless channel
signaling
target wireless
Prior art date
Application number
PCT/CN2023/073531
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023143500A1 publication Critical patent/WO2023143500A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • XR Extended Reality, extended reality
  • 5G NR New Radio, new air interface
  • Quasi-periodic business model, high data rate and low latency requirements are the three important characteristics of XR business; Three features have great potential.
  • the present application discloses a solution.
  • XR XR
  • MBS Multicast and Broadcast Services, multicast and broadcast services
  • IoT Internet of Things, Internet of Things
  • NTN non-terrestrial networks, non-terrestrial networks
  • shared spectrum shared spectrum
  • VoIP voice over IP
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost, or improve performance.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • Receive reference signaling receive first signaling, the reference signaling is used to indicate a reference configuration, the reference configuration includes at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks A configuration in which the first signaling is used to indicate a first time window;
  • the reference signaling is used for activation of semi-persistent scheduling or configuration grant; the reference signaling is used for determining a plurality of resource blocks in the time domain, and the target wireless channel occupies the plurality of resource blocks in the time domain
  • One of the time domain resource blocks, at least one time domain resource block in the plurality of time domain resource blocks is after the deadline of the first time window; the time domain resource block occupied by the target wireless channel and the time domain resource block
  • the time domain relationship between the first time windows is used to determine whether the target wireless channel adopts the reference configuration.
  • the benefits of the above method include: improved transmission performance.
  • the benefits of the above method include: reducing BLER (BLock Error Rate, block error rate).
  • the advantages of the above method include: improving resource utilization.
  • the advantages of the above method include: improving uplink coverage performance.
  • the advantages of the above method include: improving spectrum efficiency.
  • the advantages of the above method include: improving the transmission flexibility of the semi-persistent scheduling or configuration grant.
  • the advantages of the above method include: it is beneficial to support periodic or quasi-periodic services.
  • the advantages of the above method include: it is beneficial to support a dynamically changing data packet size.
  • the advantages of the above method include: it is beneficial to satisfy a higher delay requirement.
  • the above-mentioned method is characterized in that,
  • the first signaling is used to indicate a first configuration, and the first configuration includes time domain resource allocation, frequency domain resource allocation, MCS, waveform, Configuration of at least one of the number of transmission blocks; when the time-domain resource block occupied by the target wireless channel belongs to the first time window, the target wireless channel adopts the first configuration; when the When the time-domain resource block occupied by the target wireless channel does not belong to the first time window, the target wireless channel adopts the reference configuration.
  • the above method is characterized in that it includes:
  • the second time window overlaps with the first time window in a time domain; the time domain resource block occupied by the target wireless channel is between the first time window and the second time window
  • the time domain relationship of is used to determine the configuration adopted by the target wireless channel.
  • the above method is characterized in that it includes:
  • the second signaling is used to indicate a second configuration and a second time window, where the second configuration includes resource allocation in the time domain, resource allocation in the frequency domain, MCS, waveform, and number of transport blocks configuration of at least one of;
  • the second time window overlaps with the first time window in a time domain;
  • the first signaling is used to indicate a first configuration, and the first configuration includes resource allocation in the time domain and resource allocation in the frequency domain , MCS, waveform, configuration of at least one of the number of transport blocks;
  • the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window and the second time window is used to determine the configuration adopted by the target wireless channel; when the time-domain resource block occupied by the target wireless channel does not belong to the first time window and does not belong to the second time window, the The target wireless channel adopts the reference configuration; when the time-domain resource block occupied by the target wireless channel belongs to the first time window and does not belong to the second time window, the target wireless channel adopts the The first configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and does not belong to the first time window, the target wireless channel adopts the second configuration; when When the time-domain resource block occupied by the target wireless channel belongs to the
  • the above-mentioned method is characterized in that,
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the overlapping of the second time window and the first time window Partial and when the deadline of the second time window is earlier than the deadline of the first time window, the target wireless channel adopts the first configuration.
  • the above-mentioned method is characterized in that,
  • the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window and the first configuration When a time window overlaps and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the second signaling, the target wireless channel adopts the second configuration.
  • the above-mentioned method is characterized in that,
  • the first signaling is one of DCI format or MAC CE.
  • the above-mentioned method is characterized in that,
  • the earliest time slot included in the first time window is the K1th time slot after the time slot to which the first signaling belongs in the time domain, and the K1 is a configurable or predefined non-negative integer.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • Sending reference signaling sending first signaling, where the reference signaling is used to indicate a reference configuration, where the reference configuration includes at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks A configuration in which the first signaling is used to indicate a first time window;
  • the reference signaling is used for activation of semi-persistent scheduling or configuration grant; the reference signaling is used for determining a plurality of resource blocks in the time domain, and the target wireless channel occupies the plurality of resource blocks in the time domain
  • One of the time domain resource blocks, at least one time domain resource block in the plurality of time domain resource blocks is after the deadline of the first time window; the time domain resource block occupied by the target wireless channel and the time domain resource block
  • the time domain relationship between the first time windows is used to determine whether the target wireless channel adopts the reference configuration.
  • the above-mentioned method is characterized in that,
  • the first signaling is used to indicate a first configuration, where the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks; when the target When the time domain resource block occupied by the wireless channel belongs to the first time window, the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel does not belong to the When the first time window is used, the target wireless channel adopts the reference configuration.
  • the above method is characterized in that it includes:
  • the second time window overlaps with the first time window in time domain; the time domain resource block occupied by the target wireless channel is between the first time window and the second time window
  • the time domain relationship of is used to determine the configuration adopted by the target wireless channel.
  • the above method is characterized in that it includes:
  • Sending second signaling where the second signaling is used to indicate a second configuration and a second time window, where the second configuration includes resource allocation in the time domain, resource allocation in the frequency domain, MCS, waveform, and number of transport blocks configuration of at least one of;
  • the second time window overlaps with the first time window in a time domain;
  • the first signaling is used to indicate a first configuration, and the first configuration includes resource allocation in the time domain and resource allocation in the frequency domain , MCS, waveform, configuration of at least one of the number of transport blocks;
  • the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window and the second time window is used to determine the configuration adopted by the target wireless channel; when the time-domain resource block occupied by the target wireless channel does not belong to the first time window and does not belong to the second time window, the The target wireless channel adopts the reference configuration; when the time-domain resource block occupied by the target wireless channel belongs to the first time window and does not belong to the second time window, the target wireless channel adopts the The first configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and does not belong to the first time window, the target wireless channel adopts the second configuration; when When the time-domain resource block occupied by the target wireless channel belongs to the
  • the above-mentioned method is characterized in that,
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the overlapping of the second time window and the first time window Partial and when the deadline of the second time window is earlier than the deadline of the first time window, the target wireless channel adopts the first configuration.
  • the above-mentioned method is characterized in that,
  • the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window and the first configuration When a time window overlaps and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the second signaling, the target wireless channel adopts the second configuration.
  • the above-mentioned method is characterized in that,
  • the first signaling is one of DCI format or MAC CE.
  • the above-mentioned method is characterized in that,
  • the earliest time slot included in the first time window is the K1th time slot after the time slot to which the first signaling belongs in the time domain, and the K1 is a configurable or predefined non-negative integer.
  • the present application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the reference signaling, receives the first signaling, the reference signaling is used to indicate the reference configuration, and the reference configuration includes resource allocation in the time domain, resource allocation in the frequency domain, MCS, waveform, and transport block a configuration of at least one of the quantities, the first signaling is used to indicate a first time window;
  • the first transceiver receives the target bit block on the target wireless channel, or sends the target bit block on the target wireless channel;
  • the reference signaling is used for activation of semi-persistent scheduling or configuration grant; the reference signaling is used for determining a plurality of resource blocks in the time domain, and the target wireless channel occupies the plurality of resource blocks in the time domain
  • One of the time domain resource blocks, at least one time domain resource block in the plurality of time domain resource blocks is after the deadline of the first time window; the time domain resource block occupied by the target wireless channel and the time domain resource block of the first time window
  • the time domain relationship between is used to determine whether the target wireless channel adopts the reference configuration.
  • the present application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends reference signaling, and sends first signaling, where the reference signaling is used to indicate a reference configuration, and the reference configuration includes resource allocation in the time domain, resource allocation in the frequency domain, MCS, waveform, and transport block a configuration of at least one of the quantities, the first signaling is used to indicate a first time window;
  • the second transceiver transmits the target bit block on the target wireless channel, or receives the target bit block on the target wireless channel;
  • the reference signaling is used for activation of semi-persistent scheduling or configuration grant; the reference signaling is used for determining a plurality of resource blocks in the time domain, and the target wireless channel occupies the plurality of resource blocks in the time domain
  • One of the time domain resource blocks, at least one time domain resource block in the plurality of time domain resource blocks is after the deadline of the first time window; the time domain resource block occupied by the target wireless channel and the time domain resource block
  • the time domain relationship between the first time windows is used to determine whether the target wireless channel adopts the reference configuration.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • Fig. 6 shows an explanatory schematic diagram of a configuration adopted for determining a target wireless channel according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the relationship among the second signaling, the second time window, the first time window and the target wireless channel according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram illustrating the time domain relationship between the second time window and the first time window according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram illustrating the time domain relationship between the second time window and the first time window according to an embodiment of the present application.
  • Fig. 10 shows an explanatory schematic diagram of the time domain relationship between the second time window and the first time window according to an embodiment of the present application
  • Fig. 11 shows an explanatory schematic diagram of the time domain relationship between the second time window and the first time window according to an embodiment of the present application
  • Fig. 12 shows an explanatory schematic diagram of a configuration adopted for determining a target wireless channel according to an embodiment of the present application
  • Fig. 13 shows an explanatory schematic diagram of a configuration adopted for determining a target wireless channel according to an embodiment of the present application
  • Fig. 14 shows an explanatory schematic diagram of a configuration adopted for determining a target wireless channel according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of the first signaling being used to indicate the first time window according to an embodiment of the present application
  • FIG. 16 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application receives the reference signaling in step 101; receives the first signaling in step 102, and receives the target bit block on the target wireless channel in step 103, or , sending the target bit block on the target wireless channel.
  • the reference signaling is used to indicate a reference configuration
  • the reference configuration includes a configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the first signaling is used to indicate the first time window;
  • the reference signaling is used to activate semi-persistent scheduling or configuration grant;
  • the reference signaling is used to determine multiple time-domain resource blocks, so
  • the target wireless channel occupies one of the plurality of time-domain resource blocks in the time domain, and at least one time-domain resource block in the plurality of time-domain resource blocks is after the deadline of the first time window; the The time domain relationship between the time domain resource blocks occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel adopts the reference configuration.
  • the reference signaling is physical layer signaling.
  • the reference signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the reference signaling is DCI signaling.
  • the reference signaling is one of DCI format0_0, DCI format0_1 or DCI format0_2.
  • the reference signaling is one of DCI format0_1 or DCI format0_2.
  • the reference signaling is DCI format0_0, and for the specific definition of the DCI format0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the reference signaling is DCI format0_1, and for the specific definition of the DCI format0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the reference signaling is DCI format0_2, and for the specific definition of the DCI format0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the reference signaling is one of DCI format1_0, DCI format1_1 or DCI format1_2.
  • the reference signaling is DCI format1_0, and for the specific definition of the DCI format1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the reference signaling is DCI format1_1, and for a specific definition of the DCI format1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the reference signaling is DCI format1_2, and for the specific definition of the DCI format1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the reference signaling includes one or more fields in a DCI format.
  • the reference signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • the reference signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the reference signaling is higher layer (higher layer) signaling.
  • the reference signaling is RRC signaling.
  • the reference signaling includes one or more fields in one RRC signaling.
  • the reference signaling includes an IE (Information Element, information element).
  • the reference signaling includes one or more fields in one IE.
  • the reference signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • the reference signaling includes one or more fields in one MAC CE signaling.
  • the first signaling is physical layer signaling.
  • the first signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the first signaling is DCI signaling.
  • the first signaling is one of DCI format0_0, DCI format0_1 or DCI format0_2.
  • the first signaling is one of DCI format0_1 or DCI format0_2.
  • the first signaling is DCI format0_0, and for a specific definition of the DCI format0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format0_1, and for a specific definition of the DCI format0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format0_2, and for a specific definition of the DCI format0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is one of DCI format1_0, DCI format1_1 or DCI format1_2.
  • the first signaling is DCI format1_0, and for a specific definition of the DCI format1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format1_1, and for the specific definition of DCI format1_1, refer to 3GPP TS38.212 Section 7.3.1.2 in.
  • the first signaling is DCI format1_2, and for a specific definition of the DCI format1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling includes one or more fields (fields) in a DCI format.
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the first signaling is higher layer (higher layer) signaling.
  • the first signaling is RRC signaling.
  • the first signaling includes one or more fields in one RRC signaling.
  • the first signaling includes an IE (Information Element, information element).
  • the first signaling includes one or more fields in one IE.
  • the first signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signaling includes one or more fields in one MAC CE signaling.
  • the first signaling is received after the reference signaling.
  • the reference signaling is different from the first signaling.
  • the reference signaling and the first signaling are different physical layer signaling.
  • the reference signaling and the first signaling are different DCI signaling.
  • the reference signaling and the first signaling are different MAC CEs.
  • the reference signaling is MAC CE
  • the first signaling is DCI signaling
  • the reference signaling is DCI signaling
  • the first signaling is MAC CE
  • the reference signaling explicitly indicates the reference configuration.
  • the reference signaling implicitly indicates the reference configuration.
  • a field in the reference signaling is used to indicate the reference configuration.
  • the reference configuration includes a configuration for resource allocation in the time domain.
  • the reference configuration includes a configuration for allocation of frequency domain resources.
  • the reference configuration includes the configuration of the MCS.
  • the reference configuration includes a waveform configuration.
  • the reference configuration includes a configuration of a physical layer waveform.
  • the reference configuration includes: using a DFT-s-OFDM (Discrete Fourier Transform-spread-OFDM, discrete Fourier transform spread orthogonal frequency division multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-OFDM, discrete Fourier transform spread orthogonal frequency division multiplexing
  • the reference configuration includes: adopting a CP-OFDM waveform (Cyclic Prefix-OFDM, cyclic prefix orthogonal frequency division multiplexing).
  • the reference configuration includes the configuration of the number of transport blocks.
  • the reference configuration includes a configuration for only one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the reference configuration includes configurations for time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the reference configuration includes configurations for time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the reference configuration includes configurations for time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the reference configuration includes configuration of time domain resource allocation, frequency domain resource allocation, MCS, waveform and number of transport blocks.
  • the reference configuration further includes configurations of time domain resource allocation, frequency domain resource allocation, MCS (Modulation and coding scheme, modulation and coding scheme), waveform, and attributes other than the number of transport blocks.
  • MCS Modulation and coding scheme, modulation and coding scheme
  • waveform waveform
  • attributes other than the number of transport blocks.
  • the first signaling explicitly indicates the first time window.
  • the first signaling implicitly indicates the first time window.
  • the first signaling is used to indicate a starting position of the first time window.
  • the first signaling is used to indicate an end position of the first time window.
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the earliest time window occupied by the first time window The time slot (slot).
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the earliest time window occupied by the first time window time-domain symbols.
  • the time-domain symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the time domain symbols in this application are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • the time domain symbols in this application are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the time-domain symbols in this application are FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbols.
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the start moment of the first time window .
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the duration occupied by the first time window .
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the maximum time window occupied by the first time window. Late slot.
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the maximum time window occupied by the first time window. Late time domain notation.
  • the expression "the first signaling is used to indicate the first time window” in this application includes: the first signaling is used to indicate the deadline of the first time window.
  • the first time window includes at least one time domain symbol.
  • the first time window includes at least one time slot.
  • the first time window includes continuous time domain resources.
  • the first time window includes only one time domain symbol or multiple consecutive time domain symbols.
  • the first time window includes only one time slot or multiple consecutive time slots.
  • the target wireless channel is a physical layer channel.
  • the target wireless channel is a shared channel.
  • the target wireless channel is a physical layer shared channel.
  • the target wireless channel is PDSCH.
  • the target wireless channel is SPS PDSCH.
  • the target wireless channel is PUSCH.
  • the target wireless channel is CG PUSCH.
  • the target wireless channel is PSSCH.
  • the target wireless channel is used to carry coded bits of the target bit block.
  • the target wireless channel is used to carry modulation symbols generated by coded bits of the target bit block.
  • the target wireless channel is used to carry the target bit block through CRC attachment (CRC attachment), code block segmentation (Code block segmentation), code block CRC attachment, channel coding (Channel coding), rate matching (Rate matching), Code block concatenation, Scrambling, Modulation, Layer mapping, Transform precoding, Precoding, mapping to virtual Resource blocks (Mapping to virtual resource blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from virtual to physical resource blocks), multi-carrier symbols An output after at least a portion of the modulated upconversion is generated.
  • the target wireless channel is used to carry the target bit block through CRC attachment (CRC attachment), code block segmentation (Code block segmentation), code block CRC attachment, channel coding (Channel coding), rate matching (Rate matching), code block concatenation (Code block concatenation), scrambling, modulation, layer mapping, antenna port mapping (Antenna port mapping), mapping to virtual resource blocks (Mapping to virtual resource blocks), mapping from virtual resource blocks To physical resource blocks (Mapping from virtual to physical resource blocks), multi-carrier symbols are generated, and at least part of the output after modulation up-conversion.
  • the target wireless channel is used to carry coded bits of the target bit block.
  • the target wireless channel is used to carry modulation symbols generated by the target bit block.
  • the target wireless channel is used to carry modulation symbols generated by coded bits of the target bit block.
  • the target bit block includes multiple bits.
  • the target bit block includes at least one transport block (Transport Block, TB).
  • Transport Block Transport Block
  • the target bit block includes at least one code block (Code Block).
  • the target bit block includes at least one code block group (Code Block Group, CBG).
  • CBG Code Block Group
  • the reference signaling is an activated DCI format used for semi-persistent scheduling activation or configuration grant activation.
  • the CRC of the reference signaling is scrambled by the CS-RNTI, and the NDI field for the enabled transport block included in the reference signaling is set to 0.
  • the reference signaling does not include the DFI flag field.
  • the reference signaling includes a DFI flag field, and the value of the DFI flag field included in the reference signaling is set to 0.
  • the reference signaling is used for activation of semi-persistent scheduling (Semi-persistent scheduling, SPS).
  • SPS semi-persistent scheduling
  • the reference signaling is used for activation of downlink semi-persistent scheduling (DL SPS).
  • DL SPS downlink semi-persistent scheduling
  • the reference signaling is used to activate a configured grant (configured grant, CG).
  • the reference signaling is used for activation of the second type of configuration grant (Type 2 configured grant).
  • the reference signaling is used to activate a configured uplink grant (configured UL grant).
  • the reference signaling is used to indicate the multiple time-domain resource blocks.
  • the reference signaling is used to indicate the earliest time domain resource block among the plurality of time domain resource blocks, and other time domain resource blocks in the plurality of time domain resource blocks use the earliest time domain resource block Domain resource blocks are periodically arranged sequentially as a reference.
  • the semi-persistent scheduling or configuration grant activated by the reference signaling corresponds to multiple wireless channels
  • the multiple time domain resource blocks are time domain resources occupied by the multiple wireless channels.
  • each of the multiple time-domain resource blocks is a time-domain resource occupied by a wireless channel corresponding to the semi-persistent scheduling or configuration grant activated by the reference signaling.
  • each of the plurality of time-domain resource blocks is a time-domain resource occupied by a PDSCH corresponding to the semi-persistent scheduling or configuration grant activated by the reference signaling.
  • each of the plurality of time-domain resource blocks is a time-domain resource occupied by a PUSCH corresponding to the semi-persistent scheduling or configuration grant activated by the reference signaling.
  • the first signaling is used to update related configurations of semi-persistent scheduling or related configurations of configuration grants.
  • one of the plurality of wireless channels is a physical layer channel.
  • one of the plurality of wireless channels is a shared channel.
  • one of the plurality of wireless channels is a physical layer shared channel.
  • one of the multiple wireless channels is a PDSCH (Physical downlink shared channel, physical downlink shared channel).
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • one of the multiple wireless channels is a PUSCH (Physical uplink shared channel, physical uplink shared channel).
  • PUSCH Physical uplink shared channel, physical uplink shared channel
  • one of the multiple wireless channels is a PSSCH (Physical sidelink shared channel, physical sidelink shared channel).
  • PSSCH Physical sidelink shared channel, physical sidelink shared channel
  • the multiple time-domain resource blocks are arranged sequentially in the time domain.
  • the multiple time-domain resource blocks respectively belong to multiple time slots.
  • each time domain resource block in the plurality of time domain resource blocks includes at least one time domain symbol.
  • the duration occupied by any two time domain resource blocks in the plurality of time domain resource blocks is the same.
  • time domain resource blocks there are two time domain resource blocks that occupy different time lengths.
  • the multiple time-domain resource blocks do not overlap each other.
  • each time domain resource block in the plurality of time domain resource blocks includes continuous time domain resources.
  • the expression "at least one of the multiple time-domain resource blocks in the multiple time-domain resource blocks is after the deadline of the first time window” in this application includes: the multiple time-domain resources The start time of at least one time-domain resource block in the block is after the cut-off time of the first time window.
  • the expression "at least one of the multiple time-domain resource blocks in the multiple time-domain resource blocks is after the deadline of the first time window" in this application includes: the multiple time-domain resources The earliest time domain symbol occupied by at least one time domain resource block in the block is after the latest time domain symbol occupied by said first time window.
  • the expression in this application “the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel uses the The reference configuration" includes: the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel adopts the reference configuration or the Refers to configuration other than configuration.
  • the expression in this application "the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel uses the The above reference configuration" includes:
  • the first signaling is used to indicate a first configuration, where the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks; when the target When the time domain resource block occupied by the wireless channel belongs to the first time window, the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel does not belong to the When the first time window is used, the target wireless channel adopts the reference configuration.
  • the expression in this application "the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel uses the The above reference configuration" includes:
  • the first signaling is used to indicate a first configuration, where the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks; when the target When the time domain resource block occupied by the wireless channel does not belong to the first time window, the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the When the first time window is used, the target wireless channel adopts the reference configuration.
  • the expression in this application "the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel uses the The above reference configuration" includes:
  • the first signaling is used to indicate a first configuration, where the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks; when the target When the time domain resource block occupied by the wireless channel overlaps with the first time window in time domain, the target wireless channel adopts the first configuration; when the time domain resource occupied by the target wireless channel When there is no time domain overlap between the block and the first time window, the target wireless channel adopts the reference configuration.
  • the expression in this application "the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel uses the The above reference configuration" includes:
  • the first signaling is used to indicate a first configuration, where the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks; when the target When the time domain resource block occupied by the wireless channel has no time domain overlap with the first time window, the target wireless channel adopts the first configuration; when the time domain occupied by the target wireless channel When the resource block overlaps with the first time window in time domain, the target wireless channel adopts the reference configuration.
  • the expression in this application "the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel uses the The above reference configuration" includes:
  • the first node also receives second signaling, where the second signaling is used to indicate a second configuration and a second time window, where the second configuration includes resource allocation in the time domain, resource allocation in the frequency domain, MCS, Waveform, configuration of at least one of the number of transmission blocks; wherein, the second time window overlaps with the first time window in time domain; the time domain resource block occupied by the target wireless channel and the time domain resource block occupied by the The time domain relationship between the first time window and the second time window is used to determine the configuration adopted by the target wireless channel.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates 5G NR, the diagram of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment, User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW 213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device supporting a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • both the first node and the second node in this application correspond to the UE 201 , for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 shown.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The communication node device (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, an RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated by the PHY351.
  • the second signaling in this application is generated in the RRC sublayer 306 .
  • the second signaling in this application is generated in the MAC sublayer 302 .
  • the second signaling in this application is generated in the MAC sublayer 352 .
  • the second signaling in this application is generated by the PHY301.
  • the second signaling in this application is generated by the PHY351.
  • the reference signaling in this application is generated in the RRC sublayer 306 .
  • the reference signaling in this application is generated in the MAC sublayer 302 .
  • the reference signaling in this application is generated in the MAC sublayer 352 .
  • the reference signaling in this application is generated by the PHY301.
  • the reference signaling in this application is generated by the PHY351.
  • the target bit block in this application is generated in the SDAP sublayer 356 .
  • the target bit block in this application is generated in the RRC sublayer 306 .
  • the target bit block in this application is generated in the MAC sublayer 302 .
  • the target bit block in this application is generated in the MAC sublayer 352 .
  • the target bit block in this application is generated in the PHY301.
  • the target bit block in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving a reference signaling, receiving a first signaling, the reference signaling is used to indicate a reference configuration, and the reference configuration includes time domain resource allocation, frequency domain resource allocation, MCS , waveform, configuration of at least one of the number of transmission blocks, the first signaling is used to indicate the first time window; receiving the target bit block on the target wireless channel, or sending the target bit block on the target wireless channel ;
  • the reference signaling is used for activation of semi-persistent scheduling or configuration grant;
  • the reference signaling is used for determining multiple resource blocks in the time domain, and the target wireless channel occupies the multiple resource blocks in the time domain
  • One of time domain resource blocks, at least one time domain resource block in the plurality of time domain resource blocks is after the deadline of the first time window; the
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: receiving a reference Signaling, receiving first signaling, where the reference signaling is used to indicate a reference configuration, where the reference configuration includes at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks Configuration, the first signaling is used to indicate the first time window; the target bit block is received on the target wireless channel, or the target bit block is sent on the target wireless channel; wherein, the reference signaling is used for half Activation of static scheduling or activation of configuration grant; the reference signaling is used to determine multiple time-domain resource blocks, the target wireless channel occupies one of the multiple time-domain resource blocks in the time domain, and the multiple time-domain resource blocks At least one time domain resource block in the time domain resource blocks is after the deadline of the first time window; the time domain relationship between the time domain resource blocks occupied by the target wireless channel and the
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending a reference signaling, sending a first signaling, the reference signaling is used to indicate a reference configuration, and the reference configuration includes time domain resource allocation, frequency domain resource allocation, MCS , the configuration of at least one of the waveform, number of transport blocks set, the first signaling is used to indicate the first time window; the target bit block is sent on the target wireless channel, or the target bit block is received on the target wireless channel; wherein, the reference signaling is used for half Activation of static scheduling or activation of configuration grant; the reference signaling is used to determine multiple time-domain resource blocks, the target wireless channel occupies one of the multiple time-domain resource blocks in the time domain, and the multiple time-domain resource blocks At least one time domain resource block in the time domain resource blocks is after the deadline of the first time
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a reference Signaling, sending first signaling, where the reference signaling is used to indicate a reference configuration, where the reference configuration includes at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks
  • the first signaling is used to indicate the first time window;
  • the target bit block is sent on the target wireless channel, or the target bit block is received on the target wireless channel; wherein, the reference signaling is used for half Activation of static scheduling or activation of configuration grant;
  • the reference signaling is used to determine multiple time-domain resource blocks, the target wireless channel occupies one of the multiple time-domain resource blocks in the time domain, and the multiple time-domain resource blocks At least one time domain resource block in the time domain resource blocks is after the deadline of the first time window; the time domain relationship between the time domain resource blocks occupied by the target wireless channel and the first
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the second signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive said reference signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the reference signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive said target bit-block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the target bit-block in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit said target bit-block in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to receive the target bit-block in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the steps in the bold dashed box F0 are optional, and only one of the steps in the dashed box F1 and the dashed box F2 exists.
  • the order of the steps in FIG. 5 does not represent a specific time relationship.
  • the first node U1 receives the reference signaling in step S511; receives the first signaling in step S512; receives the first signaling in step S5101 2.
  • Signaling In step S513, the target bit block is received on the target wireless channel, or, in step S514, the target bit block is sent on the target wireless channel.
  • the second node U2 sends reference signaling in step S521; sends the first signaling in step S522; sends the second signaling in step S5201; sends the target bit block on the target wireless channel in step S523, or, The target bit block is received on the target wireless channel in step S524.
  • the reference signaling is used to indicate a reference configuration, and the reference configuration includes a configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the first signaling is used to indicate the first time window; the reference signaling is used to activate semi-persistent scheduling or configuration grant; the reference signaling is used to determine multiple time-domain resource blocks, so The target wireless channel occupies one of the plurality of time-domain resource blocks in the time domain, and at least one time-domain resource block in the plurality of time-domain resource blocks is after the deadline of the first time window; the The time domain relationship between the time domain resource blocks occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel adopts the reference configuration; the first signaling is DCI format or MAC One of CE.
  • the first signaling is used to indicate the first configuration
  • the first configuration includes time-domain resource allocation, frequency-domain resource allocation, MCS, waveform, and number of transport blocks. At least one configuration; when the time-domain resource block occupied by the target wireless channel belongs to the first time window, the target wireless channel adopts the first configuration; when the target wireless channel occupies When the time-domain resource block of does not belong to the first time window, the target wireless channel adopts the reference configuration.
  • the second signaling is used to indicate a second time window; the second time window overlaps with the first time window in time domain; the target wireless channel occupies The time domain relationship between the time domain resource block and the first time window and the second time window is used to determine the configuration adopted by the target wireless channel.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a user equipment-to-user wireless interface.
  • the problem to be solved in this application includes: how to improve the transmission performance of uplink or downlink.
  • the problem to be solved in this application includes: how to improve the transmission performance of semi-persistent scheduling or configuration grant.
  • the problem to be solved in this application includes: how to determine the configuration adopted by the wireless channel.
  • the problem to be solved in this application includes: how to determine the configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform or number of transport blocks for bit block transmission.
  • the problem to be solved in the present application includes: how to realize dynamic adjustment of semi-persistent scheduling or transmission of configuration grants.
  • the problem to be solved in this application includes: how to determine the transmission configuration according to the time window.
  • the problem to be solved in this application includes: how to reduce the BLER.
  • the problem to be solved in this application includes: how to ensure the timeliness of data transmission.
  • the solution disclosed in this application is applicable to various scenarios supporting semi-persistent scheduling or configuration grant.
  • the solution disclosed in this application is applicable to various periodic or quasi-periodic services.
  • the meaning that the first signaling is used to indicate the first time window includes: the maximum time included in the first time window
  • the earlier time slot is the K1th time slot after the time slot to which the first signaling belongs in the time domain, where K1 is a configurable or predefined non-negative integer.
  • the meaning that the second signaling is used to indicate the second time window includes: the earliest time slot included in the second time window is the time slot to which the second signaling belongs in the time domain The K2th time slot after the time slot of , where K2 is a configurable or predefined non-negative integer.
  • the meaning that the first signaling is used to indicate the first time window includes: the earliest time domain symbol included in the first time window is the time domain symbol of the first signaling The K3-th time-domain symbol after the latest time-domain symbol occupied, where K3 is a configurable or predefined positive integer.
  • the meaning that the second signaling is used to indicate the second time window includes: the earliest time domain symbol included in the second time window is the time domain symbol of the second signaling in the time domain The K4th time-domain symbol after the latest occupied time-domain symbol, where K4 is a configurable or predefined positive integer.
  • the first signaling is received before the second signaling, or the first signaling is received after the second signaling.
  • the time-domain resource block occupied by the target wireless channel is before the time-domain resource occupied by the first signaling, or, the time-domain resource block occupied by the target wireless channel After the time domain resources occupied by the first signaling.
  • the time domain resource block occupied by the target wireless channel is before the time domain resource occupied by the second signaling, or, the time domain resource block occupied by the target wireless channel After the time domain resources occupied by the second signaling.
  • the steps in the dotted box F1 exist, and the steps in the dotted box F2 do not exist.
  • the steps in the dotted box F1 do not exist, and the steps in the dotted box F2 exist.
  • Embodiment 6 illustrates a schematic illustration of a configuration adopted for determining a target wireless channel according to an embodiment of the present application, as shown in FIG. 6 .
  • step S61 it is determined whether the time domain resource block occupied by the target wireless channel belongs to the first time window, in step S62 the target wireless channel adopts the first configuration, in step S63 the target wireless channel The channel adopts the reference configuration.
  • the first signaling is used to indicate a first configuration
  • the first configuration includes at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks configuration; when the time domain resource block occupied by the target wireless channel belongs to the first time window, the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel When the domain resource block does not belong to the first time window, the target wireless channel adopts the reference configuration.
  • the target wireless channel is a wireless channel using one of the reference configuration or the first configuration.
  • the first signaling is used to indicate a first configuration
  • the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks .
  • the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel adopts the reference configuration or the Describe the first configuration.
  • whether the time-domain resource block occupied by the target wireless channel belongs to the first time window is used to determine whether the target wireless channel adopts the reference configuration or the first configuration.
  • the expression "the time-domain resource block occupied by the target wireless channel belongs to the first time window" in this application includes: the time-domain resource occupied by the target wireless channel All time-domain resources included in the block are within the first time window.
  • the expression "the time-domain resource block occupied by the target wireless channel belongs to the first time window" in this application includes: the time-domain resource occupied by the target wireless channel At least part of the time-domain resources included in the block are within the first time window.
  • the expression "the time domain resource block occupied by the target wireless channel does not belong to the first time window" in this application includes: the time domain occupied by the target wireless channel All time-domain resources included in the resource block are not included in the first time window.
  • the expression "the time domain resource block occupied by the target wireless channel does not belong to the first time window" in this application includes: the time domain occupied by the target wireless channel At least part of the time-domain resources included in the resource block are not in the first time among the windows.
  • all time domain resources included in the time domain resource block occupied by the target wireless channel are within the first time window, or the time domain occupied by the target wireless channel Any time domain resource included in the domain resource block is not included in the first time window.
  • the expression "the target wireless channel adopts the first configuration" in this application includes: the first configuration includes a configuration for resource allocation in the frequency domain, and the frequency domain occupied by the target wireless channel Domain resources follow said first configuration.
  • the expression "the target wireless channel adopts the first configuration" in this application includes: the first configuration includes a configuration for resource allocation in the time domain, and the time occupied by the target wireless channel Domain resources follow said first configuration.
  • the expression "the target wireless channel adopts the first configuration” in this application includes: the first configuration includes a configuration for time slot occupancy, and the time domain occupied by the target wireless channel The time slots to which the resources belong follow the first configuration.
  • the expression "the target wireless channel adopts the first configuration” in this application includes: the first configuration includes the configuration of the MCS, and the MCS adopted by the target bit block complies with the first configuration.
  • the expression "the target wireless channel adopts the first configuration” in this application includes: the first configuration includes a waveform configuration, and the waveform adopted by the target wireless channel follows the first configuration.
  • the waveform adopted by the target wireless channel is one of DFT-s-OFDM waveform or CP-OFDM waveform.
  • the expression "the target wireless channel adopts the first configuration” in this application includes: the first configuration includes the configuration of the number of transmission blocks, and the number of transmission blocks on the target wireless channel The quantity follows the first configuration.
  • the expression "the target wireless channel adopts the reference configuration" in this application includes: the reference configuration includes a configuration for allocation of frequency domain resources, and the frequency domain resources occupied by the target wireless channel follow the reference configuration described.
  • the expression "the target wireless channel adopts the reference configuration" in this application includes: the reference configuration includes a configuration for time-domain resource allocation, and the time-domain resources occupied by the target wireless channel follow the reference configuration described.
  • the expression "the target wireless channel adopts the reference configuration" in this application includes: the reference configuration includes a configuration for time slot occupancy, and the time domain resources occupied by the target wireless channel belong to The slots follow the reference configuration.
  • the expression "the target wireless channel adopts the reference configuration" in this application includes: the reference configuration includes the configuration of the MCS, and the MCS adopted by the target bit block follows the reference configuration .
  • the expression "the target wireless channel adopts the reference configuration" in this application includes: the reference configuration includes a waveform configuration, and the waveform adopted by the target wireless channel follows the reference configuration .
  • the expression "the target wireless channel adopts the reference configuration" in this application includes: the reference configuration includes the configuration of the number of transport blocks, and the number of transport blocks on the target wireless channel follows The reference configuration.
  • the first signaling explicitly indicates the first configuration.
  • the first signaling implicitly indicates the first configuration.
  • a field in the first signaling is used to indicate the first configuration.
  • the reference configuration includes a configuration for time slot occupancy
  • the first configuration includes a configuration for time slot occupancy
  • the first signaling is used to indicate a first time slot offset
  • the The time slots in the first configuration are obtained after being adjusted according to the first time slot offset with reference to the time slots in the reference configuration.
  • the first configuration includes a configuration of resource allocation in the time domain.
  • the first configuration includes configuration of frequency domain resource allocation.
  • the first configuration includes the configuration of the MCS.
  • the first configuration includes a waveform configuration.
  • the first configuration includes configuration of physical layer waveforms.
  • the first configuration includes: adopting a DFT-s-OFDM waveform.
  • the first configuration includes: adopting a CP-OFDM waveform.
  • the first configuration includes configuring the number of transport blocks.
  • the first configuration includes configuration of only one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the first configuration includes time domain resource allocation, frequency domain resource allocation, MCS, waveform, number of transport blocks configuration of both.
  • the first configuration includes three configurations of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the first configuration includes configurations for time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the first configuration includes configuring time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the first configuration further includes configurations of time-domain resource allocation, frequency-domain resource allocation, MCS, waveform, and attributes other than the number of transport blocks.
  • the reference configuration is different from the first configuration.
  • the configuration of frequency domain resource allocation included in the reference configuration is different from the configuration of frequency domain resource allocation included in the first configuration.
  • the configuration of resource allocation in the time domain included in the reference configuration is different from the configuration of resource allocation in the frequency domain included in the first configuration.
  • the configuration of the MCS included in the reference configuration is different from the configuration of the MCS included in the first configuration.
  • the configuration of waveforms included in the reference configuration is different from the configuration of waveforms included in the first configuration.
  • the configuration of the number of transport blocks included in the reference configuration is different from the configuration of the number of transport blocks included in the first configuration.
  • Embodiment 7 illustrates a schematic diagram of the relationship among the second signaling, the second time window, the first time window and the target wireless channel according to an embodiment of the present application, as shown in FIG. 7 .
  • the first node in this application receives second signaling, and the second signaling is used to indicate a second time window; wherein, the second time window is the same as the first time The windows overlap in time domain; the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window and the second time window is used to determine the The configuration used.
  • the second signaling is used to indicate a second configuration
  • the second configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks .
  • the target wireless channel is a wireless channel using one of the reference configuration, the first configuration or the second configuration.
  • the second signaling is physical layer signaling.
  • the second signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the second signaling is DCI signaling.
  • the second signaling is one of DCI format0_0, DCI format0_1 or DCI format0_2.
  • the second signaling is one of DCI format0_1 or DCI format0_2.
  • the second signaling is DCI format0_0, and for a specific definition of the DCI format0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format0_1, and for a specific definition of the DCI format0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format0_2, and for a specific definition of the DCI format0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is one of DCI format1_0, DCI format1_1 or DCI format1_2.
  • the second signaling is DCI format1_0, and for a specific definition of the DCI format1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format1_1, and for a specific definition of the DCI format1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format1_2, and the specific definition of the DCI format1_2 can be found in 3GPP TS38.212 Section 7.3.1.2 in.
  • the second signaling includes one or more fields (fields) in a DCI format.
  • the second signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the second signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the second signaling is higher layer (higher layer) signaling.
  • the second signaling is RRC signaling.
  • the second signaling includes one or more fields in one RRC signaling.
  • the second signaling includes an IE (Information Element, information element).
  • the second signaling includes one or more fields in one IE.
  • the second signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the second signaling includes one or more fields in one MAC CE signaling.
  • the second signaling is received after the reference signaling.
  • the length of the first time window is the same as the length of the second time window.
  • the length of the first time window is shorter than the length of the second time window.
  • the length of the first time window is greater than the length of the second time window.
  • the starting position of the first time window is the same as the starting position of the second time window.
  • the end position of the first time window is different from the end position of the second time window.
  • the end position of the first time window is the same as the end position of the second time window.
  • the starting position of the first time window is different from the starting position of the second time window.
  • the starting position of the first time window is earlier than the starting position of the second time window.
  • the starting position of the first time window is later than the starting position of the second time window.
  • the end position of the first time window is earlier than the end position of the second time window.
  • the end position of the first time window is later than the end position of the second time window.
  • the second signaling is used to update related configurations of semi-persistent scheduling or related configurations of configuration grants.
  • the second signaling explicitly indicates the second configuration.
  • the second signaling implicitly indicates the second configuration.
  • a field in the second signaling is used to indicate the second configuration.
  • the reference configuration includes a configuration for time slot occupancy
  • the second configuration includes a configuration for time slot occupancy
  • the second signaling is used to indicate a second time slot offset
  • the The time slots in the second configuration are obtained after being adjusted according to the second time slot offset with reference to the time slots in the reference configuration.
  • the second time slot offset is greater than the first time slot offset in this application.
  • the second time slot offset is smaller than the first slot offset in this application.
  • the second configuration includes a configuration of resource allocation in the time domain.
  • the second configuration includes configuration of frequency domain resource allocation.
  • the second configuration includes the configuration of the MCS.
  • the second configuration includes a waveform configuration.
  • the second configuration includes configuration of physical layer waveforms.
  • the second configuration includes: adopting a DFT-s-OFDM waveform.
  • the second configuration includes: adopting a CP-OFDM waveform.
  • the second configuration includes configuring the number of transport blocks.
  • the second configuration includes configuration of only one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the second configuration includes configurations for time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the second configuration includes time domain resource allocation, frequency domain resource allocation, MCS, waveform, number of transport blocks The configuration of the three.
  • the second configuration includes configurations for time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the second configuration includes configuring time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks.
  • the second configuration further includes configurations of time-domain resource allocation, frequency-domain resource allocation, MCS, waveform, and attributes other than the number of transport blocks.
  • said first configuration is different from said second configuration.
  • the configuration of frequency domain resource allocation included in the first configuration is different from the configuration of frequency domain resource allocation included in the second configuration.
  • the configuration of resource allocation in the time domain included in the first configuration is different from the configuration of resource allocation in the frequency domain included in the second configuration.
  • the configuration of the MCS included in the first configuration is different from the configuration of the MCS included in the second configuration.
  • the configuration of waveforms included in the first configuration is different from the configuration of waveforms included in the second configuration.
  • the configuration of the number of transport blocks included in the first configuration is different from the configuration of the number of transport blocks included in the second configuration.
  • the reference configuration is different from the second configuration.
  • the configuration of frequency domain resource allocation included in the reference configuration is different from the configuration of frequency domain resource allocation included in the second configuration.
  • the configuration of resource allocation in the time domain included in the reference configuration is different from the configuration of resource allocation in the frequency domain included in the second configuration.
  • the configuration of the MCS included in the reference configuration is different from the configuration of the MCS included in the second configuration.
  • the configuration of waveforms included in the reference configuration is different from the configuration of waveforms included in the second configuration.
  • the configuration of the number of transport blocks included in the reference configuration is different from the configuration of the number of transport blocks included in the second configuration.
  • the reference configuration is the same as the second configuration, and the reference configuration is different from the first configuration.
  • the second signaling explicitly indicates the second time window.
  • the second signaling implicitly indicates the second time window.
  • the second signaling is used to indicate a starting position of the second time window.
  • the second signaling is used to indicate an end position of the second time window.
  • the second signaling is used to indicate the earliest time slot (slot) occupied by the second time window.
  • the second signaling is used to indicate the earliest time domain symbol occupied by the second time window.
  • the second signaling is used to indicate a starting moment of the second time window.
  • the second signaling is used to indicate the duration occupied by the second time window.
  • the second signaling is used to indicate the latest time slot (slot) occupied by the second time window.
  • the second signaling is used to indicate the latest time domain symbol occupied by the second time window.
  • the second signaling is used to indicate an expiry time of the second time window.
  • the second time window includes at least one time domain symbol.
  • the second time window includes at least one time slot.
  • the second time window includes continuous time domain resources.
  • the expression in this application “the time-domain resource block occupied by the target wireless channel and the first time The time domain relationship between the window and the second time window is used to determine the configuration adopted by the target wireless channel” includes: the time domain resource block occupied by the target wireless channel and the first time The time domain relationship between the window and the second time window is used to determine whether the target wireless channel adopts the reference configuration or the first configuration or the second configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for "determining the configuration adopted by the target wireless channel” includes:
  • the target wireless channel adopts the reference configuration; when the target wireless channel When the time domain resource block occupied by the channel belongs to the first time window and does not belong to the second time window, the target wireless channel adopts the first configuration; when the target wireless channel occupies When the time domain resource block belongs to the second time window and does not belong to the first time window, the target wireless channel adopts the second configuration; when the time domain resource block occupied by the target wireless channel When it belongs to the overlapping part of the second time window and the first time window, the target wireless channel adopts one of the first configuration or the second configuration, and the target wireless channel adopts the first configuration
  • a configuration is also both the second configuration and the time domain relationship between the second time window and the first time window or the time domain relationship between the first signaling and the second signaling at least one of the.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel" includes: when the time-domain resource block occupied by the target wireless channel does not belong to the first time window and does not belong to the second time window, the target The wireless channel adopts the reference configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel" includes: when the time-domain resource block occupied by the target wireless channel does not belong to the first time window and does not belong to the second time window, the target The wireless channel adopts the first configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel" includes: when the time-domain resource block occupied by the target wireless channel does not belong to the first time window and does not belong to the second time window, the target The wireless channel adopts the second configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the first time window and does not belong to the second time window, the target wireless channel The channel adopts the first configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the first time window and does not belong to the second time window, the target wireless channel The channel adopts the second configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the first time window and does not belong to the second time window, the target wireless channel The channel adopts the reference configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the second time window and does not belong to the first time window, the target wireless channel The channel adopts the second configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the second time window and does not belong to the first time window, the target wireless channel The channel adopts the first configuration.
  • the expression in this application “the time-domain resource block occupied by the target wireless channel and the first time The time-domain relationship between the window and the second time window is used to determine the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the second When the time window does not belong to the first time window, the target wireless channel adopts the reference configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel" includes: when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window, the The target wireless channel adopts one of the first configuration or the second configuration, whether the target wireless channel adopts the first configuration or the second configuration and the second time window and the first time window at least one of the time domain relationship between the first signaling and the second signaling.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window, the The target wireless channel adopts the reference configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window, the The target wireless channel adopts the first configuration.
  • the expression in this application “the time-domain relationship between the time-domain resource block occupied by the target wireless channel and the first time window and the second time window is used for Determining the configuration adopted by the target wireless channel” includes: when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window, the The target wireless channel adopts the second configuration.
  • all time domain resources included in the time domain resource block occupied by the target wireless channel are within the first time window, or the time domain occupied by the target wireless channel Any time domain resource included in the domain resource block is not in the first time window; all time domain resources included in the time domain resource block occupied by the target wireless channel are in the second time window Among them, or, any time domain resource included in the time domain resource block occupied by the target wireless channel is not in the second time window.
  • the expression "the target wireless channel adopts the second configuration" in this application includes: the second configuration includes a configuration for resource allocation in the frequency domain, and the frequency domain occupied by the target wireless channel Domain resources follow said second configuration.
  • the expression "the target wireless channel adopts the second configuration" in this application includes: the second configuration includes a configuration for resource allocation in the time domain, and the time occupied by the target wireless channel Domain resources follow said second configuration.
  • the expression "the target wireless channel adopts the second configuration" in this application includes: the second configuration includes a configuration for time slot occupancy, and the time domain occupied by the target wireless channel The time slots to which the resources belong follow the second configuration.
  • the expression "the target wireless channel adopts the second configuration" in this application includes: the second configuration includes the configuration of the MCS, and the MCS adopted by the target bit block complies with the Second configuration.
  • the expression "the target wireless channel adopts the second configuration" in this application includes: the second configuration includes a waveform configuration, and the waveform adopted by the target wireless channel conforms to the Second configuration.
  • the waveform adopted by the target wireless channel is one of DFT-s-OFDM waveform or CP-OFDM waveform.
  • the expression "the target wireless channel adopts the second configuration" in this application includes: the second configuration includes the configuration of the number of transmission blocks, and the number of transmission blocks on the target wireless channel The quantity follows said second configuration.
  • the target wireless channel adopts the reference configuration.
  • the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration.
  • the target wireless channel adopts the first configuration or one of the second configurations
  • the target wireless channel adopts the first configuration or the second configuration and the time domain relationship between the second time window and the first time window or the time domain relationship between the first signaling and the second signaling At least one of the two is related.
  • the target wireless channel adopts the first Configuration or one of the second configuration, the time domain relationship between the second time window and the first time window or the time domain relationship between the first signaling and the second signaling At least one of the two is used to determine whether the target wireless channel adopts the first configuration or the second configuration.
  • the time-domain resource block occupied by the target wireless channel includes multiple time-domain symbols belonging to multiple time slots.
  • all time domain resources included in the time domain resource block occupied by the target wireless channel belong to the same time slot.
  • the target wireless channel includes: PUSCH, or multiple repetitions (repetitions) of PUSCH transmission.
  • the time-domain resource blocks occupied by the target wireless channel include time-domain resources occupied by the PUSCH.
  • the time-domain resource blocks occupied by the target wireless channel include all time-domain resources occupied by multiple repetitions of PUSCH transmission.
  • the time-domain resource blocks occupied by the target wireless channel include time-domain resources occupied by the PDSCH.
  • the time-domain resource blocks occupied by the target wireless channel include all time-domain resources occupied by multiple repetitions of the PDSCH.
  • the target wireless channel is a PUSCH
  • the time-domain resource block occupied by the target wireless channel includes: the time-domain resource occupied by this PUSCH, or the time-domain resource occupied by the multiple repetitions of the transmission of this PUSCH All time domain resources occupied.
  • the target wireless channel is a PDSCH
  • the time domain resource blocks occupied by the target wireless channel include: the time domain resources occupied by this PDSCH, or the time domain resources occupied by multiple repetitions of this PDSCH All time domain resources.
  • the time domain resource block occupied by the target wireless channel when the earliest time domain symbol included in the time domain resource block occupied by the target wireless channel belongs to the first time window, the time domain resource block occupied by the target wireless channel The time domain resource block is considered to belong to the first time window; when the earliest time domain symbol included in the time domain resource block occupied by the target wireless channel does not belong to the first time window, the The time-domain resource block occupied by the target wireless channel is considered not to belong to the first time window.
  • the target wireless The time domain resource block occupied by the channel is considered to belong to the first time window; when the time slot to which the earliest time domain symbol included in the time domain resource block occupied by the target wireless channel does not belong to the When the first time window is specified, the time-domain resource block occupied by the target wireless channel is considered not to belong to the first time window.
  • the target wireless channel occupies The time-domain resource block is considered to belong to the first time window; when the latest time-domain symbol included in the time-domain resource block occupied by the target wireless channel does not belong to the first time window , the time-domain resource block occupied by the target wireless channel is considered not to belong to the first time window.
  • the target The time domain resource block occupied by the wireless channel is considered to belong to the first time window; when the time slot to which the latest time domain symbol included in the time domain resource block occupied by the target wireless channel belongs is not When belonging to the first time window, the time domain resource block occupied by the target wireless channel is considered not to belong to the first time window.
  • the time-domain symbol occupied by the target wireless channel when the earliest time-domain symbol included in the time-domain resource block occupied by the target wireless channel belongs to the second time window, the time-domain symbol occupied by the target wireless channel The time domain resource block is considered to belong to the second time window; when the earliest time domain symbol included in the time domain resource block occupied by the target wireless channel does not belong to the second time window, the The time-domain resource blocks occupied by the target wireless channel are considered not to belong to the second time window.
  • the target wireless The time domain resource block occupied by the channel is considered to belong to the second time window; when the time slot to which the earliest time domain symbol included in the time domain resource block occupied by the target wireless channel does not belong to the When the second time window is specified, the time-domain resource block occupied by the target wireless channel is considered not to belong to the second time window.
  • the target wireless channel occupies The time-domain resource block of is considered to belong to the second time window; when the latest time domain symbol included in the time domain resource block occupied by the target wireless channel does not belong to the second time window, the time domain resource block occupied by the target wireless channel is considered not to belong to The second time window.
  • the target The time domain resource block occupied by the wireless channel is considered to belong to the second time window; when the time slot to which the latest time domain symbol included in the time domain resource block occupied by the target wireless channel belongs is not When belonging to the second time window, the time domain resource block occupied by the target wireless channel is considered not to belong to the second time window.
  • Embodiment 8 illustrates a schematic explanatory diagram of the time domain relationship between the second time window and the first time window according to an embodiment of the present application, as shown in FIG. 8 .
  • the second time window overlaps with the first time window in a time domain, the start position of the second time window is earlier than the start position of the first time window, and the first time window The end position of the second time window is earlier than the end position of the first time window.
  • Embodiment 9 illustrates a schematic explanatory diagram of the time domain relationship between the second time window and the first time window according to an embodiment of the present application, as shown in FIG. 9 .
  • the second time window overlaps with the first time window in a time domain, the start position of the second time window is later than the start position of the first time window, and the first time window The end position of the second time window is later than the end position of the first time window.
  • Embodiment 10 illustrates a schematic explanatory diagram of the time domain relationship between the second time window and the first time window according to an embodiment of the present application, as shown in FIG. 10 .
  • the second time window overlaps with the first time window in a time domain
  • the start position of the second time window is later than the start position of the first time window
  • the first time window The end position of the second time window is earlier than the end position of the first time window.
  • Embodiment 11 illustrates a schematic explanatory diagram of the time domain relationship between the second time window and the first time window according to an embodiment of the present application, as shown in FIG. 11 .
  • the second time window overlaps with the first time window in a time domain
  • the start position of the second time window is the same as the start position of the first time window
  • the first time window The end position of the second time window is later than the end position of the first time window.
  • the second time window overlaps with the first time window in time domain, the start position of the second time window is earlier than the start position of the first time window, and the second time window The end position of the time window is later than the end position of the first time window.
  • the start position of the second time window is the same as the start position of the first time window, and the end position of the second time window is earlier than the end position of the first time window.
  • the end position of the second time window is the same as the end position of the first time window, and the start position of the second time window is earlier than the start position of the first time window.
  • the end position of the second time window is the same as the end position of the first time window, and the start position of the second time window is later than the start position of the first time window.
  • Embodiment 12 illustrates a schematic explanatory diagram of a configuration adopted for determining a target wireless channel according to an embodiment of the present application, as shown in FIG. 12 .
  • the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window; in step S121, it is determined whether the deadline of the second time window is earlier or later than At the deadline of the first time window, the target wireless channel adopts the second configuration in step S122, and the target wireless channel adopts the first configuration in step S123.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When a time window overlaps and the cut-off time of the second time window is earlier than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the expression "the cut-off time of the second time window is later than the cut-off time of the first time window” and "the latest time domain included in the second time window" in this application symbols later than the latest time-domain symbol included in the first time window” are equivalent or can be replaced by each other.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When the time windows overlap and the cut-off time of the second time window is later than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window and the When the first time window overlaps and the start time of the second time window is later than the start time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window and the When the first time window overlaps and the start time of the second time window is earlier than the start time of the first time window, the target wireless channel adopts the first configuration.
  • the expression "the start time of the second time window is later than the start time of the first time window” and "the earliest time included in the second time window” in this application are equivalent or can be replaced with each other.
  • the expression "the start time of the second time window is earlier than the start time of the first time window” and "the earliest time included in the second time window” in this application are equivalent or can be replaced with each other.
  • the earliest time-domain symbol included in the second time window is different from the earliest time-domain symbol included in the first time window.
  • the latest time-domain symbol included in the second time window is different from the latest time-domain symbol included in the first time window.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When the time windows overlap and the cut-off time of the second time window is not later than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When a time window overlaps and the cutoff time of the second time window is later than the cutoff time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the When the overlapping part of the first time window and the start time of the second time window is later than the start time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the The second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window and the start time of the second time window is not When later than the starting moment of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When the time windows overlap and the cut-off time of the second time window is not earlier than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When a time window overlaps and the cut-off time of the second time window is earlier than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window and the When the overlapping portion of the first time window and the start time of the second time window is earlier than the start time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the second configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window and the When the first time window overlaps and the start time of the second time window is not earlier than the start time of the first time window, the target wireless channel adopts the first configuration.
  • Embodiment 13 illustrates a schematic illustration of a configuration adopted for determining a target wireless channel according to an embodiment of the present application, as shown in FIG. 13 .
  • the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window; in step S131, it is determined whether the time-domain resource occupied by the first signaling is earlier or later than For the time domain resources occupied by the second signaling, the target wireless channel adopts the first configuration in step S132, and the target wireless channel adopts the second configuration in step S133.
  • Embodiment 13 when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window and is occupied by the first signaling When the domain resource is later than the time domain resource occupied by the second signaling, the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the second When the time window overlaps with the first time window and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the second signaling, the target wireless channel uses the Second configuration.
  • the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window overlaps with the first time window and the time domain resource occupied by the first signaling is later than the time domain resource occupied by the second signaling, the target wireless channel adopts the first Two configuration.
  • the expression "the time-domain resource occupied by the first signaling is earlier than the time-domain resource occupied by the second signaling" and "the time-domain resource occupied by the first signaling" in this application are equivalent or can be replaced with each other.
  • the expression "the time-domain resource occupied by the first signaling is earlier than the time-domain resource occupied by the second signaling" and "the time-domain resource occupied by the first signaling" in this application are equivalent or can be replaced with each other.
  • the expression "the time domain resource occupied by the first signaling is later than the time domain resource occupied by the second signaling" in this application is the same as "the time domain resource occupied by the first signaling is The earliest time-domain symbol occupied in the domain is later than the earliest time-domain symbol occupied by the second signaling in the time domain
  • the time-domain symbols are equivalent or interchangeable.
  • the expression "the time domain resource occupied by the first signaling is later than the time domain resource occupied by the second signaling" in this application is the same as "the time domain resource occupied by the first signaling is The latest time-domain symbol occupied in the domain is later than the latest time-domain symbol occupied in the time domain by the second signaling" is equivalent or can be replaced with each other.
  • the time domain resource occupied by the first signaling overlaps with the time domain resource occupied by the second signaling in a time domain.
  • the time domain resource occupied by the first signaling has no time domain overlap with the time domain resource occupied by the second signaling.
  • Embodiment 14 illustrates a schematic illustration of a configuration adopted for determining a target wireless channel according to an embodiment of the present application, as shown in FIG. 14 .
  • the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window; in step S141, it is determined whether the first condition or the second condition is met, and in step S142 The target wireless channel adopts the second configuration, and in step S143, the target wireless channel adopts the first configuration.
  • the target The wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the overlapping part of the second time window and the first time window and a second condition is satisfied, The target wireless channel adopts the first configuration; the first condition is the time domain relationship between the second time window and the first time window or the first signaling and the second A condition related to at least one of the time domain relationship between signaling, the second condition is the time domain relationship between the second time window and the first time window or the first time window A condition related to at least one of the time domain relationship between a signaling and the second signaling, the first condition and the second condition are mutually exclusive.
  • the first condition and the second condition cannot be satisfied at the same time.
  • not satisfying the first condition is equivalent to satisfying the second condition.
  • the first condition includes: the expiry time of the second time window is later than the expiry time of the first time window and the time domain resources occupied by the first signaling are later than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is later than the expiry time of the first time window or the time domain resources occupied by the first signaling are later than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is later than the expiry time of the first time window and the time domain resources occupied by the first signaling are earlier than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is later than the expiry time of the first time window or the time domain resources occupied by the first signaling are earlier than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is earlier than the expiry time of the first time window and the time domain resources occupied by the first signaling are earlier than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is earlier than the expiry time of the first time window or the time domain resources occupied by the first signaling are earlier than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is earlier than the expiry time of the first time window and the time domain resource occupied by the first signaling is later than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the expiry time of the second time window is earlier than the expiry time of the first time window or the time domain resources occupied by the first signaling are later than the expiry time of the first time window. Second, time-domain resources occupied by signaling.
  • the first condition includes: the start time of the second time window is later than the start time of the first time window and the time domain resource occupied by the first signaling is later than the time domain resource occupied by the first signaling. Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is later than the start time of the first time window or the time domain resource occupied by the first signaling is later than the time domain resource occupied by the first signaling Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is later than the start time of the first time window and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the first signaling. Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is later than the start time of the first time window or the time domain resource occupied by the first signaling is earlier than the start time of the first time window. Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is earlier than the start time of the first time window and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the first signaling. Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is earlier than the start time of the first time window or the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the first signaling Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is earlier than the start time of the first time window and the time domain resource occupied by the first signaling is later than the time domain resource occupied by the first signaling. Time-domain resources occupied by the second signaling.
  • the first condition includes: the start time of the second time window is earlier than the start time of the first time window or the time domain resource occupied by the first signaling is later than the time domain resource occupied by the first signaling. Time-domain resources occupied by the second signaling.
  • the first condition includes: the cut-off time of the second time window is later than the cut-off time of the first time window.
  • the first condition includes: the cut-off time of the second time window is earlier than the cut-off time of the first time window.
  • the first condition includes: a starting moment of the second time window is later than a starting moment of the first time window.
  • the first condition includes: a starting moment of the second time window is earlier than a starting moment of the first time window.
  • the first condition includes: the time domain resource occupied by the first signaling is later than the time domain resource occupied by the second signaling.
  • the first condition includes: the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the second signaling.
  • Embodiment 15 illustrates a schematic diagram in which the first signaling is used to indicate the first time window according to an embodiment of the present application, as shown in FIG. 15 .
  • the earliest time slot included in the first time window is the K1th time slot after the time slot to which the first signaling belongs in the time domain, and the K1 is configurable or Predefined non-negative integers.
  • the K1 is indicated by the first signaling.
  • the K1 is indicated by the reference signaling.
  • the K1 is configured by higher layer signaling.
  • the K1 is configured by RRC signaling.
  • the K1 is configured by the MAC CE.
  • the K1 is predefined.
  • the earliest time slot included in the first time window is the time slot to which the first signaling belongs in the time domain.
  • the earliest time slot included in the second time window is the K2th time slot after the time slot to which the second signaling belongs in the time domain, and the K2 is configurable or preset Defined non-negative integers.
  • the K2 is the K1.
  • the K2 is not equal to the K1.
  • the K2 is indicated by the second signaling.
  • the K2 is indicated by the reference signaling.
  • the K2 is configured by higher layer signaling.
  • the K2 is configured by RRC signaling.
  • the K2 is configured by the MAC CE.
  • the K2 is predefined.
  • the earliest time slot included in the second time window is the time slot to which the second signaling belongs in the time domain.
  • the earliest time-domain symbol included in the first time window is the K3th time-domain symbol after the latest time-domain symbol occupied by the first signaling in the time domain, the K3 is a configurable or predefined positive integer.
  • the K3 is indicated by the first signaling.
  • the K3 is indicated by the reference signaling.
  • the K3 is configured by higher layer signaling.
  • the K3 is configured by RRC signaling.
  • the K3 is configured by the MAC CE.
  • the K3 is predefined.
  • the earliest time domain symbol included in the second time window is the K4th time domain symbol after the latest time domain symbol occupied by the second signaling in the time domain
  • the K4 is a configurable or predefined positive integer.
  • the K4 is indicated by the second signaling.
  • the K4 is indicated by the reference signaling.
  • the K4 is configured by higher layer signaling.
  • the K4 is configured by RRC signaling.
  • the K4 is configured by the MAC CE.
  • the K4 is predefined.
  • said K4 is said K3.
  • the K4 is not equal to the K3.
  • Embodiment 16 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 16 .
  • the first node device processing apparatus 1600 includes a first transceiver 1603
  • the first transceiver 1603 includes a first receiver 1601 and a first transmitter 1602 .
  • the first node device 1600 is a base station.
  • the first node device 1600 is a user equipment.
  • the first node device 1600 is a relay node.
  • the first node device 1600 is a vehicle communication device.
  • the first node device 1600 is a user equipment supporting V2X communication.
  • the first node device 1600 is a relay node supporting V2X communication.
  • the first node device 1600 is a user equipment supporting an XR service.
  • the first node device 1600 is a user equipment supporting a VoIP service.
  • the first node device 1600 is a user equipment that supports operations on a shared frequency spectrum.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least one of the sources 467.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first five of sources 467 .
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first four of sources 467 .
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first three of sources 467 .
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first two of sources 467 .
  • the first transmitter 1602 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467 .
  • the first transmitter 1602 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of the data sources 467 .
  • the first transmitter 1602 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of the data sources 467 .
  • the first transmitter 1602 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of the data sources 467 .
  • the first transmitter 1602 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of the data sources 467 .
  • the first receiver 1601 receives reference signaling and receives the first signaling, the reference signaling is used to indicate a reference configuration, and the reference configuration includes resource allocation in the time domain, frequency domain Configuration of at least one of resource allocation, MCS, waveform, number of transport blocks
  • the first signaling is used to indicate the first time window; the first receiver 1601 receives the target bit block on the target wireless channel, or the first transmitter 1602 receives the target bit block on the target wireless channel Sending a target bit block; wherein, the reference signaling is used for activation of semi-persistent scheduling or configuration grant; the reference signaling is used to determine multiple time domain resource blocks, and the target wireless channel is in the time domain Occupying one of the plurality of time domain resource blocks, at least one time domain resource block in the plurality of time domain resource blocks is after the deadline of the first time window; the time occupied by the target wireless channel The time domain relationship between the domain resource block and the first time window is used to determine whether the target wireless channel adopts the reference configuration.
  • the first signaling is used to indicate a first configuration
  • the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks ;
  • the target wireless channel adopts the first configuration;
  • the target wireless channel adopts the reference configuration.
  • the first receiver 1601 receives second signaling, and the second signaling is used to indicate a second time window; wherein, the second time window is sometimes the same as the first time window domain overlap; the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window and the second time window is used to determine the time domain used by the target wireless channel configuration.
  • the first receiver 1601 receives second signaling, where the second signaling is used to indicate a second configuration and a second time window, where the second configuration includes allocation of time domain resources, Configuration of at least one of frequency domain resource allocation, MCS, waveform, and number of transport blocks; wherein, the second time window overlaps with the first time window in a time domain; the first signaling is used to indicate The first configuration, the first configuration includes configuration of at least one of time-domain resource allocation, frequency-domain resource allocation, MCS, waveform, and number of transport blocks; the time-domain resource block occupied by the target wireless channel The time domain relationship with the first time window and the second time window is used to determine the configuration adopted by the target wireless channel; when the time domain resource block occupied by the target wireless channel is not When it belongs to the first time window and does not belong to the second time window, the target wireless channel adopts the reference configuration; when the time domain resource block occupied by the target wireless channel belongs to the first time window window and does not belong to the second time window, the target wireless channel adopts the reference configuration
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When the time windows overlap and the cut-off time of the second time window is earlier than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window overlaps with the first time window and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the second signaling, the target wireless channel adopts the first Two configuration.
  • the first signaling is one of DCI format or MAC CE.
  • the earliest time slot included in the first time window is the K1th time slot after the time slot to which the first signaling belongs in the time domain, and the K1 is configurable or preset Defined non-negative integers.
  • Embodiment 17 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 17 .
  • the second node device processing apparatus 1700 includes a second transceiver 1703
  • the second transceiver 1703 includes a second transmitter 1701 and a second receiver 1702 .
  • the second node device 1700 is user equipment.
  • the second node device 1700 is a base station.
  • the second node device 1700 is a satellite device.
  • the second node device 1700 is a relay node.
  • the second node device 1700 is a vehicle communication device.
  • the second node device 1700 is a user equipment supporting V2X communication.
  • the second node device 1700 is a user equipment that supports operations on a shared frequency spectrum.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second receiver 1702 includes the antenna 420 in the accompanying drawing 4 of this application, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 at least one.
  • the second receiver 1702 includes the antenna 420 in the accompanying drawing 4 of this application, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 At least the top five.
  • the second receiver 1702 includes the antenna 420 in the accompanying drawing 4 of this application, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 At least the first four.
  • the second receiver 1702 includes the antenna 420 in the accompanying drawing 4 of this application, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 At least the first three.
  • the second receiver 1702 includes the antenna 420 in the accompanying drawing 4 of this application, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 At least the first two.
  • the second transmitter 1701 sends reference signaling and sends the first signaling
  • the reference signaling is used to indicate a reference configuration
  • the reference configuration includes resource allocation in the time domain, frequency domain Configuration of at least one of resource allocation, MCS, waveform, and number of transport blocks
  • the first signaling is used to indicate the first time window
  • the second transmitter 1701 transmits the target bit block on the target wireless channel
  • the second receiver 1702 receives the target bit block on the target wireless channel
  • the reference signaling is used for semi-persistent scheduling activation or configuration grant activation
  • the reference signaling is used for determining a plurality of time-domain resource blocks, the target wireless channel occupies one of the plurality of time-domain resource blocks in the time domain, and at least one of the plurality of time-domain resource blocks is in the first After the deadline of the time window
  • the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window is used to determine whether the target wireless channel adopts the reference configuration.
  • the first signaling is used to indicate a first configuration
  • the first configuration includes configuration of at least one of time domain resource allocation, frequency domain resource allocation, MCS, waveform, and number of transport blocks ;
  • the target wireless channel adopts the first configuration;
  • the target wireless channel adopts the reference configuration.
  • the second transmitter 1701 sends second signaling, and the second signaling is used to indicate a second time window; wherein, the second time window is sometimes the same as the first time window domain overlap; the time domain relationship between the time domain resource block occupied by the target wireless channel and the first time window and the second time window is used to determine the time domain used by the target wireless channel configuration.
  • the second transmitter 1701 sends second signaling, where the second signaling is used to indicate a second configuration and a second time window, where the second configuration includes allocation of time domain resources, Configuration of at least one of frequency domain resource allocation, MCS, waveform, and number of transport blocks; wherein, the second time window overlaps with the first time window in a time domain; the first signaling is used to indicate The first configuration, the first configuration includes configuration of at least one of time-domain resource allocation, frequency-domain resource allocation, MCS, waveform, and number of transport blocks; the time-domain resource block occupied by the target wireless channel
  • the time domain relationship with the first time window and the second time window is used to determine the configuration adopted by the target wireless channel; when the time domain resource block occupied by the target wireless channel is not When it belongs to the first time window and does not belong to the second time window, the target wireless channel adopts the reference configuration; when the time domain resource block occupied by the target wireless channel belongs to When the first time window does not belong to the second time window, the target wireless channel adopts the
  • the target wireless channel adopts the second configuration; when the time-domain resource block occupied by the target wireless channel belongs to the second time window and the first When the time windows overlap and the cut-off time of the second time window is earlier than the cut-off time of the first time window, the target wireless channel adopts the first configuration.
  • the target wireless channel adopts the first configuration; when the time domain resource block occupied by the target wireless channel belongs to the second time window overlaps with the first time window and the time domain resource occupied by the first signaling is earlier than the time domain resource occupied by the second signaling, the target wireless channel adopts the first Two configuration.
  • the first signaling is one of DCI format or MAC CE.
  • the earliest time slot included in the first time window is the K1th time slot after the time slot to which the first signaling belongs in the time domain, and the K1 is configurable or preset Defined non-negative integers.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, G NSS, relay satellite, satellite base station, Air base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;第一收发机,在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
XR(Extended Reality,扩展现实)被认为是一种极具潜力的技术,推进XR大规模应用的最佳形态和发展趋势将成为未来通信的典型应用之一;在5G NR(New Radio,新空口)中对XR业务的支持是系统设计的一个重要方面。准周期性的业务模型,高数据速率和低延时需求是XR业务的三个重要特性;半持续调度(Semi-persistent scheduling,SPS)或配置授予(configured grant,CG)在匹配XR业务的上述三个特性上具有很大的潜力。
发明内容
针对上述问题,本申请公开了一种解决方案。需要说明的是,上述描述采用XR作为例子;本申请也同样适用于其他场景,比如MBS(Multicast and Broadcast Services,多播和广播服务),IoT(Internet of Things,物联网),车联网,NTN(non-terrestrial networks,非地面网络),共享频谱(shared spectrum),VoIP等,并取得类似的技术效果。此外,不同场景(包括但不限于XR,MBS,IoT,车联网,NTN,共享频谱,VoIP)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;
其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为一个实施例,上述方法的好处包括:提高了传输性能。
作为一个实施例,上述方法的好处包括:降低了BLER(BLock Error Rate,误块率)。
作为一个实施例,上述方法的好处包括:提高了资源利用率。
作为一个实施例,上述方法的好处包括:提高了上行覆盖性能。
作为一个实施例,上述方法的好处包括:提高了频谱效率。
作为一个实施例,上述方法的好处包括:提高了半静态调度或配置授予的传输灵活性。
作为一个实施例,上述方法的好处包括:有利于支持周期性或准周期性业务。
作为一个实施例,上述方法的好处包括:有利于支持动态变化的数据包大小。
作为一个实施例,上述方法的好处包括:有利于满足较高的延时需要。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形, 传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令,所述第二信令被用于指示第二时间窗;
其中,所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令,所述第二信令被用于指示第二配置和第二时间窗,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;
其中,所述第二时间窗与所述第一时间窗有时域交叠;所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
根据本申请的一个方面,上述方法的特征在于,
当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
根据本申请的一个方面,上述方法的特征在于,
当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令是DCI格式或MAC CE中之一。
根据本申请的一个方面,上述方法的特征在于,
所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
在目标无线信道上发送目标比特块,或者,在目标无线信道上接收目标比特块;
其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信令,所述第二信令被用于指示第二时间窗;
其中,所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信令,所述第二信令被用于指示第二配置和第二时间窗,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;
其中,所述第二时间窗与所述第一时间窗有时域交叠;所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
根据本申请的一个方面,上述方法的特征在于,
当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
根据本申请的一个方面,上述方法的特征在于,
当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
根据本申请的一个方面,上述方法的特征在于,
所述第一信令是DCI格式或MAC CE中之一。
根据本申请的一个方面,上述方法的特征在于,
所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
第一收发机,在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;
其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之 间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
第二收发机,在目标无线信道上发送目标比特块,或者,在目标无线信道上接收目标比特块;
其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图;
图7示出了根据本申请的一个实施例的第二信令,第二时间窗,第一时间窗以及目标无线信道之间关系的示意图;
图8示出了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图;
图9示出了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图;
图10示出了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图;
图11示出了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图;
图12示出了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图;
图13示出了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图;
图14示出了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图;
图15示出了根据本申请的一个实施例的第一信令被用于指示第一时间窗的说明示意图;
图16示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图17示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点,在步骤101中接收参考信令;在步骤102中接收第一信令,在步骤103中在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块。
在实施例1中,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为一个实施例,所述参考信令是物理层信令。
作为一个实施例,所述参考信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述参考信令是DCI信令。
作为一个实施例,所述参考信令是DCI format0_0,DCI format0_1或DCI format0_2中之一。
作为一个实施例,所述参考信令是DCI format0_1或DCI format0_2中之一。
作为一个实施例,所述参考信令是DCI format0_0,所述DCI format0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述参考信令是DCI format0_1,所述DCI format0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述参考信令是DCI format0_2,所述DCI format0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述参考信令是DCI format1_0,DCI format1_1或DCI format1_2中之一。
作为一个实施例,所述参考信令是DCI format1_0,所述DCI format1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述参考信令是DCI format1_1,所述DCI format1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述参考信令是DCI format1_2,所述DCI format1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述参考信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述参考信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述参考信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述参考信令是更高层(higher layer)信令。
作为一个实施例,所述参考信令是RRC信令。
作为一个实施例,所述参考信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述参考信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述参考信令包括一个IE中的一个或多个域。
作为一个实施例,所述参考信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述参考信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第一信令是DCI信令。
作为一个实施例,所述第一信令是DCI format0_0,DCI format0_1或DCI format0_2中之一。
作为一个实施例,所述第一信令是DCI format0_1或DCI format0_2中之一。
作为一个实施例,所述第一信令是DCI format0_0,所述DCI format0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format0_1,所述DCI format0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format0_2,所述DCI format0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format1_0,DCI format1_1或DCI format1_2中之一。
作为一个实施例,所述第一信令是DCI format1_0,所述DCI format1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format1_1,所述DCI format1_1的具体定义参见3GPP TS38.212 中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format1_2,所述DCI format1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括一个IE中的一个或多个域。
作为一个实施例,所述第一信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信令在所述参考信令之后被接收。
作为一个实施例,所述参考信令与所述第一信令是不同的信令。
作为一个实施例,所述参考信令与所述第一信令是不同的物理层信令。
作为一个实施例,所述参考信令与所述第一信令是不同的DCI信令。
作为一个实施例,所述参考信令与所述第一信令是不同的MAC CE。
作为一个实施例,所述参考信令是MAC CE,所述第一信令是DCI信令。
作为一个实施例,所述参考信令是DCI信令,所述第一信令是MAC CE。
作为一个实施例,所述参考信令显式指示所述参考配置。
作为一个实施例,所述参考信令隐式指示所述参考配置。
作为一个实施例,所述参考信令中的一个域被用于指示所述参考配置。
作为一个实施例,所述参考配置包括对时域资源分配的配置。
作为一个实施例,所述参考配置包括对频域资源分配的配置。
作为一个实施例,所述参考配置包括对MCS的配置。
作为一个实施例,所述参考配置包括对波形的配置。
作为一个实施例,所述参考配置包括对物理层波形的配置。
作为一个实施例,所述参考配置包括:采用DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM,离散傅里叶变换扩展正交频分复用)波形。
作为一个实施例,所述参考配置包括:采用CP-OFDM波形(Cyclic Prefix-OFDM,循环前缀正交频分复用)。
作为一个实施例,所述参考配置包括对传输块数量的配置。
作为一个实施例,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的仅一者的配置。
作为一个实施例,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的两者的配置。
作为一个实施例,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的三者的配置。
作为一个实施例,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的四者的配置。
作为一个实施例,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形以及传输块数量配置。
作为一个实施例,所述参考配置还包括对时域资源分配,频域资源分配,MCS(Modulation and coding scheme,调制与编码策略),波形以及传输块数量之外的属性的配置。
作为一个实施例,所述第一信令显式指示所述第一时间窗。
作为一个实施例,所述第一信令隐式指示所述第一时间窗。
作为一个实施例,所述第一信令被用于指示所述第一时间窗的起始位置。
作为一个实施例,所述第一信令被用于指示所述第一时间窗的结束位置。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗所占用的最早的时隙(slot)。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗所占用的最早的时域符号。
作为一个实施例,本申请中的所述时域符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,本申请中的所述时域符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,本申请中的所述时域符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,本申请中的所述时域符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗的起始时刻。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗所占用的时长。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗所占用的最晚的时隙(slot)。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗所占用的最晚的时域符号。
作为一个实施例,本申请中的所述表述“所述第一信令被用于指示第一时间窗”包括:所述第一信令被用于指示所述第一时间窗的截止时刻。
作为一个实施例,所述第一时间窗包括至少一个时域符号。
作为一个实施例,所述第一时间窗包括至少一个时隙。
作为一个实施例,所述第一时间窗包括连续的时域资源。
作为一个实施例,所述第一时间窗包括仅一个时域符号或多个连续的时域符号。
作为一个实施例,所述第一时间窗包括仅一个时隙或多个连续的时隙。
作为一个实施例,所述目标无线信道是物理层信道。
作为一个实施例,所述目标无线信道是共享信道。
作为一个实施例,所述目标无线信道是物理层共享信道。
作为一个实施例,所述目标无线信道是PDSCH。
作为一个实施例,所述目标无线信道是SPS PDSCH。
作为一个实施例,所述目标无线信道是PUSCH。
作为一个实施例,所述目标无线信道是CG PUSCH。
作为一个实施例,所述目标无线信道是PSSCH。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块的编码比特。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块的编码比特所生成的调制符号。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码(Scrambling),调制(Modulation),层映射(Layer mapping),变换预编码(Transform precoding),预编码(Precoding),映射到虚拟资源块(Mapping to virtual resource blocks),从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks),多载波符号 生成,调制上变频中的至少部分之后的输出。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块经过CRC附加(CRC attachment),码块分割(Code block segmentation),码块CRC附加,信道编码(Channel coding),速率匹配(Rate matching),码块级联(Code block concatenation),扰码,调制,层映射,天线端口映射(Antenna port mapping),映射到虚拟资源块(Mapping to virtual resource blocks),从虚拟资源块映射到物理资源块(Mapping from virtual to physical resource blocks),多载波符号生成,调制上变频中的至少部分之后的输出。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块的编码比特。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块所生成的调制符号。
作为一个实施例,所述目标无线信道被用于承载所述目标比特块的编码比特所生成的调制符号。
作为一个实施例,所述目标比特块包括多个比特。
作为一个实施例,所述目标比特块包括至少一个传输块(Transport Block,TB)。
作为一个实施例,所述目标比特块包括至少一个码块(Code Block)。
作为一个实施例,所述目标比特块包括至少一个码块组(Code Block Group,CBG)。
作为一个实施例,所述参考信令是被用于半静态调度的激活或配置授予的激活的DCI格式。
作为一个实施例,所述参考信令的CRC被CS-RNTI加扰,所述参考信令所包括的针对被使能的传输块的NDI域被设置为0。
作为一个实施例,所述参考信令不包括DFI flag域。
作为一个实施例,所述参考信令包括DFI flag域,所述参考信令所包括的所述DFI flag域的值被设置为0。
作为一个实施例,所述参考信令被用于半静态调度(Semi-persistent scheduling,SPS)的激活。
作为一个实施例,所述参考信令被用于下行链路半静态调度(DL SPS)的激活。
作为一个实施例,所述参考信令被用于配置授予(configured grant,CG)的激活。
作为一个实施例,所述参考信令被用于第二类配置授予(Type 2 configured grant)的激活。
作为一个实施例,所述参考信令被用于配置上行链路授予(configured UL grant)的激活。
作为一个实施例,所述参考信令被用于指示所述多个时域资源块。
作为一个实施例,所述参考信令被用于指示所述多个时域资源块中最早的时域资源块,所述多个时域资源块中的其他时域资源块以这个最早的时域资源块作为参考周期性地依次排列。
作为一个实施例,所述参考信令所激活的半静态调度或配置授予对应多个无线信道,所述多个时域资源块分别是所述多个无线信道所占用的时域资源。
作为一个实施例,所述多个时域资源块中的每个时域资源块都是所述参考信令所激活的半静态调度或配置授予所对应的一个无线信道所占用的时域资源。
作为一个实施例,所述多个时域资源块中的每个时域资源块都是所述参考信令所激活的半静态调度或配置授予所对应的一个PDSCH所占用的时域资源。
作为一个实施例,所述多个时域资源块中的每个时域资源块都是所述参考信令所激活的半静态调度或配置授予所对应的一个PUSCH所占用的时域资源。
作为一个实施例,所述第一信令被用于更新半静态调度的相关配置或配置授予的相关配置。
作为一个实施例,所述多个无线信道中之一是物理层信道。
作为一个实施例,所述多个无线信道中之一是共享信道。
作为一个实施例,所述多个无线信道中之一是物理层共享信道。
作为一个实施例,所述多个无线信道中之一是PDSCH(Physical downlink shared channel,物理下行链路共享信道)。
作为一个实施例,所述多个无线信道中之一是PUSCH(Physical uplink shared channel,物理上行链路共享信道)。
作为一个实施例,所述多个无线信道中之一是PSSCH(Physical sidelink shared channel,物理旁链路共享信道)。
作为一个实施例,所述多个时域资源块在时域上依次排列。
作为一个实施例,所述多个时域资源块分别属于多个时隙。
作为一个实施例,所述多个时域资源块中的每个时域资源块包括至少一个时域符号。
作为一个实施例,所述多个时域资源块中的任意两个时域资源块所占用的时长相同。
作为一个实施例,所述多个时域资源块中存在两个时域资源块所占用的时长不同。
作为一个实施例,所述多个时域资源块相互之间无交叠。
作为一个实施例,所述多个时域资源块中的每个时域资源块包括连续的时域资源。
作为一个实施例,本申请中的所述表述“所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后”包括:所述多个时域资源块中的至少一个时域资源块的起始时刻在所述第一时间窗的截止时刻之后。
作为一个实施例,本申请中的所述表述“所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后”包括:所述多个时域资源块中的至少一个时域资源块所占用的最早的时域符号在所述第一时间窗所占用的最晚的时域符号之后。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置”包括:所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是采用所述参考配置还是采用所述参考配置之外的配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置”包括:
所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置”包括:
所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置”包括:
所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块与所述第一时间窗有时域交叠时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块与所述第一时间窗无时域交叠时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置”包括:
所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块与所述第一时间窗无时域交叠时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块与所述第一时间窗有时域交叠时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置”包括:
所述第一节点还接收第二信令,所述第二信令被用于指示第二配置和第二时间窗,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;其中,所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UEIP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3 所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY351。
作为一个实施例,本申请中的所述参考信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述参考信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述参考信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述参考信令生成于所述PHY301。
作为一个实施例,本申请中的所述参考信令生成于所述PHY351。
作为一个实施例,本申请中的所述目标比特块生成于所述SDAP子层356。
作为一个实施例,本申请中的所述目标比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述目标比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述目标比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述目标比特块生成于所述PHY301。
作为一个实施例,本申请中的所述目标比特块生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似 于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配 置,所述第一信令被用于指示第一时间窗;在目标无线信道上发送目标比特块,或者,在目标无线信道上接收目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;在目标无线信道上发送目标比特块,或者,在目标无线信道上接收目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述参考信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述参考信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述目标比特块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述目标比特块。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述目标比特块。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述目标比特块。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。在附图5中,加粗虚线方框F0中的步骤是可选的,虚线方框F1中的步骤和虚线方框F2中的步骤二者中仅存在一者。特别地,附图5中步骤之间的先后顺序不代表特定的时间关系。
第一节点U1,在步骤S511中接收参考信令;在步骤S512中接收第一信令;在步骤S5101中接收第 二信令;在步骤S513中在目标无线信道上接收目标比特块,或者,在步骤S514中在目标无线信道上发送目标比特块。
第二节点U2,在步骤S521中发送参考信令;在步骤S522中发送第一信令;在步骤S5201中发送第二信令;在步骤S523中在目标无线信道上发送目标比特块,或者,在步骤S524中在目标无线信道上接收目标比特块。
在实施例5中,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置;所述第一信令是DCI格式或MAC CE中之一。
作为实施例5的一个子实施例,所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为实施例5的一个子实施例,所述第二信令被用于指示第二时间窗;所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,本申请要解决的问题包括:如何提高上行链路或下行链路的传输性能。
作为一个实施例,本申请要解决的问题包括:如何提高半静态调度或配置授予的传输性能。
作为一个实施例,本申请要解决的问题包括:如何确定无线信道所采用的配置。
作为一个实施例,本申请要解决的问题包括:如何确定用于比特块发送的时域资源分配,频域资源分配,MCS,波形或传输块数量中至少之一的配置。
作为一个实施例,本申请要解决的问题包括:如何实现对半静态调度或配置授予的传输进行动态调整。
作为一个实施例,本申请要解决的问题包括:如何根据时间窗确定传输配置。
作为一个实施例,本申请要解决的问题包括:如何降低BLER。
作为一个实施例,本申请要解决的问题包括:如何保证数据传输的及时性。
作为一个实施例,本申请所公开的方案适用于支持半静态调度或配置授予的各种场景。
作为一个实施例,本申请所公开的方案适用于各种周期性或准周期性的业务。
作为一个实施例,所述第一信令被用于指示所述第一时间窗的意思包括:所述第一时间窗所包括的最 早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
作为一个实施例,所述第二信令被用于指示所述第二时间窗的意思包括:所述第二时间窗所包括的最早的时隙是所述第二信令在时域上所属的时隙之后的第K2个时隙,所述K2是可配置的或预先定义好的非负整数。
作为一个实施例,所述第一信令被用于指示所述第一时间窗的意思包括:所述第一时间窗所包括的最早的时域符号是所述第一信令在时域上所占用的最晚的时域符号之后的第K3个时域符号,所述K3是可配置的或预先定义好的正整数。
作为一个实施例,所述第二信令被用于指示所述第二时间窗的意思包括:所述第二时间窗所包括的最早的时域符号是所述第二信令在时域上所占用的最晚的时域符号之后的第K4个时域符号,所述K4是可配置的或预先定义好的正整数。
作为一个实施例,所述第一信令在所述第二信令之前被接收,或者,所述第一信令在所述第二信令之后被接收。
作为一个实施例,所述目标无线信道所占用的所述时域资源块在所述第一信令所占用的时域资源之前,或者,所述目标无线信道所占用的所述时域资源块在所述第一信令所占用的时域资源之后。
作为一个实施例,所述目标无线信道所占用的所述时域资源块在所述第二信令所占用的时域资源之前,或者,所述目标无线信道所占用的所述时域资源块在所述第二信令所占用的时域资源之后。
作为一个实施例,加粗虚线方框F0中的步骤存在。
作为一个实施例,加粗虚线方框F0中的步骤不存在。
作为一个实施例,虚线方框F1中的步骤存在,虚线方框F2中的步骤不存在。
作为一个实施例,虚线方框F1中的步骤不存在,虚线方框F2中的步骤存在。
实施例6
实施例6示例了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图,如附图6所示。在附图6中,在步骤S61中确定目标无线信道所占用的时域资源块是否属于第一时间窗,在步骤S62中所述目标无线信道采用第一配置,在步骤S63中所述目标无线信道采用参考配置。
在实施例6中,所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,所述目标无线信道是采用所述参考配置或所述第一配置中之一的一个无线信道。
作为一个实施例,所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置。
作为一个实施例,所述目标无线信道所占用的所述时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是采用所述参考配置还是采用所述第一配置。
作为一个实施例,所述目标无线信道所占用的所述时域资源块是否属于所述第一时间窗被用于确定所述目标无线信道是采用所述参考配置还是采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块属于所述第一时间窗”包括:所述目标无线信道所占用的所述时域资源块所包括的全部时域资源都在所述第一时间窗之中。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块属于所述第一时间窗”包括:所述目标无线信道所占用的所述时域资源块所包括的至少部分时域资源在所述第一时间窗之中。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗”包括:所述目标无线信道所占用的所述时域资源块所包括的全部时域资源都不在所述第一时间窗之中。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗”包括:所述目标无线信道所占用的所述时域资源块所包括的至少部分时域资源不在所述第一时间 窗之中。
作为一个实施例,所述目标无线信道所占用的所述时域资源块所包括的全部时域资源都在所述第一时间窗之中,或者,所述目标无线信道所占用的所述时域资源块所包括的任何时域资源都不在所述第一时间窗之中。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第一配置”包括:所述第一配置包括对频域资源分配的配置,所述目标无线信道所占用的频域资源遵循所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第一配置”包括:所述第一配置包括对时域资源分配的配置,所述目标无线信道所占用的时域资源遵循所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第一配置”包括:所述第一配置包括对时隙占用的配置,所述目标无线信道所占用的时域资源所属的时隙遵循所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第一配置”包括:所述第一配置包括对MCS的配置,所述目标比特块所采用的MCS遵循所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第一配置”包括:所述第一配置包括对波形的配置,所述目标无线信道所采用的波形遵循所述第一配置。
作为一个实施例,所述目标无线信道所采用的波形是DFT-s-OFDM波形或CP-OFDM波形中之一。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第一配置”包括:所述第一配置包括对传输块数量的配置,所述目标无线信道上的传输块的数量遵循所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述参考配置”包括:所述参考配置包括对频域资源分配的配置,所述目标无线信道所占用的频域资源遵循所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述参考配置”包括:所述参考配置包括对时域资源分配的配置,所述目标无线信道所占用的时域资源遵循所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述参考配置”包括:所述参考配置包括对时隙占用的配置,所述目标无线信道所占用的时域资源所属的时隙遵循所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述参考配置”包括:所述参考配置包括对MCS的配置,所述目标比特块所采用的MCS遵循所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述参考配置”包括:所述参考配置包括对波形的配置,所述目标无线信道所采用的波形遵循所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述参考配置”包括:所述参考配置包括对传输块数量的配置,所述目标无线信道上的传输块的数量遵循所述参考配置。
作为一个实施例,所述第一信令显式指示所述第一配置。
作为一个实施例,所述第一信令隐式指示所述第一配置。
作为一个实施例,所述第一信令中的一个域被用于指示所述第一配置。
作为一个实施例,所述参考配置包括对时隙占用的配置,所述第一配置包括对时隙占用的配置,所述第一信令被用于指示第一时隙偏移量,所述第一配置中的时隙是以所述参考配置中的时隙为参考按照所述第一时隙偏移量进行调整后得到的。
作为一个实施例,所述第一配置包括对时域资源分配的配置。
作为一个实施例,所述第一配置包括对频域资源分配的配置。
作为一个实施例,所述第一配置包括对MCS的配置。
作为一个实施例,所述第一配置包括对波形的配置。
作为一个实施例,所述第一配置包括对物理层波形的配置。
作为一个实施例,所述第一配置包括:采用DFT-s-OFDM波形。
作为一个实施例,所述第一配置包括:采用CP-OFDM波形。
作为一个实施例,所述第一配置包括对传输块数量的配置。
作为一个实施例,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的仅一者的配置。
作为一个实施例,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的 两者的配置。
作为一个实施例,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的三者的配置。
作为一个实施例,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的四者的配置。
作为一个实施例,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形以及传输块数量配置。
作为一个实施例,所述第一配置还包括对时域资源分配,频域资源分配,MCS,波形以及传输块数量之外的属性的配置。
作为一个实施例,所述参考配置不同于所述第一配置。
作为一个实施例,所述参考配置所包括的对频域资源分配的配置不同于所述第一配置所包括的对频域资源分配的配置。
作为一个实施例,所述参考配置所包括的对时域资源分配的配置不同于所述第一配置所包括的对频域资源分配的配置。
作为一个实施例,所述参考配置所包括的对MCS的配置不同于所述第一配置所包括的对MCS的配置。
作为一个实施例,所述参考配置所包括的对波形的配置不同于所述第一配置所包括的对波形的配置。
作为一个实施例,所述参考配置所包括的对传输块数量的配置不同于所述第一配置所包括的对传输块数量的配置。
实施例7
实施例7示例了根据本申请的一个实施例的第二信令,第二时间窗,第一时间窗以及目标无线信道之间关系的示意图,如附图7所示。
在实施例7中,本申请中的所述第一节点接收第二信令,所述第二信令被用于指示第二时间窗;其中,所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
作为一个实施例,所述第二信令被用于指示第二配置,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置。
作为一个实施例,所述目标无线信道是采用所述参考配置,所述第一配置或所述第二配置中之一的一个无线信道。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第二信令是DCI信令。
作为一个实施例,所述第二信令是DCI format0_0,DCI format0_1或DCI format0_2中之一。
作为一个实施例,所述第二信令是DCI format0_1或DCI format0_2中之一。
作为一个实施例,所述第二信令是DCI format0_0,所述DCI format0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format0_1,所述DCI format0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format0_2,所述DCI format0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format1_0,DCI format1_1或DCI format1_2中之一。
作为一个实施例,所述第二信令是DCI format1_0,所述DCI format1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format1_1,所述DCI format1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format1_2,所述DCI format1_2的具体定义参见3GPP TS38.212 中的第7.3.1.2章节。
作为一个实施例,所述第二信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第二信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第二信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第二信令是更高层(higher layer)信令。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第二信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第二信令包括一个IE中的一个或多个域。
作为一个实施例,所述第二信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第二信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第二信令在所述参考信令之后被接收。
作为一个实施例,所述第一时间窗的长度与所述第二时间窗的长度相同。
作为一个实施例,所述第一时间窗的长度小于所述第二时间窗的长度。
作为一个实施例,所述第一时间窗的长度大于所述第二时间窗的长度。
作为一个实施例,所述第一时间窗的起始位置与所述第二时间窗的起始位置相同。
作为一个实施例,所述第一时间窗的结束位置不同于所述第二时间窗的结束位置。
作为一个实施例,所述第一时间窗的结束位置与所述第二时间窗的结束位置相同。
作为一个实施例,所述第一时间窗的起始位置不同于所述第二时间窗的起始位置。
作为一个实施例,所述第一时间窗的起始位置早于所述第二时间窗的起始位置。
作为一个实施例,所述第一时间窗的起始位置晚于所述第二时间窗的起始位置。
作为一个实施例,所述第一时间窗的结束位置早于所述第二时间窗的结束位置。
作为一个实施例,所述第一时间窗的结束位置晚于所述第二时间窗的结束位置。
作为一个实施例,所述第二信令被用于更新半静态调度的相关配置或配置授予的相关配置。
作为一个实施例,所述第二信令显式指示所述第二配置。
作为一个实施例,所述第二信令隐式指示所述第二配置。
作为一个实施例,所述第二信令中的一个域被用于指示所述第二配置。
作为一个实施例,所述参考配置包括对时隙占用的配置,所述第二配置包括对时隙占用的配置,所述第二信令被用于指示第二时隙偏移量,所述第二配置中的时隙是以所述参考配置中的时隙为参考按照所述第二时隙偏移量进行调整后得到的。
作为一个实施例,所述第二时隙偏移量大于本申请中的所述第一隙偏移量。
作为一个实施例,所述第二时隙偏移量小于本申请中的所述第一隙偏移量。
作为一个实施例,所述第二配置包括对时域资源分配的配置。
作为一个实施例,所述第二配置包括对频域资源分配的配置。
作为一个实施例,所述第二配置包括对MCS的配置。
作为一个实施例,所述第二配置包括对波形的配置。
作为一个实施例,所述第二配置包括对物理层波形的配置。
作为一个实施例,所述第二配置包括:采用DFT-s-OFDM波形。
作为一个实施例,所述第二配置包括:采用CP-OFDM波形。
作为一个实施例,所述第二配置包括对传输块数量的配置。
作为一个实施例,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的仅一者的配置。
作为一个实施例,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的两者的配置。
作为一个实施例,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的 三者的配置。
作为一个实施例,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的四者的配置。
作为一个实施例,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形以及传输块数量配置。
作为一个实施例,所述第二配置还包括对时域资源分配,频域资源分配,MCS,波形以及传输块数量之外的属性的配置。
作为一个实施例,所述第一配置不同于所述第二配置。
作为一个实施例,所述第一配置所包括的对频域资源分配的配置不同于所述第二配置所包括的对频域资源分配的配置。
作为一个实施例,所述第一配置所包括的对时域资源分配的配置不同于所述第二配置所包括的对频域资源分配的配置。
作为一个实施例,所述第一配置所包括的对MCS的配置不同于所述第二配置所包括的对MCS的配置。
作为一个实施例,所述第一配置所包括的对波形的配置不同于所述第二配置所包括的对波形的配置。
作为一个实施例,所述第一配置所包括的对传输块数量的配置不同于所述第二配置所包括的对传输块数量的配置。
作为一个实施例,所述参考配置不同于所述第二配置。
作为一个实施例,所述参考配置所包括的对频域资源分配的配置不同于所述第二配置所包括的对频域资源分配的配置。
作为一个实施例,所述参考配置所包括的对时域资源分配的配置不同于所述第二配置所包括的对频域资源分配的配置。
作为一个实施例,所述参考配置所包括的对MCS的配置不同于所述第二配置所包括的对MCS的配置。
作为一个实施例,所述参考配置所包括的对波形的配置不同于所述第二配置所包括的对波形的配置。
作为一个实施例,所述参考配置所包括的对传输块数量的配置不同于所述第二配置所包括的对传输块数量的配置。
作为一个实施例,所述参考配置与所述第二配置相同,所述参考配置不同于所述第一配置。
作为一个实施例,所述第二信令显式指示所述第二时间窗。
作为一个实施例,所述第二信令隐式指示所述第二时间窗。
作为一个实施例,所述第二信令被用于指示所述第二时间窗的起始位置。
作为一个实施例,所述第二信令被用于指示所述第二时间窗的结束位置。
作为一个实施例,所述第二信令被用于指示所述第二时间窗所占用的最早的时隙(slot)。
作为一个实施例,所述第二信令被用于指示所述第二时间窗所占用的最早的时域符号。
作为一个实施例,所述第二信令被用于指示所述第二时间窗的起始时刻。
作为一个实施例,所述第二信令被用于指示所述第二时间窗所占用的时长。
作为一个实施例,所述第二信令被用于指示所述第二时间窗所占用的最晚的时隙(slot)。
作为一个实施例,所述第二信令被用于指示所述第二时间窗所占用的最晚的时域符号。
作为一个实施例,所述第二信令被用于指示所述第二时间窗的截止时刻。
作为一个实施例,所述第二时间窗包括至少一个时域符号。
作为一个实施例,所述第二时间窗包括至少一个时隙。
作为一个实施例,所述第二时间窗包括连续的时域资源。
作为一个实施例,存在至少一个时域符号属于所述第二时间窗与所述第一时间窗中的一者且不属于这两者中的另一者。
作为一个实施例,存在至少一个时隙属于所述第二时间窗与所述第一时间窗中的一者且不属于这两者中的另一者。
作为一个实施例,存在至少一个时域符号属于所述第二时间窗也属于所述第一时间窗。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间 窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道采用所述参考配置还是所述第一配置还是所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:
当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间 窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述参考配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置”包括:当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第二配置。
作为一个实施例,所述目标无线信道所占用的所述时域资源块所包括的全部时域资源都在所述第一时间窗之中,或者,所述目标无线信道所占用的所述时域资源块所包括的任何时域资源都不在所述第一时间窗之中;所述目标无线信道所占用的所述时域资源块所包括的全部时域资源都在所述第二时间窗之中,或者,所述目标无线信道所占用的所述时域资源块所包括的任何时域资源都不在所述第二时间窗之中。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第二配置”包括:所述第二配置包括对频域资源分配的配置,所述目标无线信道所占用的频域资源遵循所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第二配置”包括:所述第二配置包括对时域资源分配的配置,所述目标无线信道所占用的时域资源遵循所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第二配置”包括:所述第二配置包括对时隙占用的配置,所述目标无线信道所占用的时域资源所属的时隙遵循所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第二配置”包括:所述第二配置包括对MCS的配置,所述目标比特块所采用的MCS遵循所述第二配置。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第二配置”包括:所述第二配置包括对波形的配置,所述目标无线信道所采用的波形遵循所述第二配置。
作为一个实施例,所述目标无线信道所采用的波形是DFT-s-OFDM波形或CP-OFDM波形中之一。
作为一个实施例,本申请中的所述表述“所述目标无线信道采用所述第二配置”包括:所述第二配置包括对传输块数量的配置,所述目标无线信道上的传输块的数量遵循所述第二配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所 述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一被用于确定所述目标无线信道采用所述第一配置还是所述第二配置。
作为一个实施例,所述目标无线信道所占用的所述时域资源块包括属于多个时隙的多个时域符号。
作为一个实施例,所述目标无线信道所占用的所述时域资源块所包括的全部时域资源属于同一个时隙。
作为一个实施例,所述目标无线信道包括:PUSCH,或PUSCH传输的多次重复(repetitions)。
作为一个实施例,所述目标无线信道所占用的所述时域资源块包括PUSCH所占用的时域资源。
作为一个实施例,所述目标无线信道所占用的所述时域资源块包括PUSCH传输的多次重复所占用的全部时域资源。
作为一个实施例,所述目标无线信道所占用的所述时域资源块包括PDSCH所占用的时域资源。
作为一个实施例,所述目标无线信道所占用的所述时域资源块包括PDSCH的多次重复所占用的全部时域资源。
作为一个实施例,所述目标无线信道是一个PUSCH,所述目标无线信道所占用的所述时域资源块包括:这个PUSCH所占用的时域资源,或,这个PUSCH的传输的多次重复所占用的全部时域资源。
作为一个实施例,所述目标无线信道是一个PDSCH,所述目标无线信道所占用的所述时域资源块包括:这个PDSCH所占用的时域资源,或,这个PDSCH的多次重复所占用的全部时域资源。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第一时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号不属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第一时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号所属的时隙属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第一时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号所属的时隙不属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第一时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第一时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号不属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第一时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号所属的时隙属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第一时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号所属的时隙不属于所述第一时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第一时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第二时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号不属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第二时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号所属的时隙属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第二时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最早的时域符号所属的时隙不属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第二时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第二时间窗;当所 述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号不属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第二时间窗。
作为一个实施例,在本申请中,当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号所属的时隙属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为属于所述第二时间窗;当所述目标无线信道所占用的所述时域资源块所包括的最晚的时域符号所属的时隙不属于所述第二时间窗时,所述目标无线信道所占用的所述时域资源块被认为不属于所述第二时间窗。
实施例8
实施例8示例了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图,如附图8所示。
在实施例8中,所述第二时间窗与所述第一时间窗有时域交叠,所述第二时间窗的起始位置早于所述第一时间窗的起始位置,所述第二时间窗的结束位置早于所述第一时间窗的结束位置。
实施例9
实施例9示例了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图,如附图9所示。
在实施例9中,所述第二时间窗与所述第一时间窗有时域交叠,所述第二时间窗的起始位置晚于所述第一时间窗的起始位置,所述第二时间窗的结束位置晚于所述第一时间窗的结束位置。
实施例10
实施例10示例了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图,如附图10所示。
在实施例10中,所述第二时间窗与所述第一时间窗有时域交叠,所述第二时间窗的起始位置晚于所述第一时间窗的起始位置,所述第二时间窗的结束位置早于所述第一时间窗的结束位置。
实施例11
实施例11示例了根据本申请的一个实施例的第二时间窗与第一时间窗之间的时域关系的说明示意图,如附图11所示。
在实施例11中,所述第二时间窗与所述第一时间窗有时域交叠,所述第二时间窗的起始位置与所述第一时间窗的起始位置相同,所述第二时间窗的结束位置晚于所述第一时间窗的结束位置。
作为一个实施例,所述第二时间窗与所述第一时间窗有时域交叠,所述第二时间窗的起始位置早于所述第一时间窗的起始位置,所述第二时间窗的结束位置晚于所述第一时间窗的结束位置。
作为一个实施例,所述第二时间窗的起始位置与所述第一时间窗的起始位置相同,所述第二时间窗的结束位置早于所述第一时间窗的结束位置。
作为一个实施例,所述第二时间窗的结束位置与所述第一时间窗的结束位置相同,所述第二时间窗的起始位置早于所述第一时间窗的起始位置。
作为一个实施例,所述第二时间窗的结束位置与所述第一时间窗的结束位置相同,所述第二时间窗的起始位置晚于所述第一时间窗的起始位置。
实施例12
实施例12示例了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图,如附图12所示。在附图12中,目标无线信道所占用的时域资源块属于第二时间窗与第一时间窗的交叠部分;在步骤S121中确定所述第二时间窗的截止时刻早于还是晚于所述第一时间窗的截止时刻,在步骤S122中所述目标无线信道采用第二配置,在步骤S123中所述目标无线信道采用第一配置。
在实施例12中,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻”与“所述第二时间窗所包括的最晚的时域符号晚于所述第一时间窗所包括的最晚的时域符号”是等同的或 可以相互替换的。
作为一个实施例,本申请中的所述表述“所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻”与“所述第二时间窗所包括的最晚的时域符号早于所述第一时间窗所包括的最晚的时域符号”是等同的或可以相互替换的。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,本申请中的所述表述“所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻”与“所述第二时间窗所包括的最早的时域符号晚于所述第一时间窗所包括的最早的时域符号”是等同的或可以相互替换的。
作为一个实施例,本申请中的所述表述“所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻”与“所述第二时间窗所包括的最早的时域符号早于所述第一时间窗所包括的最早的时域符号”是等同的或可以相互替换的。
作为一个实施例,所述第二时间窗所包括的最早的时域符号不同于所述第一时间窗所包括的最早的时域符号。
作为一个实施例,所述第二时间窗所包括的最晚的时域符号不同于所述第一时间窗所包括的最晚的时域符号。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻不晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻不晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻不晚于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻时,所述目标无线信道采用所 述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻不晚于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻不早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻不早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻不早于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的起始时刻不早于所述第一时间窗的起始时刻时,所述目标无线信道采用所述第一配置。
实施例13
实施例13示例了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图,如附图13所示。在附图13中,目标无线信道所占用的时域资源块属于第二时间窗与第一时间窗的交叠部分;在步骤S131中确定第一信令所占用的时域资源早于还是晚于第二信令所占用的时域资源,在步骤S132中所述目标无线信道采用第一配置,在步骤S133中所述目标无线信道采用第二配置。
在实施例13中,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
作为一个实施例,本申请中的所述表述“所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源”与“所述第一信令在时域上所占用的最早的时域符号早于所述第二信令在时域上所占用的最早的时域符号”是等同的或可以相互替换的。
作为一个实施例,本申请中的所述表述“所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源”与“所述第一信令在时域上所占用的最晚的时域符号早于所述第二信令在时域上所占用的最晚的时域符号”是等同的或可以相互替换的。
作为一个实施例,本申请中的所述表述“所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源”与“所述第一信令在时域上所占用的最早的时域符号晚于所述第二信令在时域上所占用的最早 的时域符号”是等同的或可以相互替换的。
作为一个实施例,本申请中的所述表述“所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源”与“所述第一信令在时域上所占用的最晚的时域符号晚于所述第二信令在时域上所占用的最晚的时域符号”是等同的或可以相互替换的。
作为一个实施例,所述第一信令所占用的时域资源与所述第二信令所占用的时域资源有时域交叠。
作为一个实施例,所述第一信令所占用的时域资源与所述第二信令所占用的时域资源无时域交叠。
实施例14
实施例14示例了根据本申请的一个实施例的确定目标无线信道所采用的配置的说明示意图,如附图14所示。在附图14中,目标无线信道所占用的时域资源块属于第二时间窗与第一时间窗的交叠部分;在步骤S141中确定第一条件还是第二条件被满足,在步骤S142中所述目标无线信道采用第二配置,在步骤S143中所述目标无线信道采用第一配置。
在实施例14中,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且第一条件被满足时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且第二条件被满足时,所述目标无线信道采用所述第一配置;所述第一条件是和所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关的条件,所述第二条件是和与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关的条件,所述第一条件与所述第二条件互斥。
作为一个实施例,所述第一条件与所述第二条件不可能同时被满足。
作为一个实施例,所述第一条件不被满足与所述第二条件被满足是等价的。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻或所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻或所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻或所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻或所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻或所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻或所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻或所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻或所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻。
作为一个实施例,所述第一条件包括:所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻晚于所述第一时间窗的起始时刻。
作为一个实施例,所述第一条件包括:所述第二时间窗的起始时刻早于所述第一时间窗的起始时刻。
作为一个实施例,所述第一条件包括:所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源。
作为一个实施例,所述第一条件包括:所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源。
实施例15
实施例15示例了根据本申请的一个实施例的第一信令被用于指示第一时间窗的说明示意图,如附图15所示。
在实施例15中,所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
作为一个实施例,所述K1是所述第一信令所指示的。
作为一个实施例,所述K1是所述参考信令所指示的。
作为一个实施例,所述K1是更高层信令所配置的。
作为一个实施例,所述K1是RRC信令所配置的。
作为一个实施例,所述K1是MAC CE所配置的。
作为一个实施例,所述K1是预先定义好的。
作为一个实施例,当所述K1等于0时,所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙。
作为一个实施例,所述第二时间窗所包括的最早的时隙是所述第二信令在时域上所属的时隙之后的第K2个时隙,所述K2是可配置的或预先定义好的非负整数。
作为一个实施例,所述K2是所述K1。
作为一个实施例,所述K2不等于所述K1。
作为一个实施例,所述K2是所述第二信令所指示的。
作为一个实施例,所述K2是所述参考信令所指示的。
作为一个实施例,所述K2是更高层信令所配置的。
作为一个实施例,所述K2是RRC信令所配置的。
作为一个实施例,所述K2是MAC CE所配置的。
作为一个实施例,所述K2是预先定义好的。
作为一个实施例,当所述K2等于0时,所述第二时间窗所包括的最早的时隙是所述第二信令在时域上所属的时隙。
作为一个实施例,所述第一时间窗所包括的最早的时域符号是所述第一信令在时域上所占用的最晚的时域符号之后的第K3个时域符号,所述K3是可配置的或预先定义好的正整数。
作为一个实施例,所述K3是所述第一信令所指示的。
作为一个实施例,所述K3是所述参考信令所指示的。
作为一个实施例,所述K3是更高层信令所配置的。
作为一个实施例,所述K3是RRC信令所配置的。
作为一个实施例,所述K3是MAC CE所配置的。
作为一个实施例,所述K3是预先定义好的。
作为一个实施例,所述第二时间窗所包括的最早的时域符号是所述第二信令在时域上所占用的最晚的时域符号之后的第K4个时域符号,所述K4是可配置的或预先定义好的正整数。
作为一个实施例,所述K4是所述第二信令所指示的。
作为一个实施例,所述K4是所述参考信令所指示的。
作为一个实施例,所述K4是更高层信令所配置的。
作为一个实施例,所述K4是RRC信令所配置的。
作为一个实施例,所述K4是MAC CE所配置的。
作为一个实施例,所述K4是预先定义好的。
作为一个实施例,所述K4是所述K3。
作为一个实施例,所述K4不等于所述K3。
实施例16
实施例16示例了一个第一节点设备中的处理装置的结构框图,如附图16所示。在附图16中,第一节点设备处理装置1600包括第一收发机1603,所述第一收发机1603包括第一接收机1601和第一发射机1602。
作为一个实施例,所述第一节点设备1600是基站。
作为一个实施例,所述第一节点设备1600是用户设备。
作为一个实施例,所述第一节点设备1600是中继节点。
作为一个实施例,所述第一节点设备1600是车载通信设备。
作为一个实施例,所述第一节点设备1600是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1600是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备1600是支持XR业务的用户设备。
作为一个实施例,所述第一节点设备1600是支持VoIP业务的用户设备。
作为一个实施例,所述第一节点设备1600是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1602包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1602包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1602包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1602包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1602包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
在实施例16中,所述第一接收机1601,接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配 置,所述第一信令被用于指示第一时间窗;所述第一接收机1601,在目标无线信道上接收目标比特块,或者,所述第一发射机1602,在目标无线信道上发送目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为一个实施例,所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,所述第一接收机1601,接收第二信令,所述第二信令被用于指示第二时间窗;其中,所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
作为一个实施例,所述第一接收机1601,接收第二信令,所述第二信令被用于指示第二配置和第二时间窗,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;其中,所述第二时间窗与所述第一时间窗有时域交叠;所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
作为一个实施例,所述第一信令是DCI格式或MAC CE中之一。
作为一个实施例,所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
实施例17
实施例17示例了一个第二节点设备中的处理装置的结构框图,如附图17所示。在附图17中,第二节点设备处理装置1700包括第二收发机1703,所述第二收发机1703包括第二发射机1701和第二接收机1702。
作为一个实施例,所述第二节点设备1700是用户设备。
作为一个实施例,所述第二节点设备1700是基站。
作为一个实施例,所述第二节点设备1700是卫星设备。
作为一个实施例,所述第二节点设备1700是中继节点。
作为一个实施例,所述第二节点设备1700是车载通信设备。
作为一个实施例,所述第二节点设备1700是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1700是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
在实施例17中,所述第二发射机1701,发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;所述第二发射机1701,在目标无线信道上发送目标比特块,或者,所述第二接收机1702,在目标无线信道上接收目标比特块;其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
作为一个实施例,所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
作为一个实施例,所述第二发射机1701,发送第二信令,所述第二信令被用于指示第二时间窗;其中,所述第二时间窗与所述第一时间窗有时域交叠;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置。
作为一个实施例,所述第二发射机1701,发送第二信令,所述第二信令被用于指示第二配置和第二时间窗,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;其中,所述第二时间窗与所述第一时间窗有时域交叠;所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置;当所述目标无线信道所占用的所述时域资源块属于 所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
作为一个实施例,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
作为一个实施例,所述第一信令是DCI格式或MAC CE中之一。
作为一个实施例,所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,G NSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
    第一收发机,在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;
    其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗时,所述目标无线信道采用所述参考配置。
  3. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二信令,所述第二信令被用于指示第二配置和第二时间窗,所述第二配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;
    其中,所述第二时间窗与所述第一时间窗有时域交叠;所述第一信令被用于指示第一配置,所述第一配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置;所述目标无线信道所占用的所述时域资源块与所述第一时间窗以及所述第二时间窗之间的时域关系被用于确定所述目标无线信道所采用的配置;当所述目标无线信道所占用的所述时域资源块不属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述参考配置;当所述目标无线信道所占用的所述时域资源块属于所述第一时间窗且不属于所述第二时间窗时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗且不属于所述第一时间窗时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分时,所述目标无线信道采用所述第一配置或所述第二配置中之一,所述目标无线信道采用所述第一配置还是所述第二配置与所述第二时间窗与所述第一时间窗之间的时域关系或所述第一信令和所述第二信令之间的时域关系两者中的至少之一有关。
  4. 根据权利要求3所述的第一节点,其特征在于,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻晚于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第二配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第二时间窗的截止时刻早于所述第一时间窗的截止时刻时,所述目标无线信道采用所述第一配置。
  5. 根据权利要求3所述的第一节点,其特征在于,当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源晚于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第一配置;当所述目标无线信道所占用的所述时域资源块属于所述第二时间窗与所述第一时间窗的交叠部分且所述第一信令所占用的时域资源早于所述第二信令所占用的时域资源时,所述目标无线信道采用所述第二配置。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一信令是DCI格式或MAC CE中之一。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一时间窗所包括的最早的时隙是所述第一信令在时域上所属的时隙之后的第K1个时隙,所述K1是可配置的或预先定义好的非负整数。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
    第二收发机,在目标无线信道上发送目标比特块,或者,在目标无线信道上接收目标比特块;
    其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收参考信令,接收第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
    在目标无线信道上接收目标比特块,或者,在目标无线信道上发送目标比特块;
    其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送参考信令,发送第一信令,所述参考信令被用于指示参考配置,所述参考配置包括对时域资源分配,频域资源分配,MCS,波形,传输块数量中的至少之一的配置,所述第一信令被用于指示第一时间窗;
    在目标无线信道上发送目标比特块,或者,在目标无线信道上接收目标比特块;
    其中,所述参考信令被用于半静态调度的激活或配置授予的激活;所述参考信令被用于确定多个时域资源块,所述目标无线信道在时域占用所述多个时域资源块中之一,所述多个时域资源块中的至少一个时域资源块在所述第一时间窗的截止时刻之后;所述目标无线信道所占用的时域资源块与所述第一时间窗之间的时域关系被用于确定所述目标无线信道是否采用所述参考配置。
PCT/CN2023/073531 2022-01-29 2023-01-28 一种被用于无线通信的节点中的方法和装置 WO2023143500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210110811.1 2022-01-29
CN202210110811.1A CN116582934A (zh) 2022-01-29 2022-01-29 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023143500A1 true WO2023143500A1 (zh) 2023-08-03

Family

ID=87470646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073531 WO2023143500A1 (zh) 2022-01-29 2023-01-28 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116582934A (zh)
WO (1) WO2023143500A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162874A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 下行信息接收方法、装置及用户设备
WO2020032521A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
US20200344788A1 (en) * 2018-01-12 2020-10-29 Huawei Technologies Co., Ltd. Uplink control information transmission method, access network device, and terminal device
US20210167901A1 (en) * 2018-08-17 2021-06-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting harq information, network device and terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162874A (zh) * 2015-04-10 2016-11-23 中兴通讯股份有限公司 下行信息接收方法、装置及用户设备
US20200344788A1 (en) * 2018-01-12 2020-10-29 Huawei Technologies Co., Ltd. Uplink control information transmission method, access network device, and terminal device
WO2020032521A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
US20210167901A1 (en) * 2018-08-17 2021-06-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting harq information, network device and terminal device

Also Published As

Publication number Publication date
CN116582934A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024007879A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023236853A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061248A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193741A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024131548A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138554A2 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032479A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746377

Country of ref document: EP

Kind code of ref document: A1