WO2023005781A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023005781A1
WO2023005781A1 PCT/CN2022/106952 CN2022106952W WO2023005781A1 WO 2023005781 A1 WO2023005781 A1 WO 2023005781A1 CN 2022106952 W CN2022106952 W CN 2022106952W WO 2023005781 A1 WO2023005781 A1 WO 2023005781A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
candidate
harq process
time
time unit
Prior art date
Application number
PCT/CN2022/106952
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP22848386.3A priority Critical patent/EP4362535A1/en
Publication of WO2023005781A1 publication Critical patent/WO2023005781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • XR Extended Reality, extended reality
  • 5G NR New Radio, new air interface
  • SPS semi-persistent scheduling
  • CG configured grant
  • the configuration allocation technique in the 3GPP NR existing technical specification only supports the transmission of at most two transport blocks in each SPS (or CG) cycle.
  • Introducing the function of configuring multiple physical layer channels to transmit more transport blocks in each SPS (or CG) cycle can better match the characteristics of XR services, which is very beneficial to the support of XR services by NR systems; after introducing this After the function, how to determine the HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number (HARQ Process ID/number) corresponding to each configuration allocation is a key problem that needs to be solved.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • the present application discloses a solution. It should be noted that although the above description uses the XR service in 5G NR as an example, this application is also applicable to other scenarios, such as other scenarios other than XR in 5G NR, 6G network, Internet of Vehicles, etc., and achieved similar technical effect. In addition, adopting a unified solution for different scenarios (including but not limited to 5G NR or 6G networks, and Internet of Vehicles) can also help reduce hardware complexity and cost, or improve performance. In the case of no conflict, the embodiments and features in any node of the present application can be applied to any other node. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the cycle length of configuration allocation, and the M1 candidate HARQ process numbers Any candidate HARQ process number of is a non-negative integer;
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; the index of the first time unit is used together with a target value to determine the second value, and the target value is used to determine the The time domain positions of the M2 candidate time units.
  • the problem to be solved in this application includes: how to determine the HARQ process number associated with the first bit block.
  • the characteristics of the above method include: within a specific period, there are multiple configuration allocations corresponding to multiple different HARQ process numbers; for any configuration allocation in the multiple configuration allocations, the first value It is used together with the second value to determine the corresponding HARQ process number, wherein the first value has nothing to do with the time domain position in the specific cycle, and the second value is related to the time domain position in the specific period. It is related to the time domain position in a specific cycle.
  • the characteristics of the above method include: there are multiple configuration allocations corresponding to multiple different HARQ process numbers in each configuration allocation cycle.
  • the characteristics of the above method include: the first HARQ process number is which one of the M1 candidate HARQ process numbers is related to the index of the first time unit and a specific time unit related to the difference between indexes.
  • the characteristics of the above method include: given the index of the first time unit, the target value used to determine the time domain positions of the M2 candidate time units is used for Determine the first HARQ process number.
  • the characteristics of the above method include: within one cycle length of one SPS (or CG) configuration, there are multiple PDSCHs (or PUSCHs) allocated by the one SPS (or CG) configuration respectively associated with multiple Different HARQ process numbers determined by different time domain positions.
  • the advantages of the above method include: it is beneficial to transmit more transport blocks within a configured cycle length and improve the data transmission rate.
  • the advantages of the above method include: more candidate transmission opportunities can be configured, which is beneficial to reduce delay.
  • the advantages of the above method include: the maximum time interval between two configuration assignments corresponding to the same HARQ process number can be realized, and the utilization efficiency of the HARQ process is high.
  • the advantages of the above method include: little modification to the version of the existing technical specification, which is beneficial to reduce the workload of standardization.
  • the advantages of the above method include: the flexibility of base station scheduling is improved.
  • the advantages of the above method include: good forward and backward compatibility.
  • the above-mentioned method is characterized in that,
  • the first HARQ process number, the first value, and the second value are related to a result of moduloing the M1.
  • the above-mentioned method is characterized in that,
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the above-mentioned method is characterized in that,
  • the second value and the index of the first time unit are related to the difference of the target value.
  • the above-mentioned method is characterized in that,
  • the second value is equal to a value associated with the index of the first time unit divided by the target value.
  • the above-mentioned method is characterized in that,
  • the reference time unit is one of the M2 candidate time units, and the target value is used to determine an index of the reference time unit.
  • the above method is characterized in that it includes:
  • the second signaling is used to determine the target value.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; the index of the first time unit is used together with a target value to determine the second value, and the target value is used to determine the The time domain positions of the M2 candidate time units.
  • the above-mentioned method is characterized in that,
  • the first HARQ process number, the first value, and the second value are related to a result of moduloing the M1.
  • the above-mentioned method is characterized in that,
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the above-mentioned method is characterized in that,
  • the second value and the index of the first time unit are related to the difference of the target value.
  • the above-mentioned method is characterized in that,
  • the second value is equal to a value associated with the index of the first time unit divided by the target value.
  • the above-mentioned method is characterized in that,
  • the reference time unit is one of the M2 candidate time units, and the target value is used to determine an index of the reference time unit.
  • the above method is characterized in that it includes:
  • the second signaling is used to determine the target value.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling, the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 Any candidate HARQ process number in the candidate HARQ process number is a non-negative integer;
  • the first transceiver receives the first bit block in the first time unit, or transmits the first bit block in the first time unit, and the first time unit is one of the M2 candidate time units, and the M2 is A positive integer greater than 1;
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; the index of the first time unit is used together with a target value to determine the second value, and the target value is used to determine the The time domain positions of the M2 candidate time units.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling, the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 Any candidate HARQ process number in the candidate HARQ process number is a non-negative integer;
  • the second transceiver transmits the first bit block in the first time unit, or receives the first bit block in the first time unit, and the first time unit is one of M2 candidate time units, and the M2 is A positive integer greater than 1;
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; the index of the first time unit is used together with a target value to determine the second value, and the target value is used to determine the The time domain positions of the M2 candidate time units.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling, the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 Any candidate HARQ process number in the candidate HARQ process number is a non-negative integer;
  • the first transceiver receives the first bit block in the first time unit, or transmits the first bit block in the first time unit, and the first time unit is one of the M2 candidate time units, and the M2 is A positive integer greater than 1;
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; a target value is used to determine the second value, and the target value and the first time unit are in the M2 candidate time units related to the time domain location.
  • the characteristics of the above method include: within a specific period, there are multiple configuration allocations corresponding to multiple different HARQ process numbers; for any configuration allocation in the multiple configuration allocations, the first value It is used together with the second value to determine the corresponding HARQ process number, wherein the first value has nothing to do with the time domain position in the specific cycle, and the second value is related to the time domain position in the specific period. It is related to the time domain position in a specific cycle.
  • the characteristics of the above method include: there are multiple configuration allocations corresponding to multiple different HARQ process numbers in each configuration allocation period.
  • the characteristics of the above method include: within one cycle length of one SPS (or CG) configuration, there are multiple PDSCHs (or PUSCHs) allocated by the one SPS (or CG) configuration respectively associated with multiple Different HARQ process numbers determined by different time domain positions (or, different logical sequences of configuration assignments).
  • the advantages of the above method include: it is beneficial to transmit more transport blocks within a configured cycle length and improve the data transmission rate.
  • the advantages of the above method include: more candidate transmission opportunities can be configured, which is beneficial to reduce delay.
  • the advantages of the above method include: the maximum time interval between two configuration assignments corresponding to the same HARQ process number can be realized, and the utilization efficiency of the HARQ process is high.
  • the advantages of the above method include: little modification to the version of the existing technical specification, which is beneficial to reduce the workload of standardization.
  • the advantages of the above method include: the flexibility of base station scheduling is improved.
  • the advantages of the above method include: good forward and backward compatibility.
  • the above-mentioned method is characterized in that,
  • the first HARQ process number, the first value, and the second value are related to a result of moduloing the M1.
  • the above-mentioned method is characterized in that,
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; a target value is used to determine the second value, and the target value and the first time unit are in the M2 candidate time units related to the time domain position.
  • the above-mentioned method is characterized in that,
  • the first HARQ process number, the first value, and the second value are related to a result of moduloing the M1.
  • the above-mentioned method is characterized in that,
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling, the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 Any candidate HARQ process number in the candidate HARQ process number is a non-negative integer;
  • the first transceiver receives the first bit block in the first time unit, or transmits the first bit block in the first time unit, and the first time unit is one of the M2 candidate time units, and the M2 is A positive integer greater than 1;
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; a target value is used to determine the second value, and the target value and the first time unit are in the M2 candidate time units related to the time domain location.
  • the first node device is characterized in that,
  • the first HARQ process number, the first value, and the second value are related to a result of moduloing the M1.
  • the first node device is characterized in that,
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling, the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 Any candidate HARQ process number in the candidate HARQ process number is a non-negative integer;
  • the second transceiver transmits the first bit block in the first time unit, or receives the first bit block in the first time unit, and the first time unit is one of M2 candidate time units, and the M2 is A positive integer greater than 1;
  • the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to obtain the The first HARQ process number is determined among the M1 candidate HARQ process numbers; the time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the second A period value is used together with the M2 to determine the first value; a target value is used to determine the second value, and the target value and the first time unit are in the M2 candidate time units related to the time domain location.
  • the method in this application has the following advantages:
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between the first value, the first cycle value and M2 according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the relationship between the first value, the first period value, the index of the first time unit and M2 according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between the first value, the second value and the first HARQ process number according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the relationship between the second value and the difference between the index of the first time unit and the target value according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application
  • Fig. 12 shows a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application
  • Fig. 13 shows a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of the relationship between a target value, a reference time unit and M2 candidate time units according to an embodiment of the present application
  • Fig. 15 shows a schematic diagram of the relationship between the second signaling and the target value according to an embodiment of the present application
  • Fig. 16 shows a processing flowchart of a first node according to an embodiment of the present application
  • FIG. 17 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 18 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application receives the first signaling in step 101; receives the first bit block in the first time unit in step 102, or sends the first bit block in the first time unit The first bit block.
  • the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 candidate HARQ process numbers Any one of the candidate HARQ process numbers is a non-negative integer; the first time unit is one of M2 candidate time units, and the M2 is a positive integer greater than 1; the first bit block is associated to the first HARQ process number , the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ process number from the M1 candidate HARQ process numbers ; The time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are used together to determine the first Value: the index of the first time unit is used together with the target value to determine the second value, and the target value is used to determine the time domain positions of the M2 candidate time units.
  • the first signaling is DCI (Downlink control information, downlink control information).
  • the first signaling includes one or more fields in one DCI.
  • the first signaling is higher layer (higher layer) signaling.
  • the first signaling is RRC signaling.
  • the first signaling includes one or more fields in one RRC signaling.
  • the first signaling includes an IE (Information Element, information element).
  • the first signaling is MAC CE signaling.
  • the first signaling includes one or more fields in one MAC CE signaling.
  • the first signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling includes an information element SPS-Config.
  • the first signaling includes an information element ConfiguredGrantConfig.
  • the first bit block includes multiple bits.
  • the first bit block is a TB (Transport Block, transport block).
  • the first bit block includes one or two TBs.
  • the first bit block includes at least one CBG (Code Block Group, code block group).
  • the first bit block undergoes at least CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) attachment (attachment), code block segmentation (Code Block Segmentation), code block CRC attachment, channel coding before being sent , rate matching and code block concatenation (Concatenation), scrambling code (Scrambling), modulation and resource block mapping.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the first bit block undergoes at least CRC addition, channel coding and rate matching, scrambling, modulation and resource block mapping before being sent.
  • the first bit block undergoes at least CRC addition, code block segmentation, code block CRC addition, channel coding, rate matching and code block concatenation (Concatenation), scrambling, modulation, and layer mapping before being sent. , antenna port mapping and resource block mapping.
  • the first bit block undergoes at least CRC addition, channel coding and rate matching, scrambling, modulation, layer mapping, antenna port mapping and resource block mapping before being sent.
  • the first bit block undergoes CRC addition, code block division, code block CRC addition, channel coding, rate matching, code block concatenation, scrambling, modulation (Modulation), spreading (Spreading), layer Mapping (Layer Mapping), precoding (Precoding), mapping to physical resources, multi-carrier symbol generation (Generation), modulation and up-conversion (Modulation and Upconversion) at least part of all or part of the output in the first time unit is sent.
  • the expression in this application means receiving the first bit block includes: receiving a signal carrying the first bit block.
  • the expression in this application means receiving the first bit block includes: receiving the first signal, the first signal including the first bit block after CRC addition, code block division, and code block CRC addition , channel coding, rate matching, code block concatenation, scrambling, modulation, spreading, layer mapping, precoding, mapping to physical resources, multi-carrier symbol generation, all or part of the output after at least part of the modulation up-conversion.
  • the expression in this application means sending the first bit block includes: sending a signal carrying the first bit block.
  • the expression in this application means sending the first bit block includes: sending the first signal, the first signal includes the first bit block after CRC appending, code block division, and code block CRC appending , channel coding, rate matching, code block concatenation, scrambling, modulation, spreading, layer mapping, precoding, mapping to physical resources, multi-carrier symbol generation, all or part of the output after at least part of the modulation up-conversion.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a baseband signal.
  • the meaning that the first period value is used together with the M2 to determine the first value includes: the number of time units corresponding to the first period value is used together with the M2 The first value is determined.
  • the first value is equal to multiplying the first period value by the M2.
  • the first value is equal to a positive integer multiple of the sum of the first period value and the M2.
  • the expression in this application that the first value and the second value are used together to determine the first HARQ process number from the M1 candidate HARQ process numbers means: the first HARQ The process number is which HARQ process number among the M1 candidate HARQ process numbers is related to both the first value and the second value.
  • the expression in this application that the first period value and the M2 are used together to determine the first value means: the first value corresponds to the first period value
  • the number of time units is related to both of the M2.
  • the expression that the index of the first time unit and the target value are used together to determine the second value in this application means: the second value and the index of the first time unit Both the index and the target value are related.
  • the expression in this application that the target value is used to determine the time domain positions of the M2 candidate time units means that: the time domain positions of the M2 candidate time units are consistent with the target related to the value.
  • the first signaling is used to indicate the first period value.
  • the first signaling is used to explicitly indicate the first period value.
  • the first signaling is used to implicitly indicate the first period value.
  • a field in the first signaling is used to indicate the first period value.
  • a periodicity field in the first signaling is used to indicate the first period value.
  • the first period value is equal to a positive integer number of symbols.
  • the first period value is equal to a positive integer number of time slots.
  • the first period value is equal to a positive integer number of milliseconds (ms).
  • the configuration assignment is configured downlink assignment (configured downlink assignment).
  • the configuration assignment is a configured uplink grant.
  • the configuration allocation is used for semi-persistent scheduling.
  • the time unit is milliseconds.
  • the time unit is a time slot (slot).
  • the time unit is a sub-slot (sub-slot).
  • one time unit includes one or more symbols.
  • the time unit is a symbol.
  • the time unit is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the time unit is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, Single Carrier-Frequency Division Multiple Access
  • the time unit is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the time unit is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi Carrier, filter bank multi-carrier
  • the time unit includes CP (Cyclic Prefix, cyclic prefix).
  • the M2 candidate time units are arranged sequentially in the time domain and do not overlap with each other in the time domain.
  • the length of the time interval between any two candidate time units in the M2 candidate time units is smaller than the first period value.
  • the meaning that the first bit block is associated with the first HARQ process number includes: the first bit block is allocated to the HARQ process corresponding to the first HARQ process number.
  • the meaning that the first bit block is associated with the first HARQ process number includes: the HARQ information associated with the first bit block indicates the first HARQ process number.
  • the first signaling is used to indicate the M1 candidate HARQ process numbers.
  • the first signaling is used to explicitly indicate the M1 candidate HARQ process numbers.
  • the first signaling is used to implicitly indicate the M1 candidate HARQ process numbers.
  • the first signaling is used to indicate an offset value used to infer the HARQ process number and the M1, and the offset value used to infer the HARQ process number and the M1 are used together to determine the M1 candidate HARQ process numbers.
  • the M1 is equal to 1 or greater than 1.
  • the M1 is greater than 1.
  • the first signaling is used to determine the M1.
  • the first signaling is used to indicate the M1.
  • the first signaling is used to explicitly indicate the M1.
  • the first signaling is used to implicitly indicate the M1.
  • the first signaling is used to indicate the number of configured HARQ process numbers, and the M1 is equal to the number of configured HARQ process numbers.
  • the M1 is indicated by an nrofHARQ-Processes field in the first signaling.
  • the M1 candidate HARQ process numbers include 0, 1, . . . , M1-1.
  • the M1 candidate HARQ process numbers include 1, 2, . . . , M1.
  • the first signaling is used to indicate the M1 and the first offset value
  • the M1 candidate HARQ process numbers include: the first offset value, the first offset value +1, ..., the first offset value +M1 ⁇ 1.
  • the M1 candidate HARQ process numbers include: a first offset value, a first offset value+1, ..., a first offset value+M1-1; the first signaling is For determining the first offset value, the first offset value is a non-negative integer.
  • the first signaling is used to indicate the first offset value.
  • the first signaling is used to explicitly indicate the first offset value.
  • the first signaling is used to implicitly indicate the first offset value.
  • the first offset value is an offset value used to deduce the HARQ process number.
  • the first offset value is indicated by a harq-ProcID-Offset field in the first signaling.
  • the first offset value is indicated by a harq-ProcID-Offset2 field in the first signaling.
  • the four arithmetic operation results of the first value and the second value are used to determine the first HARQ process number from the M1 candidate HARQ process numbers.
  • the product of the first value and the second value is used to indicate the first HARQ process number from the M1 candidate HARQ process numbers.
  • the first HARQ process number is equal to a result of moduloing the M1 by a weighted sum of the first value and the second value, and the first signaling is used to determine the M1.
  • the first HARQ process number is equal to the weighted sum of the first value and the second value and the result of moduloing the M1 plus a first offset value, and the first signaling is used to determine the M1 and the first offset value.
  • the index of the first time unit and the number of time units corresponding to the first period value are used together with the M2 to determine the first value.
  • the M2 is configurable.
  • the M2 is indicated by a DCI.
  • the M2 is the number of PDSCHs corresponding to one row indicated by a DCI from a time domain resource allocation table.
  • the M2 is configured by higher layer signaling.
  • the first value is linearly related to the M2.
  • the first value is linearly related to a product of the number of time units corresponding to the first period value and the M2.
  • the first value is equal to a sum of the number of time units corresponding to the first period value and the M2.
  • the number of time units corresponding to the first period value is equal to the first period value.
  • the number of time units corresponding to the first period value is equal to a positive integer multiple of the first period value.
  • the number of time units corresponding to the first period value is equal to the first period value multiplied by the number of consecutive time units in each frame and divided by 10.
  • the number of time units corresponding to the first period value is equal to the time length of the first period value divided by the time length of one time unit.
  • the number of time units corresponding to the first period value is equal to the number of time units included in a time window whose length is the first period value.
  • the target value is configurable.
  • the target value is a configurable parameter value.
  • the target value is calculated based on at least one configurable parameter value.
  • At least one of the first signaling and the second signaling in this application is used to determine the target value.
  • the first signaling is used to determine the target value.
  • the target value is a parameter value configured in the first signaling.
  • At least one parameter configured in the first signaling is used to determine the target value.
  • the target value is indicated by a DCI.
  • the target value is calculated based on an indication of a DCI.
  • the target value is indicated by the second signaling in this application.
  • a said index in this application is equal to a non-negative integer.
  • the index of a time unit is an index jointly determined by the system frame number of the frame to which the time unit belongs and the corresponding time slot number.
  • the index of a time unit is an index jointly determined by the system frame number of the frame to which the time unit belongs, the time slot number of the time slot to which it belongs, and the corresponding symbol number.
  • the first time unit is a time slot
  • the index of the first time unit is jointly determined by the system frame number of the frame to which the first time unit belongs and the corresponding time slot number An index of .
  • the index of the first time unit is equal to: the number of consecutive time slots in each frame multiplied by the system frame number (SFN, System Frame Number) of the frame to which the first time unit belongs plus The slot number (slot number) corresponding to the above-mentioned first time unit in the frame to which it belongs.
  • the index of the first time unit is equal to: the system frame number of the frame to which the first time unit belongs multiplied by the number of consecutive time slots in each frame multiplied by the The number of consecutive symbols plus the time slot number corresponding to the first time unit in the frame to which it belongs multiplies the number of consecutive symbols in each time slot plus the time slot number of the first time unit in the time slot to which it belongs The corresponding symbol number (symbol number).
  • the ratio of the M1 to the M2 is used to determine the second value.
  • the target parameter is used to indicate the time domain positions of the M2 candidate time units.
  • the target parameter is used to explicitly indicate the time domain positions of the M2 candidate time units.
  • the target parameter is used to implicitly indicate the time domain positions of the M2 candidate time units.
  • the target parameter is used to determine the cut-off time of the M2 candidate time units.
  • the target parameter is used to determine the start time of the M2 candidate time units.
  • the first HARQ process number and the first value are related to a result of taking a modulus of the M1 by the sum of the second value.
  • the sum of the first value and the second value is used to determine the first HARQ process number from the M1 candidate HARQ process numbers.
  • the first HARQ process number is equal to a modulo result of the sum of the first value and the second value on the M1.
  • the first HARQ process number is equal to the sum of the first value and the second value and the result of moduloing the M1 plus a first offset value, and the first signaling is used to determine the first offset value.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates 5G NR, the diagram of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment, User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device supporting a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • both the first node and the second node in this application correspond to the UE 201 , for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The communication node device (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated by the PHY351.
  • the second signaling in this application is generated in the RRC sublayer 306 .
  • the second signaling in this application is generated in the MAC sublayer 302 .
  • the second signaling in this application is generated in the MAC sublayer 352 .
  • the second signaling in this application is generated by the PHY301.
  • the second signaling in this application is generated by the PHY351.
  • the first bit block in this application is generated in the SDAP sublayer 356 .
  • the first bit block in this application is generated in the RRC sublayer 306 .
  • the first bit block in this application is generated in the MAC sublayer 302 .
  • the first bit block in this application is generated in the MAC sublayer 352 .
  • the first bit block in this application is generated by the PHY301.
  • the first bit block in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving first signaling, where the first signaling is used to determine a first cycle value and M1 candidate HARQ process numbers, where the first cycle value is equal to the configured cycle length , any candidate HARQ process number in the M1 candidate HARQ process numbers is a non-negative integer; the first bit block is received in the first time unit, or the first bit block is sent in the first time unit, and the first bit block is received in the first time unit.
  • a time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is the M1 One of the candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ process number from the M1 candidate HARQ process numbers; any two of the M2 candidate time units The length of the time interval between candidate time units is not greater than the first period value; the first period value and the M2 are used together to determine the first value; the index and target of the first time unit The values are used together to determine the second value, and the target value is used to determine the time domain positions of the M2 candidate time units.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A signaling, the first signaling is used to determine a first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the cycle length of configuration allocation, any of the M1 candidate HARQ process numbers A candidate HARQ process number is a non-negative integer; the first bit block is received in the first time unit, or, the first bit block is sent in the first time unit, and the first time unit is one of the M2 candidate time units,
  • the M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value Together with the second value, it is used to determine the first HARQ process number from the M1 candidate HARQ process numbers; the length of the time interval between any two candidate
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending a first signaling, the first signaling is used to determine a first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration , any candidate HARQ process number in the M1 candidate HARQ process numbers is a non-negative integer; the first bit block is sent in the first time unit, or the first bit block is received in the first time unit, and the first bit block is received in the first time unit A time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is the M1 One of the candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first A signaling, the first signaling is used to determine a first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the cycle length of configuration allocation, any of the M1 candidate HARQ process numbers A candidate HARQ process number is a non-negative integer; the first bit block is sent in the first time unit, or the first bit block is received in the first time unit, and the first time unit is one of the M2 candidate time units,
  • the M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value Together with the second value, it is used to determine the first HARQ process number from the M1 candidate HARQ process numbers; the length of the time interval between any two candidate time units
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the second signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive said first block of bits in this application in said first time unit in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used to send the first bit block in this application in the first time unit in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit said first block of bits in this application in said first time unit in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used to receive said first block of bits in this application in said first time unit in this application.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving first signaling, where the first signaling is used to determine a first cycle value and M1 candidate HARQ process numbers, where the first cycle value is equal to the configured cycle length , any candidate HARQ process number in the M1 candidate HARQ process numbers is a non-negative integer; the first bit block is received in the first time unit, or the first bit block is sent in the first time unit, and the first bit block is received in the first time unit.
  • a time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is the M1 One of the candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ process number from the M1 candidate HARQ process numbers; any two of the M2 candidate time units
  • the time interval length between candidate time units is not greater than the first period value; the first period value and the M2 are used to determine the first value; the target value is used to determine the second value, the target value is related to the time domain position of the first time unit in the M2 candidate time units.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A signaling, the first signaling is used to determine a first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the cycle length of configuration allocation, any of the M1 candidate HARQ process numbers A candidate HARQ process number is a non-negative integer; the first bit block is received in the first time unit, or the first bit block is sent in the first time unit, and the first time unit is one of the M2 candidate time units,
  • the M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value Together with the second value, it is used to determine the first HARQ process number from the M1 candidate HARQ process numbers; the length of the time interval between any two candidate time
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending a first signaling, the first signaling is used to determine a first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration , any candidate HARQ process number in the M1 candidate HARQ process numbers is a non-negative integer; the first bit block is sent in the first time unit, or the first bit block is received in the first time unit, and the first bit block is received in the first time unit A time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is the M1 One of the candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first A signaling, the first signaling is used to determine a first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the cycle length of configuration allocation, any of the M1 candidate HARQ process numbers A candidate HARQ process number is a non-negative integer; the first bit block is sent in the first time unit, or the first bit block is received in the first time unit, and the first time unit is one of the M2 candidate time units,
  • the M2 is a positive integer greater than 1; wherein, the first bit block is associated with a first HARQ process number, and the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value Together with the second value, it is used to determine the first HARQ process number from the M1 candidate HARQ process numbers; the length of the time interval between any two candidate time units
  • the first communication device 410 corresponds to the second node in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the steps in the dashed box F1 are optional; only one of the steps in the bold dashed box F2 and the bold dashed box F3 exists.
  • the first node U1 receives the first signaling in step S511; receives the second signaling in step S5101; receives the first bit block in the first time unit in step S512, or, in step S513 in the first The first block of bits is sent in time units.
  • the second node U2 sends the first signaling in step S521; sends the second signaling in step S5201; sends the first bit block in the first time unit in step S522, or, in step S523 in the first The first block of bits is received in time units.
  • the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 candidate HARQ process numbers Any one of the candidate HARQ process numbers is a non-negative integer; the first time unit is one of M2 candidate time units, and the M2 is a positive integer greater than 1; the first bit block is associated to the first HARQ process number , the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ process number from the M1 candidate HARQ process numbers ; The time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are used together to determine the first value; the index of the first time unit and the target value are used together to determine the second value, and the target value is used to determine the time domain positions of the M2 candidate time units; the first HARQ process The number and the first value
  • the second value and the index of the first time unit are related to a difference between the target value.
  • the second value is equal to a result of dividing a value related to the index of the first time unit by the target value.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U2 and the first node U1 includes a user equipment-to-user wireless interface.
  • the steps in the dashed box F1 are absent.
  • the steps in the bold dashed box F2 exist, and the steps in the bold dashed box F3 do not exist.
  • the steps in the bold dashed box F2 do not exist, and the steps in the bold dashed box F3 exist.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first value, the first cycle value and M2 according to an embodiment of the present application, as shown in FIG. 6 .
  • the first numerical value in this application is equal to the product of a numerical value related to the number of time units corresponding to the first cycle value in this application and the M2 in this application.
  • the first value is equal to the result obtained by rounding down the ratio of the index of the first time unit to the number of time units corresponding to the first period value and the The product of M2.
  • the first value is equal to the maximum non-negative integer not greater than the ratio of the index of the first time unit to the number of time units corresponding to the first period value multiplied by the M2.
  • the first value is not greater than the ratio of the index of the first time unit to the number of time units corresponding to the first period value multiplied by the largest non-negative integer Describe M2.
  • the first value is equal to the largest positive integer pair that is not greater than the ratio of the index of the first time unit to the number of time units corresponding to the first period value and is not less than the The result of the smallest positive integer modulo of the ratio of M1 to M2.
  • the first value floor(the index of the first time unit/the number of time units corresponding to the first period value) modulo is not less than the M1 and the M2 The smallest positive integer of the ratio, and the floor() means rounding down.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first value, the first cycle value, the index of the first time unit and M2 according to an embodiment of the present application, as shown in FIG. 7 .
  • the first numerical value in this application is equal to the ratio of the index of the first time unit in this application to the number of time units corresponding to the first period value in this application.
  • the result obtained by rounding to an integer is multiplied by the M2 in this application.
  • floor( ⁇ ) in this application represents a round-down operation.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first value, the second value and the first HARQ process number according to an embodiment of the present application, as shown in FIG. 8 .
  • the first HARQ process number in this application is equal to the sum of the first value in this application and the second value in this application, and the result of taking the modulus of M1 in this application or, the first HARQ process number in this application is equal to the sum of the first numerical value in this application and the second numerical value in this application, and the result of taking the modulus of M1 in this application plus A first offset value, the first signaling in this application is used to determine the first offset value.
  • modulo in this application means a modulo operation.
  • the first signaling is used to indicate the first offset value.
  • the first signaling is used to explicitly indicate the first offset value.
  • the first signaling is used to implicitly indicate the first offset value.
  • the first offset value is a non-negative integer.
  • the first offset value is an offset value used to deduce the HARQ process number.
  • the first offset value is indicated by a harq-ProcID-Offset field in the first signaling.
  • the first offset value is indicated by a harq-ProcID-Offset2 field in the first signaling.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the second value and the difference between the index of the first time unit and the target value according to an embodiment of the present application, as shown in FIG. 9 .
  • the second numerical value in this application and the index of the first time unit in this application are related to the difference between the target numerical value in this application.
  • a difference between the index of the first time unit and the target value is used to determine the second value.
  • the second value is equal to a difference between the index of the first time unit minus the target value.
  • the second value is equal to the result of moduloing the number of time units corresponding to the first period value by subtracting the target value from the index of the first time unit .
  • the second value is equal to the result of moduloing the number of time units corresponding to the first period value by subtracting the target value from the index of the first time unit Then divide by the first time interval, where the first time interval is a positive integer greater than 1.
  • the second value is equal to the difference between the index of the first time unit minus the sum of the fourth value and the target value to the time unit corresponding to the first period value
  • the result of modulo taking the number is equal to the number of consecutive time slots in each frame multiplied by the initial system frame number, and the initial system frame number is configured to initialize (or re-initialize) the downlink allocation The system frame number of the first transmission of the PDSCH.
  • the second value is equal to the difference between the index of the first time unit minus the sum of the fourth value and the target value to the time unit corresponding to the first period value
  • the result of modulo taking the above number is divided by the first time interval, and the fourth value is equal to the number of consecutive time slots in each frame multiplied by the initial system frame number, and the initial system frame number is configured by the downlink allocation
  • the system frame number of the first transmission of the initialized (or re-initialized) PDSCH, and the first time interval is a positive integer greater than 1.
  • the second value (the index of the first time unit-(the fourth value+the target value)) modulo the number of time units corresponding to the first period value ;
  • the fourth numerical value is equal to the number of consecutive time slots in each frame multiplied by the initial system frame number, which is the first time that the configuration downlink allocation is initialized (or, re-initialized) PDSCH The transmitted system frame number.
  • the second value ((the index of the first time unit-(the fourth value+the target value)) modulo the time unit corresponding to the first period value number)/first time interval;
  • the fourth numerical value is equal to the number of consecutive time slots in each frame multiplied by the initial system frame number, which is configured when the downlink allocation is initialized (or, re-initialized ), the first time interval is a positive integer greater than 1.
  • the second value is equal to the difference between the index of the first time unit minus the sum of the fourth value and the target value to the time unit corresponding to the first period value The result of taking the modulus of the quantity mentioned above.
  • the fourth value is equal to the reference system frame number multiplied by the number of consecutive slots in each frame multiplied by the number of consecutive symbols in each slot plus the time domain offset The value is multiplied by the number of consecutive symbols in each slot, and the first signaling is used to configure the reference system frame number and the time domain offset value.
  • the fourth value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time
  • the slot number is multiplied by the number of consecutive symbols in each time slot, and the starting system frame number and the starting time slot number are respectively configured for the first transmission of the PUSCH whose uplink grant is initialized (or, re-initialized)
  • the system frame number and slot number of the opportunity is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time
  • the slot number is multiplied by the number of consecutive symbols in each time slot, and the starting system frame number and the starting time slot number are respectively configured for the first transmission of the PUSCH whose uplink grant is initialized (or, re-initialized)
  • the system frame number and slot number of the opportunity is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by
  • the second value is equal to the difference between the index of the first time unit minus the sum of the fourth value and the target value to the time unit corresponding to the first period value
  • the result of taking the modulus of the quantity is divided by the first time interval, and the first time interval is a positive integer greater than 1.
  • the fourth value is equal to the reference system frame number multiplied by the number of consecutive slots in each frame multiplied by the number of consecutive symbols in each slot plus the time domain offset The value is multiplied by the number of consecutive symbols in each slot, and the first signaling is used to configure the reference system frame number and the time domain offset value.
  • the fourth value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time
  • the slot number is multiplied by the number of consecutive symbols in each time slot, and the starting system frame number and the starting time slot number are respectively configured for the first transmission of the PUSCH whose uplink grant is initialized (or, re-initialized)
  • the system frame number and slot number of the opportunity is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time
  • the slot number is multiplied by the number of consecutive symbols in each time slot, and the starting system frame number and the starting time slot number are respectively configured for the first transmission of the PUSCH whose uplink grant is initialized (or, re-initialized)
  • the system frame number and slot number of the opportunity is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by
  • the second value is equal to the number of time units corresponding to the first period value by a value that is less than the difference between the index of the first time unit minus the target value The result of the modulo.
  • the second value is equal to the number of time units corresponding to the first period value by a value that is less than the difference between the index of the first time unit minus the target value
  • the modulus result is divided by the first time interval, and the first time interval is a positive integer greater than 1.
  • the second value is equal to the result of moduloing the number of time units corresponding to the first period value by subtracting the target value from the index of the first time unit multiplied by the smallest positive integer not smaller than the ratio of M1 to M2.
  • the second value is equal to the result of moduloing the number of time units corresponding to the first period value by subtracting the target value from the index of the first time unit dividing by the first time interval multiplied by the smallest positive integer not smaller than the ratio of M1 to M2, where the first time interval is a positive integer greater than 1.
  • the second value ((the index of the first time unit - the target value) modulo the number of time units corresponding to the first period value) ⁇ the M1 The result of rounding up the ratio to the M2.
  • the second value ((the index of the first time unit - the target value) modulo the number of time units corresponding to the first period value)/first time interval ⁇ the result of rounding up the ratio of the M1 to the M2.
  • the target value is an index of a time unit other than the first time unit.
  • the target value is equal to an index of a time unit other than the first time unit.
  • the target value is equal to the index of the time unit to which the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or re-initialized) belongs.
  • the target value is equal to the index of the time unit to which the first transmission opportunity of the PUSCH whose configured uplink grant (configured uplink grant) is initialized (or re-initialized) belongs.
  • the target value is the time slot number of the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or, re-initialized).
  • the target value is the symbol number of the first transmission opportunity of the PUSCH whose configured uplink grant (configured uplink grant) is initialized (or re-initialized).
  • the target value is configured by the first signaling in this application.
  • the target value is equal to the number of consecutive time slots in each frame multiplied by the starting system frame number plus the starting time slot number, the starting system frame number and the starting time slot number are the system frame number and the time slot number of the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or, re-initialized), respectively.
  • the target value is equal to the reference system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the time domain offset value multiplied by each time slot
  • the number of consecutive symbols in the slot plus the reference symbol number, the first signaling is used to configure the reference system frame number and the time domain offset value, another parameter configured by the first signaling is used to deduce the reference number.
  • the target value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time slot number multiplied by each
  • the number of consecutive symbols in the time slot plus the starting symbol number, the starting system frame number, the starting time slot number and the starting symbol number are respectively configured uplink grants (configured uplink grant) are initialized ( Or, the system frame number, time slot number and symbol number of the first transmission opportunity of the PUSCH for reinitialization).
  • the time slot number in this application is the number of an intra-frame time slot.
  • the symbol number in this application is an intra-slot symbol number.
  • configuring the system frame number of the first transmission of the PDSCH whose downlink allocation is initialized (or, re-initialized) refers to: configuring the first transmission of the PDSCH whose downlink allocation is initialized (or, re-initialized) The system frame number of the frame to which a transmission belongs in the time domain.
  • configuring the time slot number of the first transmission of the PDSCH whose downlink allocation is initialized (or re-initialized) refers to: configuring the first time slot number of the PDSCH whose downlink allocation is initialized (or re-initialized) The slot number of the slot to which a transmission belongs in the time domain.
  • configuring the system frame number of the first transmission opportunity of the PUSCH whose uplink grant is initialized (or, re-initialized) refers to: configuring the PUSCH whose uplink grant is initialized (or, re-initialized) The system frame number of the frame to which the first transmission opportunity belongs in the time domain.
  • configuring the time slot number of the first transmission opportunity of the PUSCH whose uplink grant is initialized (or, re-initialized) refers to: configuring the time slot number of the PUSCH whose uplink grant is initialized (or, re-initialized) The slot number of the slot to which the first transmission opportunity belongs in the time domain.
  • configuring the symbol number of the first transmission opportunity of the PUSCH that the uplink grant is initialized refers to: configuring the first transmission opportunity of the PUSCH that the uplink grant is initialized (or, re-initialized) The symbol number of the earliest symbol occupied by a transmission opportunity in the time domain.
  • configuring the system frame number of the first transmission of the PDSCH whose downlink allocation is initialized refers to: configuring the PDSCH corresponding to the downlink allocation initialization (or, re-initialization) The system frame number of the frame to which the first transmission belongs in the time domain.
  • configuring the time slot number of the first transmission of the PDSCH whose downlink allocation is initialized refers to: configuring the PDSCH corresponding to the downlink allocation initialization (or, re-initialization) The slot number of the slot to which the first transmission belongs in the time domain.
  • configuring the system frame number of the first transmission opportunity of the PUSCH whose uplink grant is initialized refers to: configuring the PUSCH corresponding to the uplink grant initialization (or, re-initialization) The system frame number of the frame to which the first transmission opportunity belongs in the time domain.
  • configuring the time slot number of the first transmission opportunity of the PUSCH whose uplink grant is initialized refers to: configuring the PUSCH corresponding to the uplink grant initialization (or re-initialization) The slot number of the slot to which the first transmission opportunity belongs in the time domain.
  • configuring the symbol number of the first transmission opportunity of the PUSCH whose uplink grant is initialized refers to: configuring the PUSCH corresponding to the uplink grant initialization (or re-initialization) The symbol number of the earliest symbol occupied by the first transmission opportunity in the time domain.
  • At least one of the first signaling and the second signaling in this application is used to determine the first time interval.
  • the first time interval is configurable.
  • the first time interval is a configurable parameter value.
  • the first time interval is configured by the first signaling in this application.
  • the first time interval is a value of a pdsch-AggregationFactor field.
  • the first time interval is calculated based on at least one configurable parameter value.
  • the first time interval is equal to the product of two configurable parameter values.
  • the first time interval is indicated by a DCI.
  • the first time interval is a value indicated by a DCI from multiple candidate configurations configured in higher layer signaling.
  • the first time interval is indicated by the second signaling in this application.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application, as shown in FIG. 10 .
  • the second numerical value in this application is equal to the difference between the index of the first time unit in this application minus the target numerical value in this application to the second numerical value in this application A modulo result of the number of time units corresponding to a period value.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application, as shown in FIG. 11 .
  • the second numerical value in this application is equal to the difference between the index of the first time unit in this application minus the target value in this application to the second numerical value in this application
  • a modulo result of the number of time units corresponding to a period value is divided by a first time interval, and the first time interval is a positive integer greater than 1.
  • the first time interval is configurable.
  • the first time interval is a configurable parameter value.
  • the first time interval is configured by the first signaling in this application.
  • the first time interval is a value of a pdsch-AggregationFactor field.
  • the first time interval is calculated based on at least one configurable parameter value.
  • the first time interval is equal to the product of two configurable parameter values.
  • the first time interval is indicated by a DCI.
  • the first time interval is a value indicated by a DCI from multiple candidate configurations configured in higher layer signaling.
  • the first time interval is indicated by the second signaling in this application.
  • Embodiment 12 illustrates a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application, as shown in FIG. 12 .
  • the second numerical value in this application is equal to a numerical value related to the index of the first time unit in this application divided by the target numerical value in this application.
  • the second value is equal to a result of dividing a value related to the index of the first time unit by the target value and rounded down.
  • the second value is equal to the difference between the index of the first time unit minus the third value and the result of moduloing the number of time units corresponding to the first period value. divided by the target value, the third value is a non-negative integer.
  • the second value is equal to the difference between the index of the first time unit minus the third value and the result of moduloing the number of time units corresponding to the first period value.
  • the third value is a non-negative integer.
  • the second value ((the index of the first time unit - the third value) modulo the number of time units corresponding to the first period value)/the target value positive integer multiples of , the third value is a non-negative integer.
  • the third value is an index of a time unit other than the first time unit.
  • the third value is equal to the index of the time unit to which the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or re-initialized) belongs.
  • the third value is equal to the index of the time unit to which the first transmission opportunity of the PUSCH whose configured uplink grant (configured uplink grant) is initialized (or re-initialized) belongs.
  • the third value is equal to the number of consecutive time slots in each frame multiplied by the starting system frame number plus the starting time slot number, the starting system frame number and the starting time slot
  • the numbers are respectively the system frame number and the time slot number of the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or, re-initialized).
  • the third value is equal to the reference system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the time domain offset value multiplied by each The number of consecutive symbols in a time slot plus a reference symbol number, the first signaling is used to configure the reference system frame number and the time domain offset value, the other configured by the first signaling parameter is used to infer the reference number.
  • the third value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time slot number multiplied by each
  • the number of consecutive symbols in a time slot plus the starting symbol number, the starting system frame number, the starting slot number and the starting symbol number are respectively configured uplink grants (configured uplink grant) are initialized (or, re-initialized) the system frame number, slot number and symbol number of the first transmission opportunity of the PUSCH.
  • the target value is configured by the first signaling in this application.
  • the target value is a value of a pdsch-AggregationFactor field.
  • the target value is calculated based on at least one configurable parameter value.
  • the target value is equal to the product of two configurable parameter values.
  • the target value is indicated by a DCI.
  • the target value is a value indicated by a DCI from multiple candidate configurations configured by higher layer signaling.
  • the target value is indicated by the second signaling in this application.
  • Embodiment 13 illustrates a schematic diagram of the relationship between the index of the first time unit, the target value and the second value according to an embodiment of the present application, as shown in FIG. 13 .
  • the second value in this application is equal to the difference between the index of the first time unit in this application minus the third value and the first period value in this application.
  • the result of taking the modulus of the number of time units is divided by the target value in this application, and the third value is a non-negative integer.
  • the third value is an index of a time unit other than the first time unit.
  • the third value is equal to an index of a time unit other than the first time unit.
  • the third value is equal to the index of the time unit to which the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or re-initialized) belongs.
  • the third value is equal to the index of the time unit to which the first transmission opportunity of the PUSCH whose configured uplink grant (configured uplink grant) is initialized (or re-initialized) belongs.
  • the third value is equal to the number of consecutive time slots in each frame multiplied by the starting system frame number plus the starting time slot number, the starting system frame number and the starting time slot
  • the numbers are respectively the system frame number and the time slot number of the first transmission of the PDSCH whose configured downlink assignment (configured downlink assignment) is initialized (or, re-initialized).
  • the third value is equal to the reference system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the time domain offset value multiplied by each The number of consecutive symbols in a time slot plus a reference symbol number, the first signaling is used to configure the reference system frame number and the time domain offset value, the other configured by the first signaling parameter is used to infer the reference number.
  • the third value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time slot number multiplied by each
  • the number of consecutive symbols in a time slot plus the starting symbol number, the starting system frame number, the starting slot number and the starting symbol number are respectively configured uplink grants (configured uplink grant) are initialized (or, re-initialized) the system frame number, slot number and symbol number of the first transmission opportunity of the PUSCH.
  • Embodiment 14 illustrates a schematic diagram of the relationship between a target value, a reference time unit and M2 candidate time units according to an embodiment of the present application, as shown in FIG. 14 .
  • the reference time unit in this application is one of the M2 candidate time units in this application, and the target value in this application is used to determine the index of the reference time unit .
  • the second value is equal to the difference between the index of the first time unit minus the index of the reference time unit and the time unit corresponding to the first period value.
  • the result modulo of the quantity.
  • the second value is equal to the difference between the index of the first time unit minus the index of the reference time unit and the time unit corresponding to the first period value.
  • the result of taking the modulus of the quantity is divided by the first time interval, and the first time interval is a positive integer greater than 1.
  • the time domain position of a time unit is determined by the index of the time unit.
  • an index of a time unit is an index indicating a time domain position of the time unit.
  • the index of a time unit is equal to the number of consecutive time slots in each frame multiplied by the system frame number (SFN, System Frame Number) of the frame to which the one time unit belongs plus the time unit in The corresponding slot number (slot number) in the frame to which it belongs.
  • SFN System Frame Number
  • the index of a time unit is equal to the system frame number of the frame to which the time unit belongs multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the The time slot number corresponding to the one time unit in the frame to which it belongs is multiplied by the number of consecutive symbols in each time slot plus the symbol number (symbol number) corresponding to the time unit in the time slot to which it belongs.
  • the target value is used to indicate an index of the reference time unit.
  • the target value is used to explicitly indicate the index of the reference time unit.
  • the target value is used to implicitly indicate the index of the reference time unit.
  • the target value is used to perform calculation to obtain the index of the reference time unit.
  • the index of the reference time unit is equal to: the product of the target value and the configuration downlink allocation sequence number corresponding to the reference time unit multiplied by the number of time units corresponding to the first cycle value The sum is the result of modulo 1024 times the number of consecutive slots in each frame.
  • the index of the reference time unit is equal to: [the target value + the configuration downlink allocation number corresponding to the reference time unit ⁇ the number of time units corresponding to the first cycle value] modulo (1024 x number of consecutive slots in each frame).
  • the index of the reference time unit is equal to: the product of the target value and the configuration uplink grant sequence number corresponding to the reference time unit multiplied by the number of time units corresponding to the first cycle value
  • the sum is the result of modulo 1024 multiplied by the number of consecutive slots in each frame and the number of consecutive symbols in each slot.
  • the index of the reference time unit is equal to: [the target value + the configuration uplink grant sequence number corresponding to the reference time unit ⁇ the number of time units corresponding to the first cycle value] modulo (1024 x number of consecutive slots in each frame x number of consecutive symbols in each slot).
  • the number of consecutive symbols in each slot is represented by numberOfSymbolsPerSlot.
  • the number of consecutive slots in each frame is represented by numberOfSlotsPerFrame.
  • a configured downlink allocation sequence number is a non-negative integer used to indicate which configured downlink allocation the corresponding configured downlink allocation is.
  • the configuration downlink allocation sequence number is a positive integer used to indicate which configuration downlink allocation the corresponding configuration downlink allocation is.
  • a configuration uplink grant sequence number is a non-negative integer used to indicate which configuration uplink grant the corresponding configuration uplink grant is.
  • one configured uplink grant sequence number is a positive integer used to indicate the number of configured uplink grant corresponding to the configured uplink grant.
  • the reference time unit is the earliest time unit among the M2 candidate time units, and the first time unit is different from the reference time unit.
  • the M2 candidate time units are composed of M2 consecutive time units starting from the reference time unit.
  • the M2 candidate time units are composed of M2 time units at equal intervals starting from the reference time unit.
  • the time domain positions of the M2 candidate time units are inferred based on the reference time unit.
  • the reference time unit is the latest time unit among the M2 candidate time units.
  • the index of the reference time unit is equal to: [(fourth value+the target value)+configuration downlink allocation number corresponding to the reference time unit ⁇ time unit corresponding to the first cycle value
  • the fourth value is equal to the number of consecutive time slots in each frame multiplied by the starting system frame number, and the starting system frame number is the PDSCH configured to initialize (or re-initialize) the downlink allocation The system frame number of the first transmission.
  • the index of the reference time unit is equal to: [(fourth value+the target value)+configured uplink grant sequence number corresponding to the reference time unit ⁇ time unit corresponding to the first cycle value
  • the number of] modulo (1024 * the number of consecutive slots in each frame * the number of consecutive symbols in each slot).
  • the fourth value is equal to the reference system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the time domain offset value multiplied by each The number of consecutive symbols in a time slot, the first signaling is used to configure the reference system frame number and the time domain offset value.
  • the fourth value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time slot number multiplied by each
  • the number of consecutive symbols in time slots, the starting system frame number and the starting time slot number are respectively the system frame numbers for configuring the first transmission opportunity of the PUSCH that is granted uplink to be initialized (or re-initialized) and slot number.
  • Embodiment 15 illustrates a schematic diagram of the relationship between the second signaling and the target value according to an embodiment of the present application, as shown in FIG. 15 .
  • the second signaling in this application is used to determine the target value in this application.
  • the first node in this application receives the second signaling.
  • the second signaling is DCI.
  • the second signaling is DCI format 0_0, and for a specific definition of the DCI format 0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 0_1, and for a specific definition of the DCI format 0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 0_2, and for a specific definition of the DCI format 0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 1_0, and for a specific definition of the DCI format 1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format 1_1, and for a specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling is DCI format 1_2, and for a specific definition of the DCI format 1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the second signaling includes one or more fields in one DCI.
  • the second signaling is higher layer (higher layer) signaling.
  • the second signaling is RRC signaling.
  • the second signaling includes one or more fields in one RRC signaling.
  • the second signaling includes an IE (Information Element, information element).
  • the second signaling is MAC CE signaling.
  • the second signaling includes one or more fields in one MAC CE signaling.
  • the second signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the second signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the second signaling is used to indicate the M2.
  • the second signaling is used to explicitly indicate the M2.
  • the second signaling is used to implicitly indicate the M2.
  • the second signaling is used to indicate the target value.
  • the second signaling is used to explicitly indicate the target value.
  • the second signaling is used to implicitly indicate the target value.
  • the target value is equal to the number of consecutive time slots in each frame multiplied by the starting system frame number plus the starting time slot number, the starting system frame number and the starting time slot number are respectively the system frame number and the time slot number of the first transmission of the PDSCH corresponding to the initialization (or re-initialization) of the configured downlink assignment indicated by the second signaling.
  • the target value is equal to the time slot number of the first transmission of the PDSCH corresponding to the initialization (or re-initialization) of the configured downlink assignment (configured downlink assignment) indicated by the second signaling.
  • the target value is equal to the initial system frame number multiplied by the number of consecutive time slots in each frame multiplied by the number of consecutive symbols in each time slot plus the initial time slot number multiplied by each
  • the number of consecutive symbols in the time slot plus the starting symbol number, the starting system frame number, the starting time slot number and the starting symbol number are respectively the configuration uplink indicated by the second signaling
  • the target value is equal to the symbol number of the first transmission opportunity of the PUSCH corresponding to the initialization (or re-initialization) of the configured uplink grant indicated by the second signaling.
  • Embodiment 16 illustrates a processing flowchart of the first node according to an embodiment of the present application, as shown in FIG. 16 .
  • the first node in this application receives the first signaling in step 1601; receives the first bit block in the first time unit in step 1602, or sends the first bit block in the first time unit The first bit block.
  • the first signaling is used to determine the first period value and M1 candidate HARQ process numbers, the first period value is equal to the period length allocated by configuration, and the M1 candidate HARQ process numbers Any one of the candidate HARQ process numbers is a non-negative integer; the first time unit is one of M2 candidate time units, and the M2 is a positive integer greater than 1; the first bit block is associated to the first HARQ process number , the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value and the second value are used together to determine the first HARQ process number from the M1 candidate HARQ process numbers ; The time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are used together to determine the first Value; a target value is used to determine the second value, and the target value is related to the time domain position of the first time unit in the M2 candidate time units.
  • the second value is equal to the target value.
  • the second value is linearly related to the target value.
  • the second value is equal to the target value minus 1.
  • the target value is equal to a sequence number of the first time unit in the M2 candidate time units.
  • the first time unit is the mth time unit among the M2 candidate time units, and the m is a positive number not greater than the M2 Integer; said target value is equal to said m.
  • the first time unit is the mth time unit among the M2 candidate time units, and the m is greater than 1 and not greater than the A positive integer of M2; the target value is equal to the m.
  • the target value is smaller than the sequence number of the first time unit in the M2 candidate time units.
  • the target value is equal to the maximum value of ⁇ the sequence number of the first time unit in the M2 candidate time units minus 1, 1 ⁇ .
  • the reference time unit is the earliest time unit among the M2 candidate time units, and the first time unit is different from the reference time unit.
  • the index of the reference time unit is equal to: the product of the third value and the configured downlink allocation sequence number corresponding to the reference time unit multiplied by the number of time units corresponding to the first cycle value and the result of modulo the product of 1024 and the number of consecutive time slots in each frame, said third value is equal to the number of consecutive time slots in each frame multiplied by the starting system frame number plus the starting time slot
  • the starting system frame number and the starting time slot number are respectively the system frame number and the time slot number of the first transmission of the PDSCH when the configured downlink assignment (configured downlink assignment) is initialized.
  • the index of the reference time unit [the third value+the configured uplink grant sequence number corresponding to the reference time unit ⁇ the number of time units corresponding to the first cycle value]modulo(1024 ⁇ number of consecutive slots in each frame ⁇ number of consecutive symbols in each slot).
  • the third value reference system frame number ⁇ the number of consecutive time slots in each frame ⁇ the number of consecutive symbols in each time slot+time domain offset value ⁇ every The number of consecutive symbols in a time slot + reference symbol number, the first signaling is used to configure the reference system frame number and the time domain offset value, the other configured by the first signaling parameter is used to infer the reference number.
  • the third value is equal to the starting system frame number ⁇ the number of consecutive time slots in each frame ⁇ the number of consecutive symbols in each time slot + the starting time slot number ⁇
  • the number of consecutive symbols in each time slot+starting symbol number, the starting system frame number, the starting time slot number and the starting symbol number are configured uplink grant (configured uplink grant) to be initialized respectively
  • a configured downlink allocation sequence number is a positive integer used to indicate a sorting position of a corresponding configured downlink allocation.
  • one configuration uplink grant sequence number is a positive integer used to indicate the sorting position of the corresponding configuration uplink grant.
  • a configured downlink allocation sequence number is a non-negative integer used to indicate a sorting position of the corresponding configured downlink allocation.
  • a configured uplink grant sequence number is a non-negative integer used to indicate a sorting position of a corresponding configured uplink grant.
  • the M2 candidate time units are composed of M2 consecutive time units starting from the reference time unit.
  • the M2 candidate time units are composed of M2 time units at equal intervals starting from the reference time unit.
  • Embodiment 17 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 17 .
  • the first node device processing apparatus 1700 includes a first transceiver 1703
  • the first transceiver 1703 includes a first receiver 1701 and a first transmitter 1702 .
  • the first node device 1700 is a user equipment.
  • the first node device 1700 is a relay node.
  • the first node device 1700 is a vehicle communication device.
  • the first node device 1700 is a user equipment supporting V2X communication.
  • the first node device 1700 is a relay node supporting V2X communication.
  • the first receiver 1701 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least one of the sources 467.
  • the first receiver 1701 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first five of sources 467 .
  • the first receiver 1701 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first four of sources 467 .
  • the first receiver 1701 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first three of sources 467 .
  • the first receiver 1701 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data At least the first two of sources 467 .
  • the first transmitter 1702 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467 .
  • the first transmitter 1702 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of the data sources 467 .
  • the first transmitter 1702 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of the data sources 467 .
  • the first transmitter 1702 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of the data sources 467 .
  • the first transmitter 1702 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of the data sources 467 .
  • the first receiver 1701 receives the first signaling, the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the configuration allocation
  • the cycle length of any one of the M1 candidate HARQ process numbers is a non-negative integer; the first receiver 1701 receives the first bit block in the first time unit, or the first Transmitter 1702, sending a first bit block in a first time unit, where the first time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is Associated with the first HARQ process number, the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value is used together with the second value to determine from the M1 candidate HARQ process numbers
  • the first HARQ process number; the length of the time interval between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are together Used to determine the first value; the index of
  • the first HARQ process number and the first value are related to a result of taking a modulus of the M1 by the sum of the second value.
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the second value and the index of the first time unit are related to a difference between the target value.
  • the second value is equal to a result of dividing a value related to the index of the first time unit by the target value.
  • the reference time unit is one of the M2 candidate time units, and the target value is used to determine an index of the reference time unit.
  • the first receiver 1701 receives second signaling; where the second signaling is used to determine the target value.
  • the first receiver 1701 receives the first signaling, the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the configuration allocation
  • the cycle length of any one of the M1 candidate HARQ process numbers is a non-negative integer; the first receiver 1701 receives the first bit block in the first time unit, or the first Transmitter 1702, sending a first bit block in a first time unit, where the first time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is Associated with the first HARQ process number, the first HARQ process number is one of the M1 candidate HARQ process numbers; the first HARQ process number and the first value are related to the sum of the second values ; The time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first value is equal to the time unit corresponding to the first period value A numerical value related to a quantity is multiplied by said M
  • the first HARQ process number is equal to the result of moduloing the M1 by the sum of the first value and the second value; or, the first HARQ process number is equal to The sum of the first value and the second value is a result of moduloing the M1 plus a first offset value, and the first signaling is used to determine the first offset value.
  • the first value is equal to the maximum non-negative value of the ratio of the index of the first time unit to the number of time units corresponding to the first period value integer times the M2.
  • the second value is equal to the difference between the index of the first time unit minus the target value and the time unit corresponding to the first period value. or, the second value is equal to the difference between the index of the first time unit minus the target value and the number of the time unit corresponding to the first period value is taken
  • the result of the modulo is then divided by the first time interval, which is a positive integer greater than 1.
  • the second value is equal to the difference between the index of the first time unit minus the sum of the fourth value and the target value corresponding to the first period value
  • the fourth value is equal to the number of consecutive time slots in each frame multiplied by the initial system frame number
  • the initial system frame number is configured to initialize the downlink allocation ( Or, the system frame number of the first transmission of the PDSCH of re-initialization); or, the second value is equal to the difference between the index of the first time unit minus the sum of the fourth value and the target value
  • the result of taking the modulus of the number of time units corresponding to the first period value is divided by the first time interval, and the fourth value is equal to the number of consecutive time slots in each frame multiplied by the initial system frame
  • the initial system frame number is the system frame number for the first transmission of the PDSCH whose downlink allocation is initialized (or re-initialized), and the
  • the second value is equal to the difference between the index of the first time unit minus the third value and the number of time units corresponding to the first period value
  • the modulus result is divided by the target value, and the third value is a non-negative integer.
  • the index of the reference time unit is equal to: the time unit corresponding to the time unit multiplied by the target value and the configured downlink allocation sequence number corresponding to the reference time unit The sum of the products of said numbers modulo 1024 times the number of consecutive slots in each frame.
  • the first receiver 1701 receives the first signaling, the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the configuration allocation
  • the cycle length of any one of the M1 candidate HARQ process numbers is a non-negative integer; the first receiver 1701 receives the first bit block in the first time unit, or the first Transmitter 1702, sending a first bit block in a first time unit, where the first time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is Associated with the first HARQ process number, the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value is used together with the second value to determine from the M1 candidate HARQ process numbers
  • the first HARQ process number; the length of the time interval between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are together For determining the first value; a target
  • the first receiver 1701 receives the first signaling, the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the configuration allocation
  • the cycle length of any one of the M1 candidate HARQ process numbers is a non-negative integer; the first receiver 1701 receives the first bit block in the first time unit, or the first Transmitter 1702, sending a first bit block in a first time unit, where the first time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is Associated with the first HARQ process number, the first HARQ process number is one of the M1 candidate HARQ process numbers; the first HARQ process number and the first value are related to the sum of the second values ; The time interval length between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first value is equal to the time unit corresponding to the first period value A numerical value related to the quantity is multiplied by the M2
  • the first HARQ process number is equal to the result of moduloing the M1 by the sum of the first value and the second value; or, the first HARQ process number is equal to The sum of the first value and the second value is a result of moduloing the M1 plus a first offset value, and the first signaling is used to determine the first offset value.
  • the first value is equal to the maximum non-negative value of the ratio of the index of the first time unit to the number of time units corresponding to the first period value integer times the M2.
  • the second value is equal to the target value, or the second value is equal to the target value minus 1.
  • the first time unit is the mth time unit in the M2 candidate time units, and the m is greater than 1 and a positive integer not greater than the M2; the target value is equal to the m.
  • Embodiment 18 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 18 .
  • the second node device processing apparatus 1800 includes a second transceiver 1803
  • the second transceiver 1803 includes a second transmitter 1801 and a second receiver 1802 .
  • the second node device 1800 is user equipment.
  • the second node device 1800 is a base station.
  • the second node device 1800 is a relay node.
  • the second node device 1800 is a vehicle communication device.
  • the second node device 1800 is a user equipment supporting V2X communication.
  • the second transmitter 1801 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second transmitter 1801 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second transmitter 1801 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second transmitter 1801 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second transmitter 1801 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second receiver 1802 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second receiver 1802 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second receiver 1802 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second receiver 1802 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second receiver 1802 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second transmitter 1801 sends the first signaling, the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the configuration allocation
  • the cycle length of any one of the M1 candidate HARQ process numbers is a non-negative integer; the second transmitter 1801 transmits the first bit block in the first time unit, or the second
  • the receiver 1802 receives a first bit block in a first time unit, where the first time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is Associated with the first HARQ process number, the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value is used together with the second value to determine from the M1 candidate HARQ process numbers
  • the first HARQ process number; the length of the time interval between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are together Used to determine the first value; the index
  • the first HARQ process number and the first value are related to a result of taking a modulus of the M1 by the sum of the second value.
  • the first value is equal to a product of a value related to the number of time units corresponding to the first period value and the M2.
  • the second value and the index of the first time unit are related to a difference between the target value.
  • the second value is equal to a result of dividing a value related to the index of the first time unit by the target value.
  • the reference time unit is one of the M2 candidate time units, and the target value is used to determine an index of the reference time unit.
  • the second transmitter 1801 sends second signaling; where the second signaling is used to determine the target value.
  • the second transmitter 1801 sends the first signaling, the first signaling is used to determine the first cycle value and M1 candidate HARQ process numbers, the first cycle value is equal to the configuration allocation
  • the length of the cycle, any candidate HARQ process number in the M1 candidate HARQ process numbers is a non-negative integer; the second transmitter 1801 transmits the first bit block in the first time unit, or the second
  • the receiver 1802 receives a first bit block in a first time unit, where the first time unit is one of M2 candidate time units, where M2 is a positive integer greater than 1; wherein, the first bit block is Associated with the first HARQ process number, the first HARQ process number is one of the M1 candidate HARQ process numbers; the first value is used together with the second value to determine from the M1 candidate HARQ process numbers
  • the first HARQ process number; the length of the time interval between any two candidate time units in the M2 candidate time units is not greater than the first period value; the first period value and the M2 are together used to
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;第一收发机,在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
XR(Extended Reality,扩展现实)被认为是一种极具潜力的技术,推进XR大规模应用的最佳形态和发展趋势将成为未来通信的典型应用之一;在5G NR(New Radio,新空口)中对XR业务的支持是系统设计的一个重要方面。准周期性的业务模型,高数据速率和低延时需求是XR业务的三个重要特性;3GPP NR现有技术规范中的配置分配技术(如,半持续调度(Semi-persistent scheduling,SPS)或配置授予(configured grant,CG))在匹配XR业务的上述三个特性上具有很大的潜力。
发明内容
3GPP NR现有技术规范中的配置分配技术仅支持在每个SPS(或CG)周期中传输至多两个传输块。引入在每个SPS(或CG)周期中配置多个物理层信道用于传输更多传输块的功能可以更好地匹配XR业务的特性,非常有利于NR系统对XR业务的支持;在引入该功能后,如何确定每个配置分配所对应的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(HARQ Process ID/number)是一个需要解决的关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用5G NR中的XR业务作为一个例子,但本申请也同样适用于其他场景,如5G NR中XR之外的其他场景,6G网络,车联网等,并取得类似的技术效果。此外,不同场景(包括但不限于5G NR或6G网络,车联网)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为一个实施例,本申请要解决的问题包括:如何确定所述第一比特块所关联的HARQ进程号的问题。
作为一个实施例,上述方法的特质包括:在一个特定的周期内,存在多个配置分配分别对应多个不同的HARQ进程号;对于所述多个配置分配中的任一配置分配,第一数值与第二数值一起被用于确定所对应的HARQ进程号,其中,所述第一数值与在所述一个特定的周期内所处的时域位置无关,所述第二数值 则与在所述一个特定的周期内所处的时域位置有关。
作为一个实施例,上述方法的特质包括:在每个配置分配的周期内存在多个配置分配分别对应多个不同的HARQ进程号。
作为一个实施例,上述方法的特质包括:所述第一HARQ进程号是所述M1个候选HARQ进程号中的哪一个是与所述第一时间单元的所述索引与一个特定的时间单元的索引之间的差值有关的。
作为一个实施例,上述方法的特质包括:给定所述第一时间单元的所述索引的条件下,被用于确定所述M2个候选时间单元的时域位置的所述目标数值被用于确定所述第一HARQ进程号。
作为一个实施例,上述方法的特质包括:在一个SPS(或CG)配置的一个周期长度内,存在所述一个SPS(或CG)配置所分配的多个PDSCH(或PUSCH)分别关联到多个由不同时域位置所确定的不同HARQ进程号。
作为一个实施例,上述方法的好处包括:有利于在一个配置分配的周期长度内传输更多的传输块,提高数据传输速率。
作为一个实施例,上述方法的好处包括:可以配置更多的候选传输机会,有利于降低延时。
作为一个实施例,上述方法的好处包括:可以实现对应同一个HARQ进程号的两次配置分配之间的时间间隔最大化,HARQ进程的利用效率高。
作为一个实施例,上述方法的好处包括:对现有技术规范版本的改动小,有利于降低标准化的工作量。
作为一个实施例,上述方法的好处包括:提高了基站调度的灵活性。
作为一个实施例,上述方法的好处包括:前后向兼容性好。
根据本申请的一个方面,上述方法的特征在于,
所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
根据本申请的一个方面,上述方法的特征在于,
所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
根据本申请的一个方面,上述方法的特征在于,
所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
根据本申请的一个方面,上述方法的特征在于,
所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
根据本申请的一个方面,上述方法的特征在于,
参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令;
其中,所述第二信令被用于确定所述目标数值。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
根据本申请的一个方面,上述方法的特征在于,
所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
根据本申请的一个方面,上述方法的特征在于,
所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
根据本申请的一个方面,上述方法的特征在于,
所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
根据本申请的一个方面,上述方法的特征在于,
所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
根据本申请的一个方面,上述方法的特征在于,
参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信令;
其中,所述第二信令被用于确定所述目标数值。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
第一收发机,在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
第二收发机,在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
第一收发机,在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为一个实施例,上述方法的特质包括:在一个特定的周期内,存在多个配置分配分别对应多个不同的HARQ进程号;对于所述多个配置分配中的任一配置分配,第一数值与第二数值一起被用于确定所对应的HARQ进程号,其中,所述第一数值与在所述一个特定的周期内所处的时域位置无关,所述第二数值则与在所述一个特定的周期内所处的时域位置有关。
作为一个实施例,上述方法的特质包括:在每个配置分配的周期内存在多个配置分配分别对应多个不 同的HARQ进程号。
作为一个实施例,上述方法的特质包括:在一个SPS(或CG)配置的一个周期长度内,存在所述一个SPS(或CG)配置所分配的多个PDSCH(或PUSCH)分别关联到多个由不同时域位置(或,不同的配置分配的逻辑顺序)所确定的不同HARQ进程号。
作为一个实施例,上述方法的好处包括:有利于在一个配置分配的周期长度内传输更多的传输块,提高数据传输速率。
作为一个实施例,上述方法的好处包括:可以配置更多的候选传输机会,有利于降低延时。
作为一个实施例,上述方法的好处包括:可以实现对应同一个HARQ进程号的两次配置分配之间的时间间隔最大化,HARQ进程的利用效率高。
作为一个实施例,上述方法的好处包括:对现有技术规范版本的改动小,有利于降低标准化的工作量。
作为一个实施例,上述方法的好处包括:提高了基站调度的灵活性。
作为一个实施例,上述方法的好处包括:前后向兼容性好。
根据本申请的一个方面,上述方法的特征在于,
所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
根据本申请的一个方面,上述方法的特征在于,
所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
根据本申请的一个方面,上述方法的特征在于,
所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
根据本申请的一个方面,上述方法的特征在于,
所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
第一收发机,在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
根据本申请的一个方面,所述第一节点设备的特征在于,
所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
根据本申请的一个方面,所述第一节点设备的特征在于,
所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
第二收发机,在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为一个实施例,本申请中的方法具备如下优势:
-有利于提高数据传输速率;
-可以配置更多的候选传输机会,有利于降低延时;
-HARQ进程的利用效率高;
-提高了基站调度的灵活性;
-对现有技术规范版本的改动小;标准化所需工作量小;
-兼容性好。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一数值,第一周期值和M2之间关系的示意图;
图7示出了根据本申请的一个实施例的第一数值,第一周期值,第一时间单元的索引和M2之间关系的示意图;
图8示出了根据本申请的一个实施例的第一数值,第二数值以及第一HARQ进程号之间关系的示意图;
图9示出了根据本申请的一个实施例的第二数值和第一时间单元的索引与目标数值的差值之间关系的示意图;
图10示出了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图;
图11示出了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图;
图12示出了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图;
图13示出了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图;
图14示出了根据本申请的一个实施例的目标数值,参考时间单元以及M2个候选时间单元之间关系的示意图;
图15示出了根据本申请的一个实施例的第二信令和目标数值之间关系的示意图;
图16示出了根据本申请的一个实施例的第一节点的处理流程图;
图17示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图18示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令;在步骤102中在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块。
在实施例1中,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为一个实施例,所述第一信令是DCI(Downlink control information,下行链路控制信息)。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令是MAC CE信令。
作为一个实施例,所述第一信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令包括信息元素SPS-Config。
作为一个实施例,所述第一信令包括信息元素ConfiguredGrantConfig。
作为一个实施例,所述第一比特块包括多个比特。
作为一个实施例,所述第一比特块是一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块包括一个或两个TB。
作为一个实施例,所述第一比特块包括至少一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一比特块在被发送之前经过至少CRC(Cyclic Redundancy Check,循环冗余校验)附加(attachment),码块分割(Code Block Segmentation),码块CRC附加,信道编码,速率匹配和码块级联(Concatenation),扰码(Scrambling),调制和资源块映射。
作为一个实施例,所述第一比特块在被发送之前经过至少CRC附加,信道编码和速率匹配,扰码,调制和资源块映射。
作为一个实施例,所述第一比特块在被发送之前经过至少CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联(Concatenation),扰码,调制,层映射,天线端口映射和资源块映射。
作为一个实施例,所述第一比特块在被发送之前经过至少CRC附加,信道编码和速率匹配,扰码,调制,层映射,天线端口映射和资源块映射。
作为一个实施例,所述第一比特块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配,码块级联,扰码,调制(Modulation),扩频(Spreading),层映射(Layer Mapping),预编码(Precoding),映射到物理资源,多载波符号生成(Generation),调制上变频(Modulation andUpconversion)中的至少部分之后的全部或部分输出在所述第一时间单元中被发送。
作为一个实施例,本申请中的所述表述接收第一比特块的意思包括:接收承载所述第一比特块的信号。
作为一个实施例,本申请中的所述表述接收第一比特块的意思包括:接收第一信号,所述第一信号包 括所述第一比特块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配,码块级联,扰码,调制,扩频,层映射,预编码,映射到物理资源,多载波符号生成,调制上变频中的至少部分之后的全部或部分输出。
作为一个实施例,本申请中的所述表述发送第一比特块的意思包括:发送承载所述第一比特块的信号。
作为一个实施例,本申请中的所述表述发送第一比特块的意思包括:发送第一信号,所述第一信号包括所述第一比特块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配,码块级联,扰码,调制,扩频,层映射,预编码,映射到物理资源,多载波符号生成,调制上变频中的至少部分之后的全部或部分输出。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一周期值和所述M2一起被用于确定所述第一数值的意思包括:所述第一周期值所对应的时间单元的数量和所述M2一起被用于确定所述第一数值。
作为一个实施例,所述第一数值等于所述第一周期值乘以所述M2。
作为一个实施例,所述第一数值等于所述第一周期值与所述M2之和的正整数倍。
作为一个实施例,本申请中的所述表述第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号的意思是:所述第一HARQ进程号是所述M1个候选HARQ进程号中的哪个HARQ进程号和第一数值与第二数值两者均有关。
作为一个实施例,本申请中的所述表述所述第一周期值和所述M2一起被用于确定所述第一数值的意思是:所述第一数值和所述第一周期值所对应的时间单元的数量与所述M2两者均有关。
作为一个实施例,本申请中的所述表述所述第一时间单元的索引和目标数值一起被用于确定所述第二数值的意思是:所述第二数值和所述第一时间单元的索引与目标数值两者均有关。
作为一个实施例,本申请中的所述表述所述目标数值被用于确定所述M2个候选时间单元的时域位置的意思是:所述M2个候选时间单元的时域位置与所述目标数值有关。
作为一个实施例,所述第一信令被用于指示所述第一周期值。
作为一个实施例,所述第一信令被用于显式指示所述第一周期值。
作为一个实施例,所述第一信令被用于隐式指示所述第一周期值。
作为一个实施例,所述第一信令中的一个域被用指示所述第一周期值。
作为一个实施例,所述第一信令中的一个periodicity域被用指示所述第一周期值。
作为一个实施例,所述第一周期值等于正整数个符号。
作为一个实施例,所述第一周期值等于正整数个时隙。
作为一个实施例,所述第一周期值等于正整数个毫秒(ms)。
作为一个实施例,所述配置分配是配置下行分配(configured downlink assignment)。
作为一个实施例,所述配置分配是配置上行授予(configured uplink grant)。
作为一个实施例,所述配置分配被用于半持续调度。
作为一个实施例,所述时间单元是毫秒。
作为一个实施例,所述时间单元是时隙(slot)。
作为一个实施例,所述时间单元是子时隙(sub-slot)。
作为一个实施例,一个所述时间单元包括一个或多个符号。
作为一个实施例,所述时间单元是符号(symbol)。
作为一个实施例,所述时间单元是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,所述时间单元是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述时间单元是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述时间单元是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述时间单元包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述M2个候选时间单元在时域依次排列且相互无时域交叠。
作为一个实施例,所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度小于所述第一周期值。
作为一个实施例,所述第一比特块被关联到所述第一HARQ进程号的意思包括:所述第一比特块被分配到所述第一HARQ进程号所对应的HARQ进程。
作为一个实施例,所述第一比特块被关联到所述第一HARQ进程号的意思包括:所述第一比特块所关联的HARQ信息指示所述第一HARQ进程号。
作为一个实施例,所述第一信令被用于指示所述M1个候选HARQ进程号。
作为一个实施例,所述第一信令被用于显式指示所述M1个候选HARQ进程号。
作为一个实施例,所述第一信令被用于隐式指示所述M1个候选HARQ进程号。
作为一个实施例,所述第一信令被用于指示被用于推断HARQ进程号的一个偏移值和所述M1,被用于推断HARQ进程号的所述一个偏移值与所述M1一起被用于确定所述M1个候选HARQ进程号。
作为一个实施例,所述M1等于1或大于1。
作为一个实施例,所述M1大于1。
作为一个实施例,所述第一信令被用于确定所述M1。
作为一个实施例,所述第一信令被用于指示所述M1。
作为一个实施例,所述第一信令被用于显式指示所述M1。
作为一个实施例,所述第一信令被用于隐式指示所述M1。
作为一个实施例,所述第一信令被用于指示被配置的HARQ进程号的数量,所述M1等于所述被配置的HARQ进程号的数量。
作为一个实施例,所述M1是所述第一信令中的一个nrofHARQ-Processes域所指示的。
作为一个实施例,所述M1个候选HARQ进程号包括0,1,...,M1-1。
作为一个实施例,所述M1个候选HARQ进程号包括1,2,...,M1。
作为一个实施例,所述第一信令被用于指示所述M1和第一偏移值,所述M1个候选HARQ进程号包括:所述第一偏移值,所述第一偏移值+1,...,所述第一偏移值+M1-1。
作为一个实施例,所述M1个候选HARQ进程号包括:第一偏移值,第一偏移值+1,...,第一偏移值+M1-1;所述第一信令被用于确定所述第一偏移值,所述第一偏移值是一个非负整数。
作为一个实施例,所述第一信令被用于指示所述第一偏移值。
作为一个实施例,所述第一信令被用于显式指示所述第一偏移值。
作为一个实施例,所述第一信令被用于隐式指示所述第一偏移值。
作为一个实施例,所述第一偏移值是被用于推断HARQ进程号的一个偏移值。
作为一个实施例,所述第一偏移值是所述第一信令中的一个harq-ProcID-Offset域所指示的。
作为一个实施例,所述第一偏移值是所述第一信令中的一个harq-ProcID-Offset2域所指示的。
作为一个实施例,所述第一数值与所述第二数值的四则运算结果被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号。
作为一个实施例,所述第一数值与所述第二数值的乘积被用于从所述M1个候选HARQ进程号中指示所述第一HARQ进程号。
作为一个实施例,所述第一HARQ进程号等于所述第一数值与所述第二数值的加权和对所述M1取模的结果,所述第一信令被用于确定所述M1。
作为一个实施例,所述第一HARQ进程号等于所述第一数值与所述第二数值的加权和对所述M1取模的结果再加上第一偏移值,所述第一信令被用于确定所述M1和所述第一偏移值。
作为一个实施例,所述第一时间单元的所述索引,所述第一周期值所对应的时间单元的所述数量与所述M2一起被用于确定所述第一数值。
作为一个实施例,所述M2是可配置的。
作为一个实施例,所述M2是一个DCI所指示的。
作为一个实施例,所述M2是一个DCI从一个时域资源分配表中指示出的一行所对应的PDSCH的数量。
作为一个实施例,所述M2是更高层信令所配置的。
作为一个实施例,给定所述第一时间单元的所述索引和所述第一周期值所对应的时间单元的所述数量的条件下,所述第一数值与所述M2线性相关。
作为一个实施例,所述第一数值与所述第一周期值所对应的时间单元的所述数量和所述M2的乘积线性相关。
作为一个实施例,所述第一数值等于所述第一周期值所对应的时间单元的所述数量和所述M2之和。
作为一个实施例,所述第一周期值所对应的时间单元的所述数量等于所述第一周期值。
作为一个实施例,所述第一周期值所对应的时间单元的所述数量等于所述第一周期值的正整数倍。
作为一个实施例,所述第一周期值所对应的时间单元的所述数量等于所述第一周期值乘以每个帧内连续的时间单元的数量再除以10。
作为一个实施例,所述第一周期值所对应的时间单元的所述数量等于所述第一周期值的时间长度除以一个时间单元的时间长度。
作为一个实施例,所述第一周期值所对应的时间单元的所述数量等于一个以所述第一周期值为长度的时间窗中所包括的时间单元的数量。
作为一个实施例,所述目标数值是可配置的。
作为一个实施例,所述目标数值是一个可配置的参数值。
作为一个实施例,所述目标数值是基于至少一个可配置的参数值计算得到的。
作为一个实施例,所述第一信令和本申请中的所述第二信令两者中的至少之一被用于确定所述目标数值。
作为一个实施例,所述第一信令被用于确定所述目标数值。
作为一个实施例,所述目标数值是所述第一信令所配置的一个参数值。
作为一个实施例,所述第一信令所配置的至少一个参数被用于确定所述目标数值。
作为一个实施例,所述目标数值是一个DCI所指示的。
作为一个实施例,所述目标数值是基于一个DCI的指示计算得到的。
作为一个实施例,所述目标数值是本申请中的所述第二信令所指示的。
作为一个实施例,本申请中的一个所述索引等于一个非负整数。
作为一个实施例,一个时间单元的索引是所述一个时间单元所属的帧的系统帧号和所对应的时隙号共同确定的一个索引。
作为一个实施例,一个时间单元的索引是所述一个时间单元所属的帧的系统帧号,所属的时隙的时隙号和所对应的符号号共同确定的一个索引。
作为一个实施例,所述第一时间单元是一个时隙,所述第一时间单元的所述索引是由所述第一时间单元所属的帧的系统帧号和所对应的时隙号共同确定的一个索引。
作为一个实施例,所述第一时间单元的所述索引等于:每个帧中的连续时隙的数量乘以所述第一时间单元所属的帧的系统帧号(SFN,System Frame Number)加上所述第一时间单元在所属的帧中所对应的时隙号(slot number)。
作为一个实施例,所述第一时间单元的所述索引等于:所述第一时间单元所属的帧的系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上所述第一时间单元在所属的帧中所对应的时隙号乘以每个时隙中的连续符号的数量加上所述第一时间单元在所属的时隙中所对应的符号号(symbol number)。
作为一个实施例,所述M1和所述M2的比值被用于确定所述第二数值。
作为一个实施例,所述目标参数被用于指示所述M2个候选时间单元的时域位置。
作为一个实施例,所述目标参数被用于显式指示所述M2个候选时间单元的时域位置。
作为一个实施例,所述目标参数被用于隐式指示所述M2个候选时间单元的时域位置。
作为一个实施例,所述目标参数被用于确定所述M2个候选时间单元的截止时刻。
作为一个实施例,所述目标参数被用于确定所述M2个候选时间单元的起始时刻。
作为一个实施例,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
作为一个实施例,所述第一数值与所述第二数值之和被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号。
作为一个实施例,所述第一HARQ进程号等于所述第一数值与所述第二数值之和对所述M1取模的结果。
作为一个实施例,所述第一HARQ进程号等于所述第一数值与所述第二数值之和对所述M1取模的结果再加上第一偏移值,所述第一信令被用于确定所述第一偏移值。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY351。
作为一个实施例,本申请中的所述第一比特块生成于所述SDAP子层356。
作为一个实施例,本申请中的所述第一比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间 的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中接收第一比特块,或者, 在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一时间单元中接收本申请中的所述第一比特块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时间单元中发送本申请中的所述第一比特块。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一时间单元中发送本申请中的所述第一比特块。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时间单元中接收本申请中的所述第一比特块。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的 正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。在附图5中,虚线方框F1中的步骤是可选的;加粗虚线方框F2中的步骤和加粗虚线方框F3中的步骤两者中仅存在一者。
第一节点U1,在步骤S511中接收第一信令;在步骤S5101中接收第二信令;在步骤S512中在第一时间单元中接收第一比特块,或者,在步骤S513中在第一时间单元中发送第一比特块。
第二节点U2,在步骤S521中发送第一信令;在步骤S5201中发送第二信令;在步骤S522中在第一时间单元中发送第一比特块,或者,在步骤S523中在第一时间单元中接收第一比特块。
在实施例5中,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置;所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关;所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积;参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引;所述第二信令被用于确定所述目标数值。
作为实施例5的一个子实施例,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
作为实施例5的一个子实施例,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,虚线方框F1中的步骤存在。
作为一个实施例,虚线方框F1中的步骤不存在。
作为一个实施例,加粗虚线方框F2中的步骤存在,加粗虚线方框F3中的步骤不存在。
作为一个实施例,加粗虚线方框F2中的步骤不存在,加粗虚线方框F3中的步骤存在。
实施例6
实施例6示例了根据本申请的一个实施例的第一数值,第一周期值和M2之间关系的示意图,如附图6所示。
在实施例6中,本申请中的所述第一数值等于与本申请中的所述第一周期值所对应的时间单元的数量有关的一个数值与本申请中的所述M2的乘积。
作为一个实施例,所述第一数值等于对所述第一时间单元的所述索引与所述第一周期值所对应的时间单元的所述数量的比值向下取整所得到的结果与所述M2的乘积。
作为一个实施例,所述第一数值等于不大于所述第一时间单元的所述索引与所述第一周期值所对应的时间单元的所述数量的比值的最大非负整数乘以所述M2。
作为一个实施例,所述第一数值不大于不大于所述第一时间单元的所述索引与所述第一周期值所对应的时间单元的所述数量的比值的最大非负整数乘以所述M2。
作为一个实施例,所述第一数值等于不大于所述第一时间单元的所述索引与所述第一周期值所对应的时间单元的所述数量的比值的最大正整数对不小于所述M1与所述M2的比值的最小正整数取模的结果。
作为一个实施例,所述第一数值=floor(所述第一时间单元的所述索引/所述第一周期值所对应的时间单元的所述数量)modulo不小于所述M1与所述M2的比值的最小正整数,所述floor()表示向下取整的意思。
实施例7
实施例7示例了根据本申请的一个实施例的第一数值,第一周期值,第一时间单元的索引和M2之间关系的示意图,如附图7所示。
在实施例7中,本申请中的所述第一数值等于对本申请中的所述第一时间单元的索引与本申请中的所述第一周期值所对应的时间单元的数量的比值向下取整所得到的结果与本申请中的所述M2的乘积。
作为一个实施例,本申请中的floor(·)表示向下取整操作。
实施例8
实施例8示例了根据本申请的一个实施例的第一数值,第二数值以及第一HARQ进程号之间关系的示意图,如附图8所示。
在实施例8中,本申请中的所述第一HARQ进程号等于本申请中的所述第一数值与本申请中的所述第二数值之和对本申请中的所述M1取模的结果;或者,本申请中的所述第一HARQ进程号等于本申请中的所述第一数值与本申请中的所述第二数值之和对本申请中的所述M1取模的结果再加上第一偏移值,本申请中的所述第一信令被用于确定所述第一偏移值。
作为一个实施例,本申请中的modulo表示模运算。
作为一个实施例,所述第一信令被用于指示所述第一偏移值。
作为一个实施例,所述第一信令被用于显式指示所述第一偏移值。
作为一个实施例,所述第一信令被用于隐式指示所述第一偏移值。
作为一个实施例,所述第一偏移值是一个非负整数。
作为一个实施例,所述第一偏移值是被用于推断HARQ进程号的一个偏移值。
作为一个实施例,所述第一偏移值是所述第一信令中的一个harq-ProcID-Offset域所指示的。
作为一个实施例,所述第一偏移值是所述第一信令中的一个harq-ProcID-Offset2域所指示的。
实施例9
实施例9示例了根据本申请的一个实施例的第二数值和第一时间单元的索引与目标数值的差值之间关系的示意图,如附图9所示。
在实施例9中,本申请中的所述第二数值和本申请中的所述第一时间单元的索引与本申请中的所述目标数值的差值有关。
作为一个实施例,所述第一时间单元的所述索引减去所述目标数值的差值被用于确定所述第二数值。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第一时间间隔是大于1的正整数。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去第四数值与所述目标数值之和的差值对所述第一周期值所对应的时间单元的所述数量取模的结果,所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去第四数值与所述目标数值之和的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号,所述第一时间间隔是大于1的正整数。
作为一个实施例,所述第二数值=(所述第一时间单元的所述索引-(第四数值+所述目标数值))modulo所述第一周期值所对应的时间单元的所述数量;所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号。
作为一个实施例,所述第二数值=((所述第一时间单元的所述索引-(第四数值+所述目标数值))modulo所述第一周期值所对应的时间单元的所述数量)/第一时间间隔;所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号,所述第一时间间隔是大于1的正整数。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去第四数值与所述目标数值之和的差值对所述第一周期值所对应的时间单元的所述数量取模的结果。
作为上述实施例的一个子实施例,所述第四数值等于参考系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上时域偏移值乘以每个时隙中的连续符号的数量,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值。
作为上述实施例的一个子实施例,所述第四数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量,所述起始系统帧号和所述起始时隙号分别是配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号和时隙号。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去第四数值与所述目标数值之和的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第一时间间隔是大于1的正整数。
作为上述实施例的一个子实施例,所述第四数值等于参考系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上时域偏移值乘以每个时隙中的连续符号的数量,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值。
作为上述实施例的一个子实施例,所述第四数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量,所述起始系统帧号和所述起始时隙号分别是配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号和时隙号。
作为一个实施例,所述第二数值等于小于所述第一时间单元的所述索引减去所述目标数值的差值的一个数值对所述第一周期值所对应的时间单元的所述数量取模的结果。
作为一个实施例,所述第二数值等于小于所述第一时间单元的所述索引减去所述目标数值的差值的一个数值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第一时间间隔是大于1的正整数。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果乘以不小于所述M1与所述M2的比值的最小正整数。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果除以第一时间间隔乘以不小于所述M1与所述M2的比值的最小正整数,所述第一时间间隔是大于1的正整数。
作为一个实施例,所述第二数值=((所述第一时间单元的所述索引-所述目标数值)modulo所述第一周期值所对应的时间单元的所述数量)×所述M1与所述M2的比值向上取整的结果。
作为一个实施例,所述第二数值=((所述第一时间单元的所述索引-所述目标数值)modulo所述第一周期值所对应的时间单元的所述数量)/第一时间间隔×所述M1与所述M2的比值向上取整的结果。
作为一个实施例,所述目标数值是所述第一时间单元之外的一个时间单元的索引。
作为一个实施例,所述目标数值等于所述第一时间单元之外的一个时间单元的索引。
作为一个实施例,所述目标数值等于配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输所属的时间单元的索引。
作为一个实施例,所述目标数值等于配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会所属的时间单元的索引。
作为一个实施例,所述目标数值是配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输的时隙号。
作为一个实施例,所述目标数值是配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会的符号号。
作为一个实施例,所述目标数值是本申请中的所述第一信令所配置的。
作为一个实施例,所述目标数值等于每个帧中的连续时隙的数量乘以起始系统帧号加上起始时隙号,所述起始系统帧号和所述起始时隙号分别是配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号和时隙号。
作为一个实施例,所述目标数值等于参考系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上时域偏移值乘以每个时隙中的连续符号的数量加上参考符号号,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值,所述第一信令所配置的另一个参数被用于推断所述参考符号号。
作为一个实施例,所述目标数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量加上起始符号号,所述起始系统帧号,所述起始时隙号和所述起始符号号分别是配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号,时隙号和符号号。
作为一个实施例,本申请中的所述时隙号是帧内时隙号。
作为一个实施例,本申请中的所述符号号是时隙内符号号。
作为一个实施例,在本申请中,配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号是指:配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输在时域上所属的帧的系统帧号。
作为一个实施例,在本申请中,配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的时隙号是指:配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输在时域上所属的时隙的时隙号。
作为一个实施例,在本申请中,配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号是指:配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会在时域上所属的帧的系统帧号。
作为一个实施例,在本申请中,配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输 机会的时隙号是指:配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会在时域上所属的时隙的时隙号。
作为一个实施例,在本申请中,配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的符号号是指:配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会在时域上所占用的最早的一个符号的符号号。
作为一个实施例,在本申请中,配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号是指:配置下行分配初始化(或,重新初始化)所对应的PDSCH的第一次传输在时域上所属的帧的系统帧号。
作为一个实施例,在本申请中,配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的时隙号是指:配置下行分配初始化(或,重新初始化)所对应的PDSCH的第一次传输在时域上所属的时隙的时隙号。
作为一个实施例,在本申请中,配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号是指:配置上行授予初始化(或,重新初始化)所对应的PUSCH的第一次传输机会在时域上所属的帧的系统帧号。
作为一个实施例,在本申请中,配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的时隙号是指:配置上行授予初始化(或,重新初始化)所对应的PUSCH的第一次传输机会在时域上所属的时隙的时隙号。
作为一个实施例,在本申请中,配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的符号号是指:配置上行授予初始化(或,重新初始化)所对应的PUSCH的第一次传输机会在时域上所占用的最早的一个符号的符号号。
作为一个实施例,本申请中的所述第一信令和所述第二信令两者中的至少之一被用于确定所述第一时间间隔。
作为一个实施例,所述第一时间间隔是可配置的。
作为一个实施例,所述第一时间间隔是一个可配置的参数值。
作为一个实施例,所述第一时间间隔是本申请中的所述第一信令所配置的。
作为一个实施例,所述第一时间间隔是一个pdsch-AggregationFactor域的值。
作为一个实施例,所述第一时间间隔是基于至少一个可配置的参数值计算得到的。
作为一个实施例,所述第一时间间隔等于两个可配置的参数值的乘积。
作为一个实施例,所述第一时间间隔是一个DCI所指示的。
作为一个实施例,所述第一时间间隔是一个DCI从更高层信令所配置的多个候选配置中指示出来的一个数值。
作为一个实施例,所述第一时间间隔是本申请中的所述第二信令所指示的。
实施例10
实施例10示例了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图,如附图10所示。
在实施例10中,本申请中的所述第二数值等于本申请中的所述第一时间单元的所述索引减去本申请中的所述目标数值的差值对本申请中的所述第一周期值所对应的时间单元的所述数量取模的结果。
实施例11
实施例11示例了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图,如附图11所示。
在实施例11中,本申请中的所述第二数值等于本申请中的所述第一时间单元的所述索引减去本申请中的所述目标数值的差值对本申请中的所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第一时间间隔是大于1的正整数。
作为一个实施例,所述第一时间间隔是可配置的。
作为一个实施例,所述第一时间间隔是一个可配置的参数值。
作为一个实施例,所述第一时间间隔是本申请中的所述第一信令所配置的。
作为一个实施例,所述第一时间间隔是一个pdsch-AggregationFactor域的值。
作为一个实施例,所述第一时间间隔是基于至少一个可配置的参数值计算得到的。
作为一个实施例,所述第一时间间隔等于两个可配置的参数值的乘积。
作为一个实施例,所述第一时间间隔是一个DCI所指示的。
作为一个实施例,所述第一时间间隔是一个DCI从更高层信令所配置的多个候选配置中指示出来的一个数值。
作为一个实施例,所述第一时间间隔是本申请中的所述第二信令所指示的。
实施例12
实施例12示例了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图,如附图12所示。
在实施例12中,本申请中的所述第二数值等于与本申请中的所述第一时间单元的所述索引有关的一个数值除以本申请中的所述目标数值。
作为一个实施例,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果向下取整。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去第三数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以所述目标数值,所述第三数值是一个非负整数。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去第三数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以所述目标数值的正整数倍,所述第三数值是一个非负整数。
作为一个实施例,所述第二数值=((所述第一时间单元的所述索引-第三数值)modulo所述第一周期值所对应的时间单元的所述数量)/所述目标数值的正整数倍,所述第三数值是一个非负整数。
作为一个实施例,所述第三数值是所述第一时间单元之外的一个时间单元的索引。
作为一个实施例,所述第三数值等于配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输所属的时间单元的索引。
作为一个实施例,所述第三数值等于配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会所属的时间单元的索引。
作为一个实施例,所述第三数值等于每个帧中的连续时隙的数量乘以起始系统帧号加上起始时隙号,所述起始系统帧号和所述起始时隙号分别是配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号和时隙号。
作为一个实施例,所述第三数值等于参考系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上时域偏移值乘以每个时隙中的连续符号的数量加上参考符号号,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值,所述第一信令所配置的另一个参数被用于推断所述参考符号号。
作为一个实施例,所述第三数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量加上起始符号号,所述起始系统帧号,所述起始时隙号和所述起始符号号分别是配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号,时隙号和符号号。
作为一个实施例,所述目标数值是本申请中的所述第一信令所配置的。
作为一个实施例,所述目标数值是一个pdsch-AggregationFactor域的值。
作为一个实施例,所述目标数值是基于至少一个可配置的参数值计算得到的。
作为一个实施例,所述目标数值等于两个可配置的参数值的乘积。
作为一个实施例,所述目标数值是一个DCI所指示的。
作为一个实施例,所述目标数值是一个DCI从更高层信令所配置的多个候选配置中指示出来的一个数 值。
作为一个实施例,所述目标数值是本申请中的所述第二信令所指示的。
实施例13
实施例13示例了根据本申请的一个实施例的第一时间单元的索引,目标数值以及第二数值之间关系的示意图,如附图13所示。
在实施例13中,本申请中的所述第二数值等于本申请中的所述第一时间单元的所述索引减去第三数值的差值对本申请中的所述第一周期值所对应的时间单元的所述数量取模的结果再除以本申请中的所述目标数值,所述第三数值是一个非负整数。
作为一个实施例,所述第三数值是所述第一时间单元之外的一个时间单元的索引。
作为一个实施例,所述第三数值等于所述第一时间单元之外的一个时间单元的索引。
作为一个实施例,所述第三数值等于配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输所属的时间单元的索引。
作为一个实施例,所述第三数值等于配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会所属的时间单元的索引。
作为一个实施例,所述第三数值等于每个帧中的连续时隙的数量乘以起始系统帧号加上起始时隙号,所述起始系统帧号和所述起始时隙号分别是配置下行分配(configured downlink assignment)被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号和时隙号。
作为一个实施例,所述第三数值等于参考系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上时域偏移值乘以每个时隙中的连续符号的数量加上参考符号号,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值,所述第一信令所配置的另一个参数被用于推断所述参考符号号。
作为一个实施例,所述第三数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量加上起始符号号,所述起始系统帧号,所述起始时隙号和所述起始符号号分别是配置上行授予(configured uplink grant)被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号,时隙号和符号号。
实施例14
实施例14示例了根据本申请的一个实施例的目标数值,参考时间单元以及M2个候选时间单元之间关系的示意图,如附图14所示。
在实施例14中,本申请中的所述参考时间单元是本申请中的所述M2个候选时间单元中之一,本申请中的所述目标数值被用于确定所述参考时间单元的索引。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述参考时间单元的所述索引的差值对所述第一周期值所对应的时间单元的所述数量取模的结果。
作为一个实施例,所述第二数值等于所述第一时间单元的所述索引减去所述参考时间单元的所述索引的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第一时间间隔是大于1的正整数。
作为一个实施例,在本申请中,一个时间单元的时域位置是所述一个时间单元的索引所确定的。
作为一个实施例,在本申请中,一个时间单元的索引是指示所述一个时间单元的时域位置的索引。
作为一个实施例,一个时间单元的索引等于每个帧中的连续时隙的数量乘以所述一个时间单元所属的帧的系统帧号(SFN,System Frame Number)加上所述一个时间单元在所属的帧中所对应的时隙号(slot number)。
作为一个实施例,一个时间单元的索引等于所述一个时间单元所属的帧的系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上所述一个时间单元在所属的帧中所对应的时隙号乘以每个时隙中的连续符号的数量加上所述一个时间单元在所属的时隙中所对应的符号号(symbol number)。
作为一个实施例,所述目标数值被用于指示所述参考时间单元的索引。
作为一个实施例,所述目标数值被用于显式指示所述参考时间单元的索引。
作为一个实施例,所述目标数值被用于隐式指示所述参考时间单元的索引。
作为一个实施例,所述目标数值被用于执行计算得到所述参考时间单元的索引。
作为一个实施例,所述参考时间单元的索引等于:所述目标数值与所述参考时间单元所对应的配置下行分配序号乘以所述第一周期值所对应的时间单元的所述数量的乘积之和对1024与每个帧中的连续时隙的数量的乘积取模的结果。
作为一个实施例,所述参考时间单元的索引等于:[所述目标数值+所述参考时间单元所对应的配置下行分配序号×所述第一周期值所对应的时间单元的所述数量]modulo(1024×每个帧中的连续时隙的数量)。
作为一个实施例,所述参考时间单元的索引等于:所述目标数值与所述参考时间单元所对应的配置上行授予序号乘以所述第一周期值所对应的时间单元的所述数量的乘积之和对1024与每个帧中的连续时隙的数量与每个时隙中的连续符号的数量三者的乘积取模的结果。
作为一个实施例,所述参考时间单元的索引等于:[所述目标数值+所述参考时间单元所对应的配置上行授予序号×所述第一周期值所对应的时间单元的所述数量]modulo(1024×每个帧中的连续时隙的数量×每个时隙中的连续符号的数量)。
作为一个实施例,每个时隙中的连续符号的数量是用numberOfSymbolsPerSlot表示的。
作为一个实施例,每个帧中的连续时隙的数量是用numberOfSlotsPerFrame表示的。
作为一个实施例,一个所述配置下行分配序号是被用于指示相应的配置下行分配是第几个配置下行分配的非负整数。
作为一个实施例,一个所述配置下行分配序号是被用于指示相应的配置下行分配是第几个配置下行分配的正整数。
作为一个实施例,一个所述配置上行授予序号是被用于指示相应的配置上行授予是第几个配置上行授予的非负整数。
作为一个实施例,一个所述配置上行授予序号是被用于指示相应的配置上行授予是第几个配置上行授予的正整数。
作为一个实施例,所述参考时间单元是所述M2个候选时间单元中最早的一个时间单元,所述第一时间单元不同于所述参考时间单元。
作为一个实施例,所述M2个候选时间单元由从所述参考时间单元开始的连续M2个时间单元组成。
作为一个实施例,所述M2个候选时间单元由从所述参考时间单元开始的等间隔的M2个时间单元组成。
作为一个实施例,所述M2个候选时间单元的时域位置是以所述参考时间单元为基准推断得到的。
作为一个实施例,所述参考时间单元是所述M2个候选时间单元中最晚的一个时间单元。
作为一个实施例,所述参考时间单元的索引等于:[(第四数值+所述目标数值)+所述参考时间单元所对应的配置下行分配序号×所述第一周期值所对应的时间单元的所述数量]modulo(1024×每个帧中的连续时隙的数量)。
作为一个实施例,所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号。
作为一个实施例,所述参考时间单元的索引等于:[(第四数值+所述目标数值)+所述参考时间单元所对应的配置上行授予序号×所述第一周期值所对应的时间单元的所述数量]modulo(1024×每个帧中的连续时隙的数量×每个时隙中的连续符号的数量)。
作为一个实施例,所述第四数值等于参考系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上时域偏移值乘以每个时隙中的连续符号的数量,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值。
作为一个实施例,所述第四数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量,所述起始系统帧号和所述起始时隙号分别是配置上行授予被初始化(或,重新初始化)的PUSCH的第一次传输机会的系统帧号和时隙号。
实施例15
实施例15示例了根据本申请的一个实施例的第二信令和目标数值之间关系的示意图,如附图15所示。
在实施例15中,本申请中的所述第二信令被用于确定本申请中的所述目标数值。
作为一个实施例,本申请中的所述第一节点接收所述第二信令。
作为一个实施例,所述第二信令是DCI。
作为一个实施例,所述第二信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 0_2,所述DCI format 0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第二信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第二信令是更高层(higher layer)信令。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第二信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第二信令是MAC CE信令。
作为一个实施例,所述第二信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第二信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第二信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第二信令被用于指示所述M2。
作为一个实施例,所述第二信令被用于显式指示所述M2。
作为一个实施例,所述第二信令被用于隐式指示所述M2。
作为一个实施例,所述第二信令被用于指示所述目标数值。
作为一个实施例,所述第二信令被用于显式指示所述目标数值。
作为一个实施例,所述第二信令被用于隐式指示所述目标数值。
作为一个实施例,所述目标数值等于每个帧中的连续时隙的数量乘以起始系统帧号加上起始时隙号,所述起始系统帧号和所述起始时隙号分别是所述第二信令所指示的配置下行分配(configured downlink assignment)的初始化(或,重新初始化)所对应的PDSCH的第一次传输的系统帧号和时隙号。
作为一个实施例,所述目标数值等于所述第二信令所指示的配置下行分配(configured downlink assignment)的初始化(或,重新初始化)所对应的PDSCH的第一次传输的时隙号。
作为一个实施例,所述目标数值等于起始系统帧号乘以每个帧中的连续时隙的数量乘以每个时隙中的连续符号的数量加上起始时隙号乘以每个时隙中的连续符号的数量加上起始符号号,所述起始系统帧号,所述起始时隙号和所述起始符号号分别是所述第二信令所指示的配置上行授予(configured uplink grant)的初始化(或,重新初始化)所对应的PUSCH的第一次传输机会的系统帧号,时隙号和符号号。
作为一个实施例,所述目标数值等于所述第二信令所指示的配置上行授予(configured uplink grant)的初始化(或,重新初始化)所对应的PUSCH的第一次传输机会的符号号。
实施例16
实施例16示例了根据本申请的一个实施例的第一节点的处理流程图,如附图16所示。
在实施例16中,本申请中的所述第一节点在步骤1601中接收第一信令;在步骤1602中在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块。
在实施例16中,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为一个实施例,所述第二数值等于所述目标数值。
作为一个实施例,所述第二数值与所述目标数值线性相关。
作为一个实施例,所述第二数值等于所述目标数值减去1。
作为一个实施例,所述目标数值等于所述第一时间单元在所述M2个候选时间单元中的排序序号。
作为一个实施例,按照时域上由早到晚的排列顺序,所述第一时间单元是所述M2个候选时间单元中的第m个时间单元,所述m是不大于所述M2的正整数;所述目标数值等于所述m。
作为一个实施例,按照时域上由早到晚的排列顺序,所述第一时间单元是所述M2个候选时间单元中的第m个时间单元,所述m是大于1且不大于所述M2的正整数;所述目标数值等于所述m。
作为一个实施例,所述目标数值小于所述第一时间单元在所述M2个候选时间单元中的排序序号。
作为一个实施例,所述目标数值等于{所述第一时间单元在所述M2个候选时间单元中的排序序号减去1,1}两者中的最大值。
作为一个实施例,参考时间单元是所述M2个候选时间单元中最早的一个时间单元,所述第一时间单元不同于所述参考时间单元。
作为一个实施例,所述参考时间单元的索引等于:第三数值与所述参考时间单元所对应的配置下行分配序号乘以所述第一周期值所对应的时间单元的所述数量的乘积之和对1024与每个帧中的连续时隙的数量的乘积取模的结果,所述第三数值等于每个帧中的连续时隙的数量乘以起始系统帧号加上起始时隙号,所述起始系统帧号和所述起始时隙号分别是配置下行分配(configured downlink assignment)被初始化时的PDSCH的第一次传输的系统帧号和时隙号。
作为一个实施例,所述参考时间单元的索引=[第三数值+所述参考时间单元所对应的配置下行分配序号×所述第一周期值所对应的时间单元的所述数量]modulo(1024×每个帧中的连续时隙的数量),所述第三数值=每个帧中的连续时隙的数量×起始系统帧号+起始时隙号,所述起始系统帧号和所述起始时隙号分别是配置下行分配(configured downlink assignment)被初始化时的PDSCH的第一次传输的系统帧号和时隙号。
作为一个实施例,所述参考时间单元的索引=[第三数值+所述参考时间单元所对应的配置上行授予序号×所述第一周期值所对应的时间单元的所述数量]modulo(1024×每个帧中的连续时隙的数量×每个时隙中的连续符号的数量)。
作为上述实施例的一个子实施例,所述第三数值=参考系统帧号×每个帧中的连续时隙的数量×每个时隙中的连续符号的数量+时域偏移值×每个时隙中的连续符号的数量+参考符号号,所述第一信令被用于配置所述参考系统帧号和所述时域偏移值,所述第一信令所配置的另一个参数被用于推断所述参考符号号。
作为上述实施例的一个子实施例,所述第三数值等于起始系统帧号×每个帧中的连续时隙的数量×每个时隙中的连续符号的数量+起始时隙号×每个时隙中的连续符号的数量+起始符号号,所述起始系统帧号,所述起始时隙号和所述起始符号号分别是配置上行授予(configured uplink grant)被初始化时的PUSCH的第一次传输机会的系统帧号,时隙号和符号号。
作为一个实施例,一个所述配置下行分配序号是被用于指示相应的配置下行分配的排序位置的正整数。
作为一个实施例,一个所述配置上行授予序号是被用于指示相应的配置上行授予的排序位置的正整数。
作为一个实施例,一个所述配置下行分配序号是被用于指示相应的配置下行分配的排序位置的非负整数。
作为一个实施例,一个所述配置上行授予序号是被用于指示相应的配置上行授予的排序位置的非负整数。
作为一个实施例,所述M2个候选时间单元由从所述参考时间单元开始的连续M2个时间单元组成。
作为一个实施例,所述M2个候选时间单元由从所述参考时间单元开始的等间隔的M2个时间单元组成。
实施例17
实施例17示例了一个第一节点设备中的处理装置的结构框图,如附图17所示。在附图17中,第一节点设备处理装置1700包括第一收发机1703,所述第一收发机1703包括第一接收机1701和第一发射机1702。
作为一个实施例,所述第一节点设备1700是用户设备。
作为一个实施例,所述第一节点设备1700是中继节点。
作为一个实施例,所述第一节点设备1700是车载通信设备。
作为一个实施例,所述第一节点设备1700是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1700是支持V2X通信的中继节点。
作为一个实施例,所述第一接收机1701包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1701包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1701包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1701包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1701包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1702包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1702包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1702包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1702包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1702包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一接收机1701,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一接收机1701,在第一时间单元中接收第一比特块,或者,所述第一发射机1702,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔 长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为一个实施例,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
作为一个实施例,所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
作为一个实施例,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
作为一个实施例,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
作为一个实施例,参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
作为一个实施例,所述第一接收机1701,接收第二信令;其中,所述第二信令被用于确定所述目标数值。
作为一个实施例,所述第一接收机1701,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一接收机1701,在第一时间单元中接收第一比特块,或者,所述第一发射机1702,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;所述第一HARQ进程号和所述第一数值与所述第二数值之和有关;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积;所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关,或者,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果;参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引,所述M2个候选时间单元由从所述参考时间单元开始的连续或等间隔的M2个时间单元组成。
作为上述实施例的一个子实施例,所述第一HARQ进程号等于所述第一数值与所述第二数值之和对所述M1取模的结果;或者,所述第一HARQ进程号等于所述第一数值与所述第二数值之和对所述M1取模的结果再加上第一偏移值,所述第一信令被用于确定所述第一偏移值。
作为上述实施例的一个子实施例,所述第一数值等于不大于所述第一时间单元的所述索引与所述第一周期值所对应的时间单元的所述数量的比值的最大非负整数乘以所述M2。
作为上述实施例的一个子实施例,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果;或者,所述第二数值等于所述第一时间单元的所述索引减去所述目标数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第一时间间隔是大于1的正整数。
作为上述实施例的一个子实施例,所述第二数值等于所述第一时间单元的所述索引减去第四数值与所述目标数值之和的差值对所述第一周期值所对应的时间单元的所述数量取模的结果,所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号;或者,所述第二数值等于所述第一时间单元的所述索引减去第四数值与所述目标数值之和的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以第一时间间隔,所述第四数值等于每个帧中的连续时隙的数量乘以起始系统帧号,所述起始系统帧号是配置下行分配被初始化(或,重新初始化)的PDSCH的第一次传输的系统帧号,所述第一时间间隔是大于1的正整数。
作为上述实施例的一个子实施例,所述第二数值等于所述第一时间单元的所述索引减去第三数值的差值对所述第一周期值所对应的时间单元的所述数量取模的结果再除以所述目标数值,所述第三数值是一个非负整数。
作为上述实施例的一个子实施例,所述参考时间单元的索引等于:所述目标数值与所述参考时间单元所对应的配置下行分配序号乘以所述第一周期值所对应的时间单元的所述数量的乘积之和对1024与每个帧中的连续时隙的数量的乘积取模的结果。
作为一个实施例,所述第一接收机1701,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一接收机1701,在第一时间单元中接收第一比特块,或者,所述第一发射机1702,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为一个实施例,所述第一接收机1701,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第一接收机1701,在第一时间单元中接收第一比特块,或者,所述第一发射机1702,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;所述第一HARQ进程号和所述第一数值与所述第二数值之和有关;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积;所述第二数值与目标数值线性相关,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
作为上述实施例的一个子实施例,所述第一HARQ进程号等于所述第一数值与所述第二数值之和对所述M1取模的结果;或者,所述第一HARQ进程号等于所述第一数值与所述第二数值之和对所述M1取模的结果再加上第一偏移值,所述第一信令被用于确定所述第一偏移值。
作为上述实施例的一个子实施例,所述第一数值等于不大于所述第一时间单元的所述索引与所述第一周期值所对应的时间单元的所述数量的比值的最大非负整数乘以所述M2。
作为上述实施例的一个子实施例,所述第二数值等于所述目标数值,或者,所述第二数值等于所述目标数值减去1。
作为上述实施例的一个子实施例,按照时域上由早到晚的排列顺序,所述第一时间单元是所述M2个候选时间单元中的第m个时间单元,所述m是大于1且不大于所述M2的正整数;所述目标数值等于所述m。
实施例18
实施例18示例了一个第二节点设备中的处理装置的结构框图,如附图18所示。在附图18中,第二节点设备处理装置1800包括第二收发机1803,所述第二收发机1803包括第二发射机1801和第二接收机1802。
作为一个实施例,所述第二节点设备1800是用户设备。
作为一个实施例,所述第二节点设备1800是基站。
作为一个实施例,所述第二节点设备1800是中继节点。
作为一个实施例,所述第二节点设备1800是车载通信设备。
作为一个实施例,所述第二节点设备1800是支持V2X通信的用户设备。
作为一个实施例,所述第二发射机1801包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1801包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1801包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1801包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1801包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1802包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1802包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1802包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1802包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1802包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二发射机1801,发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第二发射机1801,在第一时间单元中发送第一比特块,或者,所述第二接收机1802,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置。
作为一个实施例,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
作为一个实施例,所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
作为一个实施例,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
作为一个实施例,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
作为一个实施例,参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
作为一个实施例,所述第二发射机1801,发送第二信令;其中,所述第二信令被用于确定所述目标数值。
作为一个实施例,所述第二发射机1801,发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;所述第二发射机1801,在第一时间单元中发送第一比特块,或者,所述第二接收机1802,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
    第一收发机,在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
    其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置,或者,目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
  5. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,包括:
    所述第一接收机,接收第二信令;
    其中,所述第二信令被用于确定所述目标数值。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
    第二收发机,在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
    其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置,或者,目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
  9. 根据权利要求8所述的第二节点设备,其特征在于,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
  10. 根据权利要求8或9所述的第二节点设备,其特征在于,所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
  11. 根据权利要求8至10中任一权利要求所述的第二节点设备,其特征在于,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
  12. 根据权利要求8至10中任一权利要求所述的第二节点设备,其特征在于,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
  13. 根据权利要求8至12中任一权利要求所述的第二节点设备,其特征在于,参考时间单元是所述 M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
  14. 根据权利要求8至13中任一权利要求所述的第二节点设备,其特征在于,包括:
    所述第二发射机,发送第二信令;
    其中,所述第二信令被用于确定所述目标数值。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
    在第一时间单元中接收第一比特块,或者,在第一时间单元中发送第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
    其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置,或者,目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
  16. 根据权利要求15所述的第一节点中的方法,其特征在于,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
  17. 根据权利要求15或16所述的第一节点中的方法,其特征在于,所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
  18. 根据权利要求15至17中任一权利要求所述的第一节点中的方法,其特征在于,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
  19. 根据权利要求15至17中任一权利要求所述的第一节点中的方法,其特征在于,所述第二数值等于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
  20. 根据权利要求15至19中任一权利要求所述的第一节点中的方法,其特征在于,参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
  21. 根据权利要求15至20中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第二信令;
    其中,所述第二信令被用于确定所述目标数值。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于确定第一周期值和M1个候选HARQ进程号,所述第一周期值等于配置分配的周期长度,所述M1个候选HARQ进程号中的任意一个候选HARQ进程号是非负整数;
    在第一时间单元中发送第一比特块,或者,在第一时间单元中接收第一比特块,所述第一时间单元是M2个候选时间单元之一,所述M2是大于1的正整数;
    其中,所述第一比特块被关联到第一HARQ进程号,所述第一HARQ进程号是所述M1个候选HARQ进程号中之一;第一数值与第二数值一起被用于从所述M1个候选HARQ进程号中确定所述第一HARQ进程号;所述M2个候选时间单元中的任意两个候选时间单元之间的时间间隔长度不大于所述第一周期值;所述第一周期值和所述M2一起被用于确定所述第一数值;所述第一时间单元的索引和目标数值一起被用于确定所述第二数值,所述目标数值被用于确定所述M2个候选时间单元的时域位置,或者,目标数值被用于确定所述第二数值,所述目标数值与所述第一时间单元在所述M2个候选时间单元中的时域位置有关。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,所述第一HARQ进程号和所述第一数值与所述第二数值之和对所述M1取模的结果有关。
  24. 根据权利要求22或23所述的第二节点中的方法,其特征在于,所述第一数值等于与所述第一周期值所对应的时间单元的数量有关的一个数值与所述M2的乘积。
  25. 根据权利要求22至24中任一权利要求所述的第二节点中的方法,其特征在于,所述第二数值和所述第一时间单元的所述索引与所述目标数值的差值有关。
  26. 根据权利要求22至24中任一权利要求所述的第二节点中的方法,其特征在于,所述第二数值等 于与所述第一时间单元的所述索引有关的一个数值除以所述目标数值的结果。
  27. 根据权利要求22至26中任一权利要求所述的第二节点中的方法,其特征在于,参考时间单元是所述M2个候选时间单元中之一,所述目标数值被用于确定所述参考时间单元的索引。
  28. 根据权利要求22至27中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第二信令;
    其中,所述第二信令被用于确定所述目标数值。
PCT/CN2022/106952 2021-07-28 2022-07-21 一种被用于无线通信的节点中的方法和装置 WO2023005781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22848386.3A EP4362535A1 (en) 2021-07-28 2022-07-21 Method and device used in node for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110854261.X 2021-07-28
CN202110854261.XA CN115696379A (zh) 2021-07-28 2021-07-28 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023005781A1 true WO2023005781A1 (zh) 2023-02-02

Family

ID=85058138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106952 WO2023005781A1 (zh) 2021-07-28 2022-07-21 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
EP (1) EP4362535A1 (zh)
CN (2) CN117499958A (zh)
WO (1) WO2023005781A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688349A1 (en) * 2012-07-18 2014-01-22 Alcatel Lucent A method for signaling of control information, and network devices therefor
CN110167186A (zh) * 2018-02-13 2019-08-23 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110234170A (zh) * 2018-03-06 2019-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113115591A (zh) * 2019-11-12 2021-07-13 北京小米移动软件有限公司 Harq-ack传输方法及装置、通信设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688349A1 (en) * 2012-07-18 2014-01-22 Alcatel Lucent A method for signaling of control information, and network devices therefor
CN110167186A (zh) * 2018-02-13 2019-08-23 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110234170A (zh) * 2018-03-06 2019-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113115591A (zh) * 2019-11-12 2021-07-13 北京小米移动软件有限公司 Harq-ack传输方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN117499958A (zh) 2024-02-02
CN115696379A (zh) 2023-02-03
EP4362535A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021082932A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114828232A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023011281A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023236853A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022848386

Country of ref document: EP

Effective date: 20240123

NENP Non-entry into the national phase

Ref country code: DE