WO2021082932A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021082932A1
WO2021082932A1 PCT/CN2020/121054 CN2020121054W WO2021082932A1 WO 2021082932 A1 WO2021082932 A1 WO 2021082932A1 CN 2020121054 W CN2020121054 W CN 2020121054W WO 2021082932 A1 WO2021082932 A1 WO 2021082932A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
frequency domain
time
frequency
Prior art date
Application number
PCT/CN2020/121054
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021082932A1 publication Critical patent/WO2021082932A1/zh
Priority to US17/715,020 priority Critical patent/US20220231802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission scheme and device for feedback information in wireless communication.
  • V2X Vehicle-to-Everything
  • 3GPP has also started standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP has identified and defined 4 Use Case Groups for 5G V2X services, including: Automated Queue Driving (Vehicles Platnooning), Support for Extended Sensors (Extended Sensors), Semi/Full Auto Driving (Advanced Driving) and Remote Driving (Remote Driving).
  • SI Study Item
  • 3GPP RAN#83 plenary meeting it was decided to standardize the WI (Work Item) of NR V2X.
  • NR V2X Compared with the existing LTE V2X system, NR V2X has a notable feature in that it can support multicast and unicast, as well as HARQ (Hybrid Automatic Repeat Request) functions.
  • PSFCH Physical Sidelink Feedback Channel
  • PSFCH Physical Sidelink Feedback Channel
  • HARQ Hybrid Automatic Repeat Request
  • 3GPP has agreed that user equipment (UE, User Equipment) can report the HARQ feedback of the accompanying link (Sidelink) to the base station. The user equipment reports to the base station that the HARQ feedback design of the sidelink requires a solution.
  • UE User Equipment
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • Receive first information the first information is used to determine a target time-frequency resource set, the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol, and the target time-frequency resource set
  • the frequency domain resources included in the resource set belong to the first frequency domain resource pool;
  • the frequency domain resources occupied by the first signal belong to a second frequency domain resource pool, and the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine Reference delay
  • the length of the time interval between the start time of the second multi-carrier symbol and the end time of the reception of the second signal is equal to the reference delay, and the start time of the second multi-carrier symbol is not early At the end time of receiving the second signal;
  • the target time-frequency resource set is used for the transmission of the second information; the time-frequency resource occupied by the first signal is used to determine the second signal Occupied air interface resources; the information carried by the second signal is used to determine the second information, and the sender of the first information is different from the sender of the second signal.
  • the transmission of the second information is determined by the early or late relationship between the first multi-carrier symbol and the second multi-carrier symbol, so that the timing of the HARQ-ACK accompanying the link to send the report to the base station satisfies the user
  • the minimum delay requirement of the equipment takes into account the processing capabilities of the user equipment, thereby reducing the burden and complexity of the user equipment during implementation.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay, and the HARQ-ACK associated with the link is calculated to send a report to the base station
  • the timing relationship between the upstream BWP (Bandwidth Part) and the BWP (Bandwidth Part) of the sidelink (Sidelink) ensure the upstream BWP (Bandwidth Part) and the accompanying chain while the independent configuration of the BWP (Bandwidth Part) of the sidelink can still make the HARQ-ACK of the accompanying link send the report to the base station timing to meet the processing capacity of the user equipment, avoid the HARQ-ACK accompanying the link
  • the report fails to be sent to the base station, which reduces the implementation complexity of the user equipment.
  • the above method is characterized in that when the first multicarrier symbol is earlier than the second multicarrier symbol, the first node device may abandon sending the second information, or the The first node device may ignore the first information, or the first node device may think that the target time-frequency resource set is invalid.
  • the above method is characterized in that the reference delay is not less than a first delay, and the length of the conversion time between receiving and sending of the first node is used to determine the first delay .
  • the above method is characterized in that the reference delay is not less than the second delay; when the first frequency domain resource pool and the second frequency domain resource pool are the same, the second The delay is equal to 0; when the first frequency domain resource pool and the second frequency domain resource pool are not the same, the second delay is greater than 0, and the first time-frequency resource pool includes in the frequency domain One of the subcarrier interval of one subcarrier and the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain is used to determine the second delay.
  • the above method is characterized in that the reference delay is not less than the third delay, and the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is equal to the first subcarrier.
  • Carrier spacing, the subcarrier spacing of one subcarrier included in the second time-frequency resource pool in the frequency domain is equal to the second subcarrier spacing, and the first subcarrier spacing is used to determine the first characteristic delay.
  • the second subcarrier interval is used to determine a second characteristic delay, and one of the first characteristic delay and the second characteristic delay is used to determine the third delay.
  • the above method is characterized in that the second signal carries physical layer information, and the physical layer information carried by the second signal is used to determine whether the first signal is received correctly, and the The information format adopted by the physical layer information carried by the second signal is used to determine the third delay.
  • the third delay is determined by the information format adopted by the physical layer information carried by the second signal, and then the reference delay is determined, taking into account different SFI (Sidelink Feedback Information) formats
  • SFI Systemlink Feedback Information
  • the processing complexity of the user equipment of (Format) is different, especially the processing complexity of the user equipment is very different between sequence decorrelation and channel decoding, so that the system can support multiple different SFI formats.
  • the timing at which the HARQ-ACK accompanying the link sends the report to the base station can still meet the processing capability requirements of the user equipment.
  • the above method is characterized in that it includes:
  • the first signaling is used to determine the time-frequency resources occupied by the first signal, and the first signaling is used to determine the start time of the first multi-carrier symbol and the first The length of the time interval between the end of the signaling reception.
  • the above method is characterized in that it includes:
  • the third information is used to determine the subcarrier spacing of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool
  • the fourth information is used to determine The second frequency domain resource pool and the subcarrier interval of one subcarrier included in the second frequency domain resource pool.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the first signaling is used to indicate the time-frequency resources occupied by the first signal, the frequency domain resources occupied by the first signal belong to a second frequency domain resource pool, and the first frequency domain resource pool and The frequency domain relationship between the second frequency domain resource pool is used to determine the reference delay; the time-frequency resource occupied by the first signal is used to indicate the air interface resource occupied by the second signal; the second multi-carrier symbol The length of the time interval between the start time of the second signal and the end time of the reception of the second signal is equal to the reference delay, and the start time of the second multi-carrier symbol is no earlier than the end of the reception of the second signal.
  • the target time-frequency resource set is used for the transmission of the second information; the information carried by the second signal is used to determine the second information, and the sender of the second signal is the first A node device other than the second node device; the first multi-carrier symbol is no earlier than the second multi-carrier symbol.
  • the above method is characterized in that the reference delay is not less than the first delay, and the length of the conversion time between the reception and transmission of the second information is used to determine the first delay. A delay.
  • the above method is characterized in that the reference delay is not less than the second delay; when the first frequency domain resource pool and the second frequency domain resource pool are the same, the second The delay is equal to 0; when the first frequency domain resource pool and the second frequency domain resource pool are not the same, the second delay is greater than 0, and the first time-frequency resource pool includes in the frequency domain One of the subcarrier interval of one subcarrier and the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain is used to determine the second delay.
  • the above method is characterized in that the reference delay is not less than the third delay, and the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is equal to the first subcarrier.
  • Carrier spacing, the subcarrier spacing of one subcarrier included in the second time-frequency resource pool in the frequency domain is equal to the second subcarrier spacing, and the first subcarrier spacing is used to determine the first characteristic delay.
  • the second subcarrier interval is used to determine a second characteristic delay, and one of the first characteristic delay and the second characteristic delay is used to determine the third delay.
  • the above method is characterized in that the second signal carries physical layer information, and the physical layer information carried by the second signal is used to determine whether the first signal is received correctly, and the The information format adopted by the physical layer information carried by the second signal is used to determine the third delay.
  • the above method is characterized in that the first signaling is used to indicate the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling length.
  • the above method is characterized in that it further includes:
  • the third information is used to indicate the subcarrier interval of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool
  • the fourth information is used to indicate all The second frequency domain resource pool and the subcarrier interval of one subcarrier included in the second frequency domain resource pool.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving first information, the first information being used to determine a target time-frequency resource set, and the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol,
  • the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the first transmitter transmits a first signal, the frequency domain resources occupied by the first signal belong to a second frequency domain resource pool, and the frequency domain between the first frequency domain resource pool and the second frequency domain resource pool The relationship is used to determine the reference delay;
  • the second receiver receives the second signal.
  • the length of the time interval between the start time of the second multi-carrier symbol and the end time of the second signal is equal to the reference delay, and the time interval of the second multi-carrier symbol The start time is no earlier than the end time of receiving the second signal;
  • a second transmitter when the first multi-carrier symbol is not earlier than the second multi-carrier symbol, sending second information
  • the target time-frequency resource set is used for the transmission of the second information; the time-frequency resource occupied by the first signal is used to determine the second signal Occupied air interface resources; the information carried by the second signal is used to determine the second information, and the sender of the first information is different from the sender of the second signal.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the third transmitter sends first information and first signaling.
  • the first information is used to indicate a target time-frequency resource set.
  • the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first A multi-carrier symbol, the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the third receiver receives the second information
  • the first signaling is used to indicate the time-frequency resources occupied by the first signal, the frequency domain resources occupied by the first signal belong to a second frequency domain resource pool, and the first frequency domain resource pool and The frequency domain relationship between the second frequency domain resource pool is used to determine the reference delay; the time-frequency resource occupied by the first signal is used to indicate the air interface resource occupied by the second signal; the second multi-carrier symbol The length of the time interval between the start time of the second signal and the end time of the reception of the second signal is equal to the reference delay, and the start time of the second multi-carrier symbol is no earlier than the end of the reception of the second signal.
  • the target time-frequency resource set is used for the transmission of the second information; the information carried by the second signal is used to determine the second information, and the sender of the second signal is the first A node device other than the second node device; the first multi-carrier symbol is no earlier than the second multi-carrier symbol.
  • the method in this application has the following advantages:
  • the timing of the HARQ-ACK report sent to the base station with the link meets the minimum delay requirement of the user equipment, and the processing capability of the user equipment is taken into account, thereby reducing the burden on the user equipment during implementation And complexity.
  • the method in this application considers the uplink BWP (Bandwidth Part, bandwidth part) and the BWP (Bandwidth Part, bandwidth) of the companion link (Sidelink) when calculating the timing relationship of the HARQ-ACK report sent to the base station on the accompanying link Part) to ensure the independent configuration of the uplink BWP (Bandwidth Part) and the BWP (Bandwidth Part) of the accompanying link (Sidelink), while still enabling the HARQ-ACK direction of the accompanying link
  • the timing of sending the report by the base station meets the processing capability of the user equipment, avoids the failure of the HARQ-ACK accompanying the link to send the report to the base station, and reduces the implementation complexity of the user equipment.
  • the method in this application considers the time required for the transmission and reception conversion of user equipment that is not capable of full duplex (Full Duplex), and further avoids the failure of the HARQ-ACK accompanying the link to send a report to the base station and reduces the complexity of the user equipment implementation degree.
  • the method in this application takes into account the different processing complexity of user equipment for different SFI (Sidelink Feedback Information) formats (Format), especially the processing complexity of user equipment between sequence decorrelation and channel decoding This makes it possible for the system to support multiple different SFI formats, and the timing of the HARQ-ACK that accompanies the link to send the report to the base station can still meet the processing capability requirements of the user equipment.
  • SFI Systemlink Feedback Information
  • Fig. 1 shows a flow chart of the first information, the first signal, the second signal and the second information according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first node device and a second node device according to an embodiment of the present application
  • Fig. 5 shows a schematic diagram of a first node device and another user equipment according to an embodiment of the present application
  • Fig. 6 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Fig. 7 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the relationship between the first multi-carrier symbol and the second multi-carrier symbol according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the conversion time length between reception and transmission of a first node device according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a second delay according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the first characteristic delay and the second characteristic delay according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of the information format adopted by the physical layer information carried by the second signal according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first information, the first signal, the second signal, and the second information according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step. It should be particularly emphasized that the order of each box in the figure does not represent the time sequence relationship between the steps shown.
  • the first node device in this application receives first information in step 101, and the first information is used to determine a target time-frequency resource set, and the target time-frequency resource set is included in the time domain.
  • the earliest multi-carrier symbol is the first multi-carrier symbol, and the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the first signal is sent, and the first signal is occupied
  • the frequency domain resources of belongs to the second frequency domain resource pool, and the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay;
  • the second signal is received ,
  • the length of the time interval between the start time of the second multi-carrier symbol and the end time of the reception of the second signal is equal to the reference delay, and the start time of the second multi-carrier symbol is not earlier than the first Second signal reception end time; in step 104, when the first multi-carrier symbol is not earlier than the second multi-carrier symbol, the second information is sent
  • the first information is high-level information.
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high-level signaling.
  • the first information includes all or part of a physical layer signaling.
  • the first information is transmitted through an air interface.
  • the first information is transmitted through a wireless interface.
  • the first information is sent by the second node device in this application to the first node device in this application.
  • the first information is transmitted through a downlink (Downlink, DL).
  • Downlink Downlink
  • the first information is transmitted through a Uu port.
  • the first information is transmitted inside the first node device in this application.
  • the first information is transferred from the upper layer of the first node device to the physical layer of the first node device in this application.
  • the first information is configured (Configured).
  • the first information is pre-configured (Pre-configured).
  • the first information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the first information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information is transmitted through PDCCH (Physical Downlink Control Channel, narrowband physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, narrowband physical downlink control channel
  • the first information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first information is broadcast.
  • the first information is unicast.
  • the first information is cell specific (Cell Specific).
  • the first information is UE-specific.
  • the first information is user equipment group-specific (UE group-specific).
  • the first information is carried by the first signaling in this application.
  • the first information is carried by signaling other than the first signaling in this application.
  • the first information includes a field in the first signaling in this application.
  • the first information includes "PUCCH-ResourceSet” IE (Information Element).
  • the first information includes "pucch-ResourceCommon” IE (Information Element).
  • the above sentence "the first information is used to determine the target time-frequency resource set” includes the following meaning: when the first information is used by the first node device in this application to determine the target Frequency resource collection.
  • the above sentence "the first information is used to determine the target time-frequency resource set” includes the following meaning: the first information is used to directly indicate the target time-frequency resource set.
  • the above sentence "the first information is used to determine the target time-frequency resource set” includes the following meaning: the first information is used to indirectly indicate the target time-frequency resource set.
  • the above sentence "the first information is used to determine the target time-frequency resource set” includes the following meaning: the first information is used to explicitly indicate the target time-frequency resource set.
  • the above sentence "the first information is used to determine the target time-frequency resource set” includes the following meaning: the first information is used to implicitly indicate the target time-frequency resource set.
  • the target time-frequency resource set is reserved for PUCCH (Physical Uplink Control Channel) transmission.
  • PUCCH Physical Uplink Control Channel
  • the target time-frequency resource set is reserved for UCI (Uplink Control Information).
  • the target time-frequency resource set is reserved for sidelink (Sidelink) HARQ feedback.
  • the target time-frequency resource set includes a positive integer number of REs (Resource Elements).
  • the target time-frequency resource set includes continuous OFDM symbols in the entire time domain in the time domain.
  • the target time-frequency resource set includes a positive integer greater than 1 in the time domain of discrete OFDM symbols in the time domain.
  • the target time-frequency resource set includes a positive integer number of PRBs (Physical Resource Block) in the frequency domain.
  • PRBs Physical Resource Block
  • the target time-frequency resource set includes continuous frequency-domain resources in the frequency domain.
  • the target time-frequency resource set includes discrete frequency-domain resources in the frequency domain.
  • the target time-frequency resource set includes frequency-hopping frequency-domain resources in the frequency domain.
  • the first multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the first multiple carrier symbol is a DFT-s-OFDM (Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • DFT-s-OFDM Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the first multi-carrier symbol includes a cyclic prefix (CP, Cyclic Prefix).
  • CP Cyclic Prefix
  • the first multi-carrier symbol is an OFDM symbol corresponding to a sub-carrier interval of one sub-carrier in the first frequency domain resource pool.
  • the first multi-carrier symbol is a DFT-s-OFDM symbol corresponding to a sub-carrier interval of one sub-carrier in the first frequency domain resource pool.
  • the first multi-carrier symbol is one multi-carrier included in the target time-frequency resource set in the time domain. symbol.
  • any multiple carrier symbol included in the target time-frequency resource set in the time domain is an OFDM symbol.
  • any multi-carrier symbol included in the target time-frequency resource set in the time domain is a DFT-s-OFDM symbol.
  • the sentence “the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol” includes the following meaning: the start time of the first multi-carrier symbol is not too late At the start time of any multi-carrier symbol included in the target time-frequency resource set in the time domain.
  • the sentence “the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol” includes the following meaning: the target time-frequency resource includes more than 1 in the time domain A positive integer number of multi-carrier symbols, the start time of the first multi-carrier symbol is earlier than the start of any multi-carrier symbol other than the first multi-carrier symbol included in the target time-frequency resource set in the time domain The beginning moment.
  • the first frequency domain resource pool is a BWP (Band with Part).
  • the first frequency domain resource pool includes a positive integer number of continuous frequency domain PRBs (Physical Resource Block).
  • the first frequency domain resource pool includes a positive integer number of continuous frequency domain PRBs (Physical Resource Block).
  • the first frequency domain resource pool includes continuous frequency domain resources.
  • the first frequency domain resource pool is a frequency domain resource included in a PUCCH resource set (Resource Set).
  • the first frequency domain resource pool is an uplink (UL, Uplink) BWP.
  • the first frequency domain resource pool includes frequency domain resources other than the frequency domain resources included in the target time-frequency resource set.
  • the first frequency domain resource pool only includes frequency domain resources included in the target time-frequency resource set.
  • the sub-carrier spacing (SCS) of the sub-carriers included in the first frequency domain resource pool are all equal.
  • each subcarrier (Subcarrier) included in the frequency domain in the target time-frequency resource set is a subcarrier in the first frequency domain resource pool.
  • the above sentence "the first information is used to determine the target time-frequency resource set” includes the following meaning: the first information is used to determine the target from the first frequency domain resource pool. The frequency domain resources included in the frequency resource set, and the first information is used to indicate the start OFDM symbol included in the target time-frequency resource set and the number of OFDM symbols included.
  • the first signal is a baseband signal.
  • the first signal is a radio frequency signal.
  • the first signal is transmitted through an air interface.
  • the first signal is transmitted through a wireless interface.
  • the first signal is transmitted through the PC5 interface.
  • the first signal is transmitted through a Uu interface.
  • the first signal is transmitted through a side link (Sidelink).
  • the first signal is used to carry a transport block (TB, Transport Block) accompanying the link.
  • TB transport block
  • the first signal is transmitted through SL-SCH (Sidelink Shared Channel).
  • SL-SCH Segmentlink Shared Channel
  • the first signal is transmitted through PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • the first signal includes a reference signal.
  • the first signal includes PSSCH and DMRS (Demodulation Reference Signal, demodulation reference signal).
  • PSSCH and DMRS (Demodulation Reference Signal, demodulation reference signal).
  • the first signal passes through PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the first signal carries SCI (Sidelink Control Information, accompanying link control information).
  • the first signal is broadcast (Broadcast).
  • the first signal is unicast.
  • the first signal is multicast (Groupcast)
  • Transport Block (TB) is used to generate the first signal.
  • a transport block (TB) and a reference signal are used to generate the first signal.
  • all or part of the bits in a transport block are sequentially subjected to CRC calculation (CRC Calculation), channel coding (Channel Coding), rate matching (Rate Matching), and scrambling (Scrambling) , Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual to Physical Resource Blocks), OFDM baseband signal generation (OFDM Baseband Signal Generation), and modulation and upconversion (Modulation and Upconversion) to obtain the first signal.
  • CRC Calculation CRC Calculation
  • Channel Coding Channel coding
  • Rate Matching Rate Matching
  • Scmbling scrambling
  • Modulation Modulation
  • Layer Mapping Antenna Port Mapping
  • Mapping to Virtual Resource Blocks Mapping from Virtual to Physical Resource Blocks
  • OFDM baseband signal generation OFDM Baseband Signal Generation
  • Modulation and Upconversion Modulation and Upconversion
  • all or part of the bits in a transport block are sequentially subjected to CRC calculation (CRC Calculation), channel coding (Channel Coding), rate matching (Rate Matching), and scrambling (Scrambling) , Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual to Physical Resource Blocks), OFDM Baseband Signal Generation (OFDM Baseband Signal Generation) obtains the first signal.
  • CRC Calculation CRC Calculation
  • channel Coding Channel coding
  • Rate Matching Rate Matching
  • Scmbling scrambling
  • Modulation Modulation
  • Layer Mapping Antenna Port Mapping
  • Mapping to Virtual Resource Blocks Mapping from Virtual to Physical Resource Blocks
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • all or part of the bits in a transport block are sequentially subjected to CRC calculation (CRC Calculation), code block segmentation and code block CRC attachment (Code Block Segmentation and Code Block CRC attachment) , Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping , Mapping to Virtual Resource Blocks, Mapping from Virtual to Physical Resource Blocks, OFDM Baseband Signal Generation, Modulation and Upconversion Upconversion) to obtain the first signal.
  • CRC calculation CRC Calculation
  • code block segmentation and code block CRC attachment Code Block Segmentation and Code Block CRC attachment
  • Channel Coding Rate Matching
  • Code Block Concatenation Code Block Concatenation
  • Scrambling Modulation
  • Layer Mapping Antenna Port Mapping
  • Mapping to Virtual Resource Blocks Mapping from Virtual to Physical Resource Blocks
  • OFDM Baseband Signal Generation Modulation and Upconversion Upconversion
  • all or part of the bits in a transport block are sequentially subjected to CRC calculation (CRC Calculation), code block segmentation and code block CRC attachment (Code Block Segmentation and Code Block CRC attachment) , Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping , Mapping to virtual resource blocks (Mapping to Virtual Resource Blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from Virtual to Physical Resource Blocks), and OFDM baseband signal generation (OFDM Baseband Signal Generation) to obtain the first signal.
  • CRC Calculation CRC Calculation
  • code block segmentation and code block CRC attachment Code Block Segmentation and Code Block CRC attachment
  • Channel Coding Rate Matching
  • Code Block Concatenation Code Block Concatenation
  • Scrambling Modulation
  • Layer Mapping Antenna Port Mapping
  • Mapping to virtual resource blocks Mapping to Virtual Resource Blocks
  • mapping from virtual resource blocks to physical resource blocks Mapping from Virtual to Physical Resource Blocks
  • CRC Calculation CRC Calculation
  • Channel Coding Channel Coding
  • Rate Matching Rate Matching
  • Scambling Scrambling
  • Modulation mapping to physical resources (Mapping to Physical Resources), OFDM baseband signal generation (OFDM Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first signal.
  • OFDM baseband signal generation OFDM Baseband Signal Generation
  • Modulation and Upconversion Modulation and Upconversion
  • CRC Calculation CRC Calculation
  • Channel Coding Channel Coding
  • Rate Matching Rate Matching
  • Scambling Scrambling
  • Modulation mapping to physical resources (Mapping to Physical Resources), and OFDM baseband signal generation (OFDM Baseband Signal Generation) to obtain the first signal.
  • the frequency domain resource occupied by the first signal belongs to the resource pool of the accompanying link (Resource Pool).
  • the frequency domain resource occupied by the first signal includes a positive integer number of PRBs (Physical Resource Block, physical resource block).
  • PRBs Physical Resource Block, physical resource block.
  • the frequency domain resource occupied by the first signal includes a positive integer number of subchannels (Subchannel).
  • the frequency domain resources occupied by the first signal are continuous in the frequency domain.
  • the frequency domain resources occupied by the first signal are discrete in the frequency domain.
  • the second frequency domain resource pool is a BWP (Band with Part).
  • the second frequency domain resource pool includes a positive integer number of continuous frequency domain PRBs (Physical Resource Block).
  • the second frequency domain resource pool includes a positive integer number of continuous frequency domain PRBs (Physical Resource Block).
  • the second frequency domain resource pool includes continuous frequency domain resources.
  • the second frequency domain resource pool is a resource pool accompanied by a link (Resource Pool).
  • the second frequency domain resource pool is a sidelink (Sidelink) BWP.
  • the second frequency domain resource pool includes frequency domain resources other than the frequency domain resources occupied by the first signal.
  • the subcarrier spacing (SCS) of the subcarriers included in the second frequency domain resource pool are all equal.
  • the subcarrier spacing (SCS) of any subcarrier included in the second frequency domain resource pool and the subcarrier spacing (SCS) of any subcarrier included in the first frequency domain resource pool ( SCS) are equal.
  • the subcarrier interval (SCS) of one subcarrier in the second frequency domain resource pool is not equal to the subcarrier interval (SCS) of one subcarrier in the first frequency domain resource pool.
  • the second frequency domain resource pool only includes frequency domain resources occupied by the first signal.
  • each subcarrier (Subcarrier) included in the frequency domain resource occupied by the first signal is a subcarrier in the second frequency domain resource pool.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to whether the first frequency domain resource pool and the second frequency domain resource pool are the same.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: SLIV (Start and Length Indicator Value) of the first frequency domain resource pool, start length indication Value) and SLIV (Start and Length Indicator Value) of the second frequency domain resource pool are the same.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: the frequency domain start position and bandwidth of the first frequency domain resource pool and the first frequency domain resource pool
  • the frequency domain start position and bandwidth of the two frequency domain resource pools are the same.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: the location bandwidth parameter ("locationAndBandwidth") of the first frequency domain resource pool and the Whether the location bandwidth parameters ("locationAndBandwidth") of the second frequency domain resource pool are the same.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: the lowest frequency and bandwidth included in the first frequency domain resource pool and the second frequency domain resource pool. Whether the lowest frequency domain included in the frequency domain resource pool and the bandwidth correspond to each other are the same.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: the subcarrier spacing (SCS) of one subcarrier included in the first frequency domain resource pool ) Is the same as the subcarrier spacing (SCS) of one subcarrier included in the second frequency domain resource pool.
  • SCS subcarrier spacing
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: the center frequency point of the first frequency domain resource pool and the second frequency domain resource Whether the center frequency of the pool is the same.
  • the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool refers to: the center frequency point of the first frequency domain resource pool and the second frequency domain resource The frequency domain interval between the center frequency points of the pool in the frequency domain.
  • the above sentence “the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay” includes the following meaning: the first frequency domain resource pool The frequency domain relationship with the second frequency domain resource pool is used by the first node device in this application to determine the reference delay.
  • the above sentence “the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay” includes the following meaning: the first frequency domain resource pool The frequency domain relationship with the second frequency domain resource pool is used by the second node device in this application to determine the reference delay.
  • the above sentence “the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay” includes the following meaning: the first frequency domain resource pool The positional relationship in the frequency domain with the second frequency domain resource pool is used to determine the reference delay.
  • the sentence “the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay” includes the following meanings: the reference delay and the The frequency domain interval length between the center frequency point of the first frequency domain resource pool and the center frequency point of the second frequency domain resource pool is in a linear relationship.
  • the sentence “the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay” includes the following meanings: the reference delay and the The length of the frequency domain interval between the lowest frequency of the first frequency domain resource pool and the lowest frequency of the second frequency domain resource pool has a linear relationship.
  • the sentence “the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay” refers to: the first frequency domain resource pool and The frequency domain relationship between the second frequency domain resource pool is used to determine the second delay in this application.
  • the unit of the reference delay is seconds.
  • the unit of the reference delay is milliseconds (ms).
  • the reference delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the reference delay is equal to the time length of a positive integer number of slots (Slot).
  • the reference delay is represented by the number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the reference delay is represented by the number of slots (Slot).
  • the reference delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the first frequency domain resource pool The sub-carrier spacing of one sub-carrier.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the reference delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the second frequency domain resource pool The sub-carrier spacing of one sub-carrier.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the reference delay is equal to the time length of an OFDM symbol other than the first OFDM (Orthogonal Frequency Division Multiplexing) symbol in a positive integer number of time slots.
  • the reference delay is equal to the time length of a positive integer number of time slots (Slot), and the time slot corresponds to the subcarrier spacing of one subcarrier included in the first frequency domain resource pool.
  • the reference delay is equal to the time length of a positive integer number of time slots (Slots), and the time slot corresponds to the subcarrier spacing of one subcarrier included in the second frequency domain resource pool.
  • the reference delay is related to the waveform (Waveform) adopted by the signal carrying the second information.
  • the reference delay is related to whether the signal carrying the second information adopts an OFDM waveform or a DFT-s-OFDM waveform (Waveform).
  • the reference delay is related to whether Transform Precoding (Transform Precoding) is used when generating the signal carrying the second information.
  • the second signal is a baseband signal.
  • the second signal is a radio frequency signal.
  • the second signal is transmitted through an air interface.
  • the second signal is transmitted through a wireless interface.
  • the second signal is transmitted through the PC5 interface.
  • the second signal is transmitted through the Uu interface.
  • the second signal is transmitted through a side link (Sidelink).
  • the second signal is transmitted through PSFCH (Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel
  • all or part of a characteristic sequence is used to generate the second signal.
  • all or part of a bit block is used to generate the second signal.
  • all or part of the ZC (Zadoff-Chu) sequence is used to generate the second signal.
  • the second signal carries all or part of SFCI (Sidelink Feedback Control Information).
  • SFCI Segment Feedback Control Information
  • the second signal carries CSI (Channel Status Information) accompanying the link.
  • CSI Channel Status Information
  • the second signal carries a CQI (Channel Quality Indicator, channel quality indicator) accompanying the link.
  • CQI Channel Quality Indicator, channel quality indicator
  • the second signal carries an RI (Rank Indicator) accompanying the link.
  • RI Rank Indicator
  • the second signal carries an RSRP (Reference Signal Received Power) report accompanying the link.
  • RSRP Reference Signal Received Power
  • the second signal carries an RSRQ (Reference Signal Received Quality) report accompanying the link.
  • RSRQ Reference Signal Received Quality
  • the second signal carries an L1-RSRP (Layer 1-Reference Signal Received Power) report accompanying the link.
  • L1-RSRP Layer 1-Reference Signal Received Power
  • the second signal carries HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) feedback (Feedback).
  • HARQ Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request
  • the second signal carries HARQ (Hybrid Automatic Repeat Request) NACK (Non-Acknowledge) feedback (Feedback).
  • HARQ Hybrid Automatic Repeat Request
  • NACK Non-Acknowledge
  • the second signal is used to determine whether the first signal is received correctly.
  • the second signal is used to indicate whether the first signal is received correctly.
  • the second signal is used to indicate that the first signal is not received correctly.
  • the second signal carries HARQ (Hybrid Automatic Repeat Request) feedback of the first signal.
  • HARQ Hybrid Automatic Repeat Request
  • the second signal carries HARQ (Hybrid Automatic Repeat Request) NACK feedback (Feedback) of the first signal.
  • HARQ Hybrid Automatic Repeat Request
  • NACK feedback Feedback
  • the second multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the second multiple carrier symbol is a DFT-s-OFDM (Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-s-OFDM Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the second multi-carrier symbol includes a cyclic prefix (CP, Cyclic Prefix).
  • the second multi-carrier symbol is an OFDM symbol corresponding to a sub-carrier interval of one sub-carrier in the first frequency domain resource pool.
  • the second multi-carrier symbol is a DFT-s-OFDM symbol corresponding to a sub-carrier interval of one sub-carrier in the first frequency domain resource pool.
  • the second multi-carrier symbol is an OFDM symbol corresponding to a sub-carrier interval of one sub-carrier in the second frequency domain resource pool.
  • the second multi-carrier symbol is a DFT-s-OFDM symbol corresponding to a sub-carrier interval of one sub-carrier in the second frequency domain resource pool.
  • the first multi-carrier symbol and the second multi-carrier symbol correspond to the same subcarrier spacing (SCS, Subcarrier Spacing).
  • SCS subcarrier Spacing
  • the second multi-carrier symbol and the first multi-carrier symbol are the same.
  • the second multi-carrier symbol and the first multi-carrier symbol are different.
  • the second multi-carrier symbol is a virtual multi-carrier symbol.
  • the second multi-carrier symbol is a multi-carrier symbol actually occupied by the first node device.
  • the second multi-carrier symbol is not occupied by the first node device.
  • the second multi-carrier symbol is a multi-carrier symbol used as a time reference.
  • the start time of the second multi-carrier symbol is the start time of the CP in the second multi-carrier symbol.
  • the start time of the second multi-carrier symbol includes the influence of timing advance (Timing Advance).
  • the receiving end time of the second signal is the receiving end time of the latest OFDM symbol occupied by the second signal.
  • the receiving end time of the second signal is the receiving end time of the slot to which the latest OFDM symbol occupied by the second signal belongs.
  • the start time of the second multi-carrier symbol is later than the end time of reception of the second signal.
  • the start time of the second multi-carrier symbol is the same as the end time of reception of the second signal.
  • the above sentence "when the first multi-carrier symbol is not earlier than the second multi-carrier symbol, send the second signaling" means: when the first multi-carrier symbol is not Sending the second information earlier than the start time of the second multi-carrier symbol.
  • the above sentence "when the first multi-carrier symbol is not earlier than the second multi-carrier symbol, send the second signaling" means: when the end time of the first multi-carrier symbol is not early Sending the second information at the end time of the second multi-carrier symbol.
  • the second information includes physical layer information.
  • the second information includes high-level information.
  • the second information includes part or all of UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the second information includes one or more fields in UCI.
  • the second information is transmitted through PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the second information is transmitted through PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second information is piggybacked through PUSCH (Physical Uplink Shared Channel) transmission.
  • PUSCH Physical Uplink Shared Channel
  • the second information is through UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the second information includes all or part of bits in the HARQ-ACK codebook (Codebook).
  • the second information includes a HARQ report (Report) of a sidelink (Sidelink).
  • the second information includes information about whether the first signal is received correctly.
  • the second information includes information about whether the first signal is not received correctly.
  • the second information includes information about whether the transmission block (TB) carried by the first signal needs to be retransmitted.
  • the second information includes information about whether the transmission block (TB) carried by the first signal needs to be rescheduled.
  • the second information includes all or part of the bits in the CSI feedback.
  • the second information is carried by a baseband signal.
  • the second information is carried by radio frequency signals.
  • the second information is transmitted through an air interface.
  • the second information is transmitted through a wireless interface.
  • the second information is transmitted through a Uu interface.
  • the second information is transmitted through an uplink (Uplink).
  • Uplink uplink
  • the second information is transferred from the physical layer of the first node device to the upper layer of the first node device.
  • the second information is transmitted inside the first node device.
  • the HARQ feedback (Feedback) accompanying the link (Sidelink) is used to determine the second information.
  • sidelink CSI feedback is used to determine the second information.
  • sidelink PHR feedback is used to determine the second information.
  • the above sentence "the target time-frequency resource set is used for the transmission of the second information" includes the following meaning: a wireless signal occupying the target time-frequency resource set carries the second information.
  • the above sentence "the target time-frequency resource set is used for the transmission of the second information" includes the following meaning: a channel carrying the second information occupies the target time-frequency resource set.
  • the above sentence "the target time-frequency resource set is used for the transmission of the second information” includes the following meaning: the target time-frequency resource set is used by the first node device in this application The transmission of the second information.
  • the above sentence “the set of target time-frequency resources is used for the transmission of the second information” includes the following meaning: when the channel carrying the second information (Channel) occupies time-frequency resources belonging to the target Frequency resource collection.
  • the air interface resources occupied by the second signal include time-frequency resources occupied by the second signal and code domain resources occupied by the second signal.
  • the air interface resources occupied by the second signal include time-frequency resources occupied by the second signal.
  • the air interface resources occupied by the second signal include code domain resources occupied by the second signal.
  • the air interface resources occupied by the second signal include time-frequency resources occupied by the second signal and sequence resources for generating the second signal.
  • the air interface resources occupied by the second signal include sequence resources for generating the second signal.
  • the sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is The first node in this application is used to determine the air interface resources occupied by the second signal.
  • the sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is Used to determine the time-frequency resource occupied by the second signal.
  • the sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is Used to determine code domain resources occupied by the second signal.
  • the sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is It is used to determine the sequence resource for generating the second signal.
  • the sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is It is used to determine the time-frequency resource occupied by the second signal and the sequence resource for generating the second signal.
  • the sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is It is used to determine the time-frequency resource occupied by the second signal and the code domain resource occupied by the second signal.
  • the above sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is based on The mapping relationship is used to determine the air interface resources occupied by the second signal.
  • the above sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is based on The corresponding relationship is used to determine the air interface resources occupied by the second signal.
  • the above sentence “the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal” includes the following meaning: the time-frequency resource occupied by the first signal is based on The implicit relationship is used to determine the air interface resources occupied by the second signal.
  • the above sentence "the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal" includes the following meanings: the air interface resource occupied by the second signal and the air interface resource occupied by the second signal.
  • the time-frequency resource occupied by the first signal is associated (Association).
  • the above sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the second information includes the information carried by the second signal.
  • the sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the second information duplicates the information carried by the second signal.
  • the sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the second signal is used to determine whether the first signal is received correctly, The second information includes an indication of whether the first signal is received correctly.
  • the above sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the second information is the same as the information carried by the second signal.
  • the sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the second information and the HARQ-ACK information carried by the second signal are the same.
  • the above sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the second information includes HARQ-ACK information carried by the second signal.
  • the sentence "information carried by the second signal is used to determine the second information" includes the following meaning: the information carried by the second signal is used to generate the second information.
  • the above sentence "the information carried by the second signal is used to determine the second information” includes the following meaning: the information carried by the second signal is used by the first node in this application The device is used to determine the second information.
  • the sender of the first information is a base station device.
  • the sender of the first information is TRP (Transmission Reception Point, sending and receiving node).
  • the sender of the first information is a network device.
  • the sender of the first information is gNB.
  • the sender of the first information is an eNB.
  • the sender of the first information is User Equipment (UE, User Equipment).
  • UE User Equipment
  • the sender of the first information is a Road Side Unit (RSU, Road Side Unit).
  • RSU Road Side Unit
  • the sender of the first information is the first node device in this application.
  • the sender of the first information is the second node device in this application.
  • the sender of the second signal is a base station device.
  • the sender of the second signal is a network device.
  • the sender of the second signal is User Equipment (UE, User Equipment).
  • UE User Equipment
  • the sender of the second signal is a Road Side Unit (RSU, Road Side Unit).
  • RSU Road Side Unit
  • the sender of the second signal is a node device other than the second node device in this application.
  • the sender of the second signal is a vehicle-mounted unit.
  • the above sentence “the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the first information and the second signal are transmitted through different air interfaces.
  • the above sentence “the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the first information and the second signal are transmitted through different links.
  • the above sentence “the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the first information is transmitted through the Uu interface, and the second signal is transmitted through the PC5 interface transmission.
  • the above sentence "the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the first information is transmitted through the downlink (Downlink), and the second The signal is transmitted through the sidelink.
  • the above sentence "the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the sender of the first information and the sender of the second signal are not the same. Non-co-located.
  • the above sentence "the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the sender of the first information and the sender of the second signal The node types are not the same.
  • the sentence “the sender of the first information and the sender of the second signal are not the same” includes the following meaning: the sender of the first information is a base station device, and the sender of the second signal The sender is the user device.
  • the above sentence "the sender of the first information is different from the sender of the second signal” includes the following meaning: the sender of the first information is gNB/eNB, and the second signal The sender is RSU.
  • it also includes:
  • the second signaling is used to indicate the time-frequency resources occupied by the first signal and the modulation and coding scheme (MCS, Modulation Coding Scheme) used by the first signal.
  • MCS Modulation Coding Scheme
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • Figure 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet-switched streaming service.
  • the UE201 corresponds to the first node device in this application.
  • the UE 201 supports transmission in the companion link.
  • the UE201 supports a PC5 interface.
  • the UE201 supports the Internet of Vehicles.
  • the UE201 supports V2X services.
  • the gNB201 corresponds to the second node device in this application.
  • the gNB201 supports the Internet of Vehicles.
  • the gNB201 supports V2X services.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture used for the user plane 350 and the control plane 300.
  • FIG. 3 uses three layers to show the vehicle-mounted device or vehicle-mounted communication module used in the first node device (UE, gNB or V2X) ) And a second node device (gNB, a vehicle-mounted device or a vehicle-mounted communication module in a UE or V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node device and the second node device through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-zone movement support between the second node device and the first node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides The header of the upper layer data packet is compressed to reduce the radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (For example, remote UE, server, etc.) at the application layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node device in this application.
  • the first information in this application is generated in the RRC306.
  • the first information in this application is generated in the MAC302 or MAC352.
  • the first information in this application is generated in the PHY301 or PHY351.
  • the first signal in this application is generated in the RRC306.
  • the first signal in this application is generated in the MAC302 or MAC352.
  • the first signal in this application is generated in the PHY301 or PHY351.
  • the second signal in this application is generated in the RRC306.
  • the second signal in this application is generated in the MAC302 or MAC352.
  • the second signal in this application is generated in the PHY301 or PHY351.
  • the second information in this application is generated in the RRC306.
  • the second information in this application is generated in the MAC302 or MAC352.
  • the second information in this application is generated in the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated in the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the third information in this application is generated in the RRC306.
  • the third information in this application is generated in the MAC302 or MAC352.
  • the third information in this application is generated in the PHY301 or PHY351.
  • the fourth information in this application is generated in the RRC306.
  • the fourth information in this application is generated in the MAC302 or MAC352.
  • the fourth information in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first node device and a second node device according to the present application, as shown in FIG. 4.
  • the first node device (450) may include a controller/processor 490, a data source/buffer 480, a receiving processor 452, a transmitter/receiver 456, and a transmitting processor 455.
  • the transmitter/receiver 456 includes an antenna. 460.
  • the second node device (410) may include a controller/processor 440, a data source/buffer 430, a receiving processor 412, a transmitter/receiver 416, and a transmitting processor 415.
  • the transmitter/receiver 416 includes an antenna. 420.
  • upper layer packets such as the first information in this application, the first signaling (if the first signaling includes high-level information), the third information, and the high-level information included in the fourth information Provided to the controller/processor 440.
  • the controller/processor 440 implements the functions of the L2 layer and above.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and multiplexing of the first node device 450 based on various priority measures. Resource allocation.
  • the controller/processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first node device 450, such as the first information and first signaling in this application (if the first signaling includes high-level Information), the third information, and the fourth information are all generated in the controller/processor 440.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • each receiver 456 receives the radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 452.
  • the reception processor 452 implements various signal reception processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the physical layer signals of the first information, first signaling, third information, and fourth information in this application, etc., based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)) demodulation, followed by descrambling, decoding and deinterleaving to recover the data or control transmitted by the second node device 410 on the physical channel , And then provide data and control signals to the controller/processor 490.
  • the controller/processor 490 is responsible for the L2 layer and above.
  • the controller/processor 490 is responsible for the first information, first signaling (if the first signaling includes high-level information), third information, and fourth information in this application.
  • the controller/processor may be associated with a memory 480 that stores program codes and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • the data source/buffer 480 is used to provide high-level data to the controller/processor 490.
  • the data source/buffer 480 represents the L2 layer and all protocol layers above the L2 layer.
  • the controller/processor 490 is implemented for user plane and control by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of the second node 410 Flat L2 layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second node 410.
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer), and the second information in the present application is generated by the transmission processor 455.
  • Signal transmission processing functions include coding and interleaving to facilitate forward error correction (FEC) at the UE450 and pair based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK))
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier sub-carrier and/or multi-carrier symbol, and then mapped to the antenna 460 by the transmit processor 455 via the transmitter 456 to transmit in the form of a radio frequency signal Get out.
  • the receivers 416 receive radio frequency signals through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving and processing functions for the L1 layer (ie, the physical layer), including receiving and processing the second information in this application.
  • the signal receiving processing function includes acquiring a multi-carrier symbol stream, and then processing the multi-carrier symbol
  • the multi-carrier symbols in the stream are demodulated based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)), and then decoded and deinterleaved to recover from the physical channel
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the data and/or control signal originally transmitted by the first node device 450.
  • the data and/or control signals are then provided to the controller/processor 440.
  • the functions of the L2 layer are implemented in the controller/processor 440.
  • the controller/processor may be associated with a buffer 430 that stores program codes and data.
  • the buffer 430 may be a computer-readable medium.
  • the first node device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, and the first node device 450 means at least: receiving first information, the first information being used to determine a target time-frequency resource set, the target time-frequency resource set being included in the time domain
  • the earliest multi-carrier symbol of is the first multi-carrier symbol, and the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the first signal is sent, and the frequency domain resources occupied by the first signal Belongs to the second frequency domain resource pool, and the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay; when the second signal is received, the start of the second multi-carrier symbol
  • the length of the time interval between the start time and the reception end time of the second signal is equal to the reference delay, and the start time of the second multi-carrier symbol
  • the first node device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving First information, the first information is used to determine a target time-frequency resource set, the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol, and the target time-frequency resource
  • the frequency domain resources included in the set belong to the first frequency domain resource pool; the first signal is transmitted, and the frequency domain resources occupied by the first signal belong to the second frequency domain resource pool.
  • the first frequency domain resource pool and the The frequency domain relationship between the second frequency domain resource pool is used to determine the reference delay; when the second signal is received, the length of the time interval between the start time of the second multi-carrier symbol and the end time of the reception of the second signal is equal to For the reference delay, the start time of the second multi-carrier symbol is not earlier than the end time of the second signal; when the first multi-carrier symbol is not earlier than the second multi-carrier symbol, Sending second information; wherein, when the second information is sent, the target time-frequency resource set is used for the transmission of the second information; the time-frequency resource occupied by the first signal is used to determine Air interface resources occupied by the second signal; the information carried by the second signal is used to determine the second information, and the sender of the first information is different from the sender of the second signal.
  • the second node device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second node device 410 means at least: sending first information and first signaling, where the first information is used to indicate a target time-frequency resource set, and the target time-frequency resource set includes the earliest one in the time domain.
  • the multi-carrier symbol is the first multi-carrier symbol, and the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool; the second information is received; wherein, the first signaling is used to indicate the first The time-frequency resource occupied by the signal, the frequency domain resource occupied by the first signal belongs to the second frequency domain resource pool, and the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is Used to determine the reference delay; the time-frequency resources occupied by the first signal are used to indicate the air interface resources occupied by the second signal; the start time of the second multi-carrier symbol and the end time of the reception of the second signal The length of the time interval between is equal to the reference delay, the start time of the second multi-carrier symbol is not earlier than the end time of reception of the second signal; the target time-frequency resource set is used for the first Second information transmission; the information carried by the second signal is used to determine the second information, and the sender of the second signal is a node device other than the second node device;
  • the second node device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first Information and first signaling, the first information is used to indicate a target time-frequency resource set, and the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol, The frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool; the second information is received; wherein, the first signaling is used to indicate the time-frequency resources occupied by the first signal, and the first The frequency domain resources occupied by the signal belong to the second frequency domain resource pool, and the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay; the first signal The occupied time-frequency resources are used to indicate the air interface resources occupied by the second signal; the length of the time interval between the start time of the second multi-carrier symbol and the end time of the reception
  • the first node device 450 is a user equipment (UE).
  • UE user equipment
  • the first node device 450 is a user equipment supporting V2X.
  • the first node device 450 is a vehicle-mounted device.
  • the first node device 450 is an RSU (Road Side Unit) device.
  • the second node device 410 is a base station device (gNB/eNB).
  • the second node device 410 is a base station device supporting V2X.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first information.
  • the transmitter 456 (including the antenna 460), the transmission processor 455 and the controller/processor 490 are used to send the second information in this application.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first signaling.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the third information.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the fourth information.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the first information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the second information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to send the first signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller/processor 440 are used to transmit the third information in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415 and the controller/processor 440 are used to transmit the fourth information in this application.
  • Embodiment 5 shows a schematic diagram of a first node device and another user equipment according to the present application, as shown in FIG. 5.
  • the first node device (550) includes a controller/processor 590, a memory 580, a receiving processor 552, a transmitter/receiver 556, a transmitting processor 555, and the transmitter/receiver 556 includes an antenna 560.
  • the composition in the other user equipment (500) is the same as that in the first node device 550.
  • upper layer packets including the first signal in this application, are provided to the controller/processor 590, and the controller/processor 590 implements the functions of the L2 layer.
  • the controller/processor 590 provides multiplexing between header compression, encryption, packet segmentation and reordering, logic and transport channels.
  • the controller/processor 590 is also responsible for HARQ operations (if supported), repeated transmissions, and signaling to the user equipment 500.
  • the transmit processor 555 implements various signal processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation, etc.
  • each receiver 516 receives the radio frequency signal through its corresponding antenna 520, and each receiver 516 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 512.
  • the receiving processor 512 implements various signal receiving and processing functions of the L1 layer.
  • the signal reception processing function includes the reception of the physical layer signal of the first signal in this application, etc., based on various modulation schemes (for example, binary phase shift keying (BPSK), binary phase shift keying (BPSK), Quadrature phase shift keying (QPSK)), followed by descrambling, decoding, and deinterleaving to recover the data or control transmitted by the first communication node device 550 on the physical channel, and then provide the data and control signals to the controller /Processor 540.
  • the controller/processor 540 implements the L2 layer, and the controller/processor 540 interprets the first signal in this application.
  • the controller/processor may be associated with a memory 530 that stores program codes and data.
  • the memory 530 may be referred to as a computer-readable medium.
  • the second signal in the present application is generated in the transmit processor 515 in the user equipment 500, and then mapped to the antenna 520 via the transmitter 516 to be transmitted in the form of a radio frequency signal.
  • each receiver 556 receives the radio frequency signal of the second signal through its corresponding antenna 560, and each receiver 556 recovers the baseband information modulated onto the radio frequency carrier, and provides the baseband information to the receiving processor 552, and receives The processor 552 interprets the second signal in this application.
  • the transmitter 556 (including the antenna 560), the transmission processor 555 and the controller/processor 590 are used to transmit the first signal in this application.
  • the receiver 556 (including the antenna 560) and the receiving processor 552 are used in this application to receive the second signal.
  • the receiver 516 (including the antenna 520), the receiving processor 512 and the controller/processor 540 are used to receive the first signal in this application.
  • the transmitter 516 (including the antenna 520), the transmission processor 515 and the controller/processor 540 are used to transmit the second signal in this application.
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 6.
  • the second node device N1 is the maintenance base station of the serving cell of the first node device U2, and the first node device U2 and another user equipment U3 communicate through an accompanying link.
  • the steps in the dashed box are optional . It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • a step S11 transmits third information, fourth information transmitted in step S12, the first information transmitted in step S13, the first signaling transmitted in step S14, in step S15, the receiving section Two information.
  • the third information For the first node device U2, received at step S21, the third information, fourth information received in step S22, the first information received in step S23, receiving a first signaling step S24, in step S25, the transmission section A signal, the second signal is received in step S26, and the second information is sent in step S27.
  • the first information described in this application is used to determine a target time-frequency resource set, and the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol, so
  • the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the frequency domain resources occupied by the first signal in this application belong to the second frequency domain resource pool, and the first frequency domain resource
  • the frequency domain relationship between the pool and the second frequency domain resource pool is used to determine the reference delay;
  • the time between the start time of the second multi-carrier symbol and the end time of the second signal reception in this application The interval length is equal to the reference delay, the start time of the second multi-carrier symbol is no earlier than the end time of the second signal;
  • the target time-frequency resource set is used in the first Second information transmission;
  • the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal;
  • the information carried by the second signal is used to determine the second information,
  • the third information is high-level information.
  • the third information is transmitted through higher layer signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high-layer signaling.
  • the third information includes all or part of a physical layer signaling.
  • the third information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of fields in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the third information includes all or part of fields in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the third information includes all or part of a MAC (Medium Access Control) CE (Control Element).
  • the third information includes all or part of a MAC (Medium Access Control) header.
  • MAC Medium Access Control
  • the third information includes all or part of a RAR (Random Access Response) MAC payload.
  • RAR Random Access Response
  • the third information includes all or part of Msg2 (message 2) in the random access process.
  • the third information includes all or part of MsgB (message B) in the random access process.
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the third information is broadcast.
  • the third information is unicast.
  • the third information is cell specific (Cell Specific).
  • the third information is UE-specific.
  • the third information is user equipment group-specific (UE group-specific).
  • the third information is transmitted through PDCCH (Physical Downlink Control Channel, narrowband physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, narrowband physical downlink control channel
  • the third information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the third information includes "BWP-Uplink” IE (Information Element).
  • the third information includes "initialUplinkBWP" IE (Information Element, information element).
  • the above sentence "the third information is used to determine the subcarrier spacing of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool” includes the following meanings:
  • the third information is used by the first node device in this application to determine the subcarrier interval of the first frequency domain resource pool and one subcarrier included in the first frequency domain resource pool.
  • the above sentence "the third information is used to determine the subcarrier spacing of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool” includes the following meanings:
  • the third information is used to directly indicate the subcarrier interval of the first frequency domain resource pool and one subcarrier included in the first frequency domain resource pool.
  • the above sentence "the third information is used to determine the subcarrier spacing of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool” includes the following meanings:
  • the third information is used to indirectly indicate the subcarrier interval of the first frequency domain resource pool and one subcarrier included in the first frequency domain resource pool.
  • the above sentence "the third information is used to determine the subcarrier spacing of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool” includes the following meanings:
  • the third information is used to explicitly indicate the subcarrier spacing of one subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool.
  • the above sentence "the third information is used to determine the subcarrier spacing of a subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool” includes the following meanings:
  • the third information is used to implicitly indicate the subcarrier spacing of one subcarrier included in the first frequency domain resource pool and the first frequency domain resource pool.
  • the fourth information is high-level information.
  • the fourth information is transmitted through higher layer signaling.
  • the fourth information is transmitted through physical layer signaling.
  • the fourth information includes all or part of a high-level signaling.
  • the fourth information includes all or part of a physical layer signaling.
  • the fourth information includes all or part of an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • IE Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the fourth information includes all or part of a field (Field) in an IE (Information Element, information element) in an RRC (Radio Resource Control, radio resource control) signaling.
  • Field Information Element, information element
  • RRC Radio Resource Control, radio resource control
  • the fourth information includes all or part of a field in a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the fourth information includes all or part of a MAC (Medium Access Control) CE (Control Element).
  • the fourth information includes all or part of a MAC (Medium Access Control) header.
  • MAC Medium Access Control
  • the fourth information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the fourth information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the fourth information is broadcast.
  • the fourth information is unicast.
  • the fourth information is cell specific (Cell Specific).
  • the fourth information is UE-specific.
  • the fourth information is user equipment group-specific (UE group-specific).
  • the fourth information is transmitted through PDCCH (Physical Downlink Control Channel, narrowband physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, narrowband physical downlink control channel
  • the fourth information includes all or part of a field of DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the fourth information includes "BWP-Sidelink” IE (Information Element).
  • the fourth information includes "initialSidelinkBWP" IE (Information Element, information element).
  • the fourth information includes "BWP-SidelinkCommon” IE (Information Element).
  • the fourth information includes "BWP-UplinkDedicated” IE (Information Element).
  • the third information and the fourth information are carried by two different RRC signaling.
  • the third information and the fourth information are carried by the same RRC signaling.
  • two IEs of the same RRC signaling carry the third information and the fourth information respectively.
  • two fields (Field) in the same IE of the same RRC signaling respectively carry the third information and the fourth information.
  • Embodiment 7 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 7.
  • the second node device N4 is the maintenance base station of the serving cell of the first node device U5, and the first node device U5 and another user equipment U6 communicate through an accompanying link.
  • the steps in the dashed box are optional . It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • step S41 transmits third information, fourth information transmitted in step S42, the first transmission information in step S43, the transmitting signaling in a first step S44.
  • step S51 receives the third information, fourth information received in step S52, receives the first information in a step S53, the first signaling received in step S54, in step S55, the transmission section One signal, the second signal is received in step S56.
  • the first information described in this application is used to determine a target time-frequency resource set, and the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is the first multi-carrier symbol, so
  • the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the frequency domain resources occupied by the first signal in this application belong to the second frequency domain resource pool, and the first frequency domain resource
  • the frequency domain relationship between the pool and the second frequency domain resource pool is used to determine the reference delay;
  • the time between the start time of the second multi-carrier symbol and the end time of the second signal reception in this application The interval length is equal to the reference delay, the start time of the second multi-carrier symbol is not earlier than the end time of the second signal;
  • the time-frequency resource occupied by the first signal is used to determine the Air interface resources occupied by the second signal;
  • the sender of the first information and the sender of the second signal are different;
  • the first signaling is used to determine the time-frequency resources
  • the first signaling is a baseband signal.
  • the first signaling is a radio frequency signal.
  • the first signaling is transmitted through an air interface.
  • the first signaling is transmitted through a wireless interface.
  • the first signaling is transmitted through the PC5 interface.
  • the first signaling is transmitted through a Uu interface.
  • the first signaling is transmitted through a side link (Sidelink).
  • the first signaling is transmitted through a downlink (Downlink).
  • Downlink Downlink
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling carries DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling carries SCI (Sidelink Control Information, accompanying link control information).
  • the first signaling is PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • the first signaling is PSCCH (Physical Sidelink Control Channel).
  • the first signaling is user-specific (UE-Specific).
  • the first signaling is Cell-Specific.
  • the first signaling is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) scrambled by a user-specific (UE-Specific) RNTI (Radio Network Temporary Identity, Radio Network Temporary Identity).
  • PDCCH Physical Downlink Control Channel
  • Physical Downlink Control Channel Physical Downlink Control Channel
  • UE-Specific Radio Network Temporary Identity, Radio Network Temporary Identity
  • the first signaling is transmitted through PDCCH (Physical Downlink Control Channel) scrambled by SL-SPS-V-RNTI.
  • PDCCH Physical Downlink Control Channel
  • the first signaling is transmitted through PDCCH (Physical Downlink Control Channel) scrambled by SL-V-RNTI.
  • PDCCH Physical Downlink Control Channel
  • the first signaling is transmitted through an air interface.
  • the first signaling is transmitted through a wireless interface.
  • the first signaling is transmitted through the PC5 interface.
  • the first signaling is transmitted through a Uu interface.
  • the first signaling is transmitted through a side link (Sidelink).
  • the first signaling is carried by a baseband (Baseband) signal.
  • Baseband baseband
  • the first signaling is carried by a radio frequency (RF, Radio Frequency) signal.
  • RF Radio Frequency
  • the first signaling is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling is higher layer signaling.
  • the DCI format (Format) adopted by the first signaling is format 3.
  • the first signaling is used to configure sidelink transmission.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the first signal” includes the following meaning: the first signaling is used by the first node in this application The device is used to determine the time-frequency resource occupied by the first signal.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the first signal” includes the following meaning: the first signaling is used to directly indicate the first signal Time-frequency resources occupied.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the first signal” includes the following meaning: the first signaling is used to indirectly indicate the first signal Time-frequency resources occupied.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the first signal” includes the following meaning: the first signaling is used to explicitly indicate the first signal Time-frequency resources occupied by a signal.
  • the above sentence "the first signaling is used to determine the time-frequency resources occupied by the first signal” includes the following meaning: the first signaling is used to implicitly indicate the first signal Time-frequency resources occupied by a signal.
  • the first signaling is also used to determine the modulation and coding scheme (MCS, Modulation Coding Scheme) adopted by the first signal.
  • MCS Modulation Coding Scheme
  • the first signaling is also used to determine the HARQ (Hybrid Automatic Repeat Request) process to which the first signal belongs.
  • HARQ Hybrid Automatic Repeat Request
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used by the first node device in this application to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of reception of the first signaling.
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used to directly indicate the length of the time interval between the start time of the first multi-carrier symbol and the end time of reception of the first signaling.
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used to indirectly indicate the length of the time interval between the start time of the first multi-carrier symbol and the end time of reception of the first signaling.
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used to explicitly indicate the length of the time interval between the start time of the first multi-carrier symbol and the end time of reception of the first signaling.
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used to implicitly indicate the length of the time interval between the start time of the first multi-carrier symbol and the end time of reception of the first signaling.
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the latest multi-carrier symbol occupied by the first signaling.
  • the above sentence "the first signaling is used to determine the length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling” includes the following meanings :
  • the first signaling is used to determine the start time of the slot to which the first multi-carrier symbol belongs and the slot to which the latest multi-carrier symbol occupied by the first signaling belongs ( The length of the time interval between the end moments of Slot).
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first multi-carrier symbol and the second multi-carrier symbol according to an embodiment of the present application, as shown in FIG. 8.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the rectangle filled with cross lines represents the time-frequency resource occupied by the second signal
  • the rectangle filled with each dot represents the target time-frequency resource.
  • a multi-carrier symbol in the set, the rectangle filled with diagonal lines represents the second multi-carrier symbol; in case A, the first multi-carrier symbol is no earlier than the second multi-carrier symbol; in case B, the first multi-carrier symbol is earlier At the second multi-carrier symbol.
  • the first node device in this application may give up sending The second information or the first node device may ignore the first information, or the first node device may consider the target time-frequency resource set in this application to be invalid.
  • the above sentence “the first node device may abandon sending the second information” includes the following meaning: the possibility of the first node device sending the second information is not excluded.
  • the above sentence “the first node device may give up sending the second information” includes the following meaning: the first node device is allowed to give up sending the second information.
  • the above sentence "the first node device may give up sending the second information” includes the following meaning: the first node device is allowed to give up sending the second information, and the first node device finally Whether to give up sending the second information depends on the implementation of the first node device.
  • the above sentence "the first node device may give up sending the second information” includes the following meaning: the first node device is allowed to give up sending the second information, and the first node device finally Whether to give up sending the second information depends on the capability (Capability) of the first node device.
  • the sentence “the first node device may abandon sending the second information” includes the following meaning: the first node device may not be able to provide valid (Valid) second information.
  • the above sentence "the first node device may abandon sending the second information” includes the following meaning: the first node device may not be able to provide the correct second information.
  • the sentence “the first node device may abandon sending the second information” includes the following meaning: the receiver of the second information cannot expect to receive the valid second information.
  • the first node device may use resources in the target time-frequency resource set to send information other than the second information.
  • the first node device when the first node device abandons sending the second information, the first node device may not use resources in the target time-frequency resource set to send any information.
  • the first node device may still use the time-frequency resource in the target time-frequency resource set to send the PUCCH.
  • the first node device may still use the time-frequency resource in the target time-frequency resource set to send the PUSCH.
  • the first node device may still use time-frequency resources in the target time-frequency resource set to send wireless signals.
  • the above sentence “the first node device may ignore the first information” includes the following meaning: the first node device may not follow the instructions of the first information.
  • the above sentence “the first node device may ignore the first information” includes the following meaning: the first node device may assume that the first information is not received correctly.
  • the above sentence “the first node device may ignore the first information” includes the following meaning: the first node device may assume that the first information has not been sent.
  • the sentence "the first node device may ignore the first information” includes the following meaning: the first node device may consider the first information to be invalid (Invalid).
  • the above sentence "the first node device may ignore the first information” includes the following meaning: whether the first node device finally ignores the first information depends on the implementation of the first node device (Implementation).
  • the above sentence "the first node device may ignore the first information” includes the following meaning: whether the first node device finally ignores the first information depends on the capability of the first node device (Capability).
  • the sentence "the first node device may ignore the first information” includes the following meaning: the sender of the first information cannot expect the first node device in this application to follow the first information. An indication of information.
  • the above sentence “the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: the first node device may not use the target time-frequency resource set to transmit signals.
  • the above sentence "the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: the first node device may think that the target time-frequency resource set is not used for transmission The second information.
  • the above sentence "the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: the first node device may think that the target time-frequency resource set can only be used To transmit information other than the second information.
  • the above sentence "the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: the first node device may think that the target time-frequency resource set is not pre-predicted. Leave the second information.
  • the above sentence "the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: whether the first node device ultimately considers the target time-frequency resource set to be invalid It depends on the implementation (Implementation) of the first node device.
  • the above sentence "the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: whether the first node device ultimately considers the target time-frequency resource set to be invalid It depends on the Capability of the first node device.
  • the sentence “the first node device may consider the target time-frequency resource set to be invalid” includes the following meaning: the sender of the first information cannot expect the first node device to use the The resources in the target time-frequency resource set transmit the second information.
  • Embodiment 9 shows a schematic diagram of the conversion time length between receiving and sending of the first node device according to an embodiment of the present application, as shown in FIG. 9.
  • the first column from the left represents the type of conversion time length between reception and transmission of the first node device
  • the second column from the left represents the conversion time length in frequency range 1 (FR1, Frequency Range 1)
  • the third column from the left represents the conversion time length in frequency range 2 (FR2, Frequency Range 2)
  • the unit of all conversion time length values is Tc.
  • the reference delay in this application is not less than the first delay, and the length of the conversion time between reception and transmission of the first node device in this application is used to determine the first Delay.
  • the reference delay is equal to the first delay.
  • the reference delay is greater than the first delay
  • the unit of the first delay is seconds.
  • the unit of the first delay is milliseconds (ms).
  • the first delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the first delay is equal to the time length of a positive integer number of slots (Slot).
  • the first delay is represented by the number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the first delay is represented by the number of slots (Slot).
  • the first delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the first frequency domain resource pool The sub-carrier spacing of one sub-carrier in.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the first delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the second frequency domain resource pool The sub-carrier spacing of one sub-carrier in.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the first delay is equal to the time length of an OFDM symbol other than the first OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol in a positive integer number of time slots.
  • the first delay is equal to a time length of a positive integer number of slots (Slot), and the slot corresponds to a subcarrier spacing of one subcarrier included in the first frequency domain resource pool.
  • Slot a positive integer number of slots
  • the first delay is equal to a time length of a positive integer number of time slots (Slots), and the time slot corresponds to a subcarrier spacing of one subcarrier included in the second frequency domain resource pool.
  • the first delay is related to a frequency range (FR, Frequency Range) to which frequency domain resources included in the first frequency domain resource pool belong.
  • FR Frequency Range
  • the first delay is related to a frequency range (FR, Frequency Range) to which frequency domain resources included in the second frequency domain resource pool belong.
  • FR Frequency Range
  • the first delay is related to a subcarrier spacing (SCS, Subcarrier Spacing) of one subcarrier included in the first frequency domain resource pool.
  • SCS subcarrier spacing
  • the first delay is related to a subcarrier spacing (SCS, Subcarrier Spacing) of a subcarrier included in the second frequency domain resource pool.
  • SCS subcarrier spacing
  • the first delay is related to a waveform (Waveform) adopted by the signal carrying the second information.
  • the first delay is related to whether the signal carrying the second information adopts an OFDM waveform or a DFT-s-OFDM waveform (Waveform).
  • the first delay is related to whether transform precoding (Transform Precoding) is used when generating the signal carrying the second information.
  • the above sentence “the length of the conversion time between reception and transmission of the first node device is used to determine the first delay” includes the following meaning: The length of the transition time between the two is used by the first node device in this application to determine the first delay.
  • the above sentence “the length of the conversion time between reception and transmission of the first node device is used to determine the first delay” includes the following meaning: The length of the transition time between is equal to the first delay.
  • the sentence “the length of the conversion time between the reception and the transmission of the first node device is used to determine the first delay” includes the following meaning: the first delay is not less than the first delay The length of the transition time between receiving and sending of a node device.
  • the above sentence “the length of the conversion time between reception and transmission of the first node device is used to determine the first delay” includes the following meaning: The length of the conversion time between the two determines the first delay according to the mapping relationship.
  • the above sentence “the length of the conversion time between reception and transmission of the first node device is used to determine the first delay” includes the following meaning: The length of the conversion time between the two determines the first delay according to the functional relationship.
  • the above sentence “the length of the conversion time between reception and transmission of the first node device is used to determine the first delay” includes the following meaning: The sum of the transition time length between the time and the first offset time length is equal to the first delay time, the first offset time length is fixed, or the first offset time length is predefined.
  • the length of the conversion time between the reception and the transmission of the first node device refers to the length of the conversion time from the reception to the transmission of the first node device.
  • the length of the conversion time between the reception and the transmission of the first node device refers to the length of the conversion time from the transmission to the reception of the first node device.
  • the length of the conversion time from reception to transmission of the first node device is equal to the length of the conversion time from transmission to reception of the first node device.
  • the transmission of the first node device on the companion link is half-duplex (Half-duplex).
  • the transmission between the companion link and the uplink of the first node device is half-duplex.
  • the first node device does not support full-duplex.
  • the frequency band (Band) to which the first frequency domain resource pool belongs is a TDD frequency band.
  • the frequency band (Band) to which the first frequency domain resource pool belongs is an FDD frequency band.
  • the frequency band (Band) to which the second frequency domain resource pool belongs is a TDD frequency band.
  • the frequency band (Band) to which the second frequency domain resource pool belongs is an FDD frequency band.
  • Embodiment 10 illustrates a schematic diagram of the second delay according to an embodiment of the present application, as shown in FIG. 10.
  • the first column from the left represents the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain.
  • the second column from the left represents the subcarrier interval of a subcarrier included in the second time-frequency resource pool in the frequency domain,
  • the third column from the left represents the time length of the time slot under different subcarrier intervals, and the fourth from the left
  • the column represents the second delay in units of time slots.
  • the reference delay in this application is not less than the second delay; when the first frequency domain resource pool in this application is the same as the second frequency domain resource pool in this application , The second delay is equal to 0; when the first frequency domain resource pool in this application is different from the second frequency domain resource pool in this application, the second delay is greater than 0, this
  • the subcarrier interval of one subcarrier included in the frequency domain of the first time-frequency resource pool in the application and the subcarrier interval of one subcarrier included in the frequency domain of the second time-frequency resource pool in this application One of them is used to determine the second delay.
  • the reference delay is equal to the second delay.
  • the reference delay is greater than the second delay.
  • the unit of the second delay is seconds.
  • the unit of the second delay is milliseconds (ms).
  • the second delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the second delay is equal to the time length of a positive integer number of slots (Slot).
  • the second delay is represented by the number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the second delay is represented by the number of slots (Slot).
  • the second delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the first frequency domain resource pool The sub-carrier spacing of one sub-carrier in.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the second delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the second frequency domain resource pool The sub-carrier spacing of one sub-carrier in.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the second delay is equal to the time length of an OFDM symbol other than the first OFDM (Orthogonal Frequency Division Multiplexing) symbol in a positive integer number of time slots.
  • the second delay is equal to a time length of a positive integer number of slots (Slot), and the slot corresponds to a subcarrier spacing of one subcarrier included in the first frequency domain resource pool.
  • the second delay is equal to a time length of a positive integer number of time slots (Slot), and the time slot corresponds to a subcarrier spacing of one subcarrier included in the second frequency domain resource pool.
  • the reference delay is not less than the second delay, and the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the second delay Time.
  • the second delay is equal to an interruption length.
  • whether the first frequency domain resource pool and the second frequency domain resource pool are the same is determined by whether the SLIV of the first frequency domain resource pool and the SLIV of the second frequency domain resource pool are the same. of.
  • whether the first frequency domain resource pool and the second frequency domain resource pool are the same is determined by the location bandwidth parameter ("locationAndBandwidth") of the first frequency domain resource pool and the second frequency domain. Whether the location bandwidth parameters ("locationAndBandwidth") of the resource pool are the same is judged.
  • whether the first frequency domain resource pool and the second frequency domain resource pool are the same is determined by the subcarrier spacing (SCS) of one subcarrier included in the first frequency domain resource pool and the It is determined whether the sub-carrier spacing (SCS) of one sub-carrier included in the second frequency domain resource pool is the same.
  • SCS subcarrier spacing
  • whether the first frequency domain resource pool and the second frequency domain resource pool are the same is determined by whether the SLIV of the first frequency domain resource pool and the SLIV of the second frequency domain resource pool are the same, And whether the subcarrier spacing (SCS) of one subcarrier included in the first frequency domain resource pool is the same as the subcarrier spacing (SCS) of one subcarrier included in the second frequency domain resource pool is judged.
  • SCS subcarrier spacing
  • the first frequency domain resource pool and the second frequency domain resource pool is the same; otherwise, the first frequency domain resource pool and the second frequency domain resource pool are different.
  • the first frequency domain resource pool and the second frequency domain resource pool are the same refers to: the frequency domain included in the first frequency domain resource pool and the second frequency domain resource pool
  • the resources are the same and the subcarrier interval of one subcarrier included in the first frequency domain resource pool in the frequency domain is equal to the subcarrier interval of one subcarrier included in the second frequency domain resource pool in the frequency domain.
  • the above sentence "The subcarrier spacing of one subcarrier included in the first time-frequency resource pool in the frequency domain and the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain "One of the intervals is used to determine the second delay" includes the following meaning: M subcarrier intervals correspond to M candidate delays one-to-one, and any two subcarrier intervals in the M subcarrier intervals are not equal, The M is a positive integer greater than 1; the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain corresponds to the first candidate delay, and the second time-frequency resource pool is in the frequency domain The subcarrier interval of one subcarrier included corresponds to the second candidate delay, and the first candidate delay is one of the M candidate delays, and the second candidate delay Time is one of the M candidate delays, and the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is one of the M subcarrier intervals
  • the above sentence "The subcarrier spacing of one subcarrier included in the first time-frequency resource pool in the frequency domain and the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain "One of the intervals is used to determine the second delay" includes the following meaning: M subcarrier intervals correspond to M candidate delays one-to-one, and any two subcarrier intervals in the M subcarrier intervals are not equal, The M is a positive integer greater than 1; when the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain and one subcarrier included in the second time-frequency resource pool in the frequency domain When the sub-carrier spacing is not equal, the target sub-carrier spacing is equal to the sub-carrier spacing of one sub-carrier included in the first time-frequency resource pool in the frequency domain and one sub-carrier spacing included in the second time-frequency resource pool in the frequency domain The sub-carrier spacing of the sub-carriers is a relatively large value; when the sub-carrier
  • the above sentence "The subcarrier spacing of one subcarrier included in the first time-frequency resource pool in the frequency domain and the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain One of the intervals is used to determine the second delay" includes the following meanings: the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain and the second time-frequency resource pool One of the subcarrier intervals of one subcarrier included in the frequency domain is used by the first node device in this application to determine the second delay.
  • the above sentence "The subcarrier spacing of one subcarrier included in the first time-frequency resource pool in the frequency domain and the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain One of the intervals is used to determine the second delay" includes the following meanings: the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain and the second time-frequency resource pool The large value compared between the sub-carrier spacing of one sub-carrier included in the frequency domain is used to determine the second delay.
  • the second delay when the second delay is greater than 0, the second delay is equal to the time length of one time slot corresponding to the subcarrier interval of 15kHz, and the time length of one time slot corresponding to the subcarrier interval of 30kHz. , 3 corresponding to the time length of the time slot of the 60kHz subcarrier interval, 5 times corresponding to the time length of the time slot of the 120kHz subcarrier interval
  • the second delay is related to a waveform (Waveform) adopted by the signal carrying the second information.
  • the second delay is related to whether the signal carrying the second information adopts an OFDM waveform or a DFT-s-OFDM waveform (Waveform).
  • the second delay is related to whether Transform Precoding (Transform Precoding) is used when generating the signal carrying the second information.
  • Embodiment 11 illustrates a schematic diagram of the first characteristic delay and the second characteristic delay according to an embodiment of the present application, as shown in FIG. 11.
  • the first column from the left represents the first sub-carrier interval
  • the second column from the left represents the first characteristic delays corresponding to different first sub-carrier intervals
  • the third column from the left represents the second sub-carrier interval.
  • Carrier spacing the fourth column from the left represents the second characteristic delays corresponding to different second sub-carrier spacings.
  • the reference delay in this application is not less than the third delay
  • the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain in this application is equal to the first Subcarrier interval
  • the subcarrier interval of one subcarrier included in the second time-frequency resource pool in the frequency domain in this application is equal to the second subcarrier interval
  • the first subcarrier interval is used to determine the first feature Delay
  • the second subcarrier interval is used to determine a second characteristic delay
  • one of the first characteristic delay and the second characteristic delay is used to determine the third delay.
  • the reference delay is equal to the third delay.
  • the reference delay is greater than the third delay.
  • the third delay is related to the processing capability of the first node device.
  • the third delay is linearly related to the processing delay of the first node device.
  • the unit of the third delay is seconds.
  • the unit of the third delay is milliseconds (ms).
  • the third delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the third delay is equal to the time length of a positive integer number of slots (Slot).
  • the third delay is represented by the number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the third delay is represented by the number of slots (Slot).
  • the third delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the first frequency domain resource pool The sub-carrier spacing of one sub-carrier in.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the third delay is equal to the time length of a positive integer number of OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and the OFDM symbol corresponds to the second frequency domain resource pool The sub-carrier spacing of one sub-carrier in.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the third delay is equal to the time length of an OFDM symbol other than the first OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol in a positive integer number of time slots.
  • the third delay is equal to a time length of a positive integer number of time slots (Slots), and the time slot corresponds to a subcarrier spacing of one subcarrier included in the first frequency domain resource pool.
  • the third delay is equal to a time length of a positive integer number of time slots (Slot), and the time slot corresponds to a subcarrier spacing of one subcarrier included in the second frequency domain resource pool.
  • the third delay is related to a waveform (Waveform) adopted by the signal carrying the second information.
  • the third delay is related to whether the signal carrying the second information adopts an OFDM waveform or a DFT-s-OFDM waveform (Waveform).
  • the third delay is related to whether Transform Precoding (Transform Precoding) is used when generating the signal carrying the second information.
  • the first sub-carrier interval is equal to one of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz.
  • the second sub-carrier interval is equal to one of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz.
  • the above sentence “the first subcarrier interval is used to determine the first characteristic delay” includes the following meaning: the first subcarrier interval is used by the first node device in this application to determine The first characteristic delay.
  • the above sentence "the second subcarrier interval is used to determine the second characteristic delay” includes the following meaning: the second subcarrier interval is used by the first node device in this application to determine The second characteristic delay.
  • the sentence "the first subcarrier interval is used to determine the first characteristic delay” includes the following meaning: the first subcarrier interval is used by the second node device in this application to determine The first characteristic delay.
  • the above sentence "the second subcarrier interval is used to determine the second characteristic delay” includes the following meaning: the second subcarrier interval is used by the second node device in this application to determine The second characteristic delay.
  • the above sentence "the first subcarrier interval is used to determine the first characteristic delay” includes the following meaning: P subcarrier intervals correspond to P characteristic delays in a one-to-one correspondence, and the P is greater than 1.
  • P is greater than 1.
  • a positive integer the first subcarrier interval is equal to one of the P subcarrier intervals, and the first characteristic delay is equal to the first subcarrier interval of the P characteristic delays.
  • the characteristic delays of P, the P characteristic delays are predefined.
  • the above sentence "the first subcarrier interval is used to determine the first characteristic delay” includes the following meaning: P subcarrier intervals correspond to P characteristic delays in a one-to-one correspondence, and the P is greater than 1. A positive integer, the first subcarrier interval is equal to one of the P subcarrier intervals, and the first characteristic delay is equal to the first subcarrier interval of the P characteristic delays.
  • the characteristic delays of P, the P characteristic delays are configurable.
  • the above sentence "the second subcarrier interval is used to determine the second characteristic delay” includes the following meaning: P subcarrier intervals correspond to P characteristic delays in a one-to-one correspondence, and the P is greater than 1. A positive integer, the second subcarrier interval is equal to one of the P subcarrier intervals, and the second characteristic delay is equal to the second subcarrier interval of the P characteristic delays.
  • the characteristic delays of P, the P characteristic delays are predefined.
  • the above sentence "the second subcarrier interval is used to determine the second characteristic delay” includes the following meaning: P subcarrier intervals correspond to P characteristic delays in a one-to-one correspondence, and the P is greater than 1. A positive integer, the second subcarrier interval is equal to one of the P subcarrier intervals, and the second characteristic delay is equal to the second subcarrier interval of the P characteristic delays.
  • the characteristic delays of P, the P characteristic delays are configurable.
  • the sentence “one of the first characteristic delay and the second characteristic delay is used to determine the third delay” includes the following meaning: the first characteristic delay and the One of the second characteristic delays is used by the first node device in this application to determine the third delay.
  • the sentence “one of the first characteristic delay and the second characteristic delay is used to determine the third delay” includes the following meaning: the first characteristic delay and the The large value compared between the second characteristic delays is used to determine the third delay.
  • the sentence “one of the first characteristic delay and the second characteristic delay is used to determine the third delay” includes the following meaning: the third delay is equal to the The first characteristic delay and the second characteristic delay are relatively large.
  • the sentence “one of the first characteristic delay and the second characteristic delay is used to determine the third delay” includes the following meanings: the third delay and the The first characteristic delay is linearly related to one of the second characteristic delays.
  • the sentence “one of the first characteristic delay and the second characteristic delay is used to determine the third delay” includes the following meaning: the first characteristic delay and the The characteristic delay that can obtain the maximum reference delay between the second characteristic delays is used to determine the third delay.
  • the sentence “one of the first characteristic delay and the second characteristic delay is used to determine the third delay” includes the following meanings: the third delay and the The first characteristic delay and the second characteristic delay are linearly correlated with the characteristic delay that can obtain the maximum reference delay.
  • the third delay and the second delay in this application are calculated separately.
  • the reference delay is equal to the maximum value of the first delay in this application, the second delay in this application, and the third delay in this application. .
  • the reference delay is equal to the maximum value compared between the first delay in this application and the third delay in this application.
  • the reference delay is equal to the maximum value of the comparison between the first delay in this application and the second delay in this application.
  • the reference delay is equal to the maximum value of the comparison between the second delay in this application and the third delay in this application.
  • the reference delay is calculated by the following formula:
  • T PSFCH-PUCCH max(t 4,1 ,t 4,2 ,t 4,3 )
  • T PSFCH-PUCCH represents the reference delay
  • t 4,1 represents the first delay in this application
  • t 4,2 represents the second delay in this application
  • t 4,3 represents The third delay in this application.
  • the reference delay is calculated by the following formula:
  • T PSFCH-PUCCH max(t 4,1 ,t 4,2 ,t 4,3 ),
  • T PSFCH-PUCCH represents the reference delay
  • t 4,1 represents the first delay in this application
  • t 4,2 represents the second delay in this application
  • t 4,3 represents In the third delay in this application, the sentence "one of the first characteristic delay and the second characteristic delay is used to determine the third delay" is realized by the following formula:
  • t 4,3 (N 4, ⁇ +d 4,1 )(2048+144) ⁇ 2 - ⁇ ⁇ T c ,
  • d 4,1 is a configurable value
  • 64
  • represents the index of a subcarrier interval
  • T c 1/(480000*4096) second
  • ⁇ 1 represents the first An index of the sub-carrier interval
  • ⁇ 2 represents the index of the second sub-carrier interval.
  • the reference delay is calculated by the following formula:
  • T PSFCH-PUCCH max(t 4,2 ,t 4,3 ),
  • T PSFCH-PUCCH represents the reference delay
  • t 4,2 represents the second delay in this application
  • t 4,3 represents the third delay in this application
  • sentence "said One of the first characteristic delay and the second characteristic delay is used to determine the third delay" is achieved by the following formula:
  • t 4,3 (N 4, ⁇ +d 4,1 )(2048+144) ⁇ 2 - ⁇ ⁇ T c ,
  • d 4,1 is a configurable value
  • 64
  • represents the index of a sub-carrier interval
  • T c 1/(480000*4096) second
  • ⁇ 1 represents the first An index of the sub-carrier interval
  • ⁇ 2 represents the index of the second sub-carrier interval.
  • the reference delay is calculated by the following formula:
  • T PSFCH-PUCCH max(t 4,1 ,t 4,2 ,t 4,3 ),
  • T PSFCH-PUCCH represents the reference delay
  • t 4,1 represents the first delay in this application
  • t 4,2 represents the second delay in this application
  • t 4,3 represents In the third delay in this application, the sentence "one of the first characteristic delay and the second characteristic delay is used to determine the third delay" is realized by the following formula:
  • t 4,3 (N 4, ⁇ +d 4,1 )(2048+144) ⁇ 2 - ⁇ ⁇ T c ,
  • d 4,1 is a configurable value
  • 64
  • represents the index of a sub-carrier interval
  • T c 1/(480000*4096) second
  • ⁇ 1 represents the first An index of the sub-carrier interval
  • ⁇ 2 represents the index of the second sub-carrier interval.
  • Embodiment 12 illustrates a schematic diagram of the information format adopted by the physical layer information carried by the second signal according to an embodiment of the present application, as shown in FIG. 12.
  • the first column from the left represents the index of the information format used by the physical layer information carried by the second signal
  • the second column from the left represents the number of multi-carrier symbols occupied by the second signal
  • the third column from the left Represents the number of bits of the physical layer information carried by the second signal
  • the fourth column from the left represents the channel coding scheme adopted by the second signal.
  • the second signal in this application carries physical layer information
  • the physical layer information carried in the second signal in this application is used to determine whether the first signal in this application is If it is received correctly, the information format adopted by the physical layer information carried by the second signal in this application is used to determine the third delay in this application.
  • the physical layer information carried by the second signal includes HARQ-ACK information.
  • the physical layer information carried by the second signal includes SFI (Sidelink Feedback Information).
  • the physical layer information carried by the second signal includes CSI information.
  • the physical layer information carried by the second signal includes L1-RSRP information.
  • the above sentence "the physical layer information carried by the second signal is used to determine whether the first signal is correctly received” includes the following meaning: the physical layer information carried by the second signal is used by the original The first node device in the application is used to determine whether the first signal is received correctly.
  • the above sentence "the physical layer information carried by the second signal is used to determine whether the first signal is correctly received” includes the following meaning: the physical layer information carried by the second signal is used It is determined that the first signal is not received correctly.
  • the above sentence "the physical layer information carried by the second signal is used to determine whether the first signal is correctly received” includes the following meaning: the physical layer information carried by the second signal is used To determine whether the first signal is correctly decoded.
  • the above sentence "the physical layer information carried by the second signal is used to determine whether the first signal is correctly received” includes the following meaning: the physical layer information carried by the second signal is used To determine whether the CRC check passes when the first signal is decoded.
  • the "format used by the physical layer information carried by the second signal" includes: the number of bits included in the physical layer information carried by the second signal.
  • the "format used by the physical layer information carried by the second signal" includes: the physical layer information carried by the second signal is used when generating the second signal The type of channel coding.
  • the “format used by the physical layer information carried by the second signal” includes: whether the physical layer information carried by the second signal uses a sequence to generate the second signal.
  • the "format used by the physical layer information carried by the second signal” includes: the format of the SFI carried by the second signal (Format).
  • the information format (Format) adopted by the physical layer information carried by the second signal and the PUCCH format (Format) adopt the same division method.
  • the above sentence "the information format adopted by the physical layer information carried by the second signal is used to determine the third delay” includes the following meaning: physical layer information carried by the second signal
  • the adopted information format is used by the first node device in this application to determine the third delay.
  • the above sentence "the information format adopted by the physical layer information carried by the second signal is used to determine the third delay” includes the following meaning: physical layer information carried by the second signal
  • the adopted information format is used to determine the third delay according to the corresponding relationship.
  • the above sentence "the information format adopted by the physical layer information carried by the second signal is used to determine the third delay” includes the following meaning: physical layer information carried by the second signal
  • the adopted information format is used to determine the target delay offset according to the corresponding relationship, and the target delay offset is used to determine the third delay.
  • t 4,3 (N 4, ⁇ +d 4,1 )(2048+144) ⁇ 2 - ⁇ ⁇ T c ,
  • t 4,3 represents the third delay
  • d 4,1 represents the target delay offset
  • the information format adopted by the physical layer information carried by the second signal is used to determine the target delay offset according to the corresponding relationship.
  • Shift, ⁇ 64
  • represents the index of a sub-carrier interval
  • T c 1/(480000*4096) second
  • ⁇ 1 represents the index of the first sub-carrier interval in this application
  • ⁇ 2 represents the index of the first sub-carrier interval in this application.
  • the index of the second subcarrier interval is the third delay
  • d 4,1 represents the target delay offset
  • Shift, ⁇ 64
  • represents the index of a sub-carrier interval
  • T c 1/(480000*4096) second
  • ⁇ 1 represents the index of the first sub-carrier interval in this application
  • ⁇ 2 represents the index of
  • the information format adopted by the physical layer information carried by the second signal is used to determine the target delay offset according to the corresponding relationship, and the target delay offset is used to determine the third delay.
  • the target delay offset is also related to the waveform (Waveform) adopted by the signal (or channel) carrying the second information.
  • the information format adopted by the physical layer information carried by the second signal is used to determine the target delay offset according to the corresponding relationship, and the target delay offset is used to determine the third delay.
  • the target delay offset is also related to whether the signal (or channel) carrying the second information adopts an OFDM waveform (Waveform) or a DFT-s-ofdm waveform (Waveform).
  • Embodiment 13 illustrates a structural block diagram of a processing device in the first node device of an embodiment, as shown in FIG. 13.
  • the first node device processing apparatus 1300 includes a first receiver 1301, a first transmitter 1302, a second receiver 1303, and a second transmitter 1304.
  • the first receiver 1301 includes the transmitter/receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 in Figure 4 of the present application; or the first receiver 1301 includes the transmitter/receiver 456 in Figure 5 of the present application
  • the transmitter/receiver 556 (including the antenna 560), the receiving processor 552 and the controller/processor 590
  • the first transmitter 1302 includes the transmitter/receiver 456 (including the antenna 460) in Figure 4 of this application,
  • the second receiver 1303 includes the transmitter/receiver 456 (including the antenna 460) and the receiving processor 452 in Figure 4 of the present application; or the second receiver 1303 includes the transmitter/receiver 556 in Figure 5 of the present application (Including the antenna
  • the first receiver 1301 receives first information, which is used to determine a target time-frequency resource set, and the earliest multi-carrier symbol included in the target time-frequency resource set in the time domain is For the first multi-carrier symbol, the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool; the first transmitter 1302 sends the first signal, and the frequency domain resources occupied by the first signal belong to the first frequency domain resource pool.
  • Two frequency domain resource pools the frequency domain relationship between the first frequency domain resource pool and the second frequency domain resource pool is used to determine the reference delay;
  • the second receiver 1303 receives the second signal, the second multi-carrier The length of the time interval between the start time of the symbol and the end time of the reception of the second signal is equal to the reference delay, and the start time of the second multi-carrier symbol is no earlier than the end of the reception of the second signal Time;
  • the second transmitter 1304 sends second information when the first multi-carrier symbol is not earlier than the second multi-carrier symbol; when the second information is sent, the target time-frequency resource set is Used for the transmission of the second information;
  • the time-frequency resource occupied by the first signal is used to determine the air interface resource occupied by the second signal;
  • the information carried by the second signal is used to determine the For the second information, the sender of the first information and the sender of the second signal are different.
  • the first node device may abandon sending the second information, or the first node device may ignore the The first information, or the first node device may think that the target time-frequency resource set is invalid.
  • the reference delay is not less than the first delay, and the length of the conversion time between receiving and sending by the first node device is used to determine the first delay.
  • the reference delay is not less than the second delay; when the first frequency domain resource pool and the second frequency domain resource pool are the same, the second delay is equal to 0; when the When the first frequency domain resource pool and the second frequency domain resource pool are not the same, the second delay is greater than 0, and the subcarrier interval of one subcarrier included in the first time frequency resource pool in the frequency domain is sum One of the subcarrier intervals of one subcarrier included in the frequency domain in the second time-frequency resource pool is used to determine the second delay.
  • the reference delay is not less than the third delay
  • the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is equal to the first subcarrier interval
  • the second time The subcarrier interval of one subcarrier included in the frequency resource pool in the frequency domain is equal to the second subcarrier interval
  • the first subcarrier interval is used to determine the first characteristic delay
  • the second subcarrier interval is used for A second characteristic delay is determined, and one of the first characteristic delay and the second characteristic delay is used to determine the third delay.
  • the reference delay is not less than the third delay
  • the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is equal to the first subcarrier interval
  • the second time The subcarrier interval of one subcarrier included in the frequency resource pool in the frequency domain is equal to the second subcarrier interval
  • the first subcarrier interval is used to determine the first characteristic delay
  • the second subcarrier interval is used for Determine the second characteristic delay
  • one of the first characteristic delay and the second characteristic delay is used to determine the third delay
  • the second signal carries physical layer information
  • the second The physical layer information carried by the signal is used to determine whether the first signal is correctly received, and the information format adopted by the physical layer information carried by the second signal is used to determine the third delay.
  • the first receiver 1301 receives first signaling; wherein, the first signaling is used to determine the time-frequency resource occupied by the first signal, and the first signaling is used to determine The length of the time interval between the start time of the first multi-carrier symbol and the end time of the reception of the first signaling.
  • the first receiver 1301 receives third information and fourth information; wherein, the third information is used to determine whether the first frequency domain resource pool and the first frequency domain resource pool include The fourth information is used to determine the subcarrier spacing of one subcarrier included in the second frequency domain resource pool and the second frequency domain resource pool.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second node device of an embodiment, as shown in FIG. 14.
  • the second node device processing apparatus 1400 includes a third transmitter 1401 and a third receiver 1402.
  • the third transmitter 1401 includes the transmitter/receiver 416 (including the antenna 460) and the transmission processor 415 and the controller/processor 440 in Figure 4 of the present application;
  • the third receiver 1402 includes the transmitter/receiver 416 in Figure 4 of the present application.
  • the transmitter/receiver 416 (including the antenna 420), the receiving processor 412, and the controller/processor 440.
  • the third transmitter 1401 sends the first information and the first signaling.
  • the first information is used to indicate the target time-frequency resource set, and the target time-frequency resource set includes the earliest time-frequency resource set in the time domain.
  • the multi-carrier symbol of is the first multi-carrier symbol, and the frequency domain resources included in the target time-frequency resource set belong to the first frequency domain resource pool;
  • the third receiver 1402 receives the second information; wherein, the first signaling It is used to indicate the time-frequency resource occupied by the first signal, the frequency-domain resource occupied by the first signal belongs to the second frequency-domain resource pool, and the first frequency-domain resource pool and the second frequency-domain resource pool are The frequency domain relationship between the two is used to determine the reference delay;
  • the time-frequency resource occupied by the first signal is used to indicate the air interface resource occupied by the second signal;
  • the start time of the second multi-carrier symbol and the first signal The length of the time interval between the reception end moments of the two signals is equal to the reference delay, the
  • the reference delay is not less than the first delay, and the length of the conversion time between the reception and the transmission of the sender of the second information is used to determine the first delay.
  • the reference delay is not less than the second delay; when the first frequency domain resource pool and the second frequency domain resource pool are the same, the second delay is equal to 0; when the When the first frequency domain resource pool and the second frequency domain resource pool are not the same, the second delay is greater than 0, and the subcarrier interval of one subcarrier included in the first time frequency resource pool in the frequency domain is sum One of the subcarrier intervals of one subcarrier included in the frequency domain in the second time-frequency resource pool is used to determine the second delay.
  • the reference delay is not less than the third delay
  • the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is equal to the first subcarrier interval
  • the second time The subcarrier interval of one subcarrier included in the frequency resource pool in the frequency domain is equal to the second subcarrier interval
  • the first subcarrier interval is used to determine the first characteristic delay
  • the second subcarrier interval is used for A second characteristic delay is determined, and one of the first characteristic delay and the second characteristic delay is used to determine the third delay.
  • the reference delay is not less than the third delay
  • the subcarrier interval of one subcarrier included in the first time-frequency resource pool in the frequency domain is equal to the first subcarrier interval
  • the second time The subcarrier interval of one subcarrier included in the frequency resource pool in the frequency domain is equal to the second subcarrier interval
  • the first subcarrier interval is used to determine the first characteristic delay
  • the second subcarrier interval is used for Determine the second characteristic delay
  • one of the first characteristic delay and the second characteristic delay is used to determine the third delay
  • the second signal carries physical layer information
  • the second The physical layer information carried by the signal is used to determine whether the first signal is correctly received, and the information format adopted by the physical layer information carried by the second signal is used to determine the third delay.
  • the first signaling is used to indicate the length of the time interval between the start time of the first multi-carrier symbol and the end time of reception of the first signaling.
  • the third transmitter 1401 sends third information and fourth information; wherein, the third information is used to indicate that the first frequency domain resource pool and the first frequency domain resource pool include The fourth information is used to indicate the subcarrier spacing of one subcarrier included in the second frequency domain resource pool and the second frequency domain resource pool.
  • the first node device or second node device or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, Airplanes, drones, remote control aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, relay satellite, satellite base station, aerial base station, etc. Wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的节点中的方法和装置。节点接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时;当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;所述第二信号被用于确定所述第二信息。本申请保证反馈正确接收。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的反馈信息的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务识别和定义了4大用例组(Use Case Group),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上通过了NR V2X的技术研究工作项目(SI,Study Item)。在3GPP RAN#83次全会上决定对NR V2X启动WI(Work Item)进行标准化。
发明内容
NR V2X和现有的LTE V2X系统相比,一个显著的特征在于可以支持组播和单播以及支持HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)功能。在3GPP RAN1#95次会上同意引入一个独立的伴随链路(Sidelink)的反馈信道(PSFCH,Physical Sidelink Feedback Channel)。PSFCH被用于携带HARQ(混合自动重传请求进程,Hybrid Automatic Repeat Request)。另外,3GPP同意了用户设备(UE,User Equipment)可以将伴随链路(Sidelink)的HARQ反馈报告给基站。用户设备向基站报告伴随链路(Sidelink)的HARQ反馈设计需要解决方案。
针对NR V2X中的伴随链路的HARQ反馈报告的设计的问题,本申请公开了一种解决方案。需要说明的是,在本申请的的描述中,只是采用NR V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的NR V2X之外的其它场景(比如中继网络,D2D网络,蜂窝网络,支持半双工用户设备的场景),也可以取得类似NR V2X场景中的技术效果。此外,不同场景(包括但不限于NR V2X场景和伴随链路传输的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,
对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;
接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间 间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;
当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;
其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
作为一个实施例,通过所述第一多载波符号和所述第二多载波符号的早晚关系来确定所述第二信息的发送,使得伴随链路的HARQ-ACK向基站发送报告的定时满足用户设备的最低的时延要求,考虑了用户设备的处理能力,从而减轻用户设备在实现时的负担和复杂性。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定所述参考延时,在计算伴随链路的HARQ-ACK向基站发送报告的定时关系的时候考虑上行的BWP(Bandwidth Part,带宽部分)和伴随链路(Sidelink)的BWP(Bandwidth Part,带宽部分)之间关系,保证上行的BWP(Bandwidth Part,带宽部分)和伴随链路(Sidelink)的BWP(Bandwidth Part,带宽部分)的独立配置的同时,仍能够使得伴随链路的HARQ-ACK向基站发送报告的定时满足用户设备的处理能力,避免伴随链路的HARQ-ACK向基站发送报告失败,降低用户设备的实现复杂度。
根据本申请的一个方面,上述方法的特征在于,当所述第一多载波符号早于所述第二多载符号时,所述第一节点设备可能放弃发送所述第二信息,或者所述第一节点设备可能忽略所述第一信息,或者所述第一节点设备可能认为所述目标时频资源集合是无效的。
根据本申请的一个方面,上述方法的特征在于,所述参考延时不小于第一延时,所述第一节点的接收和发送之间的转换时间长度被用于确定所述第一延时。
作为一个实施例,在计算所述参考延时的时候考虑不能够全双工(Full Duplex)的用户设备的收发转换所需要的时间,进一步避免伴随链路的HARQ-ACK向基站发送报告失败同时降低用户设备的实现复杂度。
根据本申请的一个方面,上述方法的特征在于,所述参考延时不小于第二延时;当所述第一频域资源池和所述第二频域资源池相同时,所述第二延时等于0;当所述第一频域资源池和所述第二频域资源池不相同时,所述第二延时大于0,所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时。
根据本申请的一个方面,上述方法的特征在于,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时。
根据本申请的一个方面,上述方法的特征在于,所述第二信号携带物理层信息,所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收,所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时。
作为一个实施例,通过所述第二信号所携带的物理层信息所采用的信息格式确定所述第三延时,进而确定所述参考延时,考虑了对于不同的SFI(Sidelink Feedback Information)格式(Format)的用户设备的处理复杂度的不同,尤其是在序列解相关和信道译码之间用户设备的处理复杂度的很大不同,从而使得系统可以在支持多种不同的SFI格式的情况下,伴随链路的HARQ-ACK向基站发送报告的定时仍能够满足用户设备的处理能力的要求。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信令;
其中,所述第一信令被用于确定所述第一信号所占用的时频资源,所述第一信令被用于 确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息和第四信息;
其中,所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于确定所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
接收第二信息;
其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
根据本申请的一个方面,上述方法的特征在于,所述参考延时不小于第一延时,所述第二信息的发送者的接收和发送之间的转换时间长度被用于确定所述第一延时。
根据本申请的一个方面,上述方法的特征在于,所述参考延时不小于第二延时;当所述第一频域资源池和所述第二频域资源池相同时,所述第二延时等于0;当所述第一频域资源池和所述第二频域资源池不相同时,所述第二延时大于0,所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时。
根据本申请的一个方面,上述方法的特征在于,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时。
根据本申请的一个方面,上述方法的特征在于,所述第二信号携带物理层信息,所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收,所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于指示所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信息和第四信息;
其中,所述第三信息被用于指示所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于指示所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所 包括的频域资源属于第一频域资源池;
第一发射机,发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;
第二接收机,接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;
第二发射机,当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;
其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第三发射机,发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
第三接收机,接收第二信息;
其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
作为一个实施例,本申请中的方法具备如下优势:
-.采用本申请中的方法,使得伴随链路的HARQ-ACK向基站发送报告的定时满足用户设备的最低的时延要求,考虑了用户设备的处理能力,从而减轻用户设备在实现时的负担和复杂性。
-.本申请中的方法在计算伴随链路的HARQ-ACK向基站发送报告的定时关系的时候考虑上行的BWP(Bandwidth Part,带宽部分)和伴随链路(Sidelink)的BWP(Bandwidth Part,带宽部分)之间关系,保证上行的BWP(Bandwidth Part,带宽部分)和伴随链路(Sidelink)的BWP(Bandwidth Part,带宽部分)的独立配置的同时,仍能够使得伴随链路的HARQ-ACK向基站发送报告的定时满足用户设备的处理能力,避免伴随链路的HARQ-ACK向基站发送报告失败,降低用户设备的实现复杂度。
-.本申请中的方法,考虑不能够全双工(Full Duplex)的用户设备的收发转换所需要的时间,进一步避免伴随链路的HARQ-ACK向基站发送报告失败同时降低用户设备的实现复杂度。
-.本申请中的方法考虑了对于不同的SFI(Sidelink Feedback Information)格式(Format)的用户设备的处理复杂度的不同,尤其是在序列解相关和信道译码之间用户设备的处理复杂度的很大不同,从而使得系统可以在支持多种不同的SFI格式的情况下,伴随链路的HARQ-ACK向基站发送报告的定时仍能够满足用户设备的处理能力的要求。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目 的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第一信号,第二信号和第二信息的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一节点设备和第二节点设备的示意图;
图5示出了根据本申请的一个实施例的第一节点设备和另一个用户设备的示意图;
图6示出了根据本申请的一个实施例的无线信号传输流程图;
图7示出了根据本申请的另一个实施例的无线信号传输流程图;
图8示出了根据本申请的一个实施例的第一多载波符号和第二多载波符号之间的关系的示意图;
图9示出了根据本申请的一个实施例的第一节点设备的接收和发送之间的转换时间长度的示意图;
图10示出了根据本申请的一个实施例的第二延时的示意图;
图11示出了根据本申请的一个实施例的第一特征延时和第二特征延时的示意图;
图12示出了根据本申请的一个实施例的第二信号所携带的物理层信息所采用的信息格式的示意图;
图13示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第一信号,第二信号和第二信息的流程图,如附图1所示。在附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点设备在步骤101中接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;在步骤102中发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;在步骤103中接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;在步骤104中当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
作为一个实施例,所述第一信息是高层信息。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息是通过空中接口传输的。
作为一个实施例,所述第一信息是通过无线接口传输的。
作为一个实施例,所述第一信息是本申请中的所述第二节点设备发送到本申请中的所述第一节点设备的。
作为一个实施例,所述第一信息通过下行链路(Downlink,DL)传输。
作为一个实施例,所述第一信息通过Uu口传输。
作为一个实施例,所述第一信息是在本申请中的所述第一节点设备内部传输的。
作为一个实施例,所述第一信息是从本申请中的所述第一节点设备的高层传递到所述第一节点设备的物理层。
作为一个实施例,所述第一信息是配置的(Configured)。
作为一个实施例,所述第一信息是预配置的(Pre-configured)。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第一信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息通过PDCCH(Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是单播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第一信息通过本申请中的所述第一信令携带的。
作为一个实施例,所述第一信息通过本申请中的所述第一信令之外的信令携带的。
作为一个实施例,所述第一信息包括本申请中的所述第一信令中的一个域(Field)。
作为一个实施例,所述第一信息包括“PUCCH-ResourceSet”IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括“pucch-ResourceCommon”IE(Information Element,信息单元)。
作为一个实施例,上述句子“所述第一信息被用于确定目标时频资源集合”包括以下含义:所述第一信息被本申请中的所述第一节点设备用于确定所述目标时频资源集合。
作为一个实施例,上述句子“所述第一信息被用于确定目标时频资源集合”包括以下含义:所述第一信息被用于直接指示所述目标时频资源集合。
作为一个实施例,上述句子“所述第一信息被用于确定目标时频资源集合”包括以下含义:所述第一信息被用于间接指示所述目标时频资源集合。
作为一个实施例,上述句子“所述第一信息被用于确定目标时频资源集合”包括以下含义:所述第一信息被用于显式地指示所述目标时频资源集合。
作为一个实施例,上述句子“所述第一信息被用于确定目标时频资源集合”包括以下含义:所述第一信息被用于隐式地指示所述目标时频资源集合。
作为一个实施例,所述目标时频资源集合是被预留给PUCCH(Physical Uplink  Control Channel,物理上行控制信道)传输的。
作为一个实施例,所述目标时频资源集合被预留给UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述目标时频资源集合是被预留给伴随链路(Sidelink)HARQ反馈。
作为一个实施例,所述目标时频资源集合中包括正整数个RE(Resource Element,资源单元)。
作为一个实施例,所述目标时频资源集合在时域包括正整个时域连续的OFDM符号。
作为一个实施例,所述目标时频资源集合在时域包括大于1的正整数个时域离散的OFDM符号。
作为一个实施例,所述目标时频资源集合在频域包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述目标时频资源集合在频域包括连续的频域资源。
作为一个实施例,所述目标时频资源集合在频域包括离散的频域资源。
作为一个实施例,所述目标时频资源集合在频域包括跳频的频域资源。
作为一个实施例,所述第一多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)。
作为一个实施例,所述第一多载符号是DFT-s-OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号(Symbol)。
作为一个实施例,所述第一多载波符号包括循环前缀(CP,Cyclic Prefix)。
作为一个实施例,所述第一多载波符号是对应所述第一频域资源池中的一个子载波的子载波间隔的OFDM符号。
作为一个实施例,所述第一多载波符号是对应所述第一频域资源池中的一个子载波的子载波间隔的DFT-s-OFDM符号。
作为一个实施例,当所述目标时频资源集合在时域只包括1个多载波符号时,所述第一多载波符号是所述目标时频资源集合在时域所包括的1个多载波符号。
作为一个实施例,所述目标时频资源集合在时域所包括的任意一个多载符号是OFDM符号。
作为一个实施例,所述目标时频资源集合在时域所包括的任意一个多载波符号是DFT-s-OFDM符号。
作为一个实施例,上述句子“所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号”包括以下含义:所述第一多载波符号的起始时刻不晚于所述目标时频资源集合在时域所包括的任意一个多载波符号的起始时刻。
作为一个实施例,上述句子“所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号”包括以下含义:所述目标时频资源在时域包括大于1的正整数个多载波符号,所述第一多载波符号的起始时刻早于所述目标时频资源集合在时域所包括的所述第一多载波符号之外的任意一个多载波符号的起始时刻。
作为一个实施例,所述第一频域资源池是一个BWP(Bandwith Part,带宽部分)。
作为一个实施例,所述第一频域资源池包括正整数个频域连续的PRB(Physical Resource Block)。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing),所述第一频域资源池包括正整数个频域连续的PRB(Physical Resource Block)。
作为一个实施例,所述第一频域资源池包括连续的频域资源。
作为一个实施例,所述第一频域资源池是一个PUCCH资源集合(Resource Set)中所包括的频域资源。
作为一个实施例,所述第一频域资源池是一个上行(UL,Uplink)BWP。
作为一个实施例,所述第一频域资源池包括所述目标时频资源集合所包括的频域资源之外的频域资源。
作为一个实施例,所述第一频域资源池只包括所述目标时频资源集合所包括的频域资源。
作为一个实施例,所述第一频域资源池中所包括的子载波的子载波间隔(SCS)都相等。
作为一个实施例,所述目标时频资源集合中在频域所包括的每个子载波(Subcarrier)是所述第一频域资源池中的子载波。
作为一个实施例,上述句子“所述第一信息被用于确定目标时频资源集合”包括以下含义:所述第一信息被用于从所述第一频域资源池中确定所述目标时频资源集合所包括的频域资源,所述第一信息被用于指示所述目标时频资源集合所包括的起始OFDM符号和所包括的OFDM符号的数量。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号是射频信号。
作为一个实施例,所述第一信号通过空中接口传输。
作为一个实施例,所述第一信号通过无线接口传输。
作为一个实施例,所述第一信号通过PC5接口传输。
作为一个实施例,所述第一信号通过Uu接口传输。
作为一个实施例,所述第一信号通过伴随链路(Sidelink)传输。
作为一个实施例,所述第一信号被用于携带伴随链路的传输块(TB,Transport Block)。
作为一个实施例,所述第一信号是通过SL-SCH(Sidelink Shared Channel,伴随链路共享信道)传输。
作为一个实施例,所述第一信号是通过PSSCH(Physical Sidelink Shared Channel,物理伴随链路共享信道)传输。
作为一个实施例,所述第一信号包括参考信号。
作为一个实施例,所述第一信号包括PSSCH和DMRS(Demodulation Reference Signal,解调参考信号)。
作为一个实施例,所述第一信号通过PSCCH(Physical Sidelink Control Channel,物理伴随链路控制信道)。
作为一个实施例,所述第一信号携带SCI(Sidelink Control Information,伴随链路控制信息)。
作为一个实施例,所述第一信号是广播的(Broadcast)。
作为一个实施例,所述第一信号是单播的(Unicast)。
作为一个实施例,所述第一信号是组播的(Groupcast)
作为一个实施例,一个传输块(TB,Transport Block)的全部或部分被用于生成所述第一信号。
作为一个实施例,一个传输块(TB,Transport Block)的全部或部分和参考信号一起被用于生成所述第一信号。
作为一个实施例,一个传输块(TB,Transport Block)中的全部比特或部分比特依次经过经过CRC计算(CRC Calculation),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)得到所述第一信号。
作为一个实施例,一个传输块(TB,Transport Block)中的全部比特或部分比特依次经过经过CRC计算(CRC Calculation),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号。
作为一个实施例,一个传输块(TB,Transport Block)中的全部比特或部分比特依次经过经过CRC计算(CRC Calculation),编码块分段和编码块CRC附着(Code Block Segmentation and Code Block CRC attachment),信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)得到所述第一信号。
作为一个实施例,一个传输块(TB,Transport Block)中的全部比特或部分比特依次经过经过CRC计算(CRC Calculation),编码块分段和编码块CRC附着(Code Block Segmentation and Code Block CRC attachment),信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号。
作为一个实施例,一个SCI的负载(payload)中的全部比特或部分比特依次经过经过CRC计算(CRC Calculation),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),映射到物理资源(Mapping to Physical Resources),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)得到所述第一信号。
作为一个实施例,一个SCI的负载(payload)中的全部比特或部分比特依次经过经过CRC计算(CRC Calculation),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),映射到物理资源(Mapping to Physical Resources),OFDM基带信号生成(OFDM Baseband Signal Generation)得到所述第一信号。
作为一个实施例,所述第一信号所占用的频域资源属于伴随链路的资源池(Resource Pool)。
作为一个实施例,所述第一信号所占用的频域资源包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一信号所占用的频域资源包括正整数个子信道(Subchannel)。
作为一个实施例,所述第一信号所占用的频域资源在频域是连续的。
作为一个实施例,所述第一信号所占用的频域资源在频域是离散的。
作为一个实施例,
作为一个实施例,所述第二频域资源池是一个BWP(Bandwith Part,带宽部分)。
作为一个实施例,所述第二频域资源池包括正整数个频域连续的PRB(Physical Resource Block)。
作为一个实施例,对于给定的子载波间隔(SCS,Subcarrier Spacing),所述第二频域资源池包括正整数个频域连续的PRB(Physical Resource Block)。
作为一个实施例,所述第二频域资源池包括连续的频域资源。
作为一个实施例,所述第二频域资源池是一个伴随链路的资源池(Resource Pool)。
作为一个实施例,所述第二频域资源池是一个伴随链路(Sidelink)BWP。
作为一个实施例,所述第二频域资源池包括所述第一信号所占用的频域资源之外的频域资源。
作为一个实施例,所述第二频域资源池中所包括的子载波的子载波间隔(SCS)都相等。
作为一个实施例,所述第二频域资源池中所包括的任意一个子载波的子载波间隔(SCS)和所述第一频域资源池中所包括的任意一个子载波的子载波间隔(SCS)相等。
作为一个实施例,所述第二频域资源池中存在一个子载波的子载波间隔(SCS)和所述第一频域资源池中的一个子载波的子载波间隔(SCS)不相等。
作为一个实施例,所述第二频域资源池只包括所述第一信号所占用的频域资源。
作为一个实施例,所述第一信号所占用的频域资源所包括的每个子载波(Subcarrier)是所述第二频域资源池中的子载波。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池和所述第二频域资源池是否相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池的SLIV(Start and Length Indicator Value,开始长度指示值)和所述第二频域资源池的SLIV(Start and Length Indicator Value,开始长度指示值)是否相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池的频域起始位置以及带宽和所述第二频域资源池的频域起始位置以及带宽是否对应都相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池的位置带宽参数(“locationAndBandwidth”)和所述第二频域资源池的位置带宽参数(“locationAndBandwidth”)是否相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池所包括的最低频率以及带宽和所述第二频域资源池所包括的最低频域以及带宽是否对应都相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池所包括的一个子载波的子载波间隔(SCS)和所述第二频域资源池所包括的一个子载波的子载波间隔(SCS)是否相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池的中心频点和所述第二频域资源池的中心频点是否相同。
作为一个实施例,所述第一频域资源池和所述第二频域资源池之间的频域关系是指:所述第一频域资源池的中心频点和所述第二频域资源池的中心频点之间在频域的频域间隔。
作为一个实施例,上述句子“所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时”包括以下含义:所述第一频域资源池和所述第二频域资源池之间的频域关系被本申请中的所述第一节点设备用于确定所述参考延时。
作为一个实施例,上述句子“所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时”包括以下含义:所述第一频域资源池和所述第二频域资源池之间的频域关系被本申请中的所述第二节点设备用于确定所述参考延时。
作为一个实施例,上述句子“所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时”包括以下含义:所述第一频域资源池和所述第二频域资源池之间的频域的位置关系被用于确定所述参考延时。
作为一个实施例,上述句子“所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时”包括以下含义:所述参考延时和所述第一频域资源池的中心频点和所述第二频域资源池的中心频点之间的频域间隔长度成线性关系。
作为一个实施例,上述句子“所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时”包括以下含义:所述参考延时和所述第一频域资源池的最低频率和所述第二频域资源池的最低频率之间的频域间隔长度成线性关系。
作为一个实施例,上述句子“所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时”是指:所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定本申请中的所述第二延时。
作为一个实施例,所述参考延时的单位是秒。
作为一个实施例,所述参考延时的单位是毫秒(ms)。
作为一个实施例,所述参考延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度。
作为一个实施例,所述参考延时等于正整数个时隙(Slot)的时间长度。
作为一个实施例,所述参考延时等于正整数倍Tc,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述参考延时通过OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的数量表示。
作为一个实施例,所述参考延时通过时隙(Slot)的数量表示。
作为一个实施例,所述参考延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第一频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述参考延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第二频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述参考延时等于正整数个时隙中的首个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)之外的OFDM符号的时间长度。
作为一个实施例,所述参考延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第一频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述参考延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第二频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述参考延时和携带所述第二信息的信号所采用的波形(Waveform)有关。
作为一个实施例,所述参考延时和携带所述第二信息的信号是采用OFDM波形还是采用DFT-s-OFDM波形(Waveform)有关。
作为一个实施例,所述参考延时和携带所述第二信息的信号生成时是否采用变换预编码(Transform Precoding)有关。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第二信号是射频信号。
作为一个实施例,所述第二信号通过空中接口传输。
作为一个实施例,所述第二信号通过无线接口传输。
作为一个实施例,所述第二信号通过PC5接口传输。
作为一个实施例,所述第二信号通过Uu接口传输。
作为一个实施例,所述第二信号通过伴随链路(Sidelink)传输。
作为一个实施例,所述第二信号是通过PSFCH(Physical Sidelink Feedback Channel,物理伴随链路反馈信道)传输。
作为一个实施例,一个特征序列的全部或部分被用于生成所述第二信号。
作为一个实施例,一个比特块的全部或部分被用于生成所述第二信号。
作为一个实施例,ZC(Zadoff-Chu)序列中的全部或部分被用于生成所述第二信号。
作为一个实施例,所述第二信号携带SFCI(Sidelink Feedback Control Information,伴随 链路反馈控制信息)中的全部或部分。
作为一个实施例,所述第二信号携带伴随链路的CSI(Channel Status Information,信道状态信息)。
作为一个实施例,所述第二信号携带伴随链路的CQI(Channel Quality Indicator,信道质量指示)。
作为一个实施例,所述第二信号携带伴随链路的RI(Rank Indicator,秩指示)。
作为一个实施例,所述第二信号携带伴随链路的RSRP(Reference Signal Received Power,参考信号接收功率)报告。
作为一个实施例,所述第二信号携带伴随链路的RSRQ(Reference Signal Received Quality,参考信号接收质量)报告。
作为一个实施例,所述第二信号携带伴随链路的L1-RSRP(Layer 1-Reference Signal Received Power,层一参考信号接收功率)报告。
作为一个实施例,所述第二信号携带HARQ(Hybrid Automatic Repeat Request,混合自动重传请)反馈(Feedback)。
作为一个实施例,所述第二信号携带HARQ(Hybrid Automatic Repeat Request,混合自动重传请)NACK(Non-Acknowledge)反馈(Feedback)。
作为一个实施例,所述第二信号被用于确定所述第一信号是否被正确接收。
作为一个实施例,所述第二信号被用于指示所述第一信号是否被正确接收。
作为一个实施例,所述第二信号被用于指示所述第一信号未被正确接收。
作为一个实施例,所述第二信号携带所述第一信号的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)反馈(Feedback)。
作为一个实施例,所述第二信号携带所述第一信号的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)NACK反馈(Feedback)。
作为一个实施例,所述第二多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)。
作为一个实施例,所述第二多载符号是DFT-s-OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号(Symbol)。
作为一个实施例,所述第二多载波符号包括循环前缀(CP,Cyclic Prefix)。
作为一个实施例,所述第二多载波符号是对应所述第一频域资源池中的一个子载波的子载波间隔的OFDM符号。
作为一个实施例,所述第二多载波符号是对应所述第一频域资源池中的一个子载波的子载波间隔的DFT-s-OFDM符号。
作为一个实施例,所述第二多载波符号是对应所述第二频域资源池中的一个子载波的子载波间隔的OFDM符号。
作为一个实施例,所述第二多载波符号是对应所述第二频域资源池中的一个子载波的子载波间隔的DFT-s-OFDM符号。
作为一个实施例,所述第一多载波符号和第二多载波符号对应相同的子载波间隔(SCS,Subcarrier Spacing)。
作为一个实施例,所述第二多载波符号和所述第一多载波符号是相同的。
作为一个实施例,所述第二多载波符号和所述第一多载波符号是不同的。
作为一个实施例,所述第二多载波符号是一个虚拟的多载波符号。
作为一个实施例,所述第二多载波符号是被所述第一节点设备真实占用的多载波符号。
作为一个实施例,所述第二多载波符号没有被所述第一节点设备占用。
作为一个实施例,所述第二多载波符号是被用作时间参考的多载波符号。
作为一个实施例,所述第二多载波符号的起始时刻是所述第二多载波符号中的CP的起始时刻。
作为一个实施例,所述第二多载波符号的起始时刻包括了定时提前(Timing Advance)的影响。
作为一个实施例,所述第二信号的接收结束时刻是所述第二信号所占用的最晚的OFDM符号的接收结束时刻。
作为一个实施例,所述第二信号的接收结束时刻是所述第二信号所占用的最晚的OFDM符号所属的时隙(Slot)的接收结束时刻。
作为一个实施例,所述第二多载波符号的起始时刻晚于所述第二信号的接收结束时刻。
作为一个实施例,所述第二多载波符号的起始时刻和所述第二信号的接收结束时刻相同。
作为一个实施例,上述句子“当所述第一多载波符号不早于所述第二多载波符号时,发送第二信令”是指:当所述第一多载波符号的起始时刻不早于所述第二多载波符号的起始时刻时,发送所述第二信息。
作为一个实施例,上述句子“当所述第一多载波符号不早于所述第二多载波符号时,发送第二信令”是指:当所述第一多载波符号的结束时刻不早于所述第二多载波符号的结束时刻时,发送所述第二信息。
作为一个实施例,所述第二信息包括物理层信息。
作为一个实施例,所述第二信息包括高层信息。
作为一个实施例,所述第二信息包括UCI(Uplink Control Information,上行控制信息)中的部分或全部。
作为一个实施例,所述第二信息包括UCI中的一个或多个域(Field)。
作为一个实施例,所述第二信息通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输。
作为一个实施例,所述第二信息通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输。
作为一个实施例,所述第二信息通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)背负(Piggyback)传输。
作为一个实施例,所述第二信息通过UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第二信息包括HARQ-ACK码本(Codebook)中的全部或部分比特。
作为一个实施例,所述第二信息包括伴随链路(Sidelink)的HARQ报告(Report)。
作为一个实施例,所述第二信息包括所述第一信号是否被正确接收的信息。
作为一个实施例,所述第二信息包括所述第一信号是否未被正确接收的信息。
作为一个实施例,所述第二信息包括所述第一信号所携带的传输块(TB)是否需要重新传输的信息。
作为一个实施例,所述第二信息包括所述第一信号所携带的传输块(TB)是否需要重新调度的信息。
作为一个实施例,所述第二信息包括CSI反馈中的全部或部分比特。
作为一个实施例,所述第二信息通过基带信号携带。
作为一个实施例,所述第二信息通过射频信号携带。
作为一个实施例,所述第二信息通过空中接口传输。
作为一个实施例,所述第二信息通过无线接口传输。
作为一个实施例,所述第二信息通过Uu接口传输。
作为一个实施例,所述第二信息通过上行链路(Uplink)传输。
作为一个实施例,所述第二信息从所述第一节点设备的物理层传递到所述第一节点设备的高层。
作为一个实施例,所述第二信息在所述第一节点设备内部传输。
作为一个实施例,伴随链路(Sidelink)的HARQ反馈(Feedback)被用于确定所述第二信息。
作为一个实施例,伴随链路(Sidelink)的CSI反馈被用于确定所述第二信息。
作为一个实施例,伴随链路(Sidelink)的PHR反馈被用于确定所述第二信息。
作为一个实施例,上述句子“所述目标时频资源集合被用于所述第二信息的传输”包括以下含义:占用所述目标时频资源集合的无线信号携带所述第二信息。
作为一个实施例,上述句子“所述目标时频资源集合被用于所述第二信息的传输”包括以下含义:携带所述第二信息的信道(Channel)占用所述目标时频资源集合。
作为一个实施例,上述句子“所述目标时频资源集合被用于所述第二信息的传输”包括以下含义:所述目标时频资源集合被本申请中的所述第一节点设备用于所述第二信息的传输。
作为一个实施例,上述句子“所述目标时频资源集合被用于所述第二信息的传输”包括以下含义:携带所述第二信息的信道(Channel)占用时频资源属于所述目标时频资源集合。
作为一个实施例,所述第二信号所占用的空口资源包括所述第二信号所占用的时频资源和所述第二信号所占用的码域资源。
作为一个实施例,所述第二信号所占用的空口资源包括所述第二信号所占用的时频资源。
作为一个实施例,所述第二信号所占用的空口资源包括所述第二信号所占用的码域资源。
作为一个实施例,所述第二信号所占用的空口资源包括所述第二信号所占用的时频资源和生成所述第二信号的序列资源。
作为一个实施例,所述第二信号所占用的空口资源包括生成所述第二信号的序列资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源被本申请中的第一节点用于确定所述第二信号所占用的空口资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源被用于确定所述第二信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源被用于确定所述第二信号所占用的码域资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源被用于确定生成所述第二信号的序列资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源被用于确定所述第二信号所占用的时频资源和生成所述第二信号的序列资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源被用于确定所述第二信号所占用的时频资源和所述第二信号所占用的码域资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源根据映射关系被用于确定所述第二信号所占用的空口资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源根据对应关系被用于确定所述第二信号所占用的空口资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第一信号所占用的时频资源根据隐式的关系被用于确定所述第二信号所占用的空口资源。
作为一个实施例,上述句子“所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源”包括以下含义:所述第二信号所占用的空口资源和所述第一信号所占用的时频资源相关联(Association)。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信息包括所述第二信号所携带的信息。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信息复制所述第二信号所携带的信息。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信号被用于确定所述第一信号是否被正确接收,所述第二信息包括所述第一信号是否被正确接收的指示。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信息和所述第二信号所携带的信息相同。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信息和所述第二信号所携带HARQ-ACK信息相同。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信息包括所述第二信号所携带HARQ-ACK信息。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信号所携带的信息被用于生成所述第二信息。
作为一个实施例,上述句子“所述第二信号所携带的信息被用于确定所述第二信息”包括以下含义:所述第二信号所携带的信息被本申请中的所述第一节点设备用于确定所述第二信息。
作为一个实施例,所述第一信息的发送者是基站设备。
作为一个实施例,所述第一信息的发送者是TRP(Transmission Reception Point,发送接收节点)。
作为一个实施例,所述第一信息的发送者是网络设备。
作为一个实施例,所述第一信息的发送者是gNB。
作为一个实施例,所述第一信息的发送者是eNB。
作为一个实施例,所述第一信息的发送者是用户设备(UE,User Equipement)。
作为一个实施例,所述第一信息的发送者是路边单元(RSU,Road Side Unit)。
作为一个实施例,所述第一信息的发送者是本申请中的所述第一节点设备。
作为一个实施例,所述第一信息的发送者是本申请中的所述第二节点设备。
作为一个实施例,所述第二信号的发送者是基站设备。
作为一个实施例,所述第二信号的发送者是网络设备。
作为一个实施例,所述第二信号的发送者是用户设备(UE,User Equipement)。
作为一个实施例,所述第二信号的发送者是路边单元(RSU,Road Side Unit)。
作为一个实施例,所述第二信号的发送者是本申请中的所述第二节点设备之外的节点设备。
作为一个实施例,所述第二信号的发送者是车载单元。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息和所述第二信号通过不同的空中接口传输。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息和所述第二信号通过不同的链路传输。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同” 包括以下含义:所述第一信息通过Uu接口传输,所述第二信号通过PC5接口传输。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息通过下行链路(Downlink)传输,所述第二信号通过伴随链路(Sidelink)传输。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息的发送者和所述第二信号的发送者是非共址的(Non-co-located)。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息的发送者和所述第二信号的发送者的节点类型不相同。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息的发送者是基站设备,所述第二信号的发送者是用户设备。
作为一个实施例,上述句子“所述第一信息的发送者和所述第二信号的发送者不相同”包括以下含义:所述第一信息的发送者是gNB/eNB,所述第二信号的发送者是RSU。
作为一个实施例,还包括:
发送第二信令;
其中,所述第二信令被用于指示所述第一信号所占用的时频资源和所述第一信号所采用的调制编码方式(MCS,Modulation Coding Scheme)。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提 供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点设备。
作为一个实施例,所述UE201支持在伴随链路中的传输。
作为一个实施例,所述UE201支持PC5接口。
作为一个实施例,所述UE201支持车联网。
作为一个实施例,所述UE201支持V2X业务。
作为一个实施例,所述gNB201对应本申请中的所述第二节点设备。
作为一个实施例,所述gNB201支持车联网。
作为一个实施例,所述gNB201支持V2X业务。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE,gNB或V2X中的车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点设备与第二节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点设备之间的对第一节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四信息生成于所述RRC306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的一个第一节点设备和第二节点设备的示意图,如附图4所示。
在第一节点设备(450)中可以包括控制器/处理器490,数据源/缓存器480,接收处理器452,发射器/接收器456和发射处理器455,发射器/接收器456包括天线460。
在第二节点设备(410)中可以包括控制器/处理器440,数据源/缓存器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在DL(Downlink,下行)中,上层包,比如本申请中的第一信息、第一信令(如果第一信令中包括高层信息)、第三信息和第四信息中所包括的高层信息提供到控制器/处理器440。控制器/处理器440实施L2层及以上层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对第一节点设备450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到第一节点设备450的信令,比如本申请中的第一信息、第一信令(如果第一信令中包括高层信息)、第三信息和第四信息均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信息、第一信令、第三信息和第四信息的物理层信号的生成在发射处理器415完成,生成的调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括对本申请中的第一信息、第一信令、第三信息和第四信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第二节点设备410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490负责L2层及以上层,控制器/处理器490对本申请中的第一信息、第一信令(如果第一信令中包括高层信息)、第三信息和第四信息进行解读。控制器/处理器可与存储程序代码和数据的 存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,数据源/缓存器480用来提供高层数据到控制器/处理器490。数据源/缓存器480表示L2层和L2层之上的所有协议层。控制器/处理器490通过基于第二节点410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到第二节点410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的第二信息在发射处理器455生成。信号发射处理功能包括编码和交织以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括接收处理本申请中的第二信息,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由第一节点设备450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在控制器/处理器440实施L2层的功能。控制器/处理器可与存储程序代码和数据的缓存器430相关联。缓存器430可以为计算机可读媒体。
作为一个实施例,所述第一节点设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一节点设备450装置至少:接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
作为一个实施例,所述第一节点设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
作为一个实施例,所述第二节点设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码 被配置成与所述至少一个处理器一起使用。所述第二节点设备410装置至少:发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;接收第二信息;其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
作为一个实施例,所述第二节点设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;接收第二信息;其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
作为一个实施例,所述第一节点设备450是一个用户设备(UE)。
作为一个实施例,所述第一节点设备450是一个支持V2X的用户设备。
作为一个实施例,所述第一节点设备450是一个车载设备。
作为一个实施例,所述第一节点设备450是一个RSU(Road Side Unit,路边单元)设备。
作为一个实施例,所述第二节点设备410是一个基站设备(gNB/eNB)。
作为一个实施例,所述第二节点设备410是一个支持V2X的基站设备。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第四信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于接收本申请中的所述第二信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第四信息。
实施例5
实施例5示出了根据本申请的一个第一节点设备和另一个用户设备的示意图,如附图5所示。
在第一节点设备(550)中包括控制器/处理器590,存储器580,接收处理器552,发射器/接收器556,发射处理器555,发射器/接收器556包括天线560。另一个用户设备(500)中的组成和第一节点设备550中的对应相同。
在伴随链路(Sidelink)传输中,上层包,包括本申请中的第一信号提供到控制器/处理器590,控制器/处理器590实施L2层的功能。在伴随链路传输中,控制器/处理器590提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用。控制器/处理器590还负责HARQ操作(如果支持的话)、重复发射,和到用户设备500的信令。发射处理器555实施用于L1层(即,物理层)的各种信号处理功能,包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等,本申请中的第一信号的生成在发射处理器555完成,调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器555经由发射器556映射到天线560以射频信号的形式发射出去。在接收端,每一接收器516通过其相应天线520接收射频信号,每一接收器516恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器512。接收处理器512实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一信号的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解扰,解码和解交织以恢复在物理信道上由第一通信节点设备550发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器540。控制器/处理器540实施L2层,控制器/处理器540对本申请中的第一信号进行解读。控制器/处理器可与存储程序代码和数据的存储器530相关联。存储器530可称为计算机可读媒体。特别的,对于本申请中的第二信号,在用户设备500中的发射处理器515中生成,然后经由发射器516映射到天线520中以射频信号的形式发射出去。在接收端,每一接收器556通过其相应天线560接收所第二信号的射频信号,每一接收器556恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器552,接收处理器552解读本申请中的第二信号。
作为一个实施例,发射器556(包括天线560),发射处理器555和控制器/处理器590被用于本申请中发送所述第一信号。
作为一个实施例,接收器556(包括天线560)和接收处理器552被用于本申请中接收所述第二信号。
作为一个实施例,接收器516(包括天线520),接收处理器512和控制器/处理器540被用于接收本申请中的所述第一信号。
作为一个实施例,发射器516(包括天线520),发射处理器515和控制器/处理器540被用于发送本申请中的所述第二信号。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第二节点设备N1是第一节点设备U2的服务小区的维持基站,第一节点设备U2和另一个用户设备U3通过伴随链路通信,虚线框中的步骤是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N1,在步骤S11中发送第三信息,在步骤S12中发送第四信息,在步 骤S13中发送第一信息,在步骤S14中发送第一信令,在步骤S15中接收第二信息。
对于 第一节点设备U2,在步骤S21中接收第三信息,在步骤S22中接收第四信息,在步骤S23中接收第一信息,在步骤S24中接收第一信令,在步骤S25中发送第一信号,在步骤S26中接收第二信号,在步骤S27中发送第二信息。
对于 另一个用户设备U3,在步骤S31中接收第一信号,在步骤S32中发送第二信号。
在实施例6中,本申请中所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;本申请中的所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;第二多载波符号的起始时刻和本申请中的所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于本申请中的所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同;所述第一信令被用于确定所述第一信号所占用的时频资源,所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度;所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于确定所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,所述第三信息是高层信息。
作为一个实施例,所述第三信息通过高层信令传输。
作为一个实施例,所述第三信息通过物理层信令传输。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第三信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第三信息包括了一个RAR(Random Access Response,随机接入响应)MAC负载(payload)中的全部或部分。
作为一个实施例,所述第三信息包括了随机接入过程中的Msg2(消息2)中的全部或部分。
作为一个实施例,所述第三信息包括了随机接入过程中的MsgB(消息B)中的全部或部分。
作为一个实施例,所述第三信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是单播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第三信息通过PDCCH(Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息包括“BWP-Uplink”IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括“initialUplinkBWP”IE(Information Element,信息单元)。
作为一个实施例,上述句子“所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔”包括以下含义:所述第三信息被本申请中的所述第一节点设备用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,上述句子“所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔”包括以下含义:所述第三信息被用于直接指示所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,上述句子“所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔”包括以下含义:所述第三信息被用于间接指示所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,上述句子“所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔”包括以下含义:所述第三信息被用于显式地指示所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,上述句子“所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔”包括以下含义:所述第三信息被用于隐式地指示所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,所述第四信息是高层信息。
作为一个实施例,所述第四信息通过高层信令传输。
作为一个实施例,所述第四信息通过物理层信令传输。
作为一个实施例,所述第四信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第四信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第四信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第四信息包括了一个RRC(Radio Resource Control,无线资源控制)信令中的一个IE(Information Element,信息单元)中的全部或部分域(Field)。
作为一个实施例,所述第四信息包括了一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分域(Field)。
作为一个实施例,所述第四信息包括了一个MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)中的全部或部分。
作为一个实施例,所述第四信息包括了一个MAC(Medium Access Control,媒体接入控制)头(Header)中的全部或部分。
作为一个实施例,所述第四信息通过一个DL-SCH(Downlink Shared Channel,下 行共享信道)传输。
作为一个实施例,所述第四信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第四信息是广播的。
作为一个实施例,所述第四信息是单播的。
作为一个实施例,所述第四信息是小区特定的(Cell Specific)。
作为一个实施例,所述第四信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第四信息是用户设备组特定的(UE group-specific)。
作为一个实施例,所述第四信息通过PDCCH(Physical Downlink Control Channel,窄带物理下行控制信道)传输。
作为一个实施例,所述第四信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第四信息包括“BWP-Sidelink”IE(Information Element,信息单元)。
作为一个实施例,所述第四信息包括“initialSidelinkBWP”IE(Information Element,信息单元)。
作为一个实施例,所述第四信息包括“BWP-SidelinkCommon”IE(Information Element,信息单元)。
作为一个实施例,所述第四信息包括“BWP-UplinkDedicated”IE(Information Element,信息单元)。
作为一个实施例,所述第三信息和所述第四信息通过两个不同的RRC信令携带的。
作为一个实施例,所述第三信息和所述第四信息通过同一个RRC信令携带的。
作为一个实施例,同一个RRC信令的两个IE分别携带所述第三信息和所述第四信息。
作为一个实施例,同一个RRC信令的同一个IE中的两个域(Field)分别携带所述第三信息和所述第四信息。
实施例7
实施例7示例了根据本申请的一个实施例的无线信号传输流程图,如附图7所示。在附图7中,第二节点设备N4是第一节点设备U5的服务小区的维持基站,第一节点设备U5和另一个用户设备U6通过伴随链路通信,虚线框中的步骤是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第二节点设备N4,在步骤S41中发送第三信息,在步骤S42中发送第四信息,在步骤S43中发送第一信息,在步骤S44中发送第一信令。
对于 第一节点设备U5,在步骤S51中接收第三信息,在步骤S52中接收第四信息,在步骤S53中接收第一信息,在步骤S54中接收第一信令,在步骤S55中发送第一信号,在步骤S56中接收第二信号。
对于 另一个用户设备U6,在步骤S61中接收第一信号,在步骤S62中发送第二信号。
在实施例7中,本申请中所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;本申请中的所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;第二多载波符号的起始时刻和本申请中的所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第一信息的发送者和所述第二信号的发送者不相同;所述第一信令被用于确定所述第一信号所占用的时频资源,所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收 结束时刻之间的时间间隔长度;所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于确定所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
作为一个实施例,所述第一信令是基带信号。
作为一个实施例,所述第一信令是射频信号。
作为一个实施例,所述第一信令通过空中接口传输。
作为一个实施例,所述第一信令通过无线接口传输。
作为一个实施例,所述第一信令通过PC5接口传输。
作为一个实施例,所述第一信令通过Uu接口传输。
作为一个实施例,所述第一信令通过伴随链路(Sidelink)传输。
作为一个实施例,所述第一信令通过下行链路(Downlink)传输。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令携带DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令携带SCI(Sidelink Control Information,伴随链路控制信息)。
作为一个实施例,所述第一信令是PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一信令是PSCCH(Physical Sidelink Control Channel,物理伴随链路控制信道)。
作为一个实施例,所述第一信令是用户特定的(UE-Specific)。
作为一个实施例,所述第一信令是小区特定的(Cell-Specific)。
作为一个实施例,所述第一信令是通过用户特定的(UE-Specific)RNTI(Radio Network Temporary Identity,无线网络临时标识)加扰的PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信令是通过SL-SPS-V-RNTI加扰的PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信令是通过SL-V-RNTI加扰的PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信令通过空中接口传输。
作为一个实施例,所述第一信令通过无线接口传输。
作为一个实施例,所述第一信令通过PC5接口传输。
作为一个实施例,所述第一信令通过Uu接口传输。
作为一个实施例,所述第一信令通过伴随链路(Sidelink)传输。
作为一个实施例,所述第一信令通过基带(Baseband)信号携带。
作为一个实施例,所述第一信令通过射频(RF,Radio Frequency)信号携带。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令所采用的DCI格式(Format)是格式3。
作为一个实施例,所述第一信令被用于配置伴随链路(Sidelink)的传输。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一信号所占用的时频资源”包括以下含义:所述第一信令被本申请中的所述第一节点设备用于确定所述第一信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一信号所占用的时频资源”包括以下含义:所述第一信令被用于直接指示所述第一信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一信号所占用的时频资源” 包括以下含义:所述第一信令被用于间接指示所述第一信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一信号所占用的时频资源”包括以下含义:所述第一信令被用于显式地指示所述第一信号所占用的时频资源。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一信号所占用的时频资源”包括以下含义:所述第一信令被用于隐式地指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信令还被用于确定所述第一信号所采用的调制编码方式(MCS,Modulation Coding Scheme)。
作为一个实施例,所述第一信令还被用于确定所述第一信号所属于的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程(Process)。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被本申请中的所述第一节点设备用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被用于直接指示所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被用于间接指示所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被用于显式地指示所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被用于隐式地指示所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令所占用的最晚的多载波符号的结束时刻之间的时间间隔长度。
作为一个实施例,上述句子“所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度”包括以下含义:所述第一信令被用于确定所述第一多载波符号所属的时隙(Slot)的起始时刻和所述第一信令所占用的最晚的多载波符号所属的时隙(Slot)的结束时刻之间的时间间隔长度。
实施例8
实施例8示例了根据本申请的一个实施例的第一多载波符号和第二多载波符号之间的关系的示意图,如附图8所示。在附图8中,在每种情况中,横轴代表时间,纵轴代表频率,交叉线填充的矩形代表第二信号所占用的时频资源,每个圆点填充的矩形代表目标时频资源集合中的一个多载波符号,斜线填充的矩形代表第二多载波符号;在情况A中,第一多载波符号不早于第二多载波符号;在情况B中,第一多载波符号早于第二多载波符号。
在实施例8中,当本申请中的所述第一多载波符号早于本申请中的所述第二多载符号时,本申请中的所述第一节点设备可能放弃发送本申请中的所述第二信息,或者所述第一节点设 备可能忽略所述第一信息,或者所述第一节点设备可能认为本申请中的所述目标时频资源集合是无效的。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:不排除所述第一节点设备发送所述第二信息的可能。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:所述第一节点设备被允许放弃发送所述第二信息。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:所述第一节点设备被允许放弃发送所述第二信息,所述第一节点设备最终是否放弃发送所述第二信息取决于所述第一节点设备的实现(Implementation)。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:所述第一节点设备被允许放弃发送所述第二信息,所述第一节点设备最终是否放弃发送所述第二信息取决于所述第一节点设备的能力(Capability)。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:所述第一节点设备可能不能够提供有效(Valid)的所述第二信息。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:所述第一节点设备可能不能够提供正确的所述第二信息。
作为一个实施例,上述句子“所述第一节点设备可能放弃发送所述第二信息”包括以下含义:所述第二信息的接收者不能期待接收到有效的所述第二信息。
作为一个实施例,当所述第一节点设备放弃发送所述第二信息时,所述第一节点设备可能使用所述目标时频资源集合中的资源发送所述第二信息之外的信息。
作为一个实施例,当所述第一节点设备放弃发送所述第二信息时,所述第一节点设备可能不使用所述目标时频资源集合中的资源发送任何信息。
作为一个实施例,当所述第一节点设备放弃发送所述第二信息时,所述第一节点设备可能仍然使用所述目标时频资源集合中的时频资源发送PUCCH。
作为一个实施例,当所述第一节点设备放弃发送所述第二信息时,所述第一节点设备可能仍然使用所述目标时频资源集合中的时频资源发送PUSCH。
作为一个实施例,当所述第一节点设备放弃发送所述第二信息时,所述第一节点设备可能仍然使用所述目标时频资源集合中的时频资源发送无线信号。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一节点设备可能不遵循所述第一信息的指示。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一节点设备可能假定所述第一信息没有被正确接收。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一节点设备可能假定所述第一信息没有被发送。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一节点设备可能认为所述第一信息是无效的(Invalid)。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一节点设备是否最终忽略所述第一信息取决于所述第一节点设备的实现(Implementation)。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一节点设备是否最终忽略所述第一信息取决于所述第一节点设备的能力(Capability)。
作为一个实施例,上述句子“所述第一节点设备可能忽略所述第一信息”包括以下含义:所述第一信息的发送者不能期待本申请中的所述第一节点设备遵循所述第一信息的指示。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效的”包括以下含义:所述第一节点设备可能不使用所述目标时频资源集合传输信号。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效 的”包括以下含义:所述第一节点设备可能认为所述目标时频资源集合并不用于传输所述第二信息。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效的”包括以下含义:所述第一节点设备可能认为所述目标时频资源集合只能被用于传输所述第二信息之外的信息。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效的”包括以下含义:所述第一节点设备可能认为所述目标时频资源集合并没有被预留给所述第二信息。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效的”包括以下含义:所述第一节点设备最终是否认为所述目标时频资源集合是无效的取决于所述第一节点设备的实现(Implementation)。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效的”包括以下含义:所述第一节点设备最终是否认为所述目标时频资源集合是无效的取决于所述第一节点设备的能力(Capability)。
作为一个实施例,上述句子“所述第一节点设备可能认为所述目标时频资源集合是无效的”包括以下含义:所述第一信息的发送者不能期望所述第一节点设备采用所述目标时频资源集合中的资源传输所述第二信息。
实施例9
实施例9示出了根据本申请的一个实施例的第一节点设备的接收和发送之间的转换时间长度的示意图,附图9所示。在附图9中,左数第一列代表第一节点设备的接收和发送之间的转换时间长度的类型,左数第二列代表在频率范围1(FR1,Frequency Range 1)的转换时间长度,左数第三列代表在频率范围2(FR2,Frequency Range 2)的转换时间长度,所有的转换时间长度值的单位是Tc。
在实施例9中,本申请中的所述参考延时不小于第一延时,本申请中的所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时。
作为一个实施例,所述参考延时等于所述第一延时。
作为一个实施例,所述参考延时大于所述第一延时。
作为一个实施例,所述第一延时的单位是秒。
作为一个实施例,所述第一延时的单位是毫秒(ms)。
作为一个实施例,所述第一延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度。
作为一个实施例,所述第一延时等于正整数个时隙(Slot)的时间长度。
作为一个实施例,所述第一延时等于正整数倍Tc,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一延时通过OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的数量表示。
作为一个实施例,所述第一延时通过时隙(Slot)的数量表示。
作为一个实施例,所述第一延时通过Tc的数量表示,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第一频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述第一延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第二频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述第一延时等于正整数个时隙中的首个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)之外的OFDM符号的时间长度。
作为一个实施例,所述第一延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第一频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述第一延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第二频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述第一延时和所述第一频域资源池所包括的频域资源所属的频率范围(FR,Frequency Range)有关。
作为一个实施例,所述第一延时和所述第二频域资源池所包括的频域资源所属的频率范围(FR,Frequency Range)有关。
作为一个实施例,所述第一延时等于25600Tc,或者所述第一延时等于13792Tc,其中Tc=1/(480000*4096)秒。
作为一个实施例,当所述第一频域资源池所包括的频域资源所属的频率范围(FR,Frequency Range)是FR1时,所述第一延时等于25600Tc;当所述第一频域资源池所包括的频域资源所属的频率范围(FR,Frequency Range)是FR2时,所述第一延时等于13792Tc;其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第一延时和所述第一频域资源池中所包括的一个子载波的子载波间隔(SCS,Subcarrier Spacing)有关。
作为一个实施例,所述第一延时和所述第二频域资源池中所包括的一个子载波的子载波间隔(SCS,Subcarrier Spacing)有关。
作为一个实施例,所述第一延时和携带所述第二信息的信号所采用的波形(Waveform)有关。
作为一个实施例,所述第一延时和携带所述第二信息的信号是采用OFDM波形还是采用DFT-s-OFDM波形(Waveform)有关。
作为一个实施例,所述第一延时和携带所述第二信息的信号生成时是否采用变换预编码(Transform Precoding)有关。
作为一个实施例,上述句子“所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时”包括以下含义:所述第一节点设备的接收和发送之间的转换时间长度被本申请中的所述第一节点设备用于确定所述第一延时。
作为一个实施例,上述句子“所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时”包括以下含义:所述第一节点设备的接收和发送之间的转换时间长度等于所述第一延时。
作为一个实施例,上述句子“所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时”包括以下含义:所述第一延时不小于所述第一节点设备的接收和发送之间的转换时间长度。
作为一个实施例,上述句子“所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时”包括以下含义:所述第一节点设备的接收和发送之间的转换时间长度根据映射关系确定所述第一延时。
作为一个实施例,上述句子“所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时”包括以下含义:所述第一节点设备的接收和发送之间的转换时间长度根据函数关系确定所述第一延时。
作为一个实施例,上述句子“所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时”包括以下含义:所述第一节点设备的接收和发送之间的转换时间长度和第一偏移时间长度的和等于所述第一延时,所述第一偏移时间长度是固定的,或者所述第一偏移时间长度是预定义。
作为一个实施例,“所述第一节点设备的接收和发送之间的转换时间长度”是指:所述第一节点设备从接收到发送的转换时间长度。
作为一个实施例,“所述第一节点设备的接收和发送之间的转换时间长度”是指:所述第 一节点设备从发送到接收的转换时间长度。
作为一个实施例,所述第一节点设备从接收到发送的转换时间长度和所述第一节点设备从发送到接收的转换时间长度相等。
作为一个实施例,所述第一节点设备在伴随链路的传输是半双工的(Half-duplex)。
作为一个实施例,所述第一节点设备在伴随链路和上行链路之间的传输是半双工的。
作为一个实施例,所述第一节点设备不支持全双工(full-duplex)。
作为一个实施例,所述第一频域资源池所属的频带(Band)是TDD频带。
作为一个实施例,所述第一频域资源池所属的频带(Band)是FDD频带。
作为一个实施例,所述第二频域资源池所属的频带(Band)是TDD频带。
作为一个实施例,所述第二频域资源池所属的频带(Band)是FDD频带。
实施例10
实施例10示例了根据本申请的一个实施例的第二延时的示意图,如附图10所示。在附图10中,当第一频域资源池和第二频域资源池不相同时,左数第一列代表第一时频资源池在频域所包括的一个子载波的子载波间隔,左数第二列代表第二时频资源池在频域所包括的一个子载波的子载波间隔,左数第三列代表在不同的子载波间隔下的时隙的时间长度,左数第四列代表以时隙为单位的第二延时。
在实施例10中,本申请中的所述参考延时不小于第二延时;当本申请中的所述第一频域资源池和本申请中的所述第二频域资源池相同时,所述第二延时等于0;当本申请中的所述第一频域资源池和本申请中的所述第二频域资源池不相同时,所述第二延时大于0,本申请中的所述第一时频资源池在频域所包括的一个子载波的子载波间隔和本申请中的所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时。
作为一个实施例,所述参考延时等于所述第二延时。
作为一个实施例,所述参考延时大于所述第二延时。
作为一个实施例,所述第二延时的单位是秒。
作为一个实施例,所述第二延时的单位是毫秒(ms)。
作为一个实施例,所述第二延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度。
作为一个实施例,所述第二延时等于正整数个时隙(Slot)的时间长度。
作为一个实施例,所述第二延时等于正整数倍Tc,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第二延时通过OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的数量表示。
作为一个实施例,所述第二延时通过时隙(Slot)的数量表示。
作为一个实施例,所述第二延时通过Tc的数量表示,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第二延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第一频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述第二延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第二频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述第二延时等于正整数个时隙中的首个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)之外的OFDM符号的时间长度。
作为一个实施例,所述第二延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第一频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述第二延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第二频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述参考延时不小于所述第二延时,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定所述第二延时。
作为一个实施例,所述第二延时等于中断时间长度(interruption length)。
作为一个实施例,所述第一频域资源池和所述第二频域资源池是否相同是通过所述第一频域资源池的SLIV和所述第二频域资源池的SLIV是否相同判断的。
作为一个实施例,所述第一频域资源池和所述第二频域资源池是否相同是通过所述第一频域资源池的位置带宽参数(“locationAndBandwidth”)和所述第二频域资源池的位置带宽参数(“locationAndBandwidth”)是否相同判断的。
作为一个实施例,所述第一频域资源池和所述第二频域资源池是否相同是通过所述第一频域资源池所包括的一个子载波的子载波间隔(SCS)和所述第二频域资源池所包括的一个子载波的子载波间隔(SCS)是否相同判断的。
作为一个实施例,所述第一频域资源池和所述第二频域资源池是否相同是通过所述第一频域资源池的SLIV和所述第二频域资源池的SLIV是否相同,以及所述第一频域资源池所包括的一个子载波的子载波间隔(SCS)和所述第二频域资源池所包括的一个子载波的子载波间隔(SCS)是否相同判断的。
作为一个实施例,当所述第一频域资源池所包括的一个子载波的子载波间隔(SCS)和所述第二频域资源池所包括的一个子载波的子载波间隔(SCS)相同,并且所述第一频域资源池的频域起始位置和带宽和所述第二频域资源池的频域起始位置和带宽对应相同时,所述第一频域资源池和所述第二频域资源池相同;否则所述第一频域资源池和所述第二频域资源池不相同。
作为一个实施例,“所述第一频域资源池和所述第二频域资源池相同”是指:所述第一频域资源池和所述第二频域资源池所包括的频域资源相同并且所述第一频域资源池在频域所包括的一个子载波的子载波间隔和所述第二频域资源池在频域所包括的一个子载波的子载波间隔相等。
作为一个实施例,上述句子“所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时”包括以下含义:M个子载波间隔和M个备选延时一一对应,所述M个子载波间隔中的任意两个子载波间隔不相等,所述M是大于1的正整数;所述第一时频资源池在频域所包括的一个子载波的子载波间隔对应第一备选延时,所述第二时频资源池在频域所包括的一个子载波的子载波间隔对应第二备选延时,所述第一备选延时是所述M个备选延时中的一个备选延时,所述第二备选延时是所述M个备选延时中的一个备选延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔是所述M个子载波间隔中的一个子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔是所述M个子载波间隔中的一个子载波间隔;所述第二延时等于所述第一备选延时和所述第二备选延时之间相比较的大值。
作为一个实施例,上述句子“所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时”包括以下含义:M个子载波间隔和M个备选延时一一对应,所述M个子载波间隔中的任意两个子载波间隔不相等,所述M是大于1的正整数;当所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔不相等时,目标子载波间隔等于所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔之间相比较的大值;当所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔相等时,目标子载波间隔等于所述第一时频资源池在频域所包括的一个子载波的子载波间隔;所述目标子载波间隔等于所述M个子载波间隔中的一个子载波间隔,所述第二延时等于所述M个备选延时中的所述目标子载波间隔所对应的备选延时。
作为一个实施例,上述句子“所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时”包括以下含义:所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被本申请中的所述第一节点设备用于确定所述第二延时。
作为一个实施例,上述句子“所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时”包括以下含义:所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔之间相比较的大值被用于确定所述第二延时。
作为一个实施例,当所述第二延时大于0时,所述第二延时等于1个对应15kHz子载波间隔的时隙的时间长度,1个对应30kHz子载波间隔的时隙的时间长度,3个对应60kHz子载波间隔的时隙的时间长度,5个对应120kHz子载波间隔的时隙的时间长度中之一。
作为一个实施例,所述第二延时和携带所述第二信息的信号所采用的波形(Waveform)有关。
作为一个实施例,所述第二延时和携带所述第二信息的信号是采用OFDM波形还是采用DFT-s-OFDM波形(Waveform)有关。
作为一个实施例,所述第二延时和携带所述第二信息的信号生成时是否采用变换预编码(Transform Precoding)有关。
实施例11
实施例11示例了根据本申请的一个实施例的第一特征延时和第二特征延时的示意图,如附图11所示。在附图11中,左数第一列代表第一子载波间隔,左数第二列代表不同的第一子载波间隔所分别对应的第一特征延时,左数第三列代表第二子载波间隔,左数第四列代表不同的第二子载波间隔所分别对应的第二特征延时。
在实施例11中,本申请中的所述参考延时不小于第三延时,本申请中的所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,本申请中的所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时。
作为一个实施例,所述参考延时等于所述第三延时。
作为一个实施例,所述参考延时大于所述第三延时。
作为一个实施例,所述第三延时和所述第一节点设备的处理能力有关。
作为一个实施例,所述第三延时和所述第一节点设备的处理延时线性相关。
作为一个实施例,所述第三延时的单位是秒。
作为一个实施例,所述第三延时的单位是毫秒(ms)。
作为一个实施例,所述第三延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度。
作为一个实施例,所述第三延时等于正整数个时隙(Slot)的时间长度。
作为一个实施例,所述第三延时等于正整数倍Tc,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第三延时通过OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的数量表示。
作为一个实施例,所述第三延时通过时隙(Slot)的数量表示。
作为一个实施例,所述第三延时通过Tc的数量表示,其中Tc=1/(480000*4096)秒。
作为一个实施例,所述第三延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第一频 域资源池中的一个子载波的子载波间距。
作为一个实施例,所述第三延时等于正整数个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)的时间长度,所述OFDM符号对应所述第二频域资源池中的一个子载波的子载波间距。
作为一个实施例,所述第三延时等于正整数个时隙中的首个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)之外的OFDM符号的时间长度。
作为一个实施例,所述第三延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第一频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述第三延时等于正整数个时隙(Slot)的时间长度,所述时隙对应所述第二频域资源池所包括的一个子载波的子载波间距。
作为一个实施例,所述第三延时和携带所述第二信息的信号所采用的波形(Waveform)有关。
作为一个实施例,所述第三延时和携带所述第二信息的信号是采用OFDM波形还是采用DFT-s-OFDM波形(Waveform)有关。
作为一个实施例,所述第三延时和携带所述第二信息的信号生成时是否采用变换预编码(Transform Precoding)有关。
作为一个实施例,所述第一子载波间隔等于15kHz,30kHz,60kHz,120kHz,240kHz中之一。
作为一个实施例,所述第二子载波间隔等于15kHz,30kHz,60kHz,120kHz,240kHz中之一。
作为一个实施例,上述句子“所述第一子载波间隔被用于确定第一特征延时”包括以下含义:所述第一子载波间隔被本申请中的所述第一节点设备用于确定所述第一特征延时。
作为一个实施例,上述句子“所述第二子载波间隔被用于确定第二特征延时”包括以下含义:所述第二子载波间隔被本申请中的所述第一节点设备用于确定所述第二特征延时。
作为一个实施例,上述句子“所述第一子载波间隔被用于确定第一特征延时”包括以下含义:所述第一子载波间隔被本申请中的所述第二节点设备用于确定所述第一特征延时。
作为一个实施例,上述句子“所述第二子载波间隔被用于确定第二特征延时”包括以下含义:所述第二子载波间隔被本申请中的所述第二节点设备用于确定所述第二特征延时。
作为一个实施例,上述句子“所述第一子载波间隔被用于确定第一特征延时”包括以下含义:P个子载波间隔和P个特征延时一一对应,所述P是大于1的正整数,所述第一子载波间隔等于所述P个子载波间隔中的一个子载波间隔,所述第一特征延时等于所述P个特征延时中的所述第一子载波间隔所对应的特征延时,所述P个特征延时是预定义的。
作为一个实施例,上述句子“所述第一子载波间隔被用于确定第一特征延时”包括以下含义:P个子载波间隔和P个特征延时一一对应,所述P是大于1的正整数,所述第一子载波间隔等于所述P个子载波间隔中的一个子载波间隔,所述第一特征延时等于所述P个特征延时中的所述第一子载波间隔所对应的特征延时,所述P个特征延时是可配置的。
作为一个实施例,上述句子“所述第二子载波间隔被用于确定第二特征延时”包括以下含义:P个子载波间隔和P个特征延时一一对应,所述P是大于1的正整数,所述第二子载波间隔等于所述P个子载波间隔中的一个子载波间隔,所述第二特征延时等于所述P个特征延时中的所述第二子载波间隔所对应的特征延时,所述P个特征延时是预定义的。
作为一个实施例,上述句子“所述第二子载波间隔被用于确定第二特征延时”包括以下含义:P个子载波间隔和P个特征延时一一对应,所述P是大于1的正整数,所述第二子载波间隔等于所述P个子载波间隔中的一个子载波间隔,所述第二特征延时等于所述P个特征延时中的所述第二子载波间隔所对应的特征延时,所述P个特征延时是可配置的。
作为一个实施例,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”包括以下含义:所述第一特征延时和所述第二特征延时中之一被本申请中的 所述第一节点设备用于确定所述第三延时。
作为一个实施例,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”包括以下含义:所述第一特征延时和所述第二特征延时之间相比较的大值被用于确定所述第三延时。
作为一个实施例,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”包括以下含义:所述第三延时等于所述第一特征延时和所述第二特征延时之间相比较的大值。
作为一个实施例,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”包括以下含义:所述第三延时和所述第一特征延时和所述第二特征延时中之一线性相关。
作为一个实施例,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”包括以下含义:所述第一特征延时和所述第二特征延时之间能够获得最大的所述参考延时的特征延时被用于确定所述第三延时。
作为一个实施例,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”包括以下含义:所述第三延时和所述第一特征延时和所述第二特征延时之间能够获得最大的所述参考延时的特征延时线性相关。
作为一个实施例,所述第三延时和本申请中的所述第二延时是分开计算的。
作为一个实施例,所述参考延时等于本申请中的所述第一延时、本申请中的所述第二延时、本申请中的所述第三延时之间相比较的最大值。
作为一个实施例,所述参考延时等于本申请中的所述第一延时、本申请中的所述第三延时之间相比较的最大值。
作为一个实施例,所述参考延时等于本申请中的所述第一延时、本申请中的所述第二延时之间相比较的最大值。
作为一个实施例,所述参考延时等于本申请中的所述第二延时、本申请中的所述第三延时之间相比较的最大值。
作为一个实施例,所述参考延时是通过下式计算的:
T PSFCH-PUCCH=max(t 4,1,t 4,2,t 4,3)
其中,T PSFCH-PUCCH代表所述参考延时,t 4,1代表本申请中的所述第一延时,t 4,2代表本申请中的所述第二延时,t 4,3代表本申请中的所述第三延时。
作为一个实施例,所述参考延时是通过下式计算的:
T PSFCH-PUCCH=max(t 4,1,t 4,2,t 4,3),
其中,T PSFCH-PUCCH代表所述参考延时,t 4,1代表本申请中的所述第一延时,t 4,2代表本申请中的所述第二延时,t 4,3代表本申请中的所述第三延时,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”是通过下式实现的:
t 4,3=(N 4,μ+d 4,1)(2048+144)·κ2 ·T c
Figure PCTCN2020121054-appb-000001
其中,
Figure PCTCN2020121054-appb-000002
代表所述第一特征延时,
Figure PCTCN2020121054-appb-000003
代表所述第二特征延时,d 4,1是可配置的值, κ=64,μ代表一个子载波间隔的索引,T c=1/(480000*4096)秒,μ 1代表所述第一子载波间隔的索引,μ 2代表所述第二子载波间隔的索引。
作为一个实施例,所述参考延时是通过下式计算的:
T PSFCH-PUCCH=max(t 4,2,t 4,3),
其中,T PSFCH-PUCCH代表所述参考延时,t 4,2代表本申请中的所述第二延时,t 4,3代表本申请中的所述第三延时,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”是通过下式实现的:
t 4,3=(N 4,μ+d 4,1)(2048+144)·κ2 ·T c
Figure PCTCN2020121054-appb-000004
其中,
Figure PCTCN2020121054-appb-000005
代表所述第一特征延时,
Figure PCTCN2020121054-appb-000006
代表所述第二特征延时,d 4,1是可配置的值,κ=64,μ代表一个子载波间隔的索引,T c=1/(480000*4096)秒,μ 1代表所述第一子载波间隔的索引,μ 2代表所述第二子载波间隔的索引。
作为一个实施例,所述参考延时是通过下式计算的:
T PSFCH-PUCCH=max(t 4,1,t 4,2,t 4,3),
其中,T PSFCH-PUCCH代表所述参考延时,t 4,1代表本申请中的所述第一延时,t 4,2代表本申请中的所述第二延时,t 4,3代表本申请中的所述第三延时,上述句子“所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时”是通过下式实现的:
t 4,3=(N 4,μ+d 4,1)(2048+144)·κ2 ·T c
Figure PCTCN2020121054-appb-000007
其中,
Figure PCTCN2020121054-appb-000008
代表所述第一特征延时,
Figure PCTCN2020121054-appb-000009
代表所述第二特征延时,d 4,1是可配置的值,κ=64,μ代表一个子载波间隔的索引,T c=1/(480000*4096)秒,μ 1代表所述第一子载波间隔的索引,μ 2代表所述第二子载波间隔的索引。
实施例12
实施例12示例了根据本申请的一个实施例的第二信号所携带的物理层信息所采用的信息格式的示意图,如附图12所示。在附图12中,左数第一列代表第二信号所携带的物理层信息所采用的信息格式的索引,左数第二列代表第二信号占用的多载波符号数量,左数第三列代表第二信号所携带的物理层信息的比特数量,左数第四列代表第二信号所采用的信道编码方案。
在实施例12中,本申请中的所述第二信号携带物理层信息,本申请中的所述第二信号所携带的物理层信息被用于确定本申请中的所述第一信号是否被正确接收,本申请中的所述第二信号所携带的物理层信息所采用的信息格式被用于确定本申请中的所述第三延时。
作为一个实施例,所述第二信号所携带的物理层信息包括HARQ-ACK信息。
作为一个实施例,所述第二信号所携带的物理层信息包括SFI(Sidelink Feedback Information,伴随链路反馈信息)。
作为一个实施例,所述第二信号所携带的物理层信息包括CSI信息。
作为一个实施例,所述第二信号所携带的物理层信息包括L1-RSRP信息。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收”包括以下含义:所述第二信号所携带的物理层信息被本申请中的第一节点设备用于确定所述第一信号是否被正确接收。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收”包括以下含义:所述第二信号所携带的物理层信息被用于确定所述第一信号没有被正确接收。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收”包括以下含义:所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确译码。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收”包括以下含义:所述第二信号所携带的物理层信息被用于确定所述第一信号在译码时CRC是否校验通过。
作为一个实施例,“所述第二信号所携带的物理层信息所采用的信息格式(Format)”包括:所述第二信号所携带的物理层信息所包括的比特的数量。
作为一个实施例,“所述第二信号所携带的物理层信息所采用的信息格式(Format)”包括:所述第二信号所携带的物理层信息在生成所述第二信号时所采用的信道编码的类型。
作为一个实施例,“所述第二信号所携带的物理层信息所采用的信息格式(Format)”包括:所述第二信号所携带的物理层信息是否采用序列生成所述第二信号。
作为一个实施例,“所述第二信号所携带的物理层信息所采用的信息格式(Format)”包括:所述第二信号所携带的SFI的格式(Format)。
作为一个实施例,所述第二信号所携带的物理层信息所采用的信息格式(Format)和PUCCH格式(Format)采用相同的划分方法。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时”包括以下含义:所述第二信号所携带的物理层信息所采用的信息格式被本申请中的所述第一节点设备用于确定所述第三延时。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时”包括以下含义:所述第二信号所携带的物理层信息所采用的信息格式按照对应关系被用于确定所述第三延时。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时”包括以下含义:所述第二信号所携带的物理层信息所采用的信息格式按照对应关系被用于确定目标延时偏移,所述目标延时偏移被用于确定所述第三延时。
作为一个实施例,上述句子“所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时”是通过下式实现的:
t 4,3=(N 4,μ+d 4,1)(2048+144)·κ2 ·T c
Figure PCTCN2020121054-appb-000010
其中,t 4,3代表所述第三延时,
Figure PCTCN2020121054-appb-000011
代表本申请中的所述第一特征延时,
Figure PCTCN2020121054-appb-000012
代表本申请中的所述第二特征延时,d 4,1代表目标延时偏移,述第二信号所携带的物理层信息所采用的信息格式按照对应关系被用于确定目标延时偏移,κ=64,μ代表一个子载波间隔的索引, T c=1/(480000*4096)秒,μ 1代表本申请中的所述第一子载波间隔的索引,μ 2代表本申请中的所述第二子载波间隔的索引。
作为一个实施例,所述第二信号所携带的物理层信息所采用的信息格式按照对应关系被用于确定目标延时偏移,所述目标延时偏移被用于确定所述第三延时,所述目标延时偏移还和携带所述第二信息的信号(或信道)所采用的波形(Waveform)有关。
作为一个实施例,所述第二信号所携带的物理层信息所采用的信息格式按照对应关系被用于确定目标延时偏移,所述目标延时偏移被用于确定所述第三延时,所述目标延时偏移还和携带所述第二信息的信号(或信道)所采用的OFDM波形(Waveform)还是DFT-s-ofdm波形(Waveform)有关。
实施例13
实施例13示例了一个实施例的第一节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第一节点设备处理装置1300包括第一接收机1301,第一发射机1302第二接收机1303和第二发射机1304。第一接收机1301包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;或者第一接收机1301包括本申请附图5中的发射器/接收器556(包括天线560),接收处理器552和控制器/处理器590;第一发射机1302包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490;或者第一发射机1302包括本申请附图5中的发射器/接收器556(包括天线560),发射处理器555和控制器/处理器590;第二接收机1303包括本申请附图4中的发射器/接收器456(包括天线460)和接收处理器452;或者第二接收机1303包括本申请附图5中的发射器/接收器556(包括天线560)和接收处理器552;第二发射机1304包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490;或者第二发射机1304包括本申请附图5中的发射器/接收器556(包括天线560),发射处理器555和控制器/处理器590;
在实施例13中,第一接收机1301接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;第一发射机1302发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;第二接收机1303接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;第二发射机1304当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
作为一个实施例,当所述第一多载波符号早于所述第二多载符号时,所述第一节点设备可能放弃发送所述第二信息,或者所述第一节点设备可能忽略所述第一信息,或者所述第一节点设备可能认为所述目标时频资源集合是无效的。
作为一个实施例,所述参考延时不小于第一延时,所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时。
作为一个实施例,所述参考延时不小于第二延时;当所述第一频域资源池和所述第二频域资源池相同时,所述第二延时等于0;当所述第一频域资源池和所述第二频域资源池不相同时,所述第二延时大于0,所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时。
作为一个实施例,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时。
作为一个实施例,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时;所述第二信号携带物理层信息,所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收,所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时。
作为一个实施例,第一接收机1301接收第一信令;其中,所述第一信令被用于确定所述第一信号所占用的时频资源,所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,第一接收机1301接收第三信息和第四信息;其中,所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于确定所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
实施例14
实施例14示例了一个实施例的第二节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第二节点设备处理装置1400包括第三发射机1401和第三接收1402。第三发射机1401包括本申请附图4中的发射器/接收器416(包括天线460)和发射处理器415和控制器/处理器440;第三接收机1402包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412,和控制器/处理器440。
在实施例14中,第三发射机1401发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;第三接收机1402接收第二信息;其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
作为一个实施例,所述参考延时不小于第一延时,所述第二信息的发送者的接收和发送之间的转换时间长度被用于确定所述第一延时。
作为一个实施例,所述参考延时不小于第二延时;当所述第一频域资源池和所述第二频域资源池相同时,所述第二延时等于0;当所述第一频域资源池和所述第二频域资源池不相同时,所述第二延时大于0,所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时。
作为一个实施例,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括 的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时。
作为一个实施例,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时;所述第二信号携带物理层信息,所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收,所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时。
作为一个实施例,所述第一信令被用于指示所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
作为一个实施例,第三发射机1401发送第三信息和第四信息;其中,所述第三信息被用于指示所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于指示所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备或者第二节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
    第一发射机,发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;
    第二接收机,接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;
    第二发射机,当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;
    其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
  2. 根据权利要求1所述的第一节点设备,其特征在于,当所述第一多载波符号早于所述第二多载符号时,所述第一节点设备可能放弃发送所述第二信息,或者所述第一节点设备可能忽略所述第一信息,或者所述第一节点设备可能认为所述目标时频资源集合是无效的。
  3. 根据权利要求1或2中的任一权利要求所述的第一节点设备,其特征在于,所述参考延时不小于第一延时,所述第一节点设备的接收和发送之间的转换时间长度被用于确定所述第一延时。
  4. 根据权利要求1至3中的任一权利要求所述的第一节点设备,其特征在于,所述参考延时不小于第二延时;当所述第一频域资源池和所述第二频域资源池相同时,所述第二延时等于0;当所述第一频域资源池和所述第二频域资源池不相同时,所述第二延时大于0,所述第一时频资源池在频域所包括的一个子载波的子载波间隔和所述第二时频资源池在频域所包括的一个子载波的子载波间隔中之一被用于确定所述第二延时。
  5. 根据权利要求1至4中的任一权利要求所述的第一节点设备,其特征在于,所述参考延时不小于第三延时,所述第一时频资源池在频域所包括的一个子载波的子载波间隔等于第一子载波间隔,所述第二时频资源池在频域所包括的一个子载波的子载波间隔等于第二子载波间隔,所述第一子载波间隔被用于确定第一特征延时,所述第二子载波间隔被用于确定第二特征延时,所述第一特征延时和所述第二特征延时中之一被用于确定所述第三延时。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述第二信号携带物理层信息,所述第二信号所携带的物理层信息被用于确定所述第一信号是否被正确接收,所述第二信号所携带的物理层信息所采用的信息格式被用于确定所述第三延时。
  7. 根据权利要求1至6中的任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信令;其中,所述第一信令被用于确定所述第一信号所占用的时频资源,所述第一信令被用于确定所述第一多载波符号的起始时刻和所述第一信令的接收结束时刻之间的时间间隔长度。
  8. 根据权利要求1至7中的任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第三信息和第四信息;其中,所述第三信息被用于确定所述第一频域资源池和所述第一频域资源池中所包括的一个子载波的子载波间隔,所述第四信息被用于确定所述第二频域资源池和所述第二频域资源池中所包括的一个子载波的子载波间隔。
  9. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第三发射机,发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
    第三接收机,接收第二信息;
    其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息,所述第一信息被用于确定目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
    发送第一信号,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;
    接收第二信号,第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;
    当所述第一多载波符号不早于所述第二多载波符号时,发送第二信息;
    其中,当所述第二信息被发送时,所述目标时频资源集合被用于所述第二信息的传输;所述第一信号所占用的时频资源被用于确定所述第二信号所占用的空口资源;所述第二信号所携带的信息被用于确定所述第二信息,所述第一信息的发送者和所述第二信号的发送者不相同。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息和第一信令,所述第一信息被用于指示目标时频资源集合,所述目标时频资源集合在时域所包括的最早的多载波符号是第一多载波符号,所述目标时频资源集合所包括的频域资源属于第一频域资源池;
    接收第二信息;
    其中,所述第一信令被用于指示第一信号所占用的时频资源,所述第一信号所占用的频域资源属于第二频域资源池,所述第一频域资源池和所述第二频域资源池之间的频域关系被用于确定参考延时;所述第一信号所占用的时频资源被用于指示第二信号所占用的空口资源;第二多载波符号的起始时刻和所述第二信号的接收结束时刻之间的时间间隔长度等于所述参考延时,所述第二多载波符号的起始时刻不早于所述第二信号的接收结束时刻;所述目标时频资源集合被用于所述第二信息的传输;所述第二信号所携带的信息被用于确定所述第二信息,所述第二信号的发送者是所述第二节点设备之外的节点设备;所述第一多载波符号不早于所述第二多载波符号。
PCT/CN2020/121054 2019-10-29 2020-10-15 一种被用于无线通信的节点中的方法和装置 WO2021082932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/715,020 US20220231802A1 (en) 2019-10-29 2022-04-06 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911039426.7A CN112751654B (zh) 2019-10-29 2019-10-29 一种被用于无线通信的节点中的方法和装置
CN201911039426.7 2019-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/715,020 Continuation US20220231802A1 (en) 2019-10-29 2022-04-06 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021082932A1 true WO2021082932A1 (zh) 2021-05-06

Family

ID=75641616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121054 WO2021082932A1 (zh) 2019-10-29 2020-10-15 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220231802A1 (zh)
CN (2) CN112751654B (zh)
WO (1) WO2021082932A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117335945A (zh) * 2020-12-28 2024-01-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115499109A (zh) * 2021-06-17 2022-12-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117915478A (zh) * 2021-12-08 2024-04-19 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN117527163A (zh) * 2022-07-27 2024-02-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117998617A (zh) * 2022-11-04 2024-05-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612561A (zh) * 2015-10-23 2017-05-03 华为技术有限公司 一种资源指示方法、装置及系统
US20180098323A1 (en) * 2016-09-30 2018-04-05 Samsung Electronics Co., Ltd. Method and equipment for determining transmitting resources in v2x communication
CN110268780A (zh) * 2017-02-10 2019-09-20 高通股份有限公司 动态的资源共享

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634821B (zh) * 2016-07-18 2020-06-30 上海朗帛通信技术有限公司 一种无线传输的ue和基站中的方法和装置
JP6750115B2 (ja) * 2016-11-03 2020-09-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムでサイドリンクチャネル混雑率を送信する方法及び装置
CN112601287A (zh) * 2017-05-04 2021-04-02 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN116015378A (zh) * 2017-05-05 2023-04-25 中兴通讯股份有限公司 信道状态信息的反馈、接收方法及装置、设备、存储介质
CN108988983B (zh) * 2017-06-01 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11140697B2 (en) * 2018-04-11 2021-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Technique for sidelink feedback transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612561A (zh) * 2015-10-23 2017-05-03 华为技术有限公司 一种资源指示方法、装置及系统
US20180098323A1 (en) * 2016-09-30 2018-04-05 Samsung Electronics Co., Ltd. Method and equipment for determining transmitting resources in v2x communication
CN110268780A (zh) * 2017-02-10 2019-09-20 高通股份有限公司 动态的资源共享

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussions on NR V2X Sidelink Physical Layer Structures", 3GPP DRAFT; R1-1813519, vol. RAN WG1, 16 November 2018 (2018-11-16), pages 1 - 15, XP051479857 *

Also Published As

Publication number Publication date
CN112751654B (zh) 2022-07-01
CN114938260B (zh) 2024-03-26
CN112751654A (zh) 2021-05-04
US20220231802A1 (en) 2022-07-21
CN114938260A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2021082932A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021147892A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112469124B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031899A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220303066A1 (en) Method and device in nodes used for wireless communication
WO2021057594A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021047418A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244383A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113708901A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022048509A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030424A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880937

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20880937

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20880937

Country of ref document: EP

Kind code of ref document: A1