WO2022237707A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022237707A1
WO2022237707A1 PCT/CN2022/091599 CN2022091599W WO2022237707A1 WO 2022237707 A1 WO2022237707 A1 WO 2022237707A1 CN 2022091599 W CN2022091599 W CN 2022091599W WO 2022237707 A1 WO2022237707 A1 WO 2022237707A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit block
adjustment amount
amount
bits
bit
Prior art date
Application number
PCT/CN2022/091599
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP22806673.4A priority Critical patent/EP4187833A4/en
Publication of WO2022237707A1 publication Critical patent/WO2022237707A1/zh
Priority to US18/110,896 priority patent/US20230198724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • NR New Radio, new air interface
  • URLLC Ultra Reliable and Low Latency Communication, ultra-high reliability and ultra-low latency communication
  • the WI Work Item, work item
  • the multiplexing (Multiplexing) of different services in UE User Equipment, user equipment) (Intra-UE) is a key point to be studied.
  • the present application discloses a solution.
  • the uplink (UpLink) is used as an example; this application is also applicable to other scenarios, such as downlink (Downlink) or sidelink (SideLink, SL) and other transmission scenarios, and similar technologies have been obtained Effect.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signal carrying a first bit block and a second bit block
  • the first bit block includes at least one control information bit
  • the second bit block includes at least one control information bit bit
  • the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block
  • the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block included in the first time-frequency resource pool and the first The resource elements used for the second bit block included in a time-frequency resource pool are orthogonal; the number of bits included in the first bit block is used together with the first resource amount to determine the first adjustment amount,
  • the first resource amount is the number of resource elements included in the first time-frequency resource pool and used for the first bit block; the first adjustment amount is used to determine a target adjustment amount, and the target The adjustment amount is used to determine the first transmit power.
  • the problem to be solved in this application includes: how to determine the sending power of a physical channel carrying UCIs of different priorities.
  • the problems to be solved in this application include: when a PUCCH is used to carry multiple UCIs of different priorities (for example, two UCIs corresponding to priority index (Priority index) 0 and priority index 1 respectively) , how to determine the transmit power of the one PUCCH.
  • the problems to be solved in this application include: how to determine the target adjustment amount so as to determine the transmission power of one PUCCH; the one PUCCH is used to carry UCIs with multiple different priorities (for example, corresponding to priority Priority index (Priority index) 0 and priority index 1 of the first signal) and the one PUCCH adopts one of PUCCH format (format) 2 or PUCCH format 3 or PUCCH format 4, so The UCIs with different priorities carried by the first signal are respectively subjected to channel coding.
  • the problem to be solved in this application includes: when multiple UCIs of different priorities adopt channel coding with different code rates (coding rates), how to determine the channel used to transmit the multiple UCIs of different priorities A problem with the transmission power of PUCCH.
  • the characteristics of the above method include: multiple UCIs with different priorities to be transmitted in the same PUCCH respectively adopt channel coding with different coding rates.
  • the advantages of the above method include: it is beneficial to implement power control for PUCCHs used to transmit multiple UCIs with different priorities that are channel-coded with different code rates.
  • the advantages of the above method include: it is beneficial to guarantee the transmission performance of high-priority (eg, URLLC) UCI.
  • high-priority eg, URLLC
  • the advantages of the above method include: good compatibility.
  • the above-mentioned method is characterized in that,
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount; the first The calculated amount is used to determine the first adjustment amount.
  • the above-mentioned method is characterized in that,
  • the first number of information bits is the number of HARQ-ACK information bits used to obtain the transmission power of a PUCCH; when the number of bits included in the first bit block is greater than a first threshold, the first calculation The amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount, and the first calculation amount is divided by It is used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • the above-mentioned method is characterized in that,
  • the first adjustment amount is equal to 10 multiplied by the logarithm of the difference between the b power of 2 with base 10 minus 1, and the b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • the above-mentioned method is characterized in that,
  • At least the latter of said first block of bits and said second block of bits is used to determine a second adjustment amount, said target adjustment amount being equal to both said first adjustment amount and said second adjustment amount the largest of .
  • the advantages of the above method include: avoiding insufficient transmission power for the high-priority UCI due to being multiplexed with the low-priority UCI on the same PUCCH.
  • the advantages of the above method include: it is beneficial to avoid excessive power increase caused by multiplexing of low-priority UCIs.
  • the advantages of the above method include: it is beneficial to improve the transmission performance of the low-priority UCI.
  • the advantages of the above method include: optimizing the overall transmission performance of the PUCCH on the premise of ensuring sufficient transmission power of the high-priority UCI.
  • the above-mentioned method is characterized in that,
  • the target adjustment amount is the first adjustment amount.
  • the characteristics of the above method include: in the power control of the PUCCH, only the former of the high-priority UCI and the low-priority UCI is regulated.
  • the advantages of the above method include: under the premise of ensuring sufficient transmission power of high-priority UCIs, excessive power increase caused by multiplexing of low-priority UCIs is avoided.
  • the above-mentioned method is characterized in that,
  • the first transmit power is equal to a small value compared with an upper limit transmit power and a target transmit power, the target adjustment amount is used to determine the target transmit power, and the upper limit transmit power is predefined or configurable .
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signal carrying a first bit block and a second bit block, the first bit block including at least one control information bit, the second bit block including at least A control information bit, the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block;
  • the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block included in the first time-frequency resource pool and the first The resource elements used for the second bit block included in a time-frequency resource pool are orthogonal; the number of bits included in the first bit block is used together with the first resource amount to determine the first adjustment amount,
  • the first resource amount is the number of resource elements included in the first time-frequency resource pool and used for the first bit block; the first adjustment amount is used to determine a target adjustment amount, and the target The adjustment amount is used to determine the first transmit power.
  • the above-mentioned method is characterized in that,
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount; the first The calculated amount is used to determine the first adjustment amount.
  • the above-mentioned method is characterized in that,
  • the first number of information bits is the number of HARQ-ACK information bits used to obtain the transmission power of a PUCCH; when the number of bits included in the first bit block is greater than a first threshold, the first calculation The amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount, and the first calculation amount is divided by It is used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • the above-mentioned method is characterized in that,
  • the first adjustment amount is equal to 10 multiplied by the logarithm of the difference between the b power of 2 with base 10 minus 1, and the b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • the above-mentioned method is characterized in that,
  • At least the latter of said first block of bits and said second block of bits is used to determine a second adjustment amount, said target adjustment amount being equal to both said first adjustment amount and said second adjustment amount the largest of .
  • the above-mentioned method is characterized in that,
  • the target adjustment amount is the first adjustment amount.
  • the above-mentioned method is characterized in that,
  • the first transmit power is equal to a small value compared with an upper limit transmit power and a target transmit power, the target adjustment amount is used to determine the target transmit power, and the upper limit transmit power is predefined or configurable .
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives a first information block, and the first information block is used to determine a first time-frequency resource pool;
  • the first transmitter transmits a first signal with a first transmission power, the first signal carries a first bit block and a second bit block, the first bit block includes at least one control information bit, and the second bit block including at least one control information bit, the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block;
  • the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block included in the first time-frequency resource pool and the first The resource elements used for the second bit block included in a time-frequency resource pool are orthogonal; the number of bits included in the first bit block is used together with the first resource amount to determine the first adjustment amount,
  • the first resource amount is the number of resource elements included in the first time-frequency resource pool and used for the first bit block; the first adjustment amount is used to determine a target adjustment amount, and the target The adjustment amount is used to determine the first transmit power.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second transmitter sending a first information block, where the first information block is used to determine a first time-frequency resource pool
  • the second receiver receives a first signal transmitted with a first transmission power, the first signal carries a first bit block and a second bit block, the first bit block includes at least one control information bit, and the first bit block includes at least one control information bit.
  • the two-bit block includes at least one control information bit, and the priority of the control information bit included in the first bit block is different from the priority of the control information bit included in the second bit block;
  • the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block included in the first time-frequency resource pool and the first The resource elements used for the second bit block included in a time-frequency resource pool are orthogonal; the number of bits included in the first bit block is used together with the first resource amount to determine the first adjustment amount,
  • the first resource amount is the number of resource elements included in the first time-frequency resource pool and used for the first bit block; the first adjustment amount is used to determine a target adjustment amount, and the target The adjustment amount is used to determine the first transmit power.
  • the method in this application has the following advantages:
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between the number of bits included in the first bit block, the first resource amount, the first calculation amount, and the first adjustment amount according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram illustrating how the number of bits included in the first bit block and the first amount of resources are used to determine the first adjustment amount according to an embodiment of the present application
  • Fig. 8 shows an explanatory diagram of the first calculation amount being used to determine the first adjustment amount according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the relationship between a first bit block, a second bit block, a third calculation amount, a second adjustment amount, a first adjustment amount, and a target adjustment amount according to an embodiment of the present application;
  • FIG. 10 shows an explanatory diagram in which the target transmission power is used to determine the first transmission power and the target adjustment amount is used to determine the target transmission power according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram illustrating a first time-frequency resource pool according to an embodiment of the present application
  • Fig. 12 shows a schematic diagram of the relationship between the first node/first receiver and the first signaling according to an embodiment of the present application
  • Fig. 13 shows a schematic diagram of the relationship between the priorities of the control information bits included in the first bit block and the priorities of the control information bits included in the second bit block according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 15 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application receives a first information block in step 101; and sends a first signal in step 102 with a first transmission power.
  • the first information block is used to determine a first time-frequency resource pool;
  • the first signal carries a first bit block and a second bit block, and the first bit block includes at least one piece of control information bits, the second bit block includes at least one control information bit, and the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block;
  • the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block and the first time-frequency resource element included in the first time-frequency resource pool
  • the resource elements included in the resource pool and used for the second bit block are orthogonal; the number of bits included in the first bit block and the first resource amount are used together to determine a first adjustment amount, and the second A resource amount is the number of resource elements used for the first bit block included in the first time-frequency resource pool; the first adjustment amount is used to determine a target adjustment amount, and the target adjustment amount is determined by used to determine the first transmit power.
  • the first signal in this application includes a wireless signal.
  • the first signal in this application includes a radio frequency signal.
  • the first signal in this application includes a baseband signal.
  • the meaning of the sentence that the first signal carries the first bit block and the second bit block includes: the first signal includes all or part of the bits in the first bit block (or the second bit block A bit block generated by a bit block) sequentially undergoes CRC addition, segmentation, encoding block-level CRC addition, channel coding, rate matching, concatenation, scrambling (Scrambling), modulation (Modulation), layer mapping (Layer Mapping), pre-processing Coding (Precoding), mapping to resource elements (Mapping to Resource Element), multi-carrier symbol generation (Generation), output after part or all of modulation up-conversion (Modulation and Upconversion), and the first signal also includes All or part of the bits in the second bit block (or a bit block generated by the second bit block) are sequentially subjected to CRC addition, segmentation, coding block-level CRC addition, channel coding, rate matching, concatenation, and scrambling , modulation, layer mapping, precoding, mapping to resource elements, multi-car
  • the meaning of the sentence that the first signal carries the first bit block and the second bit block includes: the first signal carries the first bit block (or is generated by the first bit block a bit block) and the second bit block (or a bit block generated by the second bit block).
  • the first time-frequency resource pool in this application includes at least one RE (Resource Element, resource element) in the time-frequency domain.
  • RE Resource Element, resource element
  • one RE occupies one multi-carrier symbol in the time domain, and occupies one sub-carrier in the frequency domain.
  • the multi-carrier symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbols in this application are SC-FDMA (Single Carrier-Frequency Division Multiple Access, Single Carrier-Frequency Division Multiple Access) symbols.
  • the multi-carrier symbols in this application are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol in this application is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application includes a CP (Cyclic Prefix, cyclic prefix).
  • the first time-frequency resource pool in this application includes a positive integer number of subcarriers (Subcarriers) in the frequency domain.
  • the first time-frequency resource pool in this application includes a positive integer number of PRBs (Physical Resource Block, physical resource block) in the frequency domain.
  • PRBs Physical Resource Block, physical resource block
  • the first time-frequency resource pool in this application includes a positive integer number of RBs (Resource blocks, resource blocks) in the frequency domain.
  • the first time-frequency resource pool in this application includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of time slots (slots) in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of sub-slots (sub-slots) in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of milliseconds (ms) in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of discontinuous time slots in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of consecutive time slots in the time domain.
  • the first time-frequency resource pool in this application includes a positive integer number of sub-frames in the time domain.
  • the first time-frequency resource pool in this application is indicated by physical layer signaling or configured by higher layer signaling.
  • the first time-frequency resource pool in this application is indicated by DCI or configured by RRC (Radio Resource Control, radio resource control) signaling or by MAC CE (Medium Access Control layer Control Element, media access Control layer control element) signaling configuration.
  • RRC Radio Resource Control, radio resource control
  • MAC CE Medium Access Control layer Control Element, media access Control layer control element
  • the first time-frequency resource pool in this application includes time-frequency resources occupied by one uplink physical channel.
  • one of the uplink physical channels in this application is a PUCCH (Physical Uplink Control CHannel, Physical Uplink Control Channel) or a PUSCH (Physical Uplink Shared CHannel, Physical Uplink Shared CHannel).
  • PUCCH Physical Uplink Control CHannel, Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared CHannel, Physical Uplink Shared CHannel
  • the first time-frequency resource pool in this application is all or part of the time-frequency resources occupied by a PUCCH resource (PUCCH resource).
  • the first time-frequency resource pool includes time-frequency resources reserved for one physical channel, and the one physical channel is used for sending the first signal.
  • the first time-frequency resource pool includes time-frequency resources reserved for one physical control channel, and the one physical control channel is used for sending the first signal.
  • the first time-frequency resource pool includes time-frequency resources reserved for one physical shared channel, and the one physical shared channel is used for sending the first signal.
  • the first information block includes RRC signaling.
  • the first information block includes an IE (Information Element, information element).
  • IE Information Element, information element
  • the first information block is an IE.
  • the first information block includes one or more fields in one IE.
  • the first information block includes MAC CE signaling.
  • the first information block includes one or more fields in a DCI.
  • the first information block includes higher layer signaling.
  • the first information block is PUCCH-config.
  • the first information block is a PUCCH-configurationList.
  • the first information block is BWP-dedicated.
  • the first information block is sps-PUCCH-AN.
  • the first information block is sps-PUCCH-AN-ResourceID.
  • the name of the first information block includes PUCCH.
  • the name of the first information block includes PUCCH-config.
  • the first information block indicates the first time-frequency resource pool.
  • the first information block explicitly indicates the first time-frequency resource pool.
  • the first information block implicitly indicates the first time-frequency resource pool.
  • the first time-frequency resource pool is all or part of time-frequency resources occupied by a physical channel indicated/configured by the first information block.
  • the first time-frequency resource pool is all or part of resources occupied by a PUCCH resource configured by the first information block in the time-frequency domain.
  • the first time-frequency resource pool is a resource occupied by one of the multiple PUCCH resources configured by the first information block in the time-frequency domain.
  • the first time-frequency resource pool is a resource occupied by a PUCCH resource indicated by the first information block in the time-frequency domain.
  • the first time-frequency resource pool is a resource occupied by a PSCCH (Physical Sidelink Control CHannel, physical sidelink control channel) indicated by the first information block in the time-frequency domain.
  • PSCCH Physical Sidelink Control CHannel, physical sidelink control channel
  • the first signal is a signal transmitted on a PUCCH.
  • the first signal is a PUCCH.
  • the first signal includes signals in one or more frequency hopping intervals among multiple frequency hopping intervals transmitted by a PUCCH.
  • the first bit block includes at least one UCI bit.
  • the second bit block includes at least one UCI bit.
  • the first bit block includes at least one HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement, hybrid automatic repeat request acknowledgment) information bit.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement, hybrid automatic repeat request acknowledgment
  • the second bit block includes at least one HARQ-ACK information bit.
  • the first bit block only includes HARQ-ACK information bits.
  • the second bit block only includes HARQ-ACK information bits.
  • the first bit block further includes control information bits other than HARQ-ACK bits.
  • the second bit block further includes control information bits other than HARQ-ACK bits.
  • the first bit block does not include CRC (Cyclic Redundancy Check, cyclic redundancy check) bits.
  • the first bit block includes at least one CRC bit.
  • the second block of bits does not include CRC bits.
  • the second bit block includes at least one CRC bit.
  • one control information bit in this application is a UCI bit.
  • one control information bit in this application is one HARQ_ACK information bit.
  • one control information bit in this application is a HARQ_ACK information bit or SR (Scheduling Request, scheduling request) bit.
  • one control information bit in this application is a HARQ_ACK information bit or SR bit or CSI (Channel State Information, channel state information) bit.
  • one control information bit in this application is a bit that carries control information of higher layer (HigherLayer) signaling.
  • one control information bit in this application is an SCI (Sidelink Control Information, sidelink control information) bit.
  • one of the control information bits in this application is: one HARQ-ACK information bit, or one SR information bit, or one CSI information bit, or at least one of the above three information bits through logic Bits obtained by at least one of AND, logical OR, logical NOT, and exclusive OR operations.
  • the number of bits included in the first bit block and the first resource amount jointly indicate the first adjustment amount.
  • the number of bits included in the first bit block indicates an adjustment amount set
  • the first resource amount indicates the first adjustment amount from the adjustment amount set.
  • the first resource amount indicates an adjustment amount set
  • the number of bits included in the first bit block indicates the first adjustment amount from the adjustment amount set
  • the resource elements included in the first time-frequency resource pool and used for the first bit block include: The resource elements (Resource Elements, REs) of the encoded bits generated by the block.
  • the resource element included in the first time-frequency resource pool and used for the first bit block is: the first time-frequency resource pool is used to map the first bit A resource element for encoding bits generated by a block.
  • the coded bits generated by the first bit block are: the first bit block or a bit block generated by the first bit block undergoes CRC addition (CRC Attachment) sequentially, and segmentation (Segmentation) ), coding block-level CRC addition, channel coding (Channel Coding), rate matching (Rate Matching), concatenation (Concatenation) after some or all of the output.
  • the resource element included in the first time-frequency resource pool and used for the second bit block includes: the first time-frequency resource pool used for mapping the second bit block A resource element for encoding bits generated by a block.
  • the resource element included in the first time-frequency resource pool and used for the second bit block is: the first time-frequency resource pool is used to map the second bit block A resource element for encoding bits generated by a block.
  • the coded bits generated by the second bit block are: the second bit block or a bit block generated by the second bit block is sequentially added by CRC, segmented, and coded block level CRC is added , channel coding, rate matching, output after some or all of the concatenation.
  • the word orthogonal in this application means: no overlap in the time-frequency domain.
  • the meaning of the word orthogonal in this application includes: no overlap.
  • a bit block generated by the first (or second) bit block refers to: at least some bits in the first (or second) bit block undergo logical AND, logical OR, logical NOT, The output after at least one of XOR, repetition, bit deletion, and zero padding operations.
  • a bit block generated by the first (or second) bit block includes: at least some bits in the first (or second) bit block undergo logical AND, logical OR, logical NOT, exclusive Or, the output after at least one of repetition, bit deletion, and zero padding.
  • channel coding is performed on the first bit block and the second bit block respectively.
  • the first bit block and the second bit block respectively adopt channel coding with different coding rates to generate coded bits.
  • the number of bits included in the first bit block is no greater than 2.
  • the number of bits included in the first bit block is greater than 2.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11.
  • the number of bits included in the first bit block is greater than 11.
  • the number of bits included in the first bit block is not greater than the second threshold.
  • the number of bits included in the first bit block is greater than a second threshold.
  • the second threshold in this application is predefined.
  • the second threshold in this application is configurable.
  • the second threshold in this application is a positive integer.
  • the second threshold in this application is not greater than 1706.
  • the second threshold in this application is equal to 11.
  • the second threshold in this application is equal to 22.
  • the second threshold in this application is equal to 4.
  • the number of bits included in the second bit block is not greater than 2.
  • the number of bits included in the second bit block is greater than 2.
  • the number of bits included in the second bit block is greater than 2 and not greater than 11.
  • the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the second bit block is not greater than a second threshold.
  • the number of bits included in the second bit block is greater than a second threshold.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 2 and not greater than 11.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 11.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 2.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is not greater than a second threshold.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than a second threshold.
  • the first number is not greater than the second threshold, and at least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the State the first quantity.
  • the first number is greater than the second threshold, and at least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the first quantity.
  • the first number is equal to: dividing the number of bits included in the first bit block by the first ratio and adding the number of bits included in the second bit block to an integer.
  • the first number is equal to: the number of bits included in the first bit block is added to a result of dividing the number of bits included in the second bit block by the first ratio and rounded to an integer.
  • the first number is equal to: multiplying the number of bits included in the first bit block by the first ratio and adding the number of bits included in the second bit block to an integer.
  • the first number is equal to: a result of multiplying the number of bits included in the second bit block by the first ratio and adding the number of bits included in the first bit block to an integer.
  • rounding in this application refers to: rounding up.
  • phrase rounding in this application means: rounding down.
  • the first ratio in this application is a ratio of two code rates, and the two code rates are configured by RRC signaling or MAC CE signaling.
  • the first signal is a part of a signal transmitted in a PUCCH except for transmission of a DM-RS (DeModulation Reference Signal, demodulation reference signal).
  • DM-RS Demodulation Reference Signal, demodulation reference signal
  • the number of resource elements occupied by the first signal in the time-frequency domain is equal to: M RB multiplied by N sc multiplied by N symbol ; the M RB is equal to all of the first time-frequency resource pool or Part of the number of resource blocks included in the frequency domain, the N sc is equal to the number of subcarriers in each resource block (Resource Block) except for the subcarriers used for DM-RS transmission, and the N symbol is equal to the The number of multi-carrier symbols in the time domain except the multi-carrier symbols used for DM-RS transmission in the first time-frequency resource pool.
  • the first adjustment amount indicates the target adjustment amount.
  • the first adjustment amount explicitly indicates the target adjustment amount.
  • the first adjustment amount implicitly indicates the target adjustment amount.
  • the target adjustment amount is equal to the first adjustment amount plus a predefined or configurable offset.
  • the target adjustment amount is not less than the first adjustment amount.
  • the unit of the first sending power is watt (W).
  • the unit of the first transmit power is dBm.
  • the first transmit power is equal to the larger value of the upper limit transmit power and the target transmit power
  • the target transmit power is linearly related to the target adjustment amount
  • the upper limit transmit power is predefined or configurable.
  • the first transmit power is equal to the small value of the comparison between the upper limit transmit power and the target transmit power
  • the target transmit power is linearly related to the target adjustment amount
  • the upper limit transmit power is predefined or configurable.
  • the expression "the first adjustment amount is used to determine the target adjustment amount" in the claims includes the following meaning: at least the latter of the first bit block and the second bit block is used For determining a second adjustment amount, the target adjustment amount is equal to the largest of the first adjustment amount and the second adjustment amount.
  • the expression "the first adjustment amount is used to determine the target adjustment amount” in the claims includes the following meaning: the target adjustment amount is the first adjustment amount.
  • the expression "the number of bits included in the first bit block and the first amount of resources are used together to determine the first adjustment amount" in the claims includes the following meaning: the first calculation amount is equal to the first adjustment amount The sum of the number of bits included in a bit block plus the number of CRC bits for the first bit block is divided by the first amount of resources; the first calculation amount is used to determine the The first adjustment amount.
  • the expression "the number of bits included in the first bit block and the first resource amount are used together to determine the first adjustment amount" in the claims includes the following meanings: when the first bit block includes When the number of included bits is not greater than a first threshold, the first number of information bits and the first amount of resources are jointly used to determine the first adjustment amount, and the first number of information bits is used The number of HARQ-ACK information bits used to obtain the transmission power of a PUCCH; when the number of the bits included in the first bit block is greater than a first threshold, the first calculation amount is equal to the first bit block The sum of the number of included bits plus the number of CRC bits for the first block of bits divided by the first amount of resources used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates 5G NR, the diagram of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment, User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE241 corresponds to the second node in this application.
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE241 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The communication node device (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first information block in this application is generated in the RRC sublayer 306 .
  • the first information block in this application is generated in the MAC sublayer 302 .
  • the first information block in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated by the PHY351.
  • the first bit block in this application is generated in the RRC sublayer 306 .
  • the first bit block in this application is generated in the SDAP sublayer 356 .
  • the first bit block in this application is generated in the MAC sublayer 302 .
  • the first bit block in this application is generated in the MAC sublayer 352 .
  • the first bit block in this application is generated by the PHY301.
  • the first bit block in this application is generated by the PHY351.
  • the second bit block in this application is generated in the RRC sublayer 306 .
  • the second bit block in this application is generated in the SDAP sublayer 356 .
  • the second bit block in this application is generated in the MAC sublayer 302 .
  • the second bit block in this application is generated in the MAC sublayer 352 .
  • the second bit block in this application is generated by the PHY301.
  • the second bit block in this application is generated by the PHY351.
  • the first signal in this application is generated by the PHY301.
  • the first signal in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 device at least: receives the first information block in this application, and the first information block is used to determine the first time-frequency resource pool in this application; adopts the The first transmit power transmits the first signal in this application, the first signal carries the first bit block in this application and the second bit block in this application, and the first bit block includes at least one control information bit, the second bit block includes at least one control information bit, the priority of the control information bits included in the first bit block and the priority of the control information bits included in the second bit block The priorities are different; wherein, the time-frequency resources occupied by the first signal belong to the first time-frequency resource pool; the resources included in the first time-frequency resource pool and used for the first bit block Particles are orthogonal to resource particles included in the first time-frequency resource pool and used for the second
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the script
  • the first information block in the application the first information block is used to determine the first time-frequency resource pool in this application; the first transmission power in this application is used to transmit all the time-frequency resource pools in this application
  • the first signal the first signal carries the first bit block in this application and the second bit block in this application, the first bit block includes at least one control information bit, and the second The bit block includes at least one control information bit, and the priority of the control information bit included in the first bit block is different from the priority of the control information bit included in the second bit block; wherein the first signal
  • the occupied time-frequency resources belong to the first time-frequency resource pool; the resource elements included in the first time-frequency resource pool that are used for the first bit block and the The resource elements used for the second bit block are orthogonal; the number of bits included in the first bit block and the first resource
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending the first information block in this application, where the first information block is used to determine the first time-frequency resource pool in this application; receiving the The first signal in the present application that is transmitted at the first transmit power, the first signal carries the first bit block in the present application and the second bit block in the present application, the The first bit block includes at least one control information bit, the second bit block includes at least one control information bit, the priority of the control information bits included in the first bit block and the control information bit included in the second bit block The priorities of the information bits are different; wherein, the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the time-frequency resource included in the first time-frequency resource pool is used for the first bit
  • the resource elements of the block are orthogonal to the resource elements included in
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The first information block in the application, the first information block is used to determine the first time-frequency resource pool in the application; receive the application transmitted with the first transmission power in the application In the first signal, the first signal carries the first bit block in this application and the second bit block in this application, and the first bit block includes at least one control information bit, so The second bit block includes at least one control information bit, and the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block; wherein, the The time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block included in the first time-frequency resource pool and the first time-frequency resource The resource elements included in the pool and used for the second bit block are orthogonal; the number of bits included in the first bit block and the first resource
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive said first information block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the first signal in this application by using the first transmission power in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One of them is used to receive said first signal in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the steps in dashed box F1 are optional.
  • the first node U1 receives the first information block in step S511; receives the first signaling in step S5101; and sends the first signal with the first transmission power in step S512.
  • the second node U2 sends the first information block in step S521, sends the first signaling in step S5201, and receives the first signal in step S522.
  • the first information block is used to determine a first time-frequency resource pool;
  • the first signal carries a first bit block and a second bit block, and the first bit block includes at least one piece of control information bits, the second bit block includes at least one control information bit, and the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block;
  • the time-frequency resource occupied by the first signal belongs to the first time-frequency resource pool; the resource element used for the first bit block and the first time-frequency resource element included in the first time-frequency resource pool
  • the resource elements included in the resource pool and used for the second bit block are orthogonal; the number of bits included in the first bit block and the first resource amount are used together to determine a first adjustment amount, and the second A resource amount is the number of resource elements included in the first time-frequency resource pool and used for the first bit block; the first adjustment amount is used to determine a target adjustment amount, and the first transmission power It is equal to a small value of the comparison between the upper limit
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the The first resource amount; the first calculation amount is used to determine the first adjustment amount.
  • the first number of information bits is the number of HARQ-ACK information bits used to obtain the transmission power of a PUCCH; when the number of the bits included in the first bit block When the number is greater than the first threshold, the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first A resource amount, the first calculation amount is used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • At least the latter of the first bit block and the second bit block is used to determine a second adjustment amount, and the target adjustment amount is equal to the first adjustment amount The largest of the amount and the second adjustment amount.
  • the target adjustment amount is the first adjustment amount.
  • coded bits generated by channel coding of the first bit block and the second bit block respectively using different code rates (coding rates) are used to generate the first signal.
  • the first time-frequency resource pool in this application is the resource included in the time-frequency domain of the first PUCCH resource, and the first PUCCH resource belongs to the first PUCCH resource set, so
  • the first PUCCH resource set includes at least one PUCCH resource, and the first signaling is used to determine the first PUCCH resource from the first PUCCH resource set;
  • the first PUCCH resource set is X2 candidates One of the PUCCH resource sets, the X2 is a positive integer greater than 1, and the first information block is used to determine the X2 candidate PUCCH resource sets; the number of bits included in the first bit block, Or at least one of the number of bits included in the second bit block is used to determine the first PUCCH resource set from the X2 candidate PUCCH resource sets.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U2 and the first node U1 includes a user equipment-to-user wireless interface.
  • the first number of information bits is the number of HARQ-ACK information bits with the same priority as the control information bits included in the first bit block used to obtain the transmission power of a PUCCH;
  • the first calculation amount is equal to the number of bits included in the first bit block plus The sum of the number of CRC bits divided by the first resource amount, the first calculation amount is used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • the number of bits included in the first bit block is greater than 2; when the number of bits included in the first bit block is not greater than a first threshold, the number of first information bits and The first amount of resources is jointly used to determine the first adjustment amount, and the first amount of information bits is used to obtain the transmission power of a PUCCH and has the same relationship with the control information bits included in the first bit block The number of HARQ-ACK information bits of the same priority; when the number of bits included in the first bit block is greater than a first threshold, the first calculation amount is equal to the number of bits included in the first bit block dividing the sum of the number of bits plus the number of CRC bits for the first block of bits by the first amount of resources, the first calculation amount is used to determine the first adjustment amount; the The first threshold is predefined or configurable; at least one of the first bit-block and the second bit-block is used to determine a first quantity, and the first quantity is used to determine the A third calculation amount; the second adjustment amount is equal to 10 multiplied by the logarith
  • the first threshold is equal to 11.
  • the second calculation amount is equal to the first number of information bits plus The sum of the number of SR information bits included in the first bit block plus the number of CSI information bits included in the first bit block is divided by the first resource amount, and the first adjustment amount is equal to 10 times
  • the base 10 logarithm of the product of K 1 and the second calculation quantity, the K 1 is predefined or configurable.
  • the first adjustment amount is equal to 10 times the base 10
  • the logarithm of the difference between the b power of 2 minus 1 the b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 11, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 11, and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 11, and the number of bits included in the second bit block is greater than 2 and not greater than 11.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than 2 and not greater than 11.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, and the number of bits included in the second bit block is greater than 2 and not greater than 11.
  • the number of bits included in the first bit block is greater than 2, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, and the number of bits included in the first bit block is equal to the number of bits included in the second bit block and greater than 11.
  • the number of bits included in the first bit block is greater than 2, and at least one of the number of bits included in the first bit block and the number of bits included in the second bit block One is used to determine the first number, which is greater than eleven.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, the number of bits included in the first bit block is twice the number of bits included in the second bit block At least one of them is used to determine a first number, the first number being greater than eleven.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than a second threshold.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than 2 and not greater than a second threshold.
  • the number of bits included in the first bit block is greater than 2 and not greater than a second threshold, and the number of bits included in the second bit block is larger than the second threshold.
  • the number of bits included in the first bit block is greater than a second threshold, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than second threshold.
  • the number of bits included in the first bit block is greater than a second threshold, and the number of bits included in the second bit block is greater than the second threshold.
  • the number of bits included in the first bit block is greater than a second threshold, and the number of bits included in the second bit block is greater than 2 and not greater than the second threshold.
  • the number of bits included in the first bit block is greater than 2, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than the second threshold.
  • the number of bits included in the first bit block is greater than 2 and not greater than the second threshold, the number of bits included in the first bit block is different from the number of bits included in the second bit block The sum of the numbers is greater than the second threshold.
  • the number of bits included in the first bit block is greater than 2, and at least one of the number of bits included in the first bit block and the number of bits included in the second bit block One is used to determine a first number that is greater than a second threshold.
  • the number of bits included in the first bit block is greater than 2 and not greater than the second threshold, the number of bits included in the first bit block is different from the number of bits included in the second bit block At least one of the two quantities is used to determine a first quantity that is greater than a second threshold.
  • the second threshold is a predefined positive integer.
  • the second threshold is a configurable positive integer.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than 2.
  • the second threshold is not greater than 1706.
  • the second threshold is equal to 11.
  • the second threshold is equal to 22.
  • the second threshold is equal to 4.
  • the second threshold is the first threshold.
  • the second threshold is not the first threshold.
  • the target adjustment amount indicates the target transmit power.
  • the target adjustment amount explicitly indicates the target transmission power.
  • the target adjustment amount implicitly indicates the target transmit power.
  • the target transmission power is equal to the sum of the target adjustment amount and other power control components, and the other power control components are configurable or related to the first time-frequency resource pool or obtained based on an indication of.
  • the steps in the dashed box F1 are absent.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the number of bits included in the first bit block, the first resource amount, the first calculation amount, and the first adjustment amount according to an embodiment of the present application, as shown in FIG. 6 Show.
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount; the first calculation amount is used to determine the first adjustment amount.
  • the number of bits included in the first bit block is greater than 11; the first calculation amount is equal to the number of bits included in the first bit block plus the number of CRC bits for the first bit block The sum of the quantities is divided by the first resource amount; the first calculation amount is used to determine the first adjustment amount.
  • the number of CRC bits for the first bit block is a positive integer.
  • the number of CRC bits for the first bit block is equal to 0 or a positive integer.
  • the expression in this application that the first calculation amount is used to determine the first adjustment amount includes: the first adjustment amount is equal to 10 multiplied by 2 b with base 10 The logarithm of the difference of the power minus 1, the b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • the expression in this application that the first calculation amount is used to determine the first adjustment amount includes: the first calculation amount explicitly or implicitly indicates the first adjustment amount .
  • the expression in this application that the first calculation amount is used to determine the first adjustment amount includes: the first calculation amount is used to perform calculations to determine the first adjustment amount .
  • the expression in this application that the first calculation amount is used to determine the first adjustment amount includes: the first adjustment amount is a function of the first calculation amount.
  • the expression in this application that the first calculation amount is used to determine the first adjustment amount includes: the first adjustment amount is equal to the first calculation amount plus a predefined or a configurable offset.
  • Embodiment 7 illustrates a schematic diagram in which the number of bits included in the first bit block and the first resource amount are used to determine the first adjustment amount according to an embodiment of the present application, as shown in FIG. 7 .
  • Embodiment 7 when the number of bits included in the first bit block is not greater than the first threshold, the first number of information bits and the first amount of resources are jointly used to determine the first adjustment amount; when the first bit When the number of bits included in the block is greater than the first threshold, the first calculation amount is equal to the number of bits included in the first bit block plus the number of CRC bits for the first bit block The sum is divided by a first resource amount, and the first calculation amount is used to determine a first adjustment amount; the first threshold is predefined or configurable.
  • the number of bits included in the first bit block is greater than 2, and the first threshold is greater than 3.
  • the meaning of expressing that the first amount of information bits and the first resource amount are jointly used to determine the first adjustment amount includes: the second calculation amount is equal to the first amount of information bits plus the The sum of the number of SR information bits included in the first bit block plus the number of CSI information bits included in the first bit block is divided by the first resource amount, and the second calculation amount is used to determine The first adjustment amount.
  • the meaning of expressing that the first amount of information bits and the first resource amount are jointly used to determine the first adjustment amount includes: the second calculation amount is equal to the first amount of information bits plus the The sum of the quantities of SR information bits included in the first bit block is divided by the first resource amount, and the second calculation amount is used to determine the first adjustment amount.
  • the number of the SR information bits included in the first bit block is equal to 0 or a positive integer.
  • the number of the CSI information bits included in the first bit block is equal to 0 or a positive integer.
  • the meaning of expressing that the first amount of information bits and the first amount of resources are jointly used to determine the first adjustment amount includes: the second calculation amount is equal to dividing the first amount of information bits by the the first resource amount, and the second calculation amount is used to determine the first adjustment amount.
  • the expression that the second calculation amount is used to determine the first adjustment amount includes: the first adjustment amount is equal to 10 multiplied by K 1 with base 10 and the second Calculates the logarithm of the product of quantities, the K1 is predefined or configurable.
  • the meaning of expressing that the first information bit quantity and the first resource quantity are jointly used to determine the first adjustment amount includes: the first adjustment amount is equal to the first information bit quantity multiplied by Take the first amount of resources.
  • the first threshold is not greater than 1706.
  • the first threshold is equal to 11.
  • the first number of information bits is the description and /or the number of HARQ-ACK information bits determined by the description of the second type (Type-2) HARQ-ACK codebook (codebook) in Section 9.1.3.1 of 3GPP TS38.213.
  • the first number of information bits is the description and /or the description of the second type (Type-2) HARQ-ACK codebook (codebook) in Section 9.1.3.1 of 3GPP TS38.213 determines that the control information bits included in the first bit block have the same Number of priority HARQ-ACK information bits.
  • the first number of information bits is represented by n HARQ-ACK .
  • the first number of information bits is greater than 1.
  • the first number of information bits is equal to 0 or 1.
  • the first number of information bits is determined based on the DCI detected by the first node.
  • the first number of information bits is the number of HARQ-ACK information bits used to obtain the transmission power of one PUCCH.
  • the first number of information bits is the number of HARQ-ACK information bits having the same priority as the control information bits included in the first bit block, which are used to obtain the transmission power of one PUCCH.
  • the first calculation amount is used to determine the first adjustment amount refers to: the first adjustment amount is equal to 10 times the difference between the b power of 2 with base 10 minus 1
  • the logarithm of b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • the first calculation amount is used to determine the first adjustment amount means: the first calculation amount explicitly or implicitly indicates the first adjustment amount.
  • the first calculation amount is used to determine the first adjustment amount means: the first calculation amount is used to perform calculations to determine the first adjustment amount.
  • the first calculation amount is used to determine the first adjustment amount means: the first adjustment amount is a function of the first calculation amount.
  • the first calculation amount is used to determine the first adjustment amount means: the first adjustment amount is equal to the first calculation amount plus a predefined or configurable offset .
  • Embodiment 8 illustrates an explanatory schematic diagram in which the first calculation amount is used to determine the first adjustment amount according to an embodiment of the present application, as shown in FIG. 8 .
  • the first adjustment amount is equal to 10 multiplied by the logarithm of the difference between ⁇ K 2 multiplied by the first calculation amount ⁇ power of 2 to the base 10 minus 1, and the K 2 is a predefined or configurable.
  • the K 2 is greater than 0.
  • the K2 is equal to 2.4.
  • the K 2 is predefined.
  • the K 2 is configurable.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the first bit block, the second bit block, the third calculation amount, the second adjustment amount, the first adjustment amount, and the target adjustment amount according to an embodiment of the present application, as shown in Shown in accompanying drawing 9.
  • At least the latter of both the first block of bits and the second block of bits is used to determine a third calculation amount, the third calculation amount is used to determine a second adjustment amount; the first adjustment amount Together with the second adjustment amount, it is used to determine the target adjustment amount.
  • the target adjustment amount is equal to the largest of the first adjustment amount and the second adjustment amount.
  • the target adjustment amount is equal to the smallest of the first adjustment amount and the second adjustment amount.
  • At least the latter of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the third Calculations.
  • both the number of bits included in the first bit block and the number of bits included in the second bit block are used to determine the third calculation amount.
  • the third calculation amount is equal to the number of bits included in the first bit block plus the number of CRC bits for the first bit block plus the bits included in the second bit block
  • the sum of the number of CRC bits plus the number of CRC bits for the second bit block is divided by a second resource amount, where the second resource amount is the number of resource elements occupied by the first signal in the time-frequency domain.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine a first number, and the first number is greater than The second threshold; the third calculation amount is equal to the number of bits included in the first bit block plus the number of CRC bits for the first bit block plus the number of bits included in the second bit block The sum of the number plus the number of CRC bits for the second bit block is divided by a second resource amount, where the second resource amount is the number of resource elements occupied by the first signal in the time-frequency domain.
  • the number of resource elements occupied by the first signal in the time-frequency domain is equal to: M RB multiplied by N sc multiplied by N symbol ; the M RB is equal to all of the first time-frequency resource pool or Part of the number of resource blocks included in the frequency domain, N sc is equal to the number of subcarriers in each resource block (Resource Block) except the subcarriers used for DM-RS transmission, N symbol is equal to the first In the frequency resource pool, the number of multi-carrier symbols other than the multi-carrier symbols used for DM-RS transmission in the time domain.
  • the number of resource elements occupied by the first signal in the time-frequency domain is equal to the number of resource elements used for the first bit block included in the first time-frequency resource pool and the The sum of the quantities of resource elements used for the second bit block included in the first time-frequency resource pool.
  • the third calculation amount is equal to the sum of the number of bits included in the second bit block plus the number of CRC bits for the second bit block divided by the first time-frequency resource pool The number of resource elements included for the second bit-block.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine a first number, and the first number is greater than The second threshold; the third calculation amount is equal to the number of bits included in the second bit block plus the sum of the number of CRC bits for the second bit block divided by the first time-frequency resource pool The number of resource elements included for the second bit-block.
  • the third calculation amount is equal to the second number of information bits plus the number of SR information bits included in the first bit block plus the number of CSI information bits included in the first bit block plus The sum of the number of SR information bits included in the second bit block plus the number of CSI information bits included in the second bit block is divided by a second resource amount, and the second resource amount is the first The number of resource elements occupied by a signal in the time-frequency domain, the second number of information bits is used to obtain the transmission power of a PUCCH and has the same priority as the control information bits included in the first bit block The sum of the number of HARQ-ACK information bits and the number of HARQ-ACK information bits having the same priority as the control information bits included in the second bit block.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the first number, and the first number does not greater than the second threshold; the third calculation amount is equal to the second number of information bits plus the number of SR information bits included in the first bit block plus the number of CSI information bits included in the first bit block plus The sum of the number of SR information bits included in the second bit block plus the number of CSI information bits included in the second bit block is divided by a second resource amount, and the second resource amount is the first The number of resource elements occupied by a signal in the time-frequency domain, the second number of information bits is used to obtain the transmission power of a PUCCH and has the same priority as the control information bits included in the first bit block The sum of the number of HARQ-ACK information bits and the number of HARQ-ACK information bits having the same priority as the control information bits included in the second bit block.
  • the second number of information bits is the first node according to the first type (Type-1) HARQ-ACK codebook (codebook) description and /or the number of HARQ-ACK information bits determined by the description of the second type (Type-2) HARQ-ACK codebook (codebook) in Section 9.1.3.1 of 3GPP TS38.213.
  • the second number of information bits is the first node according to the first type (Type-1) HARQ-ACK codebook (codebook) description and /or the description of the second type (Type-2) HARQ-ACK codebook (codebook) in Section 9.1.3.1 of 3GPP TS38.213 determines that the control information bits included in the first bit block have the same The total number of priority HARQ-ACK information bits and HARQ-ACK information bits having the same priority as the control information bits included in the second bit block.
  • the second number of information bits is the first node according to the first type (Type-1) HARQ-ACK codebook (codebook) description and /or the description of the second type (Type-2) HARQ-ACK codebook (codebook) in Section 9.1.3.1 of 3GPP TS38.213 determines that the control information bits included in the second bit block have the same Number of priority HARQ-ACK information bits.
  • the number of the SR information bits included in the first bit block is equal to 0 or a positive integer.
  • the number of the CSI information bits included in the first bit block is equal to 0 or a positive integer.
  • the number of the SR information bits included in the second bit block is equal to 0 or a positive integer.
  • the number of the CSI information bits included in the second bit block is equal to 0 or a positive integer.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the first number; the third calculation amount It is equal to dividing the first number by the number of resource elements occupied by the first signal in the time-frequency domain.
  • At least one of the number of bits included in the first bit block and the number of bits included in the second bit block is used to determine the first number; the third calculation amount equal to the sum of the first number plus the number of CRC bits for the first bit block plus the number of CRC bits for the second bit block divided by the time-frequency domain occupied by the first signal The number of resource particles.
  • the first number is greater than the second threshold.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than a second threshold.
  • the first number is equal to: a sum of the number of bits included in the first bit block and the number of bits included in the second bit block.
  • the first quantity is equal to: the quantity of bits included in the first bit block.
  • the first quantity is equal to: the quantity of bits included in the second bit block.
  • the first number is equal to: dividing the number of bits included in the first bit block by the first ratio and adding the number of bits included in the second bit block to an integer.
  • the first number is equal to: the number of bits included in the first bit block is added to a result of dividing the number of bits included in the second bit block by the first ratio and rounded to an integer.
  • the first number is equal to: multiplying the number of bits included in the first bit block by the first ratio and adding the number of bits included in the second bit block to an integer.
  • the first number is equal to: a result of multiplying the number of bits included in the second bit block by the first ratio and adding the number of bits included in the first bit block to an integer.
  • the first ratio is a ratio of two code rates, and the two code rates are configured by RRC signaling or MAC CE signaling.
  • the second threshold is a predefined positive integer.
  • the second threshold is a configurable positive integer.
  • the second threshold is not greater than 1706.
  • the second threshold is equal to 11.
  • the second threshold is equal to 22.
  • the second threshold is equal to 4.
  • the second threshold is the first threshold.
  • the second threshold is not the first threshold.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than 2.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 11, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 11, and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 11, and the number of bits included in the second bit block is greater than 2 and not greater than 11.
  • the number of bits included in the first bit block is greater than 2, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 11.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, and the number of bits included in the first bit block is equal to the number of bits included in the second bit block and greater than 11.
  • the number of bits included in the first bit block is greater than 2, and at least one of the number of bits included in the first bit block and the number of bits included in the second bit block One is used to determine the first number, which is greater than eleven.
  • the number of bits included in the first bit block is greater than 2 and not greater than 11, the number of bits included in the first bit block is twice the number of bits included in the second bit block At least one of them is used to determine a first number, the first number being greater than eleven.
  • the number of bits included in the first bit block is greater than 2, and the number of bits included in the second bit block is greater than a second threshold.
  • the number of bits included in the first bit block is greater than 2 and not greater than a second threshold, and the number of bits included in the second bit block is larger than the second threshold.
  • the number of bits included in the first bit block is greater than a second threshold, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than second threshold.
  • the number of bits included in the first bit block is greater than a second threshold, and the number of bits included in the second bit block is greater than the second threshold.
  • the number of bits included in the first bit block is greater than a second threshold, and the number of bits included in the second bit block is greater than 2 and not greater than the second threshold.
  • the number of bits included in the first bit block is greater than 2, and the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than the second threshold.
  • the number of bits included in the first bit block is greater than 2 and not greater than the second threshold, the number of bits included in the first bit block is different from the number of bits included in the second bit block The sum of the numbers is greater than the second threshold.
  • the number of bits included in the first bit block is greater than 2, and at least one of the number of bits included in the first bit block and the number of bits included in the second bit block One is used to determine a first number that is greater than a second threshold.
  • the number of bits included in the first bit block is greater than 2 and not greater than the second threshold, the number of bits included in the first bit block is different from the number of bits included in the second bit block At least one of the two quantities is used to determine a first quantity that is greater than a second threshold.
  • the number of CRC bits for the first bit block is equal to 0 or a positive integer.
  • the number of CRC bits for the second bit block is equal to 0 or a positive integer.
  • the meaning that the third calculation amount is used to determine the second adjustment amount includes: the second adjustment amount is equal to 10 multiplied by K 1 with base 10 and the third calculation amount
  • the logarithm of the product, the K1 is either predefined or configurable.
  • the meaning that the third calculation amount is used to determine the second adjustment amount includes: the second adjustment amount is equal to 10 multiplied by the difference of 1 to the b power of 2 with base 10
  • the logarithm of the value, the b is equal to K 2 multiplied by the third calculation amount, the K 2 is predefined or configurable.
  • the meaning that the third calculation amount is used to determine the second adjustment amount includes: the second adjustment amount is equal to 10 multiplied by K 1 with base 10 and the third calculation amount
  • the logarithm of the product, the K 1 is predefined or configurable; or, the second adjustment amount is equal to 10 multiplied by the logarithm of the difference between the b power of 2 minus 1 with base 10,
  • the b is equal to K 2 multiplied by the third calculation amount, and the K 2 is predefined or configurable.
  • the K 1 in this application is equal to 6.
  • said K 2 in this application is equal to 2.4.
  • Embodiment 10 illustrates an explanatory diagram in which the target transmit power is used to determine the first transmit power and the target adjustment amount is used to determine the target transmit power according to an embodiment of the present application, as shown in FIG. 10 .
  • the first transmit power is equal to the small value of the comparison between the upper limit transmit power and the target transmit power
  • the target transmit power is equal to the sum of the target adjustment amount and other power control components, of which the other power control components
  • a power control component of is configurable or related to the first time-frequency resource pool or obtained based on an indication.
  • the upper limit of sending power is predefined.
  • the upper limit of sending power is configurable.
  • the upper limit transmit power is configured by RRC signaling.
  • the upper limit transmit power is a configurable maximum output power (configured maximum output power).
  • the upper limit transmit power is for one PUCCH transmission opportunity (transmission occasion).
  • the other power control components include at least one power control component.
  • the other power control components include multiple power control components.
  • one power control component among the other power control components is defined in Section 7.2.1 of 3GPP TS38.213.
  • the other power control components include at least one of a first power control component, a second power control component, a third power control component, a fourth power control component, and a fifth power control component.
  • the target transmission power is equal to the sum of the target adjustment amount, the first power control component, the second power control component, the third power control component, the fourth power control component, and the fifth power control component .
  • the first power control component is configured in a p0-nominal domain.
  • the first power control component is configured in a P0-PUCCH domain.
  • one power control component in the first power control component is a p0-PUCCH-Value value.
  • the first power control component is equal to zero.
  • the symbol of the first power control component includes P O_PUCCH,b,f,c .
  • the second power control component is equal to 10 ⁇ log 10 (2 ⁇ M RB ), and the M RB is equal to all or part of the resources included in the frequency domain of the first time-frequency resource pool
  • the number of blocks, the ⁇ is a SCS (Subcarrier spacing, subcarrier spacing) configuration.
  • the third power control component is a downlink path loss estimate (downlink pathloss estimate).
  • the unit of the third power control component is dB.
  • the third power control component is calculated based on measurement of a reference signal.
  • the symbol of the third power control component includes PL b,f,c .
  • the fourth power control component is a value of deltaF-PUCCH-f2, a value of deltaF-PUCCH-f3, a value of deltaF-PUCCH-f4, or one of 0.
  • the fourth power control component is related to a PUCCH format.
  • the first time-frequency resource pool in this application is the time-frequency resource reserved for the first PUCCH, and the first PUCCH uses PUCCH format (PUCCH format) 2 or PUCCH format 3 or PUCCH format One of 4; when the first PUCCH uses PUCCH format 2, the fourth power control component is the value of deltaF-PUCCH-f2 or 0; when the first PUCCH uses PUCCH format 2, the fourth power control component The four power control components are the value of deltaF-PUCCH-f3 or 0; when the first PUCCH uses PUCCH format 2, the fourth power control component is the value of deltaF-PUCCH-f4 or 0.
  • the symbol of the fourth power control component includes ⁇ F_PUCCH .
  • the fifth power control component is a PUCCH power control adjustment state value (PUCCH power control adjustment state).
  • the fifth power control component is obtained based on an indication of a field in the DCI.
  • the fifth power control component is determined based on a TPC (Transmit power control) command (command).
  • TPC Transmit power control
  • the value of the fifth power control component is for a PUCCH transmission opportunity corresponding to the first time-frequency resource pool in this application.
  • the symbol of the fifth power control component includes g b,f,c .
  • the symbol of the target adjustment amount includes ⁇ .
  • the symbol of the target adjustment amount includes ⁇ TF,b,f,c .
  • Embodiment 11 illustrates a schematic diagram of a first time-frequency resource pool according to an embodiment of the present application, as shown in FIG. 11 .
  • the first time-frequency resource pool is a time-frequency resource reserved for the first PUCCH, and the first PUCCH uses one of PUCCH format 2, PUCCH format 3 or PUCCH format 4.
  • the first PUCCH also occupies a code domain resource.
  • the first signal in this application is sent in the first PUCCH.
  • Embodiment 12 illustrates a schematic diagram of the relationship between the first node/the first receiver and the first signaling according to an embodiment of the present application, as shown in FIG. 12 .
  • the first node/the first receiver in this application also receives the first signaling; wherein, the first time-frequency resource pool in this application is the time-frequency resource pool of the first PUCCH resource
  • the first PUCCH resource belongs to a first PUCCH resource set, the first PUCCH resource set includes at least one PUCCH resource, and the first signaling is used to obtain from the first PUCCH resource set Determine the first PUCCH resource;
  • the first PUCCH resource set is one of X2 candidate PUCCH resource sets, where X2 is a positive integer greater than 1, and the first information block in this application is used To determine the X2 candidate PUCCH resource sets; at least one of the number of bits included in the first bit block in this application, or the number of bits included in the second bit block in this application One is used to determine the first PUCCH resource set from the X2 candidate PUCCH resource sets.
  • the first signaling is dynamically configured.
  • the first signaling includes Layer 1 (L1) signaling.
  • the first signaling includes layer 1 (L1) control signaling.
  • the first signaling includes physical layer (Physical Layer) signaling.
  • the first signaling includes one or more fields (Fields) in one physical layer signaling.
  • the first signaling includes higher layer (Higher Layer) signaling.
  • the first signaling includes one or more fields in a higher layer signaling.
  • the first signaling includes RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signaling includes one or more fields in one RRC signaling.
  • the first signaling includes one or more fields in one MAC CE signaling.
  • the first signaling includes DCI (downlink control information, Downlink Control Information).
  • the first signaling includes one or more fields in a DCI.
  • the first signaling is a DCI.
  • the first signaling includes SCI (Sidelink Control Information, Sidelink Control Information).
  • the first signaling includes one or more fields in one SCI.
  • the first signaling includes one or more fields in an IE (Information Element).
  • the first signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to bear physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to bear physical layer signaling.
  • the downlink physical layer control channel in this application is PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • the downlink physical layer control channel in this application is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel in this application is NB-PDCCH (Narrow Band PDCCH, narrowband PDCCH).
  • the first signaling is DCI format 1_0, and for a specific definition of the DCI format 1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and for a specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_2, and for a specific definition of the DCI format 1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 0_0, and for a specific definition of the DCI format 0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_1, and for a specific definition of the DCI format 0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_2, and for a specific definition of the DCI format 0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling indicates the transmission of one PDSCH
  • the first bit block includes HARQ-ACK information bits corresponding to the one PDSCH.
  • the first signaling indicates transmission of one PDSCH
  • the second bit block includes HARQ-ACK information bits corresponding to the one PDSCH.
  • the first information block in this application indicates the X2 candidate PUCCH resource sets.
  • one field included in the first information block in this application configures the X2 candidate PUCCH resource sets.
  • the first PUCCH resource set is determined in the candidate PUCCH resource set, and the one parameter value is predefined or configurable.
  • the X2 number ranges correspond to the X2 candidate PUCCH resource sets respectively, and the sum of the number of bits included in the first bit block and the one parameter value belongs to the X2
  • a first number range in a number range, the first PUCCH resource set is a PUCCH resource corresponding to the first number range in the X2 candidate PUCCH resource sets.
  • the X2 number ranges correspond to the X2 candidate PUCCH resource sets respectively, the number of bits included in the first bit block and the number of bits included in the second bit block (or the first bit block)
  • the sum of the number of bits included in a bit block generated by a two-bit block) belongs to the first number range in the X2 number ranges, and the first PUCCH resource set is corresponding to the X2 candidate PUCCH resource sets One PUCCH resource in the first number range.
  • the first signaling is used to indicate the first PUCCH resource from the first PUCCH resource set.
  • the first signaling indicates an index of the first PUCCH resource in the first PUCCH resource set.
  • the first information block in this application is used to determine X3 candidate PUCCH resources, where X3 is a positive integer greater than 1; the bits included in the first bit block in this application At least one of the number of bits or the number of bits included in the second bit block in this application is used to indicate the first PUCCH resource from the X3 candidate PUCCH resources.
  • Embodiment 13 illustrates a schematic diagram of the relationship between the priority of the control information bits included in the first bit block and the priority of the control information bits included in the second bit block according to an embodiment of the present application, as shown in FIG. 13 shown.
  • the priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block.
  • the priority index of the control information bits included in the first bit block is equal to the first index
  • the priority index of the control information bits included in the second bit block is equal to the second index
  • the priority index of the control information bits included in the second bit block is equal to the second index.
  • An index is a non-negative integer
  • the second index is a non-negative integer; the first index and the second index are not equal.
  • the sum of the number of control information bits included in the first bit block and the number of control information bits included in the second bit block is greater than 2.
  • the first index is equal to 0, and the second index is equal to 1.
  • the first index is equal to 1, and the second index is equal to 0.
  • the first index is a priority index (Priority Index) 0, and the second index is a priority index 1.
  • the first index is priority index 1
  • the second index is priority index 0.
  • the first index indicates a high priority
  • the second index indicates a low priority
  • the second index indicates a high priority
  • the first index indicates a low priority
  • the priority indicated by the second index is higher than the priority indicated by the first index.
  • the priority indicated by the second index is lower than the priority indicated by the first index.
  • both the priority index of the control information bits included in the first bit block and the priority index of the control information bits included in the second bit block are physical layer priority indexes.
  • the priority index of the control information bits included in the first bit block and the priority index of the control information bits included in the second bit block are all higher layer priority indexes.
  • control information bits included in the first bit block and the control information bits included in the second bit block are respectively aimed at different service types.
  • control information bits included in the first bit block and the control information bits included in the second bit block are respectively for different transmission modes (such as: broadcast, multicast, multicast or unicast) control information bits.
  • control information bits for the multicast mode and the control information bits for the unicast mode have different priorities.
  • control information bits for the groupcast mode and the control information bits for the unicast mode have different priorities.
  • control information bits for the broadcast mode and the control information bits for the unicast mode have different priorities.
  • control information bits included in the first bit block and the control information bits included in the second bit block respectively correspond to different priority indexes (Priority index).
  • control information bits included in the first bit block and the control information bits included in the second bit block correspond to priority index 0 and priority index 1, respectively.
  • control information bits included in the first bit block and the control information bits included in the second bit block correspond to priority index 1 and priority index 0 respectively.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 14 .
  • the first node device processing apparatus 1400 includes a first receiver 1401 and a first transmitter 1402 .
  • the first node device 1400 is a user equipment.
  • the first node device 1400 is a relay node.
  • the first node device 1400 is a vehicle communication device.
  • the first node device 1400 is a user equipment supporting V2X communication.
  • the first node device 1400 is a relay node supporting V2X communication.
  • the first receiver 1401 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data At least one of the sources 467.
  • the first receiver 1401 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data At least the first five of sources 467 .
  • the first receiver 1401 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data At least the first four of sources 467 .
  • the first receiver 1401 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data At least the first three of sources 467 .
  • the first receiver 1401 includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and data At least the first two of sources 467 .
  • the first transmitter 1402 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467 .
  • the first transmitter 1402 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of the data sources 467 .
  • the first transmitter 1402 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of the data sources 467 .
  • the first transmitter 1402 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of the data sources 467 .
  • the first transmitter 1402 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of the data sources 467 .
  • the first receiver 1401 receives a first information block, and the first information block is used to determine a first time-frequency resource pool; the first transmitter 1402 uses a first transmission power sending a first signal, the first signal carrying a first bit block and a second bit block, the first bit block includes at least one control information bit, the second bit block includes at least one control information bit, and the first bit block includes at least one control information bit
  • the priority of the control information bits included in one bit block is different from the priority of the control information bits included in the second bit block; wherein, the time-frequency resource occupied by the first signal belongs to the first time-frequency resource.
  • a frequency resource pool; resource elements included in the first time-frequency resource pool used for the first bit block and resources included in the first time-frequency resource pool used for the second bit block Particles are orthogonal; the number of bits included in the first bit block is used together with the first amount of resources to determine the first adjustment amount, and the first amount of resources is the number of bits included in the first time-frequency resource pool.
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount ;
  • the first calculation amount is used to determine the first adjustment amount.
  • the first number of information bits is the number of HARQ-ACK information bits used to obtain the transmission power of a PUCCH; when the number of bits included in the first bit block is greater than a first threshold
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount, the A first calculation amount is used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • the first adjustment amount is equal to 10 multiplied by the logarithm of the difference between the b power of 2 with base 10 minus 1
  • the b is equal to K 2 multiplied by the first calculation amount
  • the K2 is predefined or configurable.
  • At least the latter of the first bit block and the second bit block is used to determine a second adjustment amount, and the target adjustment amount is equal to the first adjustment amount and the second adjustment amount. 2.
  • the adjustment amount is the largest of the two.
  • the target adjustment amount is the first adjustment amount.
  • the first transmit power is equal to the small value of the comparison between the upper limit transmit power and the target transmit power
  • the target adjustment amount is used to determine the target transmit power
  • the upper limit transmit power is a predefined or configurable.
  • the first receiver 1401 also receives the first signaling; wherein, the first time-frequency resource pool is resources included in the time-frequency domain of the first PUCCH resource, and the first PUCCH resource belongs to A first PUCCH resource set, the first PUCCH resource set includes at least one PUCCH resource, and the first signaling is used to determine the first PUCCH resource from the first PUCCH resource set; the first PUCCH The resource set is one of the X2 candidate PUCCH resource sets, where X2 is a positive integer greater than 1, and the first information block in this application is used to determine the X2 candidate PUCCH resource sets; this application At least one of the number of bits included in the first bit block in or the number of bits included in the second bit block in this application is used to select from the X2 candidate PUCCH resource sets Determine the first PUCCH resource set in .
  • the number of bits included in the first bit block is greater than 2; when the number of bits included in the first bit block is not greater than a first threshold, the number of first information bits and The first amount of resources is jointly used to determine the first adjustment amount, and the first amount of information bits is used to obtain the transmission power of a PUCCH and has the same relationship with the control information bits included in the first bit block The number of HARQ-ACK information bits of the same priority; when the number of bits included in the first bit block is greater than a first threshold, the first calculation amount is equal to the number of bits included in the first bit block dividing the sum of the number of bits plus the number of CRC bits for the first block of bits by the first amount of resources, the first calculation amount is used to determine the first adjustment amount; the The first threshold is predefined or configurable; the target adjustment amount is equal to the first adjustment amount; the target transmission power is equal to the sum of the target adjustment amount and other power control components, and the other power control components are configurable Configured or related to the first time-frequency resource pool or
  • the first threshold is equal to 11.
  • the second calculation amount is equal to the first number of information bits plus The sum of the number of SR information bits included in the first bit block plus the number of CSI information bits included in the first bit block is divided by the first resource amount, and the first adjustment amount is equal to 10 times
  • the base 10 logarithm of the product of K 1 and the second calculation quantity, the K 1 is predefined or configurable.
  • the first adjustment amount is equal to 10 times the base 10
  • the logarithm of the difference between the b power of 2 minus 1 the b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • the number of bits included in the first bit block is greater than 2; when the number of bits included in the first bit block is not greater than a first threshold, the number of first information bits and The first amount of resources is jointly used to determine the first adjustment amount, and the first amount of information bits is used to obtain the transmission power of a PUCCH and has the same relationship with the control information bits included in the first bit block The number of HARQ-ACK information bits of the same priority; when the number of bits included in the first bit block is greater than a first threshold, the first calculation amount is equal to the number of bits included in the first bit block dividing the sum of the number of bits plus the number of CRC bits for the first block of bits by the first amount of resources, the first calculation amount is used to determine the first adjustment amount; the The first threshold is predefined or configurable; at least the latter of the first block of bits and the second block of bits is used to determine a first quantity which is used to determine the The third calculation amount; the second adjustment amount is equal to 10 multiplied by the logarithm of the
  • the first threshold is equal to 11.
  • the first number is greater than 11.
  • the first number is greater than a predefined positive integer.
  • the number of bits included in the second bit block is greater than 11.
  • the sum of the number of bits included in the first bit block and the number of bits included in the second bit block is greater than 11.
  • the first number is equal to the sum of the number of bits included in the first bit block and the number of bits included in the second bit block
  • the third calculation amount equal to the sum of the first number plus the number of CRC bits for the second bit block plus the number of CRC bits for the first bit block divided by the time-frequency domain occupied by the first signal The number of resource particles.
  • the first number is equal to the number of bits included in the second bit block
  • the third calculation amount is equal to the first number plus the number of bits for the second bit block The sum of the number of CRC bits divided by the number of resource elements included in the first time-frequency resource pool and used for the second bit block.
  • the number of CSI information bits included in the first bit block is equal to zero.
  • K1 is equal to six.
  • the K 2 is equal to 2.4.
  • the second calculation amount is equal to the first number of information bits plus The sum of the number of SR information bits included in the first bit block plus the number of CSI information bits included in the first bit block is divided by the first resource amount, and the first adjustment amount is equal to 10 times
  • the base 10 logarithm of the product of K 1 and the second calculation quantity, the K 1 is predefined or configurable.
  • the first adjustment amount is equal to 10 times the base 10
  • the logarithm of the difference between the b power of 2 minus 1 the b is equal to K 2 multiplied by the first calculation amount, and the K 2 is predefined or configurable.
  • Embodiment 15 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 15 .
  • the second node device processing apparatus 1500 includes a second transmitter 1501 and a second receiver 1502 .
  • the second node device 1500 is user equipment.
  • the second node device 1500 is a base station.
  • the second node device 1500 is a relay node.
  • the second node device 1500 is a vehicle communication device.
  • the second node device 1500 is a user equipment supporting V2X communication.
  • the second transmitter 1501 includes the antenna 420 in the accompanying drawing 4 of this application, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. at least one.
  • the second transmitter 1501 includes the antenna 420 in the accompanying drawing 4 of this application, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least the top five.
  • the second transmitter 1501 includes the antenna 420 in the accompanying drawing 4 of this application, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least the first four.
  • the second transmitter 1501 includes the antenna 420 in the accompanying drawing 4 of this application, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least the first three.
  • the second transmitter 1501 includes the antenna 420 in the accompanying drawing 4 of this application, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least the first two.
  • the second receiver 1502 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second receiver 1502 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second receiver 1502 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second receiver 1502 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second receiver 1502 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second transmitter 1501 transmits the first information block, and the first information block is used to determine the first time-frequency resource pool; the second receiver 1502 receives the power is transmitted on a first signal, the first signal carrying a first block of bits comprising at least one bit of control information and a second block of bits comprising at least one bit of control information, The priority of the control information bits included in the first bit block is different from the priority of the control information bits included in the second bit block; wherein, the time-frequency resource occupied by the first signal belongs to the The first time-frequency resource pool; the resource elements included in the first time-frequency resource pool used for the first bit block and the resource elements included in the first time-frequency resource pool used for the second bit The resource elements of the block are orthogonal; the number of bits included in the first bit block is used together with the first resource amount to determine the first adjustment amount, and the first resource amount is the first time-frequency resource pool. The number of resource elements used for the first bit block included; the first adjustment amount is used to determine a target adjustment amount
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount ;
  • the first calculation amount is used to determine the first adjustment amount.
  • the first number of information bits is the number of HARQ-ACK information bits used to obtain the transmission power of a PUCCH; when the number of bits included in the first bit block is greater than a first threshold
  • the first calculation amount is equal to the sum of the number of bits included in the first bit block plus the number of CRC bits for the first bit block divided by the first resource amount, the A first calculation amount is used to determine the first adjustment amount; the first threshold is predefined or configurable.
  • the first adjustment amount is equal to 10 multiplied by the logarithm of the difference between the b power of 2 with base 10 minus 1
  • the b is equal to K 2 multiplied by the first calculation amount
  • the K2 is predefined or configurable.
  • At least the latter of the first bit block and the second bit block is used to determine a second adjustment amount, and the target adjustment amount is equal to the first adjustment amount and the second adjustment amount. 2.
  • the adjustment amount is the largest of the two.
  • the target adjustment amount is the first adjustment amount.
  • the first transmit power is equal to the small value of the comparison between the upper limit transmit power and the target transmit power
  • the target adjustment amount is used to determine the target transmit power
  • the upper limit transmit power is a predefined or configurable.
  • the second transmitter 1501 also sends the first signaling; wherein, the first time-frequency resource pool is resources included in the time-frequency domain of the first PUCCH resource, and the first PUCCH resource belongs to A first PUCCH resource set, the first PUCCH resource set includes at least one PUCCH resource, and the first signaling is used to determine the first PUCCH resource from the first PUCCH resource set; the first PUCCH The resource set is one of the X2 candidate PUCCH resource sets, where X2 is a positive integer greater than 1, and the first information block in this application is used to determine the X2 candidate PUCCH resource sets; this application At least one of the number of bits included in the first bit block in or the number of bits included in the second bit block in this application is used to select from the X2 candidate PUCCH resource sets Determine the first PUCCH resource set in .
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一信息块(101),第一信息块被用于确定第一时频资源池;第一发射机,采用第一发送功率发送第一信号(102),第一信号携带第一比特块和第二比特块;其中,第一信号所占用的时频资源属于第一时频资源池;第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,第一资源量是第一时频资源池所包括的被用于第一比特块的资源粒子的数量;第一调整量被用于确定目标调整量,目标调整量被用于确定第一发送功率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)NR(New Radio,新空口)系统中,为了支持更高要求(如更高可靠性、更低延迟等)的URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)业务,NR Release 16版本协议已经支持了针对上行链路传输的多种增强。
在3GPP RAN全会上通过了在NR Release 17中对URLLC继续增强的WI(Work Item,工作项目)。其中,对UE(User Equipment,用户设备)内(Intra-UE)不同业务的复用(Multiplexing)是需要研究一个重点。
发明内容
在上述背景下,如何确定承载不同优先级UCI(Uplink Control Information,上行链路控制信息)的PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)的发送功率是一个必须解决的关键问题。
针对上述问题,本申请公开了一种解决方案。上述问题描述中,采用上行链路(UpLink)作为一个例子;本申请也同样适用于其他场景,如下行链路(Downlink)或旁链路(SideLink,SL)等传输场景,并取得类似的技术效果。此外,不同场景(包括但不限于上行链路、下行链路、旁链路)采用统一解决方案还有助于降低硬件复杂度和成本。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息块,所述第一信息块被用于确定第一时频资源池;
采用第一发送功率发送第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为一个实施例,本申请要解决的问题包括:如何确定携带不同优先级UCI的一个物理信道的发送功率的问题。
作为一个实施例,本申请要解决的问题包括:当一个PUCCH被用于承载多种不同优先级的UCI(如,分别对应优先级索引(Priority index)0和优先级索引1的两种UCI)时,如何确定所述一个PUCCH的发送功率。
作为一个实施例,本申请要解决的问题包括:如何确定所述目标调整量从而确定一个PUCCH的发送功率;所述一个PUCCH被用于承载携带多种不同优先级的UCI(如,分别对应优先级索引(Priority index)0和优先级索引1的两种UCI)的所述第一信号并且所述一个PUCCH采用PUCCH格式(format)2或PUCCH格式3或PUCCH格式4三者中之一,所述第一信号所携带所述多种不同优先级的UCI分别被执行信道编码。
作为一个实施例,本申请要解决的问题包括:当多种不同优先级的UCI分别采用不同码率(coding rate)的信道编码时,如何确定被用于传输所述多种不同优先级UCI的一个PUCCH的发送功率的问题。
作为一个实施例,上述方法的特质包括:在同一个PUCCH中被传输的多种不同优先级的UCI分别采用不同码率(coding rate)的信道编码。
作为一个实施例,上述方法的好处包括:有利于实现针对被用于传输多种采用不同码率的信道编码的不同优先级UCI的PUCCH的功率控制。
作为一个实施例,上述方法的好处包括:有利于保证高优先级(如,URLLC)UCI的传输性能。
作为一个实施例,上述方法的好处包括:兼容性好。
根据本申请的一个方面,上述方法的特征在于,
第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
根据本申请的一个方面,上述方法的特征在于,
当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
根据本申请的一个方面,上述方法的特征在于,
所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
作为一个实施例,上述方法的好处包括:避免了由于与低优先级UCI被复用到同一个PUCCH而导致的针对高优先级UCI的发送功率不足。
作为一个实施例,上述方法的好处包括:有利于避免低优先级UCI的复用所导致的过大的功率抬升。
作为一个实施例,上述方法的好处包括:有利于提升低优先级UCI的传输性能。
作为一个实施例,上述方法的好处包括:在保证高优先级UCI足够发送功率的前提下,优化了PUCCH的总体传输性能。
根据本申请的一个方面,上述方法的特征在于,
所述目标调整量是所述第一调整量。
作为一个实施例,上述方法的特质包括:在PUCCH的功率控制中仅针对高优先级UCI和低优先级UCI两者中的前者执行调控。
作为一个实施例,上述方法的好处包括:在保证高优先级UCI足够发送功率的前提下,避免了由于低优先级UCI的复用所导致的过大的功率抬升。
根据本申请的一个方面,上述方法的特征在于,
所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息块,所述第一信息块被用于确定第一时频资源池;
接收以第一发送功率被发送的第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
根据本申请的一个方面,上述方法的特征在于,
第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
根据本申请的一个方面,上述方法的特征在于,
当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
根据本申请的一个方面,上述方法的特征在于,
所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
根据本申请的一个方面,上述方法的特征在于,
所述目标调整量是所述第一调整量。
根据本申请的一个方面,上述方法的特征在于,
所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息块,所述第一信息块被用于确定第一时频资源池;
第一发射机,采用第一发送功率发送第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信息块,所述第一信息块被用于确定第一时频资源池;
第二接收机,接收以第一发送功率被发送的第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一 时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为一个实施例,本申请中的方法具备如下优势:
-有利于实现针对被用于传输多种采用不同码率的信道编码的不同优先级UCI的PUCCH的功率控制;
-有利于保证高优先级(如,URLLC)UCI的传输性能;
-兼容性好;
-避免了由于与低优先级UCI被复用到同一个PUCCH而导致的针对高优先级UCI的发送功率不足;
-有利于避免低优先级UCI的复用所导致的过大的功率抬升;
-有利于提升低优先级UCI的传输性能;
-在保证高优先级UCI足够发送功率的前提下,优化了PUCCH的总体传输性能;
-有利于干扰控制。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一比特块所包括的比特的数量,第一资源量,第一计算量,以及第一调整量之间关系的示意图;
图7示出了根据本申请的一个实施例的第一比特块所包括的比特的数量和第一资源量被用于确定第一调整量的说明示意图;
图8示出了根据本申请的一个实施例的第一计算量被用于确定第一调整量的说明示意图;
图9示出了根据本申请的一个实施例的第一比特块,第二比特块,第三计算量,第二调整量,第一调整量,以及目标调整量之间关系的的示意图;
图10示出了根据本申请的一个实施例的目标发送功率被用于确定第一发送功率,以及目标调整量被用于确定目标发送功率的说明示意图;
图11示出了根据本申请的一个实施例的第一时频资源池的说明示意图;
图12示出了根据本申请的一个实施例的第一节点/第一接收机与第一信令之间关系的示意图;
图13示出了根据本申请的一个实施例的第一比特块所包括的控制信息比特的优先级和第二比特块所包括的控制信息比特的优先级之间关系的示意图;
图14示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信息块;在步骤102中采用第一发送功率发送第一信号。
在实施例1中,所述第一信息块被用于确定第一时频资源池;所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第 一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为一个实施例,本申请中的所述第一信号包括无线信号。
作为一个实施例,本申请中的所述第一信号包括射频信号。
作为一个实施例,本申请中的所述第一信号包括基带信号。
作为一个实施例,所述句子所述第一信号携带第一比特块和第二比特块的意思包括:所述第一信号包括所述第一比特块中的全部或部分比特(或所述第一比特块生成的一个比特块)依次经过CRC添加,分段,编码块级CRC添加,信道编码,速率匹配,串联,加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),多载波符号生成(Generation),调制上变频(Modulation and Upconversion)中的部分或全部之后的输出,并且,所述第一信号还包括所述第二比特块中的全部或部分比特(或所述第二比特块生成的一个比特块)依次经过CRC添加,分段,编码块级CRC添加,信道编码,速率匹配,串联,加扰,调制,层映射,预编码,映射到资源粒子,多载波符号生成,调制上变频中的部分或全部之后的输出。
作为一个实施例,所述句子所述第一信号携带第一比特块和第二比特块的意思包括:所述第一信号是承载所述第一比特块(或所述第一比特块生成的一个比特块)以及所述第二比特块(或所述第二比特块生成的一个比特块)的信号。
作为一个实施例,本申请中的所述第一时频资源池在时频域包括至少一个RE(Resource Element,资源粒子)。
作为一个实施例,一个所述RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,本申请中的所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,本申请中的所述第一时频资源池在频域包括正整数个子载波(Subcarrier)。
作为一个实施例,本申请中的所述第一时频资源池在频域包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,本申请中的所述第一时频资源池在频域包括正整数个RB(Resource block,资源块)。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个多载波符号。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个时隙(slot)。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个子时隙(sub-slot)。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个毫秒(ms)。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个连续的多载波符号。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个不连续的时隙。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个连续的时隙。
作为一个实施例,本申请中的所述第一时频资源池在时域包括正整数个子帧(sub-frame)。
作为一个实施例,本申请中的所述第一时频资源池由物理层信令指示或由更高层信令配置。
作为一个实施例,本申请中的所述第一时频资源池由DCI指示或者由RRC(Radio Resource Control, 无线电资源控制)信令配置或者由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令配置。
作为一个实施例,本申请中的所述第一时频资源池包括一个上行物理信道所占用的时频资源。
作为一个实施例,本申请中的一个所述上行物理信道是一个PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)或一个PUSCH(Physical Uplink Shared CHannel,物理上行链路共享信道)。
作为一个实施例,本申请中的所述第一时频资源池是一个PUCCH资源(PUCCH resource)所占用的时频资源中的全部或部分。
作为一个实施例,所述第一时频资源池包括被预留给一个物理信道的时频资源,所述一个物理信道被用于发送所述第一信号。
作为一个实施例,所述第一时频资源池包括被预留给一个物理控制信道的时频资源,所述一个物理控制信道被用于发送所述第一信号。
作为一个实施例,所述第一时频资源池包括被预留给一个物理共享信道的时频资源,所述一个物理共享信道被用于发送所述第一信号。
作为一个实施例,所述第一信息块包括RRC信令。
作为一个实施例,所述第一信息块包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信息块是一个IE。
作为一个实施例,所述第一信息块包括一个IE中的一个或多个域。
作为一个实施例,所述第一信息块包括MAC CE信令。
作为一个实施例,所述第一信息块包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信息块包括更高层信令。
作为一个实施例,所述第一信息块是PUCCH-config。
作为一个实施例,所述第一信息块是PUCCH-configurationList。
作为一个实施例,所述第一信息块是BWP-dedicated。
作为一个实施例,所述第一信息块是sps-PUCCH-AN。
作为一个实施例,所述第一信息块是sps-PUCCH-AN-ResourceID。
作为一个实施例,所述第一信息块的名字包括PUCCH。
作为一个实施例,所述第一信息块的名字包括PUCCH-config。
作为一个实施例,所述第一信息块指示所述第一时频资源池。
作为一个实施例,所述第一信息块显式指示所述第一时频资源池。
作为一个实施例,所述第一信息块隐式指示所述第一时频资源池。
作为一个实施例,所述第一时频资源池是所述第一信息块所指示/配置的一个物理信道所占用的时频资源中的全部或部分。
作为一个实施例,所述第一时频资源池是所述第一信息块所配置的一个PUCCH资源在时频域所占用的资源中的全部或部分。
作为一个实施例,所述第一时频资源池是所述第一信息块所配置的多个PUCCH资源中之一在时频域所占用的资源。
作为一个实施例,所述第一时频资源池是所述第一信息块所指示的一个PUCCH资源在时频域所占用的资源。
作为一个实施例,所述第一时频资源池是所述第一信息块所指示的一个PSCCH(Physical Sidelink Control CHannel,物理旁链路控制信道)在时频域所占用的资源。
作为一个实施例,所述第一信号是在一个PUCCH上传输的信号。
作为一个实施例,所述第一信号是一个PUCCH。
作为一个实施例,所述第一信号包括一个PUCCH传输的多个跳频区间中的一个或多个跳频区间中的信号。
作为一个实施例,所述第一比特块包括至少一个UCI比特。
作为一个实施例,所述第二比特块包括至少一个UCI比特。
作为一个实施例,所述第一比特块包括至少一个HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)信息比特。
作为一个实施例,所述第二比特块包括至少一个HARQ-ACK信息比特。
作为一个实施例,所述第一比特块仅包括HARQ-ACK信息比特。
作为一个实施例,所述第二比特块仅包括HARQ-ACK信息比特。
作为一个实施例,所述第一比特块还包括HARQ-ACK比特之外的控制信息比特。
作为一个实施例,所述第二比特块还包括HARQ-ACK比特之外的控制信息比特。
作为一个实施例,所述第一比特块不包括CRC(Cyclic Redundancy Check,循环冗余校验)比特。
作为一个实施例,所述第一比特块包括至少一个CRC比特。
作为一个实施例,所述第二比特块不包括CRC比特。
作为一个实施例,所述第二比特块包括至少一个CRC比特。
作为一个实施例,一个本申请中的所述控制信息比特是一个UCI比特。
作为一个实施例,一个本申请中的所述控制信息比特是一个HARQ_ACK信息比特。
作为一个实施例,一个本申请中的所述控制信息比特是一个HARQ_ACK信息比特或SR(Scheduling Request,调度请求)比特。
作为一个实施例,一个本申请中的所述控制信息比特是一个HARQ_ACK信息比特或SR比特或CSI(Channel State Information,信道状态信息)比特。
作为一个实施例,一个本申请中的所述控制信息比特是携带更高层(HigherLayer)信令的控制信息的一个比特。
作为一个实施例,一个本申请中的所述控制信息比特是一个SCI(Sidelink Control Information,旁链路控制信息)比特。
作为一个实施例,一个本申请中的所述控制信息比特是:一个HARQ-ACK信息比特,或一个SR信息比特,或一个CSI信息比特,或者,上述三种信息比特中的至少之一经过逻辑与,逻辑或,逻辑非,异或操作中的至少之一所得到的比特。
作为一个实施例,所述第一比特块所包括的比特的数量和所述第一资源量共同指示所述第一调整量。
作为一个实施例,所述第一比特块所包括的比特的数量指示一个调整量集合,所述第一资源量从所述一个调整量集合中指示所述第一调整量。
作为一个实施例,所述第一资源量指示一个调整量集合,所述第一比特块所包括的比特的数量从所述一个调整量集合中指示所述第一调整量。
作为一个实施例,所述第一时频资源池所包括的被用于所述第一比特块的所述资源粒子包括:所述第一时频资源池中被用于映射所述第一比特块生成的编码比特的资源粒子(Resource Elements,REs)。
作为一个实施例,所述第一时频资源池所包括的被用于所述第一比特块的所述资源粒子是:所述第一时频资源池中被用于映射所述第一比特块生成的编码比特的资源粒子。
作为一个实施例,所述第一比特块生成的所述编码比特是:所述第一比特块或所述第一比特块生成的一个比特块依次经过CRC添加(CRC Attachment),分段(Segmentation),编码块级CRC添加,信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation)中的部分或全部之后的输出。
作为一个实施例,所述第一时频资源池所包括的被用于所述第二比特块的所述资源粒子包括:所述第一时频资源池中被用于映射所述第二比特块生成的编码比特的资源粒子。
作为一个实施例,所述第一时频资源池所包括的被用于所述第二比特块的所述资源粒子是:所述第一时频资源池中被用于映射所述第二比特块生成的编码比特的资源粒子。
作为一个实施例,所述第二比特块生成的所述编码比特是:所述第二比特块或所述第二比特块生成的一个比特块依次经过CRC添加,分段,编码块级CRC添加,信道编码,速率匹配,串联中的部分或全部之后的输出。
作为一个实施例,本申请中的所述词语正交的意思包括:在时频域无交叠。
作为一个实施例,本申请中的所述词语正交的意思包括:无交叠。
作为一个实施例,所述第一(或第二)比特块生成的一个比特块是指:所述第一(或第二)比特块中的至少部分比特经过逻辑与,逻辑或,逻辑非,异或,重复,删除比特,补零操作中的至少之一后的输出。
作为一个实施例,所述第一(或第二)比特块生成的一个比特块包括:所述第一(或第二)比特块中的至少部分比特经过逻辑与,逻辑或,逻辑非,异或,重复,删除比特,补零操作中的至少之一后的输出。
作为一个实施例,所述第一比特块和所述第二比特块分别被执行信道编码。
作为一个实施例,所述第一比特块和所述第二比特块分别采用不同的码率(coding rate)的信道编码生成编码比特。
作为一个实施例,所述第一比特块所包括的比特的数量不大于2。
作为一个实施例,所述第一比特块所包括的比特的数量大于2。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量不大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值。
作为一个实施例,本申请中的所述第二阈值是预定义的。
作为一个实施例,本申请中的所述第二阈值是可配置的。
作为一个实施例,本申请中的所述第二阈值是一个正整数。
作为一个实施例,本申请中的所述第二阈值不大于1706。
作为一个实施例,本申请中的所述第二阈值等于11。
作为一个实施例,本申请中的所述第二阈值等于22。
作为一个实施例,本申请中的所述第二阈值等于4。
作为一个实施例,所述第二比特块所包括的比特的数量不大于2。
作为一个实施例,所述第二比特块所包括的比特的数量大于2。
作为一个实施例,所述第二比特块所包括的比特的数量大于2且不大于11。
作为一个实施例,所述第二比特块所包括的比特的数量大于11。
作为一个实施例,所述第二比特块所包括的比特的数量不大于第二阈值。
作为一个实施例,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于2且不大于11。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于2。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和不大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,第一数量不大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定所述第一数量。
作为一个实施例,第一数量大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定所述第一数量。
作为一个实施例,所述第一数量等于:所述第一比特块所包括的比特的数量除以第一比值的结果取整后再加上所述第二比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第二比特块所包括的比特的数量除以第一比值的结果取整后再加上所述第一比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第一比特块所包括的比特的数量乘以第一比值的结果取整后再加上所述第二比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第二比特块所包括的比特的数量乘以第一比值的结果取整后再加上所述第一比特块所包括的比特的数量。
作为一个实施例,本申请中的所述短语取整是指:向上取整。
作为一个实施例,本申请中的所述短语取整是指:向下取整。
作为一个实施例,本申请中的所述第一比值是两个码率的比值,所述两个码率是RRC信令或MAC CE信令所配置的。
作为一个实施例,所述第一信号是在一个PUCCH中被传输的一个信号的除DM-RS(DeModulation Reference Signal,解调参考信号)的传输以外的部分。
作为一个实施例,所述第一信号在时频域所占用的资源粒子的数量等于:M RB乘以N sc乘以N symbol;所述M RB等于所述第一时频资源池的全部或部分在频域所包括的资源块的数量,所述N sc等于每个资源块(Resource Block)中除被用于DM-RS传输的子载波以外的子载波的数量,所述N symbol等于所述第一时频资源池中在时域除被用于DM-RS传输的多载波符号以外的多载波符号的数量。
作为一个实施例,所述第一调整量指示所述目标调整量。
作为一个实施例,所述第一调整量显式指示所述目标调整量。
作为一个实施例,所述第一调整量隐式指示所述目标调整量。
作为一个实施例,所述目标调整量等于所述第一调整量加上一个预定义的或可配置的偏移量。
作为一个实施例,所述目标调整量不小于所述第一调整量。
作为一个实施例,所述第一发送功率的单位是瓦特(W)。
作为一个实施例,所述第一发送功率的单位是dBm。
作为一个实施例,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的大值,所述目标发送功率与所述目标调整量线性相关,所述上限发送功率是预定义的或可配置的。
作为一个实施例,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标发送功率与所述目标调整量线性相关,所述上限发送功率是预定义的或可配置的。
作为一个实施例,本申请中的所述表述所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值的意思包括:所述第一发送功率=min{所述上限发送功率,所述目标发送功率}。
作为一个实施例,权利要求中的表述“所述第一调整量被用于确定目标调整量”包括以下含义:所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
作为一个实施例,权利要求中的表述“所述第一调整量被用于确定目标调整量”包括以下含义:所述目标调整量是所述第一调整量。
作为一个实施例,权利要求中的表述“所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量”包括以下含义:第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
作为一个实施例,权利要求中的表述“所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量”包括以下含义:当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通 过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第一比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块生成于所述SDAP子层356。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY351。
作为一个实施例,本申请中的所述第二比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二比特块生成于所述SDAP子层356。
作为一个实施例,本申请中的所述第二比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二比特块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY351。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述第一信息块,所述第一信息块被用于确定本申请中的所述第一时频资源池;采用本申请中的所述第一发送功率发送本申请中的所述第一信号,所述第一信号携带本申请中的所述第一比特块和本申请中的所述第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和本申请中的所述第一资源量一起被用于确定本申请中的所述第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定本申请中的所述目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信息块,所述第一信息块被用于确定本申请中的所述第一时频资源池;采用本申请中的所述第一发送功率发送本申请中的所述第一信号,所述第一信号携带本申请中的所述第一比特块和本申请中的所述第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和本申请中的所述第一资源量一起被用于确定本申请中的所述第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定本申请中的所述目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述第一信息块,所述第一信息块被用于确定本申请中的所述第一时频资源池;接收以本申请中的所述第一发送功率被发送的本申请中的所述第一信号,所述第一信号携带本申请中的所述第一比特块和本申请中的所述第二比特块,所述第一比特块包括至 少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和本申请中的所述第一资源量一起被用于确定本申请中的所述第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定本申请中的所述目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信息块,所述第一信息块被用于确定本申请中的所述第一时频资源池;接收以本申请中的所述第一发送功率被发送的本申请中的所述第一信号,所述第一信号携带本申请中的所述第一比特块和本申请中的所述第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和本申请中的所述第一资源量一起被用于确定本申请中的所述第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定本申请中的所述目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于采用本申请中的所述第一发送功率发送本申请中的所述第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。虚线方框F1中的步骤是可选的。
第一节点U1,在步骤S511中接收第一信息块;在步骤S5101中接收第一信令;在步骤S512中采用第一发送功率发送第一信号。
第二节点U2,在步骤S521中发送第一信息块,在步骤S5201中发送第一信令;在步骤S522中接收第一信号。
在实施例5中,所述第一信息块被用于确定第一时频资源池;所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;所述 第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
作为实施例5的一个子实施例,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
作为实施例5的一个子实施例,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
作为实施例5的一个子实施例,所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
作为实施例5的一个子实施例,所述目标调整量是所述第一调整量。
作为实施例5的一个子实施例,所述第一比特块和所述第二比特块分别采用不同的码率(coding rate)的信道编码生成的编码比特被用于生成所述第一信号。
作为实施例5的一个子实施例,本申请中的所述第一时频资源池是第一PUCCH资源在时频域所包括的资源,所述第一PUCCH资源属于第一PUCCH资源集合,所述第一PUCCH资源集合包括至少一个PUCCH资源,所述第一信令被用于从所述第一PUCCH资源集合中确定所述第一PUCCH资源;所述第一PUCCH资源集合是X2个备选PUCCH资源集合中之一,所述X2是大于1的正整数,所述第一信息块被用于确定所述X2个备选PUCCH资源集合;所述第一比特块所包括的比特的数量、或所述第二比特块所包括的比特的数量中的至少之一被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量, 所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
作为一个实施例,所述第一比特块所包括的比特的数量大于2;当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的;所述第一比特块与所述第二比特块两者中至少之一被用于确定第一数量,所述第一数量被用于确定所述第三计算量;所述第二调整量等于10乘以以10为底的K 1与所述第三计算量的乘积的对数,所述K 1是预定义的或可配置的;或者,所述第二调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第三计算量,所述K 2是预定义的或可配置的;所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者;目标发送功率等于所述目标调整量与其他功率控制分量之和,所述其他功率控制分量是可配置的或与所述第一时频资源池相关的或基于指示得到的;所述第一发送功率等于上限发送功率和所述目标发送功率之间相比较的小值,所述上限发送功率是预定义的或可配置的。
作为上述实施例的一个子实施例,所述第一阈值等于11。
作为上述实施例的一个子实施例,当所述第一比特块所包括的所述比特的所述数量不大于所述第一阈值时:第二计算量等于所述第一信息比特数量加上所述第一比特块所包括的SR信息比特的数量加上所述第一比特块所包括的CSI信息比特的数量之和除以所述第一资源量,所述第一调整量等于10乘以以10为底的K 1与所述第二计算量的乘积的对数,所述K 1是预定义的或可配置的。
作为上述实施例的一个子实施例,当所述第一比特块所包括的所述比特的所述数量大于所述第一阈值时,所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第二比特块所包括的比特的数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11,所述第二比特块所包括的比特的数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11,所述第二比特块所包括的比特的数量大于2且不大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于2且不大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第二比特块所包括的比特的数量大于2且不大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于2且不大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于第二阈值,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值,所述第二比特块所包括的比特的数量大于2且不大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于第二阈值。
作为一个实施例,所述第二阈值是预定义的一个正整数。
作为一个实施例,所述第二阈值是可配置的一个正整数。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于2。
作为一个实施例,所述第二阈值不大于1706。
作为一个实施例,所述第二阈值等于11。
作为一个实施例,所述第二阈值等于22。
作为一个实施例,所述第二阈值等于4。
作为一个实施例,所述第二阈值是所述第一阈值。
作为一个实施例,所述第二阈值不是所述第一阈值。
作为一个实施例,所述目标调整量指示所述目标发送功率。
作为一个实施例,所述目标调整量显式指示所述目标发送功率。
作为一个实施例,所述目标调整量隐式指示所述目标发送功率。
作为一个实施例,所述目标发送功率等于所述目标调整量与其他功率控制分量之和,所述其他功率控制分量是可配置的或与所述第一时频资源池相关的或基于指示得到的。
作为一个实施例,虚线方框F1中的步骤存在。
作为一个实施例,虚线方框F1中的步骤不存在。
实施例6
实施例6示例了根据本申请的一个实施例的第一比特块所包括的比特的数量,第一资源量,第一计算量,以及第一调整量之间关系的示意图,如附图6所示。
在实施例6中,第一计算量等于第一比特块所包括的比特的数量加上针对所述第一比特块的CRC比特的数量之和除以第一资源量;所述第一计算量被用于确定第一调整量。
作为一个实施例,所述第一比特块所包括的比特的数量大于11;第一计算量等于所述第一比特块所包 括的比特的数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
作为一个实施例,针对所述第一比特块的所述CRC比特的所述数量是一个正整数。
作为一个实施例,针对所述第一比特块的所述CRC比特的所述数量等于0或是一个正整数。
作为一个实施例,本申请中的所述表述所述第一计算量被用于确定所述第一调整量的意思包括:所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
作为一个实施例,本申请中的所述表述所述第一计算量被用于确定所述第一调整量的意思包括:所述第一计算量显式或隐式指示所述第一调整量。
作为一个实施例,本申请中的所述表述所述第一计算量被用于确定所述第一调整量的意思包括:所述第一计算量被用于执行计算确定所述第一调整量。
作为一个实施例,本申请中的所述表述所述第一计算量被用于确定所述第一调整量的意思包括:所述第一调整量是所述第一计算量的函数。
作为一个实施例,本申请中的所述表述所述第一计算量被用于确定所述第一调整量的意思包括:所述第一调整量等于所述第一计算量加上一个预定义的或可配置的偏移量。
实施例7
实施例7示例了根据本申请的一个实施例的第一比特块所包括的比特的数量和第一资源量被用于确定第一调整量的说明示意图,如附图7所示。
在实施例7中,当第一比特块所包括的比特的数量不大于所述第一阈值时,第一信息比特数量和第一资源量共同被用于确定第一调整量;当第一比特块所包括的比特的数量大于所述第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以第一资源量,所述第一计算量被用于确定第一调整量;所述第一阈值是预定义的或可配置的。
作为实施例7的一个子实施例,所述第一比特块所包括的比特的数量大于2,所述第一阈值大于3。
作为一个实施例,所述表述第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量的意思包括:第二计算量等于所述第一信息比特数量加上所述第一比特块所包括的SR信息比特的数量加上所述第一比特块所包括的CSI信息比特的数量之和除以所述第一资源量,所述第二计算量被用于确定所述第一调整量。
作为一个实施例,所述表述第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量的意思包括:第二计算量等于所述第一信息比特数量加上所述第一比特块所包括的SR信息比特的数量之和除以所述第一资源量,所述第二计算量被用于确定所述第一调整量。
作为一个实施例,所述第一比特块所包括的所述SR信息比特的所述数量等于0或是一个正整数。
作为一个实施例,所述第一比特块所包括的所述CSI信息比特的所述数量等于0或是一个正整数。
作为一个实施例,所述表述第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量的意思包括:第二计算量等于所述第一信息比特数量除以所述第一资源量,所述第二计算量被用于确定所述第一调整量。
作为一个实施例,所述表述所述第二计算量被用于确定所述第一调整量的意思包括:所述第一调整量等于10乘以以10为底的K 1与所述第二计算量的乘积的对数,所述K 1是预定义的或可配置的。
作为一个实施例,所述表述所述第二计算量被用于确定所述第一调整量的意思包括:所述第一调整量=10×log 10(K 1×所述第二计算量),所述K 1等于6。
作为一个实施例,所述表述第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量的意思包括:所述第一调整量等于所述第一信息比特数量乘以所述第一资源量。
作为一个实施例,所述第一阈值不大于1706。
作为一个实施例,所述第一阈值等于11。
作为一个实施例,所述第一信息比特数量是所述第一节点根据3GPP TS38.213中的9.1.2.1章节中的第一类(Type-1)HARQ-ACK码本(codebook)的描述和/或3GPP TS38.213中的9.1.3.1章节中的第二类 (Type-2)HARQ-ACK码本(codebook)的描述所确定的HARQ-ACK信息比特的数量。
作为一个实施例,所述第一信息比特数量是所述第一节点根据3GPP TS38.213中的9.1.2.1章节中的第一类(Type-1)HARQ-ACK码本(codebook)的描述和/或3GPP TS38.213中的9.1.3.1章节中的第二类(Type-2)HARQ-ACK码本(codebook)的描述所确定的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量。
作为一个实施例,所述第一信息比特数量用n HARQ-ACK表示。
作为一个实施例,所述第一信息比特数量大于1。
作为一个实施例,所述第一信息比特数量等于0或1。
作为一个实施例,所述第一信息比特数量是基于所述第一节点所检测到的DCI所确定的。
作为一个实施例,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量。
作为一个实施例,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量。
作为一个实施例,所述第一计算量被用于确定所述第一调整量是指:所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
作为一个实施例,所述第一计算量被用于确定所述第一调整量是指:所述第一计算量显式或隐式指示所述第一调整量。
作为一个实施例,所述第一计算量被用于确定所述第一调整量是指:所述第一计算量被用于执行计算确定所述第一调整量。
作为一个实施例,所述第一计算量被用于确定所述第一调整量是指:所述第一调整量是所述第一计算量的函数。
作为一个实施例,所述第一计算量被用于确定所述第一调整量是指:所述第一调整量等于所述第一计算量加上一个预定义的或可配置的偏移量。
实施例8
实施例8示例了根据本申请的一个实施例的第一计算量被用于确定第一调整量的说明示意图,如附图8所示。
在实施例8中,第一调整量等于10乘以以10为底的2的{K 2乘以第一计算量}次方减去1的差值的对数,所述K 2是预定义的或可配置的。
作为一个实施例,所述K 2大于0。
作为一个实施例,所述K 2是等于2.4。
作为一个实施例,所述K 2是预定义的。
作为一个实施例,所述K 2是可配置的。
实施例9
实施例9示例了根据本申请的一个实施例的第一比特块,第二比特块,第三计算量,第二调整量,第一调整量,以及目标调整量之间关系的的示意图,如附图9所示。
在实施例9中,第一比特块和第二比特块两者中的至少后者被用于确定第三计算量,所述第三计算量被用于确定第二调整量;第一调整量和所述第二调整量共同被用于确定目标调整量。
作为实施例9的一个子实施例,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
作为实施例9的一个子实施例,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最小者。
作为实施例9的一个子实施例,所述第一比特块所包括的比特的数量和所述第二比特块所包括的比特的数量两者中的至少后者被用于确定所述第三计算量。
作为一个实施例,所述第一比特块所包括的比特的数量和所述第二比特块所包括的比特的数量两者都被用于确定所述第三计算量。
作为一个实施例,所述第三计算量等于所述第一比特块所包括的比特的数量加上针对所述第一比特块的CRC比特的数量加上所述第二比特块所包括的比特的数量加上针对所述第二比特块的CRC比特的数量之和除以第二资源量,所述第二资源量是所述第一信号在时频域所占用的资源粒子的数量。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于第二阈值;所述第三计算量等于所述第一比特块所包括的比特的数量加上针对所述第一比特块的CRC比特的数量加上所述第二比特块所包括的比特的数量加上针对所述第二比特块的CRC比特的数量之和除以第二资源量,所述第二资源量是所述第一信号在时频域所占用的资源粒子的数量。
作为一个实施例,所述第一信号在时频域所占用的资源粒子的数量等于:M RB乘以N sc乘以N symbol;所述M RB等于所述第一时频资源池的全部或部分在频域所包括的资源块的数量,N sc等于每个资源块(Resource Block)中除被用于DM-RS传输的子载波以外的子载波的数量,N symbol等于所述第一时频资源池中在时域除被用于DM-RS传输的多载波符号以外的多载波符号的数量。
作为一个实施例,所述第一信号在时频域所占用的资源粒子的数量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量与所述第一时频资源池所包括的被用于所述第二比特块的资源粒子的数量之和。
作为一个实施例,所述第三计算量等于所述第二比特块所包括的比特的数量加上针对所述第二比特块的CRC比特的数量之和除以所述第一时频资源池所包括的被用于所述第二比特块的资源粒子的数量。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于第二阈值;所述第三计算量等于所述第二比特块所包括的比特的数量加上针对所述第二比特块的CRC比特的数量之和除以所述第一时频资源池所包括的被用于所述第二比特块的资源粒子的数量。
作为一个实施例,所述第三计算量等于第二信息比特数量加上所述第一比特块所包括的SR信息比特的数量加上所述第一比特块所包括的CSI信息比特的数量加上所述第二比特块所包括的SR信息比特的数量加上所述第二比特块所包括的CSI信息比特的数量之和除以第二资源量,所述第二资源量是所述第一信号在时频域所占用的资源粒子的数量,所述第二信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量以及与所述第二比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量之和。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量不大于第二阈值;所述第三计算量等于第二信息比特数量加上所述第一比特块所包括的SR信息比特的数量加上所述第一比特块所包括的CSI信息比特的数量加上所述第二比特块所包括的SR信息比特的数量加上所述第二比特块所包括的CSI信息比特的数量之和除以第二资源量,所述第二资源量是所述第一信号在时频域所占用的资源粒子的数量,所述第二信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量以及与所述第二比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量之和。
作为一个实施例,所述第二信息比特数量是所述第一节点根据3GPP TS38.213中的9.1.2.1章节中的第一类(Type-1)HARQ-ACK码本(codebook)的描述和/或3GPP TS38.213中的9.1.3.1章节中的第二类(Type-2)HARQ-ACK码本(codebook)的描述所确定的HARQ-ACK信息比特的数量。
作为一个实施例,所述第二信息比特数量是所述第一节点根据3GPP TS38.213中的9.1.2.1章节中的第一类(Type-1)HARQ-ACK码本(codebook)的描述和/或3GPP TS38.213中的9.1.3.1章节中的第二类(Type-2)HARQ-ACK码本(codebook)的描述所确定的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特以及与所述第二比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的总数。
作为一个实施例,所述第二信息比特数量是所述第一节点根据3GPP TS38.213中的9.1.2.1章节中的第一类(Type-1)HARQ-ACK码本(codebook)的描述和/或3GPP TS38.213中的9.1.3.1章节中的第二类(Type-2)HARQ-ACK码本(codebook)的描述所确定的与所述第二比特块所包括的控制信息比特具有相 同优先级的HARQ-ACK信息比特的数量。
作为一个实施例,所述第一比特块所包括的所述SR信息比特的所述数量等于0或是一个正整数。
作为一个实施例,所述第一比特块所包括的所述CSI信息比特的所述数量等于0或是一个正整数。
作为一个实施例,所述第二比特块所包括的所述SR信息比特的所述数量等于0或是一个正整数。
作为一个实施例,所述第二比特块所包括的所述CSI信息比特的所述数量等于0或是一个正整数。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量;所述第三计算量等于所述第一数量除以所述第一信号在时频域所占用的资源粒子的数量。
作为一个实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量;所述第三计算量等于所述第一数量加上针对所述第一比特块的CRC比特的数量加上针对所述第二比特块的CRC比特的数量之和除以所述第一信号在时频域所占用的资源粒子的数量。
作为上述实施例的一个子实施例,所述第一数量大于第二阈值。
作为上述实施例的一个子实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一数量等于:所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和。
作为一个实施例,所述第一数量等于:所述第一比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第二比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第一比特块所包括的比特的数量除以第一比值的结果取整后再加上所述第二比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第二比特块所包括的比特的数量除以第一比值的结果取整后再加上所述第一比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第一比特块所包括的比特的数量乘以第一比值的结果取整后再加上所述第二比特块所包括的比特的数量。
作为一个实施例,所述第一数量等于:所述第二比特块所包括的比特的数量乘以第一比值的结果取整后再加上所述第一比特块所包括的比特的数量。
作为一个实施例,所述第一比值是两个码率的比值,所述两个码率是RRC信令或MAC CE信令所配置的。
作为一个实施例,所述第二阈值是预定义的一个正整数。
作为一个实施例,所述第二阈值是可配置的一个正整数。
作为一个实施例,所述第二阈值不大于1706。
作为一个实施例,所述第二阈值等于11。
作为一个实施例,所述第二阈值等于22。
作为一个实施例,所述第二阈值等于4。
作为一个实施例,所述第二阈值是所述第一阈值。
作为一个实施例,所述第二阈值不是所述第一阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于2。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第二比特块所包括的比特的数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11,所述第二比特块所包括的比特的数量 大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于11,所述第二比特块所包括的比特的数量大于2且不大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于11,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于11。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于第二阈值,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值,所述第二比特块所包括的比特的数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于第二阈值,所述第二比特块所包括的比特的数量大于2且不大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于第二阈值。
作为一个实施例,所述第一比特块所包括的比特的数量大于2且不大于第二阈值,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量两者中至少之一被用于确定第一数量,所述第一数量大于第二阈值。
作为一个实施例,针对所述第一比特块的所述CRC比特的所述数量等于0或是一个正整数。
作为一个实施例,针对所述第二比特块的所述CRC比特的所述数量等于0或是一个正整数。
作为一个实施例,所述第三计算量被用于确定所述第二调整量的意思包括:所述第二调整量等于10乘以以10为底的K 1与所述第三计算量的乘积的对数,所述K 1是预定义的或可配置的。
作为一个实施例,所述第三计算量被用于确定所述第二调整量的意思包括:所述第二调整量=10×log 10(K 1×所述第三计算量),所述K 1等于6。
作为一个实施例,所述第三计算量被用于确定所述第二调整量的意思包括:所述第二调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第三计算量,所述K 2是预定义的或可配置的。
作为一个实施例,所述第三计算量被用于确定所述第二调整量的意思包括:所述第二调整量=10×log 10(2^(K 2×所述第三计算量)-1),所述K 2等于2.4。
作为一个实施例,所述第三计算量被用于确定所述第二调整量的意思包括:所述第二调整量等于10乘以以10为底的K 1与所述第三计算量的乘积的对数,所述K 1是预定义的或可配置的;或者,所述第二调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第三计算量, 所述K 2是预定义的或可配置的。
作为一个实施例,本申请中的所述K 1等于6。
作为一个实施例,本申请中的所述K 2等于2.4。
实施例10
实施例10示例了根据本申请的一个实施例的目标发送功率被用于确定第一发送功率,以及目标调整量被用于确定目标发送功率的说明示意图,如附图10所示。
在实施例10中,第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标发送功率等于目标调整量与其他功率控制分量之和,所述其他功率控制分量中的一个功率控制分量是可配置的或与所述第一时频资源池相关的或基于指示得到的。
作为一个实施例,所述上限发送功率是预定义的。
作为一个实施例,所述上限发送功率是可配置的。
作为一个实施例,所述上限发送功率是RRC信令所配置的。
作为一个实施例,所述上限发送功率是可配置的最大输出功率(configured maximum output power)。
作为一个实施例,所述上限发送功率是针对一个PUCCH传输机会(transmission occasion)而言的。
作为一个实施例,所述其他功率控制分量包括至少一个功率控制分量。
作为一个实施例,所述其他功率控制分量包括多个功率控制分量。
作为一个实施例,所述其他功率控制分量中的一个功率控制分量是在3GPP TS38.213的7.2.1章节中定义的。
作为一个实施例,所述其他功率控制分量包括第一功率控制分量,第二功率控制分量,第三功率控制分量,第四功率控制分量,第五功率控制分量中的至少之一。
作为一个实施例,所述目标发送功率等于所述目标调整量,第一功率控制分量,第二功率控制分量,第三功率控制分量,第四功率控制分量,第五功率控制分量六者之和。
作为一个实施例,所述第一功率控制分量是在一个p0-nominal域中配置的。
作为一个实施例,所述第一功率控制分量是在一个P0-PUCCH域中配置的。
作为一个实施例,所述第一功率控制分量中的一个功率控制分量是一个p0-PUCCH-Value值。
作为一个实施例,所述第一功率控制分量等于0。
作为一个实施例,所述第一功率控制分量的表示符号中包括P O_PUCCH,b,f,c
作为一个实施例,所述第二功率控制分量等于10×log 10(2^μ×M RB),所述M RB等于所述第一时频资源池的全部或部分在频域所包括的资源块的数量,所述μ是一个SCS(Subcarrier spacing,子载波间隔)配置。
作为一个实施例,所述第三功率控制分量是一个下行路径损耗估计(downlink pathloss estimate)。
作为一个实施例,所述第三功率控制分量的单位是dB。
作为一个实施例,所述第三功率控制分量是是基于针对参考信号的测量计算得到的。
作为一个实施例,所述第三功率控制分量的表示符号中包括PL b,f,c
作为一个实施例,所述第四功率控制分量是deltaF-PUCCH-f2的值,deltaF-PUCCH-f3的值,deltaF-PUCCH-f4的值,或0四者中之一。
作为一个实施例,所述第四功率控制分量与PUCCH格式有关。
作为一个实施例,本申请中的所述第一时频资源池是被预留给第一PUCCH的时频资源,所述第一PUCCH使用PUCCH格式(PUCCH format)2或PUCCH格式3或PUCCH格式4中之一;当所述第一PUCCH使用PUCCH格式2时,所述第四功率控制分量是deltaF-PUCCH-f2的值或0;当所述第一PUCCH使用PUCCH格式2时,所述第四功率控制分量是deltaF-PUCCH-f3的值或0;当所述第一PUCCH使用PUCCH格式2时,所述第四功率控制分量是deltaF-PUCCH-f4的值或0。
作为一个实施例,所述第四功率控制分量的表示符号中包括Δ F_PUCCH
作为一个实施例,所述第五功率控制分量是一个PUCCH功率控制调节状态值(PUCCH power control adjustment state)。
作为一个实施例,所述第五功率控制分量是基于DCI中的一个域的指示所得到的。
作为一个实施例,所述第五功率控制分量是基于TPC(Transmit power control)命令(command)所确定的。
作为一个实施例,所述第五功率控制分量的值是针对本申请中的第一时频资源池所对应的一个PUCCH传输机会的。
作为一个实施例,所述第五功率控制分量的表示符号中包括g b,f,c
作为一个实施例,所述目标调整量的表示符号中包括Δ。
作为一个实施例,所述目标调整量的表示符号中包括Δ TF,b,f,c
实施例11
实施例11示例了根据本申请的一个实施例的第一时频资源池的说明示意图,如附图11所示。
在实施例11中,第一时频资源池是被预留给第一PUCCH的时频资源,所述第一PUCCH使用PUCCH格式2或PUCCH格式3或PUCCH格式4中之一。
作为一个实施例,所述第一PUCCH还占用一个码域资源。
作为一个实施例,本申请中的所述第一信号在所述第一PUCCH中被发送。
实施例12
实施例12示例了根据本申请的一个实施例的第一节点/第一接收机与第一信令之间关系的示意图,如附图12所示。
在实施例12中,本申请中的所述第一节点/所述第一接收机还接收第一信令;其中,本申请中的所述第一时频资源池是第一PUCCH资源在时频域所包括的资源,所述第一PUCCH资源属于第一PUCCH资源集合,所述第一PUCCH资源集合包括至少一个PUCCH资源,所述第一信令被用于从所述第一PUCCH资源集合中确定所述第一PUCCH资源;所述第一PUCCH资源集合是X2个备选PUCCH资源集合中之一,所述X2是大于1的正整数,本申请中的所述第一信息块被用于确定所述X2个备选PUCCH资源集合;本申请中的所述第一比特块所包括的比特的数量、或本申请中的所述第二比特块所包括的比特的数量中的至少之一被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括层1(L1)的控制信令。
作为一个实施例,所述第一信令包括物理层(Physical Layer)信令。
作为一个实施例,所述第一信令包括一个物理层信令中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括更高层(Higher Layer)信令。
作为一个实施例,所述第一信令包括一个更高层信令中的一个或多个域。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信令包括DCI(下行链路控制信息,Downlink Control Information)。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令包括SCI(旁链路控制信息,Sidelink Control Information)。
作为一个实施例,所述第一信令包括一个SCI中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element)中的一个或多个域。
作为一个实施例,所述第一信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上 传输。
作为一个实施例,本申请中的所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,本申请中的所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,本申请中的所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_2,所述DCI format 0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令指示一个PDSCH的传输,所述第一比特块包括所述一个PDSCH所对应的HARQ-ACK信息比特。
作为一个实施例,所述第一信令指示一个PDSCH的传输,所述第二比特块包括所述一个PDSCH所对应的HARQ-ACK信息比特。
作为一个实施例,本申请中的所述第一信息块指示所述X2个备选PUCCH资源集合。
作为一个实施例,本申请中的所述第一信息块所包括的一个域配置所述X2个备选PUCCH资源集合。
作为一个实施例,所述表述“本申请中的所述第一比特块所包括的比特的数量、或本申请中的所述第二比特块所包括的比特的数量中的至少之一被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合”包括以下含义:所述第一比特块所包括的比特的数量和一个参数值一起被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合,所述一个参数值是预定义的或可配置的。
作为上述实施例的一个子实施例,X2个数量范围分别对应所述X2个备选PUCCH资源集合,所述第一比特块所包括的比特的数量和所述一个参数值之和属于所述X2个数量范围中的第一数量范围,所述第一PUCCH资源集合是所述X2个备选PUCCH资源集合中对应所述第一数量范围的一个PUCCH资源。
作为一个实施例,所述表述“本申请中的所述第一比特块所包括的比特的数量、或本申请中的所述第二比特块所包括的比特的数量中的至少之一被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合”包括以下含义:所述第一比特块所包括的比特的数量和所述第二比特块(或所述第二比特块生成的一个比特块)所包括的比特的数量之和一起被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合。
作为上述实施例的一个子实施例,X2个数量范围分别对应所述X2个备选PUCCH资源集合,所述第一比特块所包括的比特的数量和所述第二比特块(或所述第二比特块生成的一个比特块)所包括的比特的数量之和属于所述X2个数量范围中的第一数量范围,所述第一PUCCH资源集合是所述X2个备选PUCCH资源集合中对应所述第一数量范围的一个PUCCH资源。
作为一个实施例,所述第一信令被用于从所述第一PUCCH资源集合中指示所述第一PUCCH资源。
作为一个实施例,所述第一信令指示所述第一PUCCH资源在所述第一PUCCH资源集合中的索引。
作为一个实施例,本申请中的所述第一信息块被用于确定X3个备选PUCCH资源,所述X3是大于1的正整数;本申请中的所述第一比特块所包括的比特的数量、或本申请中的所述第二比特块所包括的比特的数量中的至少之一被用于从所述X3个备选PUCCH资源中指示所述第一PUCCH资源。
实施例13
实施例13示例了根据本申请的一个实施例的第一比特块所包括的控制信息比特的优先级和第二比特块所包括的控制信息比特的优先级之间关系的示意图,如附图13所示。
在实施例13中,第一比特块所包括的控制信息比特的优先级和第二比特块所包括的控制信息比特的优先级不相同。
作为一个实施例,所述第一比特块所包括的控制信息比特的优先级索引等于第一索引,所述第二比特块所包括的控制信息比特的优先级索引等于第二索引,所述第一索引是非负整数,所述第二索引是非负整数;所述第一索引和所述第二索引不相等。
作为一个实施例,所述第一比特块所包括的控制信息比特的数量和所述第二比特块所包括的控制信息比特的数量之和大于2。
作为一个实施例,所述第一索引等于0,所述第二索引等于1。
作为一个实施例,所述第一索引等于1,所述第二索引等于0。
作为一个实施例,所述第一索引是优先级索引(Priority Index)0,所述第二索引是优先级索引1。
作为一个实施例,所述第一索引是优先级索引1,所述第二索引是优先级索引0。
作为一个实施例,所述第一索引指示高优先级,所述第二索引指示低优先级。
作为一个实施例,所述第二索引指示高优先级,所述第一索引指示低优先级。
作为一个实施例,所述第二索引所指示的优先级高于所述第一索引所指示的优先级。
作为一个实施例,所述第二索引所指示的优先级低于所述第一索引所指示的优先级。
作为一个实施例,所述第一比特块所包括的控制信息比特的优先级索引和所述第二比特块所包括的控制信息比特的优先级索引都是物理层优先级索引。
作为一个实施例,所述第一比特块所包括的控制信息比特的优先级索引和所述第二比特块所包括的控制信息比特的优先级索引都是更高层优先级索引。
作为一个实施例,所述第一比特块所包括的所述控制信息比特和所述第二比特块所包括的所述控制信息比特分别针对不同的业务类型。
作为一个实施例,所述第一比特块所包括的所述控制信息比特和所述第二比特块所包括的所述控制信息比特分别是针对不同传输模式(如:广播,多播,组播或单播)的控制信息比特。
作为上述实施例的一个子实施例,针对多播(multicast)模式的控制信息比特与针对单播(unicast)模式的控制信息比特具有不同的优先级。
作为上述实施例的一个子实施例,针对组播(groupcast)模式的控制信息比特与针对单播模式的控制信息比特具有不同的优先级。
作为上述实施例的一个子实施例,针对广播模式的控制信息比特与针对单播模式的控制信息比特具有不同的优先级。
作为一个实施例,所述第一比特块所包括的所述控制信息比特和所述第二比特块所包括的所述控制信息比特分别对应不同的优先级索引(Priority index)。
作为一个实施例,所述第一比特块所包括的所述控制信息比特和所述第二比特块所包括的所述控制信息比特分别对应优先级索引0和优先级索引1。
作为一个实施例,所述第一比特块所包括的所述控制信息比特和所述第二比特块所包括的所述控制信息比特分别对应优先级索引1和优先级索引0。
实施例14
实施例14示例了一个第一节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第一节点设备处理装置1400包括第一接收机1401和第一发射机1402。
作为一个实施例,所述第一节点设备1400是用户设备。
作为一个实施例,所述第一节点设备1400是中继节点。
作为一个实施例,所述第一节点设备1400是车载通信设备。
作为一个实施例,所述第一节点设备1400是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1400是支持V2X通信的中继节点。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1401包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1402包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1402包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1402包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1402包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1402包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
在实施例14中,所述第一接收机1401,接收第一信息块,所述第一信息块被用于确定第一时频资源池;所述第一发射机1402,采用第一发送功率发送第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
作为一个实施例,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
作为一个实施例,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
作为一个实施例,所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
作为一个实施例,所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
作为一个实施例,所述目标调整量是所述第一调整量。
作为一个实施例,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
作为一个实施例,所述第一接收机1401还接收第一信令;其中,所述第一时频资源池是第一PUCCH 资源在时频域所包括的资源,所述第一PUCCH资源属于第一PUCCH资源集合,所述第一PUCCH资源集合包括至少一个PUCCH资源,所述第一信令被用于从所述第一PUCCH资源集合中确定所述第一PUCCH资源;所述第一PUCCH资源集合是X2个备选PUCCH资源集合中之一,所述X2是大于1的正整数,本申请中的所述第一信息块被用于确定所述X2个备选PUCCH资源集合;本申请中的所述第一比特块所包括的比特的数量、或本申请中的所述第二比特块所包括的比特的数量中的至少之一被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合。
作为一个实施例,所述第一比特块所包括的比特的数量大于2;当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的;所述目标调整量等于所述第一调整量;目标发送功率等于所述目标调整量与其他功率控制分量之和,所述其他功率控制分量是可配置的或与所述第一时频资源池相关的或基于指示得到的;所述第一发送功率等于上限发送功率和所述目标发送功率之间相比较的小值,所述上限发送功率是预定义的或可配置的。
作为上述实施例的一个子实施例,所述第一阈值等于11。
作为上述实施例的一个子实施例,当所述第一比特块所包括的所述比特的所述数量不大于所述第一阈值时:第二计算量等于所述第一信息比特数量加上所述第一比特块所包括的SR信息比特的数量加上所述第一比特块所包括的CSI信息比特的数量之和除以所述第一资源量,所述第一调整量等于10乘以以10为底的K 1与所述第二计算量的乘积的对数,所述K 1是预定义的或可配置的。
作为上述实施例的一个子实施例,当所述第一比特块所包括的所述比特的所述数量大于所述第一阈值时,所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
作为一个实施例,所述第一比特块所包括的比特的数量大于2;当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的与所述第一比特块所包括的控制信息比特具有相同优先级的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的;所述第一比特块与所述第二比特块两者中的至少后者被用于确定第一数量,所述第一数量被用于确定所述第三计算量;所述第二调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第三计算量,所述K 2是预定义的或可配置的;所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者;目标发送功率等于所述目标调整量与其他功率控制分量之和,所述其他功率控制分量是可配置的或与所述第一时频资源池相关的或基于指示得到的;所述第一发送功率等于上限发送功率和所述目标发送功率量两者中的最小值,所述上限发送功率是预定义的或可配置的。
作为上述实施例的一个子实施例,所述第一阈值等于11。
作为上述实施例的一个子实施例,所述第一数量大于11。
作为上述实施例的一个子实施例,所述第一数量大于一个预定义的正整数。
作为上述实施例的一个子实施例,所述第二比特块所包括的比特的数量大于11。
作为上述实施例的一个子实施例,所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和大于11。
作为上述实施例的一个子实施例,所述第一数量等于所述第一比特块所包括的比特的数量与所述第二比特块所包括的比特的数量之和,所述第三计算量等于所述第一数量加上针对所述第二比特块的CRC比特的数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一信号在时频域所占用的资源粒子的数量。
作为上述实施例的一个子实施例,所述第一数量等于所述第二比特块所包括的比特的数量,所述第三计算量等于所述第一数量加上针对所述第二比特块的CRC比特的数量之和除以所述第一时频资源池所包括的被用于所述第二比特块的资源粒子的数量。
作为上述实施例的一个子实施例,所述第一比特块所包括的CSI信息比特的数量等于0。
作为上述实施例的一个子实施例,K 1等于6。
作为上述实施例的一个子实施例,所述K 2等于2.4。
作为上述实施例的一个子实施例,当所述第一比特块所包括的所述比特的所述数量不大于所述第一阈值时:第二计算量等于所述第一信息比特数量加上所述第一比特块所包括的SR信息比特的数量加上所述第一比特块所包括的CSI信息比特的数量之和除以所述第一资源量,所述第一调整量等于10乘以以10为底的K 1与所述第二计算量的乘积的对数,所述K 1是预定义的或可配置的。
作为上述实施例的一个子实施例,当所述第一比特块所包括的所述比特的所述数量大于所述第一阈值时,所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
实施例15
实施例15示例了一个第二节点设备中的处理装置的结构框图,如附图15所示。在附图15中,第二节点设备处理装置1500包括第二发射机1501和第二接收机1502。
作为一个实施例,所述第二节点设备1500是用户设备。
作为一个实施例,所述第二节点设备1500是基站。
作为一个实施例,所述第二节点设备1500是中继节点。
作为一个实施例,所述第二节点设备1500是车载通信设备。
作为一个实施例,所述第二节点设备1500是支持V2X通信的用户设备。
作为一个实施例,所述第二发射机1501包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1501包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1501包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1501包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1501包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1502包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1502包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1502包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1502包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1502包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
在实施例15中,所述第二发射机1501,发送第一信息块,所述第一信息块被用于确定第一时频资源池;所述第二接收机1502,接收以第一发送功率被发送的第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;其 中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率
作为一个实施例,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
作为一个实施例,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
作为一个实施例,所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是预定义的或可配置的。
作为一个实施例,所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者。
作为一个实施例,所述目标调整量是所述第一调整量。
作为一个实施例,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
作为一个实施例,所述第二发射机1501还发送第一信令;其中,所述第一时频资源池是第一PUCCH资源在时频域所包括的资源,所述第一PUCCH资源属于第一PUCCH资源集合,所述第一PUCCH资源集合包括至少一个PUCCH资源,所述第一信令被用于从所述第一PUCCH资源集合中确定所述第一PUCCH资源;所述第一PUCCH资源集合是X2个备选PUCCH资源集合中之一,所述X2是大于1的正整数,本申请中的所述第一信息块被用于确定所述X2个备选PUCCH资源集合;本申请中的所述第一比特块所包括的比特的数量、或本申请中的所述第二比特块所包括的比特的数量中的至少之一被用于从所述X2个备选PUCCH资源集合中确定所述第一PUCCH资源集合。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息块,所述第一信息块被用于确定第一时频资源池;
    第一发射机,采用第一发送功率发送第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
    其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
  2. 根据权利要求1所述的第一节点设备,其特征在于,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
  3. 根据权利要求1所述的第一节点设备,其特征在于,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
  4. 根据权利要求1所述的第一节点设备,其特征在于,第一计算量等于所述第一比特块所包括的比特的数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是等于2.4。
  5. 根据权利要求4所述的第一节点设备,其特征在于,所述第一比特块所包括的比特的数量大于11;所述目标调整量是所述第一调整量;所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
  6. 根据权利要求1所述的第一节点设备,其特征在于,所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者,
    或者,其特征在于,所述目标调整量是所述第一调整量。
  7. 根据权利要求1所述的第一节点设备,其特征在于,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息块,所述第一信息块被用于确定第一时频资源池;
    第二接收机,接收以第一发送功率被发送的第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
    其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
  9. 根据权利要求8所述的第二节点设备,其特征在于,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所 述第一调整量;所述第一阈值是预定义的或可配置的。
  10. 根据权利要求8所述的第二节点设备,其特征在于,第一计算量等于所述第一比特块所包括的比特的数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是等于2.4。
  11. 根据权利要求10所述的第二节点设备,其特征在于,所述第一比特块所包括的比特的数量大于11;所述目标调整量是所述第一调整量;所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
  12. 根据权利要求8所述的第二节点设备,其特征在于,所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者,
    或者,其特征在于,所述目标调整量是所述第一调整量。
  13. 根据权利要求8所述的第二节点设备,其特征在于,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
  14. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息块,所述第一信息块被用于确定第一时频资源池;
    采用第一发送功率发送第一信号,所述第一信号携带第一比特块和第二比特块,所述第一比特块包括至少一个控制信息比特,所述第二比特块包括至少一个控制信息比特,所述第一比特块所包括的控制信息比特的优先级和所述第二比特块所包括的控制信息比特的优先级不相同;
    其中,所述第一信号所占用的时频资源属于所述第一时频资源池;所述第一时频资源池所包括的被用于所述第一比特块的资源粒子和所述第一时频资源池所包括的被用于所述第二比特块的资源粒子正交;所述第一比特块所包括的比特的数量和第一资源量一起被用于确定第一调整量,所述第一资源量是所述第一时频资源池所包括的被用于所述第一比特块的资源粒子的数量;所述第一调整量被用于确定目标调整量,所述目标调整量被用于确定所述第一发送功率。
  15. 根据权利要求14所述的第一节点中的方法,其特征在于,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一计算量被用于确定所述第一调整量。
  16. 根据权利要求14所述的第一节点中的方法,其特征在于,当所述第一比特块所包括的所述比特的所述数量不大于第一阈值时,第一信息比特数量和所述第一资源量共同被用于确定所述第一调整量,所述第一信息比特数量是被用于得到一个PUCCH的传输功率的HARQ-ACK信息比特的数量;当所述第一比特块所包括的所述比特的所述数量大于第一阈值时,第一计算量等于所述第一比特块所包括的所述比特的所述数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量,所述第一计算量被用于确定所述第一调整量;所述第一阈值是预定义的或可配置的。
  17. 根据权利要求14所述的第一节点中的方法,其特征在于,第一计算量等于所述第一比特块所包括的比特的数量加上针对所述第一比特块的CRC比特的数量之和除以所述第一资源量;所述第一调整量等于10乘以以10为底的2的b次方减去1的差值的对数,所述b等于K 2乘以所述第一计算量,所述K 2是等于2.4。
  18. 根据权利要求17所述的第一节点中的方法,其特征在于,所述第一比特块所包括的比特的数量大于11;所述目标调整量是所述第一调整量;所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预定义的或可配置的。
  19. 根据权利要求14所述的第一节点中的方法,其特征在于,所述第一比特块和所述第二比特块两者中的至少后者被用于确定第二调整量,所述目标调整量等于所述第一调整量和所述第二调整量两者中的最大者,
    或者,其特征在于,所述目标调整量是所述第一调整量。
  20. 根据权利要求14所述的第一节点中的方法,其特征在于,所述第一发送功率等于上限发送功率和目标发送功率之间相比较的小值,所述目标调整量被用于确定所述目标发送功率,所述上限发送功率是预 定义的或可配置的。
PCT/CN2022/091599 2021-05-11 2022-05-09 一种被用于无线通信的节点中的方法和装置 WO2022237707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22806673.4A EP4187833A4 (en) 2021-05-11 2022-05-09 METHOD FOR USE IN A WIRELESS COMMUNICATIONS NODE AND DEVICE
US18/110,896 US20230198724A1 (en) 2021-05-11 2023-02-17 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110511243.1 2021-05-11
CN202110511243.1A CN115333698A (zh) 2021-05-11 2021-05-11 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/110,896 Continuation US20230198724A1 (en) 2021-05-11 2023-02-17 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2022237707A1 true WO2022237707A1 (zh) 2022-11-17

Family

ID=83912375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091599 WO2022237707A1 (zh) 2021-05-11 2022-05-09 一种被用于无线通信的节点中的方法和装置

Country Status (4)

Country Link
US (1) US20230198724A1 (zh)
EP (1) EP4187833A4 (zh)
CN (1) CN115333698A (zh)
WO (1) WO2022237707A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269600A1 (en) * 2011-10-27 2014-09-18 Lg Electronics Inc. Method and apparatus for transmitting control information through uplink
US20180359711A1 (en) * 2017-06-09 2018-12-13 Qualcomm Incorporated Power control in new radio systems
CN110198206A (zh) * 2018-02-24 2019-09-03 华为技术有限公司 发送上行控制信道的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3104545B1 (en) * 2012-01-27 2017-09-20 LG Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
CN107846373B (zh) * 2016-09-20 2021-02-12 华为技术有限公司 发送或接收物理下行控制信道的方法和设备
US10708866B2 (en) * 2018-04-05 2020-07-07 Samsung Electronics Co., Ltd. Signaling of control information in a communication system
CN111629429B (zh) * 2019-02-27 2021-09-03 华为技术有限公司 一种上行功率的调整方法和相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269600A1 (en) * 2011-10-27 2014-09-18 Lg Electronics Inc. Method and apparatus for transmitting control information through uplink
US20180359711A1 (en) * 2017-06-09 2018-12-13 Qualcomm Incorporated Power control in new radio systems
CN110198206A (zh) * 2018-02-24 2019-09-03 华为技术有限公司 发送上行控制信道的方法和装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3GPP TS36
3GPP TS37
3GPP TS38
3GPP TS38.212
3GPP TS38.213
See also references of EP4187833A4
ZTE: "Summary for Al 7.1.5 NR UL power control in non-CA aspects", 3GPP DRAFT; R1-1811859 SUMMARY FOR AL 7 1 5 NR UL POWER CONTROL IN NON CAASPECTS_V5, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 9 October 2018 (2018-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051519183 *

Also Published As

Publication number Publication date
US20230198724A1 (en) 2023-06-22
CN115333698A (zh) 2022-11-11
EP4187833A4 (en) 2024-03-13
EP4187833A1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US11363621B2 (en) Method and device for dynamically adjusting a number of resource elements in uplink control information
US20190335423A1 (en) Method and Device for Wireless Communication in UE and Base Station
US11770229B2 (en) Method and device in communication node used for wireless communication with multiple antenna panels
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230232373A1 (en) Method and device in nodes used for wireless communication
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021164558A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240008043A1 (en) Method and device used in node for wireless communication
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022188835A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022242618A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022048509A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023000976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023036063A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022806673

Country of ref document: EP

Effective date: 20230221

NENP Non-entry into the national phase

Ref country code: DE