WO2020156246A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020156246A1
WO2020156246A1 PCT/CN2020/072789 CN2020072789W WO2020156246A1 WO 2020156246 A1 WO2020156246 A1 WO 2020156246A1 CN 2020072789 W CN2020072789 W CN 2020072789W WO 2020156246 A1 WO2020156246 A1 WO 2020156246A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
signals
values
sub
wireless signal
Prior art date
Application number
PCT/CN2020/072789
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020156246A1 publication Critical patent/WO2020156246A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to a method and device in a wireless communication system, and in particular to a method and device in a wireless communication system that supports multi-TRP (Transmitter Receiver Point)/panel (antenna panel) transmission.
  • TRP Transmitter Receiver Point
  • panel panel
  • Massive MIMO is a key technology of 5G mobile communication.
  • multiple antennas are beam-forming to form a narrow beam pointing to a specific direction to improve communication quality.
  • multiple antennas belong to multiple TRP/panel, use the spatial difference between different TRP/panel to obtain additional diversity gain.
  • Multiple TRPs/panels can simultaneously serve one UE (User Equipment, user equipment) to improve the robustness of communication and/or the transmission rate of a single UE.
  • UE User Equipment
  • PDSCH Physical Downlink Shared CHannel
  • Physical downlink shared channel /PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel) occupied, such as reserved for CSI-RS (Channel-State Information Reference Signals, channel state information reference signals) and CORESET (COntrol REsource SET, control resources) Collection) RE.
  • CSI-RS Channel-State Information Reference Signals, channel state information reference signals
  • CORESET COntrol REsource SET, control resources
  • the x overhead of different TRPs/panels needs to be considered when calculating the TBS carried by this PDSCH/PUSCH.
  • this application discloses a solution.
  • the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa.
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in user equipment for wireless communication, which is characterized in that it includes:
  • first wireless signal Operate a first wireless signal, where the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than one;
  • the first signaling is used to determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; and are allocated to the The size of the time-frequency resources of the K first-category sub-signals is respectively used to determine K first-category values, and there are two different first-category values among the K first-category values; A type of value is used to determine a target value, and the target value is used to determine the number of bits included in the first bit block; the operation is sending, or the operation is receiving.
  • the problem to be solved by this application is: when a PDSCH/PUSCH is sent/received by multiple TRPs/panels at the same time, and the number of REs reserved by different TRPs/panels that cannot be used for PDSCH/PUSCH transmission is different At the same time, how to calculate the TBS carried on PDSCH/PUSCH.
  • the above method solves this problem by comprehensively considering the number of REs reserved for each TRP/panel.
  • the characteristic of the above method is that the first bit block is a TB (Transport Block, transport block), and the K first-type sub-signals are respectively for K TRP/panel.
  • the K first-type values respectively reflect the number of REs reserved by the K TRP/panel, and the K first-type values are jointly used to determine the number of bits included in the first bit block.
  • the advantage of the above method is that when a PDSCH/PUSCH is simultaneously sent/received by multiple TRPs/panels, the TBS can be calculated more accurately, and the transmission reliability and efficiency are improved.
  • the target value is linearly related to only one first-type value among the K first-type values.
  • the K first-category values correspond to K weighting coefficients in a one-to-one correspondence, and the K weighting coefficients are positive real numbers respectively;
  • the K weighting coefficients are multiplied to obtain K weighted values, and the K weighted values are used to determine the target value.
  • the target value is used to determine the second type of value, and the number of bits included in the first bit block is equal to all the set of reference integers of the first type not less than the first type.
  • the first-type reference integers of the second-type numerical value the first-type reference integer that is closest to the second-type numerical value; the first-type reference integer set includes multiple first-type reference integers.
  • the number of multi-carrier symbols allocated to the K first-type sub-signals is used to determine the K first-type values, and are allocated to the K
  • the number of resource blocks of the first-type sub-signal is respectively used to determine the K first-type values.
  • the first information is used to determine K third-type numerical values
  • the K third-type numerical values are respectively used to determine the K first-type numerical values.
  • the K first-type reference signals are respectively used for demodulation of the K first-type sub-signals; the size of time-frequency resources allocated to the K first-type reference signals is used to determine The K first-type values; the operation is sending, or the operation is receiving.
  • This application discloses a method used in a wireless communication base station, which is characterized in that it includes:
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1;
  • the first signaling is used to determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; and are allocated to the The size of the time-frequency resources of the K first-category sub-signals is respectively used to determine K first-category values, and there are two different first-category values among the K first-category values; A type of value is used to determine a target value, and the target value is used to determine the number of bits included in the first bit block; the execution is reception, or the execution is transmission.
  • the target value is linearly related to only one first-type value among the K first-type values.
  • the K first-category values correspond to K weighting coefficients in a one-to-one correspondence, and the K weighting coefficients are positive real numbers respectively;
  • the K weighting coefficients are multiplied to obtain K weighted values, and the K weighted values are used to determine the target value.
  • the target value is used to determine the second type of value, and the number of bits included in the first bit block is equal to all of the set of reference integers of the first type not less than the first type.
  • the first-type reference integers of the second-type numerical value the first-type reference integer that is closest to the second-type numerical value; the first-type reference integer set includes multiple first-type reference integers.
  • the number of multi-carrier symbols allocated to the K first-type sub-signals is used to determine the K first-type values, and are allocated to the K
  • the number of resource blocks of the first-type sub-signal is respectively used to determine the K first-type values.
  • the first information is used to determine K third-type numerical values
  • the K third-type numerical values are respectively used to determine the K first-type numerical values.
  • the K first-type reference signals are respectively used for the demodulation of the K first-type sub-signals; the size of the time-frequency resources allocated to the K first-type reference signals is used to determine The K first-type values; the execution is receiving, or the execution is sending.
  • This application discloses a user equipment used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling
  • a first processor for operating a first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than one;
  • the first signaling is used to determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; and are allocated to the The size of the time-frequency resources of the K first-category sub-signals is respectively used to determine K first-category values, and there are two different first-category values among the K first-category values; A type of value is used to determine a target value, and the target value is used to determine the number of bits included in the first bit block; the operation is sending, or the operation is receiving.
  • This application discloses a base station equipment used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends the first signaling
  • the second processor executes a first wireless signal, where the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than one;
  • the first signaling is used to determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; and are allocated to the The size of the time-frequency resources of the K first-category sub-signals is respectively used to determine K first-category values, and there are two different first-category values among the K first-category values; A type of value is used to determine a target value, and the target value is used to determine the number of bits included in the first bit block; the execution is reception, or the execution is transmission.
  • this application has the following advantages:
  • a PDSCH/PUSCH When a PDSCH/PUSCH is sent/received by multiple TRPs/panels at the same time, and the number of REs reserved by different TRPs/panels that cannot be used for PDSCH/PUSCH is different, define its own x for each TRP/panel
  • the overhead allows the base station/UE to comprehensively consider the x overhead of each TRP/panel to more accurately calculate the TBS carried by the PDSCH/PUSCH, which improves transmission reliability and efficiency.
  • Fig. 1 shows a flow chart of the first signaling and the first wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of an NR (New Radio) node and UE according to an embodiment of the present application
  • Fig. 5 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 6 shows a flow chart of transmission according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the first signaling used to determine the time-frequency resource occupied by the first wireless signal according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of resource mapping of K first-type sub-signals in the time-frequency domain according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of resource mapping of K first-type sub-signals in the time-frequency domain according to an embodiment of the present application
  • FIG. 10 shows a schematic diagram in which the sizes of time-frequency resources allocated to K first-type sub-signals are respectively used to determine K first-type values according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram in which the size of the time-frequency resources allocated to K first-type sub-signals is used to determine K first-type values according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of K first-category values used to determine target values according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of K first-type values used to determine target values according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of a target value used to determine the number of bits included in the first bit block according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of a target value used to determine the number of bits included in the first bit block according to an embodiment of the present application
  • FIG. 16 shows a schematic diagram of the target value used to determine the second type of value according to an embodiment of the present application
  • FIG. 17 shows a schematic diagram of determining the number of bits included in the first bit block according to an embodiment of the present application
  • FIG. 18 shows a schematic diagram of determining the number of bits included in the first bit block according to an embodiment of the present application
  • FIG. 19 shows a schematic diagram of the first information used to determine K third-type values according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of K first-type reference signals respectively used for demodulation of K first-type sub-signals according to an embodiment of the present application
  • FIG. 21 shows a schematic diagram of the size of time-frequency resources allocated to K first-type reference signals used to determine K first-type values according to an embodiment of the present application
  • Fig. 22 shows a structural block diagram of a processing apparatus used in user equipment according to an embodiment of the present application
  • Fig. 23 shows a structural block diagram of a processing device used in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first signaling and the first wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent the time sequence relationship between the characteristics of each step.
  • the user equipment in this application receives the first signaling; operates the first wireless signal.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1.
  • the first signaling is used to determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; and are allocated to the K
  • the size of the time-frequency resources of the first-type sub-signals is used to determine K first-type values respectively, and there are two different first-type values among the K first-type values; the K first-type values
  • the value is used to determine a target value, and the target value is used to determine the number of bits included in the first bit block; the operation is sending, or the operation is receiving.
  • the first signaling includes scheduling information of the first wireless signal.
  • the first wireless signal does not include DMRS (DeModulation Reference Signals).
  • DMRS Demodulation Reference Signals
  • the first wireless signal does not include PTRS (Phase Tracking Reference Signals).
  • PTRS Phase Tracking Reference Signals
  • the first wireless signal does not include CSI-RS (Channel-State Information Reference Signals, channel state information reference signals).
  • CSI-RS Channel-State Information Reference Signals, channel state information reference signals.
  • the first wireless signal does not include SS/PBCH block (Synchronization Signal/Physical Broadcast Channel block, synchronization signal/physical broadcast channel block).
  • SS/PBCH block Synchronization Signal/Physical Broadcast Channel block, synchronization signal/physical broadcast channel block.
  • the first wireless signal does not include SRS (Sounding Reference Signal, sounding reference signal).
  • SRS Sounding Reference Signal, sounding reference signal
  • the first wireless signal does not include TRS (Tracking Reference Signals).
  • TRS Tracking Reference Signals
  • the first wireless signal is composed of the K first-type sub-signals.
  • the first bit block includes a positive integer number of bits.
  • the first bit block includes one TB.
  • the first bit block is a TB.
  • the number of bits included in the first bit block is TBS.
  • the first bit block includes uplink data, and the operation is sending.
  • the first bit block includes downlink data, and the operation is receiving.
  • the K first-type sub-signals all carry a first bit block means that: any one of the K first-type sub-signals is the first bit block
  • the bits in the CRC are attached (Attachment), segmentation (Segmentation), coding block level CRC attachment (Attachment), channel coding (Channel Coding), and rate matching (Rate Matching).
  • the K first-type sub-signals all carry a first bit block means that: any one of the K first-type sub-signals is the first bit block
  • the bits in the sequence go through CRC attachment, segmentation, coding block level CRC attachment, channel coding, rate matching, concatenation, scrambling, modulation mapper, layer mapper, precoding, resource particle mapper, multi-carrier symbol generation, modulation And the output after upconversion.
  • the K first-type sub-signals all carry a first bit block means that: any one of the K first-type sub-signals is the first bit block
  • the bits in are sequentially output after channel coding, rate matching, modulation mapper, layer mapper, conversion precoder, precoding, resource particle mapper, multi-carrier symbol generation, modulation and up-conversion.
  • the K first-type sub-signals all carry a first bit block means that: any one of the K first-type sub-signals is the first bit block
  • the bits in are sequentially output after channel coding, rate matching, modulation mapper, layer mapper, precoding, resource particle mapper, multi-carrier symbol generation, modulation and up-conversion.
  • K first-type sub-signals all carry a first bit block means that: the first bit block is used to generate any one of the K first-type sub-signals Class sub-signal.
  • the first wireless signal carries the first bit block.
  • the time-frequency resources occupied by the K first-type sub-signals are non-orthogonal.
  • the first wireless signal is the first transmission of the first bit block.
  • the MCS (Modulation and Coding Scheme) index (index) corresponding to the first wireless signal is a positive integer not less than 0 and not more than 27.
  • Table 5.1.3.1-2 in 3GPP TS38.214 is used to interpret the MCS index (index) corresponding to the first wireless signal.
  • the MCS index (index) corresponding to the first wireless signal is a positive integer not less than 0 and not greater than 28.
  • an MCS index (index) table in 3GPP TS38.214 that is different from Table 5.1.3.1-2 is used for the MCS index (index) corresponding to the first wireless signal Interpretation.
  • the MCS index (index) corresponding to the first wireless signal is I MCS , and the specific definition of I MCS can be found in 3GPP TS38.214.
  • the size of the time-frequency resources allocated to the K first-category sub-signals is used to determine the K first-category values, including: for any of the K first-category values A given first-type value, the given first-type value corresponds to a given first-type sub-signal out of the K first-type sub-signals; those assigned to the given first-type sub-signal
  • the size of the time-frequency resource is used to determine the given first-category value, the given first-category value and the K first-category sub-signals that are different from the given first-category sub-signal
  • the size of the time-frequency resource of any first-type sub-signal of the signal is irrelevant.
  • the size of the time-frequency resources allocated to the K first-type sub-signals is used to determine the K first-type values, respectively, including: being allocated to the K first-type sub-signals
  • the number of multi-carrier symbols is respectively used to determine the K first-type values.
  • the size of the time-frequency resources allocated to the K first-type sub-signals is used to determine the K first-type values, including: The number of multi-carrier symbols is respectively used to determine the K first-type values.
  • the size of the time-frequency resources allocated to the K first-type sub-signals is used to determine the K first-type values, respectively, including: being allocated to the K first-type sub-signals
  • the number of resource blocks is used to determine the K first-type values.
  • the size of the time-frequency resources allocated to the K first-type sub-signals is used to determine the K first-type values, including: The number of resource blocks are respectively used to determine the K first-type values.
  • the resource block refers to: PRB (Physical Resource Block, physical resource block).
  • the resource block refers to: RB (Resource Block, resource block).
  • the size of the time-frequency resources allocated to the K first-type sub-signals is used to determine the K first-type values, respectively, including: being allocated to the K first-type sub-signals
  • the number of RE Resource Element, resource particles
  • RE Resource Element, resource particles
  • the size of the time-frequency resources allocated to the K first-type sub-signals is used to determine the K first-type values, including: The number of REs are respectively used to determine the K first-type values.
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the number of multi-carrier symbols allocated to the given first type of sub-signal is used to determine the given first type of value, the given first type of value and the number of multicarrier symbols allocated to the K
  • the number of multi-carrier symbols of any first-type sub-signal that is different from the given first-type sub-signal in the first-type sub-signal is irrelevant.
  • the given first-category value and the given first-category sub-signal in the K first-category sub-signals Signal correspondence; the number of multi-carrier symbols occupied by the given first-type sub-signal is used to determine the given first-type value, the given first-type value and the K first-type sub-signals The number of multi-carrier symbols occupied by any first-type sub-signal that is different from the given first-type sub-signal in the signal is irrelevant.
  • the given first-category value and the given first-category sub-signal in the K first-category sub-signals Signal correspondence the number of resource blocks allocated to the given first type of sub-signal is used to determine the given first type of value, the given first type of value and the number of resource blocks allocated to the Kth. The number of resource blocks of any first type of sub-signal different from the given first type of sub-signal in a type of sub-signal is irrelevant.
  • the given first-category value and the given first-category sub-signal in the K first-category sub-signals Signal correspondence; the number of resource blocks occupied by the given first-type sub-signal is used to determine the given first-type value, the given first-type value and the K first-type sub-signals The number of resource blocks occupied by any first-type sub-signal different from the given first-type sub-signal is irrelevant.
  • the K first-type sub-signals respectively correspond to the same MCS.
  • the K first-type sub-signals respectively correspond to the same MCS index (index).
  • the MCS of any first-type sub-signal in the K first-type sub-signals is the MCS of the first wireless signal.
  • the MCS index (index) of any one of the K first-type sub-signals is the MCS index (index) of the first wireless signal.
  • the K first-type sub-signals respectively correspond to the same target code rate (target code rate).
  • the target code rate (target code rate) of any one of the K first type sub-signals is the target code rate of the first wireless signal.
  • the K first-type sub-signals respectively correspond to the same modulation order.
  • the modulation order (modulation order) of any one of the K first-type sub-signals is the modulation order of the first wireless signal.
  • target code rate for the specific definition of the target code rate (target code rate), refer to 3GPP TS38.214.
  • the specific definition of the modulation order can be found in 3GPP TS38.214.
  • the MCS of the first wireless signal is used to determine the target code rate (target code rate) of the first wireless signal.
  • the MCS of the first wireless signal is used to determine the modulation order of the first wireless signal.
  • the MCS index (index) of the first wireless signal is used to determine the target code rate (target code rate) of the first wireless signal.
  • the MCS index (index) of the first wireless signal is used to determine the modulation order of the first wireless signal.
  • the MCS of the first wireless signal is used to determine a target code rate (target code rate) of any one of the K first-type sub-signals.
  • the MCS of the first wireless signal is used to determine the modulation order of any first-type sub-signal in the K first-type sub-signals.
  • the MCS index (index) of the first wireless signal is used to determine a target code rate (target code rate) of any one of the K first-type sub-signals.
  • the MCS index (index) of the first wireless signal is used to determine the modulation order of any one of the K first-type sub-signals.
  • first-type sub-signals there are two first-type sub-signals corresponding to different MCSs among the K first-type sub-signals.
  • first-type sub-signals there are two first-type sub-signals corresponding to different MCS indexes in the K first-type sub-signals.
  • first-type sub-signals there are two first-type sub-signals corresponding to different modulation orders among the K first-type sub-signals.
  • the MCS of the K first-type sub-signals are respectively used to determine the target code rate of the K first-type sub-signals.
  • the MCS of the K first-type sub-signals are respectively used to determine the modulation order of the K first-type sub-signals.
  • the MCS indexes (index) of the K first-type sub-signals are respectively used to determine the target code rate (target code rate) of the K first-type sub-signals.
  • the MCS indexes (index) of the K first-type sub-signals are respectively used to determine the modulation order of the K first-type sub-signals.
  • any one of the K first type values is a positive integer.
  • any one of the K first type values is a positive integer greater than one.
  • any one of the K first-type values is a positive real number.
  • any one of the K first type values is a positive real number greater than 1.
  • the target value is a positive real number.
  • the target value is a positive real number greater than 1.
  • the target value is a positive integer.
  • the target value is a positive integer greater than 1.
  • the K is equal to 2, and the K first-type values are different from each other.
  • the K is greater than 2, and there are two different first-type values among the K first-type values.
  • the K is greater than 2, and any two of the K first-type values are different from each other.
  • the K is greater than 2, and there are two identical first-type values among the K first-type values.
  • the user equipment receives the first wireless signal.
  • the user equipment sends the first wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network-New Radio) 202, 5G-CN (5G-CoreNetwork, 5G Core Network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • E-UTRAN-NR Evolved UMTS Terrestrial Radio Access Network-New Radio
  • 5G-CN 5G-CN
  • 5G-CoreNetwork 5G Core Network
  • EPC Evolved Packet Core
  • UMTS corresponds to the Universal Mobile Telecommunications System (Universal Mobile Telecommunications System).
  • EPS200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS200 provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services.
  • E-UTRAN-NR202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5G-CN/EPC210 through the S1 interface.
  • 5G-CN/EPC210 includes MME211, other MME214, S-GW (Service Gateway) 212, and P-GW (Packet Date Network Gateway) 213 .
  • MME211 is a control node that processes signaling between UE201 and 5G-CN/EPC210. Generally, MME211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching (Packet switching) services.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 supports multi-TRP/panel-based transmission.
  • the UE 201 supports multi-TRP/panel-based transmission.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • FIG. 3 shows the radio protocol architecture for UE and gNB with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Control Protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayer 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW 213 on the network side and another end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper-layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the first signaling in this application is generated in the PHY301.
  • the first signaling in this application is generated in the RRC sublayer 306.
  • the first signaling in this application is generated in the MAC sublayer 302.
  • the first wireless signal in this application is generated from the PHY301.
  • the K first-type sub-signals in this application are all formed in the PHY301.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the K first-type reference signals in this application are all generated in the PHY301.
  • Embodiment 4 illustrates a schematic diagram of an NR node and UE according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of UE450 and gNB410 communicating with each other in the access network.
  • the gNB410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the UE 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, a transmitter/receiver 454, and an antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and radio resource allocation to UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to UE450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the UE 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time domain and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation.
  • the data signal is restored to the UE450 after being detected by multiple antennas in the multi-antenna receiving processor 458. Any parallel streams at the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and de-interleaves the soft decision to recover the upper layer data and control signals transmitted by the gNB410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to gNB410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at gNB410 is similar to the receiving function at UE450 described in DL.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor use together.
  • the UE450 device at least: receives the first signaling in this application; and transmits the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the UE 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving all the instructions in the present application; The first signaling; sending the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the gNB410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor use together.
  • the gNB410 device at least: sends the first signaling in this application; receives the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the gNB410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending all the instructions in the present application The first signaling; receiving the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor use together.
  • the UE450 device at least: receives the first signaling in this application; and receives the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the UE 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving all the instructions in the present application; The first signaling; receiving the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the gNB410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor use together.
  • the gNB410 device at least: sends the first signaling in this application; and sends the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the gNB410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending all the instructions in the present application The first signaling; sending the first wireless signal in this application.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1, and the first signaling is used for Determine the time-frequency resources occupied by the first wireless signal; the time-domain resources occupied by the K first-type sub-signals are non-orthogonal; the time-frequency resources allocated to the K first-type sub-signals The size of is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine the target value, so The target value is used to determine the number of bits included in the first bit block.
  • the gNB410 corresponds to the base station in this application.
  • the UE 450 corresponds to the user equipment in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the first wireless signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/ At least one of the processor 459, the memory 460, and the data source 467 ⁇ is used to send the first wireless signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in this application;
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the K first type reference signals in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the At least one of the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the K first-type reference signals in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the K first type reference signals in this application;
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the base station N1 is the serving cell maintenance base station of the user equipment U2.
  • the steps in boxes F51 and F52 are optional.
  • the first information is sent in step S5101; the first signaling is sent in step S511; the first wireless signal is received in step S512; and K first-type reference signals are received in step S5102.
  • the first information is used to determine K third-type numerical values, and the K third-type numerical values are respectively used to determine the K first-type numerical values.
  • the K first-type reference signals are respectively used for demodulation of the K first-type sub-signals; the size of the time-frequency resources allocated to the K first-type reference signals is used to determine the K first type values.
  • the N1 is the base station in this application.
  • the U2 is the user equipment in this application.
  • the operation in this application is sending, and the execution in this application is receiving.
  • the target value is linearly related to only one first-type value among the K first-type values.
  • the K first-category values correspond to K weighting coefficients in a one-to-one correspondence, and the K weighting coefficients are respectively positive real numbers; the K first-category values are respectively corresponding to the K weighting coefficients. Multiplying to obtain K weighted values, and the K weighted values are used to determine the target value.
  • the target value is used to determine the second type of value, and the number of bits included in the first bit block is equal to all the first type of reference integer set not less than the second type of value.
  • the number of multi-carrier symbols allocated to the K first-type sub-signals is used to determine the K first-type values, which are allocated to the K first-type sub-signals.
  • the number of resource blocks are respectively used to determine the K first-type values.
  • the resource block refers to PRB.
  • the resource block refers to an RB.
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NR-PDCCH (New Radio PDCCH, New Radio PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, Narrow Band PDCCH).
  • the first signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared Channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the first wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is PUSCH (Physical Uplink Shared Channel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH, New Radio PUSCH).
  • the uplink physical layer data channel is NB-PUSCH (Narrow Band PUSCH, Narrow Band PUSCH).
  • Embodiment 6 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 6.
  • the base station N3 is the serving cell maintenance base station of the user equipment U4.
  • the steps in blocks F61 and F62 are optional.
  • the first information is sent in step S6301; the first signaling is sent in step S631; K first-type reference signals are sent in step S6302; the first wireless signal is sent in step S632.
  • step S6401 receive the first information in step S6401; receive the first signaling in step S641; receive K first-type reference signals in step S6402; receive the first wireless signal in step S642.
  • the N3 is the base station in this application.
  • the U4 is the user equipment in this application.
  • the operation in this application is receiving, and the execution in this application is sending.
  • the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is NR-PDSCH.
  • the downlink physical layer data channel is NB-PDSCH.
  • Embodiment 7 illustrates a schematic diagram of the first signaling being used to determine the time-frequency resources occupied by the first wireless signal according to an embodiment of the present application; as shown in FIG. 7.
  • the first signaling is used to determine the time-frequency resource occupied by the first wireless signal.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling is dynamic signaling used for UpLink Grant.
  • the first signaling is dynamic signaling used for DownLink Grant.
  • the first signaling is dynamic signaling used for Configured UL grant.
  • the first signaling is dynamic signaling used for configured UL grant activation (activation).
  • the first signaling is dynamic signaling used for downlink SPS (Semi-persistent scheduling, semi-static) assignment activation (activation).
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes DCI used for UpLink Grant.
  • the first signaling includes DCI used for DownLink Grant.
  • the first signaling includes DCI used for Configured UL grant.
  • the first signaling includes DCI used for configured UL grant activation.
  • the first signaling includes DCI used for Configured UL grant Type 2 (second type) activation.
  • the first signaling includes DCI used for downlink SPS allocation activation.
  • the first signaling is UE-specific.
  • the first signaling includes DCI identified by C (Cell)-RNTI (Radio Network Temporary Identifier, radio network tentative identifier).
  • C Cell
  • RTI Radio Network Temporary Identifier, radio network tentative identifier
  • the first signaling includes CRC (Cyclic Redundancy Check, cyclic redundancy check) DCI scrambled by C-RNTI (Scrambled).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the first signaling includes DCI identified by CS (Configured Scheduling)-RNTI.
  • the first signaling includes DCI whose CRC is scrambled by CS-RNTI (Scrambled).
  • the first signaling includes DCI identified by MCS-C-RNTI.
  • the first signaling includes DCI whose CRC is scrambled by MCS-C-RNTI (Scrambled).
  • the first signaling is higher layer signaling.
  • the first signaling is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling is MAC CE (Medium Access Control Layer Control Element, Medium Access Control Layer Control Element) signaling.
  • the first signaling indicates the time-frequency resource occupied by the first wireless signal.
  • the first signaling explicitly indicates the time-frequency resource occupied by the first wireless signal.
  • the first signaling includes scheduling information of the first wireless signal.
  • the scheduling information of the first wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS, DMRS configuration information, HARQ (Hybrid Automatic Repeat reQuest, Hybrid automatic repeat request) process number (process number), RV (Redundancy Version, redundancy version), at least one of NDI (New Data Indicator, new data indication) ⁇ .
  • HARQ Hybrid Automatic Repeat reQuest, Hybrid automatic repeat request
  • process number process number
  • RV Redundancy Version, redundancy version
  • NDI New Data Indicator, new data indication
  • the DMRS configuration information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequence, mapping mode, DMRS type, cyclic shift amount ( One or more of cyclic shift), OCC (Orthogonal Cover Code), w f (k'), w t (l') ⁇ .
  • the w f (k′) and the w t (l′) are spreading sequences in the frequency domain and the time domain, respectively, and the specific definitions of the w f (k′) and the w t (l′) See section 6.4.1 of 3GPP TS38.211.
  • Embodiment 8 illustrates a schematic diagram of resource mapping of K first-type sub-signals in the time-frequency domain according to an embodiment of the present application; as shown in FIG. 8.
  • the first wireless signal in this application includes the K first-type sub-signals, and the time-frequency resources occupied by the K first-type sub-signals are non-orthogonal.
  • the indexes of the K first-type sub-signals are #0, ..., #K-1, respectively.
  • the time-frequency resources occupied by the K first-type sub-signals are non-orthogonal.
  • the K is equal to 2, and the time-frequency resources occupied by the K first-type sub-signals are non-orthogonal.
  • the K is greater than 2, and the time-frequency resources occupied by any two of the K first-type sub-signals are non-orthogonal.
  • the K is equal to 2, and the time-frequency resources occupied by the K first-type sub-signals partially overlap.
  • the K is greater than 2, and the time-frequency resources occupied by any two of the K first-type sub-signals partially overlap.
  • the K first-type sub-signals there is a given first-type sub-signal in the K first-type sub-signals, and part of the time-frequency resources occupied by the given first-type sub-signal is not used by the K first-type sub-signals.
  • a first-type sub-signal that is different from the given first-type sub-signal is occupied.
  • the K first-type sub-signals occupy K RE sets respectively, and any RE set in the K RE sets includes a positive integer number of REs.
  • One RE in any RE set in the K RE sets belongs to all RE sets in the K RE sets at the same time; there is a first RE set in the K RE sets, and the first RE set There is one RE that does not belong to an RE set different from the first RE set among the K RE sets.
  • the first RE set is any RE set in the K RE sets.
  • any RE in the second RE set belongs to all RE sets in the K RE sets.
  • the number of REs occupied by two first-type sub-signals in the K first-type sub-signals is not equal.
  • the frequency domain resources occupied by the K first-type sub-signals are non-orthogonal.
  • the K first-type sub-signals are respectively sent by different antenna port groups, and one antenna port group includes a positive integer number of antenna ports.
  • the first signaling in the present application indicates a transmitting antenna port group of any first type sub-signal in the K first-type sub-signals.
  • the K first-type sub-signals are respectively transmitted by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports.
  • the first antenna port group and the second antenna port group are two antenna port groups in the K antenna port groups, and the first antenna port and the second antenna port are the first antenna port group and the second antenna port group, respectively.
  • the K is greater than 2
  • the first antenna port group and the second antenna port group are any two antenna port groups of the K antenna port groups.
  • the first antenna port group includes a plurality of antenna ports, and the first antenna port is any antenna port in the first antenna port group.
  • the second antenna port group includes a plurality of antenna ports, and the second antenna port is any antenna port in the second antenna port group.
  • At least one antenna port group in the K antenna port groups includes multiple antenna ports.
  • At least one antenna port group in the K antenna port groups includes only one antenna port.
  • the number of antenna ports included in the two antenna port groups in the K antenna port groups is not equal.
  • the number of antenna ports included in two antenna port groups in the K antenna port groups is equal.
  • the first signaling in this application indicates the K antenna port groups.
  • the antenna port is an antenna port, and the specific definition of the antenna port can be found in section 4.4 of 3GPP TS38.211.
  • the channel experienced by a wireless signal sent on one antenna port can be inferred from the channel experienced by another wireless signal sent on the one antenna port.
  • the channel experienced by the wireless signal sent on one antenna port cannot be inferred from the channel experienced by the wireless signal sent on another antenna port.
  • the channel includes ⁇ CIR (Channel Impulse Response, channel impulse response), PMI (Precoding Matrix Indicator), CQI (Channel Quality Indicator, channel quality indicator), RI (Rank Indicator, One or more of rank identifier) ⁇ .
  • CIR Channel Impulse Response, channel impulse response
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator, channel quality indicator
  • RI Rank Indicator, One or more of rank identifier
  • the two antenna ports QCL means that the large-scale properties of the channel experienced by the wireless signal transmitted on one of the two antenna ports can be inferred from the two antenna ports.
  • the large-scale properties include ⁇ delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average gain (average gain) ), one or more of average delay (average delay), and spatial reception parameters (Spatial Rx parameters) ⁇ .
  • the K first type sub-signals are respectively K layers of the first wireless signal.
  • the K first-type sub-signals respectively include K second-type sub-signal sets, and any second-type sub-signal set in the K second-type sub-signal sets includes a positive integer Two types of sub-signals.
  • any first-type sub-signal in the K first-type sub-signals includes all second-type sub-signals in a corresponding second-type sub-signal set.
  • any first-type sub-signal in the K first-type sub-signals is composed of all second-type sub-signals in a corresponding second-type sub-signal set.
  • the given second-type sub-signal set includes multiple second-type sub-signal sets
  • the plurality of second class sub-signals are respectively sent by different antenna ports.
  • any second-type sub-signal in any second-type sub-signal set in the K second-type sub-signal sets is transmitted by only one antenna port.
  • the total number of the second-type sub-signals included in the K second-type sub-signal sets is L, and the L is a positive integer greater than 1; the K second-type sub-signals The L second-type sub-signals included in the signal set are L layers of the first wireless signal.
  • the total number of second-type sub-signals included in the K second-type sub-signal sets is L, where L is a positive integer greater than 1, and L is equal to the first type.
  • the number of layers of the wireless signal is L, where L is a positive integer greater than 1, and L is equal to the first type.
  • the total number of the second-type sub-signals included in the K second-type sub-signal sets is L, where L is a positive integer greater than 1, and the L is greater than the first type.
  • the number of layers of the wireless signal is L, where L is a positive integer greater than 1, and the L is greater than the first type.
  • Embodiment 9 illustrates a schematic diagram of resource mapping of K first-type sub-signals in the time-frequency domain according to an embodiment of the present application; as shown in FIG. 9.
  • the first wireless signal in this application includes the K first-type sub-signals, and the time domain resources occupied by the K first-type sub-signals are non-orthogonal.
  • the indexes of the K first-type sub-signals are #0, ..., #K-1, respectively.
  • the K is equal to 2, and the time domain resources occupied by the K first-type sub-signals are non-orthogonal.
  • the K is greater than 2, and the time domain resources occupied by any two of the K first-type sub-signals are non-orthogonal.
  • the K is equal to 2, and the time domain resources occupied by the K first-type sub-signals partially overlap.
  • the K is greater than 2, and the time domain resources occupied by any two of the K first-type sub-signals partially overlap.
  • the K is equal to 2, and the time domain resources occupied by the K first-type sub-signals completely overlap.
  • the K is greater than 2, and the time domain resources occupied by any two of the K first-type sub-signals completely overlap.
  • the K first-type sub-signals respectively occupy K symbol sets in the time domain, and any symbol set in the K symbol sets includes a positive integer number of multi-carrier symbols.
  • the first symbol set is any symbol set in the K symbol sets.
  • any multi-carrier symbol in the second symbol set belongs to all symbol sets in the K symbol sets.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the number of multi-carrier symbols occupied by two first-type sub-signals in the K first-type sub-signals is not equal.
  • the K is equal to 2, and the number of multi-carrier symbols occupied by the K first-type sub-signals is equal.
  • the K is greater than 2, and the number of multi-carrier symbols occupied by any two first-type sub-signals in the K first-type sub-signals is equal.
  • the K is greater than 2, and the number of multi-carrier symbols occupied by any two first-type sub-signals in the K first-type sub-signals is not equal.
  • the frequency domain resources occupied by the K first-type sub-signals are orthogonal to each other.
  • Embodiment 10 illustrates a schematic diagram in which the size of the time-frequency resources allocated to K first-category sub-signals is used to determine K first-category values according to an embodiment of the present application; as shown in FIG. 10.
  • the K first-category values and K fourth-category values correspond one-to-one, and the K first-category values correspond to K first parameters one-to-one; Any value of the first category in the category values is equal to the product of the corresponding value of the fourth category and the corresponding first parameter.
  • the K fourth-category values are the minimum values between the K fifth-category values and the first threshold, respectively, and the K fifth-category values are respectively assigned to the K first-category sub-signals.
  • the size of the domain resources is related; the K first parameters are respectively related to the size of the frequency domain resources allocated to the K first-type sub-signals.
  • the indexes of the K first-category values, the K fourth-category values, the K first parameters and the K fifth-category values are #0,... , #K-1;
  • the i is any non-negative integer less than the K.
  • the K first parameters are respectively related to the number of the resource blocks allocated to the K first-type sub-signals.
  • the K first parameters are respectively related to the number of resource blocks occupied by the K first-type sub-signals.
  • the K first parameters are respectively the number of the resource blocks allocated to the K first-type sub-signals.
  • the K first parameters are respectively the number of the resource blocks occupied by the K first-type sub-signals.
  • the K first parameters are respectively the number of PRBs allocated to the K first-type sub-signals.
  • the K first parameters are respectively the number of PRBs occupied by the K first-type sub-signals.
  • the K first parameters are respectively the number of RBs allocated to the K first-type sub-signals.
  • the K first parameters are respectively the number of RBs occupied by the K first-type sub-signals.
  • the K first parameters are respectively related to the MCS of the K first-type sub-signals.
  • the K first parameters are respectively related to the MCS indexes of the K first-type sub-signals.
  • the K first parameters are respectively related to the target code rate (target code rate) of the K first-type sub-signals.
  • the K first parameters are respectively related to the modulation order of the K first-type sub-signals.
  • the given first parameter corresponds to a given first-type sub-signal in the K first-type sub-signals
  • the given first parameter is equal to the product of the number of resource blocks allocated to the given first type of sub-signal and the target code rate of the given first type of sub-signal. Multiply by the modulation order of the given first type of sub-signal.
  • the given first parameter corresponds to a given first-type sub-signal in the K first-type sub-signals ;
  • the given first parameter is equal to the product of the number of resource blocks occupied by the given first type of sub-signal and the target code rate (target code rate) of the given first type of sub-signal, multiplied by Take the modulation order of the given first type of sub-signal.
  • the given first parameter corresponds to a given first-type sub-signal in the K first-type sub-signals
  • the given first parameter is equal to the product of the number of PRBs assigned to the given first type of sub-signal and the target code rate of the given first type of sub-signal, multiplied by the Describe the modulation order of the given first type of sub-signal.
  • the given first parameter corresponds to a given first-type sub-signal in the K first-type sub-signals
  • the given first parameter is equal to the product of the number of PRBs occupied by the given first-type sub-signal and the target code rate of the given first-type sub-signal, multiplied by the Given the modulation order of the first type of sub-signal.
  • the given first parameter corresponds to a given first-type sub-signal in the K first-type sub-signals
  • the given first parameter is equal to the product of the number of RBs allocated to the given first-type sub-signal and the target code rate of the given first-type sub-signal, multiplied by all Describe the modulation order of the given first type of sub-signal.
  • the given first parameter corresponds to a given first-type sub-signal in the K first-type sub-signals
  • the given first parameter is equal to the product of the number of RBs occupied by the given first type of sub-signal and the target code rate (target code rate) of the given first type of sub-signal, multiplied by the Given the modulation order of the first type of sub-signal.
  • the first threshold is fixed.
  • the first threshold is predefined.
  • the first threshold is default.
  • the first threshold is a positive integer greater than 1.
  • the first threshold is 156.
  • the K fifth-type values are respectively related to the number of multi-carrier symbols allocated to the K first-type sub-signals.
  • the K fifth-type values are respectively related to the number of multi-carrier symbols occupied by the K first-type sub-signals.
  • the K fifth-type values are linearly related to the number of multi-carrier symbols allocated to the K first-type sub-signals.
  • the K fifth-type values are linearly related to the number of multi-carrier symbols occupied by the K first-type sub-signals.
  • Embodiment 11 illustrates a schematic diagram that the size of the time-frequency resources allocated to K first-type sub-signals is used to determine K first-type values according to an embodiment of the present application; as shown in FIG. 11.
  • the K first-category values and K fourth-category values are in one-to-one correspondence, and the K first-category values and K first parameters are in one-to-one correspondence; Any value of the first category in the category values is equal to the product of the corresponding value of the fourth category and the corresponding first parameter.
  • the K fourth-category values are the minimum values between the K fifth-category values and the first threshold respectively, the K fifth-category values are linearly related to the K first components, and the K first The components are respectively related to the number of multi-carrier symbols allocated to the K first-type sub-signals; the K first parameters are respectively related to the number of the resource blocks allocated to the K first-type sub-signals The quantity is related.
  • the K fifth-category values correspond to the K first coefficients respectively; the linear coefficients between any fifth-category value of the K fifth-category values and the corresponding first component are corresponding The first coefficient.
  • the K fifth-category values are linearly related to the K third-category values in this application, respectively.
  • the K fifth-type values are linearly related to the K sixth-type values, and the K sixth-type values are the size of the time-frequency resources allocated to the K first-type reference signals in this application related.
  • the indexes of the K first coefficients, the K third-category values and the K sixth-category values are #0,...,#K-1, respectively; the i is any value smaller than the K Non-negative integer.
  • the K first components are respectively the number of multi-carrier symbols allocated to the K first-type sub-signals.
  • the K first components are respectively the number of multi-carrier symbols occupied by the K first-type sub-signals.
  • the K first coefficients are all default.
  • the K first coefficients are all fixed.
  • the K first coefficients are all predefined.
  • the K first coefficients are all equal.
  • the K first coefficients are all 12.
  • the K fifth-category values are linearly related to the K third-category values, respectively.
  • the linear coefficient between any of the K fifth-category values and the corresponding third-category value is equal to minus 1.
  • the K fifth-category values are linearly related to K sixth-category values, and the K sixth-category values are related to the time-frequency resources allocated to the K first-category reference signals.
  • the size is related.
  • the linear coefficient between any value of the fifth type among the K values of the fifth type and the corresponding value of the sixth type is equal to minus 1.
  • any two of the K sixth-category values are equal.
  • any of the K sixth type values is equal to the K first type reference signals in the time domain resources occupied by the first wireless signals in this application, The total number of REs occupied in a PRB.
  • the first signaling in this application is used to determine M DMRS CDM (Code Division Multiplexing, code division multiplexing) groups, M is a positive integer; the K sixth type values Any value of the sixth type in is equal to the total number of REs occupied by the M DMRS CDM groups in one PRB within the time domain resources occupied by the first wireless signal in this application.
  • the first wireless signal does not occupy the REs allocated to the M DMRS CDM groups.
  • the first field in the first signaling indicates the M DMRS CDM groups, and the first field in the first signaling includes Antenna ports (antenna ports) Part or all of the information in a field.
  • any one of the K first type reference signals belongs to one DMRS CDM group among the M DMRS CDM groups.
  • the M is equal to 1.
  • the M is greater than 1.
  • the M is equal to 2.
  • the M is greater than 1, and there are two first-type reference signals among the K first-type reference signals, which belong to different DMRS-CDM groups in the M DMRS-CDM groups.
  • Antenna ports (antenna ports) field
  • 3GPP TS38.212 3GPP TS38.212.
  • two sixth-category values in the K sixth-category values are not equal.
  • the K sixth-type values are respectively equal to the K first-type reference signals in the time domain resources occupied by the first wireless signal in the present application, in a PRB The number of REs.
  • the first signaling in this application is used to determine K DMRS CDM group pools, and any DMRS CDM group pool in the K DMRS CDM group pools includes a positive integer number of DMRS CDM groups ( group).
  • the K sixth type values correspond to the K DMRS CDM group pools one-to-one; any sixth type value in the K sixth type values is equal to all DMRS CDM groups in the corresponding DMRS CDM group pool
  • the first signaling indicates the K DMRS CDM group pools.
  • the first signaling explicitly indicates the K DMRS CDM group pools.
  • the first signaling implicitly indicates the K DMRS CDM group pools.
  • any one of the K first type reference signals belongs to a DMRS CDM group in the corresponding DMRS CDM group pool.
  • DMRS CDM group pools there are two DMRS CDM group pools in the K DMRS CDM group pools, and the numbers of DMRS CDM groups included in the pool are not equal.
  • the K DMRS CDM group pools there are two DMRS CDM group pools in the K DMRS CDM group pools, and the number of DMRS CDM groups included in the pool is equal.
  • the specific definition of the DMRS CDM group (group) can be found in 3GPP TS38.212 and 3GPP TS38.214.
  • Embodiment 12 illustrates a schematic diagram of K first-type numerical values used to determine the target numerical value according to an embodiment of the present application; as shown in FIG. 12.
  • the target value is linearly related to only the first type value #x among the K first type values.
  • the indexes of the K first-type values are #0, ..., #K-1, and the x is a non-negative integer smaller than the K-1.
  • the target value is linearly related to the smallest first-type value among the K first-type values.
  • the target value is the product of the smallest first-type value among the K first-type values and the K.
  • the K first-type sub-signals are respectively sent by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports; the target value is all The product of the smallest one of the K first type values and the total number of antenna ports included in the K antenna port groups.
  • the target value is a product of the smallest first-type value among the K first-type values and the number of layers of the first wireless signal.
  • the target value is the product of the smallest first-type value among the K first-type values and the total number of transmitting antenna ports of the first wireless signal.
  • the target value is the product of the smallest first-type value among the K first-type values and the number of layers of the first wireless signal, multiplied by the K.
  • the target value is linearly related to the largest first-type value among the K first-type values.
  • the target value is the product of the largest first-type value among the K first-type values and the K.
  • the K first-type sub-signals are respectively sent by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports; the target value is all The product of the largest first-type value among the K first-type values and the total number of antenna ports included in the K antenna port groups.
  • the target value is the product of the largest first-type value among the K first-type values and the number of layers of the first wireless signal.
  • the target value is the product of the largest first-type value among the K first-type values and the total number of transmit antenna ports of the first wireless signal.
  • the target value is the product of the largest first-type value among the K first-type values and the number of layers of the first wireless signal, multiplied by the K.
  • the K first-type sub-signals are respectively sent by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports; and the target value is equal to all The product of the smallest first-type value among the K first-type values and the total number of antenna ports included in the K antenna port groups is multiplied by a second parameter; the second parameter is the first wireless The product of the target code rate (target code rate) of the signal and the modulation order (modulation order) of the first wireless signal.
  • target code rate target code rate
  • modulation order modulation order
  • the target value is the product of the smallest first-type value among the K first-type values and the number of layers of the first wireless signal multiplied by a second parameter;
  • the second parameter is the product of the target code rate of the first wireless signal and the modulation order of the first wireless signal.
  • the target value is the product of the smallest first-type value among the K first-type values and the total number of transmit antenna ports of the first wireless signal multiplied by a second parameter;
  • the second parameter is the product of the target code rate of the first wireless signal and the modulation order of the first wireless signal.
  • the target value is the smallest first-type value among the K first-type values, the number of layers of the first wireless signal, and the product of the K and the second parameter;
  • the second parameter is the product of the target code rate of the first wireless signal and the modulation order of the first wireless signal.
  • the K first-type sub-signals are respectively sent by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports; the target value is all The product of the largest first-type value among the K first-type values and the total number of antenna ports included in the K antenna port groups is multiplied by a second parameter; the second parameter is the first wireless The product of the target code rate of the signal and the modulation order of the first wireless signal.
  • the target value is the product of the largest first-type value among the K first-type values and the number of layers of the first wireless signal multiplied by a second parameter;
  • the second parameter is the product of the target code rate of the first wireless signal and the modulation order of the first wireless signal.
  • the target value is the product of the largest first-type value among the K first-type values and the total number of transmit antenna ports of the first wireless signal, multiplied by a second parameter;
  • the second parameter is the product of the target code rate of the first wireless signal and the modulation order of the first wireless signal.
  • the target value is the largest first-type value among the K first-type values, the number of layers of the first wireless signal, and the product of the K and the second parameter;
  • the second parameter is the product of the target code rate of the first wireless signal and the modulation order of the first wireless signal.
  • Embodiment 13 illustrates a schematic diagram of K first-type numerical values used to determine the target numerical value according to an embodiment of the present application; as shown in FIG. 13.
  • the K first-category values correspond to K weighting coefficients one-to-one, and the K weighting coefficients are respectively positive real numbers; the K first-category values are respectively corresponding to the K weighting coefficients Multiplying to obtain K weighted values, and the K weighted values are used to determine the target value.
  • the indexes of the K first-category values, the K weighting coefficients, and the K weighted values are #0,..., #K-1, respectively.
  • the K weighted values correspond to the K first type values one-to-one; any weighted value of the K weighted values is equal to the corresponding first type value and the corresponding weight The product of the coefficients.
  • the K weighting coefficients are respectively positive integers.
  • the K weighting coefficients are all equal to 1.
  • the K first-type sub-signals are respectively transmitted by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports; the K weighting coefficients Each is the number of antenna ports included in the K antenna port groups.
  • the K weighting coefficients are respectively the number of layers corresponding to the K first-type sub-signals.
  • the sum of the K weighting coefficients is equal to the number of layers of the first wireless signal.
  • the sum of the K weighting coefficients is greater than the number of layers of the first wireless signal.
  • the K weighted values are positive real numbers respectively.
  • the K weighted values are positive real numbers greater than 1.
  • the K weighted values are respectively positive integers.
  • the K weighted values are positive integers greater than 1.
  • the target value is linearly related to any one of the K first-type values, and the linear coefficients between the target value and the K first-type values are respectively The K weighting coefficients.
  • the target value is the sum of the K weighted values.
  • the target value is the product of the first value and the sum of the K weighting coefficients
  • the first value is the smallest positive integer not less than the first ratio
  • the first ratio is the K The ratio of the sum of the weighted values to the sum of the K weighting coefficients.
  • the target value is the product of the first value and the sum of the K weighting coefficients
  • the first value is the largest positive integer not greater than the first ratio
  • the first ratio is the K The ratio of the sum of the weighted values to the sum of the K weighting coefficients.
  • the target value is a product of a first value and a layer of the first wireless signal
  • the first value is a smallest positive integer not less than a first ratio
  • the first ratio Is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients.
  • the target value is a product of a first value and a layer of the first wireless signal
  • the first value is a maximum positive integer not greater than a first ratio
  • the first ratio Is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients.
  • the target value is a product of a first value and a layer of the first wireless signal multiplied by the K, and the first value is the smallest positive integer not less than the first ratio
  • the first ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients.
  • the target value is a product of a first value and a layer of the first wireless signal multiplied by the K, and the first value is a maximum positive integer not greater than a first ratio
  • the first ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients.
  • the target value is the product of the sum of the K weighted values and a second parameter; the second parameter is the target code rate of the first wireless signal and the The product of the modulation order of the first wireless signal.
  • the target value is the product of the first value and the sum of the K weighting coefficients and then multiplied by the second parameter;
  • the first value is the smallest positive integer not less than the first ratio,
  • the first A ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients, and
  • the second parameter is the target code rate of the first wireless signal and the first The product of the modulation order of the wireless signal.
  • the target value is the product of the first value and the sum of the K weighting coefficients and then multiplied by the second parameter;
  • the first value is the largest positive integer not greater than the first ratio, the first A ratio is equal to the ratio of the sum of the K weighted values to the sum of the K weighting coefficients, and the second parameter is equal to the target code rate of the first wireless signal and the first The product of the modulation order of the wireless signal.
  • the target value is a product of a first value and a layer of the first wireless signal multiplied by a second parameter; the first value is the smallest positive integer not less than the first ratio
  • the first ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients, and the second parameter is the target code rate of the first wireless signal and The product of the modulation order of the first wireless signal.
  • the target value is a product of a first value and a layer of the first wireless signal multiplied by a second parameter; the first value is the largest positive integer not greater than the first ratio
  • the first ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients, and the second parameter is the target code rate of the first wireless signal and The product of the modulation order of the first wireless signal.
  • the target value is a first value, the number of layers of the first wireless signal (layer), the product of the K and a second parameter; the first value is the smallest value not less than the first ratio A positive integer, the first ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients, and the second parameter is the target code rate of the first wireless signal. ) And the product of the modulation order of the first wireless signal.
  • the target value is a first value, the number of layers of the first wireless signal (layer), the product of the K and a second parameter; the first value is the maximum value not greater than the first ratio A positive integer, the first ratio is the ratio of the sum of the K weighted values to the sum of the K weighting coefficients, and the second parameter is the target code rate of the first wireless signal. ) And the product of the modulation order of the first wireless signal.
  • Embodiment 14 illustrates a schematic diagram in which the target value according to an embodiment of the present application is used to determine the number of bits included in the first bit block; as shown in FIG. 14.
  • the target value is used to determine the second type of value in this application, and the number of bits included in the first bit block is equal to that in the first type of reference integer set in this application
  • the first-type reference integer that is closest to the second-type value among all the first-type reference integers not less than the second-type value; the first-type reference integer set includes multiple first-type reference integers .
  • the second type of value is a positive integer.
  • the second type of value is a positive integer greater than 1.
  • the number of bits included in the first bit block is a first-type reference integer in the first-type reference integer set; any one in the first-type reference integer set is different from the The number of bits included in the first bit block is not less than the absolute value of the difference between the first type reference integer of the second type value and the second type value is greater than the total number of bits included in the first bit block The absolute value of the difference of the second type of value.
  • any first-type reference integer in the first-type reference integer set is a positive integer.
  • any first-type reference integer in the first-type reference integer set is a positive integer greater than one.
  • any reference integer of the first type in the set of reference integers of the first type is a TBS.
  • the first type of reference integer set includes TBS in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • the target value is not greater than 3824
  • the first type of reference integer set includes TBS in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • the first type of reference integer set includes all TBSs in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • the target value is not greater than 3824
  • the first type of reference integer set includes all TBSs in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • the first type of reference integer set is composed of all TBSs in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • the target value is not greater than 3824
  • the first type of reference integer set is composed of all TBSs in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • Embodiment 15 illustrates a schematic diagram of the target value used to determine the number of bits included in the first bit block according to an embodiment of the present application; as shown in FIG. 15.
  • the target value is used to determine the second type of value in this application, and the number of bits included in the first bit block is equal to that in the first type of reference integer set in this application
  • the first-type reference integer that is closest to the second-type value among all the first-type reference integers not less than the second-type value; the first-type reference integer set includes multiple first-type reference integers .
  • the sum of any first type reference integer in the first type reference integer set and the first bit number is a positive integer multiple of the fourth parameter, and the second type value is used to determine the fourth parameter, so
  • the fourth parameter is a positive integer, and the first number of bits is a positive integer.
  • the target value is greater than 3824.
  • the first number of bits is one of ⁇ 6, 11, 16, 24 ⁇ .
  • the first number of bits is 24.
  • the given positive integer is the first A reference integer of the first type in the set of reference integers of a type.
  • the target code rate of the first wireless signal is used to determine the fourth parameter.
  • the target code rate of each first-type sub-signal in the K first-type sub-signals is used to determine the fourth parameter.
  • the average value of the target code rates of the K first-type sub-signals is used to determine the fourth parameter.
  • the fourth parameter is C times 8, the C is a positive integer, and the second type of value is used to determine the C.
  • the C is equal to 1.
  • the C is greater than 1.
  • the target bit rate of the first wireless signal is used to determine the C.
  • the target code rate of each of the K first-type sub-signals is used to determine the C.
  • the average value of the target code rate of the K first-type sub-signals is used to determine the C.
  • the target bit rate of the first wireless signal is not greater than 1/4
  • the target code rate of the first wireless signal is greater than 1/4, and the second-type value is greater than 8424, and the
  • the C is equal to 1.
  • the target code rate of the first wireless signal is greater than 1/4
  • the second type value is not greater than 8424
  • the C is equal to 1.
  • Embodiment 16 illustrates a schematic diagram in which the target value according to an embodiment of the present application is used to determine the second type of value; as shown in FIG. 16.
  • the second type of value is the maximum value between the second threshold value and the first reference value
  • the first reference value is the second type closest to the reference target value in the set of second type reference integers Reference integer.
  • the reference target value is equal to the difference between the target value and a second number of bits, and the second number of bits is a non-negative integer;
  • the set of second type reference integers includes a plurality of second type reference integers, and the second type Any second type reference integer in the reference integer set is a positive integer multiple of a third parameter, and the reference target value is used to determine the third parameter, and the third parameter is a positive integer.
  • the absolute value of the difference between any second type reference integer that is different from the first reference value and the reference target value in the second type reference integer set is greater than the first reference value and the reference value.
  • the absolute value of the difference between the reference target value is greater than the first reference value and the reference value.
  • the second threshold is a positive integer.
  • the second number of bits is a non-negative integer.
  • the second bit number is one of ⁇ 0, 6, 11, 16, 24 ⁇ .
  • the second number of bits is equal to zero.
  • the second number of bits is greater than zero.
  • any second-type reference integer in the second-type reference integer set is not greater than the reference target value.
  • the target value is not greater than 3824, and any second type reference integer in the set of second type reference integers is not greater than the reference target value.
  • the given positive integer is not greater than the reference target value and is a positive integer multiple of the third parameter, the given positive integer is the second A second type reference integer in the set of class reference integers.
  • the target value is not greater than 3824; for any given positive integer, if the given positive integer is not greater than the reference target value and is a positive integer multiple of the third parameter, the The definite positive integer is a second type reference integer in the second type reference integer set.
  • the target value is not greater than 3824, and the second number of bits is zero.
  • the given positive integer is a positive integer multiple of the third parameter, the given positive integer is a first in the set of reference integers of the second type.
  • the second type of reference integer is a positive integer multiple of the third parameter.
  • the target value is greater than 3824.
  • the given positive integer is a positive integer multiple of the third parameter, the given positive integer is the second type A reference integer of the second type in the set of reference integers.
  • the target value is greater than 3824, and the second number of bits is greater than zero.
  • Embodiment 17 illustrates a schematic diagram of determining the number of bits included in the first bit block according to an embodiment of the present application; as shown in FIG. 17.
  • the sizes of the time-frequency resources allocated to the K first-type sub-signals in this application are respectively used to determine the K first-type values in this application; the K The first type of value is used to determine the target value in this application, and the target value is used to determine the number of bits included in the first bit block.
  • the K first-category values correspond to K fourth-category values one-to-one, and any first-category value of the K first-category values is the corresponding fourth-category value and is The product of the number of PRBs allocated to the corresponding first-type sub-signals.
  • the K fourth-category values are respectively the minimum values between the K fifth-category values and the first threshold, and the K fifth-category values are respectively the same as the multiples assigned to the K first-category sub-signals.
  • the number of carrier symbols is linearly related; the linear coefficient between any of the K fifth-type values and the number of multi-carrier symbols allocated to the corresponding first-type sub-signal is 12.
  • the K fifth-category values are respectively linearly related to the K third-category values in this application; for any given fifth-category value among the K fifth-category values, the given fifth-category value
  • the linear coefficient between the five types of values and the corresponding third type of values is equal to minus 1.
  • the K fifth-category values are linearly related to the K sixth-category values; for any given fifth-category value among the K fifth-category values, the given fifth-category value and the corresponding
  • the linear coefficient between the sixth category of values is equal to minus 1.
  • the K sixth type values are related to the size of the time-frequency resources occupied by the K first type reference signals in this application.
  • the target value is the smallest first-type value among the K first-type values and the number of layers of the first wireless signal in this application, and the target bit rate of the first wireless signal is sum The product of the modulation order of the first wireless signal.
  • the second type of value in this application is the maximum value between the second threshold and the first reference value, and the first reference value is the second type of reference closest to the target value in the set of second type reference integers Integer.
  • the second type reference integer set includes a plurality of second type reference integers, any second type reference integer in the second type reference integer set is not greater than the target value, and the second type reference integer set is Any second type reference integer of is a positive integer multiple of a third parameter, and the target value is used to determine the third parameter, and the third parameter is a positive integer.
  • the number of bits included in the first bit block is equal to the maximum of all the first type reference integers that are not less than the second type value in the first type reference integer set in the present application.
  • a closest reference integer of the first type; the set of reference integers of the first type includes a plurality of reference integers of the first type.
  • the target value is not greater than 3824.
  • the given positive integer is not greater than the target value and is a positive integer multiple of the third parameter, the given positive integer is the second type A reference integer of the second type in the set of reference integers.
  • the second threshold is equal to 24.
  • the third parameter is equal to
  • the second type of value is equal to
  • the first type of reference integer set includes all TBSs in Table 5.1.3.2-1 in 3GPP TS38.214 (V15.3.0).
  • the time domain resources occupied by the K first-type sub-signals are non-orthogonal
  • the K first-type sub-signals respectively include K second-type sub-signal sets, and any second-type sub-signal set in the K second-type sub-signal sets includes a positive integer Two types of sub-signals.
  • the total number of the second-type sub-signals included in the K second-type sub-signal sets is L, where L is a positive integer greater than 1, and the K second-type sub-signal sets include L second-type sub-signals
  • the signal is L layers of the first wireless signal.
  • Embodiment 18 illustrates a schematic diagram of determining the number of bits included in the first bit block according to an embodiment of the present application; as shown in FIG. 18.
  • the sizes of the time-frequency resources allocated to the K first-type sub-signals in this application are respectively used to determine the K first-type values in this application; the K The first type of value is used to determine the target value in this application, and the target value is used to determine the number of bits included in the first bit block.
  • the K first-category values correspond to the K fourth-category values one-to-one, and any one of the K first-category values is a corresponding fourth-category value.
  • the K fourth-category values are respectively the minimum values between the K fifth-category values and the first threshold, and the K fifth-category values are respectively the same as the multiples assigned to the K first-category sub-signals.
  • the number of carrier symbols is linearly related; the linear coefficient between any of the K fifth-type values and the number of multi-carrier symbols allocated to the corresponding first-type sub-signal is 12.
  • the K fifth-category values are respectively linearly related to the K third-category values in this application; for any given fifth-category value among the K fifth-category values, the given fifth-category value The linear coefficient between the five types of values and the corresponding third type of values is equal to minus 1.
  • the K fifth-category values are linearly related to the K sixth-category values; for any given fifth-category value among the K fifth-category values, the given fifth-category value and the corresponding The linear coefficient between the sixth category of values is equal to minus 1.
  • the K sixth type values are related to the size of the time-frequency resources occupied by the K first type reference signals in this application.
  • the K first-category values correspond to the K weighting coefficients in the present application; the K first-category values are respectively multiplied by the K weighting coefficients to obtain the K in the present application. Weighted values, and the target value is the sum of the K weighted values.
  • the K first-type sub-signals are respectively transmitted by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports; the K weighting coefficients are respectively the K The number of antenna ports included in each antenna port group.
  • the second type of value in this application is the maximum value between the second threshold and the first reference value
  • the first reference value is the second type of reference integer closest to the reference target value in the set of second type reference integers
  • the reference target value is equal to the difference between the target value and a second number of bits, and the second number of bits is a positive integer.
  • the second type reference integer set includes a plurality of second type reference integers, any second type reference integer in the second type reference integer set is a positive integer multiple of a third parameter, and the reference target value is used For determining the third parameter, the third parameter is a positive integer.
  • the number of bits included in the first bit block is equal to the maximum of all the first type reference integers that are not less than the second type value in the first type reference integer set in the present application.
  • a closest reference integer of the first type; the set of reference integers of the first type includes a plurality of reference integers of the first type.
  • the sum of any first type reference integer in the first type reference integer set and the first bit number is a positive integer multiple of the fourth parameter, and the second type value is used to determine the fourth parameter, so
  • the fourth parameter is a positive integer
  • the first number of bits is a positive integer.
  • the second number of bits is equal to the first number of bits.
  • the target value is greater than 3824.
  • the first number of bits is one of ⁇ 6, 11, 16, 24 ⁇ .
  • the first number of bits is 24.
  • the given positive integer is the first A reference integer of the first type in the set of reference integers of a type.
  • the target code rate of the first wireless signal is not greater than 1/4
  • the fourth parameter is
  • the target code rate of the first wireless signal is greater than 1/4
  • the second type value is greater than 8424
  • the fourth parameter is
  • the target code rate of the first wireless signal is greater than 1/4
  • the second type value is not greater than 8424
  • the fourth parameter is equal to 8.
  • the number of bits included in the first bit block is equal to
  • the given positive integer is a positive integer multiple of the third parameter, the given positive integer is a first in the set of reference integers of the second type.
  • the second type of reference integer is a positive integer multiple of the third parameter.
  • the second threshold is equal to 3840.
  • the second number of bits is one of ⁇ 6, 11, 16, 24 ⁇ .
  • the second number of bits is 24.
  • the third parameter is equal to
  • the second type of value is equal to
  • Embodiment 19 illustrates a schematic diagram in which the first information according to an embodiment of the present application is used to determine K third-type numerical values; as shown in FIG. 19.
  • the first information is used to determine K third-type numerical values
  • the K third-type numerical values are respectively used to determine the K first-type numerical values in this application.
  • the first information indicates the K third-type values.
  • the first information explicitly indicates the K third-type values.
  • the first information implicitly indicates the K third-type values.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC signaling.
  • the first information is carried by MAC CE signaling.
  • the first information is jointly carried by RRC signaling and MAC CE signaling.
  • the first information is carried by a higher layer signaling.
  • the first information is carried by multiple higher layer signaling.
  • the first information is carried by one RRC signaling.
  • the first information is carried by multiple RRC signaling.
  • the first information includes all or part of information in an IE (Information Element).
  • the first information includes all or part of the information in multiple IEs.
  • the first information includes all or part of the information in the PDSCH-ServingCellConfig IE.
  • the PDSCH-ServingCellConfig IE refers to 3GPP TS38.331.
  • the first information includes all or part of the information in the PUSCH-ServingCellConfig IE.
  • PUSCH-ServingCellConfig IE refers to 3GPP TS38.331.
  • the first information includes information in a higher layer coefficient xOverhead.
  • the first information includes all or part of the information in the xOverhead field of the PDSCH-ServingCellConfig IE.
  • the first information includes all or part of the information in the xOverhead field of the PUSCH-ServingCellConfig IE.
  • the K third-type values include information in a higher layer coefficient xOverhead.
  • the specific definition of the xOverhead can be found in 3GPP TS38.331 and TS38.214.
  • the K third-type values are non-negative integers.
  • one of the K third-class values is equal to zero.
  • At least one of the K third-class values is greater than zero.
  • any of the K third-category values is one of ⁇ 0, 6, 12, 18 ⁇ .
  • the K is equal to 2, and the K third-class values are different from each other.
  • the K is greater than 2, and at least two of the K third-class values are different from each other.
  • the K is greater than 2, and any two of the K third-class values are different from each other.
  • the first information is used to determine K0 third-type values, K0 is a positive integer not less than the K, and the K third-type values are the number of the K0 third-type values Subset; the first signaling is used to determine the K third type values from the K0 third type values.
  • the K0 is greater than the K.
  • the K0 is equal to the K.
  • any third-type value among the K0 third-type values is one of ⁇ 0, 6, 12, 18 ⁇ .
  • the time-frequency resource occupied by the first signaling is used to determine the K third-type values from the K0 third-type values.
  • the CORESET (COntrol REsource SET, control resource set) to which the time-frequency resource occupied by the first signaling belongs is used to determine the K0 third-type values K third category values.
  • the search space to which the time-frequency resource occupied by the first signaling belongs is used to determine the K third-type values from the K0 third-type values. Class value.
  • the search space set (search space set) to which the time-frequency resource occupied by the first signaling belongs is used to determine the K from the K0 third-type values The third type of value.
  • the first signaling indicates the K third-type values.
  • the first signaling explicitly indicates the K third-type values.
  • the first signaling implicitly indicates the K third-type values.
  • the HARQ process ID of the first wireless signal in this application is used to determine the K third-type values from the K0 third-type values.
  • the user equipment in this application uses the same spatial domain filter to receive the first reference signal and the first signaling, and the first reference signal is Used to determine the K third-category values from the K0 third-category values.
  • the first reference signal resource is reserved for the first reference signal, and the index of the first reference signal resource is used to determine from the K0 third-type values The K third category values.
  • Embodiment 20 illustrates a schematic diagram of K first-type reference signals respectively being used for demodulation of K first-type sub-signals according to an embodiment of the present application; as shown in FIG. 20.
  • the indexes of the K first-type reference signals and K first-type sub-signals are #0, ..., #K-1, respectively.
  • the K first type reference signals include DMRS.
  • the K first-type reference signals are respectively the DMRS of the K first-type sub-signals.
  • the K first-type reference signals are respectively used for the demodulation of the K first-type sub-signals, including: the K first-type reference signals are respectively used for the K Channel estimation of the first type of sub-signal.
  • the channel experienced by any first-type reference signal in the reference signal can be inferred from the channel experienced by the corresponding first-type sub-signal.
  • the operation in this application is receiving, and the execution in this application is sending.
  • the K first-type reference signals are respectively sent by different antenna port groups, and one antenna port group includes a positive integer number of antenna ports.
  • the K first-type sub-signals are respectively sent by K antenna port groups, and any antenna port group in the K antenna port groups includes a positive integer number of antenna ports;
  • the class reference signals are respectively sent by the K antenna port groups.
  • the time-frequency resources occupied by the K first-type reference signals and the time-frequency resources occupied by the first wireless signal in this application are orthogonal to each other.
  • the time domain resources occupied by the K first type reference signals and the time domain resources occupied by the first wireless signal in this application are orthogonal to each other.
  • the time domain resources occupied by the K first-type reference signals and the time domain resources occupied by the first wireless signal in the present application are not orthogonal.
  • the first wireless signal in this application does not include the K first-type reference signals.
  • any first-type sub-signal among the K first-type sub-signals does not occupy an RE allocated to any first-type reference signal among the K first-type reference signals.
  • Embodiment 21 illustrates a schematic diagram in which the size of the time-frequency resources allocated to K first-type reference signals is used to determine K first-type values according to an embodiment of the present application; as shown in FIG. 21.
  • the K first-category values and K fifth-category values are in one-to-one correspondence, and the K first-category values and K first parameters are in one-to-one correspondence; Any one of the first type values in the type value is equal to the product of the minimum value between the corresponding fifth type value and the first threshold and the corresponding first parameter.
  • the K fifth-type values are linearly related to K sixth-type values, and the K sixth-type values are related to the size of time-frequency resources allocated to the K first-type reference signals.
  • the size of the time-frequency resources allocated to the K first-type reference signals used to determine the K first-type values includes: occupied by the K first-type reference signals The size of the time-frequency resource is used to determine the K first-type values.
  • the size of the time-frequency resources allocated to the K first-type reference signals used to determine the K first-type values includes: being allocated to the K first-type reference signals The total number of REs of the signal is used to determine the K first type values.
  • the size of the time-frequency resources allocated to the K first-type reference signals used to determine the K first-type values includes: occupied by the K first-type reference signals The total number of REs is used to determine the K first type values.
  • the size of the time-frequency resources allocated to the K first-type reference signals used to determine the K first-type values includes: being allocated to the K first-type reference signals The number of REs of the signal are respectively used to determine the K first-type values.
  • the size of the time-frequency resources allocated to the K first-type reference signals used to determine the K first-type values includes: occupied by the K first-type reference signals The number of REs are respectively used to determine the K first-type values.
  • Embodiment 22 illustrates a structural block diagram of a processing apparatus used in user equipment according to an embodiment of the present application; as shown in FIG. 22.
  • the processing device 2200 in the user equipment includes a first receiver 2201 and a first processor 2202.
  • the first receiver 2201 receives the first signaling; the first processor 2202 operates the first wireless signal.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1.
  • the time domain resources occupied by the K first-type sub-signals are non-orthogonal; are allocated to the K first-type sub-signals
  • the size of the time-frequency resource is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine A target value, where the target value is used to determine the number of bits included in the first bit block; the operation is sending, or the operation is receiving.
  • the first processor 2202 sends the first wireless signal.
  • the first processor 2202 receives the first wireless signal.
  • the target value is linearly related to only one first-type value among the K first-type values.
  • the K first-category values correspond to K weighting coefficients in a one-to-one correspondence, and the K weighting coefficients are respectively positive real numbers; the K first-category values are respectively corresponding to the K weighting coefficients. Multiplying to obtain K weighted values, and the K weighted values are used to determine the target value.
  • the target value is used to determine the second type of value, and the number of bits included in the first bit block is equal to all the first type of reference integer set not less than the second type of value.
  • the number of multi-carrier symbols allocated to the K first-type sub-signals is used to determine the K first-type values, which are allocated to the K first-type sub-signals.
  • the number of resource blocks are respectively used to determine the K first-type values.
  • the first receiver 2201 receives first information; wherein, the first information is used to determine K third-type values, and the K third-type values are respectively used to determine the K first type values.
  • the first processor 2202 sends K first-type reference signals; wherein, the K first-type reference signals are respectively used for demodulation of the K first-type sub-signals; The size of the time-frequency resources allocated to the K first-type reference signals is used to determine the K first-type values; the operation is sending.
  • the first processor 2202 receives K first-type reference signals; wherein, the K first-type reference signals are respectively used for the demodulation of the K first-type sub-signals; The size of the time-frequency resources allocated to the K first-type reference signals is used to determine the K first-type values; the operation is receiving.
  • the first receiver 2201 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • the first processor 2202 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment 467 ⁇ , the operation is sending.
  • the first processor 2202 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in embodiment 4 At least one of 467 ⁇ , the operation is receiving.
  • Embodiment 23 illustrates a structural block diagram of a processing device used in a base station according to an embodiment of the present application; as shown in FIG. 23.
  • the processing device 2300 in the base station includes a first transmitter 2301 and a second processor 2302.
  • the first transmitter 2301 sends the first signaling; the second processor 2302 executes the first wireless signal.
  • the first wireless signal includes K first-type sub-signals, each of the K first-type sub-signals carries a first bit block, and K is a positive integer greater than 1.
  • the time domain resources occupied by the K first-type sub-signals are non-orthogonal; are allocated to the K first-type sub-signals
  • the size of the time-frequency resource is used to determine K first-type values, and there are two different first-type values among the K first-type values; the K first-type values are used to determine A target value, the target value being used to determine the number of bits included in the first bit block; the execution is reception, or the execution is transmission.
  • the second processor 2302 receives the first wireless signal.
  • the second processor 2302 sends the first wireless signal.
  • the target value is linearly related to only one first-type value among the K first-type values.
  • the K first-category values correspond to K weighting coefficients in a one-to-one correspondence, and the K weighting coefficients are respectively positive real numbers; the K first-category values are respectively corresponding to the K weighting coefficients. Multiplying to obtain K weighted values, and the K weighted values are used to determine the target value.
  • the target value is used to determine the second type of value, and the number of bits included in the first bit block is equal to all the first type of reference integer set not less than the second type of value.
  • the number of multi-carrier symbols allocated to the K first-type sub-signals is used to determine the K first-type values, which are allocated to the K first-type sub-signals.
  • the number of resource blocks are respectively used to determine the K first-type values.
  • the first transmitter 2301 sends first information; wherein, the first information is used to determine K third-type values, and the K third-type values are used to determine the K first type values.
  • the second processor 2302 receives K first-type reference signals; wherein, the K first-type reference signals are respectively used for the demodulation of the K first-type sub-signals; The size of the time-frequency resources allocated to the K first-type reference signals is used to determine the K first-type values; the execution is receiving.
  • the second processor 2302 sends K first-type reference signals; wherein, the K first-type reference signals are respectively used for demodulation of the K first-type sub-signals; The size of the time-frequency resources allocated to the K first-type reference signals is used to determine the K first-type values; the execution is transmission.
  • the first transmitter 2301 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the second processor 2302 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in embodiment 4 At least one, the execution is receiving.
  • the second processor 2302 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in embodiment 4 At least one, the execution is sending.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication devices such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication devices such as tablets.
  • MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point), etc. wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信令;操作第一无线信号。所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源非正交;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。在多TRP/panel传输中上述方法可以更准确的计算TBS,提高了传输可靠性和效率。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其是涉及支持多TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)传输的无线通信系统中的方法和装置。
背景技术
大尺度(Massive)MIMO是5G移动通信的一个关键技术。大尺度MIMO中,多个天线通过波束赋型,形成较窄的波束指向一个特定方向来提高通信质量。当多个天线属于多个TRP/panel时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。多TRP/panel可以同时服务一个UE(User Equipment,用户设备)来提高通信的鲁棒性和/或单个UE的传输速率。
在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,有一些预留的RE(Resource Element,资源粒子)不能被PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)/PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)占用,比如预留给CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)和CORESET(COntrol REsource SET,控制资源集合)的RE。在计算PDSCH/PUSCH上承载的TBS(Transport Block Size,传输块大小)时,需要考虑到这些RE的影响。LTE中用x开销(xOverhead)来表示这一类RE对TBS的影响。
发明内容
发明人通过研究发现,在多TRP/panel传输中,不同TRP/panel会配置不同的CSI-RS和CORESET,因此具有不同的x开销。当一个PDSCH/PUSCH同时被多个TRP/panel发送/接收,在计算这个PDSCH/PUSCH承载的TBS时,需要考虑不同TRP/panel的x开销。
针对上述问题,本申请公开了一种解决方案。在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信令;
操作第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。
作为一个实施例,本申请要解决的问题是:当一个PDSCH/PUSCH同时被多个TRP/panel发送/接收,并且不同TRP/panel预留的不能被用于PDSCH/PUSCH传输的RE的数量不同时,如何计算PDSCH/PUSCH上承载的TBS。上述方法通过综合考虑每个TRP/panel预留的RE的数量解决了这一问题。
作为一个实施例,上述方法的特质在于:所述第一比特块是一个TB(Transport Block,传输块),所述K个第一类子信号分别针对K个TRP/panel。所述K个第一类数值分别体现了所述K个TRP/panel预留的RE的数量,所述K个第一类数值共同被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,上述方法的好处在于:在一个PDSCH/PUSCH同时被多个TRP/panel发送/接收的情况下,能更准确的计算TBS,提高了传输可靠性和效率。
根据本申请的一个方面,其特征在于,所述目标数值和所述K个第一类数值中的仅一个第一类数值线性相关。
根据本申请的一个方面,其特征在于,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。
根据本申请的一个方面,其特征在于,所述目标数值被用于确定第二类数值,所述第一比特块包括的比特的数量等于第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
根据本申请的一个方面,其特征在于,被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值,被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
根据本申请的一个方面,其特征在于,包括:
接收第一信息;
其中,所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定所述K个第一类数值。
根据本申请的一个方面,其特征在于,包括:
操作K个第一类参考信号;
其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述操作是发送,或者所述操作是接收。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于,包括:
发送第一信令;
执行第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述执行是接收,或者所述执行是发送。
根据本申请的一个方面,其特征在于,所述目标数值和所述K个第一类数值中的仅一个第一类数值线性相关。
根据本申请的一个方面,其特征在于,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。
根据本申请的一个方面,其特征在于,所述目标数值被用于确定第二类数值,所述第一比特块包括的比特的数量等于第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
根据本申请的一个方面,其特征在于,被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值,被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
根据本申请的一个方面,其特征在于,包括:
发送第一信息;
其中,所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定所述K个第一类数值。
根据本申请的一个方面,其特征在于,包括:
执行K个第一类参考信号;
其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述执行是接收,或者所述执行是发送。
本申请公开了一种被用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信令;
第一处理器,操作第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。
本申请公开了一种被用于无线通信的基站设备,其特征在于,包括:
第一发送机,发送第一信令;
第二处理器,执行第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述执行是接收,或者所述执行是发送。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在一个PDSCH/PUSCH同时被多个TRP/panel发送/接收,并且不同TRP/panel预留的不能被用于PDSCH/PUSCH的RE的数量不同的情况下,为每个TRP/panel定义各自的x开销,使得基站/UE可以综合考虑每个TRP/panel的x开销来更准确的计算PDSCH/PUSCH承载的TBS,提高了传输可靠性和效率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的传输的流程图;
图7示出了根据本申请的一个实施例的第一信令被用于确定第一无线信号所占用的时频资源的示意图;
图8示出了根据本申请的一个实施例的K个第一类子信号在时频域的资源映射的示意图;
图9示出了根据本申请的一个实施例的K个第一类子信号在时频域的资源映射的示意图;
图10示出了根据本申请的一个实施例的被分配给K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值的示意图;
图11示出了根据本申请的一个实施例的被分配给K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值的示意图;
图12示出了根据本申请的一个实施例的K个第一类数值被用于确定目标数值的示意图;
图13示出了根据本申请的一个实施例的K个第一类数值被用于确定目标数值的示意图;
图14示出了根据本申请的一个实施例的目标数值被用于确定第一比特块包括的比特的数量的示意图;
图15示出了根据本申请的一个实施例的目标数值被用于确定第一比特块包括的比特的数量的示意图;
图16示出了根据本申请的一个实施例的目标数值被用于确定第二类数值的示意图;
图17示出了根据本申请的一个实施例的确定第一比特块包括的比特的数量的示意图;
图18示出了根据本申请的一个实施例的确定第一比特块包括的比特的数量的示意图;
图19示出了根据本申请的一个实施例的第一信息被用于确定K个第三类数值的示意图;
图20示出了根据本申请的一个实施例的K个第一类参考信号分别被用于K个第一类子信号的解调的示意图;
图21示出了根据本申请的一个实施例的被分配给K个第一类参考信号的时频资源的大小被用于确定K个第一类数值的示意图;
图22示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图23示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一无线信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特点的时间先后关系。
在实施例1中,本申请中的所述用户设备接收第一信令;操作第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数。所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。
作为一个实施例,所述第一信令包括所述第一无线信号的调度信息。
作为一个实施例,所述第一无线信号不包括DMRS(DeModulation Reference Signals,解调参考信号)。
作为一个实施例,所述第一无线信号不包括PTRS(Phase Tracking Reference Signals,相位跟踪参考信号)。
作为一个实施例,所述第一无线信号不包括CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)。
作为一个实施例,所述第一无线信号不包括SS/PBCH block(Synchronization Signal/Physical Broadcast Channel block,同步信号/物理广播信道块)。
作为一个实施例,所述第一无线信号不包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第一无线信号不包括TRS(Tracking Reference Signals,跟踪参考信号)。
作为一个实施例,所述第一无线信号由所述K个第一类子信号组成。
作为一个实施例,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括一个TB。
作为一个实施例,所述第一比特块是一个TB。
作为一个实施例,所述所述第一比特块包括的比特的数量是TBS。
作为一个实施例,所述第一比特块包括上行数据,所述操作是发送。
作为一个实施例,所述第一比特块包括下行数据,所述操作是接收。
作为一个实施例,所述所述K个第一类子信号均携带第一比特块是指:所述K个第一类子信号中的任一第一类子信号是所述第一比特块中的比特依次经过CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),分段(Segmentation),编码块级CRC附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),转换预编码器(transform precoder),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,所述所述K个第一类子信号均携带第一比特块是指:所述K个第一类子信号中的任一第一类子信号是所述第一比特块中的比特依次经过CRC附着,分段,编码块级CRC附着,信道编码,速率匹配,串联,加扰,调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,所述所述K个第一类子信号均携带第一比特块是指:所述K个第一类子信号中的任一第一类子信号是所述第一比特块中的比特依次经过信道编码,速率匹配,调制映射器,层映射器,转换预编码器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,所述所述K个第一类子信号均携带第一比特块是指:所述K个第一类子信号中的任一第一类子信号是所述第一比特块中的比特依次经过信道编码,速率匹配,调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,所述所述K个第一类子信号均携带第一比特块是指:所述第一比特块被用于生成所述K个第一类子信号中的任一第一类子信号。
作为一个实施例,所述第一无线信号携带所述第一比特块。
作为一个实施例,所述K个第一类子信号所占用的时频资源是非正交的。
作为一个实施例,所述第一无线信号是所述第一比特块的初传(first transmission)。
作为一个实施例,所述第一无线信号对应的MCS(Modulation and Coding Scheme,调制编码方式)索引(index)是不小于0且不大于27的正整数。
作为上述实施例的一个子实施例,3GPP TS38.214中的Table 5.1.3.1-2被用于所述第一无线信号对应的MCS索引(index)的解读。
作为一个实施例,所述第一无线信号对应的MCS索引(index)是不小于0且不大于28的正整数。
作为上述实施例的一个子实施例,3GPP TS38.214中不同于Table 5.1.3.1-2的一个MCS索引(index)表格(table)被用于所述第一无线信号对应的MCS索引(index)的解读。
作为一个实施例,所述第一无线信号对应的MCS索引(index)是I MCS,所述I MCS的具体定义参见3GPP TS38.214。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值包括:对于所述K个第一类数值中的任一给定第一类数值,所述给定第一类数值和所述K个第一类子信号中的给定第一类子信号对应;被分配给所述给定第一类子信号的时频资源的大小被用于确定所述给定第一类数值,所述给定第一类数值和被分配给所述K个第一类子信号中不同于所述给定第一类子信号的任一第一类子信号的时频资源的大小无关。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确 定K个第一类数值包括:被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值包括:所述K个第一类子信号所占用的多载波符号的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值包括:被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值包括:所述K个第一类子信号所占用的资源块的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述资源块是指:PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述资源块是指:RB(Resource Block,资源块)。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值包括:被分配给所述K个第一类子信号的RE(Resource Element,资源粒子)的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值包括:所述K个第一类子信号所占用的RE的数量分别被用于确定所述K个第一类数值。
作为一个实施例,一个RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,对于所述K个第一类数值中任一给定第一类数值,所述给定第一类数值和所述K个第一类子信号中的给定第一类子信号对应;被分配给所述给定第一类子信号的多载波符号的数量被用于确定所述给定第一类数值,所述给定第一类数值和被分配给所述K个第一类子信号中不同于所述给定第一类子信号的任一第一类子信号的多载波符号的数量无关。
作为一个实施例,对于所述K个第一类数值中任一给定第一类数值,所述给定第一类数值和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一类子信号所占用的多载波符号的数量被用于确定所述给定第一类数值,所述给定第一类数值和所述K个第一类子信号中不同于所述给定第一类子信号的任一第一类子信号所占用的多载波符号的数量无关。
作为一个实施例,对于所述K个第一类数值中任一给定第一类数值,所述给定第一类数值和所述K个第一类子信号中的给定第一类子信号对应;被分配给所述给定第一类子信号的资源块的数量被用于确定所述给定第一类数值,所述给定第一类数值和被分配给所述K个第一类子信号中不同于所述给定第一类子信号的任一第一类子信号的资源块的数量无关。
作为一个实施例,对于所述K个第一类数值中任一给定第一类数值,所述给定第一类数值和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一类子信号所占用的资源块的数量被用于确定所述给定第一类数值,所述给定第一类数值和所述K个第一类子信号中不同于所述给定第一类子信号的任一第一类子信号所占用的资源块的数量无关。
作为一个实施例,所述K个第一类子信号分别对应相同的MCS。
作为一个实施例,所述K个第一类子信号分别对应相同的MCS索引(index)。
作为一个实施例,所述K个第一类子信号中任一第一类子信号的MCS是所述第一无线信号的MCS。
作为一个实施例,所述K个第一类子信号中任一第一类子信号的MCS索引(index)是所述第一无线信号的MCS索引(index)。
作为一个实施例,所述K个第一类子信号分别对应相同的目标码率(target code rate)。
作为一个实施例,所述K个第一类子信号中任一第一类子信号的目标码率(target code rate)是所述第一无线信号的目标码率。
作为一个实施例,所述K个第一类子信号分别对应相同的调制阶数(modulation order)。
作为一个实施例,所述K个第一类子信号中任一第一类子信号的调制阶数(modulation order)是所述第一无线信号的调制阶数。
作为一个实施例,所述目标码率(target code rate)的具体定义参见3GPP TS38.214。
作为一个实施例,所述调制阶数(modulation order)的具体定义参见3GPP TS38.214。
作为一个实施例,所述第一无线信号的MCS被用于确定所述第一无线信号的目标码率(target code rate)。
作为一个实施例,所述第一无线信号的MCS被用于确定所述第一无线信号的调制阶数(modulation order)。
作为一个实施例,所述第一无线信号的MCS索引(index)被用于确定所述第一无线信号的目标码率(target code rate)。
作为一个实施例,所述第一无线信号的MCS索引(index)被用于确定所述第一无线信号的调制阶数(modulation order)。
作为一个实施例,所述第一无线信号的MCS被用于确定所述K个第一类子信号中任一第一类子信号的目标码率(target code rate)。
作为一个实施例,所述第一无线信号的MCS被用于确定所述K个第一类子信号中任一第一类子信号的调制阶数(modulation order)。
作为一个实施例,所述第一无线信号的MCS索引(index)被用于确定所述K个第一类子信号中任一第一类子信号的目标码率(target code rate)。
作为一个实施例,所述第一无线信号的MCS索引(index)被用于确定所述K个第一类子信号中任一第一类子信号的调制阶数(modulation order)。
作为一个实施例,所述K个第一类子信号中存在两个第一类子信号对应不同的MCS。
作为一个实施例,所述K个第一类子信号中存在两个第一类子信号对应不同的MCS索引(index)。
作为一个实施例,所述K个第一类子信号中存在两个第一类子信号对应不同的目标码率。
作为一个实施例,所述K个第一类子信号中存在两个第一类子信号对应不同的调制阶数。
作为一个实施例,所述K个第一类子信号的MCS分别被用于确定所述K个第一类子信号的目标码率(target code rate)。
作为一个实施例,所述K个第一类子信号的MCS分别被用于确定所述K个第一类子信号的调制阶数(modulation order)。
作为一个实施例,所述K个第一类子信号的MCS索引(index)分别被用于确定所述K个第一类子信号的目标码率(target code rate)。
作为一个实施例,所述K个第一类子信号的MCS索引(index)分别被用于确定所述K个第一类子信号的调制阶数(modulation order)。
作为一个实施例,所述K个第一类数值中的任一第一类数值是正整数。
作为一个实施例,所述K个第一类数值中的任一第一类数值是大于1的正整数。
作为一个实施例,所述K个第一类数值中的任一第一类数值是正实数。
作为一个实施例,所述K个第一类数值中的任一第一类数值是大于1的正实数。
作为一个实施例,所述目标数值是正实数。
作为一个实施例,所述目标数值是大于1的正实数。
作为一个实施例,所述目标数值是正整数。
作为一个实施例,所述目标数值是大于1的正整数。
作为一个实施例,所述K等于2,所述K个第一类数值互不相同。
作为一个实施例,所述K大于2,所述K个第一类数值中存在两个不相同的第一类数值。
作为一个实施例,所述K大于2,所述K个第一类数值中任意两个第一类数值互不相同。
作为一个实施例,所述K大于2,所述K个第一类数值中存在两个相同的第一类数值。
作为一个实施例,所述用户设备接收所述第一无线信号。
作为一个实施例,所述用户设备发送所述第一无线信号。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME211,其它MME214,S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203支持基于多TRP/panel的传输。
作为一个实施例,所述UE201支持基于多TRP/panel的传输。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304, 这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一无线信号成于所述PHY301。
作为一个实施例,本申请中的所述K个第一类子信号均成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述K个第一类参考信号均生成于所述PHY301。
实施例4
实施例4示例了根据本申请的一个实施例的NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。 每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:接收本申请中的所述第一信令;发送本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令;发送本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子 信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送本申请中的所述第一信令;接收本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令;接收本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:接收本申请中的所述第一信令;接收本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令;接收本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送本申请中的所述第一信令;发送本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第 一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令;发送本申请中的所述第一无线信号。其中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述K个第一类参考信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述K个第一类参考信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述K个第一类参考信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述K个第一类参考信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F51和F52中的步骤分 别是可选的。
对于N1,在步骤S5101中发送第一信息;在步骤S511中发送第一信令;在步骤S512中接收第一无线信号;在步骤S5102中接收K个第一类参考信号。
对于U2,在步骤S5201中接收第一信息;在步骤S521中接收第一信令;在步骤S522中发送第一无线信号;在步骤S5202中发送K个第一类参考信号。
在实施例5中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定所述K个第一类数值。所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值。
作为一个实施例,所述N1是本申请中的所述基站。
作为一个实施例,所述U2是本申请中的所述用户设备。
作为一个实施例,本申请中的所述操作是发送,本申请中的所述执行是接收。
作为一个实施例,所述目标数值和所述K个第一类数值中的仅一个第一类数值线性相关。
作为一个实施例,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。
作为一个实施例,所述目标数值被用于确定第二类数值,所述第一比特块包括的比特的数量等于第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
作为一个实施例,被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值,被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述资源块是指PRB。
作为一个实施例,所述资源块是指RB。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线 PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为一个实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
实施例6
实施例6示例了根据本申请的一个实施例的无线传输的流程图,如附图6所示。在附图6中,基站N3是用户设备U4的服务小区维持基站。附图6中,方框F61和F62中的步骤分别是可选的。
对于N3,在步骤S6301中发送第一信息;在步骤S631中发送第一信令;在步骤S6302中发送K个第一类参考信号;在步骤S632中发送第一无线信号。
对于U4,在步骤S6401中接收第一信息;在步骤S641中接收第一信令;在步骤S6402中接收K个第一类参考信号;在步骤S642中接收第一无线信号。
作为一个实施例,所述N3是本申请中的所述基站。
作为一个实施例,所述U4是本申请中的所述用户设备。
作为一个实施例,本申请中的所述操作是接收,本申请中的所述执行是发送。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH。
作为一个实施例,所述下行物理层数据信道是sPDSCH。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH。
实施例7
实施例7示例了根据本申请的一个实施例第一信令被用于确定第一无线信号所占用的时频资源的示意图;如附图7所示。在实施例7中,所述第一信令被用于确定所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第一信令是用于Configured UL grant(配置上行授予)的动态信令。
作为一个实施例,所述第一信令是用于Configured UL grant激活(activation)的动态信令。
作为一个实施例,所述第一信令是用于下行SPS(Semi-persistent scheduling,半静态)分配(assignment)激活(activation)的动态信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括用于上行授予(UpLink Grant)的DCI。
作为一个实施例,所述第一信令包括用于下行授予(DownLink Grant)的DCI。
作为一个实施例,所述第一信令包括用于Configured UL grant的DCI。
作为一个实施例,所述第一信令包括用于Configured UL grant激活的DCI。
作为一个实施例,所述第一信令包括用于Configured UL grant Type 2(第二类型)激活的DCI。
作为一个实施例,所述第一信令包括用于下行SPS分配激活的DCI。
作为一个实施例,所述第一信令是用户特定(UE-specific)的。
作为一个实施例,所述第一信令包括被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所标识的DCI。
作为一个实施例,所述第一信令包括CRC(Cyclic Redundancy Check,循环冗余校验)被C-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令包括被CS(Configured Scheduling,配置调度)-RNTI所标识的DCI。
作为一个实施例,所述第一信令包括CRC被CS-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令包括被MCS-C-RNTI所标识的DCI。
作为一个实施例,所述第一信令包括CRC被MCS-C-RNTI所加扰(Scrambled)的DCI。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令指示所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令显式的指示所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令包括所述第一无线信号的调度信息。
作为一个实施例,所述第一无线信号的调度信息包括所述第一无线信号的{所占用的时域资源,所占用的频域资源,MCS,DMRS配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示)}中的至少之一。
作为一个实施例,所述DMRS配置信息包括所述DMRS的{所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),w f(k′),w t(l′)}中的一种或多种。所述w f(k′)和所述w t(l′)分别是频域和时域上的扩频序列,所述w f(k′)和所述w t(l′)的具体定义参见3GPP TS38.211的6.4.1章节。
实施例8
实施例8示例了根据本申请的一个实施例的K个第一类子信号在时频域的资源映射的示意图;如附图8所示。在实施例8中,本申请中的所述第一无线信号包括所述K个第一类子信号,所述K个第一类子信号所占用的时频资源是非正交的。在附图8中,所述K个第一类子信号的索引分别是#0,...,#K-1。
作为一个实施例,所述K个第一类子信号所占用的时频资源是非正交的。
作为一个实施例,所述K等于2,所述K个第一类子信号所占用的时频资源是非正交的。
作为一个实施例,所述K大于2,所述K个第一类子信号中的任意两个第一类子信号所占用的时频资源是非正交的。
作为一个实施例,所述K等于2,所述K个第一类子信号所占用的时频资源部分重叠。
作为一个实施例,所述K大于2,所述K个第一类子信号中的任意两个第一类子信号所占用的时频资源部分重叠。
作为一个实施例,所述K个第一类子信号中存在一个给定第一类子信号,所述给定第一类子信号所占用的部分时频资源不被所述K个第一类子信号中不同于所述给定第一类子信号的一个第一类子信号占用。
作为一个实施例,所述K个第一类子信号分别占用K个RE集合,所述K个RE集合中任一RE集合包括正整数个RE。所述K个RE集合中的任一RE集合中存在一个RE同时属于所述K个RE集合中的所有RE集合;所述K个RE集合中存在一个第一RE集合,所述第一RE集合中存在一个RE不属于所述K个RE集合中不同于所述第一RE集合的一个RE集合。
作为上述实施例的一个子实施例,所述第一RE集合是所述K个RE集合中任一RE集合。
作为上述实施例的一个子实施例,所述K个RE集合中存在一个第二RE集合,所述第二RE集合中的任一RE属于所述K个RE集合中的所有RE集合。
作为一个实施例,所述K个第一类子信号中存在两个第一类子信号所占用的RE的数量不相等。
作为一个实施例,所述K个第一类子信号所占用的频域资源是非正交的。
作为一个实施例,所述K个第一类子信号分别被不同的天线端口组发送,一个天线端口组包括正整数个天线端口。
作为一个实施例,本申请中的所述第一信令指示所述K个第一类子信号中任一第一类子信号的发送天线端口组。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口。第一天线端口组和第二天线端口组是所述K个天线端口组中的两个天线端口组,第一天线端口和第二天线端口分别是所述第一天线端口组和所述第二天线端口组中的一个天线端口;不能假设所述第一天线端口和所述第二天线端口QCL(Quasi Co-Located,准共址)。
作为上述实施例的一个子实施例,所述K大于2,所述第一天线端口组和所述第二天线端口组是所述K个天线端口组中的任意两个天线端口组。
作为上述实施例的一个子实施例,所述第一天线端口组包括多个天线端口,所述第一天线端口是所述第一天线端口组中的任一天线端口。
作为上述实施例的一个子实施例,所述第二天线端口组包括多个天线端口,所述第二天线端口是所述第二天线端口组中的任一天线端口。
作为上述实施例的一个子实施例,所述K个天线端口组中的至少一个天线端口组包括多个天线端口。
作为上述实施例的一个子实施例,所述K个天线端口组中的至少一个天线端口组仅包括1个天线端口。
作为上述实施例的一个子实施例,所述K个天线端口组中存在两个天线端口组包括的天线端口的数量不相等。
作为上述实施例的一个子实施例,所述K个天线端口组中存在两个天线端口组包括的天线端口的数量相等。
作为上述实施例的一个子实施例,本申请中的所述第一信令指示所述K个天线端口组。
作为一个实施例,所述天线端口是antenna port,所述antenna port的具体定义参见3GPP TS38.211的4.4章节。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的信道可以推断出所述一个天线端口上发送的另一个无线信号所经历的信道。
作为一个实施例,从一个天线端口上发送的无线信号所经历的信道不可以推断出另一个天线端口上发送的无线信号所经历的信道。
作为一个实施例,所述信道包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI(Channel Quality Indicator,信道质量标识),RI(Rank Indicator,秩标识)}中的一种或多种。
作为一个实施例,所述QCL的具体定义参见3GPP TS38.211的4.4章节。
作为一个实施例,两个天线端口QCL是指:从所述两个天线端口中的一个天线端口上发送的无线信号经历的信道的大尺度特性(large-scale properties)可以推断出所述两个天线端口中的另一个天线端口上发送的无线信号经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性(large-scale properties)包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,所述K个第一类子信号分别是所述第一无线信号的K个层(layer)。
作为一个实施例,所述层(layer)的具体定义参见3GPP TS38.211中的6.3和7.3章节。
作为一个实施例,所述K个第一类子信号分别包括K个第二类子信号集合,所述K个第二类子信号集合中的任一第二类子信号集合包括正整数个第二类子信号。
作为上述实施例的一个子实施例,所述K个第一类子信号中的任一第一类子信号包括对应的第二类子信号集合中的所有第二类子信号。
作为上述实施例的一个子实施例,所述K个第一类子信号中的任一第一类子信号由对应的第二类子信号集合中的所有第二类子信号组成。
作为上述实施例的一个子实施例,对于所述K个第二类子信号集合中的任一给定第二类子信号集合,当所述给定第二类子信号集合包括多个第二类子信号时,所述多个第二类子信号占用相同的时频资源。
作为上述实施例的一个子实施例,对于所述K个第二类子信号集合中的任一给定第二类子信号集合,当所述给定第二类子信号集合包括多个第二类子信号时,所述多个第二类子信号分别被不同的天线端口发送。
作为上述实施例的一个子实施例,所述K个第二类子信号集合中的任一第二类子信号集合中的任一第二类子信号仅被一个天线端口发送。
作为上述实施例的一个子实施例,所述K个第二类子信号集合包括的第二类子信号的总数是L,所述L是大于1的正整数;所述K个第二类子信号集合包括的L个第二类子信号是所述第一无线信号的L个层(layer)。
作为上述实施例的一个子实施例,所述K个第二类子信号集合包括的第二类子信号的总数是L,所述L是大于1的正整数;所述L等于所述第一无线信号的层(layer)数。
作为上述实施例的一个子实施例,所述K个第二类子信号集合包括的第二类子信号的总数是L,所述L是大于1的正整数;所述L大于所述第一无线信号的层(layer)数。
作为上述实施例的一个子实施例,所述K个第二类子信号集合中存在一个第二类子信号集合包括的第二类子信号的数量等于1。
作为上述实施例的一个子实施例,所述K个第二类子信号集合中存在一个第二类子信号集合包括的第二类子信号的数量大于1。
实施例9
实施例9示例了根据本申请的一个实施例的K个第一类子信号在时频域的资源映射的示意图;如附图9所示。在实施例9中,本申请中的所述第一无线信号包括所述K个第一类子信号,所述K个第一类子信号所占用的时域资源是非正交的。在附图9中,所述K个第一类子信号的索引分别是#0,...,#K-1。
作为一个实施例,所述K等于2,所述K个第一类子信号所占用的时域资源是非正交的。
作为一个实施例,所述K大于2,所述K个第一类子信号中的任意两个第一类子信号所占用的时域资源是非正交的。
作为一个实施例,所述K等于2,所述K个第一类子信号所占用的时域资源部分重叠。
作为一个实施例,所述K大于2,所述K个第一类子信号中的任意两个第一类子信号所占用的时域资源部分重叠。
作为一个实施例,所述K等于2,所述K个第一类子信号所占用的时域资源完全重叠。
作为一个实施例,所述K大于2,所述K个第一类子信号中的任意两个第一类子信号所占用的时域资源完全重叠。
作为一个实施例,所述K个第一类子信号在时域分别占用K个符号集合,所述K个符号集合中的任一符号集合包括正整数个多载波符号。所述K个符号集合中的任一符号集合中存在一个多载波符号同时属于所述K个符号集合中的所有符号集合;所述K个符号集合中存在一个第一符号集合,所述第一符号集合中存在一个多载波符号不属于所述K个符号集合中且所述第一符号集合之外的一个符号集合。
作为上述实施例的一个子实施例,所述第一符号集合是所述K个符号集合中的任一符号集合。
作为上述实施例的一个子实施例,所述K个符号集合中存在一个第二符号集合,所述第二符号集合中的任一多载波符号属于所述K个符号集合中的所有符号集合。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述K个第一类子信号中存在两个第一类子信号所占用的多载波符号的数量不相等。
作为一个实施例,所述K等于2,所述K个第一类子信号所占用的多载波符号的数量相等。
作为一个实施例,所述K大于2,所述K个第一类子信号中任意两个第一类子信号所占用的多载波符号的数量相等。
作为一个实施例,所述K大于2,所述K个第一类子信号中任意两个第一类子信号所占用的多载波符号的数量不相等。
作为一个实施例,所述K个第一类子信号所占用的频域资源是两两相互正交的。
实施例10
实施例10示例了根据本申请的一个实施例的被分配给K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值的示意图;如附图10所示。
在实施例10中,所述K个第一类数值和K个第四类数值一一对应,所述K个第一类数值和K个第一参数一一对应;所述K个第一类数值中的任一第一类数值等于对应的第四类数值和对应的第一参数的乘积。所述K个第四类数值分别是K个第五类数值和第一阈值之间的最小值,所述K个第五类数值分别和被分配给所述K个第一类子信号的时域资源的大小有关;所述K个第一参数分别和被分配给所述K个第一类子信号的频域资源的大小有关。
在附图10中,所述K个第一类数值,所述K个第四类数值,所述K个第一参数和所述K个第五类数值的索引分别是#0,...,#K-1;所述i是小于所述K的任一非负整数。
作为一个实施例,所述K个第一参数分别和被分配给所述K个第一类子信号的所述资源块的数量有关。
作为一个实施例,所述K个第一参数分别和所述K个第一类子信号所占用的所述资源块的数量有关。
作为一个实施例,所述K个第一参数分别是被分配给所述K个第一类子信号的所述资源块的数量。
作为一个实施例,所述K个第一参数分别是所述K个第一类子信号的所占用的所述资源块的数量。
作为一个实施例,所述K个第一参数分别是被分配给所述K个第一类子信号的PRB的数量。
作为一个实施例,所述K个第一参数分别是所述K个第一类子信号所占用的PRB的数量。
作为一个实施例,所述K个第一参数分别是被分配给所述K个第一类子信号的RB的数量。
作为一个实施例,所述K个第一参数分别是所述K个第一类子信号所占用的RB的数量。
作为一个实施例,所述K个第一参数分别和所述K个第一类子信号的MCS有关。
作为一个实施例,所述K个第一参数分别和所述K个第一类子信号的MCS索引有关。
作为一个实施例,所述K个第一参数分别和所述K个第一类子信号的目标码率(target code rate)有关。
作为一个实施例,所述K个第一参数分别和所述K个第一类子信号的调制阶数(modulation order)有关。
作为一个实施例,对于所述K个第一参数中的任一给定第一参数,所述给定第一参数和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一参数等于被分配给所述给定第一类子信号的所述资源块的数量和所述给定第一类子信号的目标码率(target code rate)的乘积再乘以所述给定第一类子信号的调制阶数(modulation order)。
作为一个实施例,对于所述K个第一参数中的任一给定第一参数,所述给定第一参数和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一参数等于所述给定第一类子信号所占用的所述资源块的数量和所述给定第一类子信号的目标码率(target code rate)的乘积再乘以所述给定第一类子信号的调制阶数(modulation order)。
作为一个实施例,对于所述K个第一参数中的任一给定第一参数,所述给定第一参数和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一参数等于被分配给所述给定第一类子信号的PRB的数量和所述给定第一类子信号的目标码率(target code rate)的乘积再乘以所述给定第一类子信号的调制阶数(modulation order)。
作为一个实施例,对于所述K个第一参数中的任一给定第一参数,所述给定第一参数和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一参数等于所述给定第一类子信号所占用的PRB的数量和所述给定第一类子信号的目标码率(target code rate)的乘积再乘以所述给定第一类子信号的调制阶数(modulation order)。
作为一个实施例,对于所述K个第一参数中的任一给定第一参数,所述给定第一参数和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一参数等于被分配给所述给定第一类子信号的RB的数量和所述给定第一类子信号的目标码率(target code rate)的乘积再乘以所述给定第一类子信号的调制阶数(modulation order)。
作为一个实施例,对于所述K个第一参数中的任一给定第一参数,所述给定第一参数和所述K个第一类子信号中的给定第一类子信号对应;所述给定第一参数等于所述给定第一类子信号所占用的RB的数量和所述给定第一类子信号的目标码率(target code rate)的乘积再乘以所述给定第一类子信号的调制阶数(modulation order)。
作为一个实施例,所述第一阈值是固定的。
作为一个实施例,所述第一阈值是预先定义的。
作为一个实施例,所述第一阈值是默认的。
作为一个实施例,所述第一阈值是大于1的正整数。
作为一个实施例,所述第一阈值是156。
作为一个实施例,所述K个第五类数值分别和被分配给所述K个第一类子信号的多载波符号的数量有关。
作为一个实施例,所述K个第五类数值分别和所述K个第一类子信号所占用的多载波符号的数量有关。
作为一个实施例,所述K个第五类数值分别和被分配给所述K个第一类子信号的多载波 符号的数量线性相关。
作为一个实施例,所述K个第五类数值分别和所述K个第一类子信号所占用的多载波符号的数量线性相关。
实施例11
实施例11示例了根据本申请的一个实施例的被分配给K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值的示意图;如附图11所示。在实施例11中,所述K个第一类数值和K个第四类数值一一对应,所述K个第一类数值和K个第一参数一一对应;所述K个第一类数值中的任一第一类数值等于对应的第四类数值和对应的第一参数的乘积。所述K个第四类数值分别是K个第五类数值和第一阈值之间的最小值,所述K个第五类数值分别和K个第一分量线性相关,所述K个第一分量分别和被分配给所述K个第一类子信号的多载波符号的数量有关;所述K个第一参数分别和被分配给所述K个第一类子信号的所述资源块的数量有关。所述K个第五类数值分别和K个第一系数一一对应;所述K个第五类数值中的任一第五类数值和对应的第一分量之间的线性系数是对应的第一系数。所述K个第五类数值分别和本申请中的所述K个第三类数值线性相关。所述K个第五类数值分别和K个第六类数值线性相关,所述K个第六类数值和被分配给本申请中的所述K个第一类参考信号的时频资源的大小有关。
在附图11中,所述K个第一类数值,所述K个第四类数值,所述K个第一参数,所述K个第五类数值,所述K个第一分量,所述K个第一系数所述K个第三类数值和所述K个第六类数值的索引分别是#0,...,#K-1;所述i是小于所述K的任一非负整数。
作为一个实施例,所述K个第一分量分别是被分配给所述K个第一类子信号的多载波符号的数量。
作为一个实施例,所述K个第一分量分别是所述K个第一类子信号所占用的多载波符号的数量。
作为一个实施例,所述K个第一系数都是默认的。
作为一个实施例,所述K个第一系数都是固定的。
作为一个实施例,所述K个第一系数都是预先定义的。
作为一个实施例,所述K个第一系数都相等。
作为一个实施例,所述K个第一系数都是12。
作为一个实施例,所述K个第五类数值分别和所述K个第三类数值线性相关。所述K个第五类数值中的任一第五类数和对应的第三类数值之间的线性系数等于负1。
作为一个实施例,所述K个第五类数值分别和K个第六类数值线性相关,所述K个第六类数值和被分配给所述K个第一类参考信号的时频资源的大小有关。所述K个第五类数值中的任一第五类数值和对应的第六类数值之间的线性系数等于负1。
作为一个实施例,所述K个第六类数值中任意两个第六类数值相等。
作为一个实施例,所述K个第六类数值中任一第六类数值等于所述K个第一类参考信号在本申请中的所述第一无线信号所占用的时域资源内,在一个PRB中所占用的RE的总数。
作为一个实施例,本申请中的所述第一信令被用于确定M个DMRS CDM(Code Division Multiplexing,码分复用)组(group),M是正整数;所述K个第六类数值中任一第六类数值等于所述M个DMRS CDM组在本申请中的所述第一无线信号所占用的时域资源内,在一个PRB中所占用的RE的总数。所述第一无线信号不占用被分配给所述M个DMRS CDM组的RE。
作为上述实施例的一个子实施例,所述第一信令中的第一域指示所述M个DMRS CDM组,所述第一信令中的所述第一域包括Antenna ports(天线端口)域(field)中的部分或全部信息。
作为上述实施例的一个子实施例,所述K个第一类参考信号中的任一第一类参考信号属于所述M个DMRS CDM组中的一个DMRS CDM组。
作为上述实施例的一个子实施例,所述M等于1。
作为上述实施例的一个子实施例,所述M大于1。
作为上述实施例的一个子实施例,所述M等于2。
作为上述实施例的一个子实施例,所述M大于1,所述K个第一类参考信号中存在两个第一类参考信号分别属于所述M个DMRS CDM组中不同的DMRS CDM组。
作为一个实施例,所述Antenna ports(天线端口)域(field)的具体定义参见3GPP TS38.212。
作为一个实施例,所述K个第六类数值中存在两个第六类数值不相等。
作为一个实施例,所述K个第六类数值分别等于所述K个第一类参考信号在本申请中的所述第一无线信号所占用的时域资源内,在一个PRB中所占用的RE的数量。
作为一个实施例,本申请中的所述第一信令被用于确定K个DMRS CDM组池,所述K个DMRS CDM组池中的任一DMRS CDM组池包括正整数个DMRS CDM组(group)。所述K个第六类数值和所述K个DMRS CDM组池一一对应;所述K个第六类数值中的任一第六类数值等于对应的DMRS CDM组池中所有DMRS CDM组在本申请中的所述第一无线信号所占用的时域资源内,在一个PRB中所占用的RE的总数。所述K个第一类子信号中的任一第一类子信号不占用被分配给对应的DMRS CDM组池中所有DMRS CDM组的RE。
作为上述实施例的一个子实施例,所述第一信令指示所述K个DMRS CDM组池。
作为上述实施例的一个子实施例,所述第一信令显式的指示所述K个DMRS CDM组池。
作为上述实施例的一个子实施例,所述第一信令隐式的指示所述K个DMRS CDM组池。
作为上述实施例的一个子实施例,所述K个第一类参考信号中的任一第一类参考信号属于对应的DMRS CDM组池中的一个DMRS CDM组。
作为上述实施例的一个子实施例,所述K个DMRS CDM组池中存在一个DMRS CDM组池仅包括1个DMRS CDM组。
作为上述实施例的一个子实施例,所述K个DMRS CDM组池中存在一个DMRS CDM组池包括多个DMRS CDM组。
作为上述实施例的一个子实施例,所述K个DMRS CDM组池中存在两个DMRS CDM组池包括的DMRS CDM组的数量不相等。
作为上述实施例的一个子实施例,所述K个DMRS CDM组池中存在两个DMRS CDM组池包括的DMRS CDM组的数量相等。
作为一个实施例,所述DMRS CDM组(group)的具体定义参见3GPP TS38.212和3GPP TS38.214。
实施例12
实施例12示例了根据本申请的一个实施例的K个第一类数值被用于确定目标数值的示意图;如附图12所示。在实施例12中,所述目标数值和所述K个第一类数值中的仅第一类数值#x线性相关。在附图12中,所述K个第一类数值的索引分别是#0,...,#K-1,所述x是小于所述K-1的非负整数。
作为一个实施例,所述目标数值和所述K个第一类数值中最小的一个第一类数值线性相关。
作为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述K的乘积。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述K个天线端口组中包括的天线端口的总数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述第一无线信号的层(layer)数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述 第一无线信号的发送天线端口的总数的乘积。
为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述第一无线信号的层(layer)数的乘积再乘以所述K。
作为一个实施例,所述目标数值和所述K个第一类数值中最大的一个第一类数值线性相关。
作为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述K的乘积。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述K个天线端口组中包括的天线端口的总数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述第一无线信号的层(layer)数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述第一无线信号的发送天线端口的总数的乘积。
为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述第一无线信号的层(layer)数的乘积再乘以所述K。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述目标数值等于所述K个第一类数值中最小的一个第一类数值和所述K个天线端口组中包括的天线端口的总数的乘积再乘以第二参数;所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述第一无线信号的层(layer)数的乘积再乘以第二参数;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值和所述第一无线信号的发送天线端口的总数的乘积再乘以第二参数;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
为一个实施例,所述目标数值是所述K个第一类数值中最小的一个第一类数值,所述第一无线信号的层(layer)数,所述K和第二参数的乘积;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述K个天线端口组中包括的天线端口的总数的乘积再乘以第二参数;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述第一无线信号的层(layer)数的乘积再乘以第二参数;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
作为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值和所述第一无线信号的发送天线端口的总数的乘积再乘以第二参数;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
为一个实施例,所述目标数值是所述K个第一类数值中最大的一个第一类数值,所述第一无线信号的层(layer)数,所述K和第二参数的乘积;所述第二参数是所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。
实施例13
实施例13示例了根据本申请的一个实施例的K个第一类数值被用于确定目标数值的示 意图;如附图13所示。在实施例13中,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。在附图13中,所述K个第一类数值,所述K个加权系数和所述K个加权后数值的索引分别是#0,...,#K-1。
作为一个实施例,所述K个加权后数值和所述K个第一类数值一一对应;所述K个加权后数值中的任一加权后数值等于对应的第一类数值和对应的加权系数的乘积。
作为一个实施例,所述K个加权系数分别是正整数。
作为一个实施例,所述K个加权系数都等于1。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述K个加权系数分别是所述K个天线端口组包括的天线端口的数量。
作为一个实施例,所述K个加权系数分别是所述K个第一类子信号对应的层(layer)数。
作为一个实施例,所述K个加权系数的和等于所述第一无线信号的层(layer)数。
作为一个实施例,所述K个加权系数的和大于所述第一无线信号的层(layer)数。
作为一个实施例,所述K个加权后数值分别是正实数。
作为一个实施例,所述K个加权后数值分别是大于1的正实数。
作为一个实施例,所述K个加权后数值分别是正整数。
作为一个实施例,所述K个加权后数值分别是大于1的正整数。
作为一个实施例,所述目标数值和所述K个第一类数值中的任一第一类数值线性相关,所述目标数值和所述K个第一类数值之间的线性系数分别是所述K个加权系数。
作为一个实施例,所述目标数值是所述K个加权后数值的和。
作为一个实施例,所述目标数值是第一数值与所述K个加权系数的和的乘积,所述第一数值是不小于第一比值的最小正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值。
作为一个实施例,所述目标数值是第一数值与所述K个加权系数的和的乘积,所述第一数值是不大于第一比值的最大正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值。
作为一个实施例,所述目标数值是第一数值与所述第一无线信号的层数(layer)的乘积,所述第一数值是不小于第一比值的最小正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值。
作为一个实施例,所述目标数值是第一数值与所述第一无线信号的层数(layer)的乘积,所述第一数值是不大于第一比值的最大正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值。
作为一个实施例,所述目标数值是第一数值与所述第一无线信号的层数(layer)的乘积再乘以所述K,所述第一数值是不小于第一比值的最小正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值。
作为一个实施例,所述目标数值是第一数值与所述第一无线信号的层数(layer)的乘积再乘以所述K,所述第一数值是不大于第一比值的最大正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值。
作为一个实施例,所述目标数值是所述K个加权后数值的和与第二参数的乘积;所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
作为一个实施例,所述目标数值是第一数值与所述K个加权系数的和的乘积再乘以第二参数;所述第一数值是不小于第一比值的最小正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值,所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
作为一个实施例,所述目标数值是第一数值与所述K个加权系数的和的乘积再乘以第二参数;所述第一数值是不大于第一比值的最大正整数,所述第一比值等于所述K个加权后数值的和与所述K个加权系数的和的比值,所述第二参数等于所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
作为一个实施例,所述目标数值是第一数值与所述第一无线信号的层数(layer)的乘积再乘以第二参数;所述第一数值是不小于第一比值的最小正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值,所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
作为一个实施例,所述目标数值是第一数值与所述第一无线信号的层数(layer)的乘积再乘以第二参数;所述第一数值是不大于第一比值的最大正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值,所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
作为一个实施例,所述目标数值是第一数值,所述第一无线信号的层数(layer),所述K和第二参数的乘积;所述第一数值是不小于第一比值的最小正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值,所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
作为一个实施例,所述目标数值是第一数值,所述第一无线信号的层数(layer),所述K和第二参数的乘积;所述第一数值是不大于第一比值的最大正整数,所述第一比值是所述K个加权后数值的和与所述K个加权系数的和的比值,所述第二参数是所述第一无线信号的目标码率(target code rate)和所述第一无线信号的调制阶数(modulation order)的乘积。
实施例14
实施例14示例了根据本申请的一个实施例的目标数值被用于确定第一比特块包括的比特的数量的示意图;如附图14所示。在实施例14中,所述目标数值被用于确定本申请中的所述第二类数值,所述第一比特块包括的比特的数量等于本申请中的所述第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
作为一个实施例,所述第二类数值是一个正整数。
作为一个实施例,所述第二类数值是一个大于1的正整数。
作为一个实施例,所述第一比特块包括的比特的数量是所述第一类参考整数集合中的一个第一类参考整数;所述第一类参考整数集合中的任一不同于所述第一比特块包括的比特的数量并且不小于所述第二类数值的第一类参考整数和所述第二类数值的差的绝对值大于所述第一比特块包括的比特的数量和所述第二类数值的差的绝对值。
作为一个实施例,所述第一类参考整数集合中的任一第一类参考整数是正整数。
作为一个实施例,所述第一类参考整数集合中的任一第一类参考整数是大于1的正整数。
作为一个实施例,所述第一类参考整数集合中的任一第一类参考整数是一个TBS。
作为一个实施例,所述第一类参考整数集合包括3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的TBS。
作为一个实施例,所述目标数值不大于3824,所述第一类参考整数集合包括3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的TBS。
作为一个实施例,所述第一类参考整数集合包括3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的所有TBS。
作为一个实施例,所述目标数值不大于3824,所述第一类参考整数集合包括3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的所有TBS。
作为一个实施例,所述第一类参考整数集合由3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的所有TBS组成。
作为一个实施例,所述目标数值不大于3824,所述第一类参考整数集合由3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的所有TBS组成。
实施例15
实施例15示例了根据本申请的一个实施例的目标数值被用于确定第一比特块包括的比特的数量的示意图;如附图15所示。在实施例15中,所述目标数值被用于确定本申请中的所述第二类数值,所述第一比特块包括的比特的数量等于本申请中的所述第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。所述第一类参考整数集合中的任一第一类参考整数与第一比特数的和是第四参数的正整数倍,所述第二类数值被用于确定所述第四参数,所述第四参数是正整数,所述第一比特数是正整数。
作为一个实施例,所述目标数值大于3824。
作为一个实施例,所述第一比特数是{6,11,16,24}中之一。
作为一个实施例,所述第一比特数是24。
作为一个实施例,对于任一给定正整数,如果所述给定正整数与所述第一比特数的和是所述第四参数的正整数倍,所述给定正整数是所述第一类参考整数集合中的一个第一类参考整数。
作为一个实施例,所述第一无线信号的目标码率被用于确定所述第四参数。
作为一个实施例,所述K个第一类子信号中每一个第一类子信号的目标码率被用于确定所述第四参数。
作为一个实施例,所述K个第一类子信号的目标码率的平均值被用于确定所述第四参数。
作为一个实施例,所述第四参数是8的C倍,所述C是正整数,所述第二类数值被用于确定所述C。
作为上述实施例的一个子实施例,所述C等于1。
作为上述实施例的一个子实施例,所述C大于1。
作为上述实施例的一个子实施例,所述第一无线信号的目标码率被用于确定所述C。
作为上述实施例的一个子实施例,所述K个第一类子信号中每一个第一类子信号的目标码率被用于确定所述C。
作为上述实施例的一个子实施例,所述K个第一类子信号的目标码率的平均值被用于确定所述C。
作为上述实施例的一个子实施例,所述
Figure PCTCN2020072789-appb-000001
作为上述实施例的一个子实施例,所述第一无线信号的目标码率不大于1/4,所述
Figure PCTCN2020072789-appb-000002
作为上述实施例的一个子实施例,所述
Figure PCTCN2020072789-appb-000003
作为上述实施例的一个子实施例,所述第一无线信号的目标码率大于1/4,所述第二类数值大于8424,所述
Figure PCTCN2020072789-appb-000004
作为上述实施例的一个子实施例,所述C等于1。
作为上述实施例的一个子实施例,所述第一无线信号的目标码率大于1/4,所述第二类数值不大于8424,所述C等于1。
实施例16
实施例16示例了根据本申请的一个实施例的目标数值被用于确定第二类数值的示意图; 如附图16所示。在实施例16中,所述第二类数值是第二阈值和第一参考数值之间的最大值,所述第一参考数值是第二类参考整数集合中最接近参考目标数值的第二类参考整数。所述参考目标数值等于所述目标数值和第二比特数的差,所述第二比特数是非负整数;所述第二类参考整数集合包括多个第二类参考整数,所述第二类参考整数集合中的任一第二类参考整数是第三参数的正整数倍,所述参考目标数值被用于确定所述第三参数,所述第三参数是正整数。
作为一个实施例,所述第二类参考整数集合中任一不同于所述第一参考数值的第二类参考整数与所述参考目标数值的差的绝对值大于所述第一参考数值与所述参考目标数值的差的绝对值。
作为一个实施例,所述第二阈值是正整数。
作为一个实施例,所述第二阈值是大于1的正整数。
作为一个实施例,所述第二比特数是非负整数。
作为一个实施例,所述第二比特数是{0,6,11,16,24}中之一。
作为一个实施例,所述第二比特数等于0。
作为一个实施例,所述第二比特数大于0。
作为一个实施例,所述第二类参考整数集合中的任一第二类参考整数不大于所述参考目标数值。
作为一个实施例,所述目标数值不大于3824,所述第二类参考整数集合中的任一第二类参考整数不大于所述参考目标数值。
作为一个实施例,对于任一给定正整数,如果所述给定正整数不大于所述参考目标数值并且是所述第三参数的正整数倍,所述给定正整数是所述第二类参考整数集合中的一个第二类参考整数。
作为一个实施例,所述目标数值不大于3824;对于任一给定正整数,如果所述给定正整数不大于所述参考目标数值并且是所述第三参数的正整数倍,所述给定正整数是所述第二类参考整数集合中的一个第二类参考整数。
作为一个实施例,所述目标数值不大于3824,所述第二比特数是0。
作为一个实施例,对于任一给定正整数,如果所述给定正整数是所述第三参数的正整数倍,所述给定正整数是所述第二类参考整数集合中的一个第二类参考整数。
作为一个实施例,所述目标数值大于3824,对于任一给定正整数,如果所述给定正整数是所述第三参数的正整数倍,所述给定正整数是所述第二类参考整数集合中的一个第二类参考整数。
作为一个实施例,所述目标数值大于3824,所述第二比特数大于0。
实施例17
实施例17示例了根据本申请的一个实施例的确定第一比特块包括的比特的数量的示意图;如附图17所示。在实施例17中,被分配给本申请中的所述K个第一类子信号的时频资源的大小分别被用于确定本申请中的所述K个第一类数值;所述K个第一类数值被用于确定本申请中的所述目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
在实施例17中,所述K个第一类数值和K个第四类数值一一对应,所述K个第一类数值中的任一第一类数值是对应的第四类数值和被分配给对应的第一类子信号的PRB的数量的乘积。所述K个第四类数值分别是K个第五类数值和第一阈值之间的最小值,所述K个第五类数值分别和被分配给所述K个第一类子信号的多载波符号的数量线性相关;所述K个第五类数值中的任一第五类数值和被分配给对应的第一类子信号的多载波符号的数量之间的线性系数是12。所述K个第五类数值分别和本申请中的所述K个第三类数值线性相关;对于所述K个第五类数值中的任一给定第五类数值,所述给定第五类数值和对应的第三类数值之间的线性系数等于负1。所述K个第五类数值分别和K个第六类数值线性相关;对于所述K 个第五类数值中的任一给定第五类数值,所述给定第五类数值和对应的第六类数值之间的线性系数等于负1。所述K个第六类数值和本申请中的所述K个第一类参考信号所占用的时频资源的大小有关。所述目标数值是所述K个第一类数值中最小的一个第一类数值和本申请中的所述第一无线信号的层(layer)数,所述第一无线信号的目标码率和所述第一无线信号的调制阶数的乘积。本申请中的所述第二类数值是第二阈值和第一参考数值之间的最大值,所述第一参考数值是第二类参考整数集合中最接近所述目标数值的第二类参考整数。所述第二类参考整数集合包括多个第二类参考整数,所述第二类参考整数集合中的任一第二类参考整数不大于所述目标数值,所述第二类参考整数集合中的任一第二类参考整数是第三参数的正整数倍,所述目标数值被用于确定所述第三参数,所述第三参数是正整数。所述第一比特块包括的比特的数量等于本申请中的所述第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
作为一个实施例,所述目标数值不大于3824。
作为一个实施例,对于任一给定正整数,如果所述给定正整数不大于所述目标数值并且是所述第三参数的正整数倍,所述给定正整数是所述第二类参考整数集合中的一个第二类参考整数。
作为一个实施例,所述第二阈值等于24。
作为一个实施例,所述第三参数等于
Figure PCTCN2020072789-appb-000005
作为一个实施例,所述第二类数值等于
Figure PCTCN2020072789-appb-000006
作为一个实施例,所述第一类参考整数集合包括3GPP TS38.214(V15.3.0)中的Table 5.1.3.2-1中的所有TBS。
作为一个实施例,所述K个第一类子信号所占用的时域资源是非正交的
作为一个实施例,所述K个第一类子信号分别包括K个第二类子信号集合,所述K个第二类子信号集合中的任一第二类子信号集合包括正整数个第二类子信号。所述K个第二类子信号集合包括的第二类子信号的总数是L,所述L是大于1的正整数;所述K个第二类子信号集合包括的L个第二类子信号是所述第一无线信号的L个层(layer)。
实施例18
实施例18示例了根据本申请的一个实施例的确定第一比特块包括的比特的数量的示意图;如附图18所示。在实施例18中,被分配给本申请中的所述K个第一类子信号的时频资源的大小分别被用于确定本申请中的所述K个第一类数值;所述K个第一类数值被用于确定本申请中的所述目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量。
在实施例18中,所述K个第一类数值和K个第四类数值一一对应,所述K个第一类数值中的任一第一类数值是对应的第四类数值,被分配给对应的第一类子信号的PRB的数量,对应的第一类子信号的目标码率和对应的第一类子信号的调制阶数的乘积。所述K个第四类数值分别是K个第五类数值和第一阈值之间的最小值,所述K个第五类数值分别和被分配给所述K个第一类子信号的多载波符号的数量线性相关;所述K个第五类数值中的任一第五类数值和被分配给对应的第一类子信号的多载波符号的数量之间的线性系数是12。所述K个第五类数值分别和本申请中的所述K个第三类数值线性相关;对于所述K个第五类数值中的任一给定第五类数值,所述给定第五类数值和对应的第三类数值之间的线性系数等于负1。所述K个第五类数值分别和K个第六类数值线性相关;对于所述K个第五类数值中的任一给定第五类数值,所述给定第五类数值和对应的第六类数值之间的线性系数等于负1。所述K个第六类数值和本申请中的所述K个第一类参考信号所占用的时频资源的大小有关。所述K个第一类数值和本申请中的所述K个加权系数一一对应;所述K个第一类数值分别与所述K个加权系数相乘得到本申请中的所述K个加权后数值,所述目标数值是所述K个加权后数值 的和。所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述K个加权系数分别是所述K个天线端口组包括的天线端口的数量。本申请中的所述第二类数值是第二阈值和第一参考数值之间的最大值,所述第一参考数值是第二类参考整数集合中最接近参考目标数值的第二类参考整数;所述参考目标数值等于所述目标数值和第二比特数的差,所述第二比特数是正整数。所述第二类参考整数集合包括多个第二类参考整数,所述第二类参考整数集合中的任一第二类参考整数是第三参数的正整数倍,所述参考目标数值被用于确定所述第三参数,所述第三参数是正整数。
所述第一比特块包括的比特的数量等于本申请中的所述第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。所述第一类参考整数集合中的任一第一类参考整数与第一比特数的和是第四参数的正整数倍,所述第二类数值被用于确定所述第四参数,所述第四参数是正整数,所述第一比特数是正整数。所述第二比特数等于所述第一比特数。
作为一个实施例,所述目标数值大于3824。
作为一个实施例,所述第一比特数是{6,11,16,24}中之一。
作为一个实施例,所述第一比特数是24。
作为一个实施例,对于任一给定正整数,如果所述给定正整数与所述第一比特数的和是所述第四参数的正整数倍,所述给定正整数是所述第一类参考整数集合中的一个第一类参考整数。
作为一个实施例,所述第一无线信号的目标码率不大于1/4,所述第四参数是
Figure PCTCN2020072789-appb-000007
作为一个实施例,所述第一无线信号的目标码率大于1/4,所述第二类数值大于8424,所述第四参数是
Figure PCTCN2020072789-appb-000008
作为一个实施例,所述第一无线信号的目标码率大于1/4,所述第二类数值不大于8424,所述第四参数等于8。
作为一个实施例,所述第一比特块包括的比特的数量等于
Figure PCTCN2020072789-appb-000009
作为一个实施例,对于任一给定正整数,如果所述给定正整数是所述第三参数的正整数倍,所述给定正整数是所述第二类参考整数集合中的一个第二类参考整数。
作为一个实施例,所述第二阈值等于3840。
作为一个实施例,所述第二比特数是{6,11,16,24}中之一。
作为一个实施例,所述第二比特数是24。
作为一个实施例,所述第三参数等于
Figure PCTCN2020072789-appb-000010
作为一个实施例,所述第二类数值等于
Figure PCTCN2020072789-appb-000011
实施例19
实施例19示例了根据本申请的一个实施例的第一信息被用于确定K个第三类数值的示意图;如附图19所示。在实施例19中,所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定本申请中的所述K个第一类数值。
作为一个实施例,所述第一信息指示所述K个第三类数值。
作为一个实施例,所述第一信息显式的指示所述K个第三类数值。
作为一个实施例,所述第一信息隐式的指示所述K个第三类数值。
作为一个实施例,所述第一信息由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息由RRC信令承载。
作为一个实施例,所述第一信息由MAC CE信令承载。
作为一个实施例,所述第一信息由RRC信令和MAC CE信令共同承载。
作为一个实施例,所述第一信息由一个更高层(higher layer)信令承载。
作为一个实施例,所述第一信息由多个更高层(higher layer)信令承载。
作为一个实施例,所述第一信息由一个RRC信令承载。
作为一个实施例,所述第一信息由多个RRC信令承载。
作为一个实施例,所述第一信息包括一个IE(Information Element,信息单元)中的全部或部分信息。
作为一个实施例,所述第一信息包括多个IE中的全部或部分信息。
作为一个实施例,所述第一信息包括PDSCH-ServingCellConfig IE中的全部或部分信息。
作为一个实施例,所述PDSCH-ServingCellConfig IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一信息包括PUSCH-ServingCellConfig IE中的全部或部分信息。
作为一个实施例,所述PUSCH-ServingCellConfig IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一信息包括更高层(higher layer)系数xOverhead中的信息。
作为一个实施例,所述第一信息包括PDSCH-ServingCellConfig IE的xOverhead域中的全部或部分信息。
作为一个实施例,所述第一信息包括PUSCH-ServingCellConfig IE的xOverhead域中的全部或部分信息。
作为一个实施例,所述K个第三类数值包括更高层(higher layer)系数xOverhead中的信息。
作为一个实施例,所述xOverhead的具体定义参见3GPP TS38.331和TS38.214。
作为一个实施例,所述K个第三类数值分别是非负整数。
作为一个实施例,所述K个第三类数值中存在一个第三类数值等于0。
作为一个实施例,所述K个第三类数值中至少有一个第三类数值大于0。
作为一个实施例,所述K个第三类数值中的任一第三类数值是{0,6,12,18}中之一。
作为一个实施例,所述K个第三类数值中存在两个不相同的第三类数值。
作为一个实施例,所述K等于2,所述K个第三类数值互不相同。
作为一个实施例,所述K大于2,所述K个第三类数值中至少有两个第三类数值互不相同。
作为一个实施例,所述K大于2,所述K个第三类数值中任意两个第三类数值互不相同。
作为一个实施例,所述第一信息被用于确定K0个第三类数值,K0是不小于所述K的正整数,所述K个第三类数值是所述K0个第三类数值的子集;所述第一信令被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述实施例的一个子实施例,所述K0大于所述K。
作为上述实施例的一个子实施例,所述K0等于所述K。
作为上述实施例的一个子实施例,所述K0个第三类数值中的任一第三类数值是{0,6,12,18}中之一。
作为上述实施例的一个子实施例,所述第一信令所占用的时频资源被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述实施例的一个子实施例,所述第一信令所占用的时频资源所属的CORESET(COntrol REsource SET,控制资源集合)被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述实施例的一个子实施例,所述第一信令所占用的时频资源所属的搜索空间(search space)被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述实施例的一个子实施例,所述第一信令所占用的时频资源所属的搜索空间集合(search space set)被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述实施例的一个子实施例,所述第一信令指示所述K个第三类数值。
作为上述实施例的一个子实施例,所述第一信令显式的指示所述K个第三类数值。
作为上述实施例的一个子实施例,所述第一信令隐式的指示所述K个第三类数值。
作为上述实施例的一个子实施例,本申请中的所述第一无线信号的HARQ进程号被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述实施例的一个子实施例,本申请中的所述用户设备用相同的空域滤波器(spatial domain filter)来接收第一参考信号和所述第一信令,所述第一参考信号被用于从所述K0个第三类数值中确定所述K个第三类数值。
作为上述子实施例的一个参考实施例,第一参考信号资源被预留给所述第一参考信号,所述第一参考信号资源的索引被用于从所述K0个第三类数值中确定所述K个第三类数值。
实施例20
实施例20示例了根据本申请的一个实施例的K个第一类参考信号分别被用于K个第一类子信号的解调的示意图;如附图20所示。在附图20中,所述K个第一类参考信号和K个第一类子信号的索引分别是#0,...,#K-1。
作为一个实施例,所述K个第一类参考信号包括DMRS。
作为一个实施例,所述K个第一类参考信号分别是所述K个第一类子信号的DMRS。
作为一个实施例,所述所述K个第一类参考信号分别被用于所述K个第一类子信号的解调包括:所述K个第一类参考信号分别被用于所述K个第一类子信号的信道估计。
作为一个实施例,所述所述K个第一类参考信号分别被用于所述K个第一类子信号的解调包括:本申请中的所述用户设备从所述K个第一类参考信号中的任一第一类参考信号所经历的信道可以推断出对应的第一类子信号所经历的信道,本申请中的所述操作是接收,本申请中的所述执行是发送。
作为一个实施例,所述所述K个第一类参考信号分别被用于所述K个第一类子信号的解调包括:本申请中的所述基站从所述K个第一类参考信号中的任一第一类参考信号所经历的信道可以推断出对应的第一类子信号所经历的信道,本申请中的所述操作是发送,本申请中的所述执行是接收。
作为一个实施例,所述K个第一类参考信号分别被不同的天线端口组发送,一个天线端口组包括正整数个天线端口。
作为一个实施例,所述K个第一类子信号分别被K个天线端口组发送,所述K个天线端口组中的任一天线端口组包括正整数个天线端口;所述K个第一类参考信号分别被所述K个天线端口组发送。
作为一个实施例,所述K个第一类参考信号所占用的时频资源和本申请中的所述第一无线信号所占用的时频资源相互正交。
作为一个实施例,所述K个第一类参考信号所占用的时域资源和本申请中的所述第一无线信号所占用的时域资源相互正交。
作为一个实施例,所述K个第一类参考信号所占用的时域资源和本申请中的所述第一无线信号所占用的时域资源不正交。
作为一个实施例,本申请中的所述第一无线信号不包括所述K个第一类参考信号。
作为一个实施例,所述K个第一类子信号中的任一第一类子信号不占用被分配给所述K个第一类参考信号中的任一第一类参考信号的RE。
实施例21
实施例21示例了根据本申请的一个实施例的被分配给K个第一类参考信号的时频资源 的大小被用于确定K个第一类数值的示意图;如附图21所示。在实施例21中,所述K个第一类数值和K个第五类数值一一对应,所述K个第一类数值和K个第一参数一一对应;所述K个第一类数值中的任一第一类数值等于对应的第五类数值和第一阈值之间的最小值与对应的第一参数的乘积。所述K个第五类数值分别和K个第六类数值线性相关,所述K个第六类数值和被分配给所述K个第一类参考信号的时频资源的大小有关。
作为一个实施例,所述被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值包括:所述K个第一类参考信号所占用的时频资源的大小被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值包括:被分配给所述K个第一类参考信号的RE的总数被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值包括:所述K个第一类参考信号所占用的RE的总数被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值包括:被分配给所述K个第一类参考信号的RE的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值包括:所述K个第一类参考信号所占用的RE的数量分别被用于确定所述K个第一类数值。
实施例22
实施例22示例了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;如附图22所示。在附图22中,用户设备中的处理装置2200包括第一接收机2201和第一处理器2202。
在实施例22中,第一接收机2201接收第一信令;第一处理器2202操作第一无线信号。
在实施例22中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。
作为一个实施例,所述第一处理器2202发送所述第一无线信号。
作为一个实施例,所述第一处理器2202接收所述第一无线信号。
作为一个实施例,所述目标数值和所述K个第一类数值中的仅一个第一类数值线性相关。
作为一个实施例,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。
作为一个实施例,所述目标数值被用于确定第二类数值,所述第一比特块包括的比特的数量等于第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
作为一个实施例,被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值,被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述第一接收机2201接收第一信息;其中,所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定所述K个第一类数值。
作为一个实施例,所述第一处理器2202发送K个第一类参考信号;其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述操作是发送。
作为一个实施例,所述第一处理器2202接收K个第一类参考信号;其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述操作是接收。
作为一个实施例,所述第一接收机2201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理器2202包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一,所述操作是发送。
作为一个实施例,所述第一处理器2202包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一,所述操作是接收。
实施例23
实施例23示例了根据本申请的一个实施例的用于基站中的处理装置的结构框图;如附图23所示。在附图23中,基站中的处理装置2300包括第一发送机2301和第二处理器2302。
在实施例23中,第一发送机2301发送第一信令;第二处理器2302执行第一无线信号。
在实施例23中,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述执行是接收,或者所述执行是发送。
作为一个实施例,所述第二处理器2302接收所述第一无线信号。
作为一个实施例,所述第二处理器2302发送所述第一无线信号。
作为一个实施例,所述目标数值和所述K个第一类数值中的仅一个第一类数值线性相关。
作为一个实施例,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。
作为一个实施例,所述目标数值被用于确定第二类数值,所述第一比特块包括的比特的数量等于第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
作为一个实施例,被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值,被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
作为一个实施例,所述第一发送机2301发送第一信息;其中,所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定所述K个第一类数值。
作为一个实施例,所述第二处理器2302接收K个第一类参考信号;其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述执行是接收。
作为一个实施例,所述第二处理器2302发送K个第一类参考信号;其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述执行是发送。
作为一个实施例,所述第一发送机2301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二处理器2302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一,所述执行是接收。
作为一个实施例,所述第二处理器2302包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一,所述执行是发送。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信令;
    第一处理器,操作第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。
  2. 根据权利要求1所述的用户设备,其特征在于,所述目标数值和所述K个第一类数值中的仅一个第一类数值线性相关。
  3. 根据权利要求1所述的用户设备,其特征在于,所述K个第一类数值和K个加权系数一一对应,所述K个加权系数分别是正实数;所述K个第一类数值分别与所述K个加权系数相乘得到K个加权后数值,所述K个加权后数值被用于确定所述目标数值。
  4. 根据权利要求1至3中任一权利要求所述的用户设备,其特征在于,所述目标数值被用于确定第二类数值,所述第一比特块包括的比特的数量等于第一类参考整数集合中的所有不小于所述第二类数值的第一类参考整数中和所述第二类数值最接近的一个第一类参考整数;所述第一类参考整数集合包括多个第一类参考整数。
  5. 根据权利要求1至4中任一权利要求所述的用户设备,其特征在于,被分配给所述K个第一类子信号的多载波符号的数量分别被用于确定所述K个第一类数值,被分配给所述K个第一类子信号的资源块的数量分别被用于确定所述K个第一类数值。
  6. 根据权利要求1至5中任一权利要求所述的用户设备,其特征在于,所述第一接收机接收第一信息;其中,所述第一信息被用于确定K个第三类数值,所述K个第三类数值分别被用于确定所述K个第一类数值。
  7. 根据权利要求1至6中任一权利要求所述的用户设备,其特征在于,所述第一处理器操作K个第一类参考信号;其中,所述K个第一类参考信号分别被用于所述K个第一类子信号的解调;被分配给所述K个第一类参考信号的时频资源的大小被用于确定所述K个第一类数值;所述操作是发送,或者所述操作是接收。
  8. 一种被用于无线通信的基站设备,其特征在于,包括:
    第一发送机,发送第一信令;
    第二处理器,执行第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述执行是接收,或者所述执行是发送。
  9. 一种被用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信令;
    操作第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述操作是发送,或者所述操作是接收。
  10. 一种被用于无线通信的基站中的方法,其特征在于,包括:
    发送第一信令;
    执行第一无线信号,所述第一无线信号包括K个第一类子信号,所述K个第一类子信号均携带第一比特块,K是大于1的正整数;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时频资源;所述K个第一类子信号所占用的时域资源是非正交的;被分配给所述K个第一类子信号的时频资源的大小分别被用于确定K个第一类数值,所述K个第一类数值中存在两个不相同的第一类数值;所述K个第一类数值被用于确定目标数值,所述目标数值被用于确定所述第一比特块包括的比特的数量;所述执行是接收,或者所述执行是发送。
PCT/CN2020/072789 2019-02-02 2020-01-17 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020156246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108043.4 2019-02-02
CN201910108043.4A CN111526589B (zh) 2019-02-02 2019-02-02 一种被用于无线通信的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2020156246A1 true WO2020156246A1 (zh) 2020-08-06

Family

ID=71841629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072789 WO2020156246A1 (zh) 2019-02-02 2020-01-17 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (3) CN111526589B (zh)
WO (1) WO2020156246A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051561A1 (zh) * 2022-09-08 2024-03-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117769009A (zh) * 2022-09-13 2024-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325739A (zh) * 2007-06-14 2008-12-17 北京三星通信技术研究有限公司 传输上行数据和上行控制信令的方法
US20170134109A1 (en) * 2015-11-06 2017-05-11 Mediatek Inc. Resource Element Mapping for Interference Cancellation Friendly New Air Interface
CN107005981A (zh) * 2014-11-24 2017-08-01 瑞典爱立信有限公司 在所确定的第三时频资源集合中的传输和接收
CN108633083A (zh) * 2017-03-17 2018-10-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170647B (zh) * 2010-02-26 2013-11-20 电信科学技术研究院 上行数据信道资源复用类型的判断装置和方法
US9532337B2 (en) * 2012-05-19 2016-12-27 Google Technology Holdings LLC Method and apparatus for transport block signaling in a wireless communication system
CN105515721B (zh) * 2014-09-25 2020-01-07 中兴通讯股份有限公司 比特位数指示方法及装置
CN107006021B (zh) * 2015-01-19 2019-11-29 华为技术有限公司 一种数据传输方法、设备及系统
CN105992361B (zh) * 2015-02-23 2019-12-20 上海朗帛通信技术有限公司 一种增强的ca中的调度方法和装置
CN110650542B (zh) * 2015-03-03 2020-08-21 华为技术有限公司 用于上行数据传输的方法和装置
KR20190017994A (ko) * 2016-06-15 2019-02-20 콘비다 와이어리스, 엘엘씨 새로운 라디오를 위한 업로드 제어 시그널링
CN107896135B (zh) * 2016-10-03 2020-11-06 上海朗帛通信技术有限公司 一种支持精简的控制信息的ue、基站中的方法和设备
CN107968696A (zh) * 2016-10-19 2018-04-27 上海朗帛通信技术有限公司 一种用于可变的校验比特数的ue、基站中的方法和装置
CN108076442B (zh) * 2016-11-15 2021-05-25 普天信息技术有限公司 一种pusch传输块长度确定方法及用户设备
CN108347776B (zh) * 2017-01-25 2023-11-10 华为技术有限公司 一种通信系统中资源分配的方法及设备
WO2018226054A1 (ko) * 2017-06-08 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
WO2018228487A1 (en) * 2017-06-15 2018-12-20 Huawei Technologies Co., Ltd. Method and devices for multiple transmit receive point cooperation for reliable communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325739A (zh) * 2007-06-14 2008-12-17 北京三星通信技术研究有限公司 传输上行数据和上行控制信令的方法
CN107005981A (zh) * 2014-11-24 2017-08-01 瑞典爱立信有限公司 在所确定的第三时频资源集合中的传输和接收
US20170134109A1 (en) * 2015-11-06 2017-05-11 Mediatek Inc. Resource Element Mapping for Interference Cancellation Friendly New Air Interface
CN108633083A (zh) * 2017-03-17 2018-10-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051561A1 (zh) * 2022-09-08 2024-03-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN114866205A (zh) 2022-08-05
CN111526589B (zh) 2022-05-24
CN111526589A (zh) 2020-08-11
CN114826533A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN111769925B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114401558A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110120859B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112152680A (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113162736B (zh) 一种被用于无线通信的节点中的方法和装置
CN111278110B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114900277A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193643A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111669259A (zh) 一种被用于无线通信的节点中的方法和装置
CN113541898B (zh) 一种被用于无线通信的节点中的方法和装置
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN109474312B (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020156246A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020001433A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020164419A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020147553A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN109302221B (zh) 一种被用于无线通信的用户设备、基站和相应方法
CN113556820A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749203

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20749203

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20749203

Country of ref document: EP

Kind code of ref document: A1