WO2019014882A1 - 一种被用于无线通信的用户、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户、基站中的方法和装置 Download PDF

Info

Publication number
WO2019014882A1
WO2019014882A1 PCT/CN2017/093596 CN2017093596W WO2019014882A1 WO 2019014882 A1 WO2019014882 A1 WO 2019014882A1 CN 2017093596 W CN2017093596 W CN 2017093596W WO 2019014882 A1 WO2019014882 A1 WO 2019014882A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signaling
signals
wireless
domain
Prior art date
Application number
PCT/CN2017/093596
Other languages
English (en)
French (fr)
Inventor
吴克颖
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2017/093596 priority Critical patent/WO2019014882A1/zh
Priority to CN201780092472.6A priority patent/CN110832921B/zh
Publication of WO2019014882A1 publication Critical patent/WO2019014882A1/zh
Priority to US16/745,350 priority patent/US11337230B2/en
Priority to US17/715,972 priority patent/US11956769B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present application relates to a method and apparatus for transmitting wireless signals in a wireless communication system, and more particularly to a method and apparatus for transmitting wireless signals in a wireless communication system supporting multi-antenna transmission.
  • the reference signals in the 5G system need to support a wider variety of functions, such as channel state information acquisition, beam scanning, and the like.
  • the 5G system allows the UE (User Equipment) and the base station to measure the reference signals on multiple reference signal resources, and supports periodic (semi-static) and semi-static ( Semi-persistent) and aperiodic reference signals.
  • the inventors found through research that when the UE of the 5G system needs to measure or transmit the reference signal on multiple reference signal resources, the reference to one of the reference signal resources needs to avoid confusion, especially when the system schedules multiple times. When non-periodic reference signals.
  • the present application discloses a solution.
  • the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station and vice versa.
  • the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment used for wireless communication, which includes:
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first signaling First in The domain and the second of the second signaling are used in common to determine whether the first wireless signal is associated with the first signaling; the operation is a reception, or the operation is a transmission.
  • the foregoing method is advantageous in that the first signaling may be used to schedule a reference signal, and use the first domain to identify the scheduled reference signal, and the second signaling may use the first The second domain indicates whether the first wireless signal is related to the reference signal scheduled by the first signaling.
  • the above method has the advantage that the above method can avoid ambiguity in understanding the reference signal associated with the first wireless signal when the user equipment is scheduled to transmit or measure a plurality of reference signals.
  • the first signaling is physical layer signaling.
  • the second signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the second signaling is dynamic signaling.
  • the first signaling and the second signaling are physical layer signaling, respectively.
  • the first signaling and the second signaling are dynamic signaling, respectively.
  • the first domain and the second domain are each composed of a positive integer number of bits.
  • the number of bits included in the first domain is equal to the number of bits included in the second domain.
  • the first wireless signal and the first signal Relevant are independent of the first signaling.
  • the first signaling is a physical layer signaling that is recently received before the second signaling, including the first domain.
  • the first signaling is a most recently received physical layer signaling that may be used to determine the first wireless signal before the second signaling.
  • the physical layer signaling is DCI (Downlink Control Information).
  • the first signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the first signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the second signaling is dynamic signaling for uplink grant (UpLink Grant), and the operation is sending.
  • UpLink Grant uplink grant
  • the second signaling is dynamic signaling for DownLink Grant, and the operation is receiving.
  • the first type of scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), and HARQ (Hybrid Automatic Repeat reQuest) Request request) process number, RV (Redundancy Version, redundancy version), NDI (New Data Indicator), occupied antenna port, corresponding transmit beamforming vector, corresponding receive beamforming vector Corresponding transmission spatial filtering, at least one of corresponding corresponding spatial filtering.
  • the first wireless signal and the first signaling related are: the first wireless signal ⁇ the occupied antenna port, the corresponding transmit beamforming vector, the corresponding receiving At least one of a corresponding beam-forming vector, corresponding spatial filtering, and corresponding spatial filtering is associated with the first signaling.
  • the first wireless signal and the first signaling are related to: the first signaling is used to determine the first wireless signal ⁇ the occupied antenna port, corresponding to Transmitting a beamforming vector, corresponding to a received beamforming vector, corresponding one of a corresponding spatial filtering, and corresponding spatial filtering.
  • the first wireless signal and the first signaling are related to: the time-frequency resource occupied by the first wireless signal is related to the first signaling.
  • the first wireless signal and the first signaling are related to: the first signaling is used to determine a time-frequency resource occupied by the first wireless signal.
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the first signaling is a MACCE (Medium Access Control Layer Control Element) signaling.
  • MACCE Medium Access Control Layer Control Element
  • the first signaling is high layer signaling.
  • the first signaling is RRC (Radio Resource Control) signaling.
  • the first signaling is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data), and the operation is transmission.
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel).
  • PUSCH Physical Uplink Shared CHannel
  • the uplink physical layer data channel is sPUSCH (short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is NB-PUSCH (NarrowBand PUSCH, narrowband PUSCH).
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data), the operation being reception.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the A wireless signal is associated with the first signaling; otherwise the first wireless signal is independent of the first signaling.
  • the method includes the following:
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals, and the P first sub-signals are respectively P first
  • the antenna-like port transmits;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K first sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K first sub-signals being a subset of the P first sub-signals;
  • the P being a positive integer, the K being no greater than A positive integer of the P.
  • the above method has the advantage that the multi-antenna correlation processing of the uplink reference signal can be utilized to optimize the multi-antenna related processing of the uplink or downlink data, thereby improving the data transmission quality.
  • the above method has the advantage that when the operation is transmission, the uplink and downlink channel reciprocity can be utilized to reduce the overhead of reference signals and signaling.
  • the second type of scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC (Orthogonal Cover Code, positive Transmitting mask), the occupied antenna port, the corresponding transmit beamforming vector, the corresponding receiving beamforming vector, the corresponding transmission spatial filtering, and the corresponding receiving spatial filtering (spatial filtering) At least one of ⁇ .
  • the first signaling is used to trigger transmission of the first reference signal.
  • the second signaling is used to determine the K first sub-signals from the P first sub-signals.
  • the second signaling indicates an index of each of the K first sub-signals in the P first sub-signals.
  • the second signaling includes a third domain, where the third domain includes a ⁇ SRI (SRSResourceIndicator), a TRI (Transmitted Rank Indicator), and an RI (RankIndicator). At least one of a PMI (Precoder Matrix Indicator) and a TPMI (Transmitted Precoding Matrix Indicator), the third field in the second signaling is used to Determining the K first sub-signals in the P first sub-signals.
  • SRSResourceIndicator SRSResourceIndicator
  • TRI Transmitted Rank Indicator
  • RI RankIndicator
  • PMI Precoder Matrix Indicator
  • TPMI Transmitted Precoding Matrix Indicator
  • the third domain comprises an SRI.
  • the third domain comprises a TRI.
  • the third domain comprises an RI.
  • the third domain comprises ⁇ TRI, SRI ⁇ .
  • the third domain comprises ⁇ RI, SRI ⁇ .
  • the first reference signal is an SRS (Sounding Reference Signal).
  • the value of the first domain in the first signaling is equal to the value of the second domain in the second signaling.
  • the measurement for the first reference signal is used to determine the K first sub-signals from the P first sub-signals.
  • the measurements for the P first sub-signals are used to determine P reception qualities, respectively.
  • a receiving quality corresponding to any one of the K first sub-signals is greater than any first one of the P first sub-signals that does not belong to the K first sub-signals The reception quality corresponding to the signal.
  • any one of the P reception qualities is RSRP (Reference Signal Received Power).
  • any one of the P reception qualities is RSRQ (Reference Signal Received Quality).
  • any one of the P reception qualities is a CQI (Channel Quality Indicator).
  • the P first beamforming vectors are respectively associated with the P first sub-signals, and the P first beamforming vectors respectively belong to the first beamforming vector set, where the first A beamforming vector set includes a positive integer number of beamforming vectors.
  • the corresponding first beamforming vector is a given first beamforming vector.
  • the target receiver of the first reference signal receives the given first sub-signal with the given first beamforming vector, and the target receiver obtained by using the given first sub-signal is higher than the target receiver of the first reference signal.
  • Any beamforming vector other than the given first beamforming vector in a set of beamforming vectors receives the received quality of the given first sub-signal.
  • the P received qualities are received quality obtained by the target receiver of the first reference signal receiving the P first subframes respectively by using the P first beamforming vectors.
  • the K first beamforming vectors are first beamforming vectors corresponding to the K first sub-signals in the P first beamforming vectors.
  • the target receiver of the first reference signal receives the corresponding first sub-signal with any one of the K first beamforming vectors, and the received quality is greater than the received quality.
  • the target receiver of the first reference signal obtains the corresponding first sub-signal by using any first beamforming vector of the P first beamforming vectors that does not belong to the K first beamforming vectors Receive quality.
  • any given first type of antenna port of the P first type antenna ports is formed by superposing multiple antennas through antenna virtualization, and the multiple antennas are sent to the
  • the mapping coefficients of the first type of antenna ports constitute a beamforming vector, which is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • any one of the K second type antenna ports is formed by superposing multiple antennas through antenna virtualization, and the multiple antennas are sent to the
  • the mapping coefficients of the second type of antenna ports constitute a beamforming vector, which is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • the K first type antenna ports are the P first type antenna ports. And the K first type antenna ports are respectively used to send the K first sub-signals, and the K first type antenna ports and the K second type antenna ports are in one-to-one correspondence.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related transmissions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the operation being transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first-type antenna ports Any of the first type of antenna ports and the corresponding second type of antenna ports are QCL (Quasi Co-Located), and the operation is transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding first type of antenna port correspond to the same beamforming vector, the operation being a transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding first type of antenna port correspond to the same analog beamforming vector, the operation being a transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding first type of antenna port correspond to the same analog beamforming vector and the same digital beamforming vector, the operation being a transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding first type of antenna port correspond to the same spatial filtering, and the operation is transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first sub-signals corresponding to The transmission spatial filtering is the same as the transmission spatial filtering corresponding to the K wireless sub-signals, and the operation is transmission.
  • the fact that two antenna ports are QCL means that the large-scale nature of the channel experienced by the wireless signal transmitted from one antenna port infers the wireless transmitted on the other antenna port.
  • the large scale characteristics include ⁇ delay spread, Doppler spread, Doppler shift, average gain, average delay, arrival One or more of an angle of arrival, an angle of departure, and a spatial correlation.
  • the two antenna ports being QCL means that the two antenna ports correspond to the same analog beamforming vector.
  • the fact that two antenna ports are QCL means that two antenna ports correspond to the same beamforming vector.
  • the two antenna ports being the QCL means that the target receiver of the first reference signal can receive the wireless signals transmitted on the two antenna ports by using the same beamforming vector.
  • the two antenna ports being the QCL means that the target receiver of the first reference signal can receive the wireless signals transmitted on the two antenna ports by using the same analog beamforming vector.
  • the two antenna ports being the QCL means that the target receiver of the first reference signal can receive the wireless signals transmitted on the two antenna ports by the same spatial filtering.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related receptions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the operation being reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K first sub-signals Measurements are used to determine the K second type antenna ports, respectively, and the operation is reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K first sub-signals Measurements are respectively used to determine beamforming directions corresponding to the K second type antenna ports Quantity, the operation is receiving.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K first sub-signals
  • the measurements are respectively used to determine an analog beamforming vector corresponding to the K second type of antenna ports, the operation being a reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first beam-forming vectors They are used as beamforming vectors corresponding to the K second type antenna ports, respectively, and the operation is reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first beam-forming vectors
  • the analog beamforming vectors corresponding to the K second type antenna ports are respectively used, and the operation is reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first sub-signals corresponding to The receiving spatial filtering is the same as the transmission spatial filtering corresponding to the K wireless sub-signals, respectively, and the operation is reception.
  • measurements for the K first sub-signals are used to determine an MCS of the first wireless signal, the operation being a transmission.
  • the reception quality corresponding to the K first sub-signals is used to determine an MCS of the first wireless signal, and the operation is transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related reception is used to determine multi-antenna related reception of the K wireless sub-signals, respectively, the operation being a transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K first sub-signals Measurements are used to determine receive beamforming vectors for the K wireless sub-signals, respectively, which are transmitted.
  • the multi-antenna related processing of the K first sub-signals are respectively used
  • the determining the multi-antenna correlation processing of the K wireless sub-signals means that the measurements for the K first sub-signals are respectively used to determine the received analog beamforming vectors of the K wireless sub-signals, The operation is to send.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first beam-forming vectors They are used as receive beamforming vectors for the K wireless sub-signals, respectively, which are transmitted.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first beam-forming vectors
  • the received analog beamforming vectors are respectively used as the K wireless sub-signals, the operation being a transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first sub-signals corresponding to The receiving spatial filtering is the same as the receiving spatial filtering corresponding to the K wireless sub-signals, and the operation is transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related transmissions are respectively used to determine multi-antenna related reception of the K wireless sub-signals, the operation being reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first-class antenna ports respectively A receive beamforming vector used to determine the K wireless sub-signals, the operation being a reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first-class antenna ports respectively A received analog beamforming vector used to determine the K wireless sub-signals, the operation being a reception.
  • the processing of the multi-antenna correlation of the K first sub-signals is used to determine the multi-antenna correlation processing of the K radio sub-signals respectively: the K first-class antenna ports correspond to Beamforming vectors are used as receive beam assignments for the K wireless sub-signals, respectively Type vector, the operation is reception.
  • the processing of the multi-antenna correlation of the K first sub-signals is used to determine the multi-antenna correlation processing of the K radio sub-signals respectively: the K first-class antenna ports correspond to The analog beamforming vectors are used as received analog beamforming vectors for the K wireless sub-signals, respectively, which are received.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K first sub-signals corresponding to The transmission spatial filtering is the same as the receiving spatial filtering corresponding to the K wireless sub-signals, and the operation is reception.
  • the first reference signal is broadband.
  • the system bandwidth is divided into positive integer frequency domain regions, the first reference signal appears on all frequency domain regions within the system bandwidth, and any one of the positive integer frequency domain regions includes A positive integer number of consecutive subcarriers.
  • the number of subcarriers included in any two of the positive integer frequency domain regions is the same.
  • the first reference signal is narrowband.
  • the first reference signal appears only in a part of the frequency domain region of the positive integer frequency domain region.
  • the first reference signal appears only once in the time domain.
  • the first reference signal appears multiple times in the time domain.
  • the time-frequency resources occupied by the P first sub-signals are mutually orthogonal (non-overlapping).
  • the time domain resources occupied by the P first sub-signals are mutually orthogonal (non-overlapping).
  • At least two first sub-signals of the P first sub-signals occupy the same time domain resource.
  • the code domain resources occupied by the P first sub-signals are orthogonal to each other.
  • At least two first sub-signals of the P first sub-signals occupy the same time-frequency resource.
  • the time-frequency resources occupied by the K wireless sub-signals are the same.
  • At least two of the K wireless sub-signals occupy orthogonal (non-overlapping) time-frequency resources.
  • the frequency domain resource occupied by the first wireless signal belongs to a frequency domain resource occupied by the first reference signal.
  • the frequency domain resource occupied by the first wireless signal is part of a frequency domain resource occupied by the first reference signal.
  • the first wireless signal and the first reference signal occupy the same frequency domain resource.
  • the K is smaller than the P.
  • the K is equal to the P.
  • the P is equal to one.
  • the P is greater than one.
  • the method includes the following:
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third Generating an antenna port;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K second sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K second sub-signals being a subset of the Q second sub-signals;
  • the Q being a positive integer, the K being no greater than A positive integer of Q.
  • the above method has the advantage that the multi-antenna correlation processing of the downlink reference signal can be utilized to optimize the multi-antenna correlation processing of the uplink or downlink data, and the data transmission quality is improved.
  • the above method has the advantage that when the operation is received, the uplink and downlink channel reciprocity can be utilized to reduce the overhead of reference signals and signaling.
  • the third type of scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC, occupied antenna ports.
  • the first signaling is used to trigger a measurement for the second reference signal.
  • the second signaling is used to determine the K second sub-signals from the Q second sub-signals.
  • the second signaling indicates an index of each of the K second sub-signals in the Q second sub-signals.
  • the second signaling includes a fourth domain, where the fourth domain includes at least one of ⁇ TRI, RI, CRI, PMI, TPMI ⁇ , and the second in the second signaling Four fields are used to determine the K second sub-signals from the Q second sub-signals.
  • the fourth domain comprises a TRI.
  • the fourth domain comprises a CRI.
  • the fourth domain comprises an RI.
  • the fourth domain includes ⁇ TRI, CRI ⁇ .
  • the fourth domain includes ⁇ RI, CRI ⁇ .
  • the second reference signal includes ⁇ CSI-RS (Channel State Information-Reference Signal), DMRS (DeModulation Reference Signals), and TRS (finetime/frequencyTrackingReferenceSignals, fine Time domain/frequency domain tracking reference signal), PTRS (Phase error Tracking Reference Signals), PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal), PSSS (Primary Sidelink Synchronization Signal, At least one of a primary and secondary link synchronization signal), SSSS (Secondary Sidelink Synchronization Signal).
  • CSI-RS Channel State Information-Reference Signal
  • DMRS DeModulation Reference Signals
  • TRS finetime/frequencyTrackingReferenceSignals, fine Time domain/frequency domain tracking reference signal
  • PTRS Phase error Tracking Reference Signals
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PSSS Primary Sidelink Synchronization Signal
  • the value of the first domain in the first signaling is equal to the value of the second domain in the second signaling.
  • the measurement for the second reference signal is used to determine the K second sub-signals from the Q second sub-signals.
  • the measurements for the Q second sub-signals are used to determine Q, respectively Receive quality.
  • a receiving quality corresponding to any one of the K second sub-signals is greater than a second one of the Q second sub-signals that does not belong to the K second sub-signals The reception quality corresponding to the signal.
  • any one of the Q reception qualities is RSRP.
  • any one of the Q reception qualities is RSRQ.
  • any one of the Q reception qualities is a CQI.
  • the Q second beamforming vectors are respectively associated with the Q second sub-signals, and the Q second beamforming vectors respectively belong to the second beamforming vector set, where the The two beamforming vector set includes a positive integer number of beamforming vectors.
  • the corresponding second beam-forming vector is a given second beam-emphasis vector.
  • Receiving, by the user equipment, the received quality obtained by receiving the given second sub-signal with the given second beamforming vector is higher than the given quality of the user equipment by using the second beamforming vector set Any beamforming vector other than the two beamforming vectors receives the received quality of the given second sub-signal.
  • the Q receiving qualities are received quality obtained by the user equipment receiving the Q second sub-signals by using the Q second beamforming vectors respectively.
  • the K second beamforming vectors are second beamforming vectors respectively corresponding to the K second sub-signals in the Q second beamforming vectors.
  • the user equipment receives the corresponding second sub-signal with any one of the K second beamforming vectors, and the receiving quality is greater than that of the user equipment.
  • the received quality obtained by any second beamforming vector that does not belong to the K second beamforming vectors in the second beamforming vector receives the corresponding second sub-signal.
  • any given one of the Q third-type antenna ports is formed by superposing multiple antennas through antenna virtualization, and the multiple antennas are sent to the
  • the mapping coefficients of the third type of antenna port constitute a beamforming vector, which is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • any one of the K second type antenna ports is formed by superposing multiple antennas through antenna virtualization, and the multiple antennas are sent to the
  • the mapping coefficients of the second type of antenna ports constitute a beamforming vector
  • the beamforming vector is composed of an analog beamforming vector and a Kronecker product of a digital beamforming vector.
  • the K third type antenna ports are a subset of the Q third type antenna ports, and the K third type antenna ports are respectively used to send the K second sub-signals.
  • the K third type antenna ports and the K second type antenna ports are in one-to-one correspondence.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related transmissions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the operation being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K third-category antenna ports Any of the third type of antenna ports and the corresponding second type of antenna ports are QCL (Quasi Co-Located), and the operation is reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding third type of antenna port correspond to the same beamforming vector, and the operation is reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding third type of antenna port correspond to the same analog beamforming vector, the operation being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding third type of antenna port correspond to the same analog beamforming vector and the same digital beamforming vector, the operation being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second-type antenna ports Any of the second type of antenna ports and the corresponding third type of antenna port correspond to the same spatial filtering, and the operation is reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second sub-letters
  • the transmission spatial filtering corresponding to the number is the same as the transmission spatial filtering corresponding to the K wireless sub-signals, and the operation is reception.
  • the two antenna ports being the QCL means that the user equipment can receive the wireless signals transmitted on the two antenna ports by using the same beamforming vector.
  • the two antenna ports being the QCL means that the user equipment can receive the wireless signals transmitted on the two antenna ports by using the same analog beamforming vector.
  • the two antenna ports being the QCL means that the user equipment can receive the wireless signals transmitted on the two antenna ports by the same spatial filtering.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related reception is used to determine multi-antenna related transmissions of the K wireless sub-signals, respectively, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K second sub-signals Measurements are used to determine the K second type antenna ports, respectively, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K second sub-signals Measurements are used to determine beamform vectors corresponding to the K second type of antenna ports, respectively, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K second sub-signals Measurements are used to determine analog beamforming vectors corresponding to the K second type antenna ports, respectively, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second beam-forming vectors They are respectively used as beamforming vectors corresponding to the K second type antenna ports, and the operation is transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second beam-forming vectors They are used as analog beamforming vectors corresponding to the K second type antenna ports, respectively, and the operation is transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second sub-signals corresponding to The receiving spatial filtering is the same as the transmission spatial filtering corresponding to the K wireless sub-signals, and the operation is transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related reception is used to determine multi-antenna related reception of the K wireless sub-signals, respectively, the operation being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K second sub-signals Measurements are used to determine receive beamforming vectors for the K wireless sub-signals, respectively, which are received.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: for the K second sub-signals Measurements are used to determine received analog beamforming vectors for the K wireless sub-signals, respectively, which are received.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second beam-forming vectors
  • the receive beamforming vectors are respectively used as the K wireless sub-signals, the operation being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second beam-forming vectors
  • the received analog beamforming vectors are respectively used as the K wireless sub-signals, the operation being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second sub-letters
  • the corresponding spatial filtering corresponding to the number is the same as the receiving spatial filtering corresponding to the K wireless sub-signals, and the operation is reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related transmissions are respectively used to determine multi-antenna related reception of the K wireless sub-signals, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K third-category antenna ports respectively A receive beamforming vector used to determine the K wireless sub-signals, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K third-category antenna ports respectively A received analog beamforming vector used to determine the K wireless sub-signals, the operation being a transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K third-category antenna ports correspond to The beamforming vectors are used as receive beamforming vectors for the K wireless sub-signals, respectively, which are transmitted.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K third-category antenna ports correspond to The analog beamforming vectors are used as received analog beamforming vectors for the K wireless sub-signals, respectively, which are transmitted.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second sub-signals corresponding to The transmission spatial filtering is the same as the receiving spatial filtering corresponding to the K wireless sub-signals, and the operation is transmission.
  • the second reference signal is broadband.
  • the system bandwidth is divided into positive integer frequency domain regions, and the second reference signal appears on all frequency domain regions within the system bandwidth, the positive integer frequency domain regions Any of the frequency domain regions includes a positive integer number of consecutive subcarriers.
  • the number of subcarriers included in any two of the positive integer frequency domain regions is the same.
  • the second reference signal is narrowband.
  • the second reference signal appears only once in the time domain.
  • the second reference signal appears multiple times in the time domain.
  • the second reference signal appears only in a part of the frequency domain region of the positive integer frequency domain region.
  • the time-frequency resources occupied by the Q second sub-signals are mutually orthogonal (non-overlapping).
  • the time domain resources occupied by the Q second sub-signals are mutually orthogonal (non-overlapping).
  • At least two second sub-signals of the Q second sub-signals occupy the same time domain resource.
  • the code domain resources occupied by the Q second sub-signals are orthogonal to each other.
  • At least two second sub-signals of the Q second sub-signals occupy the same time-frequency resource.
  • the K is smaller than the Q.
  • the K is equal to the Q.
  • the Q is greater than one.
  • the method includes the following:
  • the uplink information is used to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are the K1 a subset of the second sub-signals, the K1 being a positive integer not greater than the Q and not less than the K.
  • the measurement for the second reference signal is used to determine the K1 second sub-signals.
  • a receiving quality corresponding to any one of the K1 second sub-signals is greater than a second one of the Q second sub-signals that does not belong to the K1 second sub-signals The reception quality corresponding to the signal.
  • the K1 is equal to the K.
  • the K1 is greater than the K.
  • the K1 is smaller than the Q.
  • the uplink information indicates an index of each of the K1 second sub-signals in the Q second sub-signals.
  • the uplink information is used to determine K1 reception qualities, and the K1 reception qualities are reception qualities corresponding to the K1 second sub-signals respectively in the Q reception qualities.
  • the K1 second beamforming vectors are second beamforming vectors corresponding to the K1 second sub-signals in the Q second beamforming vectors.
  • the user equipment receives the corresponding second sub-signal with any one of the K1 second beamforming vectors, and the receiving quality is greater than that of the user equipment.
  • the received quality obtained by any second beamforming vector that does not belong to the K1 second beamforming vectors in the second beamforming vector receives the corresponding second sub-signal.
  • the uplink information indicates the K1 reception quality.
  • the uplink information includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the uplink information includes one or more of ⁇ CSI, CRI, RSRP, RSRQ, CQI, PMI ⁇ .
  • the uplink information is carried by physical layer signaling.
  • the uplink information is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH).
  • the uplink physical layer control channel is NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (NarrowBandPUCCH, Narrowband PUCCH).
  • the uplink information is in an uplink physical layer data channel (ie, can be used for Transmission on the uplink channel carrying the physical layer data.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel).
  • PUSCH Physical Uplink Shared CHannel
  • the uplink physical layer data channel is sPUSCH (short PUSCH).
  • the uplink physical layer data channel is an NR-PUSCH (New Radio PUSCH).
  • NR-PUSCH New Radio PUSCH
  • the uplink physical layer data channel is NB-PUSCH (NarrowBand PUSCH, narrowband PUSCH).
  • the method includes the following:
  • the first downlink information is used to determine T1 second type scheduling information, and the second type scheduling information of the first reference signal is a second type scheduling of the T1 second type scheduling information.
  • Information, the T1 is a positive integer.
  • the first signaling is used to determine second type scheduling information of the first reference signal from the T1 second type scheduling information.
  • the first signaling indicates an index of the second type of scheduling information of the first reference signal in the T1 second type of scheduling information.
  • the first downlink information is carried by higher layer signaling.
  • the first downlink information is carried by RRC signaling.
  • the first downlink information is carried by MAC CE signaling.
  • the first downlink information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the method includes the following:
  • the second downlink information is used to determine T2 third type scheduling information, and the third type scheduling information of the second reference signal is a third class of the T2 third type scheduling information.
  • Scheduling information the T2 being a positive integer.
  • the first signaling is used to determine third type scheduling information of the second reference signal from the T2 third type scheduling information.
  • the first signaling indicates an index of the third type of scheduling information of the second reference signal in the T2 third type scheduling information.
  • the second downlink information is carried by higher layer signaling.
  • the second downlink information is carried by RRC signaling.
  • the second downlink information is carried by MAC CE signaling.
  • the second downlink information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the first domain in the first signaling is used to identify the first reference signal.
  • the first domain in the first signaling is used to identify the second reference signal.
  • the first signaling is used to determine ⁇ a fourth type of scheduling information of the first wireless signal, and a fifth type of scheduling information of the second signaling At least one of ⁇ .
  • the fourth type of scheduling information belongs to a target information set
  • the first type of scheduling information belongs to the target information set
  • the target information set includes a positive integer number of information
  • any one of the target information sets One information belongs to and can only belong to one of the first type of scheduling information and the fourth type of scheduling information
  • the target information set includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS, HARQ process number, RV, NDI, the occupied antenna port, the corresponding transmit beamforming vector, the corresponding receive beamforming vector, the corresponding transmission spatial filtering, and the corresponding receiving spatial filtering ( At least two of the spatial filtering) ⁇ .
  • the fifth type of scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, number of information bits included, identifier integer, occupied antenna The port, the corresponding transmit beamforming vector, the corresponding received beamforming vector, the corresponding transmission spatial filtering, and the corresponding receiving spatial filtering.
  • the identifier integer is an RNTI (Radio Network Temporary Identifier).
  • the identifier integer is used to determine the ⁇ ResourceElement (Resource Element) set of the physical layer signaling corresponding to the fifth type of scheduling information, and the CRC (Cyclic Redundancy Check) At least one of a sequence, DMRS ⁇ , the set of REs comprising a positive integer number of REs.
  • the first signaling explicitly indicates the fourth type of scheduling information of the first wireless signal.
  • the first signaling explicitly indicates the fifth type of scheduling information of the second signaling.
  • the first signaling explicitly indicates ⁇ a fourth type of scheduling information of the first wireless signal, and a fifth type of scheduling information of the second signaling ⁇ .
  • the first signaling implicitly indicates a fourth type of scheduling information of the first wireless signal.
  • the first signaling implicitly indicates the fifth type of scheduling information of the second signaling.
  • the first signaling implicitly indicates ⁇ the fourth type of scheduling information of the first wireless signal, and the fifth type of scheduling information of the second signaling ⁇ .
  • the present application discloses a method in a base station used for wireless communication, which includes:
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first signaling The first domain in the second signal and the second domain in the second signaling are used to determine whether the first wireless signal is related to the first signaling; the performing is sending, or the performing is receiving .
  • the first signaling and the second signaling are physical layer signaling, respectively.
  • the first signaling and the second signaling are dynamic signaling, respectively.
  • the first domain and the second domain are each composed of a positive integer number of bits.
  • the A wireless signal is associated with the first signaling; otherwise the first wireless signal is independent of the first signaling.
  • the method includes the following:
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals, and the P first sub-signals are respectively P first
  • the antenna-like port transmits;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K first sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K first sub-signals being a subset of the P first sub-signals;
  • the P being a positive integer, the K being no greater than A positive integer of the P.
  • the second signaling is used to determine the K first sub-signals from the P first sub-signals.
  • the first reference signal is an SRS (Sounding Reference Signal).
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related transmissions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the execution being reception.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related receptions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the execution being transmission.
  • the multi-antenna correlation processing of the K first sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K first sub-signals Antenna related receptions are respectively used to determine multi-antenna related reception of the K wireless sub-signals, the execution being reception.
  • the multi-antenna related processing of the K first sub-signals are respectively used
  • the determining of the multi-antenna correlation of the K wireless sub-signals means that the multi-antenna related transmissions of the K first sub-signals are respectively used to determine multi-antenna related reception of the K wireless sub-signals
  • the execution is a transmission.
  • the method includes the following:
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third Generating an antenna port;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K second sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K second sub-signals being a subset of the Q second sub-signals;
  • the Q being a positive integer, the K being no greater than A positive integer of Q.
  • the second signaling is used to determine the K second sub-signals from the Q second sub-signals.
  • the second reference signal includes a CSI-RS (Channel State Information-Reference Signal).
  • CSI-RS Channel State Information-Reference Signal
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related transmissions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the execution being transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related receptions are respectively used to determine multi-antenna related transmissions of the K wireless sub-signals, the execution being reception.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the plurality of K second sub-signals Antenna related receptions are respectively used to determine multi-antenna related reception of the K wireless sub-signals, the execution being transmission.
  • the multi-antenna correlation processing of the K second sub-signals is used to determine the multi-antenna correlation processing of the K wireless sub-signals respectively: the K second sub-letters
  • the multi-antenna related transmissions of the numbers are respectively used to determine multi-antenna related reception of the K wireless sub-signals, the execution being reception.
  • the method includes the following:
  • the uplink information is used to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are the K1 a subset of the second sub-signals, the K1 being a positive integer not greater than the Q and not less than the K.
  • the uplink information includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the method includes the following:
  • the first downlink information is used to determine T1 second type scheduling information, and the second type scheduling information of the first reference signal is a second type scheduling of the T1 second type scheduling information.
  • Information, the T1 is a positive integer.
  • the method includes the following:
  • the second downlink information is used to determine T2 third type scheduling information, and the third type scheduling information of the second reference signal is a third type scheduling information of the T2 third type scheduling information.
  • the T2 is a positive integer.
  • the first domain in the first signaling is used to identify the first reference signal.
  • the first domain in the first signaling is used to identify the second reference signal.
  • the first signaling is used to determine ⁇ a fourth type of scheduling information of the first wireless signal, and a fifth type of scheduling information of the second signaling At least one of ⁇ .
  • the present application discloses a user equipment used for wireless communication, which includes:
  • the first receiver module receives the first signaling and the second signaling
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first signaling First in The domain and the second of the second signaling are used in common to determine whether the first wireless signal is associated with the first signaling; the operation is a reception, or the operation is a transmission.
  • the foregoing user equipment used for wireless communication is characterized in that if the value of the second domain in the second signaling is equal to the value of the first domain in the first signaling And the first wireless signal is related to the first signaling; otherwise, the first wireless signal is independent of the first signaling.
  • the above user equipment used for wireless communication is characterized in that the first processing module further transmits a first reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals, and the P first sub-signals are respectively P first
  • the antenna-like port transmits;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K first sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K first sub-signals being a subset of the P first sub-signals; the P being a positive integer, the K being no greater than A positive integer of the P.
  • the above user equipment used for wireless communication is characterized in that the first processing module further receives a second reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third Generating an antenna port;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K second sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K second sub-signals being a subset of the Q second sub-signals;
  • the Q being a positive integer, the K being no greater than A positive integer of Q.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module further sends uplink information.
  • the uplink information is used to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are the K1 a subset of the second sub-signals, the K1 being a positive integer not greater than the Q and not less than the K.
  • the user equipment used for wireless communication is characterized in that the first receiver module further receives the first downlink information.
  • the first downlink information is used to determine T1 second type scheduling information
  • the second type scheduling information of the first reference signal is a second type scheduling of the T1 second type scheduling information.
  • Information, the T1 is a positive integer.
  • the user equipment used for wireless communication is characterized in that the first receiver module further receives second downlink information.
  • the second downlink information is used to determine T2 third type scheduling information
  • the third type scheduling information of the second reference signal is a third type scheduling information of the T2 third type scheduling information.
  • the T2 is a positive integer.
  • the user equipment used for wireless communication is characterized in that the first domain in the first signaling is used to identify the first reference signal.
  • the above user equipment used for wireless communication is characterized in that the first domain in the first signaling is used to identify the second reference signal.
  • the foregoing user equipment used for wireless communication is characterized in that the first signaling is used to determine ⁇ a fourth type of scheduling information of the first wireless signal, the second signaling At least one of five types of scheduling information ⁇ .
  • the first processing module includes a transceiver module.
  • the first processing module includes a transmitter module.
  • the first processing module includes a receiver module.
  • the present application discloses a base station device used for wireless communication, which includes:
  • the first transmitter module sends the first signaling and the second signaling
  • a second processing module executing the first wireless signal
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first signaling The first domain in the second signal and the second domain in the second signaling are used to determine whether the first wireless signal is related to the first signaling; the performing is sending, or the performing is receiving .
  • the base station device used for wireless communication is characterized in that if the value of the second domain in the second signaling is equal to the value of the first domain in the first signaling And the first wireless signal is related to the first signaling; otherwise, the first wireless signal is independent of the first signaling.
  • the base station device used for wireless communication described above is characterized in that the second processing module further receives the first reference signal.
  • the first domain in the first signaling And the second domain in the second signaling is used to determine that the first wireless signal is related to the first signaling; the first signaling is used to determine the first reference signal
  • the second type of scheduling information includes P first sub-signals, and the P first sub-signals are respectively sent by P first-type antenna ports;
  • the first wireless signal includes K wireless a sub-signal, wherein the K wireless sub-signals are respectively transmitted by K second-type antenna ports; and the multi-antenna correlation processing of the K first sub-signals are respectively used to determine multi-antenna correlation of the K wireless sub-signals Processing, the K first sub-signals are a subset of the P first sub-signals; the P is a positive integer, and the K is a positive integer not greater than the P.
  • the base station device used for wireless communication is characterized in that the second processing module further transmits a second reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third Generating an antenna port;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K second sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K second sub-signals being a subset of the Q second sub-signals;
  • the Q being a positive integer, the K being no greater than A positive integer of Q.
  • the base station device used for wireless communication is characterized in that the second processing module further receives uplink information.
  • the uplink information is used to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are the K1 a subset of the second sub-signals, the K1 being a positive integer not greater than the Q and not less than the K.
  • the base station device used for wireless communication is characterized in that the first transmitter module further sends the first downlink information.
  • the first downlink information is used to determine T1 second type scheduling information, and the second type scheduling information of the first reference signal is a second type scheduling of the T1 second type scheduling information.
  • Information, the T1 is a positive integer.
  • the base station device used for wireless communication is characterized in that the first transmitter module further sends second downlink information.
  • the second downlink information is used to determine T2 third type scheduling information
  • the third type scheduling information of the second reference signal is a third type scheduling information of the T2 third type scheduling information.
  • the T2 is a positive integer.
  • the base station device used for wireless communication is characterized in that the first domain in the first signaling is used to identify the first reference signal.
  • the base station device used for wireless communication is characterized in that the first domain in the first signaling is used to identify the second reference signal.
  • the base station device used for wireless communication is characterized in that the first signaling is used to determine ⁇ a fourth type of scheduling information of the first wireless signal, the second signaling At least one of five types of scheduling information ⁇ .
  • the second processing module includes a transceiver module.
  • the second processing module includes a transmitter module.
  • the second processing module includes a receiver module.
  • the present application has the following advantages compared with the conventional solution:
  • the use of channel reciprocity reduces the overhead of reference signals, signaling, and feedback.
  • FIG. 1 shows a flow chart of first signaling, first signaling, and first wireless signal in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 7 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 8 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 9 shows a schematic diagram of first signaling and second signaling according to an embodiment of the present invention.
  • Figure 10 is a diagram showing the relationship between K first sub-signals and P first sub-signals according to an embodiment of the present invention.
  • Figure 11 is a diagram showing the relationship between K second sub-signals and Q second sub-signals according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • Figure 13 shows a block diagram of a structure for a processing device in a base station in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signaling, the first signaling, and the first wireless signal, as shown in FIG.
  • the user equipment in the present application receives the first signaling, receives the second signaling, and then operates the first wireless signal.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal; the first signaling
  • the first domain in the second signal and the second domain in the second signaling are used to determine whether the first wireless signal is related to the first signaling; the operation is receiving, or the operation is sending .
  • the first signaling is physical layer signaling.
  • the second signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the second signaling is dynamic signaling.
  • the first signaling and the second signaling are physical layer signaling, respectively.
  • the first signaling and the second signaling are dynamic signaling, respectively.
  • the first domain and the second domain are each composed of a positive integer number of bits.
  • the number of bits included in the first domain is equal to the number of bits included in the second domain.
  • the first wireless signal and the first Signaling related are independent of the first signaling.
  • the first signaling is a physical layer signaling that is recently received before the second signaling, including the first domain.
  • the first signaling is a most recently received physical layer signaling that may be used to determine the first wireless signal before the second signaling.
  • the physical layer signaling is DCI.
  • the first signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the first signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the second signaling is dynamic signaling for uplink grant (UpLink Grant), and the operation is transmission.
  • UpLink Grant uplink grant
  • the second signaling is dynamic signaling for downlink grant (DownLink Grant), and the operation is reception.
  • the first type of scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), and HARQ (Hybrid Automatic Repeat reQuest) Retransmission request) process number, RV (Redundancy Version), NDI (New Data Indicator), occupied antenna port, corresponding transmit beamforming vector, corresponding receive beamforming The vector, corresponding to at least one of transmission spatial filtering and corresponding spatial filtering.
  • the first wireless signal and the first signaling correlation refer to: the first wireless signal ⁇ the occupied antenna port, the corresponding transmit beam shaping vector, corresponding to Receiving a beamforming vector, corresponding one of a corresponding spatial filtering, corresponding to a received spatial filtering, is related to the first signaling.
  • the first wireless signal and the first signaling are related to: the first signaling is used to determine the first wireless signal ⁇ the occupied antenna port, corresponding to Transmit beamforming vector, corresponding receiving beamforming vector, corresponding transmission space filtering At least one of spatial filtering, corresponding to receiving spatial filtering.
  • the first wireless signal and the first signaling are related to: the time-frequency resource occupied by the first wireless signal is related to the first signaling.
  • the first wireless signal and the first signaling are related to: the first signaling is used to determine a time-frequency resource occupied by the first wireless signal.
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first signaling is MAC CE signaling.
  • the first signaling is high layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data), and the operation is transmission.
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data), and the operation is reception.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but These entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • Embodiment 3 illustrates an illustration of an embodiment of a radio protocol architecture of a user plane and a control plane Intent, as shown in Figure 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the radio protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first signaling in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated in the PHY301.
  • the first reference signal in the present application is generated by the PHY 301.
  • the second reference signal in the present application is generated by the PHY 301.
  • the uplink information in the present application is generated by the PHY 301.
  • the first downlink information in this application is generated in the RRC sublayer 306.
  • the second downlink information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of an evolved node and a UE, as shown in FIG.
  • DL Downlink
  • the upper layer packet from the core network is provided to controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • Signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM) mapping to signal clusters.
  • modulation schemes eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM) mapping to signal clusters.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • M-PSK M Phase shift keying
  • M-QAM M quadrature amplitude modulation
  • Multi-carrier streams are spatially pre-coded to produce multiple spatial streams. Each spatial stream is then provided to a different antenna 420 via a transmitter 418. Each transmitter 418 modulates the RF carrier with a respective spatial stream for transmission.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the RF carrier and provides the information to the receive processor 456.
  • Receive processor 456 implements various signal processing functions of the L1 layer. The receiving processor 456 performs spatial processing on the information to recover Any spatial stream destined for the UE 450. If multiple spatial streams are destined for the UE 450, they may be combined by the receive processor 456 into a single multi-carrier symbol stream.
  • Receive processor 456 then converts the multicarrier symbol stream from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the frequency domain signal includes a separate multicarrier symbol stream for each subcarrier of the multicarrier signal.
  • the symbols on each subcarrier and the reference signal are recovered and demodulated by determining the most likely signal cluster point transmitted by gNB 410 and generate a soft decision.
  • the soft decision is then decoded and deinterleaved to recover the data and control signals originally transmitted by the gNB 410 on the physical channel.
  • the data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the L2 layer.
  • the controller/processor can be associated with a memory 460 that stores program codes and data.
  • Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover the upper layer packets from the core network.
  • the upper layer package is then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide the upper layer packet to controller/processor 459. Data source 467 represents all protocol layers above the L2 layer.
  • controller/processor 459 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels through gNB 410 based radio resource allocation. Use to implement the L2 layer for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the appropriate encoding and modulation scheme is selected by the transmit processor 468 and spatial processing is facilitated.
  • the spatial streams generated by transmit processor 468 are provided to different antennas 452 via separate transmitters 454. Each transmitter 454 modulates the RF carrier with a respective spatial stream for transmission.
  • the UL transmissions are processed at the gNB 410 in a manner similar to that described in connection with the receiver function description at the UE 450.
  • Each receiver 418 receives a signal through its respective antenna 420.
  • Each receiver 418 recovers the information modulated onto the RF carrier and provides the information to the receive processor 470.
  • Receive processor 470 can implement the L1 layer.
  • the controller/processor 475 implements the L2 layer. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover the upper layer packets from the UE 450.
  • An upper layer packet from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for making Error detection is performed using the ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving the present application Receiving, by the first signaling, the second signaling in the application, sending the first wireless signal in the application, and receiving the first wireless signal.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting the first Signaling, transmitting the second signaling, receiving the first wireless signal, and transmitting the first wireless signal.
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the first signaling in the present application
  • the receive processor 456 and the At least one of the controller/processor 459 is used to receive the first signaling in the present application.
  • At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the second signaling in the present application
  • the receive processor 456 and the At least one of the controller/processor 459 is used to receive the second signaling in the present application.
  • At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the first wireless signal in the present application
  • the receive processor 456 and the At least one of the controller/processor 459 is used to receive the first wireless signal in the present application.
  • the transmit processor 468 and the controller/processor 459 At least one of the first wireless signals used in the present application is transmitted, at least one of the receiving processor 470 and the controller/processor 475 being used to receive the The first wireless signal.
  • At least one of the transmit processor 468 and the controller/processor 459 is used to transmit the first reference signal in the present application
  • the receive processor 470 and the At least one of the controller/processor 475 is used to receive the first reference signal in the present application.
  • At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the second reference signal in the present application
  • the receive processor 456 and the At least one of the controller/processor 459 is used to receive the second reference signal in the present application.
  • At least one of the transmit processor 468 and the controller/processor 459 is used to transmit the uplink information in the present application
  • At least one of / processor 475 is used to receive the upstream information in the present application.
  • At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the first downlink information in the present application
  • the receive processor 456 and the At least one of the controller/processor 459 is configured to receive the first downlink information in the present application.
  • At least one of the transmit processor 416 and the controller/processor 475 is used to transmit the second downlink information in the present application
  • the receive processor 456 and the At least one of the controller/processor 459 is configured to receive the second downlink information in the present application.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • the steps in block F1 and block F2 are optional, respectively.
  • step S101 transmitting the first downlink information in step S101; transmitting the first signaling in step S11; receiving the first reference signal in step S102; transmitting the second signaling in step S12; receiving the first signaling in step S13 A wireless signal.
  • step S201 receiving the first downlink information in step S201; receiving the first signaling in step S21; transmitting the first reference signal in step S202; receiving the second signaling in step S22; transmitting the first signaling in step S23 A wireless signal.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first domain in the first signaling and the second domain in the second signaling are jointly used by the U2 to determine whether the first wireless signal is related to the first signaling.
  • the first signaling is used by the U2 to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals, and the P first sub-signals are respectively P first type antenna ports are transmitted;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports.
  • the multi-antenna correlation processing of the K first sub-signals are respectively used to determine multi-antenna related processing of the K wireless sub-signals, the K first sub-signals being the P first sub-signals a subset; the P is a positive integer, and the K is a positive integer not greater than the P.
  • the first downlink information is used by the U2 to determine T1 second type scheduling information, and the second type of scheduling information of the first reference signal is a second type of the T1 second type scheduling information. Scheduling information, the T1 is a positive integer.
  • the first domain and the second domain are each composed of a positive integer number of bits.
  • the number of bits included in the first domain is equal to the number of bits included in the second domain.
  • the first wireless signal and the first Signaling related are independent of the first signaling.
  • the first signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the first signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the second signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the first wireless signal is on an uplink physical layer data channel (ie, Can be used to transmit on the uplink channel carrying physical layer data.
  • an uplink physical layer data channel ie, Can be used to transmit on the uplink channel carrying physical layer data.
  • the first type of scheduling information includes: the occupied time domain resource, the occupied frequency domain resource, the MCS, the HARQ process number, the RV, the NDI, the occupied antenna port, and the corresponding transmit beam.
  • the first signaling is used to trigger transmission of the first reference signal.
  • the second signaling is used by the U2 to determine the K first sub-signals from the P first sub-signals.
  • the second signaling indicates an index of each of the K first sub-signals in the P first sub-signals.
  • the first reference signal is an SRS.
  • the second type of scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC, occupied antennas.
  • the K first type antenna ports are a subset of the P first type antenna ports, and the K first type antenna ports are respectively used to send the K first sub-signals,
  • the K first type antenna ports and the K second type antenna ports are in one-to-one correspondence.
  • the multi-antenna related transmissions of the K first sub-signals are used by the U2 to determine multi-antenna related transmissions of the K wireless sub-signals, respectively.
  • any one of the K first type antenna ports and the corresponding second type antenna port are QCL.
  • any one of the K second type antenna ports and the corresponding first type antenna port correspond to the same beamforming vector.
  • any one of the K second type antenna ports and the corresponding first type antenna port correspond to the same analog beamforming vector.
  • the measurement for the K first sub-signals is used by the N1 to determine the MCS of the first wireless signal, the operation being a transmission.
  • the reception quality corresponding to the K first sub-signals is used by the N1 to determine an MCS of the first wireless signal, and the operation is transmission.
  • the multi-antenna related reception of the K first sub-signals is used by the N1 to determine multi-antenna related reception of the K wireless sub-signals, respectively.
  • the measurements for the K first sub-signals are used by the N1 to determine receive beamforming vectors of the K wireless sub-signals, respectively.
  • the measurements for the K first sub-signals are used by the N1 to determine received analog beamforming vectors of the K wireless sub-signals, respectively.
  • the first reference signal appears only once in the time domain.
  • the first reference signal appears multiple times in the time domain.
  • the first signaling is used by the U2 to determine second type scheduling information of the first reference signal from the T1 second type scheduling information.
  • the first field in the first signaling is used to identify the first reference signal.
  • the first signaling is used by the U2 to determine at least one of ⁇ a fourth type of scheduling information of the first wireless signal, a fifth type of scheduling information of the second signaling ⁇ One.
  • the fourth type of scheduling information belongs to a target information set, the first type of scheduling information belongs to the target information set, and the target information set includes a positive integer information, where the target information set Any information belongs to and can only belong to one of the first type of scheduling information and the fourth type of scheduling information, where the target information set includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS , HARQ process number, RV, NDI, the occupied antenna port, the corresponding transmit beam shaping vector, the corresponding receive beamforming vector, the corresponding transmission spatial filtering, the corresponding receiving spatial filtering At least two of (spatial filtering) ⁇ .
  • the fifth type of scheduling information includes: ⁇ occupied time domain resources, occupied frequency domain resources, number of information bits included, identifier integer, occupied antenna port, corresponding transmission The beamforming vector, the corresponding receiving beamforming vector, the corresponding transmission spatial filtering, and at least one of the corresponding receiving spatial filtering.
  • the identification integer is an RNTI.
  • Embodiment 6 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N3 is a serving cell maintenance base station of user equipment U4.
  • the steps in block F3 and block F4 are optional, respectively.
  • step S301 For N3, transmitting the first downlink information in step S301; transmitting the first signaling in step S31; receiving the first reference signal in step S302; transmitting the second signaling in step S32; transmitting the first signaling in step S33 A wireless signal.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first domain in the first signaling and the second domain in the second signaling are jointly used by the U4 to determine whether the first wireless signal is related to the first signaling.
  • the first signaling is used by the U4 to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals, and the P first sub-signals are respectively P first type antenna ports are transmitted;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports.
  • the multi-antenna correlation processing of the K first sub-signals are respectively used to determine multi-antenna related processing of the K wireless sub-signals, the K first sub-signals being the P first sub-signals a subset; the P is a positive integer, and the K is a positive integer not greater than the P.
  • the first downlink information is used by the U4 to determine T1 second type scheduling information, and the second type of scheduling information of the first reference signal is a second type of the T1 second type scheduling information. Scheduling information, the T1 is a positive integer.
  • the second signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the K first type antenna ports are a subset of the P first type antenna ports, and the K first type antenna ports are respectively used to send the K first sub-signals,
  • the K first type antenna ports and the K second type antenna ports are in one-to-one correspondence.
  • the multi-antenna related reception of the K first sub-signals is used by the N3 to determine multi-antenna related transmission of the K wireless sub-signals, respectively.
  • the measurement for the K first sub-signals is used by the N3 to determine a beamforming vector corresponding to the K second-type antenna ports.
  • the measurement for the K first sub-signals is used by the N3 to determine an analog beamforming vector corresponding to the K second-type antenna ports.
  • the multi-antenna related transmissions of the K first sub-signals are used by the U4 to determine multi-antenna related reception of the K wireless sub-signals, respectively.
  • the beamforming vectors corresponding to the K first type antenna ports are respectively used by the U4 as the receiving beamforming vectors of the K wireless sub-signals.
  • the analog beamforming vectors corresponding to the K first type antenna ports are respectively used by the U4 as the receiving analog beamforming vectors of the K wireless sub-signals.
  • Embodiment 7 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N5 is a serving cell maintenance base station of user equipment U6.
  • the steps in block F5, block F6 and block F7 are optional, respectively.
  • the second downlink information is transmitted in step S501; the first signaling is transmitted in step S51; the second reference signal is transmitted in step S502; the uplink information is received in step S503; and the second signaling is transmitted in step S52.
  • the second downlink information is received in step S601; the first signaling is received in step S61; the second reference signal is received in step S602; the uplink information is transmitted in step S603; and the second signaling is received in step S62.
  • the first wireless signal is transmitted in step S63.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first domain in the first signaling and the second domain in the second signaling are jointly used by the U6 to determine whether the first wireless signal is related to the first signaling.
  • the first signaling is used by the U6 to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third type antenna ports are transmitted;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports.
  • the K second sub-signals are respectively used to determine multiple antennas of the K wireless sub-signals
  • the K second sub-signals are a subset of the Q second sub-signals; the Q is a positive integer, and the K is a positive integer not greater than the Q.
  • the uplink information is used by the N5 to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are A subset of K1 second sub-signals, said K1 being a positive integer not greater than said Q and not less than said K.
  • the second downlink information is used by the U6 to determine T2 third type scheduling information, and the third type of scheduling information of the second reference signal is a third type scheduling of the T2 third type scheduling information.
  • Information, the T2 is a positive integer.
  • the third type of scheduling information includes: ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC, occupied antennas
  • the port the corresponding transmit beamforming vector, the corresponding received beamforming vector, the corresponding transmission spatial filtering, and the corresponding receiving spatial filtering.
  • the first signaling is used to trigger a measurement for the second reference signal.
  • the second signaling is used by the U6 to determine the K second sub-signals from the Q second sub-signals.
  • the second reference signal includes at least one of ⁇ CSI-RS, DMRS, TRS, PTRS, PSS, SSS, PSSS, SSSS ⁇ .
  • the K third-type antenna ports are a subset of the Q third-class antenna ports, and the K third-type antenna ports are respectively used to send the K second sub-signals,
  • the K third type antenna ports and the K second type antenna ports are in one-to-one correspondence.
  • the multi-antenna related reception of the K second sub-signals is used by the U6 to determine multi-antenna related transmission of the K wireless sub-signals, respectively.
  • the measurement for the K second sub-signals is used by the U6 to determine a beamforming vector corresponding to the K second-type antenna ports.
  • the measurement for the K second sub-signals is used by the U6 to determine an analog beamforming vector corresponding to the K second-type antenna ports.
  • the multi-antenna related transmissions of the K second sub-signals are used by the N5 to determine multi-antenna related reception of the K wireless sub-signals, respectively.
  • the beamforming vectors corresponding to the K third-type antenna ports are respectively used by the N5 as the receiving beamforming vectors of the K wireless sub-signals.
  • the analog beamforming vectors corresponding to the K third-type antenna ports are respectively used by the N5 as the receiving analog beamforming vectors of the K wireless sub-signals.
  • the second reference signal appears only once in the time domain.
  • the second reference signal appears multiple times in the time domain.
  • the measurement for the second reference signal is used by the U6 to determine the K1 second sub-signals.
  • the receiving quality corresponding to any one of the K1 second sub-signals is greater than any second of the Q second sub-signals that does not belong to the K1 second sub-signals The reception quality corresponding to the sub-signal.
  • the K1 is equal to the K.
  • the K1 is greater than the K.
  • the K1 is smaller than the Q.
  • the uplink information includes UCI.
  • the first signaling is used by the U6 to determine third type scheduling information of the second reference signal from the T2 third type scheduling information.
  • the first field in the first signaling is used to identify the second reference signal.
  • Embodiment 8 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N7 is a serving cell maintenance base station of user equipment U8.
  • the steps in block F8, block F9 and block F10 are optional, respectively.
  • the second downlink information is transmitted in step S701; the first signaling is transmitted in step S71; the second reference signal is transmitted in step S702; the uplink information is received in step S703; and the second signaling is transmitted in step S72.
  • the first wireless signal is transmitted in step S73.
  • the second downlink information is received in step S801; the first signaling is received in step S81; the second reference signal is received in step S802; the uplink information is transmitted in step S803; and the second signaling is received in step S82.
  • the first wireless signal is received in step S83.
  • the first signaling includes a first domain, and the second signaling includes a second domain;
  • the second signaling includes the first type of scheduling information of the first wireless signal; the first domain in the first signaling and the second domain in the second signaling are commonly used by the U8 Determining whether the first wireless signal is related to the first signaling.
  • the first signaling is used by the U8 to determine third type scheduling information of the second reference signal; the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third type antenna ports are transmitted; the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports.
  • the multi-antenna correlation processing of the K second sub-signals are respectively used to determine multi-antenna correlation processing of the K wireless sub-signals, the K second sub-signals being the Q second sub-signals a subset; the Q is a positive integer, and the K is a positive integer not greater than the Q.
  • the uplink information is used by the N7 to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are A subset of K1 second sub-signals, said K1 being a positive integer not greater than said Q and not less than said K.
  • the second downlink information is used by the U8 to determine T2 third type scheduling information, and the third type of scheduling information of the second reference signal is a third type scheduling of the T2 third type scheduling information.
  • Information, the T2 is a positive integer.
  • the multi-antenna related transmissions of the K second sub-signals are used by the N7 to determine multi-antenna related transmissions of the K wireless sub-signals, respectively.
  • any of the K third-class antenna ports and the corresponding second-type antenna port are QCL.
  • any one of the K second type antenna ports and the corresponding third type antenna port correspond to the same beamforming vector.
  • any one of the K second type antenna ports and the corresponding third type antenna port correspond to the same analog beamforming vector.
  • the multi-antenna related reception of the K second sub-signals is used by the U8 to determine multi-antenna related reception of the K wireless sub-signals, respectively.
  • the measurements for the K second sub-signals are used by the U8 to determine receive beamforming vectors for the K wireless sub-signals, respectively.
  • the measurements for the K second sub-signals are used by the U8 to determine received analog beamforming vectors for the K wireless sub-signals, respectively.
  • Embodiment 9 illustrates a schematic diagram of the first signaling and the second signaling, as shown in FIG.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • a first domain in the first signaling and a second one in the second signaling The domains are collectively used to determine whether the first wireless signal in the present application is related to the first signaling.
  • the first domain and the second domain are each composed of a positive integer number of bits.
  • the number of bits included in the first domain is equal to the number of bits included in the second domain.
  • the first wireless signal and the first Signaling related are independent of the first signaling.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the K first sub-signals and the P first sub-signals, as shown in FIG.
  • the first reference signal in the application includes P first sub-signals, and the P first sub-signals are respectively sent by P first-type antenna ports; K first sub-signals Multiple antenna related processing is respectively used to determine multi-antenna related processing of the K wireless sub-signals in the present application, the K first sub-signals being a subset of the P first sub-signals.
  • a measurement for the first reference signal is used to determine the K first sub-signals from the P first sub-signals.
  • the K wireless sub-signals are respectively sent by K second-type antenna ports, and the K first-type antenna ports are a subset of the P first-type antenna ports, and the K first-type antenna ports are respectively And configured to send the K first sub-signals, where the K first-type antenna ports and the K second-type antenna ports are in one-to-one correspondence.
  • an antenna port is formed by superposing multiple antennas in one or more antenna groups through antenna virtualization, and multiple antennas in the one or more antenna groups to the antenna
  • the mapping coefficients of the ports constitute a beamforming vector.
  • One of the antenna groups is connected to the baseband processor via an RF (Radio Frequency) chain.
  • the mapping coefficients of the plurality of antennas in the same antenna group to the antenna port constitute an analog beamforming vector of the antenna group, and all antenna groups included in one antenna port correspond to the same analog beamforming vector. All antenna groups included in the antenna port to the antenna end
  • the mapping coefficients of the ports constitute the digital beamforming vector of this antenna port.
  • the beamforming vector of the antenna port is composed of a corresponding analog beamforming vector and a Kronecker product of the corresponding digital beamforming vector.
  • the measurements for the P first sub-signals are used to determine P reception qualities, respectively.
  • a receiving quality corresponding to any one of the K first sub-signals is greater than any one of the P first sub-signals that does not belong to the K first sub-signals The reception quality corresponding to the sub-signal.
  • any one of the P reception qualities is RSRP.
  • any one of the P reception qualities is RSRQ.
  • any one of the P reception qualities is a CQI.
  • the P first beamforming vectors are respectively associated with the P first sub-signals, and the P first beamforming vectors respectively belong to the first beamforming vector set
  • the first set of beamforming vectors includes a positive integer number of beamforming vectors.
  • the corresponding first beamforming vector is a given first beamforming vector.
  • the target receiver of the first reference signal receives the given first sub-signal with the given first beamforming vector, and the target receiver obtained by using the given first sub-signal is higher than the target receiver of the first reference signal.
  • Any beamforming vector other than the given first beamforming vector in a set of beamforming vectors receives the received quality of the given first sub-signal.
  • the P received qualities are received quality obtained by the target receiver of the first reference signal respectively receiving the P first sub-signals by using the P first beamforming vectors.
  • the K first beamforming vectors are first beamforming vectors respectively corresponding to the K first sub-signals in the P first beamforming vectors.
  • the target receiver of the first reference signal receives the corresponding first sub-signal with any one of the K first beamforming vectors, and the receiving quality is greater than The target receiver of the first reference signal receives the corresponding first sub-signal with any first beamforming vector of the P first beamforming vectors that does not belong to the K first beamforming vectors. The quality of reception.
  • any one of the K second-type antenna ports and the corresponding first-type antenna port correspond to the same beamforming vector, and the operation described in this application Is sent, the execution in this application is receiving.
  • any one of the K second type antenna ports and the corresponding first type antenna port correspond to the same analog beamforming vector, the operation is sending, and the performing Is receiving.
  • any one of the K second-type antenna ports and the corresponding first-type antenna port correspond to the same analog beamforming vector and the same digital beamforming vector.
  • the operation is a transmission and the execution is a reception.
  • the K first beamforming vectors are respectively used as receive beamforming vectors of the K wireless sub-signals, the operation is transmission, and the execution is reception.
  • the K first beamforming vectors are respectively used as received analog beamforming vectors of the K wireless sub-signals, the operation is transmission, and the execution is reception.
  • the K first beamforming vectors are respectively used as beamforming vectors corresponding to the K second type antenna ports, the operation is reception, and the execution is transmission.
  • the K first beamforming vectors are respectively used as analog beamforming vectors corresponding to the K second type antenna ports, the operation is reception, and the execution is transmission.
  • the beamforming vectors corresponding to the K first-type antenna ports are respectively used as receiving beamforming vectors of the K wireless sub-signals, the operation is receiving, and the performing is sending .
  • the analog beamforming vectors corresponding to the K first type antenna ports are respectively used as receiving analog beamforming vectors of the K wireless sub-signals, the operation is receiving, and the performing Is sent.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the K second sub-signals and the Q second sub-signals, as shown in FIG.
  • the second reference signal in the present application includes Q second sub-signals, which are respectively sent by Q third-type antenna ports; K second sub-signals Multiple antenna related processing is used to determine the multi-antenna correlation processing of the K wireless sub-signals in the present application, respectively, the K second sub-signals being a subset of the Q second sub-signals.
  • the measurement for the second reference signal is used to determine the K first from the Q second sub-signals Two sub-signals.
  • the K wireless sub-signals are respectively sent by K second-type antenna ports, and the K third-type antenna ports are subsets of the Q third-class antenna ports, and the K third-type antenna ports are respectively And sending the K second sub-signals, wherein the K third-type antenna ports and the K second-type antenna ports are in one-to-one correspondence.
  • measurements for the Q second sub-signals are used to determine Q reception qualities, respectively.
  • the receiving quality corresponding to any one of the K second sub-signals is greater than any second of the Q second sub-signals that does not belong to the K second sub-signals The reception quality corresponding to the sub-signal.
  • any one of the Q reception qualities is RSRP.
  • any one of the Q reception qualities is RSRQ.
  • any one of the Q reception qualities is a CQI.
  • the Q second beamforming vectors are respectively associated with the Q second sub-signals, and the Q second beamforming vectors respectively belong to the second beamforming vector set
  • the second set of beamforming vectors includes a positive integer number of beamforming vectors.
  • the corresponding second beam-forming vector is a given second beam-emphasis vector.
  • the user equipment in the present application receives the given second sub-signal with the given second beamforming vector, and the receiving quality is higher than that of the user equipment by using the second beamforming vector set.
  • the received quality obtained by receiving the given second sub-signal is given by any beamforming vector other than the second beamforming vector.
  • the Q receiving qualities are received quality obtained by the user equipment receiving the Q second sub-signals by using the Q second beamforming vectors respectively.
  • the K second beamforming vectors are second beamforming vectors respectively corresponding to the K second sub-signals in the Q second beamforming vectors.
  • the user equipment receives the corresponding second sub-signal with any one of the K second beamforming vectors, and the receiving quality is greater than that of the user equipment.
  • the received quality obtained by any second beamforming vector of the Q second beamforming vectors that does not belong to the K second beamforming vectors receives the corresponding second sub-signal.
  • any one of the K second type antenna ports and the corresponding third type antenna port correspond to the same beamforming vector, and the operation in the present application is to receive,
  • the execution in this application is a transmission.
  • any one of the K second type antenna ports and the corresponding third type antenna port correspond to the same analog beamforming vector, the operation is receiving, and the performing Is sent.
  • any one of the K second type antenna ports and the corresponding third type antenna port correspond to the same analog beamforming vector and the same digital beamforming vector.
  • the operation is reception, and the execution is transmission.
  • the K second beamforming vectors are respectively used as receive beamforming vectors of the K wireless sub-signals, the operation is reception, and the execution is transmission.
  • the K second beamforming vectors are respectively used as received analog beamforming vectors of the K wireless sub-signals, the operation is reception, and the execution is transmission.
  • the K second beamforming vectors are respectively used as beamforming vectors corresponding to the K second type antenna ports, the operation is transmission, and the execution is reception.
  • the K second beamforming vectors are respectively used as analog beamforming vectors corresponding to the K second type antenna ports, the operation is transmission, and the execution is reception.
  • the beamforming vectors corresponding to the K third-type antenna ports are respectively used as receiving beamforming vectors of the K wireless sub-signals, the operation is transmission, and the execution is reception. .
  • the analog beamforming vectors corresponding to the K third-type antenna ports are respectively used as receiving analog beamforming vectors of the K wireless sub-signals, the operation is sending, and the performing Is receiving.
  • Embodiment 12 exemplifies a structural block diagram of a processing device for use in a user equipment, as shown in FIG.
  • the processing device 1200 in the user equipment is mainly composed of a first receiver module 1201 and a first processing module 1202.
  • the first receiver module 1201 receives the first signaling and the second signaling; the first processing module 1202 operates the first wireless signal.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first domain in the first signaling and the second domain in the second signaling are commonly used by the first processing module 1202 Determining whether the first wireless signal is related to the first signaling; the operation is receiving, or the operation is transmitting.
  • the first wireless signal and the first Signaling related are independent of the first signaling.
  • the first processing module 1202 also transmits a first reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used by the first processing module 1202 to determine the first wireless signal and the First signaling related;
  • the first signaling is used by the first processing module 1202 to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals,
  • the P first sub-signals are respectively sent by P first-type antenna ports;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively sent by K second-type antenna ports;
  • the multi-antenna correlation processing of the K first sub-signals are respectively used to determine multi-antenna correlation processing of the K radio sub-signals, the K first sub-signals being sub-ports of the P first sub-signals Set;
  • the P is a positive integer
  • the K is a positive integer not greater than the P.
  • the first processing module 1202 also receives a second reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used by the first processing module 1202 to determine the first wireless signal and the First signaling related;
  • the first signaling is used by the first processing module 1202 to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals,
  • the Q second sub-signals are respectively sent by Q third-type antenna ports;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively sent by K second-type antenna ports;
  • the multi-antenna correlation processing of the K second sub-signals are respectively used to determine multi-antenna correlation processing of the K radio sub-signals, the K second sub-signals being sub-ports of the Q second sub-signals Set;
  • the Q is a positive integer
  • the K is a positive integer not greater than the Q.
  • the first processing module 1202 also sends uplink information.
  • the uplink information is used to determine K1 second sub-signals, the K1 second sub-signals are a subset of the Q second sub-signals, and the K second sub-signals are the K1 a subset of the second sub-signals, the K1 being a positive integer not greater than the Q and not less than the K.
  • the first receiver module 1201 also receives first downlink information.
  • the first downlink information is used by the first receiver module 1201 to determine T1
  • the second type of scheduling information, the second type of scheduling information of the first reference signal is a second type of scheduling information of the T1 second type of scheduling information, and the T1 is a positive integer.
  • the first receiver module 1201 also receives second downlink information.
  • the second downlink information is used by the first receiver module 1201 to determine T2 third type scheduling information, and the third type of scheduling information of the second reference signal is the T2 third type scheduling information.
  • the first field in the first signaling is used to identify the first reference signal.
  • the first field in the first signaling is used to identify the second reference signal.
  • the first signaling is used to determine at least one of ⁇ a fourth type of scheduling information of the first wireless signal, a fifth type of scheduling information of the second signaling ⁇ .
  • the first receiver module 1201 includes at least one of a receiving processor 456 and a controller/processor 459 in Embodiment 4.
  • the first processing module 1202 includes at least one of a receiving processor 456 and a controller/processor 459 in Embodiment 4.
  • the first processing module 1202 includes at least one of a transmit processor 468 and a controller/processor 459 in Embodiment 4.
  • Embodiment 13 exemplifies a structural block diagram of a processing device used in a base station, as shown in FIG.
  • the processing device 1300 in the base station is mainly composed of a first transmitter module 1301 and a second processing module 1302.
  • the first transmitter module 1301 transmits the first signaling and the second signaling; and the second processing module 1302 performs the first wireless signal.
  • the first signaling includes a first domain
  • the second signaling includes a second domain
  • the second signaling includes first type scheduling information of the first wireless signal
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine whether the first wireless signal is related to the first signaling; the performing is sending, or The execution is reception.
  • the first wireless signal is independent of the first signaling.
  • the second processing module 1302 also receives a first reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine second type scheduling information of the first reference signal;
  • the first reference signal includes P first sub-signals, and the P first sub-signals are respectively P first
  • the antenna-like port transmits;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K first sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K first sub-signals being a subset of the P first sub-signals;
  • the P being a positive integer, the K being no greater than A positive integer of the P.
  • the second processing module 1302 also transmits a second reference signal.
  • the first domain in the first signaling and the second domain in the second signaling are used together to determine that the first wireless signal is related to the first signaling;
  • the first signaling is used to determine third type scheduling information of the second reference signal;
  • the second reference signal includes Q second sub-signals, and the Q second sub-signals are respectively Q third Generating an antenna port;
  • the first wireless signal includes K wireless sub-signals, and the K wireless sub-signals are respectively transmitted by K second-type antenna ports;
  • the multi-antenna related processing of the K second sub-signals are respectively a process for determining multi-antenna correlation of the K wireless sub-signals, the K second sub-signals being a subset of the Q second sub-signals;
  • the Q being a positive integer, the K being no greater than A positive integer of Q.
  • the second processing module 1302 also receives uplink information.
  • the uplink information is used by the second processing module 1302 to determine K1 second sub-signals, and the K1 second sub-signals are a subset of the Q second sub-signals, and the K first
  • the two sub-signals are a subset of the K1 second sub-signals, and the K1 is a positive integer not greater than the Q and not less than the K.
  • the first transmitter module 1301 further sends the first downlink information.
  • the first downlink information is used to determine T1 second type scheduling information
  • the second type scheduling information of the first reference signal is a second type scheduling of the T1 second type scheduling information.
  • Information, the T1 is a positive integer.
  • the first transmitter module 1301 further sends second downlink information.
  • the second downlink information is used to determine T2 third type scheduling information
  • the third type scheduling information of the second reference signal is a third type scheduling of the T2 third type scheduling information.
  • Information, the T2 is a positive integer.
  • the first field in the first signaling is used to identify the first reference signal.
  • the first field in the first signaling is used to identify the second reference signal.
  • the first signaling is used to determine at least one of ⁇ a fourth type of scheduling information of the first wireless signal, a fifth type of scheduling information of the second signaling ⁇ .
  • the transmitter module 1301 includes at least one of the transmit processor 416 and the controller/processor 475 of Embodiment 4.
  • the second processing module 1302 includes at least one of the receiving processor 470 and the controller/processor 475 in Embodiment 4.
  • the second processing module 1302 includes at least one of a transmit processor 416 and a controller/processor 475 in Embodiment 4.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost equipment such as tablets.
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Abstract

本申请公开了一种被用于无线通信的用户、基站中的方法和装置。用户设备接收第一信令和第二信令,然后操作第一无线信号。其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。当所述用户设备被调度发送或测量多个参考信号的时候,上述方法避免了对某个参考信号的引用可能产生的歧义和混淆。

Description

一种被用于无线通信的用户、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的无线信号的传输方法和装置,尤其是支持多天线传输的无线通信系统中的无线信号的传输方法和装置。
背景技术
在无线通信系统中,参考信号一直是保证通信质量的必要手段之一。和传统的LTE(Long Term Evolution,长期演进)系统相比,5G系统中的参考信号需要支持更加多种多样的功能,比如信道状态信息获取、波束扫描等。为了满足不同功能下的要求并优化设计,5G系统允许UE(User Equipment,用户设备)和基站对多个参考信号资源上的参考信号进行测量,并支持周期性的(periodic)、半静态的(semi-persistent)和非周期性的(aperiodic)的参考信号。
发明内容
发明人通过研究发现,当5G系统的UE需要对多个参考信号资源上的参考信号进行测量或发送时,对其中某个参考信号资源的引用需要避免引起混淆,尤其是当系统调度了多次非周期性的参考信号时。
针对上述问题,本申请公开了一种解决方案。在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了被用于无线通信的用户设备中的方法,其特征在于,包括:
-接收第一信令;
-接收第二信令;
-操作第一无线信号;
其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一 域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。
作为一个实施例,上述方法的好处在于,所述第一信令可以用来调度一个参考信号,并用所述第一域来标识所调度的参考信号,所述第二信令可以用所述第二域来指示所述第一无线信号是否和所述第一信令调度的参考信号相关。
作为一个实施例,上述方法的好处在于,当所述用户设备被调度发送或测量多个参考信号的时候,上述方法可以避免对和所述第一无线信号相关的参考信号的理解产生歧义。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第一信令和所述第二信令分别是物理层信令。
作为一个实施例,所述第一信令和所述第二信令分别是动态信令。
作为一个实施例,所述第一域和所述第二域分别由正整数个比特组成。
作为一个实施例,所述第一域所包括的比特的数量和所述第二域所包括的比特的数量相等。
作为一个实施例,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
作为一个实施例,所述第一信令是所述第二信令之前最近收到的一个包括所述第一域的物理层信令。
作为一个实施例,所述第一信令是所述第二信令之前最近收到的一个可能被用于确定所述第一无线信号的物理层信令。
作为一个实施例,所述物理层信令是DCI(DownlinkControlInformation,下行控制信息)。
作为一个实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第二信令是用于上行授予(UpLink Grant)的动态信令,所述操作是发送。
作为一个实施例,所述第二信令是用于下行授予(DownLink Grant)的动态信令,所述操作是接收。
作为一个实施例,所述第一类调度信息包括{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一无线信号{所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一和所述第一信令相关。
作为一个实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一信令被用于确定所述第一无线信号{所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一无线信号所占用的时频资源和所述第一信令相关。
作为一个实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一信令被用于确定所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical DownlinkControl CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令是MACCE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH(NewRadio PDSCH,新无线PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(NarrowBand PDSCH,窄带PDSCH)。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输,所述操作是发送。
作为一个实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述上行物理层数据信道是sPUSCH(shortPUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NR-PUSCH(New RadioPUSCH,新无线PUSCH)。
作为一个实施例,所述上行物理层数据信道是NB-PUSCH(NarrowBandPUSCH,窄带PUSCH)。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输,所述操作是接收。
作为一个实施例,所述下行物理层数据信道是PDSCH。
作为一个实施例,所述下行物理层数据信道是sPDSCH。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH。
具体的,根据本申请的一个方面,其特征在于,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
具体的,根据本申请的一个方面,其特征在于,包括:
-发送第一参考信号;
其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
作为一个实施例,上述方法的好处在于,可以利用上行参考信号的多天线相关的处理来优化上行或下行数据的多天线相关的处理,提高了数据的传输质量。
作为一个实施例,上述方法的好处在于,当所述操作是发送时,可以利用上下行信道互易性来降低参考信号和信令的开销。
作为一个实施例,所述第二类调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个实施例,所述第一信令被用于触发所述第一参考信号的发送。
作为一个实施例,所述第二信令被用于从所述P个第一子信号中确定所述K个第一子信号。
作为一个实施例,所述第二信令指示所述K个第一子信号中的每一个第一子信号在所述P个第一子信号中的索引。
作为一个实施例,所述第二信令包括第三域,所述第三域包括{SRI(SRSResourceIndicator,探测参考信号资源标识),TRI(TransmittedRankIndicator,发送秩标识),RI(RankIndicator,秩标识),PMI(Precoder Matrix Indicator,预编码矩阵标识),TPMI(Transmitted Precoding Matrix Indicator,发送预编码矩阵标识)}中的至少之一,所述第二信令中的所述第三域被用于从所述P个第一子信号中确定所述K个第一子信号。
作为一个实施例,所述第三域包括SRI。
作为一个实施例,所述第三域包括TRI。
作为一个实施例,所述第三域包括RI。
作为一个实施例,所述第三域包括{TRI,SRI}。
作为一个实施例,所述第三域包括{RI,SRI}。
作为一个实施例,所述第一参考信号是SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第一信令中的所述第一域的值等于所述第二信令中的所述第二域的值。
作为一个实施例,针对所述第一参考信号的测量被用于从所述P个第一子信号中确定所述K个第一子信号。
作为一个实施例,针对所述P个第一子信号的测量分别被用于确定P个接收质量。
作为一个实施例,所述K个第一子信号中任一第一子信号对应的接收质量大于所述P个第一子信号中不属于所述K个第一子信号的任一第一子信号对应的接收质量。
作为一个实施例,所述P个接收质量中的任一接收质量是RSRP(ReferenceSignalReceivedPower,参考信号接收功率)。
作为一个实施例,所述P个接收质量中的任一接收质量是RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述P个接收质量中的任一接收质量是CQI(Channel Quality Indicator,信道质量标识)。
作为一个实施例,P个第一波束赋型向量分别和所述P个第一子信号一一对应,所述P个第一波束赋型向量分别属于第一波束赋型向量集合,所述第一波束赋型向量集合包括正整数个波束赋型向量。对于所述P个第一子信号中的任一给定第一子信号,对应的第一波束赋型向量是给定第一波束赋型向量。所述第一参考信号的目标接收者用所述给定第一波束赋型向量接收所述给定第一子信号得到的接收质量高于所述第一参考信号的目标接收者用所述第一波束赋型向量集合中所述给定第一波束赋型向量以外的任一波束赋型向量接收所述给定第一子信号得到的接收质量。
作为一个实施例,所述P个接收质量是所述第一参考信号的目标接收者用所述P个第一波束赋型向量分别接收所述P个第一子信号得到的接收质量。
作为一个实施例,K个第一波束赋型向量是所述P个第一波束赋型向量中分别和所述K个第一子信号对应的第一波束赋型向量。
作为一个实施例,所述第一参考信号的目标接收者用所述K个第一波束赋型向量中的任一第一波束赋型向量接收对应的第一子信号得到的接收质量大于所述第一参考信号的目标接收者用所述P个第一波束赋型向量中不属于所述K个第一波束赋型向量的任一第一波束赋型向量接收对应的第一子信号得到的接收质量。
作为一个实施例,所述P个第一类天线端口中的任一给定第一类天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述给定第一类天线端口的映射系数组成波束赋型向量,所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为一个实施例,所述K个第二类天线端口中的任一给定第二类天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述给定第二类天线端口的映射系数组成波束赋型向量,所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为一个实施例,K个第一类天线端口是所述P个第一类天线端口的 子集,所述K个第一类天线端口分别被用于发送所述K个第一子信号,所述K个第一类天线端口和所述K个第二类天线端口一一对应。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的发送,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一类天线端口中的任一第一类天线端口和对应的第二类天线端口是QCL(Quasi Co-Located,准共址)的,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的模拟波束赋型向量和相同的数字波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的空间滤波(spatial filtering),所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号对应的发送空间滤波(spatial filtering)分别和所述K个无线子信号对应的发送空间滤波(spatial filtering)是相同的,所述操作是发送。
作为一个实施例,两个天线端口是QCL的是指:能够从一个天线端口上发送的无线信号经历的信道的大尺度(large-scale)特性(properties)推断出另一个天线端口上发送的无线信号经历的信道的大尺度特性。所述大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均增益(average gain),平均延时(average delay),到达角(angle of arrival),离开角(angle of departure),空间相关性}中的一种或者多种。
作为一个实施例,两个天线端口是QCL的是指:两个天线端口对应相同的模拟波束赋型向量。
作为一个实施例,两个天线端口是QCL的是指:两个天线端口对应相同的波束赋型向量。
作为一个实施例,两个天线端口是所述QCL的是指:所述第一参考信号的目标接收者可以用相同的波束赋型向量对两个天线端口上发送的无线信号进行接收。
作为一个实施例,两个天线端口是所述QCL的是指:所述第一参考信号的目标接收者可以用相同的模拟波束赋型向量对两个天线端口上发送的无线信号进行接收。
作为一个实施例,两个天线端口是所述QCL的是指:所述第一参考信号的目标接收者可以用相同的空间滤波(spatial filtering)对两个天线端口上发送的无线信号进行接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的发送,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第一子信号的测量分别被用于确定所述K个第二类天线端口,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第一子信号的测量分别被用于确定所述K个第二类天线端口对应的波束赋型向 量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第一子信号的测量分别被用于确定所述K个第二类天线端口对应的模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一波束赋型向量分别被用作所述K个第二类天线端口对应的波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一波束赋型向量分别被用作所述K个第二类天线端口对应的模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号对应的接收空间滤波(spatial filtering)分别和所述K个无线子信号对应的发送空间滤波(spatial filtering)是相同的,所述操作是接收。
作为一个实施例,针对所述K个第一子信号的测量被用于确定所述第一无线信号的MCS,所述操作是发送。
作为一个实施例,所述K个第一子信号对应的接收质量被用于确定所述第一无线信号的MCS,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的接收,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第一子信号的测量分别被用于确定所述K个无线子信号的接收波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用 于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第一子信号的测量分别被用于确定所述K个无线子信号的接收模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号对应的接收空间滤波(spatial filtering)分别和所述K个无线子信号对应的接收空间滤波(spatial filtering)是相同的,所述操作是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的接收,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一类天线端口分别被用于确定所述K个无线子信号的接收波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一类天线端口分别被用于确定所述K个无线子信号的接收模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一类天线端口对应的波束赋型向量分别被用作所述K个无线子信号的接收波束赋 型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一类天线端口对应的模拟波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号对应的发送空间滤波(spatial filtering)分别和所述K个无线子信号对应的接收空间滤波(spatial filtering)是相同的,所述操作是接收。
作为一个实施例,所述第一参考信号是宽带的。
作为一个实施例,系统带宽被划分成正整数个频域区域,所述第一参考信号在系统带宽内的所有频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为一个实施例,所述正整数个频域区域中的任意两个频域区域包括的子载波的数目是相同的。
作为一个实施例,所述第一参考信号是窄带的。
作为一个实施例,所述第一参考信号只在所述正整数个频域区域中的部分频域区域上出现。
作为一个实施例,所述第一参考信号在时域上只出现一次。
作为一个实施例,所述第一参考信号在时域上出现多次。
作为一个实施例,所述P个第一子信号占用的时频资源是两两相互正交(不重叠)的。
作为一个实施例,所述P个第一子信号占用的时域资源是两两相互正交(不重叠)的。
作为一个实施例,所述P个第一子信号中至少存在两个第一子信号占用相同的时域资源。
作为一个实施例,所述P个第一子信号占用的码域资源是两两相互正交的。
作为一个实施例,所述P个第一子信号中至少存在两个第一子信号占用相同的时频资源。
作为一个实施例,所述K个无线子信号占用的时频资源是相同的。
作为一个实施例,所述K个无线子信号中至少存在两个无线子信号占用正交(不重叠)的时频资源。
作为一个实施例,所述第一无线信号占用的频域资源属于所述第一参考信号占用的频域资源。
作为一个实施例,所述第一无线信号占用的频域资源是所述第一参考信号占用的频域资源的一部分。
作为一个实施例,所述第一无线信号和所述第一参考信号占用相同的频域资源。
作为一个实施例,所述K小于所述P。
作为一个实施例,所述K等于所述P。
作为一个实施例,所述P等于1。
作为一个实施例,所述P大于1。
具体的,根据本申请的一个方面,其特征在于,包括:
-接收第二参考信号;
其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
作为一个实施例,上述方法的好处在于,可以利用下行参考信号的多天线相关的处理来优化上行或下行数据的多天线相关的处理,提高了数据的传输质量。
作为一个实施例,上述方法的好处在于,当所述操作是接收时,可以利用上下行信道互易性来降低参考信号和信令的开销。
作为一个实施例,所述第三类调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收 波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个实施例,所述第一信令被用于触发针对所述第二参考信号的测量。
作为一个实施例,所述第二信令被用于从所述Q个第二子信号中确定所述K个第二子信号。
作为一个实施例,所述第二信令指示所述K个第二子信号中的每一个第二子信号在所述Q个第二子信号中的索引。
作为一个实施例,所述第二信令包括第四域,所述第四域包括{TRI,RI,CRI,PMI,TPMI}中的至少之一,所述第二信令中的所述第四域被用于从所述Q个第二子信号中确定所述K个第二子信号。
作为一个实施例,所述第四域包括TRI。
作为一个实施例,所述第四域包括CRI。
作为一个实施例,所述第四域包括RI。
作为一个实施例,所述第四域包括{TRI,CRI}。
作为一个实施例,所述第四域包括{RI,CRI}。
作为一个实施例,所述第二参考信号包括{CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号),DMRS(DeModulation Reference Signals,解调参考信号),TRS(finetime/frequencyTrackingReferenceSignals,精细时域/频域跟踪参考信号),PTRS(Phase error TrackingReferenceSignals,相位误差跟踪参考信号),PSS(PrimarySynchronization Signal,主同步信号),SSS(SecondarySynchronization Signal,辅同步信号),PSSS(Primary Sidelink Synchronization Signal,主副链路同步信号),SSSS(Secondary Sidelink Synchronization Signal,辅副链路同步信号)}中的至少之一。
作为一个实施例,所述第一信令中的所述第一域的值等于所述第二信令中的所述第二域的值。
作为一个实施例,针对所述第二参考信号的测量被用于从所述Q个第二子信号中确定所述K个第二子信号。
作为一个实施例,针对所述Q个第二子信号的测量分别被用于确定Q 个接收质量。
作为一个实施例,所述K个第二子信号中任一第二子信号对应的接收质量大于所述Q个第二子信号中不属于所述K个第二子信号的任一第二子信号对应的接收质量。
作为一个实施例,所述Q个接收质量中的任一接收质量是RSRP。
作为一个实施例,所述Q个接收质量中的任一接收质量是RSRQ。
作为一个实施例,所述Q个接收质量中的任一接收质量是CQI。
作为一个实施例,Q个第二波束赋型向量分别和所述Q个第二子信号一一对应,所述Q个第二波束赋型向量分别属于第二波束赋型向量集合,所述第二波束赋型向量集合包括正整数个波束赋型向量。对于所述Q个第二子信号中的任一给定第二子信号,对应的第二波束赋型向量是给定第二波束赋型向量。所述用户设备用所述给定第二波束赋型向量接收所述给定第二子信号得到的接收质量高于所述用户设备用所述第二波束赋型向量集合中所述给定第二波束赋型向量以外的任一波束赋型向量接收所述给定第二子信号得到的接收质量。
作为一个实施例,所述Q个接收质量是所述用户设备用所述Q个第二波束赋型向量分别接收所述Q个第二子信号得到的接收质量。
作为一个实施例,K个第二波束赋型向量是所述Q个第二波束赋型向量中分别和所述K个第二子信号对应的第二波束赋型向量。
作为一个实施例,所述用户设备用所述K个第二波束赋型向量中的任一第二波束赋型向量接收对应的第二子信号得到的接收质量大于所述用户设备用所述Q个第二波束赋型向量中不属于所述K个第二波束赋型向量的任一第二波束赋型向量接收对应的第二子信号得到的接收质量。
作为一个实施例,所述Q个第三类天线端口中的任一给定第三类天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述给定第三类天线端口的映射系数组成波束赋型向量,所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为一个实施例,所述K个第二类天线端口中的任一给定第二类天线端口是由多根天线通过天线虚拟化(Virtualization)叠加而成,所述多根天线到所述给定第二类天线端口的映射系数组成波束赋型向量, 所述波束赋型向量是由一个模拟波束赋型向量和一个数字波束赋型向量的Kronecker积所构成的。
作为一个实施例,K个第三类天线端口是所述Q个第三类天线端口的子集,所述K个第三类天线端口分别被用于发送所述K个第二子信号,所述K个第三类天线端口和所述K个第二类天线端口一一对应。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的发送,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第三类天线端口中的任一第三类天线端口和对应的第二类天线端口是QCL(Quasi Co-Located,准共址)的,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的模拟波束赋型向量和相同的数字波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的空间滤波(spatial filtering),所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信 号对应的发送空间滤波(spatial filtering)分别和所述K个无线子信号对应的发送空间滤波(spatial filtering)是相同的,所述操作是接收。
作为一个实施例,两个天线端口是所述QCL的是指:所述用户设备可以用相同的波束赋型向量对两个天线端口上发送的无线信号进行接收。
作为一个实施例,两个天线端口是所述QCL的是指:所述用户设备可以用相同的模拟波束赋型向量对两个天线端口上发送的无线信号进行接收。
作为一个实施例,两个天线端口是所述QCL的是指:所述用户设备可以用相同的空间滤波(spatial filtering)对两个天线端口上发送的无线信号进行接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的发送,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第二子信号的测量分别被用于确定所述K个第二类天线端口,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第二子信号的测量分别被用于确定所述K个第二类天线端口对应的波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第二子信号的测量分别被用于确定所述K个第二类天线端口对应的模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二波束赋型向量分别被用作所述K个第二类天线端口对应的波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二波束赋型向量分别被用作所述K个第二类天线端口对应的模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号对应的接收空间滤波(spatial filtering)分别和所述K个无线子信号对应的发送空间滤波(spatial filtering)是相同的,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的接收,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第二子信号的测量分别被用于确定所述K个无线子信号的接收波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:针对所述K个第二子信号的测量分别被用于确定所述K个无线子信号的接收模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信 号对应的接收空间滤波(spatial filtering)分别和所述K个无线子信号对应的接收空间滤波(spatial filtering)是相同的,所述操作是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的接收,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第三类天线端口分别被用于确定所述K个无线子信号的接收波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第三类天线端口分别被用于确定所述K个无线子信号的接收模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第三类天线端口对应的波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第三类天线端口对应的模拟波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号对应的发送空间滤波(spatial filtering)分别和所述K个无线子信号对应的接收空间滤波(spatial filtering)是相同的,所述操作是发送。
作为一个实施例,所述第二参考信号是宽带的。
作为一个实施例,系统带宽被划分成正整数个频域区域,所述第二参考信号在系统带宽内的所有频域区域上出现,所述正整数个频域区域 中的任一频域区域包括正整数个连续子载波。
作为一个实施例,所述正整数个频域区域中的任意两个频域区域包括的子载波的数目是相同的。
作为一个实施例,所述第二参考信号是窄带的。
作为一个实施例,所述第二参考信号在时域上只出现一次。
作为一个实施例,所述第二参考信号在时域上出现多次。
作为一个实施例,所述第二参考信号只在所述正整数个频域区域中的部分频域区域上出现。
作为一个实施例,所述Q个第二子信号占用的时频资源是两两相互正交(不重叠)的。
作为一个实施例,所述Q个第二子信号占用的时域资源是两两相互正交(不重叠)的。
作为一个实施例,所述Q个第二子信号中至少存在两个第二子信号占用相同的时域资源。
作为一个实施例,所述Q个第二子信号占用的码域资源是两两相互正交的。
作为一个实施例,所述Q个第二子信号中至少存在两个第二子信号占用相同的时频资源。
作为一个实施例,所述K小于所述Q。
作为一个实施例,所述K等于所述Q。
作为一个实施例,所述Q大于1。
具体的,根据本申请的一个方面,其特征在于,包括:
-发送上行信息;
其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
作为一个实施例,针对所述第二参考信号的测量被用于确定所述K1个第二子信号。
作为一个实施例,所述K1个第二子信号中任一第二子信号对应的接收质量大于所述Q个第二子信号中不属于所述K1个第二子信号的任一第二子信号对应的接收质量。
作为一个实施例,所述K1等于所述K。
作为一个实施例,所述K1大于所述K。
作为一个实施例,所述K1小于所述Q。
作为一个实施例,所述上行信息指示所述K1个第二子信号中的每一个第二子信号在所述Q个第二子信号中的索引。
作为一个实施例,所述上行信息被用于确定K1个接收质量,所述K1个接收质量是所述Q个接收质量中分别和所述K1个第二子信号对应的接收质量。
作为一个实施例,K1个第二波束赋型向量是所述Q个第二波束赋型向量中分别和所述K1个第二子信号对应的第二波束赋型向量。
作为一个实施例,所述用户设备用所述K1个第二波束赋型向量中的任一第二波束赋型向量接收对应的第二子信号得到的接收质量大于所述用户设备用所述Q个第二波束赋型向量中不属于所述K1个第二波束赋型向量的任一第二波束赋型向量接收对应的第二子信号得到的接收质量。
作为一个实施例,所述上行信息指示所述K1个接收质量。
作为一个实施例,所述上行信息包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述上行信息包括{CSI,CRI,RSRP,RSRQ,CQI,PMI}中的一种或多种。
作为一个实施例,所述上行信息由物理层信令承载。
作为一个实施例,所述上行信息在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为一个实施例,所述上行物理层控制信道是PUCCH(Physical UplinkControl CHannel,物理上行控制信道)。
作为一个实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为一个实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为一个实施例,所述上行物理层控制信道是NB-PUCCH(NarrowBandPUCCH,窄带PUCCH)。
作为一个实施例,所述上行信息在上行物理层数据信道(即能用于 承载物理层数据的上行信道)上传输。
作为一个实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NR-PUSCH(NewRadio PUSCH,新无线PUSCH)。
作为一个实施例,所述上行物理层数据信道是NB-PUSCH(NarrowBandPUSCH,窄带PUSCH)。
具体的,根据本申请的一个方面,其特征在于,包括:
-接收第一下行信息;
其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个实施例,所述第一信令被用于从所述T1个第二类调度信息中确定所述第一参考信号的第二类调度信息。
作为一个实施例,所述第一信令指示所述第一参考信号的第二类调度信息在所述T1个第二类调度信息中的索引。
作为一个实施例,所述第一下行信息由高层信令承载。
作为一个实施例,所述第一下行信息由RRC信令承载。
作为一个实施例,所述第一下行信息由MACCE信令承载。
作为一个实施例,所述第一下行信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH。
作为一个实施例,所述下行物理层数据信道是sPDSCH。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH。
具体的,根据本申请的一个方面,其特征在于,包括:
-接收第二下行信息;
其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类 调度信息,所述T2是正整数。
作为一个实施例,所述第一信令被用于从所述T2个第三类调度信息中确定所述第二参考信号的第三类调度信息。
作为一个实施例,所述第一信令指示所述第二参考信号的第三类调度信息在所述T2个第三类调度信息中的索引。
作为一个实施例,所述第二下行信息由高层信令承载。
作为一个实施例,所述第二下行信息由RRC信令承载。
作为一个实施例,所述第二下行信息由MACCE信令承载。
作为一个实施例,所述第二下行信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH。
作为一个实施例,所述下行物理层数据信道是sPDSCH。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH。
具体的,根据本申请的一个方面,其特征在于,所述第一信令中的所述第一域被用于标识所述第一参考信号。
具体的,根据本申请的一个方面,其特征在于,所述第一信令中的所述第一域被用于标识所述第二参考信号。
具体的,根据本申请的一个方面,其特征在于,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
作为一个实施例,所述第四类调度信息属于目标信息集合,所述第一类调度信息属于所述目标信息集合,所述目标信息集合包括正整数个信息,所述目标信息集合中的任一信息属于且只能属于所述第一类调度信息和所述第四类调度信息中的之一,所述目标信息集合包括{所占用的时域资源,所占用的频域资源,MCS,HARQ进程号,RV,NDI,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之二。
作为一个实施例,所述第五类调度信息包括{所占用的时域资源,所占用的频域资源,所包括的信息比特的数量,标识整数,所占用的天线 端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个实施例,所述标识整数是RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述标识整数被用于确定所述第五类调度信息对应的物理层信令的{可能占用的RE(ResourceElement,资源粒子)集合,CRC(Cyclic Redundancy Check,循环冗余校验)序列,DMRS}中的至少之一,所述RE集合包括正整数个RE。
作为一个实施例,所述第一信令显式指示所述第一无线信号的第四类调度信息。
作为一个实施例,所述第一信令显式指示所述第二信令的第五类调度信息。
作为一个实施例,所述第一信令显式指示{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}。
作为一个实施例,所述第一信令隐式指示所述第一无线信号的第四类调度信息。
作为一个实施例,所述第一信令隐式指示所述第二信令的第五类调度信息。
作为一个实施例,所述第一信令隐式指示{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}。
本申请公开了被用于无线通信的基站中的方法,其特征在于,包括:
-发送第一信令;
-发送第二信令;
-执行第一无线信号;
其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述执行是发送,或者所述执行是接收。
作为一个实施例,所述第一信令和所述第二信令分别是物理层信令。
作为一个实施例,所述第一信令和所述第二信令分别是动态信令。
作为一个实施例,所述第一域和所述第二域分别由正整数个比特组成。
具体的,根据本申请的一个方面,其特征在于,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
具体的,根据本申请的一个方面,其特征在于,包括:
-接收第一参考信号;
其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
作为一个实施例,所述第二信令被用于从所述P个第一子信号中确定所述K个第一子信号。
作为一个实施例,所述第一参考信号是SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的发送,所述执行是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的发送,所述执行是发送。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的接收,所述执行是接收。
作为一个实施例,所述K个第一子信号的多天线相关的处理分别被用 于确定所述K个无线子信号的多天线相关的处理是指:所述K个第一子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的接收,所述执行是发送。
具体的,根据本申请的一个方面,其特征在于,包括:
-发送第二参考信号;
其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
作为一个实施例,所述第二信令被用于从所述Q个第二子信号中确定所述K个第二子信号。
作为一个实施例,所述第二参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的发送,所述执行是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的发送,所述执行是接收。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信号的多天线相关的接收分别被用于确定所述K个无线子信号的多天线相关的接收,所述执行是发送。
作为一个实施例,所述K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理是指:所述K个第二子信 号的多天线相关的发送分别被用于确定所述K个无线子信号的多天线相关的接收,所述执行是接收。
具体的,根据本申请的一个方面,其特征在于,包括:
-接收上行信息;
其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
作为一个实施例,所述上行信息包括UCI(Uplink Control Information,上行控制信息)。
具体的,根据本申请的一个方面,其特征在于,包括:
-发送第一下行信息;
其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
具体的,根据本申请的一个方面,其特征在于,包括:
-发送第二下行信息;
其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
具体的,根据本申请的一个方面,其特征在于,所述第一信令中的所述第一域被用于标识所述第一参考信号。
具体的,根据本申请的一个方面,其特征在于,所述第一信令中的所述第一域被用于标识所述第二参考信号。
具体的,根据本申请的一个方面,其特征在于,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
本申请公开了被用于无线通信的用户设备,其特征在于,包括:
第一接收机模块,接收第一信令和第二信令;
第一处理模块,操作第一无线信号;
其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一 域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还发送第一参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还接收第二参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还发送上行信息。其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还接收第一下行信息。其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还接收第二下行信息。其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令中的所述第一域被用于标识所述第一参考信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令中的所述第一域被用于标识所述第二参考信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
作为一个实施例,所述第一处理模块包括收发机模块。
作为一个实施例,所述第一处理模块包括发送机模块。
作为一个实施例,所述第一处理模块包括接收机模块。
本申请公开了被用于无线通信的基站设备,其特征在于,包括:
第一发送机模块,发送第一信令和第二信令;
第二处理模块,执行第一无线信号;
其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述执行是发送,或者所述执行是接收。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还接收第一参考信号。其中,所述第一信令中的所述第一域 和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还发送第二参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还接收上行信息。其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发送机模块还发送第一下行信息。其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发送机模块还发送第二下行信息。其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令中的所述第一域被用于标识所述第一参考信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令中的所述第一域被用于标识所述第二参考信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
作为一个实施例,所述第二处理模块包括收发机模块。
作为一个实施例,所述第二处理模块包括发送机模块。
作为一个实施例,所述第二处理模块包括接收机模块。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.当UE被调度发送或测量多个参考信号的时候,避免了对某个参考信号的引用可能产生的歧义和混淆,尤其是当多个参考信号是非周期性时。
-.允许UE利用对参考信号的多天线相关的测量或发送信息来优化对上行或下行数据的多天线相关的处理,提高了数据的传输质量。
-.在上下行信道具有互易性的情况下,利用信道互易性降低了参考信号、信令和反馈的开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令、第一信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的另一个实施例的无线传输的流程图;
图8示出了根据本申请的另一个实施例的无线传输的流程图;
图9示出了根据本发明的一个实施例的第一信令和第二信令的示意图;
图10示出了根据本发明的一个实施例K个第一子信号和P个第一子信号之间关系的示意图;
图11示出了根据本发明的一个实施例K个第二子信号和Q个第二子信号之间关系的示意图;
图12示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
实施例1
实施例1示例了第一信令、第一信令和第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信令,接收第二信令,然后操作第一无线信号。其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。
作为一个子实施例,所述第一信令是物理层信令。
作为一个子实施例,所述第二信令是物理层信令。
作为一个子实施例,所述第一信令是动态信令。
作为一个子实施例,所述第二信令是动态信令。
作为一个子实施例,所述第一信令和所述第二信令分别是物理层信令。
作为一个子实施例,所述第一信令和所述第二信令分别是动态信令。
作为一个子实施例,所述第一域和所述第二域分别由正整数个比特组成。
作为一个子实施例,所述第一域所包括的比特的数量和所述第二域所包括的比特的数量相等。
作为一个子实施例,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
作为一个子实施例,所述第一信令是所述第二信令之前最近收到的一个包括所述第一域的物理层信令。
作为一个子实施例,所述第一信令是所述第二信令之前最近收到的一个可能被用于确定所述第一无线信号的物理层信令。
作为一个子实施例,所述物理层信令是DCI。
作为一个子实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令。
作为一个子实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个子实施例,所述第二信令是用于上行授予(UpLink Grant)的动态信令,所述操作是发送。
作为一个子实施例,所述第二信令是用于下行授予(DownLink Grant)的动态信令,所述操作是接收。
作为一个子实施例,所述第一类调度信息包括{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个子实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一无线信号{所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一和所述第一信令相关。
作为一个子实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一信令被用于确定所述第一无线信号{所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤 波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个子实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一无线信号所占用的时频资源和所述第一信令相关。
作为一个子实施例,所述所述第一无线信号和所述第一信令相关是指:所述第一信令被用于确定所述第一无线信号所占用的时频资源。
作为一个子实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个子实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个子实施例,所述第一信令是MACCE信令。
作为一个子实施例,所述第一信令是高层信令。
作为一个子实施例,所述第一信令是RRC信令。
作为一个子实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个子实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输,所述操作是发送。
作为一个子实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输,所述操作是接收。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但 为了简单未展示这些实体/接口。如附图2所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的所述用户设备。
作为一个子实施例,所述gNB203对应本申请中的所述基站。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示 意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个子实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第一无线信号生成于所述 PHY301。
作为一个子实施例,本申请中的所述第一参考信号生成于所述PHY301。
作为一个子实施例,本申请中的所述第二参考信号生成于所述PHY301。
作为一个子实施例,本申请中的所述上行信息生成于所述PHY301。
作为一个子实施例,本申请中的所述第一下行信息生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第二下行信息生成于所述RRC子层306。
实施例4
实施例4示例了演进节点和UE的示意图,如附图4所示。
附图4是在接入网络中与UE450通信的gNB410的框图。在DL(Downlink,下行)中,来自核心网络的上部层包提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416实施用于L1层(即,物理层)的各种信号处理功能。信号处理功能包括译码和交错以促进UE450处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))向信号群集的映射。随后将经译码和经调制符号分裂为并行流。随后将每一流映射到多载波副载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)组合在一起以产生载运时域多载波符号流的物理信道。多载波流经空间预译码以产生多个空间流。每一空间流随后经由发射器418提供到不同天线420。每一发射器418以用于发射的相应空间流调制RF载波。在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到RF载波上的信息,且将信息提供到接收处理器456。接收处理器456实施L1层的各种信号处理功能。接收处理器456对信息执行空间处理以恢复 以UE450为目的地的任何空间流。如果多个空间流以UE450为目的地,那么其可由接收处理器456组合到单一多载波符号流中。接收处理器456随后使用快速傅立叶变换(FFT)将多载波符号流从时域转换到频域。频域信号包括用于多载波信号的每一副载波的单独多载波符号流。每一副载波上的符号以及参考信号是通过确定由gNB410发射的最可能信号群集点来恢复和解调,并生成软决策。随后解码和解交错所述软决策以恢复在物理信道上由gNB410原始发射的数据和控制信号。随后将数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层。控制器/处理器可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上部层包。随后将上部层包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。在UL(Uplink,上行)中,使用数据源467来将上部层包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于结合gNB410的DL发射所描述的功能性,控制器/处理器459通过基于gNB410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,来实施用于用户平面和控制平面的L2层。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。由发射处理器468选择适当的编码和调制方案,且促进空间处理。由发射处理器468产生的空间流经由单独发射器454提供到不同天线452。每一发射器454以用于发射的相应空间流调制RF载波。以类似于结合UE450处的接收器功能描述的方式类似的方式在gNB410处处理UL发射。每一接收器418通过其相应天线420接收信号。每一接收器418恢复调制到RF载波上的信息,且将信息提供到接收处理器470。接收处理器470可实施L1层。控制器/处理器475实施L2层。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上部层包。来自控制器/处理器475的上部层包可提供到核心网络。控制器/处理器475还负责使 用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个子实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令,接收本申请中的所述第二信令,发送本申请中的所述第一无线信号,接收所述第一无线信号。
作为一个子实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信令,发送所述第二信令,接收所述第一无线信号,发送所述第一无线信号。
作为一个子实施例,所述UE450对应本申请中的所述用户设备。
作为一个子实施例,所述gNB410对应本申请中的所述基站。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一被用于发送本申请中的所述第一信令,所述接收处理器456和所述控制器/处理器459中的至少之一被用于接收本申请中的所述第一信令。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一被用于发送本申请中的所述第二信令,所述接收处理器456和所述控制器/处理器459中的至少之一被用于接收本申请中的所述第二信令。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一被用于发送本申请中的所述第一无线信号,所述接收处理器456和所述控制器/处理器459中的至少之一被用于接收本申请中的所述第一无线信号。
作为一个子实施例,所述发射处理器468和所述控制器/处理器459 中的至少之一被用于发送本申请中的所述第一无线信号,所述接收处理器470和所述控制器/处理器475中的至少之一被用于接收本申请中的所述第一无线信号。
作为一个子实施例,所述发射处理器468和所述控制器/处理器459中的至少之一被用于发送本申请中的所述第一参考信号,所述接收处理器470和所述控制器/处理器475中的至少之一被用于接收本申请中的所述第一参考信号。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一被用于发送本申请中的所述第二参考信号,所述接收处理器456和所述控制器/处理器459中的至少之一被用于接收本申请中的所述第二参考信号。
作为一个子实施例,所述发射处理器468和所述控制器/处理器459中的至少之一被用于发送本申请中的所述上行信息,所述接收处理器470和所述控制器/处理器475中的至少之一被用于接收本申请中的所述上行信息。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一被用于发送本申请中的所述第一下行信息,所述接收处理器456和所述控制器/处理器459中的至少之一被用于接收本申请中的所述第一下行信息。
作为一个子实施例,所述发射处理器416和所述控制器/处理器475中的至少之一被用于发送本申请中的所述第二下行信息,所述接收处理器456和所述控制器/处理器459中的至少之一被用于接收本申请中的所述第二下行信息。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1和方框F2中的步骤分别是可选的。
对于N1,在步骤S101中发送第一下行信息;在步骤S11中发送第一信令;在步骤S102中接收第一参考信号;在步骤S12中发送第二信令;在步骤S13中接收第一无线信号。
对于U2,在步骤S201中接收第一下行信息;在步骤S21中接收第一信令;在步骤S202中发送第一参考信号;在步骤S22中接收第二信令;在步骤S23中发送第一无线信号。
在实施例5中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被所述U2用于确定所述第一无线信号是否和所述第一信令相关。所述第一信令被所述U2用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送。如果所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被所述U2用于确定所述第一无线信号和所述第一信令相关,K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。所述第一下行信息被所述U2用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个子实施例,所述第一域和所述第二域分别由正整数个比特组成。
作为一个子实施例,所述第一域所包括的比特的数量和所述第二域所包括的比特的数量相等。
作为一个子实施例,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
作为一个子实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令。
作为一个子实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个子实施例,所述第二信令是用于上行授予(UpLink Grant)的动态信令。
作为一个子实施例,所述第一无线信号在上行物理层数据信道(即 能用于承载物理层数据的上行信道)上传输。
作为一个子实施例,所述第一类调度信息包括{所占用的时域资源,所占用的频域资源,MCS,HARQ进程号,RV,NDI,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个子实施例,所述第一信令被用于触发所述第一参考信号的发送。
作为一个子实施例,所述第二信令被所述U2用于从所述P个第一子信号中确定所述K个第一子信号。
作为一个子实施例,所述第二信令指示所述K个第一子信号中的每一个第一子信号在所述P个第一子信号中的索引。
作为一个子实施例,所述第一参考信号是SRS。
作为一个子实施例,所述第二类调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个子实施例,K个第一类天线端口是所述P个第一类天线端口的子集,所述K个第一类天线端口分别被用于发送所述K个第一子信号,所述K个第一类天线端口和所述K个第二类天线端口一一对应。
作为一个子实施例,所述K个第一子信号的多天线相关的发送分别被所述U2用于确定所述K个无线子信号的多天线相关的发送。
作为一个子实施例,所述K个第一类天线端口中的任一第一类天线端口和对应的第二类天线端口是QCL的。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的波束赋型向量。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的模拟波束赋型向量。
作为一个子实施例,针对所述K个第一子信号的测量被所述N1用于确定所述第一无线信号的MCS,所述操作是发送。
作为一个子实施例,所述K个第一子信号对应的接收质量被所述N1用于确定所述第一无线信号的MCS,所述操作是发送。
作为一个子实施例,所述K个第一子信号的多天线相关的接收分别被所述N1用于确定所述K个无线子信号的多天线相关的接收。
作为一个子实施例,针对所述K个第一子信号的测量分别被所述N1用于确定所述K个无线子信号的接收波束赋型向量。
作为一个子实施例,针对所述K个第一子信号的测量分别被所述N1用于确定所述K个无线子信号的接收模拟波束赋型向量。
作为一个子实施例,所述第一参考信号在时域上只出现一次。
作为一个子实施例,所述第一参考信号在时域上出现多次。
作为一个子实施例,所述第一信令被所述U2用于从所述T1个第二类调度信息中确定所述第一参考信号的第二类调度信息。
作为一个子实施例,所述第一信令中的所述第一域被用于标识所述第一参考信号。
作为一个子实施例,所述第一信令被所述U2用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
作为一个子实施例,所述第四类调度信息属于目标信息集合,所述第一类调度信息属于所述目标信息集合,所述目标信息集合包括正整数个信息,所述目标信息集合中的任一信息属于且只能属于所述第一类调度信息和所述第四类调度信息中的之一,所述目标信息集合包括{所占用的时域资源,所占用的频域资源,MCS,HARQ进程号,RV,NDI,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之二。
作为一个子实施例,所述第五类调度信息包括{所占用的时域资源,所占用的频域资源,所包括的信息比特的数量,标识整数,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个子实施例,所述标识整数是RNTI。
实施例6
实施例6示例了无线传输的流程图,如附图6所示。在附图6中,基站N3是用户设备U4的服务小区维持基站。附图6中,方框F3和方框F4中的步骤分别是可选的。
对于N3,在步骤S301中发送第一下行信息;在步骤S31中发送第一信令;在步骤S302中接收第一参考信号;在步骤S32中发送第二信令;在步骤S33中发送第一无线信号。
对于U4,在步骤S401中接收第一下行信息;在步骤S41中接收第一信令;在步骤S402中发送第一参考信号;在步骤S42中接收第二信令;在步骤S43中接收第一无线信号。
在实施例6中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被所述U4用于确定所述第一无线信号是否和所述第一信令相关。所述第一信令被所述U4用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送。如果所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被所述U4用于确定所述第一无线信号和所述第一信令相关,K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。所述第一下行信息被所述U4用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个子实施例,所述第二信令是用于下行授予(DownLink Grant)的动态信令。
作为一个子实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个子实施例,K个第一类天线端口是所述P个第一类天线端口的子集,所述K个第一类天线端口分别被用于发送所述K个第一子信号,所述K个第一类天线端口和所述K个第二类天线端口一一对应。
作为一个子实施例,所述K个第一子信号的多天线相关的接收分别被所述N3用于确定所述K个无线子信号的多天线相关的发送。
作为一个子实施例,针对所述K个第一子信号的测量分别被所述N3用于确定所述K个第二类天线端口对应的波束赋型向量。
作为一个子实施例,针对所述K个第一子信号的测量分别被所述N3用于确定所述K个第二类天线端口对应的模拟波束赋型向量。
作为一个子实施例,所述K个第一子信号的多天线相关的发送分别被所述U4用于确定所述K个无线子信号的多天线相关的接收。
作为一个子实施例,所述K个第一类天线端口对应的波束赋型向量分别被所述U4用作所述K个无线子信号的接收波束赋型向量。
作为一个子实施例,所述K个第一类天线端口对应的模拟波束赋型向量分别被所述U4用作所述K个无线子信号的接收模拟波束赋型向量。
实施例7
实施例7示例了无线传输的流程图,如附图7所示。在附图7中,基站N5是用户设备U6的服务小区维持基站。附图7中,方框F5、方框F6和方框F7中的步骤分别是可选的。
对于N5,在步骤S501中发送第二下行信息;在步骤S51中发送第一信令;在步骤S502中发送第二参考信号;在步骤S503中接收上行信息;在步骤S52中发送第二信令;在步骤S53中接收第一无线信号。
对于U6,在步骤S601中接收第二下行信息;在步骤S61中接收第一信令;在步骤S602中接收第二参考信号;在步骤S603中发送上行信息;在步骤S62中接收第二信令;在步骤S63中发送第一无线信号。
在实施例7中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被所述U6用于确定所述第一无线信号是否和所述第一信令相关。所述第一信令被所述U6用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送。如果所述第一信令中的所述第一域和所述第二信令中的所述第二域共 同被所述U6用于确定所述第一无线信号和所述第一信令相关,K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。所述上行信息被所述N5用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。所述第二下行信息被所述U6用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
作为一个子实施例,所述第三类调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC,所占用的天线端口,所对应的发送波束赋型向量,所对应的接收波束赋型向量,所对应的发送空间滤波(spatial filtering),所对应的接收空间滤波(spatial filtering)}中的至少之一。
作为一个子实施例,所述第一信令被用于触发针对所述第二参考信号的测量。
作为一个子实施例,所述第二信令被所述U6用于从所述Q个第二子信号中确定所述K个第二子信号。
作为一个子实施例,所述第二参考信号包括{CSI-RS,DMRS,TRS,PTRS,PSS,SSS,PSSS,SSSS}中的至少之一。
作为一个子实施例,K个第三类天线端口是所述Q个第三类天线端口的子集,所述K个第三类天线端口分别被用于发送所述K个第二子信号,所述K个第三类天线端口和所述K个第二类天线端口一一对应。
作为一个子实施例,所述K个第二子信号的多天线相关的接收分别被所述U6用于确定所述K个无线子信号的多天线相关的发送。
作为一个子实施例,针对所述K个第二子信号的测量分别被所述U6用于确定所述K个第二类天线端口对应的波束赋型向量。
作为一个子实施例,针对所述K个第二子信号的测量分别被所述U6用于确定所述K个第二类天线端口对应的模拟波束赋型向量。
作为一个子实施例,所述K个第二子信号的多天线相关的发送分别被所述N5用于确定所述K个无线子信号的多天线相关的接收。
作为一个子实施例,所述K个第三类天线端口对应的波束赋型向量分别被所述N5用作所述K个无线子信号的接收波束赋型向量。
作为一个子实施例,所述K个第三类天线端口对应的模拟波束赋型向量分别被所述N5用作所述K个无线子信号的接收模拟波束赋型向量。
作为一个子实施例,所述第二参考信号在时域上只出现一次。
作为一个子实施例,所述第二参考信号在时域上出现多次。
作为一个子实施例,针对所述第二参考信号的测量被所述U6用于确定所述K1个第二子信号。
作为一个子实施例,所述K1个第二子信号中任一第二子信号对应的接收质量大于所述Q个第二子信号中不属于所述K1个第二子信号的任一第二子信号对应的接收质量。
作为一个子实施例,所述K1等于所述K。
作为一个子实施例,所述K1大于所述K。
作为一个子实施例,所述K1小于所述Q。
作为一个子实施例,所述上行信息包括UCI。
作为一个子实施例,所述第一信令被所述U6用于从所述T2个第三类调度信息中确定所述第二参考信号的第三类调度信息。
作为一个子实施例,所述第一信令中的所述第一域被用于标识所述第二参考信号。
实施例8
实施例8示例了无线传输的流程图,如附图8所示。在附图8中,基站N7是用户设备U8的服务小区维持基站。附图8中,方框F8、方框F9和方框F10中的步骤分别是可选的。
对于N7,在步骤S701中发送第二下行信息;在步骤S71中发送第一信令;在步骤S702中发送第二参考信号;在步骤S703中接收上行信息;在步骤S72中发送第二信令;在步骤S73中发送第一无线信号。
对于U8,在步骤S801中接收第二下行信息;在步骤S81中接收第一信令;在步骤S802中接收第二参考信号;在步骤S803中发送上行信息;在步骤S82中接收第二信令;在步骤S83中接收第一无线信号。
在实施例8中,所述第一信令包括第一域,所述第二信令包括第二域; 所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被所述U8用于确定所述第一无线信号是否和所述第一信令相关。所述第一信令被所述U8用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送。如果所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被所述U8用于确定所述第一无线信号和所述第一信令相关,K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。所述上行信息被所述N7用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。所述第二下行信息被所述U8用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
作为一个子实施例,所述K个第二子信号的多天线相关的发送分别被所述N7用于确定所述K个无线子信号的多天线相关的发送。
作为一个子实施例,所述K个第三类天线端口中的任一第三类天线端口和对应的第二类天线端口是QCL的。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的波束赋型向量。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的模拟波束赋型向量。
作为一个子实施例,所述K个第二子信号的多天线相关的接收分别被所述U8用于确定所述K个无线子信号的多天线相关的接收。
作为一个子实施例,针对所述K个第二子信号的测量分别被所述U8用于确定所述K个无线子信号的接收波束赋型向量。
作为一个子实施例,针对所述K个第二子信号的测量分别被所述U8用于确定所述K个无线子信号的接收模拟波束赋型向量。
实施例9
实施例9示例了第一信令和第二信令的示意图,如附图9所示。
在实施例9中,所述第一信令包括第一域,所述第二信令包括第二域;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定本申请中的所述第一无线信号是否和所述第一信令相关。所述第一域和所述第二域分别由正整数个比特组成。
作为一个子实施例,所述第一域所包括的比特的数量和所述第二域所包括的比特的数量相等。
作为一个子实施例,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
实施例10
实施例10示例了K个第一子信号和P个第一子信号之间关系的示意图,如附图10所示。
在实施例10中,本申请中的所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定本申请中的所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集。针对所述第一参考信号的测量被用于从所述P个第一子信号中确定所述K个第一子信号。所述K个无线子信号分别由K个第二类天线端口发送,K个第一类天线端口是所述P个第一类天线端口的子集,所述K个第一类天线端口分别被用于发送所述K个第一子信号,所述K个第一类天线端口和所述K个第二类天线端口一一对应。
如附图10所示,天线端口是由一个或多个天线组中的多根天线通过天线虚拟化(Virtualization)叠加而成,所述一个或多个天线组中的多根天线到所述天线端口的映射系数组成波束赋型向量。一个所述天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器。同一个所述天线组内的多根天线到所述天线端口的映射系数组成这个天线组的模拟波束赋型向量,一个所述天线端口包括的所有天线组对应相同的模拟波束赋型向量。所述天线端口包括的所有天线组到所述天线端 口的映射系数组成这个天线端口的数字波束赋型向量。所述天线端口的波束赋型向量由对应的模拟波束赋型向量和对应的数字波束赋型向量的Kronecker积构成。
作为一个子实施例,针对所述P个第一子信号的测量分别被用于确定P个接收质量。
作为一个子实施例,所述K个第一子信号中任一第一子信号对应的接收质量大于所述P个第一子信号中不属于所述K个第一子信号的任一第一子信号对应的接收质量。
作为一个子实施例,所述P个接收质量中的任一接收质量是RSRP。
作为一个子实施例,所述P个接收质量中的任一接收质量是RSRQ。
作为一个子实施例,所述P个接收质量中的任一接收质量是CQI。
作为一个子实施例,P个第一波束赋型向量分别和所述P个第一子信号一一对应,所述P个第一波束赋型向量分别属于第一波束赋型向量集合,所述第一波束赋型向量集合包括正整数个波束赋型向量。对于所述P个第一子信号中的任一给定第一子信号,对应的第一波束赋型向量是给定第一波束赋型向量。所述第一参考信号的目标接收者用所述给定第一波束赋型向量接收所述给定第一子信号得到的接收质量高于所述第一参考信号的目标接收者用所述第一波束赋型向量集合中所述给定第一波束赋型向量以外的任一波束赋型向量接收所述给定第一子信号得到的接收质量。
作为一个子实施例,所述P个接收质量是所述第一参考信号的目标接收者用所述P个第一波束赋型向量分别接收所述P个第一子信号得到的接收质量。
作为一个子实施例,K个第一波束赋型向量是所述P个第一波束赋型向量中分别和所述K个第一子信号对应的第一波束赋型向量。
作为一个子实施例,所述第一参考信号的目标接收者用所述K个第一波束赋型向量中的任一第一波束赋型向量接收对应的第一子信号得到的接收质量大于所述第一参考信号的目标接收者用所述P个第一波束赋型向量中不属于所述K个第一波束赋型向量的任一第一波束赋型向量接收对应的第一子信号得到的接收质量。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的波束赋型向量,本申请中所述操作 是发送,本申请中的所述执行是接收。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的模拟波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第一类天线端口对应相同的模拟波束赋型向量和相同的数字波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第一波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第一波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第一波束赋型向量分别被用作所述K个第二类天线端口对应的波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第一波束赋型向量分别被用作所述K个第二类天线端口对应的模拟波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第一类天线端口对应的波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第一类天线端口对应的模拟波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是接收,所述执行是发送。
实施例11
实施例11示例了K个第二子信号和Q个第二子信号之间关系的示意图,如附图11所示。
在实施例11中,本申请中的所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定本申请中的所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集。针对所述第二参考信号的测量被用于从所述Q个第二子信号中确定所述K个第 二子信号。所述K个无线子信号分别由K个第二类天线端口发送,K个第三类天线端口是所述Q个第三类天线端口的子集,所述K个第三类天线端口分别被用于发送所述K个第二子信号,所述K个第三类天线端口和所述K个第二类天线端口一一对应。
作为一个子实施例,针对所述Q个第二子信号的测量分别被用于确定Q个接收质量。
作为一个子实施例,所述K个第二子信号中任一第二子信号对应的接收质量大于所述Q个第二子信号中不属于所述K个第二子信号的任一第二子信号对应的接收质量。
作为一个子实施例,所述Q个接收质量中的任一接收质量是RSRP。
作为一个子实施例,所述Q个接收质量中的任一接收质量是RSRQ。
作为一个子实施例,所述Q个接收质量中的任一接收质量是CQI。
作为一个子实施例,Q个第二波束赋型向量分别和所述Q个第二子信号一一对应,所述Q个第二波束赋型向量分别属于第二波束赋型向量集合,所述第二波束赋型向量集合包括正整数个波束赋型向量。对于所述Q个第二子信号中的任一给定第二子信号,对应的第二波束赋型向量是给定第二波束赋型向量。本申请中的所述用户设备用所述给定第二波束赋型向量接收所述给定第二子信号得到的接收质量高于所述用户设备用所述第二波束赋型向量集合中所述给定第二波束赋型向量以外的任一波束赋型向量接收所述给定第二子信号得到的接收质量。
作为一个子实施例,所述Q个接收质量是所述用户设备用所述Q个第二波束赋型向量分别接收所述Q个第二子信号得到的接收质量。
作为一个子实施例,K个第二波束赋型向量是所述Q个第二波束赋型向量中分别和所述K个第二子信号对应的第二波束赋型向量。
作为一个子实施例,所述用户设备用所述K个第二波束赋型向量中的任一第二波束赋型向量接收对应的第二子信号得到的接收质量大于所述用户设备用所述Q个第二波束赋型向量中不属于所述K个第二波束赋型向量的任一第二波束赋型向量接收对应的第二子信号得到的接收质量。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的波束赋型向量,本申请中的所述操作是接收,本申请中的所述执行是发送。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的模拟波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第二类天线端口中的任一第二类天线端口和对应的第三类天线端口对应相同的模拟波束赋型向量和相同的数字波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第二波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第二波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是接收,所述执行是发送。
作为一个子实施例,所述K个第二波束赋型向量分别被用作所述K个第二类天线端口对应的波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第二波束赋型向量分别被用作所述K个第二类天线端口对应的模拟波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第三类天线端口对应的波束赋型向量分别被用作所述K个无线子信号的接收波束赋型向量,所述操作是发送,所述执行是接收。
作为一个子实施例,所述K个第三类天线端口对应的模拟波束赋型向量分别被用作所述K个无线子信号的接收模拟波束赋型向量,所述操作是发送,所述执行是接收。
实施例12
实施例12示例了用于用户设备中的处理装置的结构框图,如附图12所示。在附图12中,用户设备中的处理装置1200主要由第一接收机模块1201和第一处理模块1202组成。
在实施例12中,第一接收机模块1201接收第一信令和第二信令;第一处理模块1202操作第一无线信号。
在实施例12中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被所述第一处理模块1202用于 确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。
作为一个子实施例,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
作为一个子实施例,所述第一处理模块1202还发送第一参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被所述第一处理模块1202用于确定所述第一无线信号和所述第一信令相关;所述第一信令被所述第一处理模块1202用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
作为一个子实施例,所述第一处理模块1202还接收第二参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被所述第一处理模块1202用于确定所述第一无线信号和所述第一信令相关;所述第一信令被所述第一处理模块1202用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
作为一个子实施例,所述第一处理模块1202还发送上行信息。其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
作为一个子实施例,所述第一接收机模块1201还接收第一下行信息。其中,所述第一下行信息被,所述第一接收机模块1201用于确定T1个第 二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个子实施例,所述第一接收机模块1201还接收第二下行信息。其中,所述第二下行信息被所述第一接收机模块1201用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
作为一个子实施例,所述第一信令中的所述第一域被用于标识所述第一参考信号。
作为一个子实施例,所述第一信令中的所述第一域被用于标识所述第二参考信号。
作为一个子实施例,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
作为一个子实施例,所述第一接收机模块1201包括实施例4中的接收处理器456和控制器/处理器459中的至少之一。
作为一个子实施例,所述第一处理模块1202包括实施例4中的接收处理器456和控制器/处理器459中的至少之一。
作为一个子实施例,所述第一处理模块1202包括实施例4中的发射处理器468和控制器/处理器459中的至少之一。
实施例13
实施例13示例了用于基站中的处理装置的结构框图,如附图13所示。在附图13中,基站中的处理装置1300主要由第一发送机模块1301和第二处理模块1302组成。
在实施例13中,第一发送机模块1301发送第一信令和第二信令;第二处理模块1302执行第一无线信号。
在实施例13中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述执行是发送,或者所述执行是接收。
作为一个子实施例,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关; 否则所述第一无线信号和所述第一信令无关。
作为一个子实施例,所述第二处理模块1302还接收第一参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
作为一个子实施例,所述第二处理模块1302还发送第二参考信号。其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
作为一个子实施例,所述第二处理模块1302还接收上行信息。其中,所述上行信息被所述第二处理模块1302用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
作为一个子实施例,所述第一发送机模块1301还发送第一下行信息。其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
作为一个子实施例,所述第一发送机模块1301还发送第二下行信息。其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度 信息,所述T2是正整数。
作为一个子实施例,所述第一信令中的所述第一域被用于标识所述第一参考信号。
作为一个子实施例,所述第一信令中的所述第一域被用于标识所述第二参考信号。
作为一个子实施例,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
作为一个子实施例,所述发送机模块1301包括实施例4中发射处理器416和控制器/处理器475中的至少之一。
作为一个子实施例,所述第二处理模块1302包括实施例4中的接收处理器470和控制器/处理器475中的至少之一。
作为一个子实施例,所述第二处理模块1302包括实施例4中的发射处理器416和控制器/处理器475中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 被用于无线通信的用户设备中的方法,其特征在于,包括:
    -接收第一信令;
    -接收第二信令;
    -操作第一无线信号;
    其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。
  2. 根据权利要求1中所述的方法,其特征在于,如果所述第二信令中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
  3. 根据权利要求1或2中所述的方法,其特征在于,包括:
    -发送第一参考信号;
    其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
  4. 根据权利要求1或2中所述的方法,其特征在于,包括:
    -接收第二参考信号;
    其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
  5. 根据权利要求4所述的方法,其特征在于,包括:
    -发送上行信息;
    其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
  6. 根据权利要求3中所述的方法,其特征在于,包括:
    -接收第一下行信息;
    其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类调度信息,所述T1是正整数。
  7. 根据权利要求4或5中所述的方法,其特征在于,包括:
    -接收第二下行信息;
    其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
  8. 根据权利要求3或6中所述的方法,其特征在于,所述第一信令中的所述第一域被用于标识所述第一参考信号。
  9. 根据权利要求4、5或7中任一权利要求所述的方法,其特征在于,所述第一信令中的所述第一域被用于标识所述第二参考信号。
  10. 根据权利要求1至9中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
  11. 被用于无线通信的基站中的方法,其特征在于,包括:
    -发送第一信令;
    -发送第二信令;
    -执行第一无线信号;
    其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述执行是发送,或者所述执行是接收。
  12. 根据权利要求11中所述的方法,其特征在于,如果所述第二信令 中的所述第二域的值等于所述第一信令中的所述第一域的值,所述第一无线信号和所述第一信令相关;否则所述第一无线信号和所述第一信令无关。
  13. 根据权利要求11或12中所述的方法,其特征在于,包括:
    -接收第一参考信号;
    其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第一参考信号的第二类调度信息;所述第一参考信号包括P个第一子信号,所述P个第一子信号分别被P个第一类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第一子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第一子信号是所述P个第一子信号的子集;所述P是正整数,所述K是不大于所述P的正整数。
  14. 根据权利要求11或12中所述的方法,其特征在于,包括:
    -发送第二参考信号;
    其中,所述第一信令中的所述第一域和所述第二信令中的所述第二域共同被用于确定所述第一无线信号和所述第一信令相关;所述第一信令被用于确定所述第二参考信号的第三类调度信息;所述第二参考信号包括Q个第二子信号,所述Q个第二子信号分别被Q个第三类天线端口发送;所述第一无线信号包括K个无线子信号,所述K个无线子信号分别被K个第二类天线端口发送;K个第二子信号的多天线相关的处理分别被用于确定所述K个无线子信号的多天线相关的处理,所述K个第二子信号是所述Q个第二子信号的子集;所述Q是正整数,所述K是不大于所述Q的正整数。
  15. 根据权利要求14所述的方法,其特征在于,包括:
    -接收上行信息;
    其中,所述上行信息被用于确定K1个第二子信号,所述K1个第二子信号是所述Q个第二子信号的子集,所述K个第二子信号是所述K1个第二子信号的子集,所述K1是不大于所述Q并且不小于所述K的正整数。
  16. 根据权利要求13中所述的方法,其特征在于,包括:
    -发送第一下行信息;
    其中,所述第一下行信息被用于确定T1个第二类调度信息,所述第一参考信号的第二类调度信息是所述T1个第二类调度信息中的一个第二类 调度信息,所述T1是正整数。
  17. 根据权利要求14或15中所述的方法,其特征在于,包括:
    -发送第二下行信息;
    其中,所述第二下行信息被用于确定T2个第三类调度信息,所述第二参考信号的第三类调度信息是所述T2个第三类调度信息中的一个第三类调度信息,所述T2是正整数。
  18. 根据权利要求13或16中所述的方法,其特征在于,所述第一信令中的所述第一域被用于标识所述第一参考信号。
  19. 根据权利要求14、15或17中任一权利要求所述的方法,其特征在于,所述第一信令中的所述第一域被用于标识所述第二参考信号。
  20. 根据权利要求11至19中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定{所述第一无线信号的第四类调度信息,所述第二信令的第五类调度信息}中的至少之一。
  21. 被用于无线通信的用户设备,其特征在于,包括:
    第一接收机模块,接收第一信令和第二信令;
    第一处理模块,操作第一无线信号;
    其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述操作是接收,或者所述操作是发送。
  22. 被用于无线通信的基站设备,其特征在于,包括:
    第一发送机模块,发送第一信令和第二信令;
    第二处理模块,执行第一无线信号;
    其中,所述第一信令包括第一域,所述第二信令包括第二域;所述第二信令包括所述第一无线信号的第一类调度信息;所述第一信令中的第一域和所述第二信令中的第二域共同被用于确定所述第一无线信号是否和所述第一信令相关;所述执行是发送,或者所述执行是接收。
PCT/CN2017/093596 2017-07-20 2017-07-20 一种被用于无线通信的用户、基站中的方法和装置 WO2019014882A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/093596 WO2019014882A1 (zh) 2017-07-20 2017-07-20 一种被用于无线通信的用户、基站中的方法和装置
CN201780092472.6A CN110832921B (zh) 2017-07-20 2017-07-20 一种被用于无线通信的用户、基站中的方法和装置
US16/745,350 US11337230B2 (en) 2017-07-20 2020-01-17 Method and device in UE and base station used for wireless communication
US17/715,972 US11956769B2 (en) 2017-07-20 2022-04-08 Method and device in UE and base station used for wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093596 WO2019014882A1 (zh) 2017-07-20 2017-07-20 一种被用于无线通信的用户、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/745,350 Continuation US11337230B2 (en) 2017-07-20 2020-01-17 Method and device in UE and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2019014882A1 true WO2019014882A1 (zh) 2019-01-24

Family

ID=65016005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093596 WO2019014882A1 (zh) 2017-07-20 2017-07-20 一种被用于无线通信的用户、基站中的方法和装置

Country Status (3)

Country Link
US (2) US11337230B2 (zh)
CN (1) CN110832921B (zh)
WO (1) WO2019014882A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019014882A1 (zh) * 2017-07-20 2019-01-24 南通朗恒通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
US11564277B2 (en) * 2018-08-16 2023-01-24 Lg Electronics Inc. Method and apparatus for supporting early data transmission in inactive state in wireless communication system
CN110972324B (zh) * 2018-09-28 2021-09-24 上海朗帛通信技术有限公司 一种被用于无线通信的基站中的方法和装置
CN116420403A (zh) * 2020-11-11 2023-07-11 华为技术有限公司 一种信号发送、接收方法及装置
CN115474275A (zh) * 2021-06-10 2022-12-13 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241274A1 (en) * 2013-02-28 2014-08-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback information in mobile communication system using multiple antennas
CN105359426A (zh) * 2013-06-26 2016-02-24 Lg电子株式会社 用于大规模mimo方案的基于分组的参考信号发送
WO2016204546A1 (ko) * 2015-06-17 2016-12-22 엘지전자 주식회사 비주기적 채널 상태 정보-참조 신호를 이용한 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN106455092A (zh) * 2015-08-13 2017-02-22 中国移动通信集团公司 信道探测参考信号的发送方法、装置、终端和基站
CN106455066A (zh) * 2015-08-10 2017-02-22 上海贝尔股份有限公司 用于配置下行控制信息的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800016B1 (ko) * 2010-01-21 2017-11-22 엘지전자 주식회사 다중 반송파 시스템에서 하이브리드 자동 재전송 요청 수행 방법 및 장치
KR101695023B1 (ko) * 2010-03-29 2017-01-10 삼성전자주식회사 다중 안테나 기술을 지원하는 무선 통신 시스템의 상향 링크에서 재전송 제어 방법 및 장치
US9681482B2 (en) * 2013-01-07 2017-06-13 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals with a value indicated by a TPC command being accumulated for all parameter sets
US20200295884A1 (en) * 2015-08-17 2020-09-17 Telefonaktiebolaget Lm Ericsson (Publ) A Network Node And A Terminal Device, And Methods Of Operating The Same
CN110620606B (zh) * 2015-11-27 2022-11-25 上海朗帛通信技术有限公司 一种大尺度mimo中的通信方法和装置
JP2019145857A (ja) * 2016-06-28 2019-08-29 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10154466B2 (en) * 2016-09-24 2018-12-11 Ofinno Technologies, Llc Power headroom transmission in a licensed assisted access cell
WO2019014882A1 (zh) * 2017-07-20 2019-01-24 南通朗恒通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241274A1 (en) * 2013-02-28 2014-08-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback information in mobile communication system using multiple antennas
CN105359426A (zh) * 2013-06-26 2016-02-24 Lg电子株式会社 用于大规模mimo方案的基于分组的参考信号发送
WO2016204546A1 (ko) * 2015-06-17 2016-12-22 엘지전자 주식회사 비주기적 채널 상태 정보-참조 신호를 이용한 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN106455066A (zh) * 2015-08-10 2017-02-22 上海贝尔股份有限公司 用于配置下行控制信息的方法和设备
CN106455092A (zh) * 2015-08-13 2017-02-22 中国移动通信集团公司 信道探测参考信号的发送方法、装置、终端和基站

Also Published As

Publication number Publication date
US11337230B2 (en) 2022-05-17
US20220232576A1 (en) 2022-07-21
CN110832921A (zh) 2020-02-21
CN110832921B (zh) 2022-12-20
US20200163096A1 (en) 2020-05-21
US11956769B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020020005A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020011092A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112333776B (zh) 一种被用于无线通信的节点中的方法和装置
US11956769B2 (en) Method and device in UE and base station used for wireless communication
CN110120859B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
CN109831232B (zh) 一种被用于无线通信的用户、基站中的方法和装置
US20200351922A1 (en) Method and device for wireless communication in ue and base station
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019041240A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN109474312B (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
US11659535B2 (en) Method and device in UE and base station for wireless communication
WO2019109307A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018095201A1 (zh) 一种用于多天线系统的用户设备、基站中的方法和装置
WO2020156246A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17918386

Country of ref document: EP

Kind code of ref document: A1