WO2020020005A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020020005A1
WO2020020005A1 PCT/CN2019/095964 CN2019095964W WO2020020005A1 WO 2020020005 A1 WO2020020005 A1 WO 2020020005A1 CN 2019095964 W CN2019095964 W CN 2019095964W WO 2020020005 A1 WO2020020005 A1 WO 2020020005A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
wireless signal
reference signal
sub
serving cell
Prior art date
Application number
PCT/CN2019/095964
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP19841459.1A priority Critical patent/EP3829218A4/en
Publication of WO2020020005A1 publication Critical patent/WO2020020005A1/zh
Priority to US17/095,755 priority patent/US11621816B2/en
Priority to US18/111,907 priority patent/US11979352B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment

Definitions

  • the present application relates to a method and device in a wireless communication system, and more particularly to a method and device in a wireless communication system supporting multiple antennas.
  • the inter-cell handover (Handover) is controlled by the base station based on UE (User Equipment) measurements.
  • the inter-cell handover in 3GPP (3rd Generation Partnership Project) R (Release, version) 15 basically follows the mechanism in LTE.
  • R Release, version
  • NR New Radio
  • Massive MIMO Multiple Input, Multiple Output
  • large-scale MIMO multiple antennas are beam-shaped to form narrower beams pointing in a specific direction to improve communication quality.
  • the beams formed by multi-antenna beamforming are generally narrow, and the beams of both communication parties need to be aligned for effective communication.
  • the inventor has found through research that beam-based communication will have negative effects on inter-cell handovers, such as additional delay and ping-pong effects. How to reduce these negative effects and use beamforming technology to further improve the performance of users at the cell boundary to meet the needs of various application scenarios is a problem to be solved.
  • this application discloses a solution.
  • the embodiments in the user equipment and the features in the embodiments can be applied to a base station, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other.
  • This application discloses a method used in user equipment for wireless communication, which is characterized in that it includes:
  • each of the M sub-informations indicates a reference signal group, and a reference signal group includes at least one reference signal;
  • a reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by a first serving cell, and the first serving cell is not added by the user equipment; the user equipment assumes that the The transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • the problem to be solved in this application is: how to reduce and avoid the delay and service interruption caused by the inter-cell handover.
  • the above method solves this problem by including reference signals from neighboring cells in a TCI (Transmission Configuration Indication) state list, thereby achieving seamless handover between beams of different serving cells.
  • TCI Transmission Configuration Indication
  • the above method is characterized in that the M sub-informations are M TCI-states configured for the user equipment, and at least one of the reference signals indicated by the M sub-informations is from a neighboring cell.
  • the user equipment can seamlessly switch between beams of different serving cells, and the process of this switching is transparent to the user equipment.
  • the advantage of the above method is that, while realizing the performance improvement brought by the serving cell switching, the delay and potential service interruption brought by the cell switching are avoided, and the implementation complexity is reduced.
  • the N1 reference signals of the N reference signals are sent by the first serving cell; the reference signals in the reference signal group indicated by at least one of the M sub-informations are the N1 reference signals.
  • the N is a positive integer, and the N1 is a positive integer not greater than the N.
  • the second information indicates an index of the N1 reference signals and an index of the first serving cell.
  • the second wireless signal carries third information, and the third information is used to activate M1 sub-information of the M sub-informations, and the first sub-information is one of the M1 sub-informations ; M1 is a positive integer not greater than M.
  • the third wireless signal is used to determine that the second wireless signal is received correctly.
  • the first wireless signal is transmitted on a physical layer control channel, and the first information indicates the first time-frequency resource set.
  • the first wireless signal is transmitted on a physical layer data channel, the first signaling includes scheduling information of the first wireless signal, and the first signaling indicates the first sub-information.
  • the fourth wireless signal indicates a target reference signal from K reference signals, and at least one of the K reference signals is sent by the first serving cell; the target reference signal is used to determine the target reference signal. Whether the first wireless signal is sent by the first serving cell.
  • This application discloses a method used in a first base station for wireless communication, which is characterized in that it includes:
  • each of the M sub-informations indicates a reference signal group, and a reference signal group includes at least one reference signal;
  • the reference signal in the reference signal group indicated by at least one of the M sub-informations is sent by the first serving cell, and the first serving cell is not added by the target receiver of the first wireless signal;
  • the at least one serving cell maintained by the first base station is added by a target receiver of the first wireless signal;
  • the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal and the first reference
  • the transmitting antenna ports of any reference signal in the signal group are quasi co-located;
  • the M is a positive integer.
  • the first base station is a maintaining base station of the second serving cell, and the second serving cell is added by a target receiver of the first wireless signal; at least one of the M pieces of sub-information indicates
  • the reference signal in the reference signal group is a reference signal among the N2 reference signals, and N2 is a positive integer.
  • the second wireless signal carries third information, and the third information is used to activate M1 sub-information of the M sub-informations, and the first sub-information is one of the M1 sub-informations ; M1 is a positive integer not greater than M.
  • the third wireless signal is used to determine that the second wireless signal is received correctly.
  • the first wireless signal is transmitted on a physical layer control channel, and the first information indicates the first time-frequency resource set.
  • the first wireless signal is transmitted on a physical layer data channel, the first signaling includes scheduling information of the first wireless signal, and the first signaling indicates the first sub-information.
  • the fourth information indicates the first time-frequency resource set; the sixth information indicates an index of N1 reference signals, the N1 reference signals are sent by the first serving cell, and the M sub-information
  • the reference signal in the reference signal group indicated by the at least one sub-information is the reference signal among the N1 reference signals; the N1 is a positive integer.
  • the above method has the advantage of allowing the first serving cell to perform data transmission in a transparent manner to the UE, eliminating the delay and potential service interruption caused by cell switching.
  • This application discloses a method used in a second base station for wireless communication, which is characterized in that it includes:
  • the fifth information indicates whether the second base station sends the first wireless signal in the first time-frequency resource set, and any serving cell maintained by the second base station is not the first wireless signal.
  • the target receiver of the signal is added.
  • the second base station is a maintaining base station of the first serving cell; if the second base station sends the first wireless signal in the first time-frequency resource set, a target of the first wireless signal
  • the receiver assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of one of the N1 reference signals; the N1 is a positive integer.
  • the second information indicates an index of the N1 reference signals and an index of the first serving cell.
  • the fourth information indicates the first time-frequency resource set; the sixth information indicates an index of N1 reference signals, the N1 reference signals are sent by the first serving cell, and the second base station is The maintaining base station of the first serving cell; if the second base station sends the first wireless signal in the first time-frequency resource set, a target receiver of the first wireless signal assumes the first wireless signal And the transmission antenna port of the reference signal is quasi co-located with the transmission antenna port of one of the N1 reference signals; the N1 is a positive integer.
  • the fourth wireless signal indicates a target reference signal from K reference signals. At least one of the K reference signals is sent by the first serving cell, and the second base station is the first serving cell. Maintaining the base station; the target reference signal is used to determine the fifth information.
  • the fifth information is received through a backhaul link.
  • the fifth information indicates that the second base station sends the first wireless signal in the first time-frequency resource set; and the fifth information indicates a first reference signal Group, the first reference signal group includes at least one reference signal; the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal and any of the reference signals in the first reference signal group Transmit antenna ports are quasi co-located.
  • the first wireless signal is transmitted on a physical layer data channel, the first signaling includes scheduling information of the first wireless signal, and the first signaling indicates the first reference signal group.
  • This application discloses a user equipment used for wireless communication, which is characterized by including:
  • a first receiver receiving first information, the first information including M sub-information, each of the M sub-informations indicating a reference signal group, and a reference signal group including at least one reference signal;
  • a first processor determining first sub-information from the M sub-informations, where the first sub-information indicates a first reference signal group
  • a second receiver receiving a first wireless signal in a first set of time-frequency resources
  • a reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by a first serving cell, and the first serving cell is not added by the user equipment; the user equipment assumes that the The transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first receiver receives N reference signals; wherein N1 reference signals among the N reference signals are served by the first service Sent by a cell; the reference signal in the reference signal group indicated by at least one of the M sub-informations is the reference signal in the N1 reference signals, the N is a positive integer, and the N1 is not greater than the N Positive integer.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first receiver receives second information on the first serving cell; wherein the second information indicates the N1 references The index of the signal and the index of the first serving cell.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first receiver receives a second wireless signal; wherein the second wireless signal carries third information and the third information is used For activating M1 sub-messages among the M sub-messages, the first sub-message is one of the M1 sub-messages; and M1 is a positive integer not greater than M.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first processor sends a third wireless signal; wherein the third wireless signal is used to determine that the second wireless signal is correct receive.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first wireless signal is transmitted on a physical layer control channel; the first information indicates the first time-frequency resource set.
  • the above-mentioned user equipment used for wireless communication is characterized in that the second receiver receives first signaling; wherein the first wireless signal is transmitted on a physical layer data channel, and the first The signaling includes scheduling information of the first wireless signal; the first signaling indicates the first sub-information.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first processor sends a fourth wireless signal; wherein the fourth wireless signal indicates a target reference signal from K reference signals, so At least one of the K reference signals is sent by the first serving cell; the target reference signal is used to determine whether the first wireless signal is sent by the first serving cell.
  • the present application discloses a first base station device used for wireless communication, which is characterized by including:
  • a first transmitter sending first information, the first information including M sub-informations, each of the M sub-informations indicating a reference signal group, and a reference signal group including at least one reference signal;
  • a second processor determining a first sub-information from the M sub-informations, where the first sub-information indicates a first reference signal group;
  • a second transmitter sends a first wireless signal in a first set of time-frequency resources, where the reference signal in the first reference signal group is sent by a serving cell maintained by the first base station; Sending the first wireless signal in a time-frequency resource set, wherein the reference signal in the first reference signal group is not sent by a serving cell maintained by the first base station;
  • the reference signal in the reference signal group indicated by at least one of the M sub-informations is sent by the first serving cell, and the first serving cell is not added by the target receiver of the first wireless signal;
  • the at least one serving cell maintained by the first base station is added by a target receiver of the first wireless signal;
  • the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal and the first reference
  • the transmitting antenna ports of any reference signal in the signal group are quasi co-located;
  • the M is a positive integer.
  • the foregoing first base station device used for wireless communication is characterized in that the first transmitter sends N2 reference signals on a second serving cell; wherein the first base station is the second A maintenance base station of a serving cell, the second serving cell is added by a target receiver of the first wireless signal; the reference signals in a reference signal group indicated by at least one of the M sub-informations are the N2 Among the reference signals, N2 is a positive integer.
  • the above-mentioned first base station device used for wireless communication is characterized in that the first transmitter sends a second wireless signal; wherein the second wireless signal carries third information and the third information Is used to activate M1 sub-messages among the M sub-messages, the first sub-message is one of the M1 sub-messages; the M1 is a positive integer not greater than the M.
  • the above-mentioned first base station device used for wireless communication is characterized in that the second processor receives a third wireless signal; wherein the third wireless signal is used to determine the second wireless signal Was received correctly.
  • the foregoing first base station device used for wireless communication is characterized in that the first wireless signal is transmitted on a physical layer control channel; and the first information indicates the first time-frequency resource set.
  • the above-mentioned first base station device used for wireless communication is characterized in that the second transmitter sends first signaling; wherein the first wireless signal is transmitted on a physical layer data channel, and the The first signaling includes scheduling information of the first wireless signal; the first signaling indicates the first sub-information.
  • the above-mentioned first base station device used for wireless communication is characterized in that the second processor sends fourth information through a return link; wherein the fourth information indicates the first time-frequency Resource collection.
  • the foregoing first base station device used for wireless communication is characterized in that the second processor receives sixth information through a return link; wherein the sixth information indicates an index of N1 reference signals
  • the N1 reference signals are sent by the first serving cell, and the reference signal in the reference signal group indicated by at least one of the M sub-informations is the reference signal in the N1 reference signals; the N1 is a positive integer.
  • This application discloses a second base station device used for wireless communication, which is characterized in that it includes:
  • a third receiver receiving fifth information
  • a third transmitter sending the first wireless signal in the first time-frequency resource set; or giving up sending the first wireless signal in the first time-frequency resource set;
  • the fifth information indicates whether the second base station sends the first wireless signal in the first time-frequency resource set, and any serving cell maintained by the second base station is not the first wireless signal.
  • the target receiver of the signal is added.
  • the foregoing second base station device used for wireless communication is characterized in that the third transmitter sends N1 reference signals on a first serving cell; wherein the second base station is the first A maintaining base station of a serving cell; if the second base station sends the first wireless signal in the first time-frequency resource set, a target receiver of the first wireless signal assumes a transmitting antenna of the first wireless signal
  • the port is quasi co-located with a transmitting antenna port of one of the N1 reference signals; the N1 is a positive integer.
  • the foregoing second base station device used for wireless communication is characterized in that the third transmitter sends second information on the first serving cell; wherein the second information indicates the N1 An index of the reference signals and an index of the first serving cell.
  • the foregoing second base station device used for wireless communication is characterized in that the third receiver receives fourth information through a return link; wherein the fourth information indicates the first time-frequency Resource collection.
  • the foregoing second base station device used for wireless communication is characterized in that the third transmitter sends sixth information through a return link; wherein the sixth information indicates an index of N1 reference signals
  • the N1 reference signals are sent by a first serving cell, and the second base station is a maintaining base station of the first serving cell; if the second base station sends the first serving cell in the first time-frequency resource set A wireless signal, the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of one of the N1 reference signals; the N1 is a positive integer .
  • the foregoing second base station device used for wireless communication is characterized in that the third receiver receives a fourth wireless signal through an air interface; wherein the fourth wireless signal is indicated from K reference signals A target reference signal, at least one of the K reference signals is sent by a first serving cell, the second base station is a maintaining base station of the first serving cell, and the target reference signal is used to determine the Fifth information.
  • the foregoing second base station device used for wireless communication is characterized in that the fifth information is received through a backhaul link.
  • the foregoing second base station device used for wireless communication is characterized in that the fifth information instructs the second base station to send the first wireless signal in the first time-frequency resource set;
  • the fifth information indicates a first reference signal group, and the first reference signal group includes at least one reference signal;
  • a target receiver of the first wireless signal assumes that a transmitting antenna port of the first wireless signal and the first wireless signal
  • the transmitting antenna ports of any reference signal in the reference signal group are quasi co-located.
  • the foregoing second base station device used for wireless communication is characterized in that the third transmitter sends first signaling; wherein the first wireless signal is transmitted on a physical layer data channel, and the The first signaling includes scheduling information of the first wireless signal; the first signaling indicates the first reference signal group.
  • this application has the following advantages:
  • a reference signal from a neighboring cell is configured in a TCI state list of a UE, and seamless switching between beams of different serving cells is realized in a manner transparent to the UE through TCI-state activation / indication. It not only obtains the performance improvement brought by switching between beams of different serving cells, but also avoids the delay and potential service interruption brought by cell switching, and has a very low implementation complexity.
  • FIG. 1 shows a flowchart of first information, first sub-information, and first wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE according to an embodiment of the present application
  • FIG. 5 shows a flowchart of transmission according to an embodiment of the present application
  • FIG. 6 shows a flowchart of transmission according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of resource mapping of a first time-frequency resource set in a time-frequency domain according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of resource mapping of a first time-frequency resource set in a time-frequency domain according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a given piece of information among M pieces of sub-information according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a given piece of information among M pieces of sub-information according to an embodiment of the present application.
  • FIG. 11 illustrates a schematic diagram of an antenna port according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram illustrating that a user equipment assumes that a transmitting antenna port of a first wireless signal is quasi co-located with a transmitting antenna port of any reference signal in a first reference signal group according to an embodiment of the present application;
  • FIG. 13 shows a schematic diagram of user equipment according to an embodiment of the present application assuming that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group;
  • FIG. 14 is a schematic diagram of resource mapping of N reference signals in a time-frequency domain according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of second information according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of third information according to an embodiment of the present application.
  • 17 is a schematic diagram illustrating a relationship between a time resource occupied by a third wireless signal and a time resource occupied by a first wireless signal according to an embodiment of the present application;
  • FIG. 18 is a schematic diagram illustrating a relationship between a time resource occupied by a third wireless signal and a time resource occupied by a first signaling according to an embodiment of the present application;
  • FIG. 19 is a schematic diagram of generating a first wireless signal according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of generating a first wireless signal according to an embodiment of the present application
  • FIG. 21 is a schematic diagram of generating a first signaling according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a fourth information content according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a fourth wireless signal according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a first signaling content according to an embodiment of the present application.
  • FIG. 25 shows a structural block diagram of a processing apparatus in a user equipment according to an embodiment of the present application.
  • FIG. 26 is a structural block diagram of a processing apparatus in a first base station device according to an embodiment of the present application.
  • FIG. 27 shows a structural block diagram of a processing apparatus in a second base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first information, the first sub-information, and the first wireless signal; as shown in FIG. 1.
  • the user equipment in the present application receives the first information; determines the first sub-information from the M sub-informations; and receives the first wireless signal in the first time-frequency resource set.
  • the first information includes the M sub-information, each of the M sub-informations indicates a reference signal group, and one reference signal group includes at least one reference signal;
  • the first sub-information indicates the first reference A signal group;
  • a reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by a first serving cell, and the first serving cell is not added by the user equipment;
  • the user equipment assumes that The transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • M is equal to 1.
  • M is greater than 1.
  • M is a positive integer not greater than maxNrofTCI-StatesPDCCH, and the definition of maxNrofTCI-StatesPDCCH is referred to 3GPP TS38.331.
  • M is a positive integer not greater than maxNrofTCI-States, and the definition of maxNrofTCI-States is described in 3GPP TS38.331.
  • M is a positive integer not greater than 64.
  • the M is equal to 1, and the user equipment assumes that the transmitting antenna port of the first wireless signal and the transmitting antenna port of any reference signal in the reference signal group indicated by the M sub-information are quasi co-located.
  • the M is equal to 1, and the first sub-information is the M sub-informations.
  • the first information is transmitted through an air interface.
  • the first information is sent by a serving cell added by the user equipment.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the M sub-informations are respectively carried by M TCI-State IEs.
  • M TCI-State IEs For a specific definition of the TCI-State IEs, see 3GPP TS38.331.
  • the M sub-informations respectively indicate M TCI-StateIds, and for a specific definition of the TCI-StateIds, refer to 3GPP TS38.331.
  • the reference signal group indicated by any one of the M pieces of sub-information includes 1 or 2 reference signals.
  • the number of reference signals included in the reference signal group indicated by any of the M sub-informations is not greater than two.
  • all reference signals included in the reference signal group indicated by any one of the M sub-informations are sent by the same serving cell.
  • all reference signals in a reference signal group indicated by at least one of the M sub-informations are sent by the first serving cell.
  • any reference signal in a reference signal group indicated by any of the M sub-informations is a CSI-RS (Channel-State Information Reference Signals) or SS / PBCH block (Synchronization Signal / Physical Broadcast Channel block).
  • CSI-RS Channel-State Information Reference Signals
  • SS / PBCH block Synchronization Signal / Physical Broadcast Channel block
  • At least one reference signal in a reference signal group indicated by at least one of the M pieces of sub-information is a CSI-RS.
  • At least one reference signal in the reference signal group indicated by at least one of the M sub-informations is an SS / PBCH block.
  • any one of the M sub-informations indicates one reference signal resource group, and one reference signal resource group includes one or two reference signal resources.
  • any reference signal resource in a reference signal resource group indicated by any of the M sub-informations is a CSI-RS resource or an SS / PBCH block resource.
  • At least one reference signal resource in a reference signal resource group indicated by at least one of the M pieces of sub-information is a CSI-RS resource.
  • At least one reference signal resource in a reference signal resource group indicated by at least one of the M sub-informations is an SS / PBCH block resource.
  • all reference signal resources in the reference signal resource group indicated by the given sub-information are respectively reserved for the reference signals indicated by the given sub-information. All reference signals in the group.
  • all reference signals in the reference signal group indicated by the given sub-information are all in the reference signal resource group indicated by the given sub-information Send on the reference signal resource.
  • any one of the M sub-informations indicates one or two second-type indexes, and the second-type indexes are NZP-CSI-RS-ResourceId or SSB-Index.
  • At least one of the M pieces of sub-information indicates one NZP-CSI-RS-ResourceId.
  • At least one of the M pieces of sub-information indicates two NZP-CSI-RS-ResourceIds.
  • At least one of the M pieces of sub-information indicates an SSB-Index.
  • At least one of the M pieces of sub-information indicates two SSB-Indexes.
  • At least one of the M pieces of sub-information indicates one NZP-CSI-RS-ResourceId and one SSB-Index.
  • NZP-CSI-RS-ResourceId refers to 3GPP TS38.331.
  • SSB-Index for a specific definition of the SSB-Index, refer to 3GPP TS38.331.
  • a reference signal in a reference signal group indicated by the piece of sub-information is sent by the first serving cell, and the given sub-information indicates the The index of a serving cell.
  • the index of the first serving cell is CellIdentity.
  • the index of the first serving cell is PhysCellId.
  • the reference signal in the reference signal group indicated by the piece of sub information is sent by a second serving cell, and the second serving cell is sent by the user equipment.
  • the given sub-information indicates an index of the second serving cell.
  • the index of the second serving cell is SCellIndex.
  • the index of the second serving cell is a ServCellIndex.
  • the quasi co-location refers to QCL (Quasi Co-Located).
  • QCL Quadrature Co-Located
  • the user equipment assumes that at least one transmit antenna port of the first wireless signal and at least one transmit antenna port QCL of any reference signal in the first reference signal group.
  • the user equipment assumes that at least one transmit antenna port of DMRS (DeModulation Reference Signals) on the physical layer channel carrying the first wireless signal is in any one of the first reference signal group.
  • DMRS Demodulation Reference Signals
  • the user equipment assumes that any transmission antenna port of the first wireless signal and at least one transmission antenna port QCL of any reference signal in the first reference signal group.
  • the user equipment assumes that any transmission antenna port of the DMRS on the physical layer channel carrying the first wireless signal and at least one transmission antenna port QCL of any reference signal in the first reference signal group .
  • the user equipment assumes that any transmitting antenna port of the first wireless signal and any transmitting antenna port QCL of any reference signal in the first reference signal group.
  • the user equipment assumes that any transmission antenna port of a DMRS on a physical layer channel carrying the first wireless signal and any transmission antenna port QCL of any reference signal in the first reference signal group .
  • the reference signal group indicated by the given sub-information includes only 1 reference signal, the given sub-information indicates 1 quasi co-location type, and the 1 A quasi co-location type is applied to the 1 reference signal.
  • the reference signal group indicated by the given sub-information consists of 2 reference signals
  • the given sub-information indicates 2 quasi co-location types
  • the 2 The quasi co-location types are applied to the two reference signals, respectively.
  • the quasi co-location type is QCL type, and the specific definition of the QCL type is described in section 5.1.5 of 3GPP TS38.214.
  • the first reference signal group is composed of one reference signal.
  • the first reference signal group is composed of 2 reference signals.
  • a reference signal in the first reference signal group is sent by the first serving cell.
  • the reference signals in the first reference signal group are not sent by the first serving cell.
  • a reference signal in the first reference signal group is sent by a second serving cell, and the second serving cell is added by the user equipment.
  • the first time-frequency resource set includes a positive integer RE (Resource Element).
  • the first wireless signal is transmitted through an air interface.
  • the addition of the first serving cell to the user equipment includes: the user equipment does not perform a secondary serving cell addition (SCell addition) for the first serving cell.
  • SCell addition secondary serving cell addition
  • the fact that the first serving cell is not added by the user equipment includes that the sCellToAddModList most recently received by the user equipment does not include the first serving cell.
  • the fact that the first serving cell is not added by the user equipment includes that: the sCellToAddModList and sCellToAddModListSCG newly received by the user equipment do not include the first serving cell.
  • the addition of the first serving cell to the user equipment includes: the user equipment is not assigned an SCellIndex for the first serving cell.
  • the SCellIndex is a positive integer not greater than 31.
  • the addition of the first serving cell to the user equipment includes: the user equipment is not assigned a ServCellIndex for the first serving cell.
  • the ServCellIndex is a non-negative integer not greater than 31.
  • the addition of the first serving cell to the user equipment includes: a PCell (Primary serving cell) that the first serving cell is not the user equipment.
  • PCell Primary serving cell
  • SCellIndex for a specific definition of the SCellIndex, refer to 3GPP TS38.331.
  • ServCellIndex refers to 3GPP TS38.331.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a network architecture 200 of LTE (Long-Term Evolution, Long Term Evolution), LTE-A (Long-Term Evolution, Advanced Long Term Evolution), and future 5G systems.
  • the network architecture 200 of an LTE, LTE-A, or 5G system may be referred to as an EPS (Evolved Packet System, evolved packet system) 200.
  • EPS 200 may include one or more UE (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network-New Radio) 202, 5G-CN (5G-CoreNetwork, 5G core network) / EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UE User Equipment
  • E-UTRAN-NR Evolved UMTS Terrestrial Radio Access Network-New Radio
  • 5G-CN 5G-CN
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server
  • UMTS corresponds to Universal Mobile Telecommunications System (Universal Mobile Telecommunications System).
  • EPS200 can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in FIG. 2, the EPS 200 provides a packet switching service. However, those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to a network that provides circuit switching services.
  • E-UTRAN-NR202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit and receive point), or some other suitable term.
  • gNB203 provides UE201 with an access point to 5G-CN / EPC210.
  • UE201 examples include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5G-CN / EPC210 through the S1 interface.
  • 5G-CN / EPC210 includes MME211, other MME214, S-GW (Service Gateway, Service Gateway) 212, and P-GW (Packet Packet Date Network Gateway) 213.
  • MME211 is a control node that processes signaling between UE201 and 5G-CN / EPC210.
  • the MME 211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service, and specifically may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet switching (Packet switching) service.
  • the gNB203 corresponds to the first base station in this application.
  • the gNB204 corresponds to the second base station in this application.
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 supports multi-antenna wireless communication.
  • the gNB204 supports multi-antenna wireless communication.
  • the UE 201 is a terminal supporting wireless communication based on multiple antennas.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a user plane and control plane wireless protocol architecture, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane.
  • FIG. 3 shows radio protocol architectures for UE and gNB in three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, a RLC (Radio Link Control, Radio Link Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data (Aggregation protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at P-GW213 on the network side and terminating at the other end of the connection (e.g., Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Automatic Repeat Request).
  • HARQ Hybrid Automatic Automatic Repeat Request
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the first base station in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second base station in this application.
  • the first information in the present application is generated in the RRC sublayer 306.
  • the first wireless signal in the present application is generated in the PHY301.
  • the N reference signals in the present application are generated in the PHY301.
  • the N1 reference signals in the present application are generated in the PHY301.
  • the N2 reference signals in the present application are generated in the PHY301.
  • the second information in this application is generated in the PHY301.
  • the second wireless signal in the present application is generated in the PHY301.
  • the third information in this application is generated in the MAC sublayer 302.
  • the third wireless signal in the present application is generated in the PHY301.
  • the first signaling in this application is generated from the PHY301.
  • the first signaling in this application is generated in the MAC sublayer 302.
  • the fourth wireless signal in the present application is generated in the PHY301.
  • the fourth information in this application is generated in the RRC sublayer 306.
  • the fourth information in this application is generated in the MAC sublayer 302.
  • the fourth information in this application is generated in the PHY301.
  • the sixth information in this application is generated in the RRC sublayer 306.
  • the sixth information in this application is generated in the PHY301.
  • the fifth information in this application is generated in the RRC sublayer 306.
  • the fifth information in this application is generated in the MAC sublayer 302.
  • the fifth information in this application is generated in the PHY301.
  • Embodiment 4 illustrates a schematic diagram of an NR node and a UE, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a UE 450 and a gNB 410 communicating with each other in an access network.
  • the gNB 410 includes a controller / processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter / receiver 418, and an antenna 420.
  • the UE 450 includes a controller / processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter / receiver 454 and an antenna 452.
  • DL Downlink, downlink
  • the controller / processor 475 implements the functionality of the L2 layer.
  • the controller / processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller / processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the UE 450, and is based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., a pilot) in the time and / or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a multi-carrier symbol stream in the time domain.
  • the multi-antenna transmission processor 471 then performs a transmission analog precoding / beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier, and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs a receive analog precoding / beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding / beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456.
  • the reference signal will be used for channel estimation.
  • the data signal is recovered in the multi-antenna receiving processor 458 after multi-antenna detection. Any spatial stream at the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the gNB410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller / processor 459.
  • the controller / processor 459 implements the functions of the L2 layer.
  • the controller / processor 459 may be associated with a memory 460 that stores program code and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller / processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller / processor 459 is also responsible for error detection using acknowledgement (ACK) and / or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller / processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller / processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410.
  • the controller / processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to gNB410.
  • the transmit processor 468 performs modulation mapping and channel encoding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier / single-carrier symbol stream, and after the analog precoding / beam forming operation is performed in the multi-antenna transmission processor 457, it is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at gNB410 is similar to the reception function at UE450 described in DL.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller / processor 475 implements L2 layer functions.
  • the controller / processor 475 may be associated with a memory 476 that stores program code and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller / processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper-layer data packets from the UE 450.
  • Upper layer data packets from the controller / processor 475 may be provided to the core network.
  • the controller / processor 475 is also responsible for error detection using ACK and / or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor use together.
  • the UE450 device at least: receives the first information in the present application; determines the first subinformation in the present application from the M subinformations in the present application; the first time in the present application Receiving the first wireless signal in the present application in a frequency resource set.
  • the first information includes the M sub-information, each of the M sub-informations indicates a reference signal group, and one reference signal group includes at least one reference signal; the first sub-information indicates the first reference A signal group; a reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by the first serving cell in the present application, and the first serving cell is not added by the UE 450; The UE 450 assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • the UE 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving all the instructions in this application. Said first information; determining said first sub-information in this application from said M sub-informations in this application; receiving said first in this application from said first time-frequency resource set in this application A wireless signal.
  • the first information includes the M sub-information, each of the M sub-informations indicates a reference signal group, and one reference signal group includes at least one reference signal; the first sub-information indicates the first reference A signal group; a reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by the first serving cell in the present application, and the first serving cell is not added by the UE 450; The UE 450 assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • the gNB410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor use together.
  • the gNB410 device at least: sends the first information in the present application; determines the first sub-information from the M sub-informations in the present application; sends the present in the first time-frequency resource set in the present application.
  • the first wireless signal in the application wherein the reference signal in the first reference signal group is sent by the serving cell maintained by the gNB410; or, the sending of the first wireless signal in the first time-frequency resource set is abandoned.
  • a wireless signal wherein a reference signal in the first reference signal group is not sent by a serving cell maintained by the gNB410.
  • the first information includes M sub-information, each of the M sub-informations indicates a reference signal group, and one reference signal group includes at least one reference signal; the first sub-information indicates the first reference signal group ;
  • a reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by the first serving cell in the present application, and the first serving cell is not a target of the first wireless signal Receiver addition; at least one serving cell maintained by the gNB410 is added by a target receiver of the first wireless signal; the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal and the The transmitting antenna ports of any reference signal in the first reference signal group are quasi co-located; the M is a positive integer.
  • the gNB410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending all The first information is described; the first sub-information is determined from the M sub-informations in the present application; the first wireless signal in the present application is sent in the first time-frequency resource set in the present application, where The reference signal in the first reference signal group is sent by the serving cell maintained by the gNB410; or, the sending of the first wireless signal in the first time-frequency resource set is abandoned, wherein the first reference signal group is The reference signal is not sent by the serving cell maintained by the gNB410.
  • the first information includes M sub-information, each of the M sub-informations indicates a reference signal group, and one reference signal group includes at least one reference signal; the first sub-information indicates the first reference signal group ; A reference signal in a reference signal group indicated by at least one of the M sub-informations is sent by the first serving cell in the present application, and the first serving cell is not a target of the first wireless signal Receiver addition; at least one serving cell maintained by the gNB410 is added by a target receiver of the first wireless signal; the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal and the The transmitting antenna ports of any reference signal in the first reference signal group are quasi co-located; the M is a positive integer.
  • the gNB410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor use together.
  • the gNB410 device at least: receives the fifth information in the present application; sends the first wireless signal in the present application in the first time-frequency resource set in the present application; or abandons the first wireless signal in the first Sending the first wireless signal in a time-frequency resource set.
  • the fifth information indicates whether the gNB410 sends the first wireless signal in the first time-frequency resource set, and any serving cell maintained by the gNB410 is not received by a target of the first wireless signal.
  • the gNB410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving all the instructions in this application.
  • the fifth information ; sending the first wireless signal in the first time-frequency resource set in the present application; or giving up sending the first wireless signal in the first time-frequency resource set signal.
  • the fifth information indicates whether the gNB410 sends the first wireless signal in the first time-frequency resource set, and any serving cell maintained by the gNB410 is not received by a target of the first wireless signal.
  • the gNB410 corresponds to the first base station in this application.
  • the gNB410 corresponds to the second base station in this application.
  • the UE 450 corresponds to the user equipment in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in this application;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to determine the first sub-information in the present application from the M sub-informations in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller / processor 475, and the memory 476 ⁇ One is used to determine the first sub-information in the present application from the M sub-informations in the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first wireless signal in the present application in the first set of time-frequency resources;
  • the antenna 420, the transmitter 418, all At least one of the transmitting processor 416, the multi-antenna transmitting processor 471, the controller / processor 475, and the memory 476 ⁇ is used for the first time-frequency resource set in the present application Sending the first wireless signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the N reference signals in the receiving application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller / processor 475, and the memory 476 ⁇ One is used to transmit the N1 reference signals in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller / processor 475, and the memory 476 ⁇ One is used to send the N2 reference signals in this application.
  • the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to receive the second information in the present application on the first serving cell in the present application;
  • the antenna 420, the transmitter 418, the transmission processing At least one of the processor 416, the multi-antenna transmission processor 471, the controller / processor 475, and the memory 476 ⁇ is used to send the information in the present application on the first serving cell in the present application The second information.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller / processor 475, and the memory 476 ⁇ is used to receive the third wireless signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, and the controller / At least one of the processor 459, the memory 460, and the data source 467 ⁇ is used to send the third wireless signal in the present application.
  • ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data Source 467 ⁇ is used to receive the first signaling in this application; ⁇ the antenna 420, the transmitter 418, the transmission processor 416, and the multi-antenna transmission processor 471 At least one of the controller / processor 475 and the memory 476 ⁇ is used to send the first signaling in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller / processor 475, and the memory 476 ⁇ is used to receive the fourth wireless signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, and the controller / At least one of the processor 459, the memory 460, and the data source 467 ⁇ is used to send the fourth wireless signal in the present application.
  • At least one of the controller / processor 475 and the memory 476 is used to send the fourth information in the present application.
  • At least one of the controller / processor 475 and the memory 476 is used to receive the fourth information in the present application.
  • At least one of the controller / processor 475 and the memory 476 is used to send the sixth information in the present application.
  • At least one of the controller / processor 475 and the memory 476 is used to receive the sixth information in the present application.
  • the antenna 452 the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller / processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to send the fifth information in this application.
  • At least one of the controller / processor 475 and the memory 476 is used to send the fifth information in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller / processor 475, and the memory 476 ⁇ One is used to receive the fifth information in this application.
  • At least one of the controller / processor 475 and the memory 476 is used to receive the fifth information in the present application.
  • Embodiment 5 illustrates a flowchart of transmission, as shown in FIG. 5.
  • base station B1 is the first base station in the present application
  • base station B3 is the second base station in the present application
  • user equipment U2 is the user equipment in the present application.
  • the base station B1 is a serving cell maintenance base station of the user equipment U2, and any serving cell maintained by the base station B3 is not added by the user equipment U2.
  • the steps in blocks F11 to F16 are optional.
  • the first wireless signal is sent in a resource set.
  • step S21 For U2, receive N reference signals in step S21; receive the second information on the first serving cell in step S201; receive the first information in step S22; receive the second wireless signal in step S202; in step S203 Sending a third wireless signal in step S23; determining the first sub-information from the M pieces of sub-information in step S23; sending the fifth information through the air interface in step S24; receiving the first wireless in the first set of time-frequency resources in step S25 signal.
  • step S31 For B3, send N1 reference signals on the first serving cell in step S31; send second information on the first serving cell in step S301; and send sixth information through the backhaul link in step S302;
  • step S32 the fifth information is received through the air interface;
  • step S303 the fourth information is received through the backhaul link;
  • step S33 the first wireless signal is not sent in the first time-frequency resource set.
  • the first information includes the M sub-information, each of the M sub-informations indicates a reference signal group, and a reference signal group includes at least one reference signal; the first sub-information Indicates a first reference signal group; the U2 assumes that a transmitting antenna port of the first wireless signal is quasi co-located with a transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • the N1 reference signals are reference signals sent by the first serving cell among the N reference signals; a reference signal in a reference signal group indicated by at least one of the M sub-informations is the N1 Among the reference signals, N is a positive integer, and N1 is a positive integer not greater than N.
  • the first serving cell is not added by the U2.
  • the second information indicates an index of the N1 reference signals and an index of the first serving cell.
  • the reference signals in the first reference signal group are sent by the serving cell maintained by the B1. At least one serving cell maintained by the B1 is added by the U2.
  • the fifth information indicates that the B3 does not send the first wireless signal in the first time-frequency resource set, and any serving cell maintained by the B3 is not added by the U2.
  • the second wireless signal carries third information, and the third information is used to activate M1 sub-messages among the M sub-messages, and the first sub-information is one of the M1 sub-messages;
  • the M1 is a positive integer not greater than the M.
  • the third wireless signal is used to determine that the second wireless signal is correctly received by the U2.
  • the N2 reference signals are reference signals sent by the second serving cell among the N reference signals; the B1 is a maintaining base station of the second serving cell, and the second serving cell is used by the U2 In addition, the N2 is not greater than the N positive integer.
  • the fourth information indicates the first time-frequency resource set; and the sixth information indicates an index of the N1 reference signals.
  • the first serving cell is maintained by the B2.
  • the first serving cell is not maintained by the first base station in this application.
  • a reference signal in the first reference signal group is not sent by the first serving cell, and the first wireless signal is not sent by the first serving cell.
  • the reference signals in the first reference signal group are not sent by the first serving cell, and the first wireless signal is not sent by the second base station in this application.
  • the reference signals in the first reference signal group are not sent by the serving cell maintained by the second base station in the present application, and the first wireless signal is not sent by the second base station in the present application. send.
  • a reference signal in the first reference signal group is sent by the second serving cell, and the first wireless signal is sent by the second serving cell.
  • a reference signal in the first reference signal group is sent by the second serving cell, and the first time-frequency resource of the first base station on the second serving cell in the present application is Sending the first wireless signal in a set.
  • the first base station is in the first time-frequency resource set. Sending the first wireless signal.
  • the second base station in this application sends, in the first time-frequency resource set, radio signals for other UEs other than the target receiver of the first radio signal, and the other UE adds At least one serving cell maintained by the second base station in this application.
  • the second base station in the present application abandons sending the first wireless signal in the first time-frequency resource set, and performs puncturing in the first time-frequency resource set. To avoid interfering with the wireless transmission of other serving cells to the target receiver of the first wireless signal.
  • the second base station in this application abandons sending the first wireless signal in the first time-frequency resource set, and buffers data to be transmitted until the next transmission opportunity.
  • the second base station in the present application abandons sending the first wireless signal in the first time-frequency resource set, and discards data to be currently transmitted.
  • the first information is carried by a ControlResourceSetIE.
  • the first information includes some or all of the information in the ControlResourceSetIE.
  • the first information is carried by the PDCCH-ConfigIE.
  • the first information includes some or all information in the PDCCH-ConfigIE.
  • the first information is carried by a PDCCH-ConfigCommonIE.
  • the first information includes some or all information in the PDCCH-ConfigCommonIE.
  • the M pieces of sub-information are carried by a tci-StatesPDCCH-ToAddList field in a ControlResourceSetIE.
  • the M pieces of sub-information include some or all of the information in the tci-StatesPDCCH-ToAddList field in the ControlResourceSetIE.
  • ControlResourceSetIE for a specific definition of the ControlResourceSetIE, refer to 3GPP TS38.331.
  • IE for a specific definition of the PDCCH-Config, IE, refer to 3GPP TS38.331.
  • tci-StatesPDCCH-ToAddList refer to 3GPP TS38.331.
  • the first wireless signal carries downlink control information.
  • the first wireless signal includes physical layer signaling.
  • the first wireless signal includes dynamic signaling.
  • the first wireless signal includes dynamic signaling for Downlink Grant.
  • the first wireless signal includes DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first wireless signal includes a downlink grant DCI (DownLink Grant DCI).
  • DCI DownLink Grant DCI
  • the first wireless signal includes a DCI identified by a C (Cell, Cell) -RNTI (Radio Network Temporary Identifier).
  • C Cell, Cell
  • RTI Radio Network Temporary Identifier
  • a CRC Cyclic Redundancy Check, cyclic redundancy check
  • a C-RNTI Cyclic Redundancy Check, cyclic redundancy check
  • the N is greater than the N1.
  • the N is greater than the N1, and at least one reference signal among the N reference signals that does not belong to the N1 reference signal is sent by the second serving cell.
  • the N reference signals are transmitted on an air interface.
  • a reference signal in a reference signal group indicated by at least one of the M sub-informations is a reference signal in the N 2 reference signals.
  • a reference signal in a reference signal group indicated by at least one of the M pieces of sub information is sent by the second serving cell.
  • the index of the first serving cell is CellIdentity.
  • the index of the first serving cell is PhysCellId.
  • the index of the first serving cell is composed of 10 bits.
  • the index of the first serving cell is composed of 9 bits.
  • the index of the first serving cell is composed of 28 bits.
  • the addition of the second serving cell by the target receiver of the first wireless signal includes: the target receiver of the first wireless signal performs a secondary serving cell addition (SCell) for the second serving cell addition).
  • SCell secondary serving cell addition
  • adding the second serving cell by the target receiver of the first wireless signal includes: the sCellToAddModList newly received by the target receiver of the first wireless signal includes the second serving cell.
  • the addition of the second serving cell by the target receiver of the first wireless signal includes: the sCellToAddModList or sCellToAddModListSCG newly received by the target receiver of the first wireless signal includes the second serving cell.
  • adding the second serving cell by the target receiver of the first wireless signal includes: the target receiver of the first wireless signal is assigned an SCellIndex for the second serving cell.
  • adding the second serving cell by the target receiver of the first wireless signal includes: the target receiver of the first wireless signal is assigned a ServCellIndex for the second serving cell.
  • the second wireless signal carries downlink data.
  • the first base station in the present application sends the second wireless signal on the second serving cell.
  • the third information is carried by a MAC PDU (Protocol Data Unit) of the second wireless signal.
  • MAC PDU Protocol Data Unit
  • the M1 is equal to 1, and the first wireless signal is transmitted on a downlink physical layer control channel.
  • the M1 is equal to 1, and the M1 sub-information is composed of the first sub-information.
  • the second wireless signal is transmitted through an air interface.
  • the second wireless signal is sent by a third serving cell, and the third serving cell is maintained by the first base station in the present application and added by the user equipment in the present application.
  • the third wireless signal includes HARQ-ACK (Hybrid, Automatic, Repeat, ReQuest, ACKnowledgement).
  • HARQ-ACK Hybrid, Automatic, Repeat, ReQuest, ACKnowledgement
  • the third wireless signal indicates that the second wireless signal is correctly received.
  • the third wireless signal is transmitted on an air interface.
  • the third wireless signal is transmitted on the second serving cell.
  • the first wireless signal is transmitted on a physical layer control channel; the first information indicates the first time-frequency resource set.
  • the first information indicates an index of the first time-frequency resource set.
  • the index of the first time-frequency resource set includes ControlResourceSetId.
  • the index of the first time-frequency resource set includes SearchSpaceId.
  • ControlResourceSetId refers to 3GPP TS38.331.
  • searchSpaceId refers to 3GPP TS38.331.
  • the backhaul link includes an X2 interface.
  • the backhaul link includes an S1 interface.
  • the backhaul link includes an Xn interface.
  • the sixth information indicates an index of the first serving cell.
  • the second base station in the present application receives the fifth information through an air interface.
  • the U2 sends a fourth wireless signal; the fourth wireless signal indicates a target reference signal from K reference signals, and at least one of the K reference signals is used by the first serving cell Sending; the target reference signal is used to determine whether the first wireless signal is sent by the first serving cell.
  • the fourth wireless signal carries the fifth information.
  • the target reference signal is used to determine that the first wireless signal is not sent by the first serving cell.
  • a sender of the first wireless signal is a sender of the target reference signal.
  • the second base station in the present application sends the first wireless signal in the first time-frequency resource set.
  • the second base station in the present application abandons in the first time-frequency resource set Sending the first wireless signal.
  • the fourth wireless signal is transmitted through an air interface.
  • the fourth wireless signal is transmitted on the second serving cell.
  • At least one of the K reference signals is sent by the second serving cell.
  • the first base station in the present application receives the fourth wireless signal through an air interface.
  • the sender of the reference signal in the first reference signal group is the sender of the target reference signal.
  • the fourth wireless signal carries the fifth information; the first reference signal group includes the target reference signal.
  • the first wireless signal is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band and PDCCH).
  • NB-PDCCH Narrow Band and PDCCH
  • the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the second wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared CHannel, physical downlink shared channel
  • the downlink physical layer data channel is an sPDSCH (short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, Narrow Band PDSCH).
  • the third wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the uplink physical layer data channel is a sPUSCH (short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (Narrow BandPUSCH).
  • the third wireless signal is transmitted on an uplink physical layer control channel (that is, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel that is, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is PUCCH (Physical Uplink Control CHannel, physical uplink control channel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH, short PUCCH).
  • the uplink physical layer control channel is NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (Narrow Band and PUCCH).
  • Embodiment 6 illustrates a flowchart of transmission, as shown in FIG. 6.
  • a base station B4 is the first base station in the present application
  • a base station B6 is the second base station in the present application
  • a user equipment U5 is the user equipment in the present application.
  • the base station B4 is a serving cell maintenance base station of the user equipment U5, and any serving cell maintained by the base station B6 is not added by the user equipment U5.
  • the steps in blocks F21 to F28 are optional respectively, and there are only one and the steps in blocks F27 and F28.
  • steps S401 to 405 are the same as steps 101 to 105 in Embodiment 5; steps 41 and 42 are the same as steps 11 and 12 in embodiment 5; and in step 43 through the backhaul link Send the fifth information; send the first signaling in step 406; give up sending the first wireless signal in the first time-frequency resource set in step 44.
  • steps S51 to 53 are the same as steps 21 to 23 in Embodiment 5; steps 501 to 503 are the same as steps 201 to 203 in embodiment 5; receiving the first signaling in step 54
  • step 55 a first wireless signal is received in a first set of time-frequency resources.
  • step 61 is the same as step 31 in embodiment 5
  • steps 601 to 603 are the same as steps 301 to 303 in embodiment 5
  • the fifth information is received through the backhaul link in step S62
  • the first signaling is sent in S604; the first wireless signal is sent in the first time-frequency resource set in step S63.
  • the reference signals in the first reference signal group are sent by the serving cell maintained by the B6.
  • the fifth information indicates that the first wireless signal is sent in the first time-frequency resource set of the B6.
  • the first wireless signal is transmitted on a physical layer data channel, the first signaling includes scheduling information of the first wireless signal, and the first signaling indicates the first sub-information.
  • a reference signal in the first reference signal group is sent by the first serving cell, and the first wireless signal is sent by the first serving cell.
  • the first base station in the present application abandons the first base station in the first Sending the first wireless signal in a time-frequency resource set.
  • the first base station in this application abandons sending the first wireless signal in the first time-frequency resource set, and the first base station in this application sends the first wireless signal in the first time-frequency resource.
  • the set sends radio signals for other UEs than the target receiver of the first radio signal, and the other UE adds at least one serving cell maintained by the first base station in the present application.
  • the first base station in the present application abandons sending the first wireless signal in the first time-frequency resource set, and performs puncturing in the first time-frequency resource set. To avoid interfering with the wireless transmission of other serving cells to the target receiver of the first wireless signal.
  • the first base station in the present application abandons sending the first wireless signal in the first time-frequency resource set, and buffers data to be transmitted until the next transmission opportunity.
  • the first base station in the present application abandons sending the first wireless signal in the first time-frequency resource set, and discards data to be currently transmitted.
  • the first information is carried by a PDSCH-Config (IE) (Information Element).
  • IE PDSCH-Config
  • the first information includes some or all information in the PDSCH-ConfigIE.
  • the M sub-information is carried by a tci-StatesToAddModList field in PDSCH-Config.
  • the M pieces of sub-information include some or all information in a tci-StatesToAddModList field in PDSCH-Config.
  • PDSCH-ConfigIE for a specific definition of the PDSCH-ConfigIE, refer to 3GPP TS38.331.
  • tci-StatesToAddModList domain for a specific definition of the tci-StatesToAddModList domain, refer to 3GPP TS38.331.
  • the first wireless signal carries downlink data.
  • the M1 is not greater than 8, and the first wireless signal is transmitted on a downlink physical layer data channel.
  • the first signaling is transmitted through an air interface.
  • the scheduling information of the first wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme, modulation and coding scheme), DMRS configuration information, HARQ (Hybrid Automatic Repeat Request, hybrid automatic retransmission request) process number, RV (Redundancy Version), NDI (New Data Indicator, new data indicator), corresponding space transmission parameters (Spatial, Tx parameters), corresponding space Receive parameters (Spatial Rx parameters) ⁇ .
  • the configuration information of DMRS includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequence, mapping mode, DMRS type, cyclic shift (OCC), OCC (Orthogonal Cover Code, orthogonal mask) ⁇ .
  • the first base station in the present application sends the first wireless signal in the first time-frequency resource set, and the first base station in the present application sends the first signaling.
  • the second base station in the present application sends the first wireless signal in the first time-frequency resource set, and the first base station in the present application sends the first signaling.
  • the second base station in the present application sends the first wireless signal in the first time-frequency resource set, and the second base station in the present application sends the first signaling.
  • the second base station in the present application receives the fifth information through a backhaul link.
  • the fifth information is carried by the fourth information.
  • the fourth information indicates whether the second base station in the present application sends the first wireless signal in the first time-frequency resource set.
  • the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is an sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is NB-PDSCH.
  • the corresponding transmission channel of the first wireless signal is a DL-SCH (DownLink Shared Channel, downlink shared channel).
  • DL-SCH DownLink Shared Channel, downlink shared channel
  • Embodiment 7 illustrates a schematic diagram of resource mapping of the first time-frequency resource set in the time-frequency domain; as shown in FIG. 7.
  • the user equipment in this application receives the first wireless signal in this application in the first time-frequency resource set, and the first wireless signal is transmitted on a downlink physical layer control channel.
  • a square filled with a left diagonal line represents the first time-frequency resource set.
  • the first time-frequency resource set includes a positive integer RE (Resource Element).
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the first time-frequency resource set is a CORESET (COntrol, REsource, SET).
  • the first time-frequency resource set is a search space.
  • the first time-frequency resource set occupies a positive integer discontinuous subcarriers in the frequency domain.
  • the first time-frequency resource set occupies a positive integer number of discontinuous multi-carrier symbols in the time domain.
  • the first set of time-frequency resources occurs multiple times in the time domain.
  • the time interval between any two adjacent occurrences of the first time-frequency resource set in the time domain is equal.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first time-frequency resource set is configured by a serving cell added by the user equipment through a ControlResourceSetIE.
  • the first time-frequency resource set is configured by a serving cell added by the user equipment through PDCCH-Config.
  • the first time-frequency resource set is configured by a serving cell added by the user equipment through a PDCCH-ConfigCommonIE.
  • the first time-frequency resource set is configured by a serving cell added by the user equipment through SearchSpaceIE.
  • SearchSpaceIE for a specific definition of the SearchSpaceIE, refer to 3GPP TS38.331.
  • the first time-frequency resource set occupies frequency resources on a target serving cell, and a reference signal in the first reference signal group in this application is sent by the target serving cell.
  • the first set of time-frequency resources occupies frequency resources on the second serving cell in the present application.
  • Embodiment 8 illustrates a schematic diagram of resource mapping of the first time-frequency resource set in the time-frequency domain; as shown in FIG. 8.
  • the user equipment in the present application receives the first wireless signal in the present application in the first time-frequency resource set, and the first wireless signal is transmitted on a downlink physical layer data channel.
  • a square filled by a left slash represents the first time-frequency resource set.
  • the frequency domain of the first set of time-frequency resources occupies a positive integer number of consecutive subcarriers.
  • the first time-frequency resource set occupies a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the first signaling in this application indicates the first time-frequency resource set.
  • Embodiment 9 illustrates a schematic diagram of a given piece of information among M pieces of sub-information; as shown in FIG. 9.
  • the reference signal group indicated by a given piece of sub-information includes only a third reference signal.
  • the given sub-information indicates a given information unit, and the given information unit includes a first given domain and a second given domain.
  • the first given field in the given information unit indicates an index of the given information unit, and the second given field in the given information unit indicates the third reference signal.
  • any one of the M sub-informations indicates an information unit, and the one information unit is a TCI-State IE.
  • any one of the M sub-informations indicates an information unit, and the one information unit includes some or all of the information in the TCI-State IE.
  • the first given domain in the given information unit includes some or all of the information in the tci-StateId field of the TCI-State and IE.
  • the first given domain in the given information unit indicates TCI-StateId.
  • the second given domain in the given information unit includes part or all of the information in the qcl-Type1 domain of TCI-State and IE.
  • the second given domain in the given information unit indicates QCL-Info.
  • the second given domain in the given information unit includes a first given subdomain and a second sub given subdomain, and the second given domain in the given information unit
  • the first given subdomain indicates an index of the third reference signal
  • the second given subdomain in the second given domain in the given information unit indicates that the third reference signal corresponds to QCL type.
  • the index of the third reference signal is NZP-CSI-RS-ResourceId or SSB-Index.
  • the quasi-co-location type corresponding to the third reference signal is one of QCL-TypeA, QCL-TypeB, QCL-TypeC, and QCL-TypeD.
  • the first given subdomain in the second given domain in the given information unit includes some or all information in a referenceSignal domain of a TCI-State IE.
  • the second given subdomain in the given second domain in the given information unit includes some or all of the information in the qcl-Type domain of TCI-State .
  • the second given domain in the given information unit includes a fifth given domain; the fifth given domain in the second given domain in the given information unit
  • the field indicates the index of the sender of the third reference signal.
  • the third reference signal is sent by the second serving cell in the present application, and the fifth in the second given domain in the given information unit
  • the given sub-domain indicates the SCellIndex of the second serving cell.
  • the third reference signal is sent by the second serving cell in the present application, and the fifth in the second given domain in the given information unit
  • the given sub-domain indicates the ServCellIndex of the second serving cell.
  • the third reference signal is sent by the first serving cell in the present application, and the fifth in the second given domain in the given information unit
  • the given sub-domain indicates the CellIdentity of the first serving cell.
  • the third reference signal is sent by the first serving cell in the present application, and the fifth in the second given domain in the given information unit
  • the given sub-domain indicates the PhysCellId of the first serving cell.
  • the second given domain in the given information unit includes a seventh given domain and an eighth given domain; the information in the second given domain in the given information unit
  • the seventh given sub-domain includes some or all of the information in the cell domain of TCI-State and IE
  • the eighth given sub-domain in the second given domain in the given information unit includes TCI-State Some or all of the information in the bwp-Id field of the IE; for specific definitions of the cell field and the bwp-Id field, see 3GPP TS38.331.
  • TCI-State IE for a specific definition of the TCI-State IE, refer to 3GPP TS38.331.
  • TCI-StateId for a specific definition of the TCI-StateId, refer to 3GPP TS38.331.
  • QCL-Info For a specific definition of the QCL-Info, refer to 3GPP TS38.331.
  • Embodiment 10 illustrates a schematic diagram of a given piece of information among the M pieces of sub-information; as shown in FIG. 10.
  • the reference signal group indicated by the given sub-information among the M sub-informations is composed of a third reference signal and a fourth reference signal.
  • the given sub-information indicates a given information unit, and the given information unit includes a first given domain, a second given domain, and a third given domain.
  • the first given field in the given information unit indicates an index of the given information unit
  • the second given field in the given information unit indicates the third reference signal
  • the The third given field in a given information unit indicates the fourth reference signal.
  • the third given domain in the given information unit includes part or all of the information in the qcl-Type2 domain of TCI-State and IE.
  • the third given domain in the given information unit indicates QCL-Info.
  • the third given domain in the given information unit includes a third given domain and a fourth given domain; the information in the third given domain in the given information unit
  • the third given sub-domain indicates an index of the fourth reference signal
  • the fourth given sub-domain in the third given domain in the given information unit indicates a corresponding one of the fourth reference signal.
  • the index of the fourth reference signal is NZP-CSI-RS-ResourceId or SSB-Index.
  • the quasi co-location type corresponding to the fourth reference signal is one of QCL-TypeA, QCL-TypeB, QCL-TypeC, and QCL-TypeD.
  • the third given subdomain in the third given domain in the given information unit includes some or all information in a referenceSignal domain of a TCI-State IE.
  • the fourth given subdomain in the third given domain in the given information unit includes some or all of the information in the qcl-Type domain of TCI-State .
  • the third given domain in the given information unit includes a sixth given domain; the sixth given domain in the third given domain in the given information unit
  • the field indicates the index of the sender of the fourth reference signal.
  • the fourth reference signal is sent by the second serving cell in the present application, and the sixth in the third given domain in the given information unit
  • the given sub-domain indicates the SCellIndex of the second serving cell.
  • the fourth reference signal is sent by the second serving cell in the present application, and the sixth in the third given domain in the given information unit
  • the given sub-domain indicates the ServCellIndex of the second serving cell.
  • the fourth reference signal is sent by the first serving cell in the present application, and the sixth in the third given domain in the given information unit
  • the given sub-domain indicates the CellIdentity of the first serving cell.
  • the fourth reference signal is sent by the first serving cell in the present application, and the sixth in the third given domain in the given information unit
  • the given sub-domain indicates the PhysCellId of the first serving cell.
  • Embodiment 11 illustrates a schematic diagram of an antenna port; as shown in FIG. 11.
  • an antenna port is formed by stacking antennas in a positive integer antenna group through antenna virtualization; one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • the mapping coefficients of all antennas in a positive integer antenna group included in a given antenna port to the given antenna port form a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of multiple antennas included in any given antenna group within the positive integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector for the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer antenna groups included in the given antenna port are arranged diagonally to form the analog beamforming matrix corresponding to the given antenna port.
  • a mapping coefficient of a positive integer number of antenna groups included in the given antenna port to the given antenna port constitutes a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by a product of an analog beamforming matrix and a digital beamforming vector corresponding to the given antenna port.
  • antenna port # 0 and antenna port # 1 Two antenna ports are shown in FIG. 11: antenna port # 0 and antenna port # 1.
  • the antenna port # 0 is composed of an antenna group # 0
  • the antenna port # 1 is composed of an antenna group # 1 and an antenna group # 2.
  • the mapping coefficients of the multiple antennas in the antenna group # 0 to the antenna port # 0 constitute an analog beamforming vector # 0; the mapping coefficients of the antenna group # 0 to the antenna port # 0 constitute a digital beamforming.
  • the pattern vector # 0; the beam forming vector corresponding to the antenna port # 0 is obtained by a product of the analog beam forming vector # 0 and the digital beam forming vector # 0.
  • the mapping coefficients of the antenna group # 1 and the antenna group # 2 to the antenna port # 1 constitute a digital beam forming vector # 1; the beam forming vector corresponding to the antenna port # 1 is formed by the A product of the analog beamforming matrix # 1 and the digital beamforming vector # 1 formed by diagonally arranging the analog beamforming vector # 1 and the analog beamforming vector # 2.
  • the antenna port is an antenna port.
  • the antenna port see sections 5.2 and 6.2 in 3GPP TS36.211, or see section 4.4 in 3GPP TS38.211.
  • the small-scale channel parameters experienced by another wireless signal sent on the one antenna port may be inferred from the small-scale channel parameters experienced by one wireless signal sent on the one antenna port.
  • the small-scale channel parameters experienced by a wireless signal transmitted on another antenna port cannot be inferred from the small-scale channel parameters experienced by a wireless signal transmitted on one antenna port.
  • the small-scale channel parameters include ⁇ CIR (Channel Impulse Response), PMI (Precoding Matrix Indicator, Precoding Matrix Identification), CQI (Channel Quality Indicator, Channel Quality Identification), RI ( Rank Indicator).
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator, Precoding Matrix Identification
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • an antenna port includes only one antenna group, that is, an RF chain, for example, the antenna port # 0 in FIG. 11.
  • the analog beamforming matrix corresponding to the one antenna port is reduced to an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to the one antenna port is equal to its corresponding analog beamforming vector.
  • the antenna port # 0 in FIG. 11 includes only the antenna group # 0, and the digital beamforming vector # 0 in FIG. 11 is reduced to a scalar, and the antenna port # 0 corresponds to The beamforming vector of is the analog beamforming vector # 0.
  • one antenna port includes multiple antenna groups, that is, multiple RF chains, for example, the antenna port # 1 in FIG. 11.
  • quasi-co-location of two antenna ports refers to two antenna ports QCL (Quasi Co-Located).
  • QCL Quadrature Co-Located
  • the two antenna ports QCL refers to the ability to infer the two antenna ports from the large-scale properties of the channels experienced by the wireless signals transmitted on one of the two antenna ports. Large-scale characteristics of a channel experienced by a wireless signal transmitted on another antenna port of an antenna port.
  • the large-scale properties include ⁇ delay spread, Doppler spread, Doppler shift, and average gain. ), One or more of average delay (average delay), spatial receiving parameters (Spatial Rx parameters) ⁇ .
  • the spatial receiving parameters include ⁇ receive beam, receive analog beamforming matrix, receive analog beamforming vector, receive digital beamforming vector, receive beamforming vector, and spatial receive filter. Domain (Receive Filter) ⁇ .
  • Embodiment 12 illustrates a schematic diagram in which a user equipment assumes that a transmitting antenna port of a first wireless signal is quasi co-located with a transmitting antenna port of any reference signal in a first reference signal group; as shown in FIG. 12.
  • the first reference signal group is composed of a first reference signal and a second reference signal.
  • the user equipment assumes that the transmitting antenna port of the first wireless signal, the transmitting antenna port of the first reference signal, and the transmitting antenna port of the second reference signal are quasi co-located, but correspond to different QCL types.
  • the first reference signal group includes only a first reference signal and a second reference signal
  • the user equipment assumes that a transmitting antenna port of the first wireless signal and a transmitting antenna port of the first reference signal And the transmit antenna port of the second reference signal are both QCL; the user equipment assumes that the QCL type and the QCL type between the transmit antenna port of the first wireless signal and the transmit antenna port of the first reference signal
  • the QCL type is different between the transmitting antenna port of the first wireless signal and the transmitting antenna port of the second reference signal.
  • the user equipment assumes that the QCL type between the transmitting antenna port of the first wireless signal and the transmitting antenna port of the first reference signal is QCL-TypeD.
  • the user equipment assumes that the QCL type between the transmitting antenna port of the first wireless signal and the transmitting antenna port of the second reference signal is QCL-TypeA.
  • the QCL type (QCL type) between one antenna port and another antenna port is QCL-TypeD, which refers to the spatial reception parameters (spatial Rx parameters) of a wireless signal that can be sent from the one antenna port.
  • a spatial reception parameter of a wireless signal transmitted on the another antenna port is inferred.
  • the QCL type (QCL type) between one antenna port and another antenna port is QCL-TypeA, which refers to: ⁇ delay extension of a channel that can be transmitted by a wireless signal transmitted from the one antenna port (delay spread), Doppler spread, Doppler shift, average delay) to infer the channel of the wireless signal transmitted on the other antenna port. ⁇ Delay spread, Doppler spread, Doppler shift, average delay).
  • the QCL-TypeA As an embodiment, for specific definitions of the QCL type, the QCL-TypeA, and the QCL-TypeD, refer to section 5.1.5 of 3GPP TS38.214.
  • Embodiment 13 illustrates a schematic diagram in which a user equipment assumes that a transmitting antenna port of a first wireless signal is quasi co-located with a transmitting antenna port of any reference signal in a first reference signal group; as shown in FIG. 13.
  • the first reference signal group is composed of a first reference signal.
  • the user equipment assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of the first reference signal.
  • the first reference signal group includes only the first reference signal, and the user equipment assumes that the transmitting antenna port of the first wireless signal and the transmitting antenna port QCL of the first reference signal.
  • the user equipment assumes that the QCL type between the transmitting antenna port of the first wireless signal and the transmitting antenna port of the first reference signal is QCL-TypeA, QCL-TypeB, One of QCL-TypeC and QCL-TypeD.
  • the user equipment assumes that the QCL type between the transmitting antenna port of the first wireless signal and the transmitting antenna port of the first reference signal is QCL-TypeA and QCL-TypeD. kind of.
  • the QCL type (QCL type) between one antenna port and another antenna port is QCL-TypeB, which refers to a Doppler extension of a channel that can be transmitted by a wireless signal transmitted from the one antenna port.
  • Doppler spread and Doppler shift infer the Doppler spread and Doppler shift of the channel experienced by the wireless signal transmitted on the other antenna port .
  • the QCL type (QCL type) between one antenna port and another antenna port is QCL-TypeC, which refers to a Doppler shift of a channel that a wireless signal that can be transmitted from the one antenna port undergoes. Doppler shift and average delay are deduced from the Doppler shift and average delay of the channel experienced by the wireless signal transmitted on the other antenna port.
  • Embodiment 14 illustrates a schematic diagram of resource mapping of N reference signals in the time-frequency domain; as shown in FIG. 14.
  • the user equipment in the present application receives the N reference signals on an air interface, and the N1 reference signals in the N reference signals are sent by the first serving cell in the present application.
  • the reference signal in the reference signal group indicated by at least one of the M sub-informations in this application is the reference signal in the N1 reference signals, where N is a positive integer, and N1 is not greater than the Let N be a positive integer.
  • the indexes of the N reference signals are # ⁇ 0, ..., N-1 ⁇ , respectively.
  • the N reference signals include CSI-RS.
  • the N reference signals include an SS / PBCH block.
  • any one of the N reference signals appears periodically in the time domain.
  • any one of the N reference signals appears multiple times in the time domain.
  • the time interval between any two adjacent occurrences in the time domain of any of the N reference signals is equal.
  • At least one of the N reference signals is broadband.
  • At least one of the N reference signals is narrowband.
  • the N1 reference signals include SS / PBCH block.
  • any one of the N1 reference signals is an SS / PBCH block.
  • At least one of the N1 reference signals is a CSI-RS.
  • any one of the N1 reference signals is narrowband.
  • At least one of the N1 reference signals is broadband.
  • a reference signal is broadband: the system bandwidth is divided into positive integer frequency domain regions, and the one reference signal appears on each frequency domain region of the positive integer frequency domain regions, so Any frequency domain region in the positive integer number of frequency domain regions includes a positive integer number of consecutive subcarriers.
  • a reference signal is narrow-band means that the system bandwidth is divided into positive integer frequency domain regions, and the one reference signal appears only in a part of the frequency domain region among the positive integer frequency domain regions. Any frequency domain region in the positive integer number of frequency domain regions includes a positive integer number of consecutive subcarriers.
  • any two frequency domain regions in the positive integer number of frequency domain regions include the same number of subcarriers.
  • the N is equal to the N1.
  • the N is greater than the N1.
  • the N is greater than the N1, and at least one reference signal among the N reference signals that does not belong to the N1 reference signal is sent by the second serving cell in this application. .
  • only the N1 reference signals among the N reference signals are sent by the first serving cell.
  • N2 reference signals among the N reference signals are sent by the second serving cell in the present application, and N2 is a positive integer smaller than N.
  • the sum of the N1 and the N2 is equal to the N.
  • a sum of the N1 and the N2 is smaller than the N.
  • the N2 reference signals include CSI-RS.
  • the N2 reference signals include SS / PBCH block.
  • Embodiment 15 illustrates a schematic diagram of the second information; as shown in FIG. 15.
  • the user equipment in the present application receives the second information on the first serving cell in the present application; the second information indicates an index of the N1 reference signals in the present application With the index of the first serving cell.
  • the index of the first serving cell is CellIdentity.
  • the index of the first serving cell is PhysCellId.
  • the indexes of the N1 reference signals are respectively SSB (SS / PBCH Block) indexes.
  • the second information is carried by an SS / PBCH block sent by the first serving cell.
  • the SS / PBCH block sent by the first serving cell indicates the second information.
  • the SS / PBCH block sent by the first serving cell implicitly indicates the second information.
  • the second information is carried by the N1 reference signals.
  • the N1 reference signals indicate the second information.
  • the N1 reference signals implicitly indicate the second information.
  • the N1 reference signals are N1 SS / PBCH blocks sent by the first serving cell; the SS in the N1 reference signals indicates an index of the first serving cell.
  • the Primary synchronization sequence and the Primary synchronization sequence of the N1 reference signals implicitly indicate the index of the first serving cell.
  • the N1 reference signals are N1 SS / PBCH blocks sent by the first serving cell; for any given reference signal among the N1 reference signals, the given reference At least the former of the DMRS on the PBCH and the PBCH payload in the signal is used to indicate the index of the given reference signal.
  • a DMRS sequence on a PBCH in the given reference signal implicitly indicates an index of the given reference signal.
  • the DMRS sequence on the PBCH and the load bit of the PBCH in the given reference signal The indices of the given reference signals are collectively indicated.
  • the DMRS sequence on the PBCH in the given reference signal implicitly indicates 3 LSB (Least Significant Bit, least significant bit) of the index of the given reference signal ) Bits, the load bit of the PBCH in the given reference signal 3 MSB (Most Significant Bit) bits indicating the index of the given reference signal.
  • the payload bit of the PBCH See 3GPP TS38.213 and TS38.212 for specific definitions.
  • Embodiment 16 illustrates a schematic diagram of the third information; as shown in FIG. 16.
  • the third information is used to activate M1 sub-information of the M sub-informations in the present application, and the first sub-information in this application is one of the M1 sub-informations Information; the M1 is a positive integer not greater than the M.
  • the third information is carried by MAC CE (Medium Access Control Control Element) signaling.
  • MAC CE Medium Access Control Control Element
  • the third information is carried by TCI (Transmission Configuration Indication, Transmission Configuration Identification) States Activation / Deactivation for UE-specific PDSCH (UE specific PDSCH TCI state activation / deactivation) MAC CE bearer, the TCI States / Activation / Deactivation for UE-specific PDSCH, MAC, and CE are defined in 3GPP TS38.321.
  • TCI Transmission Configuration Indication, Transmission Configuration Identification
  • the first wireless signal in the present application is transmitted on a downlink physical layer data channel.
  • the third information is carried by a TCI State Indication for UE-specific PDCCH (TCI state indication of UE-specific PDCCH) MAC CE, and the TCI State Indication for UE-specific PDCCH MAC and CE is defined in 3GPP TS38.321.
  • the first wireless signal in the present application is transmitted on a downlink physical layer control channel.
  • the third information includes second sub-information, and the second sub-information indicates Serving Cell ID.
  • the Serving Cell ID For a specific definition of the Serving Cell ID, see 3GPP TS38.321.
  • the third information includes third sub-information, and the third sub-information indicates a BWP ID.
  • the BWP ID For a specific definition of the BWP ID, see 3GPP TS38.321.
  • the third information includes fourth sub-information, the fourth sub-information indicates Ti, and the Ti activates or deactivates a TCI state with a TCI-StateId of i.
  • Ti activates or deactivates a TCI state with a TCI-StateId of i.
  • the third information includes fifth sub-information, and the fifth sub-information indicates an index of the first time-frequency resource set in the present application.
  • the index of the first time-frequency resource set is ControlResourceSetId.
  • the third information includes sixth sub-information, and the sixth sub-information indicates an index of the first sub-information.
  • the index of the first sub-information is TCI-StateId.
  • Embodiment 17 illustrates a relationship between a time resource occupied by a third wireless signal and a time resource occupied by a first wireless signal; as shown in FIG. 17.
  • the first wireless signal is transmitted on a downlink physical layer control channel.
  • a time interval between a start time of a time resource occupied by the first wireless signal and an end time of a slot occupied by the third wireless signal is not less than a first threshold.
  • the first threshold is fixed (no configuration is required).
  • the first threshold is 3 milliseconds (ms).
  • Embodiment 18 illustrates the relationship between the time resource occupied by the third wireless signal and the time resource occupied by the first signaling; as shown in FIG. 18.
  • the first wireless signal in the present application is transmitted on a downlink physical layer data channel.
  • the first signaling includes scheduling information of the first wireless signal.
  • the third wireless signal is transmitted on slot n; the time slot occupied by the first signaling is no earlier than the time slot Said Is the number of time slots included in a sub-frame corresponding to the carrier spacing ⁇ , where For the specific definition, see 5.1.5 of 3GPP TS38.214.
  • Embodiment 19 illustrates a schematic diagram of generating a first wireless signal; as shown in FIG. 19.
  • the first wireless signal is transmitted on a downlink physical layer control channel, and a first parameter is used to generate the first wireless signal.
  • the first parameter is used to generate at least one of a scrambling sequence and a DMRS corresponding to the first wireless signal.
  • the first parameter is configured by a serving cell added by the user equipment in the present application through pdcch-DMRS-ScramblingID
  • the first parameter is a non-negative integer not greater than 65535.
  • pdcch-DMRS-ScramblingID refers to 3GPP TS38.331.
  • the first parameter is the PhysCellId of the second serving cell in the present application.
  • the PhysCellId of the second serving cell in the present application is used to generate the first wireless signal.
  • the second base station in this application sends the first wireless signal in the first time-frequency resource set in this application, and the PhysCellId of the second serving cell in this application is used To generate the first wireless signal.
  • Embodiment 20 illustrates a schematic diagram of generating a first wireless signal; as shown in FIG. 20.
  • the first wireless signal is transmitted on a downlink physical layer data channel, and the second parameter and the third parameter are used to generate the first wireless signal.
  • the second parameter is used to generate a scrambling sequence corresponding to the first wireless signal
  • the third parameter is used to generate a DMRS corresponding to the first wireless signal
  • the second parameter is configured by a serving cell added by the user equipment in the present application through dataScramblingIdentityPDSCH.
  • the second parameter is a non-negative integer not greater than 1023.
  • the third parameter is configured by the serving cell added by the user equipment in the present application through scramblingID0 or scramblingID1.
  • the third parameter is a non-negative integer not greater than 65535.
  • the second parameter is the PhysCellId of the second serving cell in the present application.
  • the third parameter is the PhysCellId of the second serving cell in the present application.
  • Embodiment 21 illustrates a schematic diagram of generating the first signaling; as shown in FIG. 21,
  • a fourth parameter is used to generate the first signaling, and the first signaling includes scheduling information of the first wireless signal in the present application.
  • the fourth parameter is used to generate at least one of a scrambling sequence and a DMRS corresponding to the first signaling.
  • the fourth parameter is configured by a serving cell added by the user equipment in the present application through pdcch-DMRS-ScramblingID.
  • the fourth parameter is a non-negative integer not greater than 65535.
  • the fourth parameter is the PhysCellId of the second serving cell in the present application.
  • the PhysCellId of the second serving cell in the present application is used to generate the first signaling.
  • the second base station in the present application sends the first signaling, and the PhysCellId of the second serving cell in the present application is used to generate the first signaling.
  • Embodiment 22 illustrates a schematic diagram of the fourth information content; as shown in FIG. 22.
  • the fourth information indicates the first time-frequency resource set in the present application.
  • the fourth information indicates an index of the first time-frequency resource set.
  • the fourth information includes the PhysCellId of the second serving cell in the present application.
  • the fourth information includes a first index
  • the first index is used by the second base station in the present application to generate the first wireless signal in the present application.
  • the first index is used by the second base station to generate a scrambling sequence corresponding to the first wireless signal.
  • the first index is used by the second base station to generate a DMRS corresponding to the first wireless signal.
  • the first index indicates n ID
  • the n ID is used by the second base station to determine an initial value of a scrambling sequence generator corresponding to the first wireless signal.
  • n ID For the specific role of the n ID , see section 7.3 of 3GPP TS38.211.
  • the first index indicates N ID
  • the N ID is used by the second base station to determine an initial value of an RS sequence generator of a DMRS corresponding to the first wireless signal.
  • N ID For the specific role of N ID , see section 7.4 of 3GPP TS38.211.
  • the first index is a non-negative integer not greater than 65535.
  • the first index is a non-negative integer not greater than 1023.
  • the first index is a PhysCellId of the second serving cell.
  • the fourth information includes a third index
  • the third index is used by the second base station to generate a DMRS corresponding to the first wireless signal.
  • the third index indicates or Said Or said Used by the second base station to determine an initial value of an RS sequence generator (generator) of the DMRS corresponding to the first wireless signal, the Or said For details, see section 7.4 of 3GPP TS38.211.
  • the third index is a non-negative integer not greater than 65535.
  • the third index is a PhysCellId of the second serving cell.
  • the fourth information includes a fourth index, and the fourth index is used by the second base station to generate the first signaling in the present application.
  • the fourth index is used by the second base station to generate a scrambling sequence corresponding to the first signaling.
  • the fourth index is used by the second base station to generate a DMRS corresponding to the first signaling.
  • the fourth index indicates n ID
  • the n ID is used by the second base station to determine an initial value of a scrambling sequence generator corresponding to the first signaling.
  • the n ID For the specific role of the n ID , see section 7.3 of 3GPP TS38.211.
  • the fourth index indicates N ID
  • the N ID is used by the second base station to determine an initial value of an RS sequence generator of a DMRS corresponding to the first signaling.
  • N ID For the specific role of N ID , see section 7.4 of 3GPP TS38.211.
  • the fourth index is a non-negative integer not greater than 65535.
  • the fourth index is a PhysCellId of the second serving cell.
  • the fourth information includes a fifth index
  • the fifth index indicates n RNTI .
  • the n RNTI is used by the second base station to determine an initial value of a scrambling sequence generator corresponding to the first wireless signal, and the n
  • the specific role of RNTI see section 7.3 of 3GPP TS38.211.
  • the n RNTI is used by the second base station to determine an initial value of a scrambling sequence generator corresponding to the first signaling, and the n
  • the specific role of RNTI see section 7.3 of 3GPP TS38.211.
  • the fourth information indicates a time-frequency resource occupied by the first signaling.
  • Embodiment 23 illustrates a schematic diagram of a fourth wireless signal; as shown in FIG. 23.
  • the fourth wireless signal indicates a target reference signal from K reference signals, and at least one of the K reference signals is sent by the first serving cell in the present application; the The target reference signal is used to determine whether the first wireless signal in this application is sent by the first serving cell.
  • the air interface resources occupied by the fourth wireless signal are one of the K air interface resources, and the K air interface resources correspond to the K reference signals on a one-to-one basis.
  • the air interface resources occupied by the fourth wireless signal are used to indicate the target reference signal from the K reference signals.
  • the first wireless signal is sent by the first serving cell; if the target reference signal is not sent by the first serving cell , The first wireless signal is not sent by the first serving cell.
  • the fourth wireless signal includes a Random Access Channel (RACH) preamble.
  • RACH Random Access Channel
  • the fourth wireless signal is transmitted on a PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the air interface resources occupied by the fourth wireless signal are related to the target reference signal.
  • the air interface resource includes one or more of ⁇ time resource, frequency resource, code domain resource ⁇ .
  • the code domain resource includes a RACH preamble.
  • the code domain resource includes a RACH preamble sequence.
  • the K reference signals include CSI-RS.
  • the K reference signals include SS / PBCH block.
  • the K reference signals are configured by BeamFailureRecoveryConfigIE.
  • the K reference signals are configured by a candidateBeamRSList field in BeamFailureRecoveryConfigIE.
  • the air interface resources occupied by the fourth wireless signal are used to indicate the target reference signal from the K reference signals.
  • the air interface resources occupied by the fourth wireless signal are one of the K air interface resources, and the K air interface resources correspond to the K reference signals one to one.
  • the K air interface resources are configured by BeamFailureRecoveryConfig.
  • the K air interface resources are configured by a candidateBeamRSList field in BeamFailureRecoveryConfigIE.
  • K is a positive integer not greater than maxNrofCandidateBeams.
  • BeamFailureRecoveryConfigIE refers to 3GPP TS38.331.
  • maxNrofCandidateBeams refer to 3GPP TS38.331.
  • the PhysCellId of the second serving cell in the present application is used to generate the fourth wireless signal.
  • a fifth parameter is used to generate the fourth wireless signal, and the fifth parameter is configured by a serving cell added by the user equipment through zeroCorrelationZoneConfig.
  • a fifth parameter and a sixth parameter are used to generate the fourth wireless signal, the fifth parameter is configured by a serving cell added by the user equipment through zeroCorrelationZoneConfig, and the sixth parameter is determined by the The serving cell added by the user equipment is configured through restrictedSetConfig.
  • zeroCorrelationZoneConfig refers to 3GPP TS38.331.
  • restrictedSetConfig For a specific definition of the restrictedSetConfig, refer to 3GPP TS38.331.
  • the fifth parameter is a non-negative integer not greater than 15.
  • the sixth parameter is one of ⁇ unrestrictedSet, restrictedSetTypeA, restrictedSetTypeB ⁇ .
  • Embodiment 24 illustrates a schematic diagram of the first signaling content; as shown in FIG. 24.
  • the first signaling includes scheduling information of the first wireless signal in the present application.
  • the first signaling includes a first domain and a second domain, the first domain in the first signaling indicates the first sub-information in the present application, and the first signaling in the first signaling
  • the second field indicates the first set of time-frequency resources in the present application.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is dynamic signaling for Downlink Grant.
  • the first signaling is DCI (Downlink Control Information).
  • the first signaling is Downlink Grant DCI (DownLink Grant DCI).
  • the first signaling is a DCI identified by a C-RNTI.
  • the CRC of the first signaling is scrambled by C-RNTI.
  • the first signaling indicates the first time-frequency resource set.
  • the first signaling indicates the first sub-information from the M sub-informations.
  • the first signaling indicates the first sub-information from the M1 sub-informations.
  • the first signaling indicates an index of the first sub-information in the M1 sub-informations.
  • the first field in the first signaling includes a Transmission configuration identification field.
  • the first domain in the first signaling includes some or all information in a Transmission configuration indication field.
  • the first field in the first signaling is composed of 3 bits.
  • the second domain in the first signaling includes a Frequency domain resource assignment domain and a Time domain resource assignment domain.
  • the second domain in the first signaling includes some or all of the information in a Frequency domain resource assignment (frequency domain resource allocation) domain and a Time domain resource assignment (time domain resource allocation) domain.
  • the specific definitions of the Frequency domain domain resource domain and the Time domain domain resource domain refer to section 7.3 of 3GPP TS38.212
  • Embodiment 25 illustrates a structural block diagram of a processing apparatus in a user equipment; as shown in FIG. 25.
  • the processing device 2500 in the user equipment is mainly composed of a first receiver 2501, a first processor 2502, and a second receiver 2503.
  • the first receiver 2501 receives the first information; the first processor 2502 determines the first sub-information from the M sub-informations; and the second receiver 2503 receives the first wireless signal in the first time-frequency resource set. .
  • the first information includes the M sub-information, each of the M sub-informations indicates a reference signal group, and a reference signal group includes at least one reference signal; the first sub-information Indicates a first reference signal group; a reference signal in the reference signal group indicated by at least one of the M sub-informations is sent by a first serving cell, and the first serving cell is not added by the user equipment; the The user equipment assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group; and M is a positive integer.
  • the first receiver 2501 receives N reference signals; wherein N1 reference signals among the N reference signals are sent by the first serving cell; at least one of the M sub-informations
  • the reference signal in the reference signal group indicated by the information is the reference signal in the N1 reference signals, the N is a positive integer, and the N1 is a positive integer not greater than the N.
  • the first receiver 2501 receives second information on the first serving cell; wherein the second information indicates an index of the N1 reference signals and an index of the first serving cell .
  • the first receiver 2501 receives a second wireless signal; wherein the second wireless signal carries third information, and the third information is used to activate M1 sub-informations of the M sub-informations
  • the first sub-information is one of the M1 sub-informations; the M1 is a positive integer not greater than the M.
  • the first processor 2502 sends a third wireless signal; wherein the third wireless signal is used to determine that the second wireless signal is received correctly.
  • the first wireless signal is transmitted on a physical layer control channel; the first information indicates the first time-frequency resource set.
  • the second receiver 2503 receives first signaling; wherein the first wireless signal is transmitted on a physical layer data channel, and the first signaling includes scheduling information of the first wireless signal ; The first signaling indicates the first sub-information.
  • the first processor 2502 sends a fourth wireless signal; wherein the fourth wireless signal indicates a target reference signal from K reference signals, and at least one of the K reference signals is detected by all The first serving cell sends; the target reference signal is used to determine whether the first wireless signal is sent by the first serving cell.
  • the first receiver 2501 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller / processor 459, memory 460, and data source in Embodiment 4. 467 ⁇ .
  • the first processor 2502 includes the ⁇ antenna 452, transmitter / receiver 454, transmit processor 468, receive processor 456, multi-antenna transmit processor 457, multi-antenna receive processing in Embodiment 4 At least one of a controller 458, a controller / processor 459, a memory 460, and a data source 467 ⁇ .
  • the second receiver 2503 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, and the data source in the fourth embodiment. 467 ⁇ .
  • Embodiment 26 illustrates a structural block diagram of a processing apparatus in a first base station device, as shown in FIG. 26.
  • the processing device 2600 in the first base station device is mainly composed of a first transmitter 2601, a second processor 2602, and a second transmitter 2603.
  • the first transmitter 2601 sends the first information, the first information includes M sub-information, each of the M sub-informations indicates a reference signal group, and a reference signal group includes at least one reference
  • a second processor 2602 determines a first sub-information from the M sub-informations, the first sub-information indicating a first reference signal group; a second transmitter 2603 sends the first wireless in a first time-frequency resource set A signal in which the reference signal in the first reference signal group is sent by a serving cell maintained by the first base station; or abandoning the first wireless signal in the first time-frequency resource set, wherein the The reference signals in the first reference signal group are not sent by the serving cell maintained by the first base station.
  • a reference signal in a reference signal group indicated by at least one of the M sub-informations is transmitted by a first serving cell, and the first serving cell is not received by a target of the first wireless signal.
  • At least one serving cell maintained by the first base station is added by a target receiver of the first wireless signal; the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal and the The transmitting antenna port of any reference signal in the first reference signal group is quasi co-located, and M is a positive integer.
  • the first transmitter 2601 sends N2 reference signals on a second serving cell; wherein the first base station is a maintaining base station of the second serving cell, and the second serving cell is The target receiver of the first wireless signal is added; a reference signal in a reference signal group indicated by at least one of the M sub-informations is a reference signal among the N 2 reference signals, and N 2 is a positive integer.
  • the first transmitter 2601 sends a second wireless signal; wherein the second wireless signal carries third information, and the third information is used to activate M1 sub-messages among the M sub-messages
  • the first sub-information is one of the M1 sub-informations; the M1 is a positive integer not greater than the M.
  • the second processor 2602 receives a third wireless signal; wherein the third wireless signal is used to determine that the second wireless signal is received correctly.
  • the first wireless signal is transmitted on a physical layer control channel; the first information indicates the first time-frequency resource set.
  • the second transmitter 2603 sends first signaling; wherein the first wireless signal is transmitted on a physical layer data channel, and the first signaling includes scheduling information of the first wireless signal ; The first signaling indicates the first sub-information.
  • the second processor 2602 sends fourth information through a backhaul link; wherein the fourth information indicates the first time-frequency resource set.
  • the second processor 2602 receives sixth information through a backhaul link; wherein the sixth information indicates an index of N1 reference signals, and the N1 reference signals are used by the first serving cell Sending, the reference signal in the reference signal group indicated by at least one of the M sub-informations is the reference signal in the N1 reference signals; and N1 is a positive integer.
  • the first transmitter 2601 includes the ⁇ Antenna 420, Transmitter 418, Transmit Processor 416, Multi-antenna Transmit Processor 471, Controller / Processor 475, Memory 476 ⁇ in Embodiment 4 At least one.
  • the second processor 2602 includes the ⁇ antenna 420, transmitter / receiver 418, transmit processor 416, receive processor 470, multi-antenna transmit processor 471, and multi-antenna receive processing in Embodiment 4 Controller 472, controller / processor 475, memory 476 ⁇ .
  • the second transmitter 2603 includes the ⁇ Antenna 420, Transmitter 418, Transmit Processor 416, Multi-antenna Transmit Processor 471, Controller / Processor 475, Memory 476 ⁇ in Embodiment 4 At least one.
  • Embodiment 27 illustrates a structural block diagram of a processing apparatus in a second base station device, as shown in FIG. 27.
  • the processing device 2700 in the second base station device is mainly composed of a third receiver 2701 and a third transmitter 2702.
  • the third receiver 2701 receives the fifth information; the third transmitter 2702 sends the first wireless signal in the first time-frequency resource set; or gives up sending the first wireless signal in the first time-frequency resource set. First wireless signal.
  • the fifth information indicates whether the second base station sends the first wireless signal in the first time-frequency resource set, and any serving cell maintained by the second base station is not described by the second base station.
  • the target receiver of the first wireless signal is added.
  • the third transmitter 2702 sends N1 reference signals on the first serving cell; wherein the second base station is a maintaining base station of the first serving cell; if the second base station is The first wireless signal is transmitted in the first set of time-frequency resources, and a target receiver of the first wireless signal assumes that a transmitting antenna port of the first wireless signal and one of the N1 reference signals The transmit antenna port is quasi co-located; the N1 is a positive integer.
  • the third transmitter 2702 sends second information on the first serving cell; wherein the second information indicates an index of the N1 reference signals and an index of the first serving cell .
  • the third receiver 2701 receives fourth information through a backhaul link; wherein the fourth information indicates the first time-frequency resource set.
  • the third transmitter 2702 sends sixth information through a return link; wherein the sixth information indicates an index of N1 reference signals, and the N1 reference signals are sent by the first serving cell,
  • the second base station is a maintaining base station of the first serving cell; if the second base station sends the first wireless signal in the first time-frequency resource set, a target receiver of the first wireless signal It is assumed that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of one of the N1 reference signals; and N1 is a positive integer.
  • the third receiver 2701 receives a fourth wireless signal through an air interface; wherein the fourth wireless signal indicates a target reference signal from K reference signals, and at least one of the K reference signals A reference signal is sent by a first serving cell, the second base station is a maintaining base station of the first serving cell, and the target reference signal is used to determine the fifth information.
  • the fifth information is received through a backhaul link.
  • the fifth information indicates that the second base station sends the first wireless signal in the first time-frequency resource set; the fifth information indicates a first reference signal group, and the first The reference signal group includes at least one reference signal; the target receiver of the first wireless signal assumes that the transmitting antenna port of the first wireless signal is quasi co-located with the transmitting antenna port of any reference signal in the first reference signal group .
  • the third transmitter 2702 sends first signaling; wherein the first wireless signal is transmitted on a physical layer data channel, and the first signaling includes scheduling information of the first wireless signal ; The first signaling indicates the first reference signal group.
  • the third receiver 2701 includes the ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller / processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • the third transmitter 2702 includes ⁇ Antenna 420, Transmitter 418, Transmit Processor 416, Multi-antenna Transmit Processor 471, Controller / Processor 475, Memory 476 ⁇ in Embodiment 4 At least one.
  • the user equipment, terminals, and UEs in this application include, but are not limited to, drones, communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • drones communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro-cell base stations, micro-cell base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving nodes) and other wireless communications device.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信息;从所述M个子信息中确定第一子信息;在第一时频资源集合中接收第一无线信号。所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号。所述第一子信息指示第一参考信号组。所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址。上述方法既获得了服务小区切换带来的性能提升,又避免了延时和服务中断。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其是涉及支持多天线的无线通信系统中的方法和装置。
背景技术
在LTE系统中,小区间切换(Handover)是基站基于UE的(User Equipment,用户设备)测量来控制的。3GPP(3rd Generation Partner Project,第三代合作伙伴项目)R(Release,版本)15中的小区间切换基本沿用了LTE中的机制。在NR(New Radio,新无线电)系统中,更多应用场景需要被支持。一些典型的应用场景,比如URLLC(Ultra-Reliable and Low Latency Communications,超高可靠性和低延迟通信),对时延提出了很高的要求,同时也对小区间切换提出了新的挑战。
在NR系统中,大尺度(Massive)MIMO(Multiple Input Multiple Output,多输入多输出)是一个重要的技术特征。大尺度MIMO中,多个天线通过波束赋型,形成较窄的波束指向一个特定方向来提高通信质量。多天线波束赋型形成的波束一般比较窄,通信双方的波束需要对准才能进行有效的通信。
发明内容
发明人通过研究发现,基于波束的通信会给小区间切换带来负面的影响,比如额外的延时和乒乓效应。如何降低这些负面影响,并且利用波束赋型技术来进一步提高小区边界用户的性能从而满足各类应用场景的需求,是需要解决的问题。
针对上述问题,本申请公开了一种解决方案。在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
在第一时频资源集合中接收第一无线信号;
其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,本申请要解决的问题是:如何降低和避免小区间切换带来的延时和服务中断。上述方法通过在TCI(Transmission Configuration Indication,传输配置标识)状态(state)列表中包括来自邻小区的参考信号,实现了在不同服务小区的波束间无缝的切换,从而解决了这一问题。
作为一个实施例,上述方法的特质在于,所述M个子信息是给所述用户设备配置的M个TCI-state,所述M个子信息指示的参考信号中至少有一个参考信号来自邻小区,这样通过TCI-state的激活/指示,所述用户设备可以在不同服务小区的波束间无缝的切换,并且这一切换的过程对所述用户设备来说是透明的。
作为一个实施例,上述方法的好处在于,在实现服务小区切换带来的性能提升的同时避免了小区切换带来的延时和潜在的服务中断,并降低了实现的复杂度。
根据本申请的一个方面,其特征在于,包括:
接收N个参考信号;
其中,所述N个参考信号中的N1个参考信号被所述第一服务小区发送;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号,所述N是正整数,所述N1是不大于所述N的正整数。
根据本申请的一个方面,其特征在于,包括:
在所述第一服务小区上接收第二信息;
其中,所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。
根据本申请的一个方面,其特征在于,包括:
接收第二无线信号;
其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。
根据本申请的一个方面,其特征在于,包括:
发送第三无线信号;
其中,所述第三无线信号被用于确定所述第二无线信号被正确接收。
根据本申请的一个方面,其特征在于,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
根据本申请的一个方面,其特征在于,包括:
接收第一信令;
其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
根据本申请的一个方面,其特征在于,包括:
发送第四无线信号;
其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被所述第一服务小区发送;所述目标参考信号被用于确定所述第一无线信号是否被所述第一服务小区发送。
本申请公开了一种被用于无线通信的第一基站中的方法,其特征在于,包括:
发送第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
在第一时频资源集合中发送第一无线信号,其中所述第一参考信号组中的参考信号被所述第一基站维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线信号,其中所述第一参考信号组中的参考信号不被所述第一基站维持的服务小区发送;
其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述第一基站维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
根据本申请的一个方面,其特征在于,包括:
在第二服务小区上发送N2个参考信号;
其中,所述第一基站是所述第二服务小区的维持基站,所述第二服务小区被所述第一无线信号的目标接收者添加;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N2个参考信号中的参考信号,所述N2是正整数。
根据本申请的一个方面,其特征在于,包括:
发送第二无线信号;
其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述 M的正整数。
根据本申请的一个方面,其特征在于,包括:
接收第三无线信号;
其中,所述第三无线信号被用于确定所述第二无线信号被正确接收。
根据本申请的一个方面,其特征在于,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
根据本申请的一个方面,其特征在于,包括:
发送第一信令;
其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
根据本申请的一个方面,其特征在于,包括下述至少之一:
通过回传链路发送第四信息;
通过回传链路接收第六信息;
其中,所述第四信息指示所述第一时频资源集合;所述第六信息指示N1个参考信号的索引,所述N1个参考信号被所述第一服务小区发送,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号;所述N1是正整数。
作为一个实施例,上述方法的好处在于,允许所述第一服务小区以对UE透明的方式进行数据传输,省去了小区切换带来的延时和潜在的服务中断。
本申请公开了一种被用于无线通信的第二基站中的方法,其特征在于,包括:
接收第五信息;
在第一时频资源集合中发送第一无线信号;或者,放弃在所述第一时频资源集合中发送所述第一无线信号;
其中,所述第五信息指示所述第二基站是否在所述第一时频资源集合中发送所述第一无线信号,所述第二基站维持的任一服务小区未被所述第一无线信号的目标接收者添加。
根据本申请的一个方面,其特征在于,包括:
在第一服务小区上发送N1个参考信号;
其中,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
根据本申请的一个方面,其特征在于,包括:
在所述第一服务小区上发送第二信息;
其中,所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。
根据本申请的一个方面,其特征在于,包括下述至少之一:
通过回传链路接收第四信息;
通过回传链路发送第六信息;
其中,所述第四信息指示所述第一时频资源集合;所述第六信息指示N1个参考信号的索引,所述N1个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
根据本申请的一个方面,其特征在于,包括:
通过空中接口接收第四无线信号;
其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;所述目标参考信号被用于确定所述第五信息。
根据本申请的一个方面,其特征在于,所述第五信息是通过回传链路接收的。
根据本申请的一个方面,其特征在于,所述第五信息指示所述第二基站在所述第一时频资源集合中发送所述第一无线信号;所述第五信息指示第一参考信号组,所述第一参考信号组包括至少一个参考信号;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址。
根据本申请的一个方面,其特征在于,包括:
发送第一信令;
其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一参考信号组。
本申请公开了一种被用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
第一处理机,从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
第二接收机,在第一时频资源集合中接收第一无线信号;
其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机接收N个参考信号;其中,所述N个参考信号中的N1个参考信号被所述第一服务小区发送;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号,所述N是正整数,所述N1是不大于所述N的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机在所述第一服务小区上接收第二信息;其中,所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机接收第二无线信号;其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理机发送第三无线信号;其中,所述第三无线信号被用于确定所述第二无线信号被正确接收。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二接收机接收第一信令;其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理机发送第四无线信号;其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被所述第一服务小区发送;所述目标参考信号被用于确定所述第一无线信号是否被所述第一服务小区发送。
本申请公开了一种被用于无线通信的第一基站设备,其特征在于,包括:
第一发送机,发送第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
第二处理机,从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
第二发送机,在第一时频资源集合中发送第一无线信号,其中所述第一参考信号组中的参考信号被所述第一基站维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线信号,其中所述第一参考信号组中的参考信号不被所述第一基站维持的服务小区发送;
其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述第一基站维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第一发送机在第二服务小区上发送N2个参考信号;其中,所述第一基站是所述第二服务小区的维持基站,所述第二服务小区被所述第一无线信号的目标接收者添加;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N2个参考信号中的参考信号,所述N2是正整数。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第一发送机发送第二无线信号;其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第二处理机接收第三无线信号;其中,所述第三无线信号被用于确定所述第二无线信号被正确接收。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第二发送机发送第一信令;其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第二处理机通过回传链路发送第四信息;其中,所述第四信息指示所述第一时频资源集合。
作为一个实施例,上述被用于无线通信的第一基站设备的特征在于,所述第二处理机通过回传链路接收第六信息;其中,所述第六信息指示N1个参考信号的索引,所述N1个参考信号被所述第一服务小区发送,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号;所述N1是正整数。
本申请公开了一种被用于无线通信的第二基站设备,其特征在于,包括:
第三接收机,接收第五信息;
第三发送机,在第一时频资源集合中发送第一无线信号;或者,放弃在所述第一时频资源集合中发送所述第一无线信号;
其中,所述第五信息指示所述第二基站是否在所述第一时频资源集合中发送所述第一无线信号,所述第二基站维持的任一服务小区未被所述第一无线信号的目标接收者添加。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第三发送机在第一服务小区上发送N1个参考信号;其中,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第三发送机在所述第一服务小区上发送第二信息;其中,所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第三接收机通过回传链路接收第四信息;其中,所述第四信息指示所述第一时频资源集合。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第三发送机通过回传链路发送第六信息;其中,所述第六信息指示N1个参考信号的索引,所述N1个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第三接收机通过空中接口接收第四无线信号;其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;所述目标参考信号被用于确定所述第五信息。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第五信息是通过回传链路接收的。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第五信息指示所述第二基站在所述第一时频资源集合中发送所述第一无线信号;所述第五信息指示第一参考信号组,所述第一参考信号组包括至少一个参考信号;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址。
作为一个实施例,上述被用于无线通信的第二基站设备的特征在于,所述第三发送机发送第一信令;其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一参考信号组。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在一个UE的TCI state列表中配置来自邻小区的参考信号,通过TCI-state的激活/指示以对UE透明的方式实现了不同服务小区的波束间无缝的切换。既获得了在不同服务小区的波束间切换带来的性能提升,又避免了小区切换带来的延时和潜在的服务中断,并具有很低的实现复杂度。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第一子信息和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的传输的流程图;
图7示出了根据本申请的一个实施例的第一时频资源集合在时频域上的资源映射的示意图;
图8示出了根据本申请的一个实施例的第一时频资源集合在时频域上的资源映射的示意图;
图9示出了根据本申请的一个实施例的M个子信息中一个给定子信息的示意图;
图10示出了根据本申请的一个实施例的M个子信息中一个给定子信息的示意图;
图11示出了根据本申请的一个实施例的天线端口的示意图;
图12示出了根据本申请的一个实施例的用户设备假设第一无线信号的发送天线端口与第一参考信号组中任一参考信号的发送天线端口准共址的示意图;
图13示出了根据本申请的一个实施例的用户设备假设第一无线信号的发送天线端口与第一参考信号组中任一参考信号的发送天线端口准共址的示意图;
图14示出了根据本申请的一个实施例的N个参考信号在时频域上的资源映射的示意图;
图15示出了根据本申请的一个实施例的第二信息的示意图;
图16示出了根据本申请的一个实施例的第三信息的示意图;
图17示出了根据本申请的一个实施例的第三无线信号所占用的时间资源和第一无线信号所占用的时间资源之间关系的示意图;
图18示出了根据本申请的一个实施例的第三无线信号所占用的时间资源和第一信令所占用的时间资源之间关系的示意图;
图19示出了根据本申请的一个实施例的生成第一无线信号的示意图;
图20示出了根据本申请的一个实施例的生成第一无线信号的示意图;
图21示出了根据本申请的一个实施例的生成第一信令的示意图;
图22示出了根据本申请的一个实施例的第四信息内容的示意图;
图23示出了根据本申请的一个实施例的第四无线信号的示意图;
图24示出了根据本申请的一个实施例的第一信令内容的示意图;
图25示出了根据本申请的一个实施例的用户设备中的处理装置的结构框图;
图26示出了根据本申请的一个实施例的第一基站设备中的处理装置的结构框图;
图27示出了根据本申请的一个实施例的第二基站设备中的处理装置的结构框图。
实施例1
实施例1示例了第一信息,第一子信息和第一无线信号的流程图;如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信息;从M个子信息中确定第一子信息;在第一时频资源集合中接收第一无线信号。其中,所述第一信息包括所述M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述M等于1。
作为一个实施例,所述M大于1。
作为一个实施例,所述M是不大于maxNrofTCI-StatesPDCCH的正整数,所述maxNrofTCI-StatesPDCCH的定义参见3GPP TS38.331。
作为一个实施例,所述M是不大于maxNrofTCI-States的正整数,所述maxNrofTCI-States的定义参见3GPP TS38.331。
作为一个实施例,所述M是不大于64的正整数。
作为一个实施例,所述M等于1,所述用户设备假设所述第一无线信号的发送天线端口和所述M个子信息指示的参考信号组中任一参考信号的发送天线端口准共址。
作为一个实施例,所述M等于1,所述第一子信息是所述M个子信息。
作为一个实施例,所述第一信息通过空中接口传输。
作为一个实施例,所述第一信息被所述用户设备添加的服务小区发送。
作为一个实施例,所述第一信息由高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述M个子信息分别由M个TCI-State IE承载,所述TCI-State IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述M个子信息分别指示M个TCI-StateId,所述TCI-StateId的具体 定义参见3GPP TS38.331。
作为一个实施例,所述M个子信息中的任一子信息指示的参考信号组包括1个或2个参考信号。
作为一个实施例,所述M个子信息中的任一子信息指示的参考信号组中包括的参考信号的个数不大于2。
作为一个实施例,所述M个子信息中的任一子信息指示的参考信号组中包括的所有参考信号被同一个服务小区发送。
作为一个实施例,所述M个子信息中至少一个子信息所指示的参考信号组中的所有参考信号被所述第一服务小区发送。
作为一个实施例,所述M个子信息中的任一子信息指示的参考信号组中的任一参考信号是一个CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)或SS/PBCH block(Synchronization Signal/Physical Broadcast Channel block,同步信号/物理广播信道块)。
作为一个实施例,所述M个子信息中至少有一个子信息指示的参考信号组中的至少一个参考信号是一个CSI-RS。
作为一个实施例,所述M个子信息中至少有一个子信息指示的参考信号组中的至少一个参考信号是一个SS/PBCH block。
作为一个实施例,所述M个子信息中的任一子信息指示一个参考信号资源组,一个参考信号资源组包括1个或2个参考信号资源。
作为上述实施例的一个子实施例,所述M个子信息中的任一子信息指示的参考信号资源组中的任一参考信号资源是一个CSI-RS资源或SS/PBCH block资源。
作为上述实施例的一个子实施例,所述M个子信息中至少有一个子信息指示的参考信号资源组中的至少一个参考信号资源是一个CSI-RS资源。
作为上述实施例的一个子实施例,所述M个子信息中至少有一个子信息指示的参考信号资源组中的至少一个参考信号资源是一个SS/PBCH block资源。
作为一个实施例,对于所述M个子信息中的任一给定子信息,所述给定子信息指示的参考信号资源组中的所有参考信号资源分别被预留给所述给定子信息指示的参考信号组中的所有参考信号。
作为一个实施例,对于所述M个子信息中的任一给定子信息,所述给定子信息指示的参考信号组中的所有参考信号分别在所述给定子信息指示的参考信号资源组中的所有参考信号资源上发送。
作为一个实施例,所述M个子信息中的任一子信息指示一个或两个第二类索引,所述第二类索引是NZP-CSI-RS-ResourceId或SSB-Index。
作为一个实施例,所述M个子信息中至少有一个子信息指示一个NZP-CSI-RS-ResourceId。
作为一个实施例,所述M个子信息中至少有一个子信息指示两个NZP-CSI-RS-ResourceId。
作为一个实施例,所述M个子信息中至少有一个子信息指示一个SSB-Index。
作为一个实施例,所述M个子信息中至少有一个子信息指示两个SSB-Index。
作为一个实施例,所述M个子信息中至少有一个子信息指示一个NZP-CSI-RS-ResourceId和一个SSB-Index。
作为一个实施例,所述NZP-CSI-RS-ResourceId的具体定义参见3GPP TS38.331。
作为一个实施例,所述SSB-Index的具体定义参见3GPP TS38.331。
作为一个实施例,对于所述M个子信息中的一个给定子信息,所述给定子信息指示的参考信号组中的参考信号被所述第一服务小区发送,所述给定子信息指示所述第一服务小区的索引。
作为一个实施例,所述第一服务小区的索引是CellIdentity。
作为一个实施例,所述第一服务小区的索引是PhysCellId。
作为一个实施例,对于所述M个子信息中的一个给定子信息,所述给定子信息指示的参考信号组中的参考信号被第二服务小区发送,所述第二服务小区被所述用户设备添加,所述给定子信息指示所述第二服务小区的索引。
作为一个实施例,所述第二服务小区的索引是SCellIndex。
作为一个实施例,所述第二服务小区的索引是ServCellIndex。
作为一个实施例,所述准共址是指QCL(Quasi Co-Located),所述QCL的具体定义参见3GPP TS38.211的4.4章节和3GPP TS38.214的5.1.5章节。
作为一个实施例,所述用户设备假设所述第一无线信号的至少一个发送天线端口与所述第一参考信号组中任一参考信号的至少一个发送天线端口QCL。
作为一个实施例,所述用户设备假设承载所述第一无线信号的物理层信道上的DMRS(DeModulation Reference Signals,解调参考信号)的至少一个发送天线端口与所述第一参考信号组中任一参考信号的至少一个发送天线端口QCL。
作为一个实施例,所述用户设备假设所述第一无线信号的任一发送天线端口与所述第一参考信号组中任一参考信号的至少一个发送天线端口QCL。
作为一个实施例,所述用户设备假设承载所述第一无线信号的物理层信道上的DMRS的任一发送天线端口与所述第一参考信号组中任一参考信号的至少一个发送天线端口QCL。
作为一个实施例,所述用户设备假设所述第一无线信号的任一发送天线端口与所述第一参考信号组中任一参考信号的任一发送天线端口QCL。
作为一个实施例,所述用户设备假设承载所述第一无线信号的物理层信道上的DMRS的任一发送天线端口与所述第一参考信号组中任一参考信号的任一发送天线端口QCL。
作为一个实施例,对于所述M个子信息中的给定子信息,所述给定子信息指示的参考信号组只包括1个参考信号,所述给定子信息指示1个准共址类型,所述1个准共址类型被应用于所述1个参考信号。
作为一个实施例,对于所述M个子信息中的给定子信息,所述给定子信息指示的参考信号组由2个参考信号组成,所述给定子信息指示2个准共址类型,所述2个准共址类型分别被应用于所述2个参考信号。
作为一个实施例,所述准共址类型是QCL type,所述QCL type的具体定义参见3GPP TS38.214的5.1.5章节。
作为一个实施例,所述第一参考信号组由1个参考信号组成。
作为一个实施例,所述第一参考信号组由2个参考信号组成。
作为一个实施例,所述第一参考信号组中的参考信号被所述第一服务小区发送。
作为一个实施例,所述第一参考信号组中的参考信号不被所述第一服务小区发送。
作为一个实施例,所述第一参考信号组中的参考信号被第二服务小区发送,所述第二服务小区被所述用户设备添加。
作为一个实施例,所述第一时频资源集合包括正整数个RE(Resource Element)。
作为一个实施例,所述第一无线信号通过空中接口传输。
作为一个实施例,所述第一服务小区未被所述用户设备添加包括:所述用户设备未针对所述第一服务小区执行辅服务小区添加(SCell addition)。
作为一个实施例,所述第一服务小区未被所述用户设备添加包括:所述用户设备最新接收到的sCellToAddModList不包括所述第一服务小区。
作为一个实施例,所述第一服务小区未被所述用户设备添加包括:所述用户设备最新接收到的sCellToAddModList和sCellToAddModListSCG都不包括所述第一服务小区。
作为一个实施例,所述第一服务小区未被所述用户设备添加包括:所述用户设备未被分配针对所述第一服务小区的SCellIndex。
作为一个实施例,所述SCellIndex是不大于31的正整数。
作为一个实施例,所述第一服务小区未被所述用户设备添加包括:所述用户设备未被分 配针对所述第一服务小区的ServCellIndex。
作为一个实施例,所述ServCellIndex是不大于31的非负整数。
作为一个实施例,所述第一服务小区未被所述用户设备添加包括:所述第一服务小区不是所述用户设备的PCell(Primary serving Cell,主服务小区)。
作为一个实施例,所述sCellToAddModList的具体定义参见3GPP TS38.331。
作为一个实施例,所述sCellToAddModListSCG的具体定义参见3GPP TS38.331。
作为一个实施例,所述SCellIndex的具体定义参见3GPP TS38.331。
作为一个实施例,所述ServCellIndex的具体定义参见3GPP TS38.331。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A或5G系统的网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,所述gNB203对应本申请中的所述第一基站。
作为一个实施例,所述gNB204对应本申请中的所述第二基站。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203支持基于多天线的无线通信。
作为一个实施例,所述gNB204支持基于多天线的无线通信。
作为一个实施例,所述UE201是一个支持基于多天线的无线通信的终端。
实施例3
实施例3示例了用户平面和控制平面无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一基站。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二基站。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述N个参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述N1个参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述N2个参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301。
作为一个实施例,本申请中的所述第六信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第六信息生成于所述PHY301。
作为一个实施例,本申请中的所述第五信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第五信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第五信息生成于所述PHY301。
实施例4
实施例4示例了NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:接收本申请中的所述第一信息;从本申请中的所述M个子信息中确定本申请中的所述第一子信息;在本申请中的所述第一时频资源集合中接收本申请中的所述第一无线信号。其中,所述第一信息包括所述M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被本申请中的所述第一服务小区发送,所述第一服务小区未被所述UE450添加;所述UE450假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信息;从本申请中的所述M个子信息中确定本申请中的所述第一子信息;在本申请中的所述第一时频资源集合中接收本申请中的所述第一无线信号。其中,所述第一信息包括所述M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被本申请中的所述第一服务小区发送,所述第一服务小区未被所述UE450添加;所述UE450假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送本申请中的所述第一信息;从本申请中的所述M个子信息中确定第一子信息;在本申请中的所述第一时频资源集合中发送本申请中的所述第一无线信号,其中所述第一参考信号组中的参考信号被所述gNB410维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线信号,其中所述第一参考信号组中的参考信号不被所述gNB410维持的服务小区发送。其中,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被本申请中的所述第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述gNB410维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信息;从本申请中的所述M个子信息中确定第一子信息;在本申请中的所述第一时频资源集合中发送本申请中的所述第一无线信号,其中所述第一参考信号组中的参考信号被所述gNB410维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线 信号,其中所述第一参考信号组中的参考信号不被所述gNB410维持的服务小区发送。其中,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被本申请中的所述第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述gNB410维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:接收本申请中的所述第五信息;在本申请中的所述第一时频资源集合中发送本申请中的所述第一无线信号;或者,放弃在所述第一时频资源集合中发送所述第一无线信号。其中,所述第五信息指示所述gNB410是否在所述第一时频资源集合中发送所述第一无线信号,所述gNB410维持的任一服务小区未被所述第一无线信号的目标接收者添加。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第五信息;在本申请中的所述第一时频资源集合中发送本申请中的所述第一无线信号;或者,放弃在所述第一时频资源集合中发送所述第一无线信号。其中,所述第五信息指示所述gNB410是否在所述第一时频资源集合中发送所述第一无线信号,所述gNB410维持的任一服务小区未被所述第一无线信号的目标接收者添加。
作为一个实施例,所述gNB410对应本申请中的所述第一基站。
作为一个实施例,所述gNB410对应本申请中的所述第二基站。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于从本申请中的所述M个子信息中确定本申请中的所述第一子信息。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于从本申请中的所述M个子信息中确定本申请中的所述第一子信息。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一时频资源集合中接收本申请中的所述第一无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时频资源集合中发送本申请中的所述第一无线信号。
为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收收本申请中的所述N个参考信号。
为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请 中的所述N1个参考信号。
为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述N2个参考信号。
为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一服务小区上接收本申请中的所述第二信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一服务小区上发送本申请中的所述第二信息。
为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二无线信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第三无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第三无线信号。
为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第四无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第四无线信号。
为一个实施例,所述控制器/处理器475和所述存储器476中的至少之一被用于发送本申请中的所述第四信息。
为一个实施例,所述控制器/处理器475和所述存储器476中的至少之一被用于接收本申请中的所述第四信息。
为一个实施例,所述控制器/处理器475和所述存储器476中的至少之一被用于发送本申请中的所述第六信息。
为一个实施例,所述控制器/处理器475和所述存储器476中的至少之一被用于接收本申请中的所述第六信息。
为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第五信息。
为一个实施例,所述控制器/处理器475和所述存储器476中的至少之一被用于发送本申请中的所述第五信息。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第五信息。
为一个实施例,所述控制器/处理器475和所述存储器476中的至少之一被用于接收本申请中的所述第五信息。
实施例5
实施例5示例了传输的流程图,如附图5所示。在附图5中,基站B1是本申请中的所述第一基站,基站B3是本申请中的所述第二基站,用户设备U2是本申请中的所述用户设备。基站B1是用户设备U2的服务小区维持基站,基站B3维持的任一服务小区未被用户设备U2添加。附图5中,方框F11至方框F16中的步骤分别是可选的。
对于B1,在步骤S101中在第二服务小区上发送N2个参考信号;在步骤S102中通过回传链路接收第六信息;在步骤S11中发送第一信息;在步骤S103中发送第二无线信号;在步骤S104中接收第三无线信号;在步骤S12中从M个子信息中确定第一子信息;在步骤S105中通过回传链路发送第四信息;在步骤S13中在第一时频资源集合中发送第一无线信号。
对于U2,在步骤S21中接收N个参考信号;在步骤S201中在第一服务小区上接收第二信息;在步骤S22中接收第一信息;在步骤S202中接收第二无线信号;在步骤S203中发送第三无线信号;在步骤S23中从M个子信息中确定第一子信息;在步骤S24中通过空中接口发送第五信息;在步骤S25中在第一时频资源集合中接收第一无线信号。
对于B3,在步骤S31中在第一服务小区上发送N1个参考信号;在步骤S301中在所述第一服务小区上发送第二信息;在步骤S302中通过回传链路发送第六信息;在步骤S32中通过空中接口接收第五信息;在步骤S303中通过回传链路接收第四信息;在步骤S33中放弃在第一时频资源集合中发送第一无线信号。
在实施例5中,所述第一信息包括所述M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述U2假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。所述N1个参考信号是所述N个参考信号中被所述第一服务小区发送的参考信号;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号,所述N是正整数,所述N1是不大于所述N的正整数。所述第一服务小区未被所述U2添加。所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。所述第一参考信号组中的参考信号被所述B1维持的服务小区发送。所述B1维持的至少一个服务小区被所述U2添加。所述第五信息指示所述B3不在所述第一时频资源集合中发送所述第一无线信号,所述B3维持的任一服务小区未被所述U2添加。所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。所述第三无线信号被用于确定所述第二无线信号被所述U2正确接收。所述N2个参考信号是所述N个参考信号中被所述第二服务小区发送的参考信号;所述B1是所述第二服务小区的维持基站,所述第二服务小区被所述U2添加,所述N2是不大于所述N正整数。所述第四信息指示所述第一时频资源集合;所述第六信息指示所述N1个参考信号的索引。
作为一个实施例,所述第一服务小区被所述B2维持。
作为一个实施例,所述第一服务小区不被本申请中的所述第一基站维持。
作为一个实施例,所述第一参考信号组中的参考信号不被所述第一服务小区发送,所述第一无线信号不被所述第一服务小区发送。
作为一个实施例,所述第一参考信号组中的参考信号不被所述第一服务小区发送,所述第一无线信号不被本申请中的所述第二基站发送。
作为一个实施例,所述第一参考信号组中的参考信号不被本申请中的所述第二基站维持的服务小区发送,所述第一无线信号不被本申请中的所述第二基站发送。
作为一个实施例,所述第一参考信号组中的参考信号被所述第二服务小区发送,所述第 一无线信号被所述第二服务小区发送。
作为一个实施例,所述第一参考信号组中的参考信号被所述第二服务小区发送,本申请中的所述第一基站在所述第二服务小区上的所述第一时频资源集合中发送所述第一无线信号。
作为一个实施例,如果所述第一参考信号组中的所有参考信号都被本申请中的所述第一基站维持的服务小区发送,所述第一基站在所述第一时频资源集合中发送所述第一无线信号。
作为一个实施例,本申请中的所述第二基站在所述第一时频资源集合中发送针对所述第一无线信号的目标接收者以外的其他UE的无线信号,所述其他UE添加了本申请中的所述第二基站维持的至少一个服务小区。
作为一个实施例,本申请中的所述第二基站放弃在所述第一时频资源集合中发送所述第一无线信号,并在所述第一时频资源集合中进行打孔(puncture),以避免干扰其他服务小区针对所述第一无线信号的目标接收者的无线发送。
作为一个实施例,本申请中的所述第二基站放弃在所述第一时频资源集合中发送所述第一无线信号,并缓存(buffer)当前待发送的数据直到下一次发送机会。
作为一个实施例,本申请中的所述第二基站放弃在所述第一时频资源集合中发送所述第一无线信号,并丢弃当前待发送的数据。
作为一个实施例,所述第一信息由ControlResourceSet IE承载。
作为一个实施例,所述第一信息包括ControlResourceSet IE中的部分或全部信息。
作为一个实施例,所述第一信息由PDCCH-Config IE承载。
作为一个实施例,所述第一信息包括PDCCH-Config IE中的部分或全部信息。
作为一个实施例,所述第一信息由PDCCH-ConfigCommon IE承载。
作为一个实施例,所述第一信息包括PDCCH-ConfigCommon IE中的部分或全部信息。
作为一个实施例,所述M个子信息由ControlResourceSet IE中的tci-StatesPDCCH-ToAddList域(field)承载。
作为一个实施例,所述M个子信息包括ControlResourceSet IE中的tci-StatesPDCCH-ToAddList域(field)中的部分或全部信息。
作为一个实施例,所述ControlResourceSet IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述PDCCH-Config IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述PDCCH-ConfigCommon IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述tci-StatesPDCCH-ToAddList的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一无线信号携带下行控制信息。
作为一个实施例,所述第一无线信号包括物理层信令。
作为一个实施例,所述第一无线信号包括动态信令。
作为一个实施例,所述第一无线信号包括用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第一无线信号包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一无线信号包括下行授予DCI(DownLink Grant DCI)。
作为一个实施例,所述第一无线信号包括被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所标识的DCI。
作为一个实施例,所述第一无线信号的CRC(Cyclic Redundancy Check,循环冗余校验)是被C-RNTI加扰(Scrambled)的。
作为一个实施例,所述N大于所述N1。
作为一个实施例,所述N大于所述N1,所述N个参考信号中不属于所述N1个参考信号的参考信号中至少有一个参考信号被所述第二服务小区发送。
作为一个实施例,所述N个参考信号在空中接口上传输。
作为一个实施例,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N2个参考信号中的参考信号。
作为一个实施例,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被所述第二服务小区发送。
作为一个实施例,所述第一服务小区的索引是CellIdentity。
作为一个实施例,所述第一服务小区的索引是PhysCellId。
作为一个实施例,所述第一服务小区的索引由10个比特组成。
作为一个实施例,所述第一服务小区的索引由9个比特组成。
作为一个实施例,所述第一服务小区的索引由28个比特组成。
作为一个实施例,所述第二服务小区被所述第一无线信号的目标接收者添加包括:所述第一无线信号的目标接收者针对所述第二服务小区执行了辅服务小区添加(SCell addition)。
作为一个实施例,所述第二服务小区被所述第一无线信号的目标接收者添加包括:所述第一无线信号的目标接收者最新接收到的sCellToAddModList包括所述第二服务小区。
作为一个实施例,所述第二服务小区被所述第一无线信号的目标接收者添加包括:所述第一无线信号的目标接收者最新接收到的sCellToAddModList或sCellToAddModListSCG包括所述第二服务小区。
作为一个实施例,所述第二服务小区被所述第一无线信号的目标接收者添加包括:所述第一无线信号的目标接收者被分配了针对所述第二服务小区的SCellIndex。
作为一个实施例,所述第二服务小区被所述第一无线信号的目标接收者添加包括:所述第一无线信号的目标接收者被分配了针对所述第二服务小区的ServCellIndex。
作为一个实施例,所述第二无线信号携带下行数据。
作为一个实施例,本申请中的所述第一基站在所述第二服务小区上发送所述第二无线信号。
作为一个实施例,所述第三信息由所述第二无线信号的MAC PDU(Protocol Data Unit,协议数据包)携带。
作为一个实施例,所述M1等于1,所述第一无线信号在下行物理层控制信道上传输。
作为一个实施例,所述M1等于1,所述M1个子信息由所述第一子信息组成。
作为一个实施例,所述第二无线信号是通过空中接口传输的。
作为一个实施例,所述第二无线信号被第三服务小区发送,所述第三服务小区被本申请中的所述第一基站维持并被本申请中的所述用户设备添加。
作为一个实施例,所述第三无线信号包括HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传确认)。
作为一个实施例,所述第三无线信号指示所述第二无线信号被正确接收。
作为一个实施例,所述第三无线信号在空中接口上传输。
作为一个实施例,所述第三无线信号在所述第二服务小区上传输。
作为一个实施例,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
作为上述实施例的一个子实施例,所述第一信息指示所述第一时频资源集合的索引。
作为一个实施例,所述第一时频资源集合的索引包括ControlResourceSetId。
作为一个实施例,所述第一时频资源集合的索引包括SearchSpaceId。
作为一个实施例,所述ControlResourceSetId的定义参见3GPP TS38.331。
作为一个实施例,所述SearchSpaceId的定义参见3GPP TS38.331。
作为一个实施例,所述回传链路包括X2接口。
作为一个实施例,所述回传链路包括S1接口。
作为一个实施例,所述回传链路包括Xn接口。
作为一个实施例,所述第六信息指示所述第一服务小区的索引。
作为一个实施例,本申请中的所述第二基站通过空中接口接收所述第五信息。
作为一个实施例,所述U2发送第四无线信号;所述第四无线信号从K个参考信号中指 示目标参考信号,所述K个参考信号中至少有一个参考信号被所述第一服务小区发送;所述目标参考信号被用于确定所述第一无线信号是否被所述第一服务小区发送。
作为一个实施例,所述第四无线信号携带所述第五信息。
作为一个实施例,所述目标参考信号被用于确定所述第一无线信号不被所述第一服务小区发送。
作为一个实施例,所述第一无线信号的发送者是所述目标参考信号的发送者。
作为一个实施例,如果所述目标参考信号被所述第一服务小区发送,本申请中的所述第二基站在所述第一时频资源集合中发送所述第一无线信号。
作为一个实施例,如果所述目标参考信号不被本申请中的所述第二基站维持的任一服务小区发送,本申请中的所述第二基站放弃在所述第一时频资源集合中发送所述第一无线信号。
作为一个实施例,所述第四无线信号通过空中接口传输。
作为一个实施例,所述第四无线信号在所述第二服务小区上被发送。
作为一个实施例,所述K个参考信号中至少有一个参考信号被所述第二服务小区发送。
作为一个实施例,本申请中的所述第一基站通过空中接口接收所述第四无线信号。
作为一个实施例,所述第一参考信号组中的参考信号的发送者是所述目标参考信号的发送者。
作为一个实施例,所述第四无线信号携带所述第五信息;所述第一参考信号组包括所述目标参考信号。
作为一个实施例,所述第一无线信号在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为一个实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为一个实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为一个实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为一个实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述第二无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第三无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为一个实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带 PUSCH)。
作为一个实施例,所述第三无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为一个实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为一个实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为一个实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为一个实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
实施例6
实施例6示例了传输的流程图,如附图6所示。在附图6中,基站B4是本申请中的所述第一基站,基站B6是本申请中的所述第二基站,用户设备U5是本申请中的所述用户设备。基站B4是用户设备U5的服务小区维持基站,基站B6维持的任一服务小区未被用户设备U5添加。附图6中,方框F21至方框F28中的步骤分别是可选的,其中方框F27和方框F28中的步骤有并且只有一个存在。
对于B4,步骤S401到步骤405分别和实施例5中的步骤101到步骤105相同;步骤41和步骤42分别和实施例5中的步骤11和步骤12相同;在步骤43中通过回传链路发送第五信息;在步骤406中发送第一信令;在步骤44中放弃在第一时频资源集合中发送第一无线信号。
对于U5,步骤S51到步骤53分别和实施例5中的步骤21到步骤23相同;步骤501到步骤503分别和实施例5中的步骤201到步骤203相同;在步骤54中接收第一信令;在步骤55中在第一时频资源集合中接收第一无线信号。
对于B6,步骤61和实施例5中的步骤31相同,步骤601到步骤603分别和实施例5中的步骤301到步骤303相同;在步骤S62中通过回传链路接收第五信息;在步骤S604中发送第一信令;在步骤S63中在第一时频资源集合中发送第一无线信号。
在实施例6中,所述第一参考信号组中的参考信号被所述B6维持的服务小区发送。所述第五信息指示所述B6所述第一时频资源集合中发送所述第一无线信号。所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
作为一个实施例,所述第一参考信号组中的参考信号被所述第一服务小区发送,所述第一无线信号被所述第一服务小区发送。
作为一个实施例,如果所述第一参考信号组中的所有参考信号都不被本申请中的所述第一基站维持的服务小区发送,本申请中的所述第一基站放弃在所述第一时频资源集合中发送所述第一无线信号。
作为一个实施例,本申请中的所述第一基站放弃在所述第一时频资源集合中发送所述第一无线信号,本申请中的所述第一基站在所述第一时频资源集合中发送针对所述第一无线信号的目标接收者以外的其他UE的无线信号,所述其他UE添加了本申请中的所述第一基站维持的至少一个服务小区。
作为一个实施例,本申请中的所述第一基站放弃在所述第一时频资源集合中发送所述第一无线信号,并在所述第一时频资源集合中进行打孔(puncture),以避免干扰其他服务小区针对所述第一无线信号的目标接收者的无线发送。
作为一个实施例,本申请中的所述第一基站放弃在所述第一时频资源集合中发送所述第一无线信号,并缓存(buffer)当前待发送的数据直到下一次发送机会。
作为一个实施例,本申请中的所述第一基站放弃在所述第一时频资源集合中发送所述第 一无线信号,并丢弃当前待发送的数据。
作为一个实施例,所述第一信息由PDSCH-Config IE(Information Element,信息单元)承载。
作为一个实施例,所述第一信息包括PDSCH-Config IE中的部分或全部信息。
作为一个实施例,所述M个子信息由PDSCH-Config IE中的tci-StatesToAddModList域(field)承载。
作为一个实施例,所述M个子信息包括PDSCH-Config IE中的tci-StatesToAddModList域(field)中的部分或全部信息。
作为一个实施例,所述PDSCH-Config IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述tci-StatesToAddModList域的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一无线信号携带下行数据。
作为一个实施例,所述M1不大于8,所述第一无线信号在下行物理层数据信道上传输。
作为一个实施例,所述第一信令通过空中接口传输。
作为一个实施例,所述第一无线信号的调度信息包括{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),所对应的空间发送参数(Spatial Tx parameters),所对应的空间接收参数(Spatial Rx parameters)}中的至少之一。
作为一个实施例,DMRS的配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)}中的一种或多种。
作为一个实施例,本申请中的所述第一基站在所述第一时频资源集合中发送所述第一无线信号,本申请中的所述第一基站发送所述第一信令。
作为一个实施例,本申请中的所述第二基站在所述第一时频资源集合中发送所述第一无线信号,本申请中的所述第一基站发送所述第一信令。
作为一个实施例,本申请中的所述第二基站在所述第一时频资源集合中发送所述第一无线信号,本申请中的所述第二基站发送所述第一信令。
作为一个实施例,本申请中的所述第二基站通过回传链路接收所述第五信息。
作为一个实施例,所述第五信息由所述第四信息携带。
作为一个实施例,所述第四信息指示本申请中的所述第二基站是否在所述第一时频资源集合中发送所述第一无线信号。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH。
作为一个实施例,所述下行物理层数据信道是sPDSCH。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一无线信号对应传输信道是DL-SCH(DownLink Shared Channel,下行共享信道)。
实施例7
实施例7示例了第一时频资源集合在时频域上的资源映射的示意图;如附图7所示。
在实施例7中,本申请中的所述用户设备在所述第一时频资源集合中接收本申请中的所述第一无线信号,所述第一无线信号在下行物理层控制信道上传输。在附图7中,左斜线填充的方格表示所述第一时频资源集合。
作为一个实施例,所述第一时频资源集合包括正整数个RE(Resource Element)。
作为一个实施例,一个RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述第一时频资源集合是一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第一时频资源集合是一个搜索空间(search space)。
作为一个实施例,所述第一时频资源集合在频域占用正整数个不连续的子载波。
作为一个实施例,所述第一时频资源集合在时域占用正整数个不连续的多载波符号。
作为一个实施例,所述第一时频资源集合在时域上是多次出现的。
作为上述实施例的一个子实施例,所述第一时频资源集合在时域上任意两次相邻出现之间的时间间隔是相等的。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一时频资源集合由被所述用户设备添加的服务小区通过ControlResourceSet IE配置。
作为一个实施例,所述第一时频资源集合由被所述用户设备添加的服务小区通过PDCCH-Config IE配置。
作为一个实施例,所述第一时频资源集合由被所述用户设备添加的服务小区通过PDCCH-ConfigCommon IE配置。
作为一个实施例,所述第一时频资源集合由被所述用户设备添加的服务小区通过SearchSpace IE配置。
作为一个实施例,所述SearchSpace IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一时频资源集合占用目标服务小区上的频率资源,本申请中的所述第一参考信号组中的参考信号被所述目标服务小区发送。
作为一个实施例,所述第一时频资源集合占用本申请中的所述第二服务小区上的频率资源。
实施例8
实施例8示例了第一时频资源集合在时频域上的资源映射的示意图;如附图8所示。
在实施例8中,本申请中的所述用户设备在所述第一时频资源集合中接收本申请中的所述第一无线信号,所述第一无线信号在下行物理层数据信道上传输。在附图8中,左斜线填充的方格表示所述第一时频资源集合。
作为一个实施例,所述第一时频资源集合频域占用正整数个连续的子载波。
作为一个实施例,所述第一时频资源集合在时域占用正整数个连续的多载波符号。
作为一个实施例,本申请中的所述第一信令指示所述第一时频资源集合。
实施例9
实施例9示例了M个子信息中一个给定子信息的示意图;如附图9所示。
在实施例9中,所述M个子信息中一个给定子信息指示的参考信号组只包括第三参考信号。所述给定子信息指示给定信息单元,所述给定信息单元包括第一给定域和第二给定域。所述给定信息单元中的所述第一给定域指示所述给定信息单元的索引,所述给定信息单元中的所述第二给定域指示所述第三参考信号。
作为一个实施例,所述M个子信息中的任一子信息指示一个信息单元,所述一个信息单元是一个TCI-State IE。
作为一个实施例,所述M个子信息中的任一子信息指示一个信息单元,所述一个信息单元包括TCI-State IE中的部分或全部信息。
作为一个实施例,所述给定信息单元中的所述第一给定域包括TCI-State IE的tci-StateId域中的部分或全部信息。
作为一个实施例,所述给定信息单元中的所述第一给定域指示TCI-StateId。
作为一个实施例,所述给定信息单元中的所述第二给定域包括TCI-State IE的qcl-Type1域中的部分或全部信息。
作为一个实施例,所述给定信息单元中的所述第二给定域指示QCL-Info。
作为一个实施例,所述给定信息单元中的所述第二给定域包括第一给定子域和第二子给定子域,所述给定信息单元中的所述第二给定域中的所述第一给定子域指示所述第三参考信号的索引,所述给定信息单元中的所述第二给定域中的所述第二给定子域指示所述第三参考信号对应的准共址类型(QCL type)。
作为上述实施例的一个子实施例,所述第三参考信号的索引是NZP-CSI-RS-ResourceId或SSB-Index。
作为上述实施例的一个子实施例,所述第三参考信号对应的准共址类型是QCL-TypeA,QCL-TypeB,QCL-TypeC和QCL-TypeD中的一种。
作为上述实施例的一个子实施例,所述给定信息单元中的所述第二给定域中的所述第一给定子域包括TCI-State IE的referenceSignal域中的部分或全部信息。
作为上述实施例的一个子实施例,所述给定信息单元中的所述第二给定域中的所述第二给定子域包括TCI-State IE的qcl-Type域中的部分或全部信息。
作为一个实施例,所述给定信息单元中的所述第二给定域包括第五给定子域;所述给定信息单元中的所述第二给定域中的所述第五给定子域指示所述第三参考信号的发送者的索引。
作为上述实施例的一个子实施例,所述第三参考信号被本申请中的所述第二服务小区发送,所述给定信息单元中的所述第二给定域中的所述第五给定子域指示所述第二服务小区的SCellIndex。
作为上述实施例的一个子实施例,所述第三参考信号被本申请中的所述第二服务小区发送,所述给定信息单元中的所述第二给定域中的所述第五给定子域指示所述第二服务小区的ServCellIndex。
作为上述实施例的一个子实施例,所述第三参考信号被本申请中的所述第一服务小区发送,所述给定信息单元中的所述第二给定域中的所述第五给定子域指示所述第一服务小区的CellIdentity。
作为上述实施例的一个子实施例,所述第三参考信号被本申请中的所述第一服务小区发送,所述给定信息单元中的所述第二给定域中的所述第五给定子域指示所述第一服务小区的PhysCellId。
作为一个实施例,所述给定信息单元中的所述第二给定域包括第七给定子域和第八给定子域;所述给定信息单元中的所述第二给定域中的所述第七给定子域包括TCI-State IE的cell域中的部分或全部信息,所述给定信息单元中的所述第二给定域中的所述第八给定子域包括TCI-State IE的bwp-Id域中的部分或全部信息;所述cell域和所述bwp-Id域的具体定义参见3GPP TS38.331。
作为一个实施例,所述TCI-State IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述tci-StateId的具体定义参见3GPP TS38.331。
作为一个实施例,所述TCI-StateId的具体定义参见3GPP TS38.331。
作为一个实施例,所述qcl-Type1的具体定义参见3GPP TS38.331。
作为一个实施例,所述QCL-Info的具体定义参见3GPP TS38.331。
作为一个实施例,所述referenceSignal的具体定义参见3GPP TS38.331。
作为一个实施例,所述qcl-Type的具体定义参见3GPP TS38.331。
实施例10
实施例10示例了M个子信息中一个给定子信息的示意图;如附图10所示。
在实施例10中,所述M个子信息中一个给定子信息指示的参考信号组由第三参考信号和第四参考信号组成。所述给定子信息指示给定信息单元,所述给定信息单元包括第一给定域,第二给定域和第三给定域。所述给定信息单元中的所述第一给定域指示所述给定信息单元的索引,所述给定信息单元中的所述第二给定域指示所述第三参考信号,所述给定信息单元中的所述第三给定域指示所述第四参考信号。
作为一个实施例,所述给定信息单元中的所述第三给定域包括TCI-State IE的qcl-Type2域中的部分或全部信息。
作为一个实施例,所述给定信息单元中的所述第三给定域指示QCL-Info。
作为一个实施例,所述给定信息单元中的所述第三给定域包括第三给定子域和第四给定子域;所述给定信息单元中的所述第三给定域中的所述第三给定子域指示所述第四参考信号的索引,所述给定信息单元中的所述第三给定域中的所述第四给定子域指示所述第四参考信号对应的准共址类型(QCL type)。
作为上述实施例的一个子实施例,所述第四参考信号的索引是NZP-CSI-RS-ResourceId或SSB-Index。
作为上述实施例的一个子实施例,所述第四参考信号对应的准共址类型是QCL-TypeA,QCL-TypeB,QCL-TypeC和QCL-TypeD中的一种。
作为上述实施例的一个子实施例,所述给定信息单元中的所述第三给定域中的所述第三给定子域包括TCI-State IE的referenceSignal域中的部分或全部信息。
作为上述实施例的一个子实施例,所述给定信息单元中的所述第三给定域中的所述第四给定子域包括TCI-State IE的qcl-Type域中的部分或全部信息。
作为一个实施例,所述给定信息单元中的所述第三给定域包括第六给定子域;所述给定信息单元中的所述第三给定域中的所述第六给定子域指示所述第四参考信号的发送者的索引。
作为上述实施例的一个子实施例,所述第四参考信号被本申请中的所述第二服务小区发送,所述给定信息单元中的所述第三给定域中的所述第六给定子域指示所述第二服务小区的SCellIndex。
作为上述实施例的一个子实施例,所述第四参考信号被本申请中的所述第二服务小区发送,所述给定信息单元中的所述第三给定域中的所述第六给定子域指示所述第二服务小区的ServCellIndex。
作为上述实施例的一个子实施例,所述第四参考信号被本申请中的所述第一服务小区发送,所述给定信息单元中的所述第三给定域中的所述第六给定子域指示所述第一服务小区的CellIdentity。
作为上述实施例的一个子实施例,所述第四参考信号被本申请中的所述第一服务小区发送,所述给定信息单元中的所述第三给定域中的所述第六给定子域指示所述第一服务小区的PhysCellId。
作为一个实施例,所述qcl-Type2的具体定义参见3GPP TS38.331。
实施例11
实施例11示例了天线端口的示意图;如附图11所示。
在实施例11中,一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到 所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述给定天线端口包括的正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述给定天线端口包括的正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到。
附图11中示出了两个天线端口:天线端口#0和天线端口#1。其中,所述天线端口#0由天线组#0构成,所述天线端口#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口#0的映射系数组成模拟波束赋型向量#0;所述天线组#0到所述天线端口#0的映射系数组成数字波束赋型向量#0;所述天线端口#0所对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2;所述天线组#1和所述天线组#2到所述天线端口#1的映射系数组成数字波束赋型向量#1;所述天线端口#1所对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,所述天线端口是antenna port,所述antenna port的具体定义参见3GPP TS36.211中的5.2和6.2章节,或参见3GPP TS38.211的4.4章节。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的小尺度信道参数可以推断出所述一个天线端口上发送的另一个无线信号所经历的小尺度信道参数。
作为一个实施例,从一个天线端口上发送的无线信号所经历的小尺度信道参数不可以推断出另一个天线端口上发送的无线信号所经历的小尺度信道参数。
作为一个实施例,所述小尺度信道参数包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI(Channel Quality Indicator,信道质量标识),RI(Rank Indicator,秩标识)}中的一种或多种。
作为一个实施例,一个天线端口只包括一个天线组,即一个RF chain,例如,附图11中的所述天线端口#0。
作为上述实施例的一个子实施例,所述一个天线端口所对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口所对应的数字波束赋型向量降维成一个标量,所述一个天线端口所对应的波束赋型向量等于其对应的模拟波束赋型向量。例如,附图11中的所述天线端口#0只包括所述天线组#0,附图11中的所述数字波束赋型向量#0降维成一个标量,所述天线端口#0所对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口包括多个天线组,即多个RF chain,例如,附图11中的所述天线端口#1。
作为一个实施例,两个天线端口准共址是指两个天线端口QCL(Quasi Co-Located),所述QCL的具体定义参见3GPP TS38.211的4.4章节和3GPP TS38.214的5.1.5章节。
作为一个实施例,两个天线端口QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号经历的信道的大尺度特性(large-scale properties)推断出所述两个天线端口中的另一个天线端口上发送的无线信号经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性(large-scale properties)包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收数字波束赋型向量,接收波束赋型向量,空域接收滤波(Spatial Domain Receive Filter)}中的一种或多种。
实施例12
实施例12示例了用户设备假设第一无线信号的发送天线端口与第一参考信号组中任一参考信号的发送天线端口准共址的示意图;如附图12所示。
在实施例12中,所述第一参考信号组由第一参考信号和第二参考信号组成。所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口和所述第二参考信号的发送天线端口都准共址,但对应不同的QCL类型。
作为一个实施例,所述第一参考信号组只包括第一参考信号和第二参考信号,所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口和所述第二参考信号的发送天线端口都QCL;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口之间的QCL类型(type)和所述第一无线信号的发送天线端口与所述第二参考信号的发送天线端口之间的QCL类型(type)不同。
作为上述实施例的一个子实施例,所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口之间的QCL类型是QCL-TypeD。
作为上述实施例的一个子实施例,所述用户设备假设所述第一无线信号的发送天线端口与所述第二参考信号的发送天线端口之间的QCL类型是QCL-TypeA。
作为一个实施例,一个天线端口与另一个天线端口之间的QCL类型(QCL type)是QCL-TypeD是指:能够从所述一个天线端口上发送的无线信号的空间接收参数(Spatial Rx parameters)推断出所述另一个天线端口上发送的无线信号的空间接收参数。
作为一个实施例,一个天线端口与另一个天线端口之间的QCL类型(QCL type)是QCL-TypeA是指:能够从所述一个天线端口上发送的无线信号所经历的信道的{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均延时(average delay)}推断出所述另一个天线端口上发送的无线信号所经历的信道的{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均延时(average delay)}。
作为一个实施例,所述QCL类型,所述QCL-TypeA和所述QCL-TypeD的具体定义参见3GPP TS38.214的5.1.5章节。
实施例13
实施例13示例了用户设备假设第一无线信号的发送天线端口与第一参考信号组中任一参考信号的发送天线端口准共址的示意图;如附图13所示。
在实施例13中,所述第一参考信号组由第一参考信号组成。所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口准共址。
作为一个实施例,所述第一参考信号组只包括第一参考信号,所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口QCL。
作为上述实施例的一个子实施例,所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口之间的QCL类型是QCL-TypeA,QCL-TypeB,QCL-TypeC和QCL-TypeD中的一种。
作为上述实施例的一个子实施例,所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号的发送天线端口之间的QCL类型是QCL-TypeA和QCL-TypeD中的一种。
作为一个实施例,一个天线端口与另一个天线端口之间的QCL类型(QCL type)是QCL-TypeB是指:能够从所述一个天线端口上发送的无线信号所经历的信道的多普勒扩展(Doppler spread)和多普勒移位(Doppler shift)推断出所述另一个天线端口上发送的无线信号所经历的信道的多普勒扩展(Doppler spread)和多普勒移位(Doppler shift)。
作为一个实施例,一个天线端口与另一个天线端口之间的QCL类型(QCL type)是QCL-TypeC是指:能够从所述一个天线端口上发送的无线信号所经历的信道的多普勒移位(Doppler shift)和平均延时(average delay)推断出所述另一个天线端口上发送的无线信号所经历的信道的多普勒移位(Doppler shift)和平均延时(average delay)。
作为一个实施例,所述QCL-TypeB和所述QCL-TypeC的具体定义参见3GPP TS38.214 的5.1.5章节。
实施例14
实施例14示例了N个参考信号在时频域上的资源映射的示意图;如附图14所示。
在实施例14中,本申请中的所述用户设备在空中接口上接收所述N个参考信号,所述N个参考信号中的N1个参考信号被本申请中的所述第一服务小区发送;本申请中的所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号,所述N是正整数,所述N1是不大于所述N的正整数。在附图14中,所述N个参考信号的索引分别是#{0,...,N-1}。
作为一个实施例,所述N个参考信号包括CSI-RS。
作为一个实施例,所述N个参考信号包括SS/PBCH block。
作为一个实施例,所述N个参考信号中的任一参考信号在时域是周期性出现的。
作为一个实施例,所述N个参考信号中的任一参考信号在时域是多次出现的。
作为上述实施例的一个子实施例,所述N个参考信号中的任一参考信号在时域上的任意两次相邻出现之间的时间间隔是相等的。
作为一个实施例,所述N个参考信号中的至少一个参考信号是宽带的。
作为一个实施例,所述N个参考信号中的至少一个参考信号是窄带的。
作为一个实施例,所述N1个参考信号包括SS/PBCH block。
作为一个实施例,所述N1个参考信号中的任一参考信号是SS/PBCH block。
作为一个实施例,所述N1个参考信号中至少有一个参考信号是CSI-RS。
作为一个实施例,所述N1个参考信号中的任一参考信号是窄带的。
作为一个实施例,所述N1个参考信号中的至少一个参考信号是宽带的。
作为一个实施例,一个参考信号是宽带的是指:系统带宽被划分成正整数个频域区域,所述一个参考信号在所述正整数个频域区域中的每一个频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为一个实施例,一个参考信号是窄带的是指:系统带宽被划分成正整数个频域区域,所述一个参考信号只在所述正整数个频域区域中的部分频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为一个实施例,所述正整数个频域区域中任意两个频域区域包括相同数目的子载波。
作为一个实施例,所述N等于所述N1。
作为一个实施例,所述N大于所述N1。
作为一个实施例,所述N大于所述N1,所述N个参考信号中不属于所述N1个参考信号的参考信号中至少有一个参考信号由被本申请中的所述第二服务小区发送。
作为一个实施例,所述N个参考信号中只有所述N1个参考信号被所述第一服务小区发送。
作为一个实施例,所述N个参考信号中的N2个参考信号被本申请中的所述第二服务小区发送,所述N2是小于所述N的正整数。
作为一个实施例,所述N1与所述N2的和等于所述N。
作为一个实施例,所述N1与所述N2的和小于所述N。
作为一个实施例,所述N2个参考信号包括CSI-RS。
作为一个实施例,所述N2个参考信号包括SS/PBCH block。
实施例15
实施例15示例了第二信息的示意图;如附图15所示。
实施例15中,本申请中的所述用户设备在本申请中的所述第一服务小区上接收所述第二信息;所述第二信息指示本申请中的所述N1个参考信号的索引与所述第一服务小区的索引。
作为一个实施例,所述第一服务小区的索引是CellIdentity。
作为一个实施例,所述第一服务小区的索引是PhysCellId。
作为一个实施例,所述N1个参考信号的索引分别是SSB(SS/PBCH Block)索引(index)。
作为一个实施例,所述第二信息是由被所述第一服务小区发送的SS/PBCH block携带的。
作为一个实施例,被所述第一服务小区发送的SS/PBCH block指示所述第二信息。
作为一个实施例,被所述第一服务小区发送的SS/PBCH block隐式的指示所述第二信息。
作为一个实施例,所述第二信息由所述N1个参考信号携带。
作为一个实施例,所述N1个参考信号指示所述第二信息。
作为一个实施例,所述N1个参考信号隐式的指示所述第二信息。
作为一个实施例,所述N1个参考信号分别是N1个被所述第一服务小区发送的SS/PBCH block;所述N1个参考信号中的SS指示所述第一服务小区的索引。
作为上述实施例的一个子实施例,所述N1个参考信号中的Primary synchronization sequence(主同步序列)和Secondary synchronization sequence(主同步序列)隐式的指示所述第一服务小区的索引。
作为一个实施例,所述N1个参考信号分别是N1个被所述第一服务小区发送的SS/PBCH block;对于所述N1个参考信号中的任一给定参考信号,所述给定参考信号中的PBCH上的DMRS和PBCH负载(payload)中的至少前者被用于指示所述给定参考信号的索引。
作为上述实施例的一个子实施例,所述给定参考信号中的PBCH上的DMRS序列(sequence)隐式的指示所述给定参考信号的索引。
作为上述实施例的一个子实施例,所述给定参考信号中的PBCH上的DMRS序列(sequence)和PBCH的负载比特
Figure PCTCN2019095964-appb-000001
共同指示所述给定参考信号的索引。
作为上述实施例的一个子实施例,所述给定参考信号中的PBCH上的DMRS序列(sequence)隐式的指示所述给定参考信号的索引的3个LSB(Least Significant Bit,最低有效位)比特,所述给定参考信号中的PBCH的负载比特
Figure PCTCN2019095964-appb-000002
指示所述给定参考信号的索引的3个MSB(Most Significant Bit,最高有效位)比特。
作为一个实施例,所述PBCH的负载(payload)比特
Figure PCTCN2019095964-appb-000003
的具体定义参见3GPP TS38.213和TS38.212。
实施例16
实施例16示例了第三信息的示意图;如附图16所示。
在实施例16中,所述第三信息被用于激活本申请中的所述M个子信息中的M1个子信息,本申请中的所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。
作为一个实施例,所述第三信息由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令承载。
作为一个实施例,所述第三信息由TCI(Transmission Configuration Indication,传输配置标识)States Activation/Deactivation for UE-specific PDSCH(UE特定的PDSCH的TCI状态激活/去激活)MAC CE承载,所述TCI States Activation/Deactivation for UE-specific PDSCH MAC CE的具体定义参见3GPP TS38.321。
作为上述实施例的一个子实施例,本申请中的所述第一无线信号在下行物理层数据信道上传输。
作为一个实施例,所述第三信息由TCI State Indication for UE-specific PDCCH(UE特定的PDCCH的TCI状态指示)MAC CE承载,所述TCI State Indication for UE-specific PDCCH MAC CE的具体定义参见3GPP TS38.321。
作为上述实施例的一个子实施例,本申请中的所述第一无线信号在下行物理层控制信道上传输。
作为一个实施例,所述第三信息包括第二子信息,所述第二子信息指示Serving Cell ID,所述Serving Cell ID的具体定义参见3GPP TS38.321。
作为一个实施例,所述第三信息包括第三子信息,所述第三子信息指示BWP ID,所述BWP ID的具体定义参见3GPP TS38.321。
作为一个实施例,所述第三信息包括第四子信息,所述第四子信息指示Ti,所述Ti激活(activate)或去激活(deactivate)TCI-StateId为i的TCI state。所述Ti的具体定义参见3GPP TS38.321。
作为一个实施例,所述第三信息包括第五子信息,所述第五子信息指示本申请中的所述第一时频资源集合的索引。
作为一个实施例,所述第一时频资源集合的索引是ControlResourceSetId。
作为一个实施例,所述第三信息包括第六子信息,所述第六子信息指示所述第一子信息的索引。
作为一个实施例,所述第一子信息的索引是TCI-StateId。
实施例17
实施例17示例了第三无线信号所占用的时间资源和第一无线信号所占用的时间资源之间关系的示意图;如附图17所示。
在实施例17中,所述第一无线信号在下行物理层控制信道上传输。所述第一无线信号所占用的时间资源的起始时刻和所述第三无线信号占用的时隙(slot)的结束时刻之间的时间间隔不小于第一阈值。
作为上述实施例的一个子实施例,所述第一阈值的固定的(不需要配置)。
作为上述实施例的一个子实施例,所述第一阈值是3毫秒(ms)。
实施例18
实施例18示例了第三无线信号所占用的时间资源和第一信令所占用的时间资源之间关系的示意图;如附图18所示。
在实施例18中,本申请中的所述第一无线信号在下行物理层数据信道上传输。所述第一信令包括所述第一无线信号的调度信息。所述第三无线信号在时隙(slot)n上传输;所述第一信令所占用时隙不早于时隙
Figure PCTCN2019095964-appb-000004
所述
Figure PCTCN2019095964-appb-000005
是对应载波间距μ的子帧(sub-frame)包括的时隙数量,所述
Figure PCTCN2019095964-appb-000006
的具体定义参见3GPP TS38.214的5.1.5。
实施例19
实施例19示例了生成第一无线信号的示意图;如附图19所示。
在实施例19中,所述第一无线信号在下行物理层控制信道上传输,第一参数被用于生成所述第一无线信号。
作为一个实施例,所述第一参数被用于生成所述第一无线信号对应的扰码序列(scrambling sequence)和DMRS中的至少之一。
作为一个实施例,所述第一参数是由被本申请中的所述用户设备添加的服务小区通过pdcch-DMRS-ScramblingID配置的
作为一个实施例,所述第一参数是不大于65535的非负整数。
作为一个实施例,所述pdcch-DMRS-ScramblingID的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一参数是本申请中的所述用第二服务小区的PhysCellId。
作为一个实施例,本申请中的所述第二服务小区的PhysCellId被用于生成所述第一无线信号。
作为一个实施例,本申请中的所述第二基站在本申请中的所述第一时频资源集合中发送所述第一无线信号,本申请中的所述第二服务小区的PhysCellId被用于生成所述第一无线信 号。
实施例20
实施例20示例了生成第一无线信号的示意图;如附图20所示。
在实施例20中,所述第一无线信号在下行物理层数据信道上传输,第二参数和第三参数被用于生成所述第一无线信号。
作为一个实施例,所述第二参数被用于生成所述第一无线信号对应的扰码序列(scrambling sequence),第三参数被用于生成所述第一无线信号对应的DMRS。
作为一个实施例,所述第二参数是由被本申请中的所述用户设备添加的服务小区通过dataScramblingIdentityPDSCH配置的。
作为一个实施例,所述第二参数是不大于1023的非负整数。
作为一个实施例,所述第三参数由被本申请中的所述用户设备添加的服务小区通过scramblingID0或scramblingID1配置。
作为一个实施例,所述第三参数是不大于65535的非负整数。
作为一个实施例,所述第二参数是本申请中的所述第二服务小区的PhysCellId。
作为一个实施例,所述第三参数是本申请中的所述第二服务小区的PhysCellId。
实施例21
实施例21示例了生成第一信令的示意图;如附图21所示,
在实施例21中,第四参数被用于生成所述第一信令,所述第一信令包括本申请中的所述第一无线信号的调度信息。
作为一个实施例,所述第四参数被用于生成所述第一信令对应的扰码序列(scrambling sequence)和DMRS中的至少之一。
作为一个实施例,所述第四参数是由被本申请中的所述用户设备添加的服务小区通过pdcch-DMRS-ScramblingID配置的。
作为一个实施例,所述第四参数是不大于65535的非负整数。
作为一个实施例,所述第四参数是本申请中的所述第二服务小区的PhysCellId。
作为一个实施例,本申请中的所述第二服务小区的PhysCellId被用于生成所述第一信令。
作为一个实施例,本申请中的所述第二基站发送所述第一信令,本申请中的所述第二服务小区的PhysCellId被用于生成所述第一信令。
实施例22
实施例22示例了第四信息内容的示意图;如附图22所示。
在实施例22中,所述第四信息指示本申请中的所述第一时频资源集合。
作为一个实施例,所述第四信息指示所述第一时频资源集合的索引。
作为一个实施例,所述第四信息包括本申请中的所述第二服务小区的PhysCellId。
作为一个实施例,所述第四信息包括第一索引,所述第一索引被本申请中的所述第二基站用于生成本申请中的所述第一无线信号。
作为一个实施例,所述第一索引被所述第二基站用于生成所述第一无线信号对应的扰码序列(scrambling sequence)。
作为一个实施例,所述第一索引被所述第二基站用于生成所述第一无线信号对应的DMRS。
作为一个实施例,所述第一索引指示n ID,所述n ID被所述第二基站用于确定所述第一无线信号对应的扰码序列(scrambling sequence)生成器(generator)的初始值,所述n ID的具体作用参见3GPP TS38.211的7.3章节。
作为一个实施例,所述第一索引指示N ID,所述N ID被所述第二基站用于确定所述第一无 线信号对应的DMRS的RS序列生成器(generator)的初始值,所述N ID的具体作用参见3GPP TS38.211的7.4章节。
作为一个实施例,所述第一索引是不大于65535的非负整数。
作为一个实施例,所述第一索引是不大于1023的非负整数。
作为一个实施例,所述第一索引是所述第二服务小区的PhysCellId。
作为一个实施例,所述第四信息包括第三索引,所述第三索引被所述第二基站用于生成所述第一无线信号对应的DMRS。
作为一个实施例,所述第三索引指示
Figure PCTCN2019095964-appb-000007
Figure PCTCN2019095964-appb-000008
所述
Figure PCTCN2019095964-appb-000009
或所述
Figure PCTCN2019095964-appb-000010
被所述第二基站用于确定所述第一无线信号对应的DMRS的RS序列生成器(generator)的初始值,所述
Figure PCTCN2019095964-appb-000011
或所述
Figure PCTCN2019095964-appb-000012
的具体作用参见3GPP TS38.211的7.4章节。
作为一个实施例,所述第三索引是不大于65535的非负整数。
作为一个实施例,所述第三索引是所述第二服务小区的PhysCellId。
作为一个实施例,所述第四信息包括第四索引,所述第四索引被所述第二基站用于生成本申请中的所述第一信令。
作为一个实施例,所述第四索引被所述第二基站用于生成所述第一信令对应的扰码序列(scrambling sequence)。
作为一个实施例,所述第四索引被所述第二基站用于生成所述第一信令对应的DMRS。
作为一个实施例,所述第四索引指示n ID,所述n ID被所述第二基站用于确定所述第一信令对应的扰码序列(scrambling sequence)生成器(generator)的初始值,所述n ID的具体作用参见3GPP TS38.211的7.3章节。
作为一个实施例,所述第四索引指示N ID,所述N ID被所述第二基站用于确定所述第一信令对应的DMRS的RS序列生成器(generator)的初始值,所述N ID的具体作用参见3GPP TS38.211的7.4章节。
作为一个实施例,所述第四索引是不大于65535的非负整数。
作为一个实施例,所述第四索引是所述第二服务小区的PhysCellId。
作为一个实施例,所述第四信息包括第五索引,所述第五索引指示n RNTI
作为上述实施例的一个子实施例,所述n RNTI被所述第二基站用于确定所述第一无线信号对应的扰码序列(scrambling sequence)生成器(generator)的初始值,所述n RNTI的具体作用参见3GPP TS38.211的7.3章节。
作为上述实施例的一个子实施例,所述n RNTI被所述第二基站用于确定所述第一信令对应的扰码序列(scrambling sequence)生成器(generator)的初始值,所述n RNTI的具体作用参见3GPP TS38.211的7.3章节。
作为一个实施例,所述第四信息指示所述第一信令所占用的时频资源。
实施例23
实施例23示例了第四无线信号的示意图;如附图23所示。
在实施例23中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被本申请中的所述第一服务小区发送;所述目标参考信号被用于确定本申请中的所述第一无线信号是否被所述第一服务小区发送。所述第四无线信号所占用的空口资源是K个空口资源中的一个空口资源,所述K个空口资源和所述K个参考信号一一对应。所述第四无线信号所占用的空口资源被用于从所述K个参考信号中指示所述目标参考信号。
作为一个实施例,如果所述目标参考信号被所述第一服务小区发送,所述第一无线信号被所述第一服务小区发送;如果所述目标参考信号不被所述第一服务小区发送,所述第一无线信号不被所述第一服务小区发送。
作为一个实施例,所述第四无线信号包括RACH(Random Access Channel,随机接入信 道)前导(Preamble)。
作为一个实施例,所述第四无线信号在PRACH(Physical Random Access CHannel,物理随机接入信道)上传输。
作为一个实施例,所述第四无线信号所占用的空口资源和所述目标参考信号有关。
作为一个实施例,所述空口资源包括{时间资源,频率资源,码域资源}中的一种或多种。
作为一个实施例,所述码域资源包括RACH前导(Preamble)。
作为一个实施例,所述码域资源包括RACH前导(Preamble)序列(sequence)。
作为一个实施例,所述K个参考信号包括CSI-RS。
作为一个实施例,所述K个参考信号包括SS/PBCH block。
作为一个实施例,所述K个参考信号由BeamFailureRecoveryConfig IE配置。
作为一个实施例,所述K个参考信号由BeamFailureRecoveryConfig IE中的candidateBeamRSList域(field)配置。
作为一个实施例,所述第四无线信号所占用的空口资源被用于从所述K个参考信号中指示所述目标参考信号。
作为一个实施例,所述第四无线信号所占用的空口资源是K个空口资源中的一个空口资源,所述K个空口资源和所述K个参考信号一一对应。
作为一个实施例,所述K个空口资源是由BeamFailureRecoveryConfig IE配置的。
作为一个实施例,所述K个空口资源是由BeamFailureRecoveryConfig IE中的candidateBeamRSList域(field)配置的。
作为一个实施例,所述K是不大于maxNrofCandidateBeams的正整数。
作为一个实施例,所述BeamFailureRecoveryConfig IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述candidateBeamRSList的具体定义参见3GPP TS38.331。
作为一个实施例,所述maxNrofCandidateBeams的具体定义参见3GPP TS38.331。
作为一个实施例,本申请中的所述第二服务小区的PhysCellId被用于生成所述第四无线信号。
作为一个实施例,第五参数被用于生成所述第四无线信号,所述第五参数由被所述用户设备添加的服务小区通过zeroCorrelationZoneConfig配置。
作为一个实施例,第五参数和第六参数被用于生成所述第四无线信号,所述第五参数由被所述用户设备添加的服务小区通过zeroCorrelationZoneConfig配置,所述第六参数由被所述用户设备添加的服务小区通过restrictedSetConfig配置。
作为一个实施例,所述zeroCorrelationZoneConfig的具体定义参见3GPP TS38.331。
作为一个实施例,所述restrictedSetConfig的具体定义参见3GPP TS38.331。
作为一个实施例,所述第五参数是不大于15的非负整数。
作为一个实施例,所述第六参数是{unrestrictedSet,restrictedSetTypeA,restrictedSetTypeB}中之一。
实施例24
实施例24示例了第一信令内容的示意图;如附图24所示。
在实施例24中,所述第一信令包括本申请中的所述第一无线信号的调度信息。所述第一信令包括第一域和第二域,所述第一信令中的所述第一域指示本申请中的所述第一子信息,所述第一信令中的所述第二域指示本申请中的所述第一时频资源集合。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第一信令是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令是下行授予DCI(DownLink Grant DCI)。
作为一个实施例,所述第一信令是被C-RNTI所标识的DCI。
作为一个实施例,所述第一信令的CRC是被C-RNTI加扰(Scrambled)的。
作为一个实施例,所述第一信令指示所述第一时频资源集合。
作为一个实施例,所述第一信令从所述M个子信息中指示所述第一子信息。
作为一个实施例,所述第一信令从所述M1个子信息中指示所述第一子信息。
作为一个实施例,所述第一信令指示所述第一子信息在所述M1个子信息中的索引。
作为一个实施例,所述第一信令中的所述第一域包括Transmission configuration indication(传输配置标识)域。
作为一个实施例,所述第一信令中的所述第一域包括Transmission configuration indication域中的部分或全部信息。
作为一个实施例,所述第一信令中的所述第一域由3个比特组成。
作为一个实施例,所述Transmission configuration indication域的具体定义参见3GPP TS38.212中的7.3章节
作为一个实施例,所述第一信令中的所述第二域包括Frequency domain resource assignment(频域资源分配)域和Time domain resource assignment(时域资源分配)域。
作作为一个实施例,所述第一信令中的所述第二域包括Frequency domain resource assignment(频域资源分配)域和Time domain resource assignment(时域资源分配)域中的部分或全部信息。
作为一个实施例,所述Frequency domain resource assignment域和所述Time domain resource assignment域的具体定义参见3GPP TS38.212中的7.3章节
实施例25
实施例25示例了用户设备中的处理装置的结构框图;如附图25所示。在附图25中,用户设备中的处理装置2500主要由第一接收机2501,第一处理机2502和第二接收机2503组成。
在实施例25中,第一接收机2501接收第一信息;第一处理机2502从M个子信息中确定第一子信息;第二接收机2503在第一时频资源集合中接收第一无线信号。
在实施例25中,所述第一信息包括所述M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;所述第一子信息指示第一参考信号组;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述第一接收机2501接收N个参考信号;其中,所述N个参考信号中的N1个参考信号被所述第一服务小区发送;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号,所述N是正整数,所述N1是不大于所述N的正整数。
作为一个实施例,所述第一接收机2501在所述第一服务小区上接收第二信息;其中,所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。
作为一个实施例,所述第一接收机2501接收第二无线信号;其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。
作为一个实施例,所述第一处理机2502发送第三无线信号;其中,所述第三无线信号被用于确定所述第二无线信号被正确接收。
作为一个实施例,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
作为一个实施例,所述第二接收机2503接收第一信令;其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
作为一个实施例,所述第一处理机2502发送第四无线信号;其中所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被所述第一服务小区发送;所述目标参考信号被用于确定所述第一无线信号是否被所述第一服务小区发送。
作为一个实施例,所述第一接收机2501包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理机2502包括实施例4中的{天线452,发射器/接收器454,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第二接收机2503包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例26
实施例26示例了第一基站设备中的处理装置的结构框图,如附图26所示。在附图26中,第一基站设备中的处理装置2600主要由第一发送机2601,第二处理机2602和第二发送机2603组成。
在实施例26中,第一发送机2601发送第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;第二处理机2602从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;第二发送机2603在第一时频资源集合中发送第一无线信号,其中所述第一参考信号组中的参考信号被所述第一基站维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线信号,其中所述第一参考信号组中的参考信号不被所述第一基站维持的服务小区发送。
在实施例26中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述第一基站维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
作为一个实施例,所述第一发送机2601在第二服务小区上发送N2个参考信号;其中,所述第一基站是所述第二服务小区的维持基站,所述第二服务小区被所述第一无线信号的目标接收者添加;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N2个参考信号中的参考信号,所述N2是正整数。
作为一个实施例,所述第一发送机2601发送第二无线信号;其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数。
作为一个实施例,所述第二处理机2602接收第三无线信号;其中,所述第三无线信号被用于确定所述第二无线信号被正确接收。
作为一个实施例,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
作为一个实施例,所述第二发送机2603发送第一信令;其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
作为一个实施例,所述第二处理机2602通过回传链路发送第四信息;其中,所述第四信息指示所述第一时频资源集合。
作为一个实施例,所述第二处理机2602通过回传链路接收第六信息;其中,所述第六信息指示N1个参考信号的索引,所述N1个参考信号被所述第一服务小区发送,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号;所述N1是正整数。
作为一个实施例,所述第一发送机2601包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二处理机2602包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二发送机2603包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
实施例27
实施例27示例了第二基站设备中的处理装置的结构框图,如附图27所示。在附图27中,第二基站设备中的处理装置2700主要由第三接收机2701和第三发送机2702组成。
在实施例27中,第三接收机2701接收第五信息;第三发送机2702在第一时频资源集合中发送第一无线信号;或者放弃在所述第一时频资源集合中发送所述第一无线信号。
实施例27中,所述第五信息指示所述第二基站是否在所述第一时频资源集合中发送所述第一无线信号,所述第二基站维持的任一服务小区未被所述第一无线信号的目标接收者添加。
作为一个实施例,所述第三发送机2702在第一服务小区上发送N1个参考信号;其中,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
作为一个实施例,所述第三发送机2702在所述第一服务小区上发送第二信息;其中,所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引。
作为一个实施例,所述第三接收机2701通过回传链路接收第四信息;其中,所述第四信息指示所述第一时频资源集合。
作为一个实施例,所述第三发送机2702通过回传链路发送第六信息;其中,所述第六信息指示N1个参考信号的索引,所述N1个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
作为一个实施例,所述第三接收机2701通过空中接口接收第四无线信号;其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;所述目标参考信号被用于确定所述第五信息。
作为一个实施例,所述第五信息是通过回传链路接收的。
作为一个实施例,所述第五信息指示所述第二基站在所述第一时频资源集合中发送所述第一无线信号;所述第五信息指示第一参考信号组,所述第一参考信号组包括至少一个参考信号;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址。
作为一个实施例,所述第三发送机2702发送第一信令;其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一参考信号组。
作为一个实施例,所述第三接收机2701包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第三发送机2702包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
    从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
    在第一时频资源集合中接收第一无线信号;
    其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
  2. 根据权利要求1所述的方法,其特征在于,包括下述两者中的至少前者:
    接收N个参考信号;
    在所述第一服务小区上接收第二信息;
    其中,所述N个参考信号中的N1个参考信号被所述第一服务小区发送;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号;所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引;所述N是正整数,所述N1是不大于所述N的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,包括下述两者中的至少前者:
    接收第二无线信号;
    发送第三无线信号;
    其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数;所述第三无线信号被用于确定所述第二无线信号被正确接收。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
  5. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,包括:
    接收第一信令;
    其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,包括:
    发送第四无线信号;
    其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至少有一个参考信号被所述第一服务小区发送;所述目标参考信号被用于确定所述第一无线信号是否被所述第一服务小区发送。
  7. 一种被用于无线通信的第一基站中的方法,其特征在于,包括:
    发送第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
    从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
    在第一时频资源集合中发送第一无线信号,其中所述第一参考信号组中的参考信号被所述第一基站维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线信号,其中所述第一参考信号组中的参考信号不被所述第一基站维持的服务小区发送;
    其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述第一基站维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
  8. 根据权利要求7所述的方法,其特征在于,包括:
    在第二服务小区上发送N2个参考信号;
    其中,所述第一基站是所述第二服务小区的维持基站,所述第二服务小区被所述第一无线信号的目标接收者添加;所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N2个参考信号中的参考信号,所述N2是正整数。
  9. 根据权利要求7或8所述的方法,其特征在于,包括下述两者中的至少前者:
    发送第二无线信号;
    接收第三无线信号;
    其中,所述第二无线信号携带第三信息,所述第三信息被用于激活所述M个子信息中的M1个子信息,所述第一子信息是所述M1个子信息中的一个子信息;所述M1是不大于所述M的正整数;所述第三无线信号被用于确定所述第二无线信号被正确接收。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,所述第一无线信号在物理层控制信道上传输;所述第一信息指示所述第一时频资源集合。
  11. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,包括:
    发送第一信令;
    其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一子信息。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,包括下述至少之一:
    通过回传链路发送第四信息;
    通过回传链路接收第六信息;
    其中,所述第四信息指示所述第一时频资源集合;所述第六信息指示N1个参考信号的索引,所述N1个参考信号被所述第一服务小区发送,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号是所述N1个参考信号中的参考信号;所述N1是正整数。
  13. 一种被用于无线通信的第二基站中的方法,其特征在于,包括:
    接收第五信息;
    在第一时频资源集合中发送第一无线信号;或者,放弃在所述第一时频资源集合中发送所述第一无线信号;
    其中,所述第五信息指示所述第二基站是否在所述第一时频资源集合中发送所述第一无线信号,所述第二基站维持的任一服务小区未被所述第一无线信号的目标接收者添加。
  14. 根据权利要求13所述的方法,其特征在于,包括下述两者中的至少前者:
    在第一服务小区上发送N1个参考信号;
    在所述第一服务小区上发送第二信息;
    其中,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述第二信息指示所述N1个参考信号的索引与所述第一服务小区的索引;所述N1是正整数。
  15. 根据权利要求13或14所述的方法,其特征在于,包括下述至少之一:
    通过回传链路接收第四信息;
    通过回传链路发送第六信息;
    其中,所述第四信息指示所述第一时频资源集合;所述第六信息指示N1个参考信号的索引,所述N1个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;如果所述第二基站在所述第一时频资源集合中发送所述第一无线信号,所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述N1个参考信号中的一个参考信号的发送天线端口准共址;所述N1是正整数。
  16. 根据权利要求13至15中任一权利要求所述的方法,其特征在于,包括:
    通过空中接口接收第四无线信号;
    其中,所述第四无线信号从K个参考信号中指示目标参考信号,所述K个参考信号中至 少有一个参考信号被第一服务小区发送,所述第二基站是所述第一服务小区的维持基站;所述目标参考信号被用于确定所述第五信息。
  17. 根据权利要求13至15中任一权利要求所述的方法,其特征在于,所述第五信息是通过回传链路接收的。
  18. 根据权利要求13至17中任一权利要求所述的方法,其特征在于,所述第五信息指示所述第二基站在所述第一时频资源集合中发送所述第一无线信号;所述第五信息指示第一参考信号组,所述第一参考信号组包括至少一个参考信号;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址。
  19. 根据权利要求18所述的方法,其特征在于,包括:
    发送第一信令;
    其中,所述第一无线信号在物理层数据信道上传输,所述第一信令包括所述第一无线信号的调度信息;所述第一信令指示所述第一参考信号组。
  20. 一种被用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
    第一处理机,从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
    第二接收机,在第一时频资源集合中接收第一无线信号;
    其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述用户设备添加;所述用户设备假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
  21. 一种被用于无线通信的第一基站设备,其特征在于,包括:
    第一发送机,发送第一信息,所述第一信息包括M个子信息,所述M个子信息中的每个子信息指示一个参考信号组,一个参考信号组包括至少一个参考信号;
    第二处理机,从所述M个子信息中确定第一子信息,所述第一子信息指示第一参考信号组;
    第二发送机,在第一时频资源集合中发送第一无线信号,其中所述第一参考信号组中的参考信号被所述第一基站维持的服务小区发送;或者,放弃在所述第一时频资源集合中发送所述第一无线信号,其中所述第一参考信号组中的参考信号不被所述第一基站维持的服务小区发送;
    其中,所述M个子信息中至少一个子信息所指示的参考信号组中的参考信号被第一服务小区发送,所述第一服务小区未被所述第一无线信号的目标接收者添加;所述第一基站维持的至少一个服务小区被所述第一无线信号的目标接收者添加;所述第一无线信号的目标接收者假设所述第一无线信号的发送天线端口与所述第一参考信号组中任一参考信号的发送天线端口准共址;所述M是正整数。
  22. 一种被用于无线通信的第二基站设备,其特征在于,包括:
    第三接收机,接收第五信息;
    第三发送机,在第一时频资源集合中发送第一无线信号;或者,放弃在所述第一时频资源集合中发送所述第一无线信号;
    其中,所述第五信息指示所述第二基站是否在所述第一时频资源集合中发送所述第一无线信号,所述第二基站维持的任一服务小区未被所述第一无线信号的目标接收者添加。
PCT/CN2019/095964 2018-07-25 2019-07-15 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020020005A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19841459.1A EP3829218A4 (en) 2018-07-25 2019-07-15 Method and apparatus in user equipment and base station used for wireless communication
US17/095,755 US11621816B2 (en) 2018-07-25 2020-11-12 Method and device in UE and base station used for wireless communication
US18/111,907 US11979352B2 (en) 2018-07-25 2023-02-21 Method and device in UE and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810825113.3 2018-07-25
CN201810825113.3A CN110769470B (zh) 2018-07-25 2018-07-25 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/095,755 Continuation US11621816B2 (en) 2018-07-25 2020-11-12 Method and device in UE and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020020005A1 true WO2020020005A1 (zh) 2020-01-30

Family

ID=69181287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095964 WO2020020005A1 (zh) 2018-07-25 2019-07-15 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (4)

Country Link
US (2) US11621816B2 (zh)
EP (1) EP3829218A4 (zh)
CN (1) CN110769470B (zh)
WO (1) WO2020020005A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052971A1 (zh) * 2020-09-11 2022-03-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114499799A (zh) * 2020-11-13 2022-05-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022133821A1 (zh) * 2020-12-23 2022-06-30 华为技术有限公司 一种小区切换的方法及装置
EP4174241A1 (en) 2021-11-01 2023-05-03 Memis Oguzhan Wood building system
EP4114083A4 (en) * 2020-02-25 2023-07-19 Sony Group Corporation ELECTRONIC WIRELESS COMMUNICATION DEVICE AND METHOD AND COMPUTER READABLE STORAGE MEDIUM

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416639B (zh) * 2019-01-07 2021-06-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113258968B (zh) * 2020-02-12 2023-04-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20230275727A1 (en) * 2020-08-03 2023-08-31 Nokia Technologies Oy Positioning reference signal design for low power tracking
CN114337741B (zh) * 2020-10-09 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022073492A1 (zh) * 2020-10-10 2022-04-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114337740B (zh) * 2020-10-10 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114499779A (zh) * 2020-10-23 2022-05-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114430311A (zh) * 2020-10-29 2022-05-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114598431B (zh) * 2020-12-07 2024-03-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2023279358A1 (en) * 2021-07-09 2023-01-12 Qualcomm Incorporated Neighbor cell interference measurement
US11444670B1 (en) * 2021-10-15 2022-09-13 General Dynamics Mission Systems, Inc. Method and apparatus for distributed beamforming
US11671156B1 (en) 2022-05-17 2023-06-06 General Dynamics Mission Systems, Inc. Error correction in a distributed beamforming
CN117498995A (zh) * 2022-07-20 2024-02-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685826A (zh) * 2011-03-17 2012-09-19 华为技术有限公司 切换处理方法、装置和系统
WO2017204739A1 (en) * 2016-05-27 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal tracking in a wireless communication system
CN108012274A (zh) * 2016-11-01 2018-05-08 上海朗帛通信技术有限公司 一种被用于范围扩展的ue、基站中的方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9106276B2 (en) * 2012-08-13 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for reference signal transmission and reception
US10237879B2 (en) * 2013-07-09 2019-03-19 Lg Electronics Inc. Method for channel state report in wireless communication system and apparatus therefor
EP3178189B1 (en) * 2014-08-07 2020-12-09 Telefonaktiebolaget LM Ericsson (publ) System and method for characterizing dynamic interferers in advanced receivers
US10567057B2 (en) * 2014-12-30 2020-02-18 Lg Electronics Inc. Method for performing channel estimation in wireless communication system and apparatus therefor
WO2016163842A1 (ko) * 2015-04-10 2016-10-13 엘지전자 (주) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
CN109565796B (zh) * 2016-08-12 2021-02-12 华为技术有限公司 一种控制信息的发送和检测方法、装置及存储介质
US10938532B2 (en) * 2017-01-09 2021-03-02 Lg Electronics Inc. CSI-RS configuration method and apparatus for beam management in wireless communication system
JP2020107919A (ja) * 2017-04-27 2020-07-09 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN111769861B (zh) * 2018-05-09 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112911621B (zh) * 2018-05-11 2023-02-28 中兴通讯股份有限公司 资源的选择方法及装置
CN114008945A (zh) 2019-05-02 2022-02-01 Lg电子株式会社 在无线通信系统中发送或接收信号的方法和支持其的设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685826A (zh) * 2011-03-17 2012-09-19 华为技术有限公司 切换处理方法、装置和系统
WO2017204739A1 (en) * 2016-05-27 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal tracking in a wireless communication system
CN108012274A (zh) * 2016-11-01 2018-05-08 上海朗帛通信技术有限公司 一种被用于范围扩展的ue、基站中的方法和设备

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
3 GPP TS3 8.331
3 GPP TS38.331
3GPP TS38.211
3GPP TS38.212
3GPP TS38.213
3GPP TS38.214
3GPP TS38.321
3GPP TS38.331
See also references of EP3829218A4
TS38.212

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4114083A4 (en) * 2020-02-25 2023-07-19 Sony Group Corporation ELECTRONIC WIRELESS COMMUNICATION DEVICE AND METHOD AND COMPUTER READABLE STORAGE MEDIUM
WO2022052971A1 (zh) * 2020-09-11 2022-03-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114499799A (zh) * 2020-11-13 2022-05-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114499799B (zh) * 2020-11-13 2024-02-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022133821A1 (zh) * 2020-12-23 2022-06-30 华为技术有限公司 一种小区切换的方法及装置
EP4174241A1 (en) 2021-11-01 2023-05-03 Memis Oguzhan Wood building system

Also Published As

Publication number Publication date
US20230198704A1 (en) 2023-06-22
CN110769470A (zh) 2020-02-07
US11621816B2 (en) 2023-04-04
CN110769470B (zh) 2020-07-31
US11979352B2 (en) 2024-05-07
US20210083813A1 (en) 2021-03-18
EP3829218A4 (en) 2021-12-29
EP3829218A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020020005A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020011092A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018121190A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019028885A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2019144264A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018095201A1 (zh) 一种用于多天线系统的用户设备、基站中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019841459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019841459

Country of ref document: EP

Effective date: 20210225