WO2021031901A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021031901A1
WO2021031901A1 PCT/CN2020/108170 CN2020108170W WO2021031901A1 WO 2021031901 A1 WO2021031901 A1 WO 2021031901A1 CN 2020108170 W CN2020108170 W CN 2020108170W WO 2021031901 A1 WO2021031901 A1 WO 2021031901A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
interface resource
node
signaling
resource pool
Prior art date
Application number
PCT/CN2020/108170
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021031901A1 publication Critical patent/WO2021031901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device related to a side link (Sidelink) in wireless communication.
  • Sidelink side link
  • V2X Vehicle-to-Everything
  • 3GPP has initiated standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services, and has written it into the standard TS22.886.
  • 3GPP has defined 4 Use Case Groups for 5G V2X services, including: Automated Queued Driving (Vehicles Platnooning), support Extended sensors (Extended Sensors), semi/automatic driving (Advanced Driving) and remote driving (Remote Driving).
  • Automated Queued Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • NR V2X Compared with the existing LTE (Long-term Evolution) V2X system, NR V2X has a notable feature that supports unicast and multicast and supports HARQ (Hybrid Automatic Repeat reQuest) functions.
  • HARQ-ACK Hybrid Automatic Repeat reQuest
  • the PSFCH Physical Sidelink Feedback Channel
  • PSFCH resources can be periodically configured or pre-configured.
  • the receiving UE User Equipment
  • V2X determines whether it needs to send HARQ feedback by determining the distance from the sending UE in V2X , Thereby effectively avoiding unnecessary feedback channel overhead on the secondary link.
  • the base station will be configured with multiple TRPs (Transmit-Receive Points), and then different TRPs will be configured with different air interface resource pools for V2X transmission, and different TRPs will correspond to different beams Coverage scenarios, for example, some TRPs are used for wide beamforming vectors with larger coverage areas, and some TRPs are used for narrow beam coverage scenarios with relatively small coverage, and then the above-mentioned scheme for determining the HARQ transmission mode on the secondary link based on location information It needs to be redesigned in a multi-TRP scenario.
  • TRPs Transmit-Receive Points
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node, and vice versa. In the case of no conflict, the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool The first area identifier is used to determine the current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location .
  • the advantage of the above method is that the second node in this application will simultaneously calculate the first area identifier and the second area identifier based on the first area size and the second area size. Sent to the first node, so that the first node can determine whether it needs to feed back HARQ-ACK on the secondary link.
  • another advantage of the above method is that the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool, and the first node is prepared to When the PSFCH is sent in the corresponding air interface resource pool, the corresponding area identifier is used to determine whether to send the first signal, thereby avoiding potential interference to the cellular link uplink while ensuring the flexibility of PSFCH sending.
  • another advantage of the above method is that the first air interface resource pool and the second air interface resource pool are respectively associated with the first TRP and the second TRP configured by the serving cell of the first node, and then The air interface resources occupied by the first signal are independently configured and coordinated based on the respective TRPs, which makes the foregoing operations more flexible and improves the flexibility of overall secondary link transmission.
  • the above method is characterized in that the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the first area The second air interface resource pool is associated with a second area size, and the second area size is used to determine the second area identifier.
  • the advantage of the above method is that different area identifiers are determined according to different area sizes, and then different area division methods are determined for different TRPs, and different air interface resource pools are configured for different TRPs, and then implemented in different Under TRP, different rules for determining whether to send HARQ-ACK are used, and the strategy of sending HARQ-ACK can be flexibly adjusted to improve the flexibility of system design.
  • the above method is characterized in that a target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool , The first area size is used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target Region ID.
  • the advantage of the above method is that the target area identifier corresponding to the first node is determined with reference to one of the first area size or the second area size, thereby ensuring that the first node is at The determination of whether to send the first signal adopts the same area division manner as the second node in this application, which improves the accuracy of the process of deciding whether to send the first signal.
  • the above method is characterized in that it includes:
  • the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the above method is characterized in that it includes:
  • the third signaling is used to determine X1 candidate air interface resource sets, the first air interface resource set is one of the X1 candidate air interface resource sets, and X1 is a positive integer greater than 1.
  • the advantage of the above method is that the second node in this application is configured with multiple resources that can be used to send PSFCH, that is, the X1 candidate air interface resource set, which is convenient for the first node to perform
  • the selection avoids the problem that the PSFCH cannot be sent due to the scheduling of the cellular link in part of the air interface resource set, and ensures the robustness of PSFCH transmission.
  • the above method is characterized in that it includes:
  • the first signaling includes configuration information of the target signal, and the first signal is used for feedback of the target signal; the target signal is transmitted on the secondary link.
  • the above method is characterized in that it includes:
  • the fourth signaling is used to indicate a target reference signal, and the target reference signal is associated with the first air interface resource set.
  • the above method is characterized in that it includes:
  • the fifth signaling is used to indicate the size of the first area and the size of the second area.
  • the above method is characterized in that it includes:
  • the sixth signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the above method is characterized in that the first air interface resource pool and the second air interface resource pool correspond to a first index and a second index, respectively, and the first index and the second index are different .
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the sender of the first signal is the first node; the first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface When the resource set is associated with the first air interface resource pool, the first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the second air interface resource When pooling, the second area identifier is used to determine the current location of the first node; the first node judges whether to send the first signal according to the current location of the first node; when the judgment result is yes When the first signal is sent in the first air interface resource set; when the judgment result is no, it is abandoned to send the first signal in the first air interface resource set.
  • the above method is characterized in that the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the first area The second air interface resource pool is associated with a second area size, and the second area size is used to determine the second area identifier.
  • the above method is characterized in that a target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool , The first area size is used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target Region ID.
  • the above method is characterized in that it includes:
  • the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the above method is characterized in that it includes:
  • the sixth signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the above method is characterized in that it includes:
  • the third signaling is used to determine X1 candidate air interface resource sets, the first air interface resource set is one of the X1 candidate air interface resource sets, and X1 is a positive integer greater than 1.
  • the above method is characterized in that it includes:
  • the first signaling includes configuration information of the target signal, and the first signal is used for feedback of the target signal; the target signal is transmitted on the secondary link.
  • the above method is characterized in that it includes:
  • the fourth signaling is used to indicate a target reference signal, and the target reference signal is associated with the first air interface resource set.
  • the above method is characterized in that it includes:
  • the fifth signaling is used to indicate the size of the first area and the size of the second area.
  • the above method is characterized in that the first air interface resource pool and the second air interface resource pool correspond to a first index and a second index, respectively, and the first index and the second index are different .
  • the above method is characterized in that it includes:
  • the fifth signaling is used to indicate the size of the first area and the size of the second area.
  • the above method is characterized in that the first air interface resource pool and the second air interface resource pool correspond to a first index and a second index, respectively, and the first index and the second index are different .
  • This application discloses a method used in a third node of wireless communication, which is characterized in that it includes:
  • the recipient of the second signaling includes a first node, and the first node determines whether to send the first signal according to the current location of the first node; when the determination result is yes, the first node is The first air interface resource set sends the first signal; when the judgment result is no, the first node abandons sending the first signal in the first air interface resource set; the first area identifier and the second area identifier are respectively associated with the first signal An air interface resource pool and the second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine all the resources of the first node The current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location of the first node.
  • the above method is characterized in that the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the first area The second air interface resource pool is associated with a second area size, and the second area size is used to determine the second area identifier.
  • the above method is characterized in that a target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool , The first area size is used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target Region ID.
  • the above method is characterized in that it includes:
  • the fourth signaling is used to indicate a target reference signal, and the target reference signal is associated with the first air interface resource set.
  • the above method is characterized in that it includes:
  • the fifth signaling is used to indicate the size of the first area and the size of the second area.
  • the above method is characterized in that the first air interface resource pool and the second air interface resource pool correspond to a first index and a second index, respectively, and the first index and the second index are different .
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives first signaling, where the first signaling is used to indicate the first area identifier and the second area identifier;
  • the first transmitter judges whether to send the first signal according to the current location; when the judgment result is yes, it sends the first signal in the first air interface resource set; when the judgment result is no, it gives up sending the first signal in the first air interface resource set. signal;
  • the first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool The first area identifier is used to determine the current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location .
  • This application discloses a second node used for wireless communication, which is characterized by including:
  • the second transmitter sends first signaling, where the first signaling is used to indicate the first area identifier and the second area identifier;
  • the second receiver detects the first signal in the first air interface resource set
  • the sender of the first signal is the first node; the first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface When the resource set is associated with the first air interface resource pool, the first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the second air interface resource When pooling, the second area identifier is used to determine the current location of the first node; the first node judges whether to send the first signal according to the current location of the first node; when the judgment result is yes When the first signal is sent in the first air interface resource set; when the judgment result is no, it is abandoned to send the first signal in the first air interface resource set.
  • This application discloses a third node used for wireless communication, which is characterized by including:
  • the third transmitter sends second signaling, where the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool;
  • the recipient of the second signaling includes a first node, and the first node determines whether to send the first signal according to the current location of the first node; when the determination result is yes, the first node is The first air interface resource set sends the first signal; when the judgment result is no, the first node abandons sending the first signal in the first air interface resource set; the first area identifier and the second area identifier are respectively associated with the first signal An air interface resource pool and the second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine all the resources of the first node The current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location of the first node.
  • this application has the following advantages:
  • the second node in this application sends the first area identifier and the second area identifier calculated according to the first area size and the second area size to the first node at the same time, thereby facilitating the first A node determines whether it needs to feed back HARQ-ACK on the secondary link;
  • the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool, and the first node prepares to send the PSFCH in the corresponding air interface resource pool, so use
  • the corresponding area identifier determines whether to send the first signal, thereby avoiding potential interference to the cellular link uplink while ensuring the flexibility of PSFCH sending;
  • the first air interface resource pool and the second air interface resource pool are respectively associated with the first TRP and the second TRP configured by the serving cell of the first node, and the air interface resources occupied by the first signal are Based on the independent configuration and coordination of each TRP, the above operations are made more flexible to improve the flexibility of the overall secondary link transmission;
  • the second node in this application is configured with multiple resources that can be used to send PSFCH, that is, the X1 candidate air interface resource set, thereby facilitating the selection of the first node and avoiding part of the air interface resources
  • PSFCH Physical Broadband Code Division Multiple Access
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of the first signal according to an embodiment of the present application
  • Figure 6 shows a flowchart of fifth signaling and sixth signaling according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a first air interface resource pool and a second air interface resource pool according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of a first air interface resource pool and a second air interface resource pool according to another embodiment of the present application
  • FIG. 9 shows a schematic diagram of a first-type air interface resource set and a second-type air interface resource set according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a first air interface resource pool and a second air interface resource pool and corresponding beamforming vectors according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of a first area size and a second area size according to an embodiment of the present application
  • Fig. 12 shows a schematic diagram of the positional relationship between the first node and the third node according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the positional relationship between the first node and the third node according to another embodiment of the present application.
  • Fig. 14 shows a schematic diagram of an antenna structure of a node according to an embodiment of the present application
  • Fig. 15 shows a structural block diagram used in the first node according to an embodiment of the present application.
  • Fig. 16 shows a structural block diagram used in a second node according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram used in the third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application receives the first signaling in step 101, and the first signaling is used to indicate the first area identifier and the second area identifier; in step 102, it is determined whether the current location is Send the first signal; when the judgment result is yes, send the first signal in the first air interface resource set; when the judgment result is no, give up sending the first signal in the first air interface resource set;
  • the first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface resource set is associated with the first air interface In the case of a resource pool, the first area identifier is used to determine the current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location. State the current position.
  • the first signaling is sent on the secondary link.
  • the first signal is sent on the secondary link.
  • the first signal is sent on a PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the first signal is sent on the PSFCH.
  • the first signal is sent on PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel.
  • the identity of the first serving cell is used to generate the first signaling and the first signal.
  • the identity of the first serving cell is used to generate the target signal in this application.
  • the first serving cell is the serving cell of the first node, and the identity of the first serving cell is the PCI (Physical Cell Identification, Physical cell identity).
  • PCI Physical Cell Identification, Physical cell identity
  • the identifier of the first serving cell is an integer.
  • the identifier of the first serving cell is a non-negative integer less than 1024.
  • the identifier of the first serving cell is a non-negative integer less than 65536.
  • the meaning of the phrase first serving cell identity used to generate the first signaling and the first signal includes: the first serving cell identity is used to generate the The CRC of the first signaling.
  • the meaning of the phrase first serving cell identity being used to generate the first signaling and the first signal includes: the first serving cell identity being used in the Scrambling of the first signaling and the first signal.
  • the first air interface resource set includes time domain resources and frequency domain resources.
  • the first air interface resource set includes code domain resources.
  • the first air interface resource set includes airspace resources.
  • the first air interface resource set corresponds to one antenna port.
  • the first air interface resource set corresponds to one reference signal.
  • the first air interface resource set corresponds to a beamforming vector.
  • the first air interface resource set occupies a positive integer number of multi-carrier symbols in the time domain and a positive integer number of subcarriers in the frequency domain.
  • the first air interface resource set occupies M1 multi-carrier symbols in the time domain, and occupies frequency domain resources corresponding to M2 RB (Resource Block, resource blocks) in the frequency domain.
  • M1 and the M2 All are positive integers.
  • the first air interface resource pool and the second air interface resource pool are maintained by the same serving cell.
  • the first air interface resource pool includes K1 air interface resource sets
  • the second air interface resource pool includes K2 air interface resource sets
  • both K1 and K2 are positive integers.
  • any air interface resource set in the K1 air interface resource sets occupies a positive integer number of multi-carrier symbols in the time domain and a positive integer number of subcarriers in the frequency domain.
  • any air interface resource set in the K1 air interface resource sets occupies M3 multi-carrier symbols in the time domain, and the frequency domain resources corresponding to M4 RBs in the frequency domain. Both M3 and M4 are positive integers.
  • any air interface resource set in the K2 air interface resource sets occupies a positive integer number of multi-carrier symbols in the time domain and a positive integer number of subcarriers in the frequency domain.
  • any air interface resource set in the K2 air interface resource sets occupies M5 multi-carrier symbols in the time domain, and the frequency domain resources corresponding to M5 RBs in the frequency domain. Both M5 and the M6 are positive integers.
  • any air interface resource set in the K1 air interface resource sets includes one PUCCH (Physical Uplink Control Channel) resource (Resource).
  • PUCCH Physical Uplink Control Channel
  • Resource Resource
  • any air interface resource set in the K2 air interface resource sets includes one PUCCH resource.
  • any air interface resource set in the K1 air interface resource sets includes time domain resources and frequency domain resources.
  • any air interface resource set in the K2 air interface resource sets includes time domain resources and frequency domain resources.
  • any air interface resource set in the K1 air interface resource sets includes code domain resources.
  • any air interface resource set in the K2 air interface resource sets includes code domain resources.
  • any air interface resource set in the K1 air interface resource sets includes airspace resources.
  • any air interface resource set in the K2 air interface resource sets includes airspace resources.
  • the first air interface resource set is an air interface resource set in the K1 air interface resource sets.
  • the first air interface resource set is an air interface resource set among the K2 air interface resource sets.
  • the airspace resource in this application includes a transmitting antenna port.
  • the airspace resources included in the air interface resource set described in this application include: the target RS (Reference Signal) of the transmit antenna port QCL (Quasi co-location) in the air interface resource set. , Reference signal).
  • the airspace resources included in the air interface resource set described in this application include: beam directions corresponding to the transmit antenna ports used by the air interface resource set.
  • the airspace resources included in the air interface resource set described in this application include: an analog beamforming vector corresponding to the transmit antenna port used by the air interface resource set.
  • the airspace resources included in the air interface resource set described in this application include: a digital beamforming vector corresponding to the transmit antenna port used by the air interface resource set.
  • the above phrase means that the first air interface resource set is associated with the first air interface resource pool includes: the first air interface resource set is K1 included in the first air interface resource pool An air interface resource set in an air interface resource set.
  • the above phrase means that the first air interface resource set is associated with the first air interface resource pool includes: the first air interface resource set and the first air interface resource pool are configured as the same transmitting antenna port.
  • the above phrase means that the first air interface resource set is associated with the first air interface resource pool includes: the first air interface resource set and the first air interface resource pool use the same transmit antenna port.
  • the above phrase means that the first air interface resource set is associated with the first air interface resource pool includes: the first air interface resource set and the first air interface resource pool correspond to the same RS.
  • the meaning of the above phrase that the first air interface resource set is associated with the first air interface resource pool includes: the RS of the transmitting antenna port QCL used by the first air interface resource set and the RS of the first air interface resource set.
  • the RS of the transmitting antenna port QCL of an air interface resource pool is the same.
  • the above phrase means that the first air interface resource set is associated with the second air interface resource pool includes: the first air interface resource set is K2 air interface resources included in the second air interface resource pool An air interface resource collection in the collection.
  • the above phrase means that the first air interface resource set is associated with the second air interface resource pool includes: the first air interface resource set and the second air interface resource pool are configured as the same transmitting antenna port.
  • the above phrase means that the first air interface resource set is associated with the second air interface resource pool includes: the first air interface resource set and the second air interface resource pool use the same transmit antenna port.
  • the above phrase means that the first air interface resource set is associated with the second air interface resource pool includes: the first air interface resource set and the second air interface resource pool correspond to the same RS.
  • the above phrase means that the first air interface resource set is associated with the second air interface resource pool includes: the RS of the transmit antenna port QCL used by the first air interface resource set and the RS of the first air interface resource set The RS of the transmitting antenna port QCL of the two air interface resource pools is the same.
  • the two antenna ports being QCL means that it can be inferred from all or part of the large-scale properties of the wireless signal transmitted on one of the two antenna ports All or part of the large-scale characteristics of the wireless signal sent on the other antenna port; the large-scale characteristics include: Delay Spread, Doppler Spread, Doppler Shift (Doppler Spread) Shift), one or more of path loss (Path Loss), and average gain (Average Gain).
  • the two RSs being QCL means that it can be inferred from all or part of the large-scale properties carried by one RS of the two RSs.
  • All or part of the large-scale characteristics of the bearer; the large-scale characteristics include: Delay Spread, Doppler Spread, Doppler Shift, Path Loss, One or more of average gain (Average Gain).
  • the QCL for one RS and one antenna port means that it can be inferred from all or part of the large-scale properties carried by the RS, the wireless transmission on the antenna port All or part of the large-scale characteristics of the signal; the large-scale characteristics include: Delay Spread, Doppler Spread, Doppler Shift, Path Loss, One or more of average gain (Average Gain).
  • the phrase giving up sending the first signal in the first air interface resource set includes: maintaining zero transmission power in the first air interface resource set.
  • the phrase quit sending the first signal in the first air interface resource set includes: releasing a buffer for storing target information bits, the target information bits being used to generate the first signal.
  • the phrase abandoning sending the first signal in the first air interface resource set includes: sending other signals in the first air interface resource set, and the other signals are not related to the information bits carried by the first signal.
  • the QCL includes QCL-Type D in an NR (New Radio) system.
  • the QCL includes QCL-Type A in the NR system.
  • the QCL includes QCL-Type B in the NR system.
  • the QCL includes QCL-Type C in the NR system.
  • the QCL includes QCL-Type D in TS 36.214.
  • the QCL includes QCL-Type A in TS 36.214.
  • the QCL includes QCL-Type B in TS 36.214.
  • the QCL includes QCL-Type C in TS 36.214.
  • the above phrase means that the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool include: when the air interface in the first air interface resource pool When the resource set is reserved for the first signal transmission, the first area identifier is used to determine whether the first node sends the first signal; when the air interface resources in the second air interface resource pool When the set is reserved for the first signal transmission, the second area identifier is used to determine whether the first node sends the first signal.
  • the above phrase means that the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool include: when the air interface in the first air interface resource pool When the resource set is reserved for the transmission of the feedback channel on the secondary link, the first region identifier is used to determine whether the first node sends the feedback channel on the secondary link; when the second air interface resource When the air interface resource set in the pool is reserved for transmission of the feedback channel on the secondary link, the second area identifier is used to determine whether the first node sends the feedback channel on the secondary link.
  • the phrase that the first air interface resource set is associated with the first air interface resource pool includes: the transmit antenna port of the first air interface resource set and the data in the first air interface resource pool The transmit antenna port QCL of at least one air interface resource set.
  • the phrase that the first air interface resource set is associated with the second air interface resource pool includes: the transmit antenna port of the first air interface resource set and the data in the second air interface resource pool The transmit antenna port QCL of at least one air interface resource set.
  • the phrase that the first air interface resource set is associated with the first air interface resource pool includes: the transmitting antenna port of the first air interface resource set and the first reference signal QCL, and the first air interface resource set The transmitting antenna port of at least one air interface resource set in an air interface resource pool and the first reference signal QCL.
  • the phrase meaning that the first air interface resource set is associated with the second air interface resource pool includes: the transmitting antenna port of the first air interface resource set and the second reference signal QCL, the first air interface resource set The transmitting antenna port of at least one air interface resource set in the two air interface resource pool and the second reference signal QCL.
  • the first signal is transmitted on a side link (Sidelink).
  • the first signal is HARQ-ACK for the data channel on the secondary link.
  • the first signal is a feedback (Feedback) for the secondary link.
  • the first area size and the second area size are respectively associated with the first air interface resource pool and the second air interface resource pool.
  • the first zone size identifies the size of a zone (Zone).
  • the size of the one area is associated with a first TRP
  • the first TRP is a TRP included in the serving cell of the first node.
  • the first area size includes a first area length and a first area width, the first area length is equal to X1 meters, and the first area width is equal to Y1 meters, the X1 and the Y1 Is a positive integer greater than 1.
  • the product of X1 and Y1 represents the size of the first area.
  • the first zone length is equal to zoneLength in TS 36.331, and the first zone length is equal to zoneWidth in TS 36.331.
  • the second area size identifies the size of an area.
  • the size of the one area is associated with a second TRP, and the second TRP is a TRP included in the serving cell of the first node.
  • the second area size includes a second area length and a second area width, the second area length is equal to X2 meters, and the second area width is equal to Y2 meters, the X2 and the Y2 Both are positive integers greater than 1.
  • the product of the X2 and the Y2 represents the size of the second area.
  • the length of the second zone is equal to zoneLength in TS 36.331, and the length of the second zone is equal to zoneWidth in TS 36.331.
  • the first node determines a third area identifier according to the first area size.
  • the third area identifier is used to determine the location information of the base station of the first node relative to the serving cell of the first node according to the first area size.
  • the third area identifier is used to determine the position information of the first node relative to the first TRP in this application according to the size of the first area.
  • the first node determines a fourth area identifier according to the second area size.
  • the fourth area identifier is used to determine the location information of the base station of the first node relative to the serving cell of the first node according to the second area size.
  • the fourth area identifier is used to determine the position information of the first node relative to the first TRP in the present application according to the size of the second area.
  • the first zone identifier is a ZoneID.
  • the first area identifier is a non-negative integer.
  • the second zone identifier is a ZoneID.
  • the second area identifier is a non-negative integer.
  • the first area identifier and the second area identifier are different.
  • both the first area identifier and the second area identifier are for the second node in the present application.
  • the first area identifier is an area identifier determined by the second node in this application according to the size of the first area.
  • the second area identifier is an area identifier determined by the second node in this application according to the size of the second area.
  • the third zone identifier is a ZoneID.
  • the third area identifier is a non-negative integer.
  • the fourth zone identifier is a ZoneID.
  • the fourth area identifier is a non-negative integer.
  • the third area identifier and the fourth area identifier are different.
  • both the third area identifier and the fourth area identifier are for the first node in this application.
  • the third area identifier is an area identifier determined by the first node in this application according to the size of the first area.
  • the fourth area identifier is an area identifier determined by the first node in this application according to the size of the second area.
  • the meaning of determining the current location of the phrase includes: the first node determines the third area identifier corresponding to the first node according to the geographic location where it is located and the size of the first area; The third area identifier is compared with the first area identifier to determine the current location; or the first node determines the fourth area corresponding to the first node according to its geographic location and the size of the second area. Area identification, and comparing the fourth area identification with the second area identification to determine the current location.
  • the first signal includes CSI (Channel State Information) for the secondary link.
  • CSI Channel State Information
  • the first signal includes a CQI (Channel Quality Indicator) for the secondary link.
  • CQI Channel Quality Indicator
  • the first signal includes an RI (Rank Indicator, rank indicator) for the secondary link.
  • RI Rank Indicator, rank indicator
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the multi-carrier symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol in this application is SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbol.
  • the multi-carrier symbol in this application is a FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an OFDM symbol including a CP (Cyclic Prefix).
  • the multi-carrier symbol in this application is a DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing) symbol including CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing
  • the secondary link refers to a wireless link between the terminal and the terminal.
  • the first signaling and the second signaling are sent on a cellular link.
  • the receiver of the first signal includes a terminal.
  • the cellular link described in this application is a wireless link between a terminal and a base station.
  • the secondary link in this application corresponds to the PC5 port.
  • the cellular link in this application corresponds to a Uu port.
  • the secondary link in this application is used for V2X communication.
  • the cellular link in this application is used for cellular communication.
  • the first signal is a feedback signal for V2X mode 1 transmission.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable terminology.
  • EPS 200 may include one or more UEs (User Equipment) 201, and include a UE 241 that performs secondary link communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core Network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • HSS
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Sub
  • the UE201 corresponds to the first node in this application.
  • the UE 241 corresponds to the second node in this application.
  • the gNB203 corresponds to the third node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the air interface between the UE201 and the UE241 is a PC-5 interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the radio link between the UE201 and the UE241 is a secondary link.
  • the first node in this application is a terminal covered by the gNB203.
  • the second node in this application is a terminal covered by the gNB203.
  • the second node in this application is a terminal outside the coverage of the gNB203.
  • unicast transmission is supported between the UE201 and the UE241.
  • the UE 201 and the UE 241 support broadcast transmission.
  • the UE 201 and the UE 241 support multicast transmission.
  • the first node and the second node belong to a V2X pair (Pair).
  • the first node is a car.
  • the first node is a vehicle.
  • the first node is an RSU.
  • the first node is a group head of a terminal group.
  • the first node has positioning capability.
  • the second node is a vehicle.
  • the second node is a car.
  • the second node is an RSU (Road Side Unit).
  • the second node is a group header (Group Header) of a terminal group.
  • the second node has positioning capability.
  • the first node has GPS (Global Positioning System, Global Positioning System) capability.
  • GPS Global Positioning System, Global Positioning System
  • the second node has GPS capability.
  • the third node is a base station.
  • the third node is a serving cell.
  • multiple TRPs are attached to the third node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first signaling is generated in the MAC352 or the MAC302.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the second signaling is generated in the MAC352 or the MAC302.
  • the second signaling is generated in the RRC306.
  • the third signaling is generated in the MAC352 or the MAC302.
  • the third signaling is generated in the RRC306.
  • the target signal is generated in the PHY301 or the PHY351.
  • the target signal is generated in the MAC352 or the MAC302.
  • the fourth signaling is generated in the PHY301 or the PHY351.
  • the fourth signaling is generated in the MAC352 or the MAC302.
  • the fourth signaling is generated in the RRC306.
  • the fifth signaling is generated in the MAC352 or the MAC302.
  • the fifth signaling is generated in the RRC306.
  • the sixth signaling is generated in the MAC352 or the MAC302.
  • the sixth signaling is generated in the RRC306.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) signal cluster mapping.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, the first communication device 450 means at least: receiving first signaling, the first signaling is used to indicate the first area identification and the second area identification; according to the current location to determine whether to send The first signal; when the judgment result is yes, send the first signal in the first air interface resource set; when the judgment result is no, give up sending the first signal in the first air interface resource set; the first area identifier and the The second area identifier is respectively associated with the first air interface resource pool and the second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine The current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first A signaling, the first signaling is used to indicate the first area identifier and the second area identifier; determine whether to send the first signal according to the current location; when the determination result is yes, send the first signal in the first air interface resource set Signal; when the judgment result is no, give up sending the first signal in the first air interface resource set; the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool; When the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine the current location; when the first air interface resource set is associated with the second air interface resource pool In the air interface resource pool, the second area identifier is used to determine the current location.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending first signaling, the first signaling being used to indicate the first area identifier and the second area identifier; detecting the first signal in the first air interface resource set; The sender of the first signal is the first node; the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool; when the first air interface resource set is associated When the first air interface resource pool is reached, the first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the second air interface resource pool, The second area identifier is used to determine the current location of the first node; the first node determines whether to send the first signal according to the current location of the first node; when the determination result is yes, the The first air
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending First signaling, where the first signaling is used to indicate the first area identifier and the second area identifier; the first signal is detected in the first air interface resource set; the sender of the first signal is the first node; The first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool, The first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the The current location of the first node; the first node determines whether to send the first signal according to the current location of the first node; when the determination result is yes, sends the first signal in the first air interface resource set Signal; when the judgment
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending second signaling, the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool; the recipient of the second signaling includes the first Node, the first node judges whether to send the first signal according to the current location of the first node; when the judgment result is yes, the first node sends the first signal in the first air interface resource set; when the judgment result is If not, the first node gives up sending the first signal in the first air interface resource set; the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool; when When the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated When reaching the
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The second signaling, the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool; the receiver of the second signaling includes the first node, and the first node
  • the current location of a node judges whether to send the first signal; when the judgment result is yes, the first node sends the first signal in the first air interface resource set; when the judgment result is no, the first node gives up An air interface resource set sends the first signal; the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool; when the first air interface resource set is associated with all In the first air interface resource pool, the first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the second air interface resource pool, The second area identifier is used to determine the
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a base station.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first One signaling, the first signaling is used to indicate the first area identifier and the second area identifier; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 At least one of the controller/processor 475 is used to send first signaling, and the first signaling is used to indicate the first area identifier and the second area identifier.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used for Determine whether to send the first signal; when the judgment result is yes, send the first signal in the first air interface resource set; when the judgment result is no, give up sending the first signal in the first air interface resource set.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used in the first The first signal is detected in the air interface resource set.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Two signaling; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the second Signaling.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Three signaling; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the third Signaling.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the target Signal; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit a target signal.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Four signaling; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the fourth Signaling.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first Five signaling; the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, at least one of the controller/processor 475 is used to transmit the fifth Signaling.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to transmit the sixth Signaling; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used to receive the sixth Signaling.
  • Embodiment 5 illustrates a flow chart of the first signal, as shown in FIG. 5.
  • the first node U1 and the second node U2 communicate through the secondary link, and the first node U1 and the third node N3 communicate through the cellular link; in the figure, block F0 and block F1
  • the steps marked with box F2 are optional; the steps marked with dotted lines indicate that their operations will be affected by the decision in step S16.
  • step S10 receiving a second signaling; receiving a fifth signaling in step S11; third signaling received in step S12; receiving a fourth signaling step S13; step S14 in Receive the first signaling; receive the target signal in step S15; determine whether to send the first signal according to the current position in step S16; when the judgment result is yes, send the first signal in the first air interface resource set; when the judgment result is Otherwise, give up sending the first signal in the first air interface resource set.
  • step S20 For the second node U2, received in step S20, a second signaling; receiving a fifth signaling in step S21; third signaling transmitted in step S22; fourth signaling transmitted in step S23; step S24 in Send the first signaling; send the target signal in step S25; detect the first signal in the first air interface resource set in step S26.
  • the first signaling is used to indicate the first area identifier and the second area identifier; the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second area identifier.
  • Air interface resource pool when the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine the current location of the first node U1; when the first air interface resource When the set is associated with the second air interface resource pool, the second area identifier is used to determine the current location of the first node U1; the second signaling is used to indicate the first air interface resource pool and The second air interface resource pool; the third signaling is used to determine X1 candidate air interface resource sets, the first air interface resource set is one of the X1 candidate air interface resource sets, and X1 is A positive integer greater than 1; the first signaling includes configuration information of the target signal, and the first signal is used for feedback to the target signal; the target signal is transmitted on the secondary link; The fourth signaling is used to indicate
  • the second signaling is sent on the downlink.
  • the second signaling is sent by the base station corresponding to the serving cell of the first node U1.
  • the fifth signaling is sent on the downlink.
  • the fifth signaling is sent by the base station corresponding to the serving cell of the first node U1.
  • the second signaling is cell common (Cell Common).
  • the second signaling is exclusive to the user equipment.
  • the second signaling is for the first node U1.
  • the second signaling is higher layer signaling.
  • the second signaling is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the fifth signaling is common to the cell.
  • the fifth signaling is for the first node.
  • the fifth signaling is higher layer signaling.
  • the fifth signaling is for the first node U1.
  • the fifth signaling is RRC signaling.
  • the second signaling includes SL-ZoneConfig in TS 36.331.
  • the fifth signaling includes SL-ZoneConfig in TS 36.331.
  • the second signaling includes a first sub signaling and a second sub signaling, and the first sub signaling and the second sub signaling are respectively used to indicate the first air interface resource Pool and the second air interface resource pool, the first sub-signaling and the second sub-signaling are sent by a first TRP and a second TRP, respectively, and the first TRP and the second TRP are attached to Two TRPs under the third node.
  • the fifth signaling includes a third sub signaling and a fourth sub signaling, and the third sub signaling and the fourth sub signaling are respectively used to indicate the size of the first area And the second area size, the third sub-signaling and the fourth sub-signaling are sent by the first TRP and the second TRP respectively, and the first TRP and the second TRP are attached to the Two TRPs under the third node.
  • the second signaling is used to indicate the size of the first area and the size of the second area.
  • the second signaling includes the fifth signaling.
  • the first air interface resource pool is associated with the first TRP in this application
  • the second air interface resource pool is associated with the second TRP in this application
  • the first TRP And the second TRP are two TRPs under the serving cell of the first node
  • the first identifier is used to indicate the first TRP
  • the second identifier is used to indicate the second TRP.
  • the second signaling includes the first identifier and the second identifier.
  • the first identifier and the second identifier are two non-negative integers respectively.
  • the fifth signaling includes the first identifier and the second identifier.
  • the first sub-signaling in this application includes the first identifier
  • the second sub-signaling in this application includes the second identifier
  • the third sub-signaling in this application includes the first identifier
  • the fourth sub-signaling in this application includes the second identifier
  • the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the second air interface resource pool is associated with the first area Two area sizes, the second area size is used to determine the second area identifier.
  • the target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool, the first area size is Used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target area identifier.
  • the first signaling is SCI (Sidelink Control Information, secondary link control information).
  • the first signaling and the fourth signaling belong to one SCI at the same time.
  • the first signaling is used to schedule the target signal.
  • the configuration information includes MCS (Modulation and Coding Scheme) adopted by the target signal.
  • MCS Modulation and Coding Scheme
  • the configuration information includes DMRS (DeModulation Reference Signals, demodulation reference signal) configuration information of the target signal.
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • the DMRS configuration information includes ports of the DMRS, time domain resources occupied, frequency domain resources occupied, code domain resources occupied, RS sequence, mapping mode, DMRS type, cyclic shift amount (cyclic shift), or one or more of OCC (Orthogonal Cover Code, orthogonal mask).
  • OCC Orthogonal Cover Code
  • the configuration information includes NDI (New Data Indicator) corresponding to the target signal.
  • NDI New Data Indicator
  • the configuration information includes an RV (Redundancy Version, redundancy version) corresponding to the target signal.
  • RV Redundancy Version, redundancy version
  • the configuration information includes time domain resources occupied by the target signal.
  • the configuration information includes frequency domain resources occupied by the target signal.
  • the third node N3 and the second node U2 are not co-located.
  • the second node U2 in this application is a terminal.
  • V2X communication is performed between the second node U2 and the first node U1.
  • the second node U2 and the first node U1 belong to the same serving cell.
  • the second node U2 and the first node U1 are served by the same serving cell.
  • the second node U2 and the first node U1 are respectively served by different serving cells.
  • the first area identifier and the target area identifier are used by the first node U1 to determine whether to send Mentioned first signal.
  • the first area identifier and the target area identifier are used together to determine that the distance between the second node U2 and the first node U1 is not greater than a first threshold,
  • the first node U1 sends the first signal in the first air interface resource set.
  • the first area identifier and the target area identifier are used together to determine that the distance between the second node U2 and the first node U1 is greater than a first threshold, so The first node U1 abandons sending the first signal in the first air interface resource set.
  • the first threshold is fixed, or the first threshold is configured through RRC signaling.
  • the target area identifier is the third area identifier in this application.
  • the first area size is used to determine the target area identifier.
  • the second area identifier and the target area identifier are used by the first node U1 to determine whether to send The first signal.
  • the second area identifier and the target area identifier are used together to determine that the distance between the second node U2 and the first node U1 is not greater than a second threshold,
  • the first node U1 sends the first signal in the first air interface resource set.
  • the second area identifier and the target area identifier are used together to determine that the distance between the second node U2 and the first node U1 is greater than a second threshold, so The first node U1 abandons sending the first signal in the first air interface resource set.
  • the second threshold is fixed, or the second threshold is configured through RRC signaling.
  • the target area identifier is the fourth area identifier in this application.
  • the second area size is used to determine the target area identifier.
  • the first threshold in this application is not equal to the second threshold in this application.
  • the first signaling is used to indicate the first air interface resource set.
  • the first signaling is used to determine the first air interface resource set.
  • the time domain resources occupied by the target signal are used to determine the time domain resources occupied by the first air interface resource set.
  • the frequency domain resources occupied by the target signal are used to determine the frequency domain resources occupied by the first air interface resource set.
  • the target signal is a wireless signal.
  • the target signal is a baseband channel.
  • the physical layer channel that carries the first signaling includes PSCCH.
  • the physical layer channel carrying the target signal includes PSSCH.
  • the physical layer channel carrying the target signal includes a PSFCH.
  • a first sequence is used to generate the target signal, and the first sequence includes at least one of a pseudo-random sequence or a Zadoff-Chu sequence.
  • the target reference signal corresponds to a target reference signal identifier.
  • the target reference signal is used to determine the spatial reception parameter adopted by the second node U2 in the first air interface resource set.
  • the target reference signal is used to determine the spatial transmission parameter adopted by the first node U1 in the first air interface resource set.
  • the transmitting antenna port of the first node U1 in the first air interface resource set is a first reference signal, and the first reference signal and the target reference signal are QCL.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to a first index and a second index, and the first index and the second index are different.
  • the first index is associated with the first TRP in this application
  • the second index is associated with the second TRP in this application
  • the first Both the TRP and the second TPR are TRPs under the serving cell of the first node.
  • the first index and the second index are respectively used to identify two CORESET (Control Resource Set, control resource set).
  • the cell identity of the serving cell of the first node U1 is the first cell identity
  • the wireless signal transmitted in the first air interface resource pool is simultaneously controlled by the first cell identity and The first index is scrambled.
  • the cell identity of the serving cell of the first node U1 is the first cell identity
  • the wireless signal transmitted in the second air interface resource pool is simultaneously controlled by the first cell identity and The second index is scrambled.
  • the detection includes energy detection.
  • the detection includes blind detection.
  • the detection includes sequence detection.
  • the detection includes coherent detection.
  • the second node U2 does not know whether the first signal is sent before receiving the first signal.
  • the second signaling is used to indicate at least one of time domain resources or frequency domain resources occupied by the first air interface resource pool; and the second signaling is used to indicate At least one of time domain resources or frequency domain resources occupied by the second air interface resource pool.
  • the second signaling is used to indicate the airspace resources occupied by the first air interface resource pool; and the second signaling is used to indicate the airspace resources occupied by the second air interface resource pool Resources.
  • first candidate air interface resource set and a second candidate air interface resource set in the X1 candidate air interface resource sets, and the first candidate air interface resource set is K1 included in the first air interface resource pool.
  • One of two air interface resource sets, and the second candidate air interface resource set is one of K2 air interface resource sets included in the second air interface resource pool.
  • the fourth signaling is used to indicate X1 candidate reference signals, the X1 candidate reference signals respectively correspond to X1 candidate air interface resource sets, and the target reference signals are the X1 candidate reference signals.
  • the target reference signals are the X1 candidate reference signals.
  • the X1 candidate reference signals are respectively used to determine X1 spatial transmission parameter groups on the X1 candidate air interface resource sets.
  • the X1 candidate reference signals are respectively used to determine X1 spatial reception parameter groups on the X1 candidate air interface resource sets.
  • the X1 candidate reference signals respectively correspond to X1 antenna ports.
  • Embodiment 6 illustrates a schematic diagram of the fifth signaling and the sixth signaling according to an embodiment of the present application; as shown in FIG. 6.
  • the first node U4 and the second node U5 communicate through the secondary link
  • the first node U4 and the third node N6 communicate through the cellular link; in the case of no conflict, the implementation
  • the embodiment, sub-embodiment, and subsidiary embodiment in Example 5 can be applied to Embodiment 6; conversely, the embodiment, sub-embodiment, and subsidiary embodiment in Embodiment 6 can be applied to Embodiment 5.
  • step S40 For the first point U4, received at step S40 a second signaling; signaling receiving a fifth step S41; signaling is transmitted in the sixth step S42.
  • the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool;
  • the fifth signaling is used to indicate the first area size and the The second area size;
  • the sixth signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the sixth signaling is sent on the secondary link.
  • the third node N6 and the second node U5 are not co-located.
  • the second node U5 in this application is a terminal.
  • V2X communication is performed between the second node U5 and the first node U4.
  • the second node U5 and the first node U4 belong to the same serving cell.
  • the second node U5 and the first node U4 are served by the same serving cell.
  • the second node U5 and the first node U4 are respectively served by different serving cells.
  • the sixth signaling is used to forward the configuration information of the first air interface resource pool and the configuration information of the second air interface resource pool.
  • the sixth signaling is used to forward the first area size and the second area size.
  • the sixth signaling is used to indicate the first area size and the second area size.
  • the sixth signaling is used to indicate at least one of time domain resources or frequency domain resources occupied by the first air interface resource pool; and the sixth signaling is used to indicate At least one of time domain resources or frequency domain resources occupied by the second air interface resource pool.
  • the sixth signaling is used to indicate the airspace resources occupied by the first air interface resource pool; and the second signaling is used to indicate the airspace occupied by the sixth air interface resource pool Resources.
  • the sixth signaling is higher layer signaling.
  • the sixth signaling is RRC signaling.
  • the sixth signaling is signaling on the PC-5 port.
  • the sixth signaling is MAC CE.
  • Embodiment 7 illustrates a schematic diagram of the first air interface resource pool and the second air interface resource pool according to an embodiment of the present application; as shown in FIG. 7.
  • the RE (Resource Element) occupied by the first air interface resource pool and the RE occupied by the second air interface resource pool are orthogonal.
  • the above phrase means that the RE occupied by the first air interface resource pool and the RE occupied by the second air interface resource pool are orthogonal to include: there is no RE that belongs to the first air interface resource at the same time Pool and the second air interface resource pool.
  • the first air interface resource pool and the second air interface resource pool are TDM (Time-Domain Multipleplex, time division multiplexing); or the first air interface resource pool and the second air interface resource pool It is FDM (Frequency-Domain Multipleplex, Time Division Multiplex).
  • the first air interface resource pool occupies Q1 multi-carrier symbols in the time domain, and the Q1 is a positive integer greater than 1.
  • the Q1 multi-carrier symbols are discrete in the time domain.
  • the second air interface resource pool occupies Q2 multi-carrier symbols in the time domain, and the Q2 is a positive integer greater than 1.
  • the Q2 multi-carrier symbols are discrete in the time domain.
  • the multi-carrier symbols included in the first air interface resource pool and the multi-carrier symbols included in the second air interface resource pool are interleaved in the time domain.
  • Embodiment 8 illustrates another schematic diagram of the first air interface resource pool and the second air interface resource pool, as shown in FIG. 8.
  • the first air interface resource pool includes K1 air interface resource sets
  • the second air interface resource pool includes K2 air interface resource sets; at least one air interface resource set of the first type exists in the K1 air interface resource sets.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to different airspace resources.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to different spatial transmission parameter groups.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to different space reception parameter groups.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to different antenna ports.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to different reference signals, or the first air interface resource pool and the second air interface resource pool respectively correspond to different reference signal identifiers .
  • Embodiment 9 illustrates a schematic diagram of a first-type air interface resource set and a second-type air interface resource set, as shown in FIG. 9.
  • the first type of air interface resource set and the second type of air interface resource set belong to the first air interface resource pool and the second air interface resource pool in this application, respectively; and the first type of air interface The resource set and the second-type air interface resource set occupy the same time-frequency resources.
  • the first node in the present application uses different spatial transmission parameters to send wireless signals on the first type of air interface resource set and the second type of air interface resource set.
  • the second node in the present application uses different spatial reception parameters to receive wireless signals in the first type of air interface resource set and the second type of air interface resource set.
  • the first-type air interface resource set and the second-type air interface resource set are respectively associated with different antenna ports.
  • the first type air interface resource set and the second type air interface resource set are respectively associated with different reference signals.
  • Embodiment 10 illustrates a schematic diagram of a first air interface resource pool and a second air interface resource pool and corresponding beamforming vectors.
  • the first air interface resource pool corresponds to a first beamforming vector
  • the second air interface resource pool corresponds to a second beamforming vector.
  • the first beamforming vector and the second beamforming vector respectively correspond to different spatial reception parameters.
  • the first beamforming vector and the second beamforming vector respectively correspond to different spatial transmission parameters.
  • the first beamforming vector and the second beamforming vector respectively correspond to different reference signals.
  • the first beamforming vector and the second beamforming vector respectively correspond to different transmitting antenna ports.
  • Embodiment 11 illustrates a schematic diagram of the size of the first area and the size of the second area, as shown in FIG. 11.
  • the rectangular grid with a solid line corresponds to the area divided according to the size of the first area
  • the rectangular grid with a dotted line corresponds to the area divided according to the size of the second area.
  • the division of the size of the first area shown in the figure is the division of the area centered on the first TRP.
  • the division of the second area size shown in the figure is based on the area division centered on the second TRP.
  • the first area size includes a first area length and a first area width
  • the second area size includes a second area length and a second area width; the first area length is not equal to the first area length The length of the second area, or the width of the first area is not equal to the width of the second area.
  • Embodiment 12 illustrates a schematic diagram of the relationship between the first node and the third node, as shown in FIG. 12.
  • the solid rectangular box represents the area divided according to the first area size, the first area size includes the first area width and the first area length; the area where the first node is located corresponds to the third area Identification, the area where the second node is located corresponds to the first area identification.
  • the difference between the first area identifier and the third area identifier is used by the first node to determine the distance between the first node and the second node.
  • the distance between the first node and the second node is used by the first node to determine whether to send the first signal.
  • Embodiment 13 illustrates another schematic diagram of the relationship between the first node and the third node, as shown in FIG. 13.
  • the dashed rectangular box represents the area divided according to the second area size; the area where the first node is located corresponds to the fourth area identifier, and the area where the second node is located corresponds to the second area identifier.
  • the difference between the second area identifier and the fourth area identifier is used by the first node to determine the distance between the first node and the second node.
  • the distance between the first node and the second node is used by the first node to determine whether to send the first signal.
  • Embodiment 14 illustrates a schematic diagram of antenna ports and antenna port groups, as shown in FIG. 14.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by superposing antennas in a positive integer number of antenna groups through antenna virtualization; and one antenna group includes a positive integer number of antennas.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • the mapping coefficients of all antennas in a positive integer number of antenna groups included in a given antenna port to the given antenna port constitute a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of multiple antennas included in any given antenna group in a positive integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer number of antenna groups are arranged diagonally to form an analog beamforming matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by the product of the analog beamforming matrix and the digital beamforming vector corresponding to the given antenna port.
  • Different antenna ports in an antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • Fig. 14 shows two antenna port groups: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of antenna group #0
  • the antenna port group #1 is composed of antenna group #1 and antenna group #2.
  • the mapping coefficients from the multiple antennas in the antenna group #0 to the antenna port group #0 form an analog beamforming vector #0
  • the mapping coefficients from the antenna group #0 to the antenna port group #0 form a number Beamforming vector #0.
  • the mapping coefficients of the multiple antennas in the antenna group #1 and the multiple antennas in the antenna group #2 to the antenna port group #1 respectively form an analog beamforming vector #1 and an analog beamforming vector # 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 form a digital beamforming vector #1.
  • the beamforming vector corresponding to any antenna port in the antenna port group #0 is obtained by the product of the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beamforming matrix composed of the analog beamforming vector #1 and the analog beamforming vector #2 diagonally arranged And the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in FIG. 14 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced to an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar,
  • the beamforming vector corresponding to the one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • one antenna port group includes multiple antenna ports.
  • the antenna port group #1 in FIG. 14 includes multiple antenna ports.
  • the multiple antenna ports correspond to the same analog beamforming matrix and different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beamforming matrices.
  • any two antenna ports in an antenna port group are QCL (Quasi-Colocated).
  • any two antenna ports in an antenna port group are spatial QCL.
  • Embodiment 15 illustrates a structural block diagram in the first node, as shown in FIG. 15.
  • the first node 1500 includes a first receiver 1501 and a first transmitter 1502.
  • the first receiver 1501 receives first signaling, where the first signaling is used to indicate the first area identifier and the second area identifier;
  • the first transmitter 1502 judges whether to send the first signal according to the current location; when the judgment result is yes, sends the first signal in the first air interface resource set; when the judgment result is no, it gives up sending the first signal in the first air interface resource set A signal
  • the first area identifier and the second area identifier are respectively associated with a first air interface resource pool and a second air interface resource pool; when the first air interface resource set is associated with the first air interface In the case of a resource pool, the first area identifier is used to determine the current location; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location. State the current position.
  • the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the second air interface resource pool is associated with the first area Two area sizes, the second area size is used to determine the second area identifier.
  • the target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool, the first area size is Used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target area identifier.
  • the first receiver 1501 receives second signaling; the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the first receiver 1501 receives third signaling; the third signaling is used to determine X1 candidate air interface resource sets, and the first air interface resource set is the X1 candidate air interface resources In one of the set, the X1 is a positive integer greater than 1.
  • the first receiver 1501 receives a target signal; the first signaling includes configuration information of the target signal, and the first signal is used for feedback of the target signal; the target The signal is transmitted on the secondary link.
  • the first receiver 1501 receives fourth signaling; the fourth signaling is used to indicate a target reference signal, and the target reference signal is associated with the first air interface resource set.
  • the first receiver 1501 receives fifth signaling; the fifth signaling is used to indicate the first area size and the second area size.
  • the first transmitter 1502 sends sixth signaling; the sixth signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to a first index and a second index, and the first index and the second index are different.
  • the first receiver 1501 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the first transmitter 1502 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in the fourth embodiment.
  • Embodiment 16 illustrates a structural block diagram in the second node, as shown in FIG. 16.
  • the second node 1600 includes a second transmitter 1601 and a second receiver 1602.
  • the second transmitter 1601 sends first signaling, where the first signaling is used to indicate the first area identifier and the second area identifier;
  • the second receiver 1602 detects the first signal in the first air interface resource set
  • the sender of the first signal is the first node; the first area identifier and the second area identifier are respectively associated with the first air interface resource pool and the second air interface resource pool; when the When the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first node In the second air interface resource pool, the second area identifier is used to determine the current location of the first node; the first node determines whether to send the first signal according to the current location of the first node; When the result is yes, send the first signal in the first air interface resource set; when the judgment result is no, give up sending the first signal in the first air interface resource set.
  • the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the second air interface resource pool is associated with the first area Two area sizes, the second area size is used to determine the second area identifier.
  • the target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool, the first area size is Used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target area identifier.
  • the second receiver 1602 receives second signaling; the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the second receiver 1602 receives sixth signaling; the sixth signaling is used to indicate the first air interface resource pool and the second air interface resource pool.
  • the second transmitter 1601 sends third signaling; the third signaling is used to determine X1 candidate air interface resource sets, and the first air interface resource set is the X1 candidate air interface resources In one of the set, the X1 is a positive integer greater than 1.
  • the second transmitter 1601 sends a target signal; the first signaling includes configuration information of the target signal, and the first signal is used for feedback of the target signal; the target The signal is transmitted on the secondary link.
  • the second transmitter 1601 sends fourth signaling; the fourth signaling is used to indicate a target reference signal, and the target reference signal is associated with the first air interface resource set.
  • the second receiver 1602 receives fifth signaling; the fifth signaling is used to indicate the first area size and the second area size.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to a first index and a second index, and the first index and the second index are different.
  • the second transmitter 1601 sends fifth signaling; the fifth signaling is used to indicate the first area size and the second area size.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to a first index and a second index, and the first index and the second index are different.
  • the second transmitter 1601 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • the second receiver 1602 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • Embodiment 17 illustrates a structural block diagram in the third node, as shown in FIG. 17.
  • the third node 1700 includes a third transmitter 1701.
  • the third transmitter 1701 sends second signaling, where the second signaling is used to indicate the first air interface resource pool and the second air interface resource pool;
  • the receiver of the second signaling includes a first node, and the first node determines whether to send the first signal according to the current location of the first node; when the determination result is yes, the first node A node sends the first signal in the first air interface resource set; when the judgment result is no, the first node gives up sending the first signal in the first air interface resource set; the first area identifier and the second area identifier are respectively associated with The first air interface resource pool and the second air interface resource pool; when the first air interface resource set is associated with the first air interface resource pool, the first area identifier is used to determine the first air interface resource pool The current location of the node; when the first air interface resource set is associated with the second air interface resource pool, the second area identifier is used to determine the current location of the first node.
  • the first air interface resource pool is associated with a first area size, and the first area size is used to determine the first area identifier; or, the second air interface resource pool is associated with the first area Two area sizes, the second area size is used to determine the second area identifier.
  • the target area identifier is used to determine the current location of the first node; when the first air interface resource set is associated with the first air interface resource pool, the first area size is Used to determine the target area identifier; when the first air interface resource set is associated with the second air interface resource pool, the second area size is used to determine the target area identifier.
  • the third transmitter 1701 sends fourth signaling; the fourth signaling is used to indicate a target reference signal, and the target reference signal is associated with the first air interface resource set.
  • the third transmitter 1701 sends fifth signaling; the fifth signaling is used to indicate the first area size and the second area size.
  • the first air interface resource pool and the second air interface resource pool respectively correspond to a first index and a second index, and the first index and the second index are different.
  • the third transmitter 1701 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the first and second nodes in this application include but are not limited to mobile phones, tablets, notebooks, internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSUs, aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNB, gNB, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, aerial base stations, RSUs and other wireless communication equipment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;随后根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;所述第一区域标识或所述第二区域标识中的之一被用于确定所述第一节点的所述当前位置。本申请通过将第一区域标识和第二区域标识分别与第一空口资源池和第二空口资源池建立联系,优化副链路上反馈信息发送的判断,进而改进副链路上传输的频谱效率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和副链路(Sidelink)相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成面向5G V2X业务的需求制定工作,并写入标准TS22.886。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
NR V2X和现有的LTE(Long-term Evolution,长期演进)V2X系统相比,一个显著的特征在于支持单播和组播并支持HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)功能。为支持副链路上HARQ-ACK(Acknowledgement,确认)的传输,PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)信道被引入。根据3GPP RAN1#96b会议的结果,PSFCH资源可以被周期性的配置或预配置。
在3GPP RAN1#97次全会上,对于组播(Groupcast)的HARQ-ACK,V2X中的接收UE(User Equipment,用户设备)通过确定与V2X中的发送UE之间的距离判断是否需要发送HARQ反馈,从而有效避免在副链路上不必要的反馈信道的开销。未来V2X应用场景中,基站将会配置多个TRP(Transmit-Receive Point,发送接收点),进而会为不同的TRP配置不同的空口资源池用于V2X传输,且不同的TRP会对应不同的波束覆盖场景,例如某些TRP用于覆盖范围较大的宽波束赋形向量,而某些TRP用于覆盖比较小的窄波束覆盖场景,进而上述基于位置信息确定副链路上HARQ发送方式的方案在多TRP的场景下需要被重新设计。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;
其中,所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
作为一个实施例,上述方法的好处在于:本申请中的第二节点将分别按照所述第一 区域尺寸和所述第二区域尺寸计算的所述第一区域标识和所述第二区域标识同时发送给第一节点,进而便于第一节点确定是否需要反馈副链路上的HARQ-ACK。
作为一个实施例,上述方法的另一个好处在于:所述第一区域标识和所述第二区域标识分别与所述第一空口资源池和所述第二空口资源池关联,第一节点预备在对应的空口资源池中发送PSFCH,就采用对应的区域标识确定是否发送所述第一信号,进而在保证PSFCH发送灵活性的前提下,避免了潜在的对蜂窝链路上行的干扰。
作为一个实施例,上述方法的再一个好处在于:所述第一空口资源池和所述第二空口资源池分别与所述第一节点的服务小区配置的第一TRP和第二TRP关联,进而所述第一信号所占用的空口资源是基于各个TRP独立配置和协调的,使上述操作更为灵活,以提高整体副链路传输的灵活性。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
作为一个实施例,上述方法的好处在于:根据不同区域尺寸确定不同的区域标识,进而为不同的TRP确定不同的区域划分方式,并为不同的TRP配置不同的空口资源池,进而实现在不同的TRP下使用不同的确定是否发送HARQ-ACK的规则,灵活调整发送HARQ-ACK的策略,提高系统设计的灵活性。
根据本申请的一个方面,上述方法的特征在于,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
作为一个实施例,上述方法的好处在于:所述第一节点所对应的目标区域标识参考所述第一区域尺寸或所述第二区域尺寸中的之一确定,进而保证所述第一节点在确定是否发送所述第一信号是采用和本申请中所述第二节点相同的区域划分方式,提高判决是否发送第一信号的过程的准确性。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令;
其中,所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信令;
其中,所述第三信令被用于确定X1个候选空口资源集合,所述第一空口资源集合是所述X1个候选空口资源集合中的之一,所述X1是大于1的正整数。
作为一个实施例,上述方法的好处在于:本申请中的所述第二节点配置了多个能够用于发送PSFCH的资源,即所述X1个候选空口资源集合,进而便于所述第一节点进行选择,避免了其中的部分空口资源集合因为蜂窝链路的调度而导致PSFCH无法发送的问题,保证了PSFCH传输的鲁棒性。
根据本申请的一个方面,上述方法的特征在于,包括:
接收目标信号;
其中,所述第一信令包括所述目标信号的配置信息,所述第一信号被用于针对所述目标信号的反馈;所述目标信号在副链路上被传输。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第四信令;
其中,所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第五信令;
其中,所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第六信令;
其中,所述第六信令被用于指示所述第一空口资源池和所述第二空口资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
在第一空口资源集合中检测第一信号;
其中,所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
根据本申请的一个方面,上述方法的特征在于,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令;
其中,所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第六信令;
其中,所述第六信令被用于指示所述第一空口资源池和所述第二空口资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信令;
其中,所述第三信令被用于确定X1个候选空口资源集合,所述第一空口资源集合是所述X1个候选空口资源集合中的之一,所述X1是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
发送目标信号;
其中,所述第一信令包括所述目标信号的配置信息,所述第一信号被用于针对所述目标信号的反馈;所述目标信号在副链路上被传输。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第四信令;
其中,所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第五信令;
其中,所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池和所述第二空口 资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第五信令;
其中,所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于包括:
发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;
其中,所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
根据本申请的一个方面,上述方法的特征在于,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第四信令;
其中,所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第五信令;
其中,所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
根据本申请的一个方面,上述方法的特征在于,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一接收机,接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
第一发射机,根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;
其中,所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第二发射机,发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
第二接收机,在第一空口资源集合中检测第一信号;
其中,所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
本申请公开了一种被用于无线通信的第三节点,其特征在于包括:
第三发射机,发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;
其中,所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.本申请中的第二节点将分别按照所述第一区域尺寸和所述第二区域尺寸计算的所述第一区域标识和所述第二区域标识同时发送给第一节点,进而便于第一节点确定是否需要反馈副链路上的HARQ-ACK;
-.所述第一区域标识和所述第二区域标识分别与所述第一空口资源池和所述第二空口资源池关联,第一节点预备在对应的空口资源池中发送PSFCH,就采用对应的区域标识确定是否发送所述第一信号,进而在保证PSFCH发送灵活性的前提下,避免了潜在的对蜂窝链路上行的干扰;
-.所述第一空口资源池和所述第二空口资源池分别与所述第一节点的服务小区配置的第一TRP和第二TRP关联,进而所述第一信号所占用的空口资源是基于各个TRP独立配置和协调的,使上述操作更为灵活,以提高整体副链路传输的灵活性;
-.根据不同区域尺寸确定不同的区域标识,进而为不同的TRP确定不同的区域划分方式,并为不同的TRP配置不同的空口资源池,进而实现在不同的TRP下使用不同的确定是否发送HARQ-ACK的规则,进而灵活调整发送HARQ-ACK的策略,提高系统设计的灵活性;
-.本申请中的所述第二节点配置了多个能够用于发送PSFCH的资源,即所述X1个候选空口资源集合,进而便于所述第一节点进行选择,避免了其中的部分空口资源集合因为蜂窝链路的调度而导致PSFCH无法发送的问题,保证了PSFCH传输的鲁棒性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信号的流程图;
图6示出了根据本申请的一个实施例的第五信令和第六信令的流程图;
图7示出了根据本申请的一个实施例的第一空口资源池和第二空口资源池的示意图;
图8示出了根据本申请的另一个实施例的第一空口资源池和第二空口资源池的示意图;
图9示出了根据本申请的一个实施例的第一类空口资源集合和第二类空口资源集合的示意图;
图10示出了根据本申请的一个实施例的第一空口资源池和第二空口资源池与对应的波束赋形向量的示意图;
图11示出了根据本申请的一个实施例的第一区域尺寸和第二区域尺寸的示意图;
图12示出了根据本申请的一个实施例的第一节点和第三节点的位置关系的示意图;
图13示出了根据本申请的另一个实施例的第一节点和第三节点的位置关系的示意图;
图14分别示出了根据本申请的一个实施例的节点的天线结构的示意图;
图15示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图16示出了根据本申请的一个实施例的用于第二节点中的结构框图;
图17示出了根据本申请的一个实施例的用于第三节点中的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;在步骤102根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;
实施例1中,所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
作为一个实施例,所述第一信令在副链路上被发送。
作为一个实施例,所述第一信号在副链路上被发送。
作为一个实施例,所述第一信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被发送。
作为一个实施例,所述第一信号在PSFCH上被发送。
作为一个实施例,所述第一信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被发送。
作为一个实施例,第一服务小区的标识被用于生成所述第一信令和所述第一信号。
作为该实施例的一个子实施例,所述第一服务小区的标识被用于生成本申请中的所述目标信号。
作为该实施例的一个子实施例,所述第一服务小区是所述第一节点的服务小区,所述第一服务小区的所述标识是所述第一服务小区的PCI(Physical Cell Identification,物理小区标识)。
作为该实施例的一个子实施例,所述第一服务小区的所述标识是整数。
作为该实施例的一个子实施例,所述第一服务小区的所述标识是小于1024的非负整数。
作为该实施例的一个子实施例,所述第一服务小区的所述标识是小于65536的非负整数。
作为该实施例的一个子实施例,所述短语第一服务小区标识被用于生成所述第一信令和所述第一信号的意思包括:所述第一服务小区标识被用于生成所述第一信令的CRC。
作为该实施例的一个子实施例,所述短语第一服务小区标识被用于生成所述第一信令和所述第一信号的意思包括:所述第一服务小区标识被用于所述第一信令和所述第一信号的加扰。
作为一个实施例,所述第一空口资源集合包括时域资源和频域资源。
作为一个实施例,所述第一空口资源集合包括码域资源。
作为一个实施例,所述第一空口资源集合包括空域资源。
作为一个实施例,所述第一空口资源集合对应一个天线端口。
作为一个实施例,所述第一空口资源集合对应一个参考信号。
作为一个实施例,所述第一空口资源集合对应一个波束赋形向量。
作为一个实施例,所述第一空口资源集合在时域占用正整数个多载波符号,在频域占用正整数个子载波(Subcarrier)。
作为一个实施例,所述第一空口资源集合在时域占用M1个多载波符号,在频域占用M2个RB(Resource Block,资源块)所对应的频域资源,所述M1和所述M2均是正整数。
作为一个实施例,所述第一空口资源池和所述第二空口资源池被同一个服务小区所维持。
作为一个实施例,所述第一空口资源池包括K1个空口资源集合,所述第二空口资源池包括K2个空口资源集合,所述K1和所述K2均是正整数。
作为该实施例的一个子实施例,所述K1个空口资源集合中的任一空口资源集合在时域占用正整数个多载波符号,在频域占用正整数个子载波。
作为该实施例的一个子实施例,所述K1个空口资源集合中的任一空口资源集合在时域占用M3个多载波符号,在频域占用M4个RB所对应的频域资源,所述M3和所述M4均是正整数。
作为该实施例的一个子实施例,所述K2个空口资源集合中的任一空口资源集合在时域占用正整数个多载波符号,在频域占用正整数个子载波。
作为该实施例的一个子实施例,所述K2个空口资源集合中的任一空口资源集合在时域占用M5个多载波符号,在频域占用M5个RB所对应的频域资源,所述M5和所述M6均是正整数。
作为该实施例的一个子实施例,所述K1个空口资源集合中的任一空口资源集合包括一个PUCCH(Physical Uplink Control Channel,物理上行控制信道)资源(Resource)。
作为该实施例的一个子实施例,所述K2个空口资源集合中的任一空口资源集合包括一个PUCCH资源。
作为该实施例的一个子实施例,所述K1个空口资源集合中的任一空口资源集合包括时域资源和频域资源。
作为该实施例的一个子实施例,所述K2个空口资源集合中的任一空口资源集合包括时域资源和频域资源。
作为该实施例的一个子实施例,所述K1个空口资源集合中的任一空口资源集合包括码域资源。
作为该实施例的一个子实施例,所述K2个空口资源集合中的任一空口资源集合包括码域资源。
作为该实施例的一个子实施例,所述K1个空口资源集合中的任一空口资源集合包括空域资源。
作为该实施例的一个子实施例,所述K2个空口资源集合中的任一空口资源集合包括空域资源。
作为该实施例的一个子实施例,所述第一空口资源集合是所述K1个空口资源集合中的一个空口资源集合。
作为该实施例的一个子实施例,所述第一空口资源集合是所述K2个空口资源集合中的一 个空口资源集合。
作为一个实施例,本申请中的所述空域资源包括发送天线端口。
作为一个实施例,一个本申请中所述的空口资源集合所包括的空域资源包括:与所述空口资源集合中的发送天线端口QCL(Quasi co-location,准共址)的目标RS(Reference Signal,参考信号)。
作为一个实施例,一个本申请中所述的空口资源集合所包括的空域资源包括:与所述空口资源集合采用的发送天线端口对应的波束方向。
作为一个实施例,一个本申请中所述的空口资源集合所包括的空域资源包括:与所述空口资源集合采用的发送天线端口对应的模拟波束赋形向量。
作为一个实施例,一个本申请中所述的空口资源集合所包括的空域资源包括:与所述空口资源集合采用的发送天线端口对应的数字波束赋形向量。
作为一个实施例,上述短语(Phrase)所述第一空口资源集合被关联到所述第一空口资源池的意思包括:所述第一空口资源集合是所述第一空口资源池所包括的K1个空口资源集合中的一个空口资源集合。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第一空口资源池的意思包括:所述第一空口资源集合和所述第一空口资源池被配置成相同的发送天线端口。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第一空口资源池的意思包括:所述第一空口资源集合和所述第一空口资源池采用相同的发送天线端口。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第一空口资源池的意思包括:所述第一空口资源集合和所述第一空口资源池对应相同的RS。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第一空口资源池的意思包括:与所述第一空口资源集合所采用的发送天线端口QCL的RS和与所述第一空口资源池的发送天线端口QCL的RS是相同的。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:所述第一空口资源集合是所述第二空口资源池所包括的K2个空口资源集合中的一个空口资源集合。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:所述第一空口资源集合和所述第二空口资源池被配置成相同的发送天线端口。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:所述第一空口资源集合和所述第二空口资源池采用相同的发送天线端口。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:所述第一空口资源集合和所述第二空口资源池对应相同的RS。
作为一个实施例,上述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:与所述第一空口资源集合所采用的发送天线端口QCL的RS和与所述第二空口资源池的发送天线端口QCL的RS是相同的。
作为一个实施例,两个天线端口是QCL的意思是指:能够从所述两个天线端口中一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述另一个天线端口上发送的无线信号的全部或者部分大尺度特性;所述大尺度特性包括:延时扩展(Delay Spread)、多普勒扩展(Doppler Spread)、多普勒移位(Doppler Shift),路径损耗(Path Loss)、平均增益(Average Gain)中的一种或多种。
作为一个实施例,两个RS是QCL的意思是指:能够从所述两个RS中一个RS所承载的全部或者部分大尺度(large-scale)特性(properties)推断出所述另一个RS所承载的全部或者部分大尺度特性;所述大尺度特性包括:延时扩展(Delay Spread)、多普勒扩展(Doppler Spread)、多普勒移位(Doppler Shift),路径损耗(Path Loss)、平均增益(Average Gain)中的一种或多种。
作为一个实施例,一个RS与一个天线端口是QCL的意思是指:能够从所述RS所承载的 全部或者部分大尺度(large-scale)特性(properties)推断出所述天线端口上发送的无线信号的全部或者部分大尺度特性;所述大尺度特性包括:延时扩展(Delay Spread)、多普勒扩展(Doppler Spread)、多普勒移位(Doppler Shift),路径损耗(Path Loss)、平均增益(Average Gain)中的一种或多种。
作为一个实施例,所述短语放弃在第一空口资源集合发送第一信号包括:在所述第一空口资源集合保持零发送功率。
作为一个实施例,所述短语放弃在第一空口资源集合发送第一信号包括:释放用于存储目标信息比特的缓存,所述目标信息比特被用于生成所述第一信号。
作为一个实施例,所述短语放弃在第一空口资源集合发送第一信号包括:在所述第一空口资源集合发送其他信号,所述其他信号与所述第一信号携带的信息比特无关。
作为一个实施例,所述QCL包括NR(New Radio,新无线)系统中的QCL-Type D。
作为一个实施例,所述QCL包括NR系统中的QCL-Type A。
作为一个实施例,所述QCL包括NR系统中的QCL-Type B。
作为一个实施例,所述QCL包括NR系统中的QCL-Type C。
作为一个实施例,所述QCL包括TS 36.214中的QCL-Type D。
作为一个实施例,所述QCL包括TS 36.214中的QCL-Type A。
作为一个实施例,所述QCL包括TS 36.214中的QCL-Type B。
作为一个实施例,所述QCL包括TS 36.214中的QCL-Type C。
作为一个实施例,上述短语所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池的意思包括:当所述第一空口资源池中的空口资源集合被预留用于所述第一信号传输时,所述第一区域标识被用于确定所述第一节点是否发送所述第一信号;当所述第二空口资源池中的空口资源集合被预留用于所述第一信号传输时,所述第二区域标识被用于确定所述第一节点是否发送所述第一信号。
作为一个实施例,上述短语所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池的意思包括:当所述第一空口资源池中的空口资源集合被预留用于副链路上反馈信道的传输时,所述第一区域标识被用于确定所述第一节点是否发送所述副链路上反馈信道;当所述第二空口资源池中的空口资源集合被预留用于副链路上反馈信道的传输时,所述第二区域标识被用于确定所述第一节点是否发送所述副链路上反馈信道。
作为一个实施例,所述短语所述第一空口资源集合被关联到所述第一空口资源池的意思包括:所述第一空口资源集合的发送天线端口与所述第一空口资源池中的至少一个空口资源集合的发送天线端口QCL。
作为一个实施例,所述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:所述第一空口资源集合的发送天线端口与所述第二空口资源池中的至少一个空口资源集合的发送天线端口QCL。
作为一个实施例,所述短语所述第一空口资源集合被关联到所述第一空口资源池的意思包括:所述第一空口资源集合的发送天线端口与第一参考信号QCL,所述第一空口资源池中的至少一个空口资源集合的发送天线端口与所述第一参考信号QCL。
作为一个实施例,所述短语所述第一空口资源集合被关联到所述第二空口资源池的意思包括:所述第一空口资源集合的发送天线端口与第二参考信号QCL,所述第二空口资源池中的至少一个空口资源集合的发送天线端口与所述第二参考信号QCL。
作为一个实施例,所述第一信号在副链路(Sidelink)上传输。
作为一个实施例,所述第一信号是针对副链路上数据信道的HARQ-ACK。
作为一个实施例,所述第一信号是针对副链路的反馈(Feedback)。
作为一个实施例,第一区域尺寸和第二区域尺寸分别与所述第一空口资源池和所述第二空口资源池相关联。
作为一个实施例,所述第一区域尺寸标识一个区域(Zone)的大小。
作为该实施例的一个子实施例,所述一个区域的大小被关联到第一TRP,所述第一TRP是所述第一节点的服务小区所包括的一个TRP。
作为一个实施例,所述第一区域尺寸包括第一区域长度和第一区域宽度,所述第一区域长度等于X1米,且所述第一区域宽度等于Y1米,所述X1和所述Y1是大于1的正整数。
作为该实施例的一个子实施例,所述X1与所述Y1的乘积表示所述第一区域尺寸的大小。
作为该实施例的一个子实施例,所述第一区域长度等于TS 36.331中的zoneLength,所述第一区域长度等于TS 36.331中的zoneWidth。
作为一个实施例,所述第二区域尺寸标识一个区域的大小。
作为该实施例的一个子实施例,所述一个区域的大小被关联到第二TRP,所述第二TRP是所述第一节点的服务小区所包括的一个TRP。
作为一个实施例,所述第二区域尺寸包括第二区域长度和第二区域宽度,所述第二区域长度等于X2米,且所述第二区域宽度等于Y2米,所述X2和所述Y2均是大于1的正整数。
作为该实施例的一个子实施例,所述X2与所述Y2的乘积表示所述第二区域尺寸的大小。
作为该实施例的一个子实施例,所述第二区域长度等于TS 36.331中的zoneLength,所述第二区域长度等于TS 36.331中的zoneWidth。
作为一个实施例,当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一节点根据所述第一区域尺寸确定第三区域标识。
作为该实施例的一个子实施例,所述第三区域标识被用于确定所述第一节点在按照所述第一区域尺寸下相对所述第一节点的服务小区的基站的位置信息。
作为该实施例的一个子实施例,所述第三区域标识被用于确定所述第一节点在按照所述第一区域尺寸下相对本申请中的所述第一TRP的位置信息。
作为一个实施例,当所述第一空口资源集合被关联到所述第二空口资源池时,所述第一节点根据所述第二区域尺寸确定第四区域标识。
作为该实施例的一个子实施例,所述第四区域标识被用于确定所述第一节点在按照所述第二区域尺寸下相对所述第一节点的服务小区的基站的位置信息。
作为该实施例的一个子实施例,所述第四区域标识被用于确定所述第一节点在按照所述第二区域尺寸下相对本申请中的所述第一TRP的位置信息。
作为一个实施例,所述第一区域标识是一个ZoneID。
作为一个实施例,所述第一区域标识是一个非负整数。
作为一个实施例,所述第二区域标识是一个ZoneID。
作为一个实施例,所述第二区域标识是一个非负整数。
作为一个实施例,所述第一区域标识和所述第二区域标识不同。
作为一个实施例,所述第一区域标识和所述第二区域标识均针对本申请中的所述第二节点。
作为一个实施例,所述第一区域标识是本申请中的所述第二节点按照所述第一区域尺寸确定的区域标识。
作为一个实施例,所述第二区域标识是本申请中的所述第二节点按照所述第二区域尺寸确定的区域标识。
作为一个实施例,所述第三区域标识是一个ZoneID。
作为一个实施例,所述第三区域标识是一个非负整数。
作为一个实施例,所述第四区域标识是一个ZoneID。
作为一个实施例,所述第四区域标识是一个非负整数。
作为一个实施例,所述第三区域标识和所述第四区域标识不同。
作为一个实施例,所述第三区域标识和所述第四区域标识均针对本申请中的所述第一节点。
作为一个实施例,所述第三区域标识是本申请中的所述第一节点按照所述第一区域尺寸 确定的区域标识。
作为一个实施例,所述第四区域标识是本申请中的所述第一节点按照所述第二区域尺寸确定的区域标识。
作为一个实施例,所述短语所述确定当前位置的意思包括:所述第一节点根据所在的地理位置以及所述第一区域尺寸确定所述第一节点对应的第三区域标识,并将所述第三区域标识与所述第一区域标识比较,以确定所述当前位置;或者所述第一节点根据所在的地理位置以及所述第二区域尺寸确定确定所述第一节点对应的第四区域标识,并将所述第四区域标识与所述第二区域标识比较,以确定所述当前位置。
作为一个实施例,所述第一信号包括针对副链路的CSI(Channel State Information,信道状态信息)。
作为一个实施例,所述第一信号包括针对副链路的CQI(Channel Quality Indicator,信道质量指示)。
作为一个实施例,所述第一信号包括针对副链路的RI(Rank Indicator,秩指示)。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,本申请中所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,本申请中所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述多载波符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述多载波符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频的正交频分复用)符号。
作为一个实施例,所述副链路是指终端与终端之间的无线链路。
作为一个实施例,所述第一信令和所述第二信令在蜂窝链路被发送。
作为一个实施例,所述第一信号的接收者包括终端。
作为一个实施例,本申请中所述的蜂窝链路是终端与基站之间的无线链路。
作为一个实施例,本申请中的所述副链路对应PC5口。
作为一个实施例,本申请中的所述蜂窝链路对应Uu口。
作为一个实施例,本申请中的所述副链路被用于V2X通信。
作为一个实施例,本申请中的所述蜂窝链路被用于蜂窝通信。
作为一个实施例,所述第一信号是针对V2X模式1传输的反馈信号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,以及包括一个与UE201进行副链路通信的UE241,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。 NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第三节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC-5接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第二节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第二节点是所述gNB203覆盖外的一个终端。
作为一个实施例,所述UE201和所述UE241之间支持单播传输。
作为一个实施例,所述UE201和所述UE241之间支持广播传输。
作为一个实施例,所述UE201和所述UE241之间支持组播传输。
作为一个实施例,所述第一节点和所述第二节点属于一个V2X对(Pair)。
作为一个实施例,所述第一节点是一辆汽车。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第一节点是一个RSU。
作为一个实施例,所述第一节点是一个终端组的组头。
作为一个实施例,所述第一节点具有定位能力。
作为一个实施例,所述第二节点是一个交通工具。
作为一个实施例,所述第二节点是一辆汽车。
作为一个实施例,所述第二节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第二节点是一个终端组的组头(Group Header)。
作为一个实施例,所述第二节点具有定位能力。
作为一个实施例,所述第一节点具有GPS(Global Positioning System,全球定位系统)能力。
作为一个实施例,所述第二节点具有GPS能力。
作为一个实施例,所述第三节点是一个基站。
作为一个实施例,所述第三节点是一个服务小区。
作为一个实施例,所述第三节点下附着多个TRP。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第一信令生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信令生成于所述RRC306。
作为一个实施例,所述第三信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第三信令生成于所述RRC306。
作为一个实施例,所述目标信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述目标信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信令生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第四信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第四信令生成于所述RRC306。
作为一个实施例,所述第五信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第五信令生成于所述RRC306。
作为一个实施例,所述第六信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第六信令生成于所述RRC306。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据 包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;在第一空口资源集合中检测第一信号;所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被 关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;在第一空口资源集合中检测第一信号;所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号。
作为一个实施,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在第一空口资源集合中检测第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第二信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第三信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第三信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收目标信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送目标信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第四信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第四信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第五信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第五信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第六信令;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在接收第六信令。
实施例5
实施例5示例了一个第一信号的流程图,如附图5所示。在附图5中,第一节点U1与第二节点U2之间通过副链路进行通信,第一节点U1与第三节点N3之间通过蜂窝链路进行通信;图中方框F0、方框F1和方框F2标注的步骤是可选的;其中虚线标识的步骤表示其操作会受到步骤S16中判决的影响。
对于 第一节点U1,在步骤S10中接收第二信令;在步骤S11中接收第五信令;在步骤S12中接收第三信令;在步骤S13中接收第四信令;在步骤S14中接收第一信令;在步骤S15中接收目标信号;在步骤S16中根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号。
对于 第二节点U2,在步骤S20中接收第二信令;在步骤S21中接收第五信令;在步骤S22中发送第三信令;在步骤S23中发送第四信令;在步骤S24中发送第一信令;在步骤S25中发送目标信号;在步骤S26中在第一空口资源集合中检测第一信号。
对于 第三节点N3,在步骤S30中发送第二信令;在步骤S31中发送第五信令。
实施例5中,所述第一信令被用于指示第一区域标识和第二区域标识;所述第一区域标 识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点U1当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点U1当前位置;所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池;所述第三信令被用于确定X1个候选空口资源集合,所述第一空口资源集合是所述X1个候选空口资源集合中的之一,所述X1是大于1的正整数;所述第一信令包括所述目标信号的配置信息,所述第一信号被用于针对所述目标信号的反馈;所述目标信号在副链路上被传输;所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联;所述第五信令被用于指示第一区域尺寸和第二区域尺寸。
作为一个实施例,所述第二信令在下行链路上被发送。
作为一个实施例,所述第二信令被所述第一节点U1的服务小区所对应的基站所发送。
作为一个实施例,所述第五信令在下行链路上被发送。
作为一个实施例,所述第五信令被所述第一节点U1的服务小区所对应的基站所发送。
作为一个实施例,所述第二信令是小区公共的(Cell Common)。
作为一个实施例,所述第二信令是用户设备专属的。
作为一个实施例,所述第二信令是针对所述第一节点U1的。
作为一个实施例,所述第二信令是更高层信令。
作为一个实施例,所述第二信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第五信令是小区公共的。
作为一个实施例,所述第五信令是针对所述第一节点的。
作为一个实施例,所述第五信令是更高层信令。
作为一个实施例,所述第五信令是针对所述第一节点U1的。
作为一个实施例,所述第五信令是RRC信令。
作为一个实施例,所述第二信令包括TS 36.331中的SL-ZoneConfig。
作为一个实施例,所述第五信令包括TS 36.331中的SL-ZoneConfig。
作为一个实施例,所述第二信令包括第一子信令和第二子信令,所述第一子信令和所述第二子信令分别被用于指示所述第一空口资源池和所述第二空口资源池,所述第一子信令和所述第二子信令分别被第一TRP和第二TRP发送,所述第一TRP和所述第二TRP是附着于所述第三节点下的两个TRP。
作为一个实施例,所述第五信令包括第三子信令和第四子信令,所述第三子信令和所述第四子信令分别被用于指示所述第一区域尺寸和所述第二区域尺寸,所述第三子信令和所述第四子信令分别被第一TRP和第二TRP发送,所述第一TRP和所述第二TRP是附着于所述第三节点下的两个TRP。
作为一个实施例,所述第二信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第二信令包括所述第五信令。
作为一个实施例,所述第一空口资源池被关联到本申请中的所述第一TRP,所述第二空口资源池被关联到本申请中的所述第二TRP,所述第一TRP和所述第二TRP是所述第一节点的服务小区下的两个TRP,所述第一标识被用于指示所述第一TRP,所述第二标识被用于指示第二TRP。
作为该实施例的一个子实施例,所述第二信令包括所述第一标识和所述第二标识。
作为该实施例的一个子实施例,所述第一标识和所述第二标识分别是两个非负整数。
作为该实施例的一个子实施例,所述第五信令包括所述第一标识和所述第二标识。
作为该实施例的一个子实施例,本申请中的所述第一子信令包括所述第一标识,本申请中的所述第二子信令包括所述第二标识。
作为该实施例的一个子实施例,本申请中的所述第三子信令包括所述第一标识,本申请中的所述第四子信令包括所述第二标识。
作为一个实施例,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
作为一个实施例,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
作为一个实施例,所述第一信令是SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一信令和所述第四信令同时属于一个SCI。
作为一个实施例,所述第一信令被用于调度所述目标信号。
作为一个实施例,所述配置信息包括所述目标信号采用的MCS(Modulation and Coding Scheme,调制编码方式)。
作为一个实施例,所述配置信息包括所述目标信号的DMRS(DeModulation Reference Signals,解调参考信号)配置信息。
作为一个实施例,所述DMRS配置信息包括所述DMRS的端口,所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,DMRS类型,循环位移量(cyclic shift),或OCC(Orthogonal Cover Code,正交掩码)中的一种或多种。
作为一个实施例,所述配置信息包括所述目标信号所对应的NDI(New Data Indicator,新数据指示)。
作为一个实施例,所述配置信息包括所述目标信号所对应的RV(Redundancy Version,冗余版本)。
作为一个实施例,所述配置信息包括所述目标信号所占用的时域资源。
作为一个实施例,所述配置信息包括所述目标信号所占用的频域资源。
作为一个实施例,所述第三节点N3与所述第二节点U2是非共址的。
作为一个实施例,本申请中的所述第二节点U2是一个终端。
作为一个实施例,所述第二节点U2和所述第一节点U1之间进行V2X通信。
作为一个实施例,所述第二节点U2与所述第一节点U1属于同一个服务小区。
作为一个实施例,所述第二节点U2与所述第一节点U1被同一个服务小区所服务。
作为一个实施例,所述第二节点U2与所述第一节点U1分别被不同的服务小区所服务。
作为一个实施例,当所述第一空口资源集合被关联到所述第一空口资源池,所述第一区域标识和所述目标区域标识被所述第一节点U1共同用于判断是否发送所述第一信号。
作为该实施例的一个子实施例,所述第一区域标识和所述目标区域标识被共同用于确定所述第二节点U2和所述第一节点U1之间的距离不大于第一阈值,所述第一节点U1在所述第一空口资源集合发送所述第一信号。
作为该实施例的一个子实施例,所述第一区域标识和所述目标区域标识被共同用于确定所述第二节点U2和所述第一节点U1之间的距离大于第一阈值,所述第一节点U1放弃在所述第一空口资源集合发送所述第一信号。
作为该实施例的一个子实施例,所述第一阈值是固定的,或者所述第一阈值是通过RRC信令配置的。
作为该实施例的一个子实施例,所述目标区域标识是本申请中的所述第三区域标识。
作为该实施例的一个子实施例,所述第一区域尺寸被用于确定所述目标区域标识。
作为一个实施例,当所述第一空口资源集合被关联到所述第二空口资源池,所述第二区域标识和所述目标区域标识被所述第一节点U1共同用于判断是否发送所述第一信号。
作为该实施例的一个子实施例,所述第二区域标识和所述目标区域标识被共同用于确定所述第二节点U2和所述第一节点U1之间的距离不大于第二阈值,所述第一节点U1在所述第 一空口资源集合发送所述第一信号。
作为该实施例的一个子实施例,所述第二区域标识和所述目标区域标识被共同用于确定所述第二节点U2和所述第一节点U1之间的距离大于第二阈值,所述第一节点U1放弃在所述第一空口资源集合发送所述第一信号。
作为该实施例的一个子实施例,所述第二阈值是固定的,或者所述第二阈值是通过RRC信令配置的。
作为该实施例的一个子实施例,所述目标区域标识是本申请中的所述第四区域标识。
作为该实施例的一个子实施例,所述第二区域尺寸被用于确定所述目标区域标识。
作为一个实施例,本申请中的所述第一阈值不等于本申请中的所述第二阈值。
作为一个实施例,所述第一信令被用于指示所述第一空口资源集合。
作为一个实施例,所述第一信令被用于确定所述第一空口资源集合。
作为一个实施例,所述目标信号所占用的时域资源被用于确定所述第一空口资源集合所占用的时域资源。
作为一个实施例,所述目标信号所占用的频域资源被用于确定所述第一空口资源集合所占用的频域资源。
作为一个实施例,所述目标信号是无线信号。
作为一个实施例,所述目标信号是基带信道。
作为一个实施例,承载所述第一信令的物理层信道包括PSCCH。
作为一个实施例,承载所述目标信号的物理层信道包括PSSCH。
作为一个实施例,承载所述目标信号的物理层信道包括PSFCH。
作为一个实施例,第一序列被用于生成所述目标信号,所述第一序列包括伪随机序列或Zadoff-Chu序列中的至少之一。
作为一个实施例,所述目标参考信号对应目标参考信号标识。
作为一个实施例,所述目标参考信号被用于确定所述第二节点U2在所述第一空口资源集合中所采用的空间接收参数。
作为一个实施例,所述目标参考信号被用于确定所述第一节点U1在所述第一空口资源集合所采用的空间发送参数。
作为一个实施例,所述第一节点U1在所述第一空口资源集合的发送天线端口是第一参考信号,所述第一参考信号和所述目标参考信号是QCL的。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
作为该实施例的一个子实施例,所述第一索引被关联到本申请中的所述第一TRP,所述第二索引被关联到本申请中的所述第二TRP,所述第一TRP和所述第二TPR均是所述第一节点的服务小区下的TRP。
作为该实施例的一个子实施例,所述第一索引和所述第二索引分别被用于标识两个CORESET(Control Resource Set,控制资源集合)。
作为该实施例的一个子实施例,所述第一节点U1的服务小区的小区标识是第一小区标识,在所述第一空口资源池中传输的无线信号同时被所述第一小区标识和第一索引加扰。
作为该实施例的一个子实施例,所述第一节点U1的服务小区的小区标识是第一小区标识,在所述第二空口资源池中传输的无线信号同时被所述第一小区标识和第二索引加扰。
作为一个实施例,所述检测包括能量检测。
作为一个实施例,所述检测包括盲检测。
作为一个实施例,所述检测包括序列检测。
作为一个实施例,所述检测包括相干检测。
作为一个实施例,所述第二节点U2在接收到所述第一信号之前不知道所述第一信号是否被发送。
作为一个实施例,所述第二信令被用于指示所述第一空口资源池所占用的时域资源或频域资源中的至少之一;且所述第二信令被用于指示所述第二空口资源池所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第二信令被用于指示所述第一空口资源池所占用的空域资源;且所述第二信令被用于指示所述第二空口资源池所占用的空域资源。
作为一个实施例,所述X1个候选空口资源集合中至少存在第一候选空口资源集合和第二候选空口资源集合,所述第一候选空口资源集合是所述第一空口资源池所包括的K1个空口资源集合中的之一,且所述第二候选空口资源集合是所述第二空口资源池所包括的K2个空口资源集合中的之一。
作为一个实施例,所述第四信令被用于指示X1个候选参考信号,所述X1个候选参考信号分别与X1个候选空口资源集合一一对应,所述目标参考信号是所述X1个候选参考信号中的一个候选参考信号。
作为该实施例的一个子实施例,所述X1个候选参考信号分别被用于确定所述X1个候选空口资源集合上的X1个空间发送参数组。
作为该实施例的一个子实施例,所述X1个候选参考信号分别被用于确定所述X1个候选空口资源集合上的X1个空间接收参数组。
作为该实施例的一个子实施例,所述X1个候选参考信号分别对应X1个天线端口。
实施例6
实施例6示例了根据本申请的一个实施例的第五信令和第六信令的示意图;如附图6所示。在附图6中,第一节点U4与第二节点U5之间通过副链路进行通信,第一节点U4与第三节点N6之间通过蜂窝链路进行通信;在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用于实施例6;反之,实施例6中的实施例、子实施例和附属实施例能够被应用于实施例5。
对于 第一节点U4,在步骤S40中接收第二信令;在步骤S41中接收第五信令;在步骤S42中发送第六信令。
对于 第二节点U5,在步骤S50中接收第六信令。
对于 第三节点N6,在步骤S60中发送第二信令;在步骤S61中发送第五信令。
实施例6中,所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池;所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸;所述第六信令被用于指示所述第一空口资源池和所述第二空口资源池。
作为一个实施例,所述第六信令在副链路上被发送。
作为一个实施例,所述第三节点N6与所述第二节点U5是非共址的。
作为一个实施例,本申请中的所述第二节点U5是一个终端。
作为一个实施例,所述第二节点U5和所述第一节点U4之间进行V2X通信。
作为一个实施例,所述第二节点U5与所述第一节点U4属于同一个服务小区。
作为一个实施例,所述第二节点U5与所述第一节点U4被同一个服务小区所服务。
作为一个实施例,所述第二节点U5与所述第一节点U4分别被不同的服务小区所服务。
作为一个实施例,所述第六信令被用于转发所述第一空口资源池的配置信息和所述第二空口资源池的配置信息。
作为一个实施例,所述第六信令被用于转发所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第六信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第六信令被用于指示所述第一空口资源池所占用的时域资源或频域资源中的至少之一;且所述第六信令被用于指示所述第二空口资源池所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第六信令被用于指示所述第一空口资源池所占用的空域资源;且所述第二信令被用于指示所述第六空口资源池所占用的空域资源。
作为一个实施例,所述第六信令是更高层信令。
作为一个实施例,所述第六信令是RRC信令。
作为一个实施例,所述第六信令是PC-5口上的信令。
作为一个实施例,所述第六信令是MAC CE。
实施例7
实施例7示例了根据本申请的一个实施例的第一空口资源池和第二空口资源池的示意图;如附图7所示。在实施例7中,所述第一空口资源池所占用的RE(Resource Element,资源单元)和所述第二空口资源池所占用的RE是正交的。
作为一个实施例,上述短语所述第一空口资源池所占用的RE和所述第二空口资源池所占用的RE是正交的的意思包括:不存在一个RE同时属于所述第一空口资源池和所述第二空口资源池。
作为一个实施例,所述第一空口资源池和所述第二空口资源池是TDM(Time-Domain Multiplex,时分复用)的;或者所述第一空口资源池和所述第二空口资源池是FDM(Frequency-Domain Multiplex,时分复用)的。
作为一个实施例,所述第一空口资源池在时域占用Q1个多载波符号,所述Q1是大于1的正整数。
作为该实施例的一个子实施例,所述Q1个多载波符号在时域是离散的。
作为一个实施例,所述第二空口资源池在时域占用Q2个多载波符号,所述Q2是大于1的正整数。
作为该实施例的一个子实施例,所述Q2个多载波符号在时域是离散的。
作为一个实施例,所述第一空口资源池所包括的多载波符号和所述第二空口资源池所包括的多载波符号在时域是交织的(Interleaved)。
实施例8
实施例8示例了另一个第一空口资源池和第二空口资源池的示意图,如附图8所示。附图8中,所述第一空口资源池包括K1个空口资源集合,所述第二空口资源池包括K2个空口资源集合;所述K1个空口资源集合中至少存在一个第一类空口资源集合,且所述K2个空口资源集合中至少存在一个第二类空口资源集合,所述第一类空口资源集合和所述第二类空口资源集合占用相同的RE。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应不同的空域资源。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应不同的空间发送参数组。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应不同的空间接收参数组。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应不同的天线端口。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应不同的参考信号,或者所述第一空口资源池和所述第二空口资源池分别对应不同的参考信号标识。
实施例9
实施例9示例了一个第一类空口资源集合和第二类空口资源集合的示意图,如附图9所示。图9中,所述第一类空口资源集合和所述第二类空口资源集合分别属于本申请中的所述第一空口资源池和所述第二空口资源池;且所述第一类空口资源集合和所述第二类空口资源集合占用相同的时频资源。
作为一个实施例,本申请中的所述第一节点分别采用不同的空间发送参数在所述第一类空口资源集合和所述第二类空口资源集合发送无线信号。
作为一个实施例,本申请中的所述第二节点分别采用不同的空间接收参数在所述第一类 空口资源集合和所述第二类空口资源集合接收无线信号。
作为一个实施例,所述第一类空口资源集合和所述第二类空口资源集合分别被关联到不同的天线端口上。
作为一个实施例,所述第一类空口资源集合和所述第二类空口资源集合分别被关联到不同的参考信号上。
实施例10
实施例10示例了一个第一空口资源池和第二空口资源池与对应的波束赋形向量的示意图。在附图10中,所述第一空口资源池对应第一波束赋形向量,所述第二空口资源池对应第二波束赋形向量。
作为一个实施例,所述第一波束赋形向量和所述第二波束赋形向量分别对应不同的空间接收参数。
作为一个实施例,所述第一波束赋形向量和所述第二波束赋形向量分别对应不同的空间发送参数。
作为一个实施例,所述第一波束赋形向量和所述第二波束赋形向量分别对应不同的参考信号。
作为一个实施例,所述第一波束赋形向量和所述第二波束赋形向量分别对应不同的发送天线端口。
实施例11
实施例11示例了一个第一区域尺寸和第二区域尺寸的示意图,如附图11所示。在附图11中,实线的矩形格对应按照所述第一区域尺寸划分的区域,虚线的矩形格对应按照所述第二区域尺寸划分的区域。
作为一个实施例,图中所示的第一区域尺寸的划分是以第一TRP为中心进行的区域划分。
作为一个实施例,图中所示的第二区域尺寸的划分是以第二TRP为中心进行的区域划分。
作为一个实施例,所述第一区域尺寸包括第一区域长度和第一区域宽度,所述第二区域尺寸包括第二区域长度和第二区域宽度;所述第一区域长度不等于所述第二区域长度,或者所述第一区域宽度不等于所述第二区域宽度。
实施例12
实施例12示例了一个第一节点和第三节点的关系的示意图,如附图12所示。在附图12中,实线矩形方框表示按照第一区域尺寸划分的区域,所述第一区域尺寸包括第一区域宽度和第一区域长度;所述第一节点所在的区域对应第三区域标识,所述第二节点所在的区域对应第一区域标识。
作为一个实施例,所述第一区域标识和所述第三区域标识之间的差被所述第一节点用于确定所述第一节点和所述第二节点之间的距离。
作为该实施例的一个子实施例,所述第一节点和所述第二节点之间的所述距离被所述第一节点用于确定是否发送所述第一信号。
实施例13
实施例13示例了另一个第一节点和第三节点的关系的示意图,如附图13所示。在附图12中,虚线矩形方框表示按照第二区域尺寸划分的区域;所述第一节点所在的区域对应第四区域标识,所述第二节点所在的区域对应第二区域标识。
作为一个实施例,所述第二区域标识和所述第四区域标识之间的差被所述第一节点用于确定所述第一节点和所述第二节点之间的距离。
作为该实施例的一个子实施例,所述第一节点和所述第二节点之间的所述距离被所述第一节点用于确定是否发送所述第一信号。
实施例14
实施例14示例了天线端口和天线端口组的示意图,如附图14所示。
在实施例14中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图14中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个子实施例,一个天线端口组包括一个天线端口。例如,附图14中的所述天线端口组#0包括一个天线端口。
作为上述子实施例的一个附属实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。
作为一个子实施例,一个天线端口组包括多个天线端口。例如,附图14中的所述天线端口组#1包括多个天线端口。
作为上述子实施例的一个附属实施例,所述多个天线端口对应相同的模拟波束赋型矩阵和不同的数字波束赋型向量。
作为一个子实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个子实施例,一个天线端口组中的任意两个天线端口是QCL(Quasi-Colocated,准共址)的。
作为一个子实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
实施例15
实施例15示例了一个第一节点中的结构框图,如附图15所示。附图15中,第一节点1500包括第一接收机1501和第一发射机1502。
第一接收机1501,接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
第一发射机1502,根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;
实施例15中,所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第 一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
作为一个实施例,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
作为一个实施例,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
作为一个实施例,所述第一接收机1501接收第二信令;所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池。
作为一个实施例,所述第一接收机1501接收第三信令;所述第三信令被用于确定X1个候选空口资源集合,所述第一空口资源集合是所述X1个候选空口资源集合中的之一,所述X1是大于1的正整数。
作为一个实施例,所述第一接收机1501接收目标信号;所述第一信令包括所述目标信号的配置信息,所述第一信号被用于针对所述目标信号的反馈;所述目标信号在副链路上被传输。
作为一个实施例,所述第一接收机1501接收第四信令;所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
作为一个实施例,所述第一接收机1501接收第五信令;所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第一发射机1502发送第六信令;所述第六信令被用于指示所述第一空口资源池和所述第二空口资源池。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
作为一个实施例,所述第一接收机1501包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1502包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例16
实施例16示例了一个第二节点中的结构框图,如附图16所示。附图16中,第二节点1600包括第二发射机1601和第二接收机1602。
第二发射机1601,发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
第二接收机1602,在第一空口资源集合中检测第一信号;
实施例16中,所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
作为一个实施例,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
作为一个实施例,目标区域标识被用于确定所述第一节点的所述当前位置;当所述 第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
作为一个实施例,所述第二接收机1602接收第二信令;所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池。
作为一个实施例,所述第二接收机1602接收第六信令;所述第六信令被用于指示所述第一空口资源池和所述第二空口资源池。
作为一个实施例,所述第二发射机1601发送第三信令;所述第三信令被用于确定X1个候选空口资源集合,所述第一空口资源集合是所述X1个候选空口资源集合中的之一,所述X1是大于1的正整数。
作为一个实施例,所述第二发射机1601发送目标信号;所述第一信令包括所述目标信号的配置信息,所述第一信号被用于针对所述目标信号的反馈;所述目标信号在副链路上被传输。
作为一个实施例,所述第二发射机1601发送第四信令;所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
作为一个实施例,所述第二接收机1602接收第五信令;所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
作为一个实施例,所述第二发射机1601发送第五信令;所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
作为一个实施例,所述第二发射机1601包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1602包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
实施例17
实施例17示例了一个第三节点中的结构框图,如附图17所示。附图17中,第三节点1700包括第三发射机1701。
第三发射机1701,发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;
实施例17中,所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
作为一个实施例,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
作为一个实施例,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
作为一个实施例,所述第三发射机1701发送第四信令;所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
作为一个实施例,所述第三发射机1701发送第五信令;所述第五信令被用于指示所述第一区域尺寸和所述第二区域尺寸。
作为一个实施例,所述第一空口资源池和所述第二空口资源池分别对应第一索引和第二索引,所述第一索引和所述第二索引不同。
作为一个实施例,所述第三发射机1701包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一接收机,接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
    第一发射机,根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;
    其中,所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一空口资源池被关联到第一区域尺寸,所述第一区域尺寸被用于确定所述第一区域标识;或者,所述第二空口资源池被关联到第二区域尺寸,所述第二区域尺寸被用于确定所述第二区域标识。
  3. 根据权利要求2所述的第一节点,其特征在于,目标区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域尺寸被用于确定所述目标区域标识;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域尺寸被用于确定所述目标区域标识。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收第二信令;所述第二信令被用于指示所述第一空口资源池和所述第二空口资源池。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收第三信令;所述第三信令被用于确定X1个候选空口资源集合,所述第一空口资源集合是所述X1个候选空口资源集合中的之一,所述X1是大于1的正整数。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收目标信号;所述第一信令包括所述目标信号的配置信息,所述第一信号被用于针对所述目标信号的反馈;所述目标信号在副链路上被传输。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收第四信令;所述第四信令被用于指示目标参考信号,所述目标参考信号与所述第一空口资源集合相关联。
  8. 一种被用于无线通信的第二节点,其特征在于包括:
    第二发射机,发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
    第二接收机,在第一空口资源集合中检测第一信号;
    其中,所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
  9. 一种被用于无线通信的第三节点,其特征在于包括:
    第三发射机,发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;
    其中,所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
  10. 一种被用于无线通信的第一节点的方法,其特征在于包括:
    接收第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
    根据当前位置判断是否发送第一信号;当判断结果为是时,在第一空口资源集合发送第一信号;当判断结果为否时,放弃在第一空口资源集合发送第一信号;
    其中,所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述当前位置。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一信令,所述第一信令被用于指示第一区域标识和第二区域标识;
    在第一空口资源集合中检测第一信号;
    其中,所述第一信号的发送者是第一节点;所述第一区域标识和所述第二区域标识分别被关联到第一空口资源池和第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的当前位置;所述第一节点根据所述第一节点的所述当前位置判断是否发送第一信号;当判断结果为是时,在所述第一空口资源集合发送所述第一信号;当判断结果为否时,放弃在所述第一空口资源集合发送所述第一信号。
  12. 一种被用于无线通信的第三节点中的方法,其特征在于包括:
    发送第二信令,所述第二信令被用于指示第一空口资源池和第二空口资源池;
    其中,所述第二信令的接收者包括第一节点,所述第一节点根据所述第一节点的当前位置判断是否发送第一信号;当判断结果为是时,所述第一节点在第一空口资源集合发送第一信号;当判断结果为否时,所述第一节点放弃在第一空口资源集合发送第一信号;第一区域标识和第二区域标识分别被关联到所述第一空口资源池和所述第二空口资源池;当所述第一空口资源集合被关联到所述第一空口资源池时,所述第一区域标识被用于确定所述第一节点的所述当前位置;当所述第一空口资源集合被关联到所述第二空口资源池时,所述第二区域标识被用于确定所述第一节点的所述当前位置。
PCT/CN2020/108170 2019-08-16 2020-08-10 一种被用于无线通信的节点中的方法和装置 WO2021031901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910759897.9A CN112399581B (zh) 2019-08-16 2019-08-16 一种被用于无线通信的节点中的方法和装置
CN201910759897.9 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031901A1 true WO2021031901A1 (zh) 2021-02-25

Family

ID=74602834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108170 WO2021031901A1 (zh) 2019-08-16 2020-08-10 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN112399581B (zh)
WO (1) WO2021031901A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150039A (zh) * 2021-03-31 2022-10-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004296A2 (ko) * 2016-06-30 2018-01-04 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 ack/nack 전송 방법 및 이를 위한 장치
CN109076578A (zh) * 2016-04-01 2018-12-21 Lg电子株式会社 用于在无线通信系统中发送用于侧链路调度的下行链路控制信息的方法和使用该方法的终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101791845B1 (ko) * 2014-08-07 2017-10-31 엘지전자 주식회사 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
CN107690160B (zh) * 2016-08-05 2019-01-08 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107888238B (zh) * 2016-09-30 2020-09-01 上海朗帛通信技术有限公司 一种用于随机接入的ue、基站中的方法和装置
CN108076519B (zh) * 2016-11-15 2020-05-26 上海朗帛通信技术有限公司 一种被用于低延迟的ue、基站中的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076578A (zh) * 2016-04-01 2018-12-21 Lg电子株式会社 用于在无线通信系统中发送用于侧链路调度的下行链路控制信息的方法和使用该方法的终端
WO2018004296A2 (ko) * 2016-06-30 2018-01-04 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 ack/nack 전송 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on Physical Layer Procedures for NR Sidelink", 3GPP DRAFT; R1-1907018, vol. RAN WG1, 17 May 2019 (2019-05-17), Reno USA, pages 1 - 11, XP051709051 *
LG ELECTRONICS: "Feature Lead Summary for Agenda Item 7.2.4.5 Physical Layer Procedures for Sidelink", 3GPP DRAFT; R1-1907682 FEATURE LEAD SUMMARY OF PHY PROCEDURE IN NR SIDELINK, vol. RAN WG1, 16 May 2019 (2019-05-16), Reno, USA, pages 1 - 26, XP051739971 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150039A (zh) * 2021-03-31 2022-10-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115150039B (zh) * 2021-03-31 2024-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN112399581A (zh) 2021-02-23
CN112399581B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112074009B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036789A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088610A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083236A1 (zh) 用于无线通信的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179471A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023088128A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023061352A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854058

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20854058

Country of ref document: EP

Kind code of ref document: A1