WO2020029862A1 - 一种被用于无线通信节点中的方法和装置 - Google Patents

一种被用于无线通信节点中的方法和装置 Download PDF

Info

Publication number
WO2020029862A1
WO2020029862A1 PCT/CN2019/098838 CN2019098838W WO2020029862A1 WO 2020029862 A1 WO2020029862 A1 WO 2020029862A1 CN 2019098838 W CN2019098838 W CN 2019098838W WO 2020029862 A1 WO2020029862 A1 WO 2020029862A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
type
wireless signal
signaling
indexes
Prior art date
Application number
PCT/CN2019/098838
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020029862A1 publication Critical patent/WO2020029862A1/zh
Priority to US16/835,326 priority Critical patent/US11343023B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular, to a communication method and device performed on a side link in wireless communication.
  • the 3rd Generation Partnership Project (3GPP) Radio Access Network (RAN) # 72 plenary session decided on the new air interface technology (NR , New Radio (or Fifth Generation, 5G) to conduct research, passed the NR's WI (Work Item) at the 3GPP RAN # 75 plenary meeting, and began to standardize the NR.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • 5G Fifth Generation
  • V2X Vehicle-to-Everything
  • 3GPP has also started the work of standard formulation and research under the NR framework.
  • 3GPP has completed the requirements for 5G V2X services, and has written them into the standard TS22.886.
  • 3GPP defines 4 major application scenario groups for 5G V2X services, including: Vehicles Platnooning, Support for Extended Sensors, Semi / Fully Driving (Advanced Driving) and Remote Driving ( Remote Driving).
  • RAN # 80 plenary meeting research on NR-based V2X technology has been initiated.
  • the NR V2X system In order to meet the new business requirements, compared with the LTE V2X system, the NR V2X system has higher throughput, higher reliability, lower latency, longer transmission distance, more accurate positioning, more variability in packet size and transmission cycle And key technical features that coexist more effectively with existing 3GPP and non-3GPP technologies.
  • the working mode of the LTE V2X system is limited to broadcast transmission. According to the consensus reached at the 3GPP RAN # 80 plenary meeting, NR V2X will study technical solutions that support unicast, multicast, and broadcast multiple working modes.
  • the wireless signals sent by the user equipment through the Sidelink are broadcast, and no wireless signals are sent to a specific user equipment.
  • the working mode of broadcast transmission is very low in resource utilization efficiency and reliable transmission cannot be guaranteed; therefore, D2D and V2X in the NR background need to consider unicast transmission to improve the spectrum Efficiency and transmission performance.
  • this application discloses a solution to support unicast transmission. It should be noted that, in the case of no conflict, the embodiments in the user equipment and the features in the embodiments can be applied to a base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other. Further, although the original intention of this application is directed to a unicast-based transmission mechanism, this application can also be used for broadcast and multicast transmission. Furthermore, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the present application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the target wireless signal includes Q index groups, and the Q index groups include Q first-class indexes, and each of the Q index groups includes at least one index associated with a corresponding first-type index.
  • the first index group is an index group whose second type index included in the Q index groups is the same as the second type index included in the first signaling; Q is a positive integer.
  • the above method has the advantage that the Q index groups correspond to Q terminals that perform secondary link communication with the first node, respectively; a given index group is any one of the Q index groups Index group, the first type of index included in the given index group is the unique identifier of the corresponding terminal, and the second type of index included in the given index group is the corresponding terminal at the first node Side identification; in the above manner, the first node can uniquely identify a terminal among the Q terminals, and configure the terminal with a second-type index unique among the Q terminals; and after receiving the first signaling, The receiving end knows whether the first wireless signal is a data channel sent to the receiving end, which simplifies the reception complexity of the data channel and improves the reception performance.
  • the first type of index can inherit the identifier of an existing system, such as C-RNTI (Cell-Radio Network Temporary Identifier, cell-wireless network temporary identifier), and the second
  • the class identifier is a short identifier, such as a 4-bit bit string, because the number of terminals communicating with the first node at the same time will not be very large.
  • the shorter type of the second identifier can reduce the overhead of non-data channels and improve spectrum efficiency. .
  • another advantage of the foregoing method is that the target wireless signal is sent in a broadcast or multicast (Group-Cast) manner, and when data is transmitted, different types of indexes are configured for different terminals, To achieve the effect of unicast data transmission.
  • Group-Cast Group-Cast
  • the above method is characterized by comprising:
  • the Q wireless signals respectively indicate the Q first-type indexes.
  • the advantage of the above method is that when terminals outside the serving cell of the first node or terminals outside the coverage of the cellular network exist in the Q terminals, the Q terminals use the A mechanism for sending Q first-class indexes to the first node to ensure that the first node can generate the Q index groups.
  • the above method is characterized by comprising:
  • the second signaling indicates a first index, and the first index is different from any of the first indexes of the Q first indexes; the first index is used to generate the first index Signaling.
  • the above method has the advantage that the first node sends the first index through physical layer signaling, so that a terminal that is in communication with the first node can receive the first index through the first index.
  • the first signaling further improves the receiving performance of the first signaling.
  • the above method is characterized by:
  • the first information includes HARQ-ACK (Hybrid Automatic Repeat Repeat Acknowledgment, Hybrid Automatic Repeat Request Confirmation) associated with the first wireless signal.
  • HARQ-ACK Hybrid Automatic Repeat Repeat Acknowledgment, Hybrid Automatic Repeat Request Confirmation
  • the above method has the advantage that the data channel on the secondary link, that is, the HARQ-ACK of the first wireless signal is fed back through the first information, thereby improving the performance and spectrum efficiency of transmission on the secondary link.
  • the above method is characterized in that the second-type index included in the first signaling is used to determine a HARQ process number for the first wireless signal.
  • the above method has the advantage that the second type of index included in the first signaling is a HARQ process allocated to the first wireless signal; when the data carried by the first wireless signal is When not correctly received, the second type of index can be conveniently used for retransmission of the data based on incremental redundancy, thereby optimizing the performance and spectral efficiency of data channel transmission on the secondary link.
  • the first index group may further include a second type index other than the second type index for the first wireless signal, and the other second type index
  • the indexes are all allocated to the second node, and the second node can support multiple HARQ processes, which further improves the flexibility and performance of transmission on the secondary link.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by including:
  • Receive the first signaling receive the first wireless signal only when the first index included in the first index group is the same as the second index;
  • the target wireless signal includes Q index groups, and the Q index groups include Q first-class indexes, and each of the Q index groups includes at least one index associated with a corresponding first-type index.
  • the first index group is an index group whose second type index included in the Q index groups is the same as the second type index included in the first signaling;
  • the Q is a positive integer; the second index is an integer.
  • the above method is characterized by comprising:
  • the second wireless signal is one of the Q wireless signals, and the Q wireless signals indicate the Q first-type indexes; the second wireless signal indicates the second index.
  • the above method is characterized by comprising:
  • the second signaling indicates a first index, and the first index is different from any of the first indexes of the Q first indexes; the first index is used to generate the first index Signaling.
  • the above method is characterized by comprising:
  • the first information includes HARQ-ACK associated with the first wireless signal.
  • the above method is characterized in that the second-type index included in the first signaling is used to determine a HARQ process number for the first wireless signal.
  • the present application discloses a first node used for wireless communication, which is characterized by including:
  • a first transceiver that sends a target wireless signal
  • the second transceiver sends the first signaling and the first wireless signal
  • the target wireless signal includes Q index groups, and the Q index groups include Q first-class indexes, and each of the Q index groups includes at least one index associated with a corresponding first-type index.
  • the first index group is an index group whose second type index included in the Q index groups is the same as the second type index included in the first signaling; Q is a positive integer.
  • the present application discloses a second node used for wireless communication, which is characterized by including:
  • a third transceiver receiving a target wireless signal
  • the fourth transceiver receives the first signaling; the fourth transceiver also receives the first wireless signal only when the first index included in the first index group is the same as the second index;
  • the target wireless signal includes Q index groups, and the Q index groups include Q first-class indexes, and each of the Q index groups includes at least one index associated with a corresponding first-type index.
  • the first index group is an index group whose second type index included in the Q index groups is the same as the second type index included in the first signaling;
  • the Q is a positive integer; the second index is an integer.
  • this application has the following advantages:
  • the Q index groups correspond to Q terminals that perform secondary link communication with the first node respectively; the given index group is any one of the Q index groups, and the given index group
  • the included index of the first type is the unique identifier of the corresponding terminal, and the index of the second type included in the given index group is the identifier of the corresponding terminal on the first node side;
  • a node can uniquely identify a terminal among the Q terminals, and configure the terminal with a second-type index unique among the Q terminals; and after receiving the first signaling, the receiving terminal knows the first Whether the wireless signal is a data channel sent to the receiving end simplifies the reception complexity of the data channel and improves the reception performance.
  • the first type of index can inherit the identifier of the existing terminal, such as C-RNTI (Cell-Radio Network Temporary Identifier, Cell-Wireless Network Identifier) or S-TMSI, while the second type of identifier is a shorter identifier
  • C-RNTI Cell-Radio Network Temporary Identifier, Cell-Wireless Network Identifier
  • S-TMSI Cell-Radio Network Temporary Identifier
  • the second type of identifier is a shorter identifier
  • a 4-bit bit string because the number of terminals communicating with the first node at the same time will not be large, the short type of the second type identifier can reduce the overhead of the non-data channel and improve the spectral efficiency.
  • the second type of index is a HARQ process assigned to the first wireless signal; when the data carried by the first wireless signal is not received correctly, the second type of index can be conveniently used for the data Based on incremental retransmissions, the performance and spectrum efficiency of data channel transmission on the secondary link are optimized.
  • the first index group may further include a second type index other than the second type index for the first wireless signal, and the other second type indexes are allocated to the second node, and further
  • the second node may support multiple HARQ processes, further improving the flexibility and performance of transmission on the secondary link.
  • FIG. 1 shows a flowchart of a target wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication node and a second communication node according to an embodiment of the present application
  • FIG. 5 shows a flowchart of a first signaling according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a first node and a second node according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of Q index groups according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of Q index groups according to another embodiment of the present application.
  • FIG. 9 shows a schematic diagram of Q index groups according to still another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a first index group according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a first index group according to another embodiment of the present application.
  • FIG. 12 shows a schematic diagram of K time windows according to an embodiment of the present application
  • FIG. 13 is a schematic diagram illustrating a relationship between a first index group and Q index groups according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG. 15 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • Embodiment 1 illustrates a flowchart of a target wireless signal, as shown in FIG. 1.
  • each block represents a step.
  • the first node in the present application sends a target wireless signal in step 101, and sends a first signaling and a first wireless signal in step 102;
  • the target wireless signal includes Q index groups, and
  • the Q index groups include Q first-type indexes, and each of the Q index groups includes at least one second-type index associated with a corresponding first-type index;
  • the first signaling includes the first Configuration information of a wireless signal, the first signaling includes a second type of index, the first type of index included in the first index group is used to generate the first wireless signal, and the first index group is all
  • the second type index included in the Q index groups is the same index group as the second type index included in the first signaling;
  • the Q is a positive integer.
  • each of the Q index groups includes only one second-type index associated with the corresponding first-type index.
  • each of the Q index groups includes a plurality of second-type indexes associated with the corresponding first-type indexes.
  • any two first-type indexes among the Q first-type indexes are different.
  • At least two first-type indexes among the Q first-type indexes are the same.
  • the two identical first-type indexes correspond to two index groups, respectively, and the two index groups each include two associated with the two identical first-type indexes.
  • Second-type indexes, the two second-type indexes are different.
  • only the second type of indexes included in the first index group among the Q index groups are the same as the second type of indexes included in the first signaling.
  • the first index group includes only a second type index
  • the second index included in the first signaling and the first index group include only the first index
  • the secondary index is the same.
  • the first index group includes a plurality of second-type indexes, the second-type index included in the first signaling, and the plurality of first-type indexes included in the first index group.
  • One of the two indexes is the same.
  • the number of bits included in any two of the first-type indexes included in the Q index groups is the same, and any two of the second-type indexes included in the Q index groups are the same.
  • the number of bits included is the same.
  • the number of bits included in the first type of index included in any of the Q index groups is greater than the number of bits included in any of the Q index groups.
  • the number of bits included in the secondary index is greater than the number of bits included in any of the Q index groups.
  • the Q is 1.
  • the Q is greater than 1.
  • the Q is greater than 1, and the first wireless signal is not related to any of the first type indexes among the Q first type indexes except the first type indexes included in the first index group.
  • the Q is greater than 1, and any two of the Q index groups include different types of indexes.
  • At least two of the Q index groups include the first-type indexes that are the same.
  • any one of the Q first-type indexes is a C-RNTI.
  • the Q first-type indexes are associated with Q different terminals, respectively.
  • the Q1 first-category indexes among the Q first-category indexes are configured by the serving base station of the corresponding Q1 terminal, and the Q first-category indexes are The Q2 first-type indexes are generated by the corresponding Q2 terminals.
  • the Q1 and the Q2 are both non-negative integers not greater than Q. The sum of the Q1 and the Q2 is equal to the Q. .
  • the Q1 is equal to Q, or the Q2 is equal to Q.
  • any one of the Q first-type indexes is an IMSI (International Mobile Subscriber IDentification Number).
  • any one of the Q first-type indexes is a remainder after an IMSI is modulo a given positive integer.
  • the given positive integer is equal to 1024.
  • any one of the Q first-type indexes is an S-TMSI (SAE Temporary Mobile Subscriber Identity).
  • S-TMSI SAE Temporary Mobile Subscriber Identity
  • any one of the Q first-type indexes is a remainder after an S-TMSI is modulo a given positive integer.
  • the given positive integer is equal to 1024.
  • any one of the Q first-type indexes is a UE identifier.
  • the Q index groups are associated with Q different terminals, respectively.
  • the Q different terminals can all be detected by the first node.
  • a PSDCH Physical Sidelink Discovery Channel
  • PSSS Primary, Sidelink, Synchronization, Signal
  • SSSS Secondary, Sidelink, Synchronization, and Secondary
  • the first index group is associated with the second node in the present application, and the second node sends the first information in the present application.
  • the channel occupied by the target wireless signal includes PSSCH (Physical Sidelink Shared Information).
  • the PSSCH occupied by the target wireless signal is scheduled by a given SCI (Sidelink Control Information), and a CRC (Cyclic Redundancy Check) included in the given SCI. Cyclic Redundancy Check) is scrambled by a given sequence, which is known to all receivers of the target wireless signal.
  • SCI Segment Control Information
  • CRC Cyclic Redundancy Check
  • the PSSCH occupied by the target wireless signal is scheduled by a given SCI, and the CRC included in the given SCI is scrambled by a given sequence, which is a predefined sequence .
  • the channel occupied by the target wireless signal includes PSBCH (Physical Sidelink Broadcasting Channel).
  • PSBCH Physical Sidelink Broadcasting Channel
  • a channel occupied by the target wireless signal includes a PSDCH.
  • the first signaling is an SCI.
  • the first signaling is physical layer signaling.
  • the first signaling and the first wireless signal are FDM (Frequency, Division, Multiplexing, Frequency Division Multiplexing).
  • the first signaling and the first wireless signal are TDM (Time Division Multiplexing).
  • a channel occupied by the first wireless signal includes a PSSCH.
  • the first signaling schedules the first wireless signal.
  • the configuration information for the first wireless signal includes: frequency domain resources occupied by the first wireless signal, and MCS (Modulation and Coding Status, modulation and coding mode) used by the first wireless signal. ), At least one of an RV (Redundancy Version) adopted by the first wireless signal and a HARQ (Hybrid Automatic Repeat Repeat ReQuest) process number (Process Number) used by the first wireless signal One.
  • MCS Modulation and Coding Status, modulation and coding mode
  • RV Resource Version
  • HARQ Hybrid Automatic Repeat Repeat ReQuest
  • the use of the first type of index included in the first index group to generate the first wireless signal includes: the first type of index included in the first index group is used for scrambling The first wireless signal.
  • the first node is a terminal.
  • the first node is a user equipment.
  • the first node is a vehicle.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a network architecture 200 of a 5G NR, Long-Term Evolution (LTE) and LTE-A (Long-Term Evolution Advanced) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200, some other suitable term.
  • EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that performs secondary link communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, and EPC (Evolved Packet Core). Core) / 5G-CN (5G-Core Network, 5G Core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet Service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, however, those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • the gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmitting and receiving node), or some other suitable term.
  • gNB203 provides UE201 with access point to EPC / 5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptops, personal digital assistants (PDAs), satellite radios, non-ground base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video device, digital audio player (e.g., MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-ground base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video device
  • digital audio player e.g., MP3 player
  • camera game console
  • drone narrowband IoT device
  • machine type communication device land vehicle, car, wearable device, or any Other similar functional devices.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC / 5G-CN 210 via S1 / NG interface.
  • EPC / 5G-CN 210 includes MME (Mobility Management Entity) / AMF (Authentication Management Field) / UPF (User Plane Function) 211, other MME / AMF / UPF 214, S-GW (Service Gateway), 212 and P-GW (Packet Data Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function
  • S-GW Service Gateway
  • P-GW Packet Data Network Gateway
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service. Specifically, the Internet service 230 may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • the UE 201 corresponds to the first node in this application.
  • the UE 241 corresponds to the second node in this application.
  • the first node in the present application is the UE 201
  • the second node in the present application is a terminal covered by the gNB203.
  • the first node in this application is the UE201
  • the second node in this application is a terminal outside the coverage of the gNB203.
  • both the first node and the second node in this application are served by the gNB203.
  • the UE 201 supports transmission on multiple CCs at the same time.
  • the UE 201 supports transmission on multiple BWP (Bandwidth Part) simultaneously.
  • the UE 241 supports transmission on multiple CCs at the same time.
  • the UE 241 supports transmission on multiple BWP (Bandwidth Part) simultaneously.
  • the gNB203 supports transmission on multiple CCs at the same time.
  • the gNB203 supports transmission on multiple BWPs simultaneously.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for the user equipment (UE) and base station equipment (gNB or eNB) in three layers: 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, a RLC (Radio Link Control, Radio Link Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data (Aggregation protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including the network layer (e.g., IP layer) terminating at the P-GW on the network side and the other end (e.g., Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of the upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the target wireless signal in the present application is generated in the PHY301.
  • the first signaling in this application is generated from the PHY301.
  • the first wireless signal in the present application is generated in the MAC sublayer 302.
  • any of the Q wireless signals in the present application is generated in the PHY301.
  • the second signaling in this application is generated from the PHY301.
  • the first information in this application is generated in the PHY301.
  • the K time windows in this application are configured through the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 450 includes a controller / processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, and a transmitter / receiver 454 And antenna 452.
  • the second communication device 410 includes a controller / processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter / receiver 418, and an antenna 420.
  • an upper layer data packet from a core network is provided to the controller / processor 475.
  • the controller / processor 475 implements the functionality of the L2 layer.
  • the controller / processor 475 provides header compression, encryption, packet segmentation and reordering, multiple paths between logic and transport channels. Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller / processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the first communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Key clustering (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Key clustering
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., a pilot) in the time and / or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a multi-carrier symbol stream in the time domain.
  • the multi-antenna transmission processor 471 then performs a transmission analog precoding / beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier, and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs a receive analog precoding / beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding / beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation.
  • the first communication device 450 is any spatial stream destined for.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller / processor 459.
  • the controller / processor 459 implements the functions of the L2 layer.
  • the controller / processor 459 may be associated with a memory 460 that stores program code and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller / processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, and header decompression. Control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide an upper layer data packet to the controller / processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller / processor 459 implements a header based on the wireless resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels implement L2 layer functions for the user and control planes.
  • the controller / processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel encoding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier / single-carrier symbol stream, and after the analog precoding / beam forming operation is performed in the multi-antenna transmission processor 457, it is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to that at the second communication device 410 to the first communication device 450
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller / processor 475 implements L2 layer functions.
  • the controller / processor 475 may be associated with a memory 476 that stores program code and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller / processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller / processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, and header decompression Control signal processing to recover upper layer data packets from UE450. Upper layer data packets from the controller / processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with all Said at least one processor is used together, said first communication device 450 means at least: sending a target wireless signal, and sending a first signaling and a first wireless signal; said target wireless signal comprises Q index groups, said Q The index group includes Q first-type indexes, and each of the Q index groups includes at least one second-type index associated with a corresponding first-type index; the first signaling includes the first wireless Signal configuration information, the first signaling includes a second type index, and the first type index included in the first index group is used to generate the first wireless signal, and the first index group is the Q The second type of index included in each index group is an index group that is the same as the second type of index included in the first signaling; the Q is a positive integer.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a destination Wireless signals, and sending first signaling and first wireless signals; the target wireless signals include Q index groups, and the Q index groups include Q first-type indexes, each of the Q index groups
  • the index group includes at least one second-type index associated with a corresponding first-type index;
  • the first signaling includes configuration information of the first wireless signal, and the first signaling includes a second-type index.
  • the first type of index included in the index group is used to generate the first wireless signal.
  • the first index group is a second type of index included in the Q index groups and included in the first signaling.
  • the second type of index is the same index group; the Q is a positive integer.
  • the second communication device 410 apparatus includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with all Said at least one processor is used together.
  • the second communication device 410 device at least: receives the target wireless signal; and receives the first signaling; and receives the first wireless signal only when the first index included in the first index group is the same as the second index;
  • the target wireless signal includes Q index groups, each of which includes Q first index types, and each of the Q index groups includes at least one second type associated with a corresponding first index type Index;
  • the first signaling includes configuration information of the first wireless signal, the first signaling includes a second type of index, and the first type of index included in the first index group is used to generate all
  • the first wireless signal, the first index group is an index group whose second type index included in the Q index groups is the same as the second type index included in the first signaling; the Q Is a positive integer; the second index is an integer.
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving A target wireless signal; and receiving first signaling; and receiving a first wireless signal only when a first index included in a first index group is the same as a second index;
  • the target wireless signal includes Q index groups, so
  • the Q index groups include Q first-type indexes, and each of the Q index groups includes at least one second-type index associated with a corresponding first-type index;
  • the first signaling includes the Configuration information of a first wireless signal, the first signaling includes a second type index, and the first type index included in the first index group is used to generate the first wireless signal, the first index
  • the group is an index group whose second type index included in the Q index groups is the same as the second type index included in the first signaling;
  • the Q is a positive integer; and the second index is an integer.
  • the first communication device 450 corresponds to a first node in this application.
  • the second communication device 410 corresponds to a second node in this application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 ⁇ is used to send the target wireless in this application.
  • Signal; at least one of ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, and the reception processor 470 ⁇ is used to receive the target wireless signal in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 ⁇ is used to send the first Signaling; at least one of ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, and the reception processor 470 ⁇ is used to receive the first signaling in this application .
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 ⁇ is used to send the first Wireless signal; only when the first index included in the first index group is the same as the second index, ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, and the reception processor 470 At least one of ⁇ is used to receive the first wireless signal in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna reception processor 458, and the reception processor 456 ⁇ is used to receive the Q number in this application Wireless signal; at least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 ⁇ is used to send the second wireless signal in the present application
  • the second wireless signal is one of the Q wireless signals, and the Q wireless signals indicate the Q first type indexes in the present application; the second wireless signal indicates the present application; The second index in.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 ⁇ is used to send the second in this application Signaling; at least one of ⁇ the antenna 420, the receiver 418, the multi-antenna reception processor 472, and the reception processor 470 ⁇ is used to receive the second signaling in this application .
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna reception processor 458, and the reception processor 456 ⁇ is used for the K number in this application
  • Each of the time windows in the time window detects the first information in this application;
  • At least one is used to send the first information in the present application in one or more of the K time windows in the present application; the K is a positive integer.
  • Embodiment 5 illustrates a flowchart of the first signaling, as shown in FIG. 5.
  • communication is performed between the first node U1 and the second node U2 through a secondary link.
  • the steps labeled F0 in the figure and the steps in block F1 are optional; the (Q-1) wireless signals and the second wireless signal shown in the figure constitute the Q wireless signals in the present application.
  • step S10 For the first node U1, in step S10, transmitting a second signaling; Q wireless signals received in step S11; wireless transmission target signal in step S12; first signaling transmitted in step S13; step S14 in transmission A first wireless signal; detecting the first information in each of the K time windows in step S15.
  • step S20 For the second node U2, received in step S20, a second signaling; a second radio signal transmitted in step S21; receiving a target wireless signal in step S22; first signaling received at step S23; if only the first index When the first index included in the group is the same as the second index, the first wireless signal is received in step S24; the first information is transmitted in one or more of the K time windows in step S25.
  • the target wireless signal includes Q index groups, and each of the Q index groups includes Q first-type indexes, and each of the Q index groups includes at least one and a corresponding first-type index group.
  • the first index group is an index group in which the second type index included in the Q index groups is the same as the second type index included in the first signaling.
  • the Q is a positive integer; the Q wireless signals respectively indicate the Q first type indexes; the second wireless signal is one of the Q wireless signals, and the Q wireless signals are respectively Indicates the Q first-type indexes; the second wireless signal indicates the second index; the second signaling indicates a first index, and the first index and the Q first-type indexes are Any one of the first types of indexes is different; the first index is used to generate the First signaling; the first information includes a HARQ-ACK associated with the first wireless signal; the second type of index included in the first signaling is used to determine a target for the first wireless signal The HARQ process number of the signal; the K is a positive integer; and the second index is an integer.
  • a channel occupied by any one of the Q wireless signals includes a PSDCH.
  • a channel occupied by any one of the Q wireless signals includes at least one of PSSS and SSSS.
  • a channel occupied by any one of the Q wireless signals includes a PSBCH.
  • Q terminals send the Q wireless signals, respectively, and the Q terminals are associated with the Q index groups, respectively.
  • the Q terminals are respectively associated with the Q first-type indexes indicated by the Q wireless signals.
  • the first index is generated by the first node U1 by itself.
  • the first index is allocated to the first node U1 by a base station of a cell serving the first node U1.
  • the first index is a C-RNTI.
  • the first index is an IMSI.
  • the first index is a remainder after modulo an IMSI and a given positive integer.
  • the given positive integer is 1024.
  • the first index is an S-TMSI.
  • the first index is a remainder after modulo an S-TMSI with a given positive integer.
  • the given positive integer is 1024.
  • the first index is used to generate the target wireless signal.
  • the first wireless signal is not related to the first index.
  • the number of bits included in the first index is the same as the number of bits included in any of the first index in the Q index groups.
  • the first index used to generate the first signaling includes: a CRC included in the first signaling is scrambled by the first index.
  • the channel occupied by the second signaling includes a PSBCH.
  • the channel occupied by the second signaling includes a PSCCH.
  • the channel occupied by the second signaling includes a PSDCH.
  • the channels occupied by the second signaling include PSBCH and PSCCH.
  • the channels occupied by the second signaling include PSBCH and PSDCH.
  • the channels occupied by the second signaling and the target wireless signal both include PSBCH.
  • the channels occupied by the second signaling and the target wireless signal both include a PSCCH.
  • the channels occupied by the second signaling and the target wireless signal both include a PSDCH.
  • the channels occupied by the second signaling and the target wireless signal both include PSBCH and PSCCH.
  • the channels occupied by the second signaling and the target wireless signal both include PSBCH and PSDCH.
  • the first signaling is used to indicate the K time windows.
  • the first signaling is used to indicate a first time-frequency resource, and the first information is transmitted in the first time-frequency resource.
  • the first time-frequency resource includes K sub-time-frequency resources, and the K time-domain resources occupied by the K sub-time-frequency resources belong to the K time windows, respectively.
  • the first time-frequency resource includes K sub-time-frequency resources, and any frequency-domain resource of the K frequency-domain resources occupied by the K sub-time-frequency resources passes through the The first signaling indicates.
  • the first time-frequency resource includes K sub-time-frequency resources, and any one of the K frequency-domain resources occupied by the K sub-time-frequency resources is in the frequency domain.
  • the position is fixed, or the position in the frequency domain of any one of the K frequency domain resources occupied by the K sub-time-frequency resources is configured through high-level signaling.
  • the K time windows are configured by semi-static signaling.
  • the K time windows are configured by high-level signaling.
  • the time domain position of each of the K time windows is related to the time domain resources occupied by the first wireless signal.
  • K is 1.
  • K is greater than 1.
  • the first node U1 determines whether the first information is sent according to a CRC detection.
  • the first node U1 determines whether the first information is sent according to the detection and demodulation reference signal.
  • the first node U1 assumes that the first information can only be sent in one of the K time windows at most.
  • the first node U1 assumes that the first information is transmitted in multiple time windows among the K time windows.
  • the first-type index included in the first index group is used to generate the first information.
  • the channel occupied by the first information includes a PSSCH.
  • the channel occupied by the first information includes a PSCCH.
  • the first information is transmitted in one of the K time windows.
  • the first information is transmitted in each of the K time windows.
  • the number of bits occupied by the second type of index included in the first signaling is not greater than four.
  • the first signaling is an SCI
  • the SCI includes a HARQ Process Number (process number)
  • the HARQ process number is the second type of index included in the first signaling.
  • the second node U2 is associated with M HARQ process numbers, and the second type of index included in the first signaling is one HARQ process number among the M HARQ process numbers.
  • the first index group includes M second-type indexes, and the M second-type indexes respectively correspond to the M HARQ process numbers.
  • the second index is a first-type index indicated by the second wireless signal among the Q first-type indexes.
  • the target wireless signal is not related to the second index.
  • the first signaling may be decoded by any terminal in the first terminal group, the second node U2 is a terminal in the first terminal group, and the second node U2 passes the judgment Whether the first index and the second index included in the first index group are the same determines whether the first wireless signal is a wireless signal sent to the second node U2.
  • the first index included in the first index group is the same as the second index, and the second node U2 receives the first wireless signal.
  • the first index included in the first index group is different from the second index, and the second node U2 abandons receiving the first wireless signal.
  • the first index group includes M second-type indexes
  • the first signaling includes only one second-type index
  • the second-type indexes included in the first signaling are all One of the M second-type indexes
  • the second node U2 receives the first wireless signal
  • M be a positive integer greater than 1.
  • the first index group includes only a second-type index
  • the first signaling includes only a second-type index
  • the second-type index and the The first index group only includes that the second type of index is the same; when the first type index included in the first index group is the same as the second index, the second node U2 receives the first wireless signal.
  • the second index is generated by the second node U2 on its own.
  • the second index is allocated to the second node U2 by a base station of a cell serving the second node U2.
  • the second index is a C-RNTI.
  • the second index is an IMSI.
  • the second index is a remainder after modulo an IMSI and a given positive integer.
  • the given positive integer is equal to 1024.
  • the second index is an S-TMSI.
  • the second index is a remainder after modulo an S-TMSI and a given positive integer.
  • a channel occupied by the second wireless signal includes a PSDCH.
  • a channel occupied by the second wireless signal includes at least one of PSSS and SSSS.
  • a channel occupied by the second wireless signal includes a PSBCH.
  • the first index and the second index are different.
  • Embodiment 6 illustrates a schematic diagram of a first node and a second node, as shown in FIG. 6.
  • the first node and the second node are both terminal devices; the first node and the second node communicate on a secondary link.
  • the first node is a group head of the sender of the Q wireless signals in the present application
  • the second node in the present application is a sender of the Q wireless signals.
  • One of the senders is a group head of the sender of the Q wireless signals in the present application
  • the first node and the second node are served simultaneously under one base station.
  • the first node and the second node are respectively served by different base stations.
  • At least one of the first node and the second node is a vehicle.
  • the first node and the second node are both vehicles.
  • At least one node among the first node and the second node is out of coverage of a cellular network.
  • Embodiment 7 illustrates a schematic diagram of Q index groups, as shown in FIG. 7.
  • the Q index groups in the present application are index group # 1 to index group #Q, and the Q index groups correspond to Q terminals, respectively, and the Q terminals are terminal # 1 to Terminal #Q; any one of the Q index groups includes only a first type index and a second type index.
  • the number of bits occupied by the first type of index included in any one of the Q index groups is fixed.
  • the number of bits occupied by the second-type index included in any one of the Q index groups is fixed.
  • the number of bits occupied by any one of the Q index groups is fixed.
  • any two terminals in the Q terminals are different terminals.
  • any two first-type indexes among the Q first-type indexes included in the Q index groups are different.
  • any two second-type indexes among the Q second-type indexes included in the Q index groups are different.
  • the number of bits occupied by any second-type index in the Q second-type indexes is less than any first-type index in the Q first-type indexes The number of bits occupied.
  • the total number of bits occupied by the Q index groups is constant.
  • Embodiment 8 illustrates another schematic diagram of Q index groups, as shown in FIG. 8.
  • the Q index groups in the present application correspond to index group # 1 to index group #Q
  • the Q index groups correspond to Q1 terminals
  • Q1 is a positive integer smaller than the Q
  • any one of the Q index groups includes only a first type index and a second type index.
  • the number of bits occupied by the first type of index included in any one of the Q index groups is fixed.
  • the number of bits occupied by the second-type index included in any one of the Q index groups is fixed.
  • the number of bits occupied by any one of the Q index groups is fixed.
  • the Q1 terminals are all different terminals.
  • At least two first-type indexes in the Q first-type indexes included in the Q index groups are the same.
  • any two second-type indexes among the Q second-type indexes included in the Q index groups are different.
  • the number of bits occupied by any second-type index in the Q second-type indexes is less than any first-type index in the Q first-type indexes The number of bits occupied.
  • the first-type index included in the index group #i and the first-type index included in the index group #j are the same, and the second-type index included in the index group #i It is different from the second type of index included in the index group #j.
  • the total number of bits occupied by the Q index groups is constant.
  • Embodiment 9 illustrates a schematic diagram of yet another Q index group, as shown in FIG. 9.
  • the Q index groups in the present application correspond to index group # 1 to index group #Q
  • the Q index groups correspond to Q terminals, respectively
  • at least index groups exist in the Q index groups #n the index group #n corresponds to the terminal #n, where n is a positive integer not less than 1 and not greater than Q
  • the index group #n includes one first-type index and multiple second-type indexes, so The multiple second-type indexes are related to the terminal #n.
  • the number of bits occupied by the first type of index included in any one of the Q index groups is fixed.
  • the number of bits occupied by the second-type index included in any one of the Q index groups is fixed.
  • the Q terminals are all different terminals.
  • any two first-type indexes among the Q first-type indexes included in the Q index groups are different.
  • the Q index groups include Q2 second-type indexes, the Q2 is a positive integer greater than the Q, and any two second-type indexes in the Q2 second-type indexes are different of.
  • the number of bits occupied by any second-type index in the Q2 second-type indexes is less than any first-type index in the Q first-type indexes The number of bits occupied.
  • the number of bits occupied by the Q index groups is configurable.
  • Embodiment 10 illustrates a schematic diagram of a first index group, as shown in FIG. 10.
  • the first index group includes a first-type index and a second-type index; the first-type indexes are Q first-type indexes indicated by the Q wireless signals in this application.
  • One of the first-type indexes, and the second-type index included in the first signaling in this application is equal to the second-type index included in the first index group.
  • Embodiment 11 illustrates a schematic diagram of another first index group, as shown in FIG. 11.
  • the first index group includes a first type index and a plurality of second type indexes; the first type indexes are Q first types indicated by the Q wireless signals in this application.
  • One of the first-type indexes in the index, and the second-type index included in the first signaling in the present application is one of the plurality of second-type indexes included in the first index group.
  • Embodiment 12 illustrates a schematic diagram of K time windows, as shown in FIG. 12.
  • the K time windows are discretely distributed in the time domain.
  • the K time windows are equally spaced in the time domain.
  • the duration of any one of the K time windows in the time domain is equal to 1 millisecond.
  • the position of any one of the K time windows in the time domain is configured by high-level signaling, which is from a base station of a serving cell of the first node in the present application.
  • the position of any one of the K time windows in the time domain is indicated to the second node in the present application through the first signaling.
  • the position of any one of the K time windows in the time domain is predefined.
  • Embodiment 13 illustrates a schematic diagram of a first index group and Q index groups, as shown in FIG. 13.
  • index group # 1 and index group # 2 are two different index groups in the Q index groups, and correspond to UE # 1 and UE # 2 respectively;
  • the index group # 1 includes a first Class index_1 and second class index_1,
  • the index group # 2 includes a first class index_2 and a second class index_2;
  • UE # A shown in the figure sends the first index in this application Signaling and the first wireless signal;
  • the first wireless signal is a data channel for the UE # 1, and the first wireless signal is not a data channel for the UE # 2.
  • the first index group shown in the figure includes a first type index_A and a second type index_A, and the UE corresponding to the first index group is an expected receiver of the first wireless signal;
  • a signaling includes the second type index_A.
  • the first type index_1 is equal to the first type index_A, and the UE # 1 determines that the first wireless signal is directed to the UE # 1 Data, and receiving the first wireless signal.
  • the first type index_2 is not equal to the first type index_A, and the UE # 2 determines that the first wireless signal is not directed to the UE # 2 Data and give up receiving the first wireless signal.
  • both UE # 1 and UE # 2 will receive the first signaling.
  • both the UE # 1 and the UE # 2 will determine the second index_A indicated by the first signaling from the Q index groups in the present application. A first index group, and then determining the first type index_A included in the first index group according to the first index group.
  • the UE # 1 determines to receive the first wireless signal by comparing the first-type index_A and the first-type index_1 associated with the UE # 1.
  • the UE # 2 determines to abandon receiving the first wireless signal by comparing the first type index_A and the first type index_2 associated with the UE # 2. .
  • Embodiment 14 illustrates a structural block diagram of a processing device in a first node, as shown in FIG. 14.
  • the first node processing device 1400 includes a first transceiver 1401 and a second transceiver 140.
  • the first transceiver 1401 sends a target wireless signal
  • the second transceiver 1402 sends the first signaling and the first wireless signal
  • the target wireless signal includes Q index groups, and each of the Q index groups includes Q first-type indexes, and each of the Q index groups includes at least one and a corresponding first-type index group.
  • Index-associated second-type index the first signaling includes configuration information of the first wireless signal, the first signaling includes a second-type index, and the first-type index included in the first index group is
  • the first index group is an index group in which the second type index included in the Q index groups is the same as the second type index included in the first signaling.
  • Q is a positive integer.
  • the first transceiver 1401 further receives Q wireless signals, and the Q wireless signals indicate the Q first-type indexes, respectively.
  • the first transceiver 1401 further sends second signaling; the second signaling indicates a first index, and the first index and any one of the Q first-type indexes are first The class index is different; the first index is used to generate the first signaling.
  • the second transceiver 1402 also detects first information in each of the K time windows, where K is a positive integer; the first information includes being associated with the first wireless HARQ-ACK of the signal.
  • the second-type index included in the first signaling is used to determine a HARQ process number for the first wireless signal.
  • the first transceiver 1401 includes an antenna 452, a receiver / transmitter 454, a multi-antenna receiving processor 458, a multi-antenna transmitting processor 457, a receiving processor 456, and a transmitting processor in Embodiment 4. 468. At least the first 6 of the controller / processor 459.
  • the second transceiver 1402 includes an antenna 452, a receiver / transmitter 454, a multi-antenna receiving processor 458, a multi-antenna transmitting processor 457, a receiving processor 456, and a transmitting processor in Embodiment 4. 468. At least the first 6 of the controller / processor 459.
  • Embodiment 15 illustrates a structural block diagram of a processing device in a second node, as shown in FIG. 15.
  • the second node processing device 1500 includes a third transceiver 1501 and a fourth transceiver 1502.
  • the third transceiver 1501 receives a target wireless signal
  • the fourth transceiver 1502 receives the first signaling; the fourth transceiver 1502 also receives the first wireless signal only when the first index included in the first index group is the same as the second index;
  • the target wireless signal includes Q index groups, each of the Q index groups includes Q first-class indexes, and each index group in the Q index groups includes at least one A second type of index associated with the index;
  • the first signaling includes configuration information of the first wireless signal, the first signaling includes a second type of index, and the first type included in the first index group
  • the index is used to generate the first wireless signal, and the first index group is a second-type index included in the Q index groups and a second-type index included in the first signaling.
  • An index group; the Q is a positive integer; the second index is an integer.
  • the third transceiver 1501 further sends a second wireless signal; the second wireless signal is one of the Q wireless signals, and the Q wireless signals indicate the Q first signals respectively. Class index; the second wireless signal indicates the second index.
  • the third transceiver 1501 further receives second signaling; the second signaling indicates a first index, and the first index and any one of the Q first-type indexes are first The class index is different; the first index is used to generate the first signaling.
  • the fourth transceiver 1502 also sends first information in one or more time windows of K time windows, where K is a positive integer; the first information includes being associated with the first time window.
  • HARQ-ACK for a wireless signal.
  • the second-type index included in the first signaling is used to determine a HARQ process number for the first wireless signal.
  • the third transceiver 1501 includes the antenna 420, the transmitter / receiver 418, the multi-antenna transmitting processor 471, the multi-antenna receiving processor 472, the transmitting processor 416, and the receiving processor in Embodiment 4. 470. At least the first six of the controller / processor 475.
  • the fourth transceiver 1502 includes the antenna 420, the transmitter / receiver 418, the multi-antenna transmitting processor 471, the multi-antenna receiving processor 472, the transmitting processor 416, and the receiving processor in Embodiment 4. 470. At least the first six of the controller / processor 475.
  • the first node in this application includes, but is not limited to, mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, and other wireless devices.
  • communication device The second node in this application includes, but is not limited to, mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remotely controlled aircraft, and other wireless devices. communication device.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote controls Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes, but is not limited to, macrocell base stations, microcell base stations, home base stations, relay base stations, eNB, gNB, transmitting and receiving nodes TRP, GNSS, relay satellites, satellite base stations, and air Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点发送目标无线信号,并发送第一信令和第一无线信号;所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令调度所述第一无线信号,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组。本申请通过设计Q个索引组和第一索引组,提高物联网及车联网系统中副链路上数据传输效率,提升系统整体性能。

Description

一种被用于无线通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)上进行的通信方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务定义了4大应用场景组(Use Case Group),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
为了满足新的业务需求,相比LTE V2X系统,NR V2X系统具有更高吞吐量,更高可靠性,更低延时,更远传输距离,更精准定位,数据包大小和发送周期可变性更强,以及与现有3GPP技术和非3GPP技术更有效共存的关键技术特征。当前LTE V2X系统的工作模式仅限于广播(Broadcast)传输。根据在3GPP RAN#80次全会上达成的共识,NR V2X将研究支持单播(Unicast),组播(Groupcast)和广播多种工作模式的技术方案。
在当前LTE D2D(Device to Device,设备到设备)/V2X的工作模式下,用户设备通过Sidelink发送的无线信号是广播的,不会针对某一特定用户设备发送无线信号。当存在针对某一特定用户设备的大数据包业务时,通过广播传输的工作模式,资源利用效率非常低,也无法保证可靠传输;因此需要NR背景下的D2D及V2X考虑单播传输以提高频谱效率和传输性能。
针对上述问题,本申请公开了一种解决方案用以支持单播传输。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对基于单播的传输机制,但本申请也能被用于广播和组播传输。更进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
发送目标无线信号;
发送第一信令和第一无线信号;
其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
作为一个实施例,上述方法的好处在于:所述Q个索引组分别对应和所述第一节点进行副链路通信的Q个终端;给定索引组是所述Q个索引组中的任意一个索引组,所述给定索引 组所包括的第一类索引是对应的终端的唯一标识,且所述给定索引组所包括的第二类索引是所述对应的终端在所述第一节点侧的标识;通过上述方式,第一节点可以在Q个终端中唯一确定一个终端,并为所述终端配置一个在Q个终端中唯一的第二类索引;进而在接收完第一信令后,接收端就知道所述第一无线信号是否是发送给接收端的数据信道,简化数据信道接收复杂度,提高接收性能。
作为一个实施例,上述方法的另一个好处在于:所述第一类索引可沿用现有系统的标识,比如C-RNTI(Cell-Radio Network Temporary Identifier,小区-无线网络临时标识),而第二类标识是较短的标识,比如4位的比特串,因为与所述第一节点同时通信的终端数不会很多,较短长度的第二类标识可以降低非数据信道的开销,提高频谱效率。
作为一个实施例,上述方法的再一个好处在于:所述目标无线信号采用广播或者组播(Group-Cast)的方式发送,且在数据传输时通过给不同的终端配置不同的第二类索引,实现单播(Unicast)数据传输的效果。
根据本申请的一个方面,上述方法的特征在于包括:
接收Q个无线信号;
其中,所述Q个无线信号分别指示所述Q个第一类索引。
作为一个实施例,上述方法的好处在于:当所述Q个终端中存在所述第一节点的服务小区之外的终端,或者蜂窝网覆盖外的终端时,通过所述Q个终端将所述Q个第一类索引发送给所述第一节点的机制,以保证所述第一节点可以生成所述Q个索引组。
根据本申请的一个方面,上述方法的特征在于包括:
发送第二信令;
其中,所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
作为一个实施例,上述方法的好处在于:所述第一节点将所述第一索引通过物理层信令发送出去,便于与所述第一节点进行通信的终端通过所述第一索引接收所述第一信令,进而提高所述第一信令的接收性能。
根据本申请的一个方面,上述方法的特征在于,
在K个时间窗中的每个时间窗中检测第一信息,所述K是正整数;
其中,所述第一信息包括被关联到所述第一无线信号的HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgment,混合自动重传请求确认)。
作为一个实施例,上述方法的好处在于:通过第一信息反馈副链路上数据信道,即所述第一无线信号的HARQ-ACK,进而提升副链路上传输的性能和频谱效率。
根据本申请的一个方面,上述方法的特征在于,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
作为一个实施例,上述方法的好处在于:所述第一信令所包括的所述第二类索引是分配给所述第一无线信号的一个HARQ进程;当所述第一无线信号携带的数据没有被正确接收时,所述第二类索引可方便的用于所述数据的基于递增冗余的重传,进而优化副链路上数据信道传输的性能和频谱效率。
作为一个实施例,上述方法的另一个好处在于:所述第一索引组中还可以包括针对所述第一无线信号的第二类索引之外的其它第二类索引,所述其它第二类索引均分配给所述第二节点,进而所述第二节点可以支持多个HARQ进程,进一步提升副链路上传输的灵活性和性能。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
接收目标无线信号;
接收第一信令;只有当第一索引组所包括的第一类索引与第二索引相同时,接收第一无线信号;
其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
根据本申请的一个方面,上述方法的特征在于包括:
发送第二无线信号;
其中,所述第二无线信号是Q个无线信号中的一个无线信号,所述Q个无线信号分别指示所述Q个第一类索引;所述第二无线信号指示所述第二索引。
根据本申请的一个方面,上述方法的特征在于包括:
接收第二信令;
其中,所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
根据本申请的一个方面,上述方法的特征在于包括:
在K个时间窗中的一个或多个时间窗中发送第一信息,所述K是正整数;
其中,所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
根据本申请的一个方面,上述方法的特征在于,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一收发机,发送目标无线信号;
第二收发机,发送第一信令和第一无线信号;
其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第三收发机,接收目标无线信号;
第四收发机,接收第一信令;只有当第一索引组所包括的第一类索引与第二索引相同时,所述第四收发机还接收第一无线信号;
其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.所述Q个索引组分别对应和所述第一节点进行副链路通信的Q个终端;给定索引组是所述Q个索引组中的任意一个索引组,所述给定索引组所包括的第一类索引是对应的终端的唯一标识,且所述给定索引组所包括的第二类索引是所述对应的终端在所述第一节点侧的标识;通过上述方式,第一节点可以在Q个终端中唯一确定一个终端,并为所述终端配置一个 在Q个终端中唯一的第二类索引;进而在接收完第一信令后,接收端就知道所述第一无线信号是否是发送给接收端的数据信道,简化数据信道接收复杂度,提高接收性能。
-.所述第一类索引可沿用现有终端的标识,比如C-RNTI(Cell-Radio Network Temporary Identifier,小区-无线网络临时标识)或者S-TMSI,而第二类标识是较短的标识,比如4位的比特串,因为与所述第一节点同时通信的终端数不会很多,较短长度的第二类标识可以降低非数据信道的开销,提高频谱效率。
-.当所述Q个终端中存在所述第一节点的服务小区之外的终端,或者蜂窝网覆盖外的终端时,通过所述Q个终端将所述Q个第一类索引发送给所述第一节点的机制,以保证所述第一节点可以生成所述Q个索引组。
-.通过第一信息反馈副链路上数据信道,即所述第一无线信号的HARQ-ACK,进而提升副链路上传输的性能和频谱效率;且所述第一信令所包括的所述第二类索引是分配给所述第一无线信号的一个HARQ进程;当所述第一无线信号携带的数据没有被正确接收时,所述第二类索引可方便的用于所述数据的基于递增冗余的重传,进而优化副链路上数据信道传输的性能和频谱效率。
-.所述第一索引组中还可以包括针对所述第一无线信号的第二类索引之外的其它第二类索引,所述其它第二类索引均分配给所述第二节点,进而所述第二节点可以支持多个HARQ进程,进一步提升副链路上传输的灵活性和性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的目标无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信节点和第二通信节点的示意图;
图5示出了根据本申请的一个实施例的第一信令的流程图;
图6示出了根据本申请的一个实施例的第一节点和第二节点的示意图;
图7示出了根据本申请的一个实施例的Q个索引组的示意图;
图8示出了根据本申请的另一个实施例的Q个索引组的示意图;
图9示出了根据本申请的再一个实施例的Q个索引组的示意图;
图10示出了根据本申请的一个实施例的第一索引组的示意图;
图11示出了根据本申请的另一个实施例的第一索引组的示意图;
图12示出了根据本申请的一个实施例的K个时间窗的示意图;
图13示出了根据本申请的一个实施例的第一索引组和Q个索引组的关系的示意图;
图14示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了目标无线信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
在实施例1中,本申请中的所述第一节点在步骤101发送目标无线信号,在步骤102发送第一信令和第一无线信号;所述目标无线信号包括Q个索引组,所述Q个索引组分 别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
作为一个实施例,所述Q个索引组中的每个索引组仅包括一个与所述相应第一类索引关联的第二类索引。
作为一个实施例,所述Q个索引组中的每个索引组包括多个与所述相应第一类索引关联的第二类索引。
作为一个实施例,所述Q个第一类索引中的任意两个第一类索引是不同的。
作为一个实施例,所述Q个第一类索引中至少存在两个第一类索引是相同的。
作为该实施例的一个子实施例,所述两个相同的第一类索引分别对应两个索引组,所述两个索引组分别包括与所述两个相同的第一类索引关联的两个第二类索引,所述两个第二类索引是不同的。
作为一个实施例,所述Q个索引组中仅有所述第一索引组所包括的第二类索引与所述第一信令所包括的第二类索引相同。
作为该实施例的一个子实施例,所述第一索引组仅包括一个第二类索引,所述第一信令所包括的第二类索引与所述第一索引组仅包括所述一个第二类索引相同。
作为该实施例的一个子实施例,所述第一索引组包括多个第二类索引,所述第一信令所包括的第二类索引与所述第一索引组所包括的多个第二类索引中的一个第二类索引相同。
作为一个实施例,所述Q个索引组中包括的任意两个所述第一类索引所包括的比特的数量相同,所述Q个索引组中包括的任意两个所述第二类索引所包括的比特的数量相同。
作为该实施例的一个子实施例,所述Q个索引组中任一索引组所包括的第一类索引所包括的比特的数量大于所述Q个索引组中任一索引组所包括的第二类索引所包括的比特的数量。
作为一个实施例,所述Q为1。
作为一个实施例,所述Q大于1。
作为一个实施例,所述Q大于1,所述第一无线信号与所述Q个第一类索引中除了第一索引组所包括的第一类索引之外的任一第一类索引无关。
作为一个实施例,所述Q大于1,所述Q个索引组中任意两个所述索引组所包括的第二类索引不同。
作为上述实施例的一个子实施例,所述Q个索引组中至少两个所述索引组所包括的第一类索引相同。
作为一个实施例,所述Q个第一类索引中的任一第一类索引是一个C-RNTI。
作为一个实施例,所述Q个第一类索引分别关联Q个不同的终端。
作为该实施例的一个子实施例,所述Q个第一类索引中的Q1个第一类索引是由所对应的Q1个终端的服务基站配置的,且所述Q个第一类索引中的Q2个第一类索引是由所对应的Q2个终端的自行生成的,所述Q1和所述Q2均是不大于Q的非负整数,所述Q1和所述Q2的和等于所述Q。
作为该子实施例的一个附属实施例,所述Q1等于Q,或者所述Q2等于Q。
作为一个实施例,所述Q个第一类索引中的任一第一类索引是一个IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)。
作为一个实施例,所述Q个第一类索引中的任一第一类索引是一个IMSI与给定正整数取模后的余数。
作为该实施例的一个子实施例,所述给定正整数等于1024。
作为一个实施例,所述Q个第一类索引中的任一第一类索引是一个S-TMSI(SAE Temporary Mobile Subscriber Identity,SAE临时移动用户识别码)。
作为一个实施例,所述Q个第一类索引中的任一第一类索引是一个S-TMSI与给定正整数取模后的余数。
作为该实施例的一个子实施例,所述给定正整数等于1024。
作为一个实施例,所述Q个第一类索引中的任一第一类索引是一个UE标识。
作为一个实施例,所述Q个索引组分别关联Q个不同的终端。
作为该实施例的一个子实施例,所述Q个不同的终端均能够被所述第一节点探测到。
作为该实施例的一个子实施例,所述Q个不同的终端中任一终端所发送的PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)均能够被所述第一节点探测到。
作为该实施例的一个子实施例,所述Q个不同的终端中任一终端所发送的PSSS(Primary Sidelink Synchronization Signal,主副链路同步信号)和SSSS(Secondary Sidelink Synchronization Signal,辅副链路同步信号)中的至少之一能够被所述第一节点监测到。
作为一个实施例,所述第一索引组关联本申请中的所述第二节点,所述第二节点发送本申请中的所述第一信息。
作为一个实施例,所述目标无线信号占用的信道包括PSSCH(Physical Sidelink Shared Information,物理副链路共享信息)。
作为该实施例的一个子实施例,所述目标无线信号所占用的PSSCH通过给定SCI(Sidelink Control Information,副链路控制信息)调度,所述给定SCI所包括的CRC(Cyclic Redundancy Check,循环冗余校验)通过给定序列加扰,所述给定序列对于所述目标无线信号的所有接收者均是已知的。
作为该实施例的一个子实施例,所述目标无线信号所占用的PSSCH通过给定SCI调度,所述给定SCI所包括的CRC通过给定序列加扰,所述给定序列是预定义的。
作为一个实施例,所述目标无线信号占用的信道包括PSBCH(Physical Sidelink Broadcasting Channel,物理副链路广播信道)。
作为一个实施例,所述目标无线信号占用的信道包括PSDCH。
作为一个实施例,所述第一信令是一个SCI。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令和所述第一无线信号是FDM(Frequency Division Multiplexing,频分复用)的。
作为一个实施例,所述第一信令和所述第一无线信号是TDM(Time Division Multiplexing,时分复用)的。
作为一个实施例,所述第一无线信号所占用的信道包括PSSCH。
作为一个实施例,所述第一信令调度所述第一无线信号。
作为一个实施例,针对所述第一无线信号的所述配置信息包括:所述第一无线信号所占用的频域资源、所述第一无线信号采用的MCS(Modulation and Coding Status,调制编码方式)、所述第一无线信号采用的RV(Redundancy Version,冗余版本)和所述第一无线信号采用的HARQ(Hybrid Automatic Repeat reQuest,混合自动重复请求)进程号(Process Number)中的至少之一。
作为一个实施例,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号包括:所述第一索引组所包括的所述第一类索引被用于加扰所述第一无线信号。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个用户设备。
作为一个实施例,所述第一节点是一辆交通工具(Vehicle)。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构 200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路通信的UE241,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述UE201,本申请中的所述第二节点是所述gNB203覆盖外的一个终端。
作为一个实施例,本申请中的所述第一节点和第二节点均被所述gNB203服务。
作为一个实施例,所述UE201支持同时在多个CC上进行传输。
作为一个实施例,所述UE201支持同时在多个BWP(Bandwidth Part,带宽部分)上进行传输。
作为一个实施例,所述UE241支持同时在多个CC上进行传输。
作为一个实施例,所述UE241支持同时在多个BWP(Bandwidth Part,带宽部分)上进行传输。
作为一个实施例,所述gNB203支持同时在多个CC上进行传输。
作为一个实施例,所述gNB203支持同时在多个BWP上进行传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意 图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的基站。
作为一个实施例,本申请中的所述目标无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述Q无线信号中的任一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述K个时间窗通过所述RRC子层306配置。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第一通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相 移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储 器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:发送目标无线信号,以及发送第一信令和第一无线信号;所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送目标无线信号,以及发送第一信令和第一无线信号;所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:接收目标无线信号;以及接收第一信令;且只有当第一索引组所包括的第一类索引与第二索引相同时,接收第一无线信号;所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收目标无线信号;以及接收第一信令;且只有当第一索引组所包括的第一类索引与第二索引相同时,接收第一无线信号;所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468}中的至少之一被用于发送本申请中的所述目标无线信号;{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470}中的至少之一被用于接收本申请中的所述目标无线信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468}中的至少之一被用于发送本申请中的所述第一信令;{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述 发射处理器468}中的至少之一被用于发送本申请中的所述第一无线信号;只有当第一索引组所包括的第一类索引与第二索引相同时,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470}中的至少之一被用于接收本申请中的所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456}中的至少之一被用于接收本申请中的所述Q个无线信号;{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416}中的至少之一被用于发送本申请中的所述第二无线信号;所述第二无线信号是所述Q个无线信号中的一个无线信号,所述Q个无线信号分别指示本申请中的所述Q个第一类索引;所述第二无线信号指示本申请中的所述第二索引。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468}中的至少之一被用于发送本申请中的所述第二信令;{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470}中的至少之一被用于接收本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456}中的至少之一被用于在本申请中的所述K个时间窗中的每个时间窗中检测本申请中的所述第一信息;{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416}中的至少之一被用于在本申请中的所述K个时间窗中的一个或多个时间窗中发送本申请中的所述第一信息;所述K是正整数。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点U2之间进行通过副链路进行通信。图中标注为F0的步骤,以及方框F1中的步骤是可选的;图中所示的(Q-1)个无线信号和第二无线信号构成本申请中的所述Q个无线信号。
对于 第一节点U1,在步骤S10中发送第二信令;在步骤S11中接收Q个无线信号;在步骤S12中发送目标无线信号;在步骤S13中发送第一信令;在步骤S14中发送第一无线信号;在步骤S15中在K个时间窗中的每个时间窗中检测第一信息。
对于 第二节点U2,在步骤S20中接收第二信令;在步骤S21中发送第二无线信号;在步骤S22中接收目标无线信号;在步骤S23中接收第一信令;只有当第一索引组所包括的第一类索引与第二索引相同时,在步骤S24中接收第一无线信号;在步骤S25中在K个时间窗中的一个或者多个时间窗中发送第一信息。
实施例5中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述Q个无线信号分别指示所述Q个第一类索引;所述第二无线信号是所述Q个无线信号中的一个无线信号,所述Q个无线信号分别指示所述Q个第一类索引;所述第二无线信号指示所述第二索引;所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令;所述第一信息包括被关联到所述第一无线信号的HARQ-ACK;所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号;所述K是正整数;所述第二索引是整数。
作为一个实施例,所述Q个无线信号中的任一无线信号所占用的信道包括PSDCH。
作为一个实施例,所述Q个无线信号中的任一无线信号所占用的信道包括PSSS和SSSS中的至少之一。
作为一个实施例,所述Q个无线信号中的任一无线信号所占用的信道包括PSBCH。
作为一个实施例,Q个终端分别发送所述Q个无线信号,所述Q个终端分别关联到所述Q个索引组。
作为该实施例的一个子实施例,所述Q个终端分别关联到所述Q个无线信号指示的所述Q个第一类索引。
作为一个实施例,所述第一索引是所述第一节点U1自行生成的。
作为一个实施例,所述第一索引是为所述第一节点U1提供服务的小区的基站配置给所述第一节点U1的。
作为一个实施例,所述第一索引是一个C-RNTI。
作为一个实施例,所述第一索引是一个IMSI。
作为一个实施例,所述第一索引是一个IMSI与给定正整数取模后的余数。
作为该实施例的一个子实施例,所述给定正整数是1024。
作为一个实施例,所述第一索引是一个S-TMSI。
作为一个实施例,所述第一索引是一个S-TMSI与给定正整数取模后的余数。
作为该实施例的一个子实施例,所述给定正整数是1024。
作为一个实施例,所述第一索引被用于生成所述目标无线信号。
作为一个实施例,所述第一无线信号与所述第一索引无关。
作为一个实施例,所述第一索引所包括的比特的数量与所述Q个索引组中任一所述第一类索引所包括的比特的数量相同。
作为一个实施例,所述第一索引被用于生成所述第一信令包括:所述第一信令所包括的CRC通过所述第一索引加扰。
作为一个实施例,所述第二信令占用的信道包括PSBCH。
作为一个实施例,所述第二信令占用的信道包括PSCCH。
作为一个实施例,所述第二信令占用的信道包括PSDCH。
作为一个实施例,所述第二信令占用的信道包括PSBCH和PSCCH。
作为一个实施例,所述第二信令占用的信道包括PSBCH和PSDCH。
作为一个实施例,所述第二信令和所述目标无线信号占用的信道均包括PSBCH。
作为一个实施例,所述第二信令和所述目标无线信号占用的信道均包括PSCCH。
作为一个实施例,所述第二信令和所述目标无线信号占用的信道均包括PSDCH。
作为一个实施例,所述第二信令和所述目标无线信号占用的信道均包括PSBCH和PSCCH。
作为一个实施例,所述第二信令和所述目标无线信号占用的信道均包括PSBCH和PSDCH。
作为一个实施例,所述第一信令被用于指示所述K个时间窗。
作为一个实施例,所述第一信令被用于指示第一时频资源,所述第一信息在所述第一时频资源中被传输。
作为该实施例的一个子实施例,所述第一时频资源包括K个子时频资源,所述K个子时频资源所占用的K个时域资源分别属于所述K个时间窗。
作为该实施例的一个子实施例,所述第一时频资源包括K个子时频资源,所述K个子时频资源所占用的K个频域资源中的任意一个频域资源是通过所述第一信令指示的。
作为该实施例的一个子实施例,所述第一时频资源包括K个子时频资源,所述K个子时频资源所占用的K个频域资源中的任意一个频域资源在频域的位置是固定的,或者所述K个子时频资源所占用的K个频域资源中的任意一个频域资源在频域的位置是通过高层信令配置的。
作为一个实施例,所述K个时间窗是被半静态信令配置的。
作为一个实施例,所述K个时间窗是被高层信令配置的。
作为一个实施例,所述K个时间窗中每个时间窗的时域位置与所述第一无线信号所占用的时域资源有关。
作为一个实施例,所述K为1。
作为一个实施例,所述K大于1。
作为一个实施例,所述第一节点U1根据CRC检测判断所述第一信息是否被发送。
作为一个实施例,所述第一节点U1根据检测解调参考信号判断所述第一信息是否被发送。
作为一个实施例,所述第一节点U1假定所述第一信息最多只能在所述K个时间窗中的一个时间窗中被发送。
作为一个实施例,所述第一节点U1假定所述第一信息在所述K个时间窗中的多个时间窗中被发送。
作为一个实施例,所述第一索引组所包括的所述第一类索引被用于生成所述第一信息。
作为一个实施例,所述第一信息占用的信道包括PSSCH。
作为一个实施例,所述第一信息占用的信道包括PSCCH。
作为一个实施例,所述第一信息在所述K个时间窗中的一个时间窗中被传输。
作为一个实施例,所述第一信息在所述K个时间窗中的每一个时间窗中被传输。
作为一个实施例,所述第一信令所包括的所述第二类索引所占用的比特数不大于4。
作为一个实施例,所述第一信令是一个SCI,所述SCI包括HARQ Process Number(进程号),所述HARQ进程号是所述第一信令所包括的所述第二类索引。
作为一个实施例,所述第二节点U2与M个HARQ进程号相关联,所述第一信令所包括的所述第二类索引是所述M个HARQ进程号中的一个HARQ进程号。
作为该实施例的一个子实施,所述第一索引组包括M个第二类索引,所述M个第二类索引分别与所述M个HARQ进程号一一对应。
作为一个实施例,所述第二索引是所述Q个第一类索引中被所述第二无线信号指示的第一类索引。
作为一个实施例,所述目标无线信号与所述第二索引无关。
作为一个实施例,所述第一信令可能被第一终端组中的任意终端译码,所述第二节点U2是所述第一终端组中的一个终端,所述第二节点U2通过判断所述第一索引组所包括的第一类索引与第二索引是否相同判断所述第一无线信号是否是被发送给所述第二节点U2的无线信号。
作为该实施例的一个子实施例,所述第一索引组所包括的第一类索引与所述第二索引相同,所述第二节点U2接收所述第一无线信号。
作为该实施例的一个子实施例,所述第一索引组所包括的第一类索引与所述第二索引不同,所述第二节点U2放弃接收所述第一无线信号。
作为一个实施例,所述第一索引组包括M个第二类索引,所述第一信令仅包括一个第二类索引,所述第一信令所包括的所述第二类索引是所述M个第二类索引中的之一;当所述第一索引组所包括的第一类索引与所述第二索引相同时,所述第二节点U2接收所述第一无线信号;所述M是大于1的正整数。
作为一个实施例,所述第一索引组仅包括一个第二类索引,所述第一信令仅包括一个第二类索引,所述第一信令所包括的所述第二类索引与所述第一索引组仅包括所述第二类索引相同;当所述第一索引组所包括的第一类索引与所述第二索引相同时,所述第二节点U2接收所述第一无线信号。
作为一个实施例,所述第二索引是所述第二节点U2自行生成的。
作为一个实施例,所述第二索引是为所述第二节点U2提供服务的小区的基站分配给所述第二节点U2的。
作为一个实施例,所述第二索引是一个C-RNTI。
作为一个实施例,所述第二索引是一个IMSI。
作为一个实施例,所述第二索引是一个IMSI与给定正整数取模后的余数。
作为该实施例的一个子实施例,所述给定正整数等于1024。
作为一个实施例,所述第二索引是一个S-TMSI。
作为一个实施例,所述第二索引是是一个S-TMSI与给定正整数取模后的余数。
作为一个实施例,所述第二无线信号所占用的信道包括PSDCH。
作为一个实施例,所述第二无线信号所占用的信道包括PSSS和SSSS中的至少之一。
作为一个实施例,所述第二无线信号所占用的信道包括PSBCH。
作为一个实施例,所述第一索引和所述第二索引不同。
实施例6
实施例6示例了一个第一节点和第二节点的示意图,如附图6所示。在附图6中,所述第一节点和所述第二节点均是终端设备;所述第一节点和所述第二节点在副链路上进行通信。
作为一个实施例,所述第一节点是本申请中的所述Q个无线信号的发送者的组头(Group Head),本申请中的所述第二节点是所述Q个无线信号的发送者中的一个发送者。
作为一个实施例,所述第一节点和所述第二节点同时在一个基站下被服务。
作为一个实施例,所述第一节点和所述第二节点分别被不同的基站服务。
作为一个实施例,所述第一节点和所述第二节点中的至少之一是交通工具。
作为一个实施例,所述第一节点和所述第二节点均是交通工具。
作为一个实施例,所述第一节点和所述第二节点中至少存在一个节点是在蜂窝网覆盖外的。
实施例7
实施例7示例了一个Q个索引组的示意图,如附图7所示。在附图7中,本申请中的所述Q个索引组是索引组#1至索引组#Q,所述Q个索引组分别对应Q个终端,所述Q个终端依次为终端#1至终端#Q;所述Q个索引组中的任意一个索引组仅包括一个第一类索引和一个第二类索引。
作为一个实施例,所述Q个索引组中的任意一个索引组所包括的第一类索引所占用的比特数是固定的。
作为一个实施例,所述Q个索引组中的任意一个索引组所包括的第二类索引所占用的比特数是固定的。
作为一个实施例,所述Q个索引组中的任意一个索引组所占用的比特数是固定的。
作为一个实施例,所述Q个终端中任意两个终端均是不同的终端。
作为一个实施例,所述Q个索引组所包括的Q个第一类索引中的任意两个第一类索引是不同的。
作为一个实施例,所述Q个索引组所包括的Q个第二类索引中的任意两个第二类索引是不同的。
作为上述两个实施例的一个子实施例,所述Q个第二类索引中的任一第二类索引所占用的比特数小于所述Q个第一类索引中的任一第一类索引所占用的比特数。
作为一个实施例,所述Q个索引组所占用的总共的比特数是不变的。
实施例8
实施例8示例了另一个Q个索引组的示意图,如附图8所示。在附图8中,本申请中的所述Q个索引组对应索引组#1至索引组#Q,所述Q个索引组分别对应Q1个终端,所述Q1是小于所述Q的正整数;所述Q个索引组中存在索引组#i和索引组#j对应同一个终端#l;所述i不等于所述j,且所述i和所述j均是不小于1且不大于Q的正整数,所述l是不小于1且不大于Q的正整数;所述Q个索引组中的任意一个索引组仅包括一个第一类索引和一个第二类索引。
作为一个实施例,所述Q个索引组中的任意一个索引组所包括的第一类索引所占用的比特数是固定的。
作为一个实施例,所述Q个索引组中的任意一个索引组所包括的第二类索引所占用的比特数是固定的。
作为一个实施例,所述Q个索引组中的任意一个索引组所占用的比特数是固定的。
作为一个实施例,所述Q1个终端均是不同的终端。
作为一个实施例,所述Q个索引组所包括的Q个第一类索引中的至少存在两个第一类索引是相同的。
作为一个实施例,所述Q个索引组所包括的Q个第二类索引中的任意两个第二类索引是不同的。
作为上述两个实施例的一个子实施例,所述Q个第二类索引中的任一第二类索引所占用的比特数小于所述Q个第一类索引中的任一第一类索引所占用的比特数。
作为一个实施例,所述索引组#i所包括的第一类索引和所述索引组#j所包括的第一类索引是相同的,且所述索引组#i所包括的第二类索引和所述索引组#j所包括的第二类索引是不同的。
作为一个实施例,所述Q个索引组所占用的总共的比特数是不变的。
实施例9
实施例9示例了再一个Q个索引组的示意图,如附图9所示。在附图9中,本申请中的所述Q个索引组对应索引组#1至索引组#Q,所述Q个索引组分别对应Q个终端;所述Q个索引组中至少存在索引组#n,所述索引组#n对应终端#n,所述n是不小于1且不大于Q的正整数,所述索引组#n包括一个第一类索引和多个第二类索引,所述多个第二类索引均与所述终端#n有关。
作为一个实施例,所述Q个索引组中的任意一个索引组所包括的第一类索引所占用的比特数是固定的。
作为一个实施例,所述Q个索引组中的任意一个索引组所包括的第二类索引所占用的比特数是固定的。
作为一个实施例,所述Q个索引组中至少存在两个索引组,所述两个索引组所包括的第二类索引的个数是不同的。
作为一个实施例,所述Q个索引组中至少存在两个索引组,所述两个索引组所占用的比特数是不同的。
作为一个实施例,所述Q个终端均是不同的终端。
作为一个实施例,所述Q个索引组所包括的Q个第一类索引中的任意两个第一类索引是不同的。
作为一个实施例,所述Q个索引组包括Q2个第二类索引,所述Q2是大于所述Q的正整数,所述Q2个第二类索引中的任意两个第二类索引是不同的。
作为上述两个实施例的一个子实施例,所述Q2个第二类索引中的任一第二类索引所占用的比特数小于所述Q个第一类索引中的任一第一类索引所占用的比特数。
作为一个实施例,所述Q个索引组所占用的比特数是可配置的。
实施例10
实施例10示例了一个第一索引组的示意图,如附图10所示。在附图10中,所述第一索引组包括一个第一类索引和一个第二类索引;所述第一类索引是本申请中的所述Q个无线信号指示的Q个第一类索引中的一个第一类索引,本申请中的所述第一信令所包括的第二类索引等于所述第一索引组所包括的第二类索引。
实施例11
实施例11示例了另一个第一索引组的示意图,如附图11所示。在附图11中,所述第一索引组包括一个第一类索引和多个第二类索引;所述第一类索引是本申请中的所述Q个无线信号指示的Q个第一类索引中的一个第一类索引,本申请中的所述第一信令所包括的第二类索引是所述第一索引组所包括的多个第二类索引中的一个第二类索引。
实施例12
实施例12示例了一个K个时间窗的示意图,如附图12所示。在附图12中,所述K个时间窗在时域是离散分布的。
作为一个实施例,所述K个时间窗在时域是等间隔分布的。
作为一个实施例,所述K个时间窗中的任意一个时间窗在时域的持续时间等于1毫秒。
作为一个实施例,所述K个时间窗中任意一个时间窗在时域的位置是通过高层信令配置的,所述高层信令来自本申请中的所述第一节点的服务小区的基站。
作为一个实施例,所述K个时间窗中任意一个时间窗在时域的位置是通过所述第一信令指示给本申请中的所述第二节点的。
作为一个实施例,所述K个时间窗中任意一个时间窗在时域的位置是预定义的。
实施例13
实施例13示例了一个第一索引组和Q个索引组的示意图,如附图13所示。在附图13中,索引组#1和索引组#2是所述Q个索引组中不同的两个索引组,且分别对应UE#1和UE#2;所述索引组#1包括第一类索引_1和第二类索引_1,所述索引组#2包括第一类索引_2和第二类索引_2;图中所示的UE#A发送本申请中的所述第一信令和所述第一无线信号;所述第一无线信号是针对所述UE#1的数据信道,且所述第一无线信号不是针对所述UE#2的数据信道。图中所示的第一索引组包括第一类索引_A和第二类索引_A,且第一索引组对应的UE是所述第一无线信号的期望接收者;图中所述的第一信令包括所述第二类索引_A。
作为一个实施例,对于UE#1而言,所述第一类索引_1等于所述第一类索引_A,所述UE#1确定所述第一无线信号是针对所述UE#1的数据,并接收所述第一无线信号。
作为一个实施例,对于UE#2而言,所述第一类索引_2不等于所述第一类索引_A,所述UE#2确定所述第一无线信号不是针对所述UE#2的数据,并放弃接收所述第一无线信号。
作为一个实施例,所述UE#1和所述UE#2均会接收所述第一信令。
作为一个实施例,所述UE#1和所述UE#2均会根据所述第一信令指示的所述第二类索引_A从本申请中的所述Q个索引组中确定所述第一索引组,随后根据所述第一索引组确定所述第一索引组所包括的所述第一类索引_A。
作为该实施例的一个子实施例,所述UE#1通过比较所述第一类索引_A和所述UE#1关联的所述第一类索引_1确定接收所述第一无线信号。
作为该实施例的一个子实施例,所述UE#2通过比较所述第一类索引_A和所述UE#2关联的所述第一类索引_2确定放弃接收所述第一无线信号。
实施例14
实施例14示例了一个第一节点中的处理装置的结构框图,如附图14所示。附图14中,第一节点处理装置1400包括第一收发机1401和第二收发机140。
第一收发机1401,发送目标无线信号;
第二收发机1402,发送第一信令和第一无线信号;
实施例14中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
作为一个实施例,所述第一收发机1401还接收Q个无线信号,所述Q个无线信号分别指示所述Q个第一类索引。
作为一个实施例,所述第一收发机1401还发送第二信令;所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
作为一个实施例,所述第二收发机1402还在K个时间窗中的每个时间窗中检测第一 信息,所述K是正整数;所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
作为一个实施例,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
作为一个实施例,所述第一收发机1401包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、多天线发射处理器457、接收处理器456、发射处理器468、控制器/处理器459中的至少前6者。
作为一个实施例,所述第二收发机1402包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、多天线发射处理器457、接收处理器456、发射处理器468、控制器/处理器459中的至少前6者。
实施例15
实施例15示例了一个第二节点中的处理装置的结构框图,如附图15所示。附图15中,第二节点处理装置1500包括第三收发机1501和第四收发机1502。
第三收发机1501,接收目标无线信号;
第四收发机1502,接收第一信令;只有当第一索引组所包括的第一类索引与第二索引相同时,所述第四收发机1502还接收第一无线信号;
实施例15中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
作为一个实施例,所述第三收发机1501还发送第二无线信号;所述第二无线信号是Q个无线信号中的一个无线信号,所述Q个无线信号分别指示所述Q个第一类索引;所述第二无线信号指示所述第二索引。
作为一个实施例,所述第三收发机1501还接收第二信令;所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
作为一个实施例,所述第四收发机1502还在K个时间窗中的一个或多个时间窗中发送第一信息,所述K是正整数;所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
作为一个实施例,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
作为一个实施例,所述第三收发机1501包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、多天线接收处理器472、发射处理器416、接收处理器470、控制器/处理器475中的至少前6者。
作为一个实施例,所述第四收发机1502包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、多天线接收处理器472、发射处理器416、接收处理器470、控制器/处理器475中的至少前6者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设 备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    发送目标无线信号;
    发送第一信令和第一无线信号;
    其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
  2. 根据权利要求1所述的方法,其特征在于包括:
    接收Q个无线信号;
    其中,所述Q个无线信号分别指示所述Q个第一类索引。
  3. 根据权利要求1所述的方法,其特征在于包括:
    发送第二信令;
    其中,所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
  4. 根据权利要求1所述的方法,其特征在于包括:
    在K个时间窗中的每个时间窗中检测第一信息,所述K是正整数;
    其中,所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
  5. 根据权利要求1所述的方法,其特征在于,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
  6. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    接收目标无线信号;
    接收第一信令;只有当第一索引组所包括的第一类索引与第二索引相同时,接收第一无线信号;
    其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
  7. 根据权利要求6所述的方法,其特征在于包括:
    发送第二无线信号;
    其中,所述第二无线信号是Q个无线信号中的一个无线信号,所述Q个无线信号分别指示所述Q个第一类索引;所述第二无线信号指示所述第二索引。
  8. 根据权利要求6所述的方法,其特征在于包括:
    接收第二信令;
    其中,所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
  9. 根据权利要求6所述的方法,其特征在于包括:
    在K个时间窗中的一个或多个时间窗中发送第一信息,所述K是正整数;
    其中,所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
  10. 根据权利要求6所述的方法,其特征在于,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
  11. 一种被用于无线通信的第一节点,其特征在于包括:
    第一收发机,发送目标无线信号;
    第二收发机,发送第一信令和第一无线信号;
    其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数。
  12. 根据权利要求11所述的第一节点,其特征在于,所述第一收发机接收Q个无线信号;所述Q个无线信号分别指示所述Q个第一类索引。
  13. 根据权利要求11所述的第一节点,其特征在于,所述第一收发机发送第二信令;所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
  14. 根据权利要求11所述的第一节点,其特征在于,所述第二收发机在K个时间窗中的每个时间窗中检测第一信息,所述K是正整数;所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
  15. 根据权利要求11所述的第一节点,其特征在于,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
  16. 一种被用于无线通信的第二节点,其特征在于包括:
    第三收发机,接收目标无线信号;
    第四收发机,接收第一信令;只有当第一索引组所包括的第一类索引与第二索引相同时,所述第四收发机还接收第一无线信号;
    其中,所述目标无线信号包括Q个索引组,所述Q个索引组分别包括Q个第一类索引,所述Q个索引组中每个索引组包括至少一个与相应第一类索引关联的第二类索引;所述第一信令包括所述第一无线信号的配置信息,所述第一信令包括一个第二类索引,所述第一索引组所包括的第一类索引被用于生成所述第一无线信号,所述第一索引组是所述Q个索引组中所包括的第二类索引与所述第一信令所包括的第二类索引相同的一个索引组;所述Q是正整数;所述第二索引是整数。
  17. 根据权利要求16所述的第二节点,其特征在于,所述第三收发机发送第二无线信号;所述第二无线信号是Q个无线信号中的一个无线信号,所述Q个无线信号分别指示所述Q个第一类索引;所述第二无线信号指示所述第二索引。
  18. 根据权利要求16所述的第二节点,其特征在于,所述第三收发机接收第二信令;所述第二信令指示第一索引,所述第一索引与所述Q个第一类索引中的任一第一类索引不同;所述第一索引被用于生成所述第一信令。
  19. 根据权利要求16所述的第二节点,其特征在于,所述第四收发机在K个时间窗中的一个或多个时间窗中发送第一信息,所述K是正整数;所述第一信息包括被关联到所述第一无线信号的HARQ-ACK。
  20. 根据权利要求16所述的第二节点,其特征在于,所述第一信令所包括的所述第二类索引被用于确定针对所述第一无线信号的HARQ进程号。
PCT/CN2019/098838 2018-08-08 2019-08-01 一种被用于无线通信节点中的方法和装置 WO2020029862A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/835,326 US11343023B2 (en) 2018-08-08 2020-03-31 Method and device in node for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810894930.4A CN110830920B (zh) 2018-08-08 2018-08-08 一种被用于无线通信节点中的方法和装置
CN201810894930.4 2018-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/835,326 Continuation US11343023B2 (en) 2018-08-08 2020-03-31 Method and device in node for wireless communication

Publications (1)

Publication Number Publication Date
WO2020029862A1 true WO2020029862A1 (zh) 2020-02-13

Family

ID=69415343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098838 WO2020029862A1 (zh) 2018-08-08 2019-08-01 一种被用于无线通信节点中的方法和装置

Country Status (3)

Country Link
US (1) US11343023B2 (zh)
CN (1) CN110830920B (zh)
WO (1) WO2020029862A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556207B (zh) * 2020-04-23 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165510A (zh) * 2014-03-30 2016-11-23 Lg电子株式会社 在支持设备到设备通信的无线通信系统中传输/接收下行链路控制信息的方法及其设备
WO2017075798A1 (en) * 2015-11-06 2017-05-11 Panasonic Intellectual Property Corporation Of America Multiple sidelink control transmissions during a sidelink control period
WO2017126266A1 (en) * 2016-01-22 2017-07-27 Nec Corporation Methods and device for transmission collision detection and handling in vehicle to everything communication system
CN107852777A (zh) * 2015-08-13 2018-03-27 株式会社Ntt都科摩 用户装置以及d2d信号发送方法
CN108322414A (zh) * 2017-01-17 2018-07-24 华为技术有限公司 一种反馈信息传输方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708015B2 (en) * 2014-02-10 2020-07-07 Lg Electronics Inc. Signal transmitting method for device-to-device (D2D) communication in wireless communication system and device therefor
CN105101429A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 设备到设备的资源配置方法、网络设备及用户设备
CN107113538B (zh) * 2014-12-04 2020-06-16 Lg 电子株式会社 中继d2d链路的方法和执行该方法的设备
US9668194B2 (en) * 2015-01-30 2017-05-30 Huawei Technologies Co., Ltd. System and method for coordinating device-to-device communications
CN107113853A (zh) * 2015-03-30 2017-08-29 华为技术有限公司 一种d2d单播通信方法、设备及系统
US10257677B2 (en) * 2015-10-16 2019-04-09 Qualcomm Incorporated System and method for device-to-device communication with evolved machine type communication
EP3372004A4 (en) * 2015-11-04 2019-06-26 LG Electronics Inc. METHOD FOR TRANSMITTING SIDE LINK STAMP MEMORY STATUS REPORT IN DEVICE (D2D) DEVICE COMMUNICATION SYSTEM AND DEVICE THEREOF
CN106792429B (zh) * 2016-05-09 2020-02-11 北京展讯高科通信技术有限公司 用户设备、基站及近距离业务单播通信、资源调度方法
CN106792428B (zh) * 2016-05-09 2020-02-11 北京展讯高科通信技术有限公司 基站、近距离业务功能实体及通信资源分配、调度方法
CN107547177B (zh) * 2016-06-28 2020-04-24 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN109587729B (zh) * 2017-09-29 2021-05-07 华为技术有限公司 物理下行控制信道的处理方法及相关设备
MX2020010474A (es) * 2018-04-05 2021-01-08 Ericsson Telefon Ab L M Informacion de control de enlace lateral de varias etapas.
WO2020029082A1 (en) * 2018-08-07 2020-02-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method of new radio vehicle-to-everything communication of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165510A (zh) * 2014-03-30 2016-11-23 Lg电子株式会社 在支持设备到设备通信的无线通信系统中传输/接收下行链路控制信息的方法及其设备
CN107852777A (zh) * 2015-08-13 2018-03-27 株式会社Ntt都科摩 用户装置以及d2d信号发送方法
WO2017075798A1 (en) * 2015-11-06 2017-05-11 Panasonic Intellectual Property Corporation Of America Multiple sidelink control transmissions during a sidelink control period
WO2017126266A1 (en) * 2016-01-22 2017-07-27 Nec Corporation Methods and device for transmission collision detection and handling in vehicle to everything communication system
CN108322414A (zh) * 2017-01-17 2018-07-24 华为技术有限公司 一种反馈信息传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Services and System Aspects; Architecture enhancements for V2X services (Release 15", 3GPP TS 23. 285, 30 June 2018 (2018-06-30), XP051535213 *
LG ELECTRONICS: "Discussion on sidelink resource allocation and configura tion for FeD2D", RL-1713116, TSG RAN WG1 MEETING, 25 August 2017 (2017-08-25), XP051315925 *

Also Published As

Publication number Publication date
CN110830920B (zh) 2020-12-29
US11343023B2 (en) 2022-05-24
CN110830920A (zh) 2020-02-21
US20200228255A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20210227412A1 (en) Method and device in first node for wireless communication
WO2020024784A1 (zh) 一种被用于无线通信的第一节点、第二节点中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
US11800509B2 (en) Method and device in first node for wireless communication
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031899A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2018040815A1 (zh) 一种支持广播信号的无线通信系统中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN117394957A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2023236853A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093511A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19848458

Country of ref document: EP

Kind code of ref document: A1