WO2018040815A1 - 一种支持广播信号的无线通信系统中的方法和装置 - Google Patents

一种支持广播信号的无线通信系统中的方法和装置 Download PDF

Info

Publication number
WO2018040815A1
WO2018040815A1 PCT/CN2017/094836 CN2017094836W WO2018040815A1 WO 2018040815 A1 WO2018040815 A1 WO 2018040815A1 CN 2017094836 W CN2017094836 W CN 2017094836W WO 2018040815 A1 WO2018040815 A1 WO 2018040815A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
sequence
resource
sub
resources
Prior art date
Application number
PCT/CN2017/094836
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018040815A1 publication Critical patent/WO2018040815A1/zh
Priority to US16/285,248 priority Critical patent/US11265194B2/en
Priority to US17/565,481 priority patent/US11616675B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present application relates to methods and apparatus in the field of mobile communication technologies, and more particularly to wireless communication schemes in systems that support broadcast signals.
  • the NR New Radio
  • the NR system is designed to support good forward compatibility.
  • the NR system is designed to be flexible enough.
  • the flexible design increases the uncertainty of the system and improves the processing complexity of the UE (User Equipment). Simplifying the processing complexity of the UE under the premise of fully ensuring design flexibility, and ensuring the normal operation of the NR system is a research direction.
  • the inventors found through research that under the flexible system design, the system information of the NR system is not fixedly transmitted on a specific frequency domain resource, and the UE needs to monitor different frequency domain resources to receive system information.
  • the RS Reference Signal
  • the UE User Equipment
  • the UE monitors different frequency domain resources, it is difficult for the UE to know the location of the currently monitored frequency domain resource in the entire system bandwidth. Therefore, if the method in the existing 3GPP LTE system is adopted, the UE will The RS sequence on the currently monitored frequency domain resource cannot be known, and channel estimation cannot be performed.
  • the present application discloses a solution to the above problem. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment supporting a broadcast signal, including:
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource is in the frequency domain.
  • the first frequency domain resource includes the K frequency domain sub-resources, and the K is a positive integer; the position of the K frequency domain sub-resources in the first frequency domain resource is not fixed.
  • the RS of the first RS sequence in a given frequency domain sub-resource is independent of the location of the given frequency domain sub-resource in the first frequency domain resource, and the given frequency domain sub-resource is Any one of the K frequency domain sub-resources; the K is 1, the RS corresponding to the first RS sequence on a given subcarrier, and the given subcarrier relative to the K The location of the frequency domain sub-resources, or the RS corresponding to the first RS sequence on the given subcarrier and the position of the given subcarrier in the first frequency domain resource; Between the first frequency domain resources and the K frequency domain sub-resources.
  • the bandwidth of the K frequency domain sub-resources is fixed.
  • the K is greater than 1, and the bandwidths of the K frequency domain sub-resources are equal.
  • the K frequency domain sub-resources are mutually orthogonal.
  • the first frequency domain resource occupies the entire system bandwidth.
  • the K frequency domain sub-resources are narrowband.
  • the foregoing method ensures that the UE can still correctly receive the RS in the given frequency domain sub-resource without knowing the location of the given frequency domain sub-resource in the first frequency-domain resource, and execute Channel estimation in the given frequency domain sub-resource.
  • all RSs in the first RS sequence are transmitted by the same antenna port.
  • the patterns of the first RS sequence in all time-frequency resource blocks in the first time-frequency resource are the same.
  • the time-frequency resource block is a PRBP (Physical Resource Block Pair).
  • PRBP Physical Resource Block Pair
  • the time-frequency resource block occupies a positive integer number of subcarriers in the frequency domain, and occupies a positive integer number of multicarrier symbols in the time domain.
  • the multicarrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the pattern of the first RS sequence in the time-frequency resource block is a pattern of a CSI-RS (Channel State Information-Reference Signal) in a time-frequency resource block.
  • CSI-RS Channel State Information-Reference Signal
  • the pattern of the first RS sequence in the time-frequency resource block is a pattern of DMRS (DeModulation Reference Signals) in the time-frequency resource block.
  • DMRS Demodulation Reference Signals
  • all RSs in the first RS sequence are transmitted on the same physical layer channel.
  • the method includes the following:
  • the K is 1, the first RS sequence is related to a position of the RS corresponding to the given subcarrier and the position of the given subcarrier relative to the K frequency domain sub-resource; the first reference a sequence is used to generate the first RS sequence; a length of the first reference sequence is equal to a length of the first RS sequence; and the first RS sequence is a cyclic shift of the first reference sequence by t1 elements Generated, the t1 is a positive integer.
  • the t1 and the K frequency domain sub-resources are related to locations in the first frequency domain resource.
  • the cyclic shift is a cyclic shift to the right
  • the t1 is an index of the target RS in the first RS sequence
  • the target RS is the first RS sequence in the K
  • the RS corresponding to the lowest frequency point in the RS transmitted on the frequency domain sub-resource.
  • the cyclic shift is a cyclic shift to the right
  • the t1 is an index of the target RS in the first RS sequence
  • the target RS is the first RS sequence in the K
  • the RS corresponding to the highest frequency point in the RS transmitted on the frequency domain sub-resource.
  • the first reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the first reference sequence.
  • the identifier of the serving cell is a C-RNTI (Cell-Radio Network Temporary Identifier).
  • the first reference sequence is cell specific.
  • the foregoing method ensures that after obtaining the location of the K frequency domain sub-resources in the first frequency domain resource, the user equipment can infer the first RS sequence to perform at the first frequency. Channel estimation on domain resources.
  • the method includes the following:
  • the second reference sequence is related to the location of the first frequency domain resource on the given subframe and the given subframe carrier; the second reference sequence is used to generate the An RS sequence; the length of the second reference sequence is equal to the length of the first RS sequence; and the RS of the first RS sequence transmitted outside the K frequency domain sub-resources is in the second reference sequence The corresponding element.
  • the second reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the second reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the second reference sequence is cell specific.
  • the foregoing method ensures that after obtaining the location of the K frequency domain sub-resources in the first frequency domain resource, the user equipment can infer the first RS sequence to perform the first frequency domain resource. Channel estimation on.
  • the method includes the following:
  • the element in the third reference sequence and the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources are in one-to-one correspondence.
  • the third reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the third reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the third reference sequence is cell specific.
  • the length of the third reference sequence is equal to the length of the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources.
  • the method includes the following:
  • the downlink information is used to determine at least one of ⁇ the first frequency domain resource, the location of the K frequency domain sub-resources in the first frequency domain resource ⁇ .
  • the downlink information is an SIB (System Information Block).
  • SIB System Information Block
  • the downlink information is carried by higher layer signaling.
  • the downlink information is broadcast information.
  • the present application discloses a method in a base station supporting a broadcast signal, including:
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource is in the frequency domain.
  • the first frequency domain resource includes the K frequency domain sub-resources, and the K is a positive integer; the position of the K frequency domain sub-resources in the first frequency domain resource is not fixed.
  • the RS of the first RS sequence in a given frequency domain sub-resource is independent of the location of the given frequency domain sub-resource in the first frequency domain resource, and the given frequency domain sub-resource is Any one of the K frequency domain sub-resources; the K is 1, the RS corresponding to the first RS sequence on a given subcarrier, and the given subcarrier relative to the K The location of the frequency domain sub-resources, or the RS corresponding to the first RS sequence on the given subcarrier and the position of the given subcarrier in the first frequency domain resource; Between the first frequency domain resources and the K frequency domain sub-resources.
  • the bandwidth of the K frequency domain sub-resources is fixed.
  • the K is greater than 1, and the bandwidths of the K frequency domain sub-resources are equal.
  • the K frequency domain sub-resources are mutually orthogonal.
  • the first frequency domain resource occupies the entire system bandwidth.
  • the K frequency domain sub-resources are narrowband.
  • the method includes the following:
  • the K is 1, the first RS sequence is related to a position of the RS corresponding to the given subcarrier and the position of the given subcarrier with respect to the K frequency domain sub-resources; a reference sequence is used to generate the first RS sequence; a length of the first reference sequence is equal to a length of the first RS sequence; the first RS sequence is a cyclic shift of the first reference sequence by t1 elements After being generated, the t1 is a positive integer.
  • the t1 and the K frequency domain sub-resources are related to locations in the first frequency domain resource.
  • the cyclic shift is a cyclic shift to the right
  • the t1 is an index of the target RS in the first RS sequence
  • the target RS is the first RS sequence in the K
  • the RS corresponding to the lowest frequency point in the RS transmitted on the frequency domain sub-resource.
  • the cyclic shift is a cyclic shift to the right
  • the t1 is an index of the target RS in the first RS sequence
  • the target RS is the first RS sequence in the K
  • the RS corresponding to the highest frequency point in the RS transmitted on the frequency domain sub-resource.
  • the first reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the first reference sequence.
  • the identifier of the serving cell is a C-RNTI (Cell-Radio Network Temporary Identifier).
  • the first reference sequence is cell specific.
  • the method includes the following:
  • the second reference sequence is related to the location of the first frequency domain resource on the given subframe and the given subframe carrier; the second reference sequence is used to generate the An RS sequence; the length of the second reference sequence is equal to the length of the first RS sequence; and the RS of the first RS sequence transmitted outside the K frequency domain sub-resources is in the second reference sequence The corresponding element.
  • the second reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the second reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the second reference sequence is cell specific.
  • the method includes the following:
  • the element in the third reference sequence and the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources are in one-to-one correspondence.
  • the third reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the third reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the third reference sequence is cell specific.
  • the length of the third reference sequence is equal to the length of the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources.
  • the method includes the following:
  • the downlink information is used to determine at least one of ⁇ the first frequency domain resource, the location of the K frequency domain sub-resources in the first frequency domain resource ⁇ .
  • the downlink information is an SIB (System Information Block).
  • SIB System Information Block
  • the downlink information is carried by higher layer signaling.
  • the downlink information is broadcast information.
  • the application discloses a user equipment supporting a broadcast signal, which includes:
  • the first receiver module receives the first wireless signal on the first time-frequency resource
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource is in the frequency domain.
  • the first frequency domain resource includes the K frequency domain sub-resources, and the K is a positive integer; the position of the K frequency domain sub-resources in the first frequency domain resource is not fixed.
  • the RS of the first RS sequence in a given frequency domain sub-resource is independent of the location of the given frequency domain sub-resource in the first frequency domain resource, and the given frequency domain sub-resource is Any one of the K frequency domain sub-resources; the K is 1, the RS corresponding to the first RS sequence on a given subcarrier, and the given subcarrier relative to the K The location of the frequency domain sub-resources, or the RS corresponding to the first RS sequence on the given subcarrier and the position of the given subcarrier in the first frequency domain resource; The carrier is outside the first frequency domain resource and outside the K frequency domain sub-resources.
  • the bandwidth of the K frequency domain sub-resources is fixed.
  • the K is greater than 1, and the bandwidths of the K frequency domain sub-resources are equal.
  • the foregoing user equipment supporting a broadcast signal is characterized in that the first receiver module further determines a first reference sequence.
  • the K is 1, and the RS of the first RS sequence on the given subcarrier is related to the location of the given subcarrier with respect to the K frequency domain sub-resources.
  • the first reference sequence is used to generate the first RS sequence.
  • the length of the first reference sequence is equal to the length of the first RS sequence.
  • the first RS sequence is generated after the first reference sequence is cyclically shifted by t1 elements, and the t1 is a positive integer.
  • the t1 and the K frequency domain sub-resources are related to locations in the first frequency domain resource.
  • the first reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the first reference sequence is cell specific.
  • the user equipment supporting the broadcast signal is characterized in that the first receiver module further determines a second reference sequence.
  • the RS of the second reference sequence corresponding to the given subcarrier is related to the location of the first frequency domain resource.
  • the second reference sequence is used to generate the first RS sequence.
  • the length of the second reference sequence is equal to the length of the first RS sequence.
  • the RS transmitted by the first RS sequence outside the K frequency domain sub-resources is a corresponding element in the second reference sequence.
  • the second reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the second reference sequence is cell specific.
  • the user equipment supporting the broadcast signal is characterized in that the first receiver module further determines a third reference sequence.
  • the element in the third reference sequence and the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources are in one-to-one correspondence.
  • the third reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the third reference sequence is cell specific.
  • the user equipment supporting the broadcast signal is characterized in that the first receiver module further receives downlink information.
  • the downlink information is used to determine at least one of ⁇ the first frequency domain resource, the location of the K frequency domain sub-resources in the first frequency domain resource ⁇ .
  • the downlink information is broadcast information.
  • the present application discloses a base station device supporting a broadcast signal, which includes:
  • the first transmitter module sends the first wireless signal on the first time-frequency resource
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource is in the frequency domain.
  • the first frequency domain resource includes the K frequency domain sub-resources, and the K is a positive integer; the position of the K frequency domain sub-resources in the first frequency domain resource is not fixed.
  • the RS of the first RS sequence in a given frequency domain sub-resource is independent of the location of the given frequency domain sub-resource in the first frequency domain resource, and the given frequency domain sub-resource is Any one of the K frequency domain sub-resources; the K is 1, the RS corresponding to the first RS sequence on a given subcarrier, and the given subcarrier relative to the K The location of the frequency domain sub-resources, or the RS corresponding to the first RS sequence on the given subcarrier and the position of the given subcarrier in the first frequency domain resource; Between the first frequency domain resources and the K frequency domain sub-resources.
  • the foregoing base station device supporting a broadcast signal is characterized in that the first transmitter module further determines a first reference sequence.
  • the K is 1, and the RS of the first RS sequence on the given subcarrier is related to the location of the given subcarrier with respect to the K frequency domain sub-resources.
  • the first reference sequence is used to generate the first RS sequence.
  • the length of the first reference sequence is equal to the length of the first RS sequence.
  • the first RS sequence is generated after the first reference sequence is cyclically shifted by t1 elements, and the t1 is a positive integer.
  • the t1 and the K frequency domain sub-resources are related to locations in the first frequency domain resource.
  • the foregoing base station device supporting a broadcast signal is characterized in that the first The drop module also determines a second reference sequence.
  • the RS of the second reference sequence corresponding to the given subcarrier is related to the location of the first frequency domain resource.
  • the second reference sequence is used to generate the first RS sequence.
  • the length of the second reference sequence is equal to the length of the first RS sequence.
  • the RS transmitted by the first RS sequence outside the K frequency domain sub-resources is a corresponding element in the second reference sequence.
  • the foregoing base station device supporting a broadcast signal is characterized in that the first transmitter module further determines a third reference sequence.
  • the element in the third reference sequence and the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources are in one-to-one correspondence.
  • the foregoing base station device supporting a broadcast signal is characterized in that the first transmitter module further sends downlink information.
  • the downlink information is used to determine at least one of ⁇ the first frequency domain resource, the location of the K frequency domain sub-resources in the first frequency domain resource ⁇ .
  • the downlink information is broadcast information.
  • the UE In the case that the UE is to receive system information by monitoring different frequency domain resources, the UE does not need to know that the currently monitored frequency domain resource is in the entire system bandwidth and can correctly receive the RS on the currently monitored frequency domain resource. And using the RS for channel estimation.
  • the UE After the UE correctly receives the system information, the UE can obtain the location of the frequency domain resource occupied by the system information in the entire system bandwidth from the downlink information. With this information, the UE can obtain the RS sequence over the entire system bandwidth, thereby utilizing the entire Part of the wideband RS or wideband RS for more accurate channel estimation.
  • FIG. 2 is a schematic diagram showing mapping of K frequency domain sub-resources on a first frequency domain resource according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a relationship between a first RS sequence and a first reference sequence in accordance with an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a relationship between a first RS sequence and a ⁇ second reference sequence, a third reference sequence ⁇ according to an embodiment of the present application
  • FIG. 5 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application
  • FIG. 6 is a block diagram showing the structure of a processing device for use in a base station according to an embodiment of the present application
  • Figure 7 shows a flow diagram of a first wireless signal in accordance with one embodiment of the present application.
  • Figure 8 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application.
  • FIG. 9 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 10 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram of resource mapping of a first RS sequence over a time-frequency domain, in accordance with an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • the steps in block F1 are optional.
  • step S101 downlink information is transmitted in step S101; the first wireless signal is transmitted on the first time-frequency resource in step S11.
  • step S201 downlink information is received in step S201; the first wireless signal is received on the first time-frequency resource in step S21.
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource is in the frequency domain. Belongs to the first frequency domain resource.
  • the first frequency domain resource includes K frequency domain sub-resources, and the K is a positive integer.
  • the location of the K frequency domain sub-resources in the first frequency domain resource is not fixed, and the RS of the first RS sequence in a given frequency domain sub-resource and the given frequency domain sub-resource Regardless of the location in the first frequency domain resource, the given frequency domain sub-resource is any one of the K frequency domain sub-resources.
  • the K is 1, the RS corresponding to the first RS sequence on a given subcarrier and the given subcarrier relative to the K
  • the location of the frequency domain sub-resource is related; or the RS corresponding to the first RS sequence on the given subcarrier is related to the location of the first frequency domain resource.
  • the given subcarrier is outside the first frequency domain resource and outside the K frequency domain sub-resources.
  • the downlink information is used by the U2 to determine at least one of ⁇ the first frequency domain resource, the location of the K frequency domain sub-resources in the first frequency domain resource ⁇ .
  • the bandwidth of the K frequency domain sub-resources is fixed.
  • the K is greater than 1, and the bandwidths of the K frequency domain sub-resources are equal.
  • the K frequency domain sub-resources are mutually orthogonal.
  • the first frequency domain resource occupies the entire system bandwidth.
  • the K frequency domain sub-resources are narrowband.
  • the downlink information is an SIB (System Information Block).
  • SIB System Information Block
  • the downlink information is carried by higher layer signaling.
  • the downlink information is broadcast information.
  • Embodiment 2 illustrates a schematic diagram of mapping of K frequency domain sub-resources on a first frequency domain resource, as shown in FIG.
  • the first frequency domain resource includes K frequency domain sub-resources, and the K is a positive integer, and the positions of the K frequency domain sub-resources in the first frequency domain resource are not fixed.
  • k is a positive integer greater than one and less than the K.
  • the bandwidth of the K frequency domain sub-resources is fixed.
  • the K is greater than 1, and the bandwidths of the K frequency domain sub-resources are equal.
  • the K frequency domain sub-resources are mutually orthogonal.
  • the first frequency domain resource occupies the entire system bandwidth.
  • the K frequency domain sub-resources are narrowband.
  • the K is equal to one.
  • the K is greater than one.
  • Embodiment 3 illustrates a schematic diagram of the relationship between the first RS sequence and the first reference sequence, as shown in FIG.
  • the K in the present application is equal to 1, the RS corresponding to the first RS sequence on a given subcarrier and the given subcarrier relative to the K frequency domains in the present application.
  • the location of the sub-resource is included in the first frequency domain resource in the present application and outside the K frequency domain sub-resources.
  • the first reference sequence is used to generate the first RS sequence.
  • the length of the first reference sequence is equal to the length of the first RS sequence.
  • the first RS sequence is generated after the first reference sequence is cyclically shifted by t1 elements, and the t1 is a positive integer. In FIG. 3, the length of the first RS sequence is represented by L.
  • the location of the t1 and the K frequency domain sub-resources in the first frequency domain resource is related.
  • the cyclic shift is a cyclic shift to the right
  • the t1 is an index of the target RS in the first RS sequence
  • the target RS is the first RS sequence at the K
  • the RS corresponding to the lowest frequency point in the RS transmitted on the frequency domain sub-resources.
  • the cyclic shift is a cyclic shift to the right
  • the t1 is an index of the target RS in the first RS sequence
  • the target RS is the first RS sequence at the K
  • the RS corresponding to the highest frequency point in the RS transmitted on the frequency domain sub-resources.
  • the first reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identifier of the serving cell of the user equipment in this application is used to determine the first reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the first reference sequence is cell-specific.
  • Embodiment 4 illustrates a schematic diagram of the relationship between the first RS sequence and the ⁇ second reference sequence, third reference sequence ⁇ , as shown in FIG.
  • the RS of the first RS sequence on the given subcarrier is related to the location of the first frequency domain resource in the present application in the present application.
  • the given subcarrier is outside the first frequency domain resource and the K frequency domain sub-resources in the present application.
  • the RS of the second reference sequence on the given subcarrier is related to the location of the given carrier in the first frequency domain resource.
  • the second reference sequence is used to generate the first RS sequence.
  • the length of the second reference sequence is equal to the length of the first RS sequence.
  • the RS transmitted by the first RS sequence outside the K frequency domain sub-resources is a corresponding element in the second reference sequence.
  • the length of the first RS sequence is represented by L
  • the length of the third reference sequence is represented by L1
  • w k represents an index of the kth given RS in the first RS sequence
  • the kth given RS is an RS corresponding to the lowest frequency point in the RS transmitted by the first RS sequence on the kth frequency domain sub-resource of the K frequency domain sub-resources, where k is greater than 1 and not greater than the positive integer of K.
  • the second reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identifier of the serving cell of the user equipment in this application is used to determine the second reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the second reference sequence is cell specific.
  • the third reference sequence is a pseudo-random sequence.
  • the pseudo-random sequence is part of a Gold sequence.
  • the identity of the serving cell of the user equipment is used to determine the third reference sequence.
  • the identifier of the serving cell is a C-RNTI.
  • the third reference sequence is cell-specific.
  • the length of the third reference sequence is equal to the length of the RS transmitted by the first RS sequence among the K frequency domain sub-resources.
  • Embodiment 5 is a structural block diagram of a processing device for use in a user equipment, as shown in FIG.
  • processing device 500 in the user equipment is primarily comprised of a first receiver module 501.
  • the first receiver module 501 receives the first wireless signal on the first time-frequency resource.
  • the first wireless signal includes a portion of the first RS sequence or All of the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource belongs to the first frequency domain resource in the frequency domain.
  • the first frequency domain resource includes K frequency domain sub-resources, and the K is a positive integer.
  • the location of the K frequency domain sub-resources in the first frequency domain resource is not fixed, and the RS of the first RS sequence in a given frequency domain sub-resource and the given frequency domain sub-resource Regardless of the location in the first frequency domain resource, the given frequency domain sub-resource is any one of the K frequency domain sub-resources.
  • the K is 1, the RS corresponding to the first RS sequence on a given subcarrier and the position of the given subcarrier relative to the K frequency domain sub-resources; or the first RS sequence is The corresponding RS on the given subcarrier and the given subcarrier are related to the location of the first frequency domain resource.
  • the given subcarrier is outside the first frequency domain resource and outside the K frequency domain sub-resources.
  • the first receiver module 501 also determines a first reference sequence.
  • the K is 1, and the RS of the first RS sequence on the given subcarrier is related to the location of the given subcarrier with respect to the K frequency domain sub-resources.
  • the first reference sequence is used by the first receiver module 501 to generate the first RS sequence.
  • the length of the first reference sequence is equal to the length of the first RS sequence.
  • the first RS sequence is generated after the first reference sequence is cyclically shifted by t1 elements, and the t1 is a positive integer.
  • the first receiver module 501 also determines a second reference sequence.
  • the RS of the second reference sequence corresponding to the given subcarrier is related to the location of the first frequency domain resource.
  • the second reference sequence is used by the first receiver module 501 to generate the first RS sequence.
  • the length of the second reference sequence is equal to the length of the first RS sequence.
  • the RS transmitted by the first RS sequence outside the K frequency domain sub-resources is a corresponding element in the second reference sequence.
  • the first receiver module 501 also determines a third reference sequence.
  • the element in the third reference sequence and the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources are in one-to-one correspondence.
  • the first receiver module 501 also receives downlink information.
  • the downlink information is used by the first receiver module 501 to determine at least ⁇ the first frequency domain resource, the location of the K frequency domain sub-resources in the first frequency domain resource ⁇ one.
  • Embodiment 6 is a structural block diagram of a processing device used in a base station, as shown in FIG. Drawing In 6, the base station apparatus 600 is mainly composed of a first transmitter module 601.
  • the first transmitter module 601 transmits the first wireless signal on the first time-frequency resource.
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, the first time-frequency resource It belongs to the first frequency domain resource in the frequency domain.
  • the first frequency domain resource includes K frequency domain sub-resources, and the K is a positive integer.
  • the location of the K frequency domain sub-resources in the first frequency domain resource is not fixed, and the RS of the first RS sequence in a given frequency domain sub-resource and the given frequency domain sub-resource Regardless of the location in the first frequency domain resource, the given frequency domain sub-resource is any one of the K frequency domain sub-resources.
  • the K is 1, the RS corresponding to the first RS sequence on a given subcarrier and the position of the given subcarrier relative to the K frequency domain sub-resources; or the first RS sequence is The corresponding RS on the given subcarrier and the given subcarrier are related to the location of the first frequency domain resource.
  • the given subcarrier is outside the first frequency domain resource and outside the K frequency domain sub-resources.
  • the first transmitter module 601 also determines a first reference sequence.
  • the K is 1, and the RS of the first RS sequence on the given subcarrier is related to the location of the given subcarrier with respect to the K frequency domain sub-resources.
  • the first reference sequence is used by the first transmitter module 601 to generate the first RS sequence.
  • the length of the first reference sequence is equal to the length of the first RS sequence.
  • the first RS sequence is generated after the first reference sequence is cyclically shifted by t1 elements, and the t1 is a positive integer.
  • the first transmitter module 601 also determines a second reference sequence.
  • the RS of the second reference sequence corresponding to the given subcarrier is related to the location of the first frequency domain resource.
  • the second reference sequence is used by the first transmitter module 601 to generate the first RS sequence.
  • the length of the second reference sequence is equal to the length of the first RS sequence.
  • the RS transmitted by the first RS sequence outside the K frequency domain sub-resources is a corresponding element in the second reference sequence.
  • the first transmitter module 601 also determines a third reference sequence.
  • the element in the third reference sequence and the RS in which the first RS sequence is transmitted among the K frequency domain sub-resources are in one-to-one correspondence.
  • the first transmitter module 601 also sends downlink information.
  • the downlink information is used to determine ⁇ the first frequency domain resource, and the K frequency domain resources At least one of a source ⁇ of the source in the first frequency domain resource.
  • Embodiment 7 illustrates a schematic diagram of resource mapping of the first RS sequence in the time-frequency domain, as shown in FIG.
  • the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high within the first time-frequency resource in the present application.
  • the patterns of the first RS sequence in all time-frequency resource blocks in the first time-frequency resource are the same, as shown in FIG. 7. All RSs in the first RS sequence are located within the first time-frequency resource.
  • the first time-frequency resource is composed of M time-frequency resource blocks, and the indexes of the M time-frequency resource blocks are # ⁇ 0, . . . , M-1 ⁇ , respectively.
  • the time-frequency resource block is a PRBP (Physical Resource Block Pair).
  • PRBP Physical Resource Block Pair
  • the time-frequency resource block occupies a positive integer number of subcarriers in the frequency domain, and occupies a positive integer multi-carrier symbol in the time domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier) symbol.
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the pattern of the first RS sequence in the time-frequency resource block is a pattern of the CSI-RS in the time-frequency resource block.
  • the pattern of the first RS sequence in the time-frequency resource block is a pattern of the DMRS in the time-frequency resource block.
  • all RSs in the first RS sequence are transmitted on the same physical layer channel.
  • all RSs in the first RS sequence are transmitted by the same antenna port.
  • Embodiment 8 illustrates a flow chart of the first wireless signal, as shown in FIG.
  • the user equipment in the present application receives the first wireless signal on the first time-frequency resource.
  • the first wireless signal includes part or all of the first RS sequence, and the RSs in the first RS sequence are sequentially mapped in the frequency domain from low to high, and the first time-frequency resource is in the frequency domain.
  • the first frequency domain resource includes the K frequency domain sub-resources, and the K is a positive integer; the position of the K frequency domain sub-resources in the first frequency domain resource is not fixed.
  • the RS of the first RS sequence in a given frequency domain sub-resource is independent of the location of the given frequency domain sub-resource in the first frequency domain resource, and the given frequency domain sub-resource is Any one of the K frequency domain sub-resources; the K is 1, the RS corresponding to the first RS sequence on a given subcarrier, and the given subcarrier relative to the K The location of the frequency domain sub-resources, or the RS corresponding to the first RS sequence on the given subcarrier and the position of the given subcarrier in the first frequency domain resource; Between the first frequency domain resources and the K frequency domain sub-resources.
  • the bandwidth of the K frequency domain sub-resources is fixed.
  • the K is greater than 1, and the bandwidths of the K frequency domain sub-resources are equal.
  • the K frequency domain sub-resources are mutually orthogonal.
  • the first frequency domain resource occupies the entire system bandwidth.
  • the K frequency domain sub-resources are narrowband.
  • all RSs in the first RS sequence are transmitted by the same antenna port.
  • the pattern of the first RS sequence in all time-frequency resource blocks in the first time-frequency resource is the same.
  • the time-frequency resource block is a PRBP.
  • the time-frequency resource block occupies a positive integer number of subcarriers in the frequency domain, and occupies a positive integer multi-carrier symbol in the time domain.
  • the multi-carrier symbol is an OFDM symbol.
  • the multi-carrier symbol is an FBMC symbol.
  • the multi-carrier symbol is a DFT-S-OFDM symbol.
  • the pattern of the first RS sequence in the time-frequency resource block is a pattern of the CSI-RS in the time-frequency resource block.
  • the pattern of the first RS sequence in a time-frequency resource block is a pattern of DMRS within a time-frequency resource block.
  • all RSs in the first RS sequence are transmitted on the same physical layer channel.
  • the user equipment performs blind detection on the candidate frequency domain sub-resources to determine whether the candidate frequency domain sub-resources belong to the K frequency-domain sub-resources.
  • the bandwidth of the candidate frequency domain sub-resource and the bandwidth of any one of the K frequency-domain sub-resources are equal.
  • the candidate frequency domain sub-resource belongs to the first frequency domain resource.
  • the blind detection refers to: the user equipment uses the RS of the first RS sequence in the K frequency domain sub-resources to receive the wireless on the candidate frequency domain sub-resource.
  • the signal is subjected to coherent reception and energy detection. If the result of the energy detection is greater than a given threshold, the user equipment determines that the candidate frequency domain sub-resource belongs to the K frequency domain sub-resources; otherwise, the user equipment determines that the candidate frequency domain sub-resource does not belong to the K frequency domain sub-resources are described.
  • Embodiment 9 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • FIG. 9 illustrates a network architecture 900 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced), and a future 5G system.
  • the LTE network architecture 900 may be referred to as an EPS (Evolved Packet System) 900.
  • the EPS 900 may include one or more UEs (User Equipment) 901, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 902, 5G-CN (5G-Core Network, 5G core network) / EPC (Evolved Packet Core) 910, HSS (Home Subscriber Server) 920 and Internet Service 930.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • the E-UTRAN-NR includes an NR Node B (gNB) 903 and other gNBs 904.
  • the gNB 903 provides user and control plane protocol termination towards the UE 901.
  • the gNB 903 can be connected to other gNBs 904 via an X2 interface (eg, a backhaul).
  • gNB903 It may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 903 provides the UE 901 with an access point to the 5G-CN/EPC 910.
  • Examples of UE 901 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • a person skilled in the art may also refer to UE 901 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 903 is connected to the 5G-CN/EPC 910 through the S1 interface.
  • the 5G-CN/EPC 910 includes an MME 911, other MMEs 914, an S-GW (Service Gateway) 912, and a P-GW (Packet Date Network Gateway). 913.
  • the MME 911 is a control node that handles signaling between the UE 901 and the 5G-CN/EPC 910. In general, the MME 911 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 912, and the S-GW 912 itself is connected to the P-GW 913.
  • the P-GW 913 provides UE IP address allocation as well as other functions.
  • the P-GW 913 is connected to the Internet service 930.
  • the Internet service 930 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • the UE 901 corresponds to the user equipment in this application.
  • the gNB 903 corresponds to the base station in this application.
  • Embodiment 10 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 10 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 10 shows the radio protocol architecture for the UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 1001.
  • the L2 layer 1005 includes a MAC (Medium Access Control) sublayer 1002, an RLC (Radio Link Control) sublayer 1003, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 1004 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 1005, including a network layer (eg, an IP layer) terminated at the P-GW 913 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 1004 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 1004 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 1003 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 1002 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 1002 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 1002 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 1001 and the L2 layer 1005, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 1006 in Layer 3 (L3 layer).
  • the RRC sublayer 1006 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the radio protocol architecture of Figure 10 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 10 is applicable to the base station in this application.
  • the first wireless signal in the present application is generated by the PHY 1001.
  • the first RS sequence in the present application is generated by the PHY 1001.
  • the first reference sequence in the present application is generated by the PHY 1001.
  • the second reference sequence in the present application is generated in the PHY1001.
  • the third reference sequence in the present application is generated by the PHY 1001.
  • the downlink information in this application is generated in the RRC sublayer 1006.
  • Embodiment 11 illustrates a schematic diagram of an evolved node and a UE, as shown in FIG. Figure 11 is a block diagram of UE 1150 and gNB 1110 that are in communication with one another in an access network.
  • the gNB 1110 includes a controller/processor 1175, a memory 1176, a receiving processor 1170, a transmitting processor 1116, a channel estimator 1178, a transmitter/receiver 1118, and an antenna 1120.
  • the UE 1150 includes a controller/processor 1159, a memory 1160, a data source 1167, a transmit processor 1168, a receive processor 1156, a channel estimator 1158, a transmitter/receiver 1154, and an antenna 1152.
  • controller/processor 1175 implements the functionality of the L2 layer.
  • the controller/processor 1175 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources of the UE 1150 based on various priority metrics.
  • the controller/processor 1175 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 1150.
  • Transmit processor 1116 implements various signal processing functions for the L1 layer (ie, the physical layer), including encoding and interleaving to facilitate forward error correction (FEC) at UE 1150, and based on various modulation schemes (eg, binary) Mapping of signal clusters for phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • FEC forward error correction
  • BPSK phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the encoded and modulated symbols are subjected to spatial precoding/beamforming processing in transmit processor 1116 to generate one or more spatial streams.
  • Transmit processor 1116 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then generates the payload using inverse fast Fourier transform (IFFT).
  • IFFT inverse fast Fourier transform
  • Each transmitter 1118 converts the baseband multicarrier symbol stream provided by the transmit processor 1116 into a radio frequency stream, which is then provided to a different antenna 1120.
  • each receiver 1154 receives a signal through its respective antenna 1152. Each receiver 1154 recovers the information modulated onto the radio frequency carrier, And converting the RF stream into a baseband multi-carrier symbol stream is provided to the receive processor 1156.
  • Receive processor 1156 and channel estimator 1158 implement various signal processing functions of the L1 layer.
  • Receive processor 1156 converts the baseband multicarrier symbol stream from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signals and reference signals are demultiplexed by the receive processor 1156, where the reference signals will be used for channel estimation in the channel estimator 1158, and the physical layer data is subjected to multiple antenna detection in the receive processor 1156.
  • Controller/processor 1159 implements the functions of the L2 layer. Controller/processor 1159 can be associated with memory 1160 that stores program codes and data. Memory 1160 can be referred to as a computer readable medium.
  • the controller/processor 1159 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transmission and the logical channel to recover upper layer packets from the core network.
  • the upper layer packet is then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 1159 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 1167 provides the upper layer data packet to controller/processor 1159.
  • Data source 1167 represents all protocol layers above the L2 layer.
  • the controller/processor 1159 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the gNB 1110. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 1159 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 1110.
  • the appropriate coding and modulation scheme is selected by transmit processor 1168 and multi-antenna spatial precoding/beamforming processing is provided.
  • the spatial streams generated by antenna spatial precoding/beamforming are modulated into a multicarrier/single carrier symbol stream via transmit processor 1168 and then provided to different antennas 1152 via transmitter 1154.
  • Each transmitter 1154 first converts the baseband symbol stream provided by the transmit processor 1168 into a stream of radio frequency symbols and provides it to the antenna 1152.
  • the function at gNB 1110 is similar to the receiving function at UE 1150 described in the DL.
  • Each receiver 1118 receives a radio frequency signal through its respective antenna 1120, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a receive processor 1170.
  • the receiving processor 1170 and the channel estimator 1178 implement the function of the L1 layer, and the controller
  • the processor 1175 implements the L2 layer function.
  • Controller/processor 1175 can be associated with memory 1176 that stores program codes and data. Memory 1176 can be referred to as a computer readable medium.
  • the controller/processor 1175 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transmission and the logical channel to recover upper layer data packets from the UE 1150.
  • Upper layer data packets from controller/processor 1175 can be provided to the core network.
  • the controller/processor 1175 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 1150 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the UE 1150 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Receiving, in the first time-frequency resource, the first wireless signal in the present application, determining the first reference sequence in the present application, determining the second reference sequence in the present application, determining that in the present application
  • the third reference sequence generates the first RS sequence in the present application, and receives the downlink information in the application.
  • the gNB 1110 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the gNB 1110 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Transmitting the first wireless signal in the application on the first time-frequency resource, determining the first reference sequence in the application, determining the second reference sequence in the application, and determining the location in the application.
  • the third reference sequence is generated to generate the first RS sequence in the present application, and the downlink information in the application is sent.
  • the UE 1150 corresponds to the user equipment in this application.
  • the gNB 1110 corresponds to the base station in this application.
  • At least one of the antenna 1120, the transmitter 1118, the transmit processor 1116, and the controller/processor 1175 is used to transmit the first wireless in the present application.
  • At least one of the channel estimator 1158 and the controller/processor 1159 is configured to receive the first wireless signal in the present application.
  • the transmit processor 1116 is used to generate the first RS sequence in the present application, and at least one of the receive processor 1156 and the channel estimator 1158 is used to generate the present The first RS sequence in the application.
  • the transmit processor 1116 is used to determine the first reference sequence in the present application
  • at least one of the receive processor 1156 and the channel estimator 1158 is used to determine the present The first reference sequence in the application.
  • the transmit processor 1116 is used to determine the second reference sequence in the present application
  • at least one of the receive processor 1156 and the channel estimator 1158 is used to determine the present The second reference sequence in the application.
  • the transmit processor 1116 is used to determine the third reference sequence in the present application
  • at least one of the receive processor 1156 and the channel estimator 1158 is used to determine the present The third reference sequence in the application.
  • At least one of the antenna 1120, the transmitter 1118, the transmit processor 1116, and the controller/processor 1175 is used to transmit the downlink information in the present application
  • At least one of the antenna 1152, the receiver 1154, the receiving processor 1156, the channel estimator 1158, and the controller/processor 1159 is configured to receive the downlink information in the present application.
  • the first receiver module 501 in Embodiment 5 includes the antenna 1152, the receiver 1154, the receiving processor 1156, the channel estimator 1158, and the controller/processor. At least one of 1159 and the memory 1160.
  • the first transmitter module 601 in Embodiment 6 includes the antenna 1120, the transmitter 1118, the transmitting processor 1116, the controller/processor 1175, and the memory 1176. At least one of them.
  • the user equipment, UE or terminal in the present application includes but is not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种支持广播信号的无线通信系统中的方法和装置。用户设备在第一时频资源上接收第一无线信号。第一无线信号包括第一RS序列,第一RS序列中的RS在频域从低到高被依次映射,第一时频资源属于第一频域资源。第一频域资源包括K个频域子资源。K个频域子资源在第一频域资源中的位置不固定,第一RS序列在给定频域子资源中的RS和所述给定频域子资源在第一频域资源中的位置无关。这样,用户设备在不知道频域资源在系统带宽中的位置时也能正确接收RS。

Description

一种支持广播信号的无线通信系统中的方法和装置 技术领域
本申请涉及移动通信技术领域中的方法和装置,尤其涉及支持广播信号的系统中的无线通信方案。
背景技术
根据3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN1(Radio Access Network,无线接入网)的讨论,NR(New Radio,新型无线电通信)系统的设计要支持良好的前向兼容性。为了达到这个目的,NR系统的设计要具备足够的灵活性。但同时,灵活的设计增加了系统的不确定性,提高了UE(User Equipment,用户设备)的处理复杂度。在充分保证设计灵活性的前提下简化UE的处理复杂度,保证NR系统的正常工作是一个需要研究的方向。
发明内容
发明人通过研究发现,在灵活的系统设计下,NR系统的系统信息不会固定在一个特定的频域资源上发送,UE需要监测不同频域资源来接收系统信息。在现有的3GPP LTE(Long-Term Evolution,长期演进)系统中,RS(Reference Signal,参考信号)序列和RS所占据的子载波在整个系统带宽中的位置是相关联的。当UE(User Equipment,用户设备)对不同频域资源进行监测时,UE很难获知当前监测的频域资源在整个系统带宽中的位置,因此如果采用现有3GPP LTE系统中的方法,UE将无法获知当前监测的频域资源上RS序列,从而无法进行信道估计。
本申请针对上述问题公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了支持广播信号的用户设备中的方法,其中,包括:
-在第一时频资源上接收第一无线信号;
其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
作为一个实施例,所述K个频域子资源的带宽是固定的。
作为一个实施例,所述K大于1,所述K个频域子资源的带宽是相等的。
作为一个实施例,所述K个频域子资源是相互正交的。
作为一个实施例,所述第一频域资源占据整个系统带宽。
作为一个实施例,所述K个频域子资源是窄带的。
上述方法保证了UE在不知道所述所述给定频域子资源在所述第一频域资源中的位置的情况下仍然能够正确接收所述给定频域子资源中的RS,并执行在所述给定频域子资源中的信道估计。
作为一个实施例,所述第一RS序列中的所有RS是由相同天线端口发送的。
作为一个实施例,所述第一RS序列在所述第一时频资源中的所有时频资源块内的图案(pattern)是相同的。
作为一个实施例,所述时频资源块是PRBP(Physical Resource Block Pair,物理资源块)。
作为一个实施例,所述时频资源块在频域上占用正整数个子载波,在时域上占用正整数个多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi  Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一RS序列在时频资源块内的图案(pattern)是CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)在时频资源块内的图案。
作为一个实施例,所述第一RS序列在时频资源块内的图案(pattern)是DMRS(DeModulation Reference Signals,解调参考信号)在时频资源块内的图案。作为一个实施例,所述第一RS序列中的所有RS是在相同的物理层信道上传输的。
具体的,根据本申请的一个方面,其特征在于,包括:
-确定第一参考序列;
其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关;所述第一参考序列被用于生成所述第一RS序列;所述第一参考序列的长度等于所述第一RS序列的长度;所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
作为一个实施例,所述t1和所述K个频域子资源在所述第一频域资源中的位置有关。
作为一个实施例,所述循环移位是向右循环移位,所述t1是目标RS在所述第一RS序列中的索引,所述目标RS是所述第一RS序列在所述K个频域子资源上传输的RS中对应最低频点的RS。
作为一个实施例,所述循环移位是向右循环移位,所述t1是目标RS在所述第一RS序列中的索引,所述目标RS是所述第一RS序列在所述K个频域子资源上传输的RS中对应最高频点的RS。
作为一个实施例,所述第一参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述用户设备的服务小区的标识被用于确定所述第一参考序列。作为一个子实施例,所述服务小区的标识是C-RNTI(Cell-Radio Network Temporary Identifier,小区无线网络临时标识)。
作为一个实施例,所述第一参考序列是小区特定的。
上述方法保证了所述用户设备在获得所述所述K个频域子资源在所述第一频域资源中的位置后,能推断出所述第一RS序列来执行在所述第一频域资源上的信道估计。
具体的,根据本申请的一个方面,其特征在于,包括:
-确定第二参考序列;
其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述第二参考序列被用于生成所述第一RS序列;所述第二参考序列的长度等于所述第一RS序列的长度;所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
作为一个实施例,所述第二参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述用户设备的服务小区的标识被用于确定所述第二参考序列。作为一个子实施例,所述服务小区的标识是C-RNTI。
作为一个实施例,所述第二参考序列是小区特定的。
上述方法保证了所述用户设备在获得所述K个频域子资源在所述第一频域资源中的位置后,能推断出所述第一RS序列来执行在所述第一频域资源上的信道估计。
具体的,根据本申请的一个方面,其特征在于,包括:
-确定第三参考序列;
其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
作为一个实施例,所述第三参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述用户设备的服务小区的标识被用于确定所述第三参考序列。作为一个子实施例,所述服务小区的标识是C-RNTI。
作为一个实施例,所述第三参考序列是小区特定的。
作为一个实施例,所述第三参考序列的长度等于所述第一RS序列在所述K个频域子资源之中传输的RS的长度。
具体的,根据本申请的一个方面,其特征在于,包括:
-接收下行信息;
其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
作为一个实施例,所述下行信息是SIB(System Information Block,系统信息块)。
作为一个实施例,所述下行信息被高层信令承载。
作为一个实施例,所述下行信息是广播信息。
本申请公开了支持广播信号的基站中的方法,其中,包括:
-在第一时频资源上发送第一无线信号;
其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
作为一个实施例,所述K个频域子资源的带宽是固定的。
作为一个实施例,所述K大于1,所述K个频域子资源的带宽是相等的。
作为一个实施例,所述K个频域子资源是相互正交的。
作为一个实施例,所述第一频域资源占据整个系统带宽。
作为一个实施例,所述K个频域子资源是窄带的。
具体的,根据本申请的一个方面,其特征在于,包括:
-确定第一参考序列;
其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关;所述第一 参考序列被用于生成所述第一RS序列;所述第一参考序列的长度等于所述第一RS序列的长度;所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
作为一个实施例,所述t1和所述K个频域子资源在所述第一频域资源中的位置有关。
作为一个实施例,所述循环移位是向右循环移位,所述t1是目标RS在所述第一RS序列中的索引,所述目标RS是所述第一RS序列在所述K个频域子资源上传输的RS中对应最低频点的RS。
作为一个实施例,所述循环移位是向右循环移位,所述t1是目标RS在所述第一RS序列中的索引,所述目标RS是所述第一RS序列在所述K个频域子资源上传输的RS中对应最高频点的RS。
作为一个实施例,所述第一参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述用户设备的服务小区的标识被用于确定所述第一参考序列。作为一个子实施例,所述服务小区的标识是C-RNTI(Cell-Radio Network Temporary Identifier,小区无线网络临时标识)。
作为一个实施例,所述第一参考序列是小区特定的。
具体的,根据本申请的一个方面,其特征在于,包括:
-确定第二参考序列;
其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述第二参考序列被用于生成所述第一RS序列;所述第二参考序列的长度等于所述第一RS序列的长度;所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
作为一个实施例,所述第二参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述用户设备的服务小区的标识被用于确定所述第二参考序列。作为一个子实施例,所述服务小区的标识是C-RNTI。
作为一个实施例,所述第二参考序列是小区特定的。
具体的,根据本申请的一个方面,其特征在于,包括:
-确定第三参考序列;
其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
作为一个实施例,所述第三参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述用户设备的服务小区的标识被用于确定所述第三参考序列。作为一个子实施例,所述服务小区的标识是C-RNTI。
作为一个实施例,所述第三参考序列是小区特定的。
作为一个实施例,所述第三参考序列的长度等于所述第一RS序列在所述K个频域子资源之中传输的RS的长度。
具体的,根据本申请的一个方面,其特征在于,包括:
-发送下行信息;
其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
作为一个实施例,所述下行信息是SIB(System Information Block,系统信息块)。
作为一个实施例,所述下行信息被高层信令承载。
作为一个实施例,所述下行信息是广播信息。
本申请公开了支持广播信号的用户设备,其中,包括:
第一接收机模块,在第一时频资源上接收第一无线信号;
其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子 载波在所述第一频域资源之中且所述K个频域子资源之外。
作为一个实施例,所述K个频域子资源的带宽是固定的。
作为一个实施例,所述K大于1,所述K个频域子资源的带宽是相等的。
具体的,上述支持广播信号的用户设备,其特征在于,所述第一接收机模块还确定第一参考序列。
其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关。所述第一参考序列被用于生成所述第一RS序列。所述第一参考序列的长度等于所述第一RS序列的长度。所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
作为一个实施例,所述t1和所述K个频域子资源在所述第一频域资源中的位置有关。
作为一个实施例,所述第一参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述第一参考序列是小区特定的。
具体的,上述支持广播信号的用户设备,其特征在于,所述第一接收机模块还确定第二参考序列。
其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述第二参考序列被用于生成所述第一RS序列。所述第二参考序列的长度等于所述第一RS序列的长度。所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
作为一个实施例,所述第二参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述第二参考序列是小区特定的。
具体的,上述支持广播信号的用户设备,其特征在于,所述第一接收机模块还确定第三参考序列。
其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
作为一个实施例,所述第三参考序列是伪随机序列。作为一个子实 施例,所述伪随机序列是Gold序列的一部分。
作为一个实施例,所述第三参考序列是小区特定的。
具体的,上述支持广播信号的用户设备,其特征在于,所述第一接收机模块还接收下行信息。
其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
作为一个实施例,所述下行信息是广播信息。
本申请公开了支持广播信号的基站设备,其中,包括:
第一发送机模块,在第一时频资源上发送第一无线信号;
其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
具体的,上述支持广播信号的基站设备,其特征在于,所述第一发送机模块还确定第一参考序列。
其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关。所述第一参考序列被用于生成所述第一RS序列。所述第一参考序列的长度等于所述第一RS序列的长度。所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
作为一个实施例,所述t1和所述K个频域子资源在所述第一频域资源中的位置有关。
具体的,上述支持广播信号的基站设备,其特征在于,所述第一发 送机模块还确定第二参考序列。
其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述第二参考序列被用于生成所述第一RS序列。所述第二参考序列的长度等于所述第一RS序列的长度。所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
具体的,上述支持广播信号的基站设备,其特征在于,所述第一发送机模块还确定第三参考序列。
其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
具体的,上述支持广播信号的基站设备,其特征在于,所述第一发送机模块还发送下行信息。
其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
作为一个实施例,所述下行信息是广播信息。
和传统方案相比,本申请具备如下优势:
-.在UE要通过监测不同频域资源来接收系统信息的情况下,UE不需要知道当前监测的频域资源在整个系统带宽中的位置也能正确接收当前监测的频域资源上的RS,并利用所述RS进行信道估计。
-.当UE正确接收系统信息后,UE可以从下行信息中获得系统信息占据的频域资源在整个系统带宽中的位置,利用这个信息,UE可以获得整个系统带宽上的RS序列,从而利用整个宽带RS或者宽带RS的一部分进行更准确的信道估计。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:图1示出了根据本申请的一个实施例的无线传输的流程图;
图2示出了根据本申请的一个实施例的K个频域子资源在第一频域资源上的映射的示意图;
图3示出了根据本申请的一个实施例的第一RS序列和第一参考序列之间关系的示意图;
图4示出了根据本申请的一个实施例的第一RS序列和{第二参考序列,第三参考序列}之间关系的示意图;
图5示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图6示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图;
图7示出了根据本申请的一个实施例的第一无线信号的流程图;
图8示出了根据本申请的一个实施例的网络架构的示意图;
图9示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图10示出了根据本申请的一个实施例的演进节点和UE的示意图;
图11示出了根据本申请的一个实施例的第一RS序列在时频域上的资源映射的示意图。
实施例1
实施例1示例了无线传输的流程图,如附图1所示。附图1中,基站N1是用户设备U2的服务小区维持基站。附图1中,方框F1中的步骤是可选的。
对于N1,在步骤S101中发送下行信息;在步骤S11中在第一时频资源上发送第一无线信号。
对于U2,在步骤S201中接收下行信息;在步骤S21中在第一时频资源上接收第一无线信号。
其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源。所述第一频域资源包括K个频域子资源,所述K是正整数。所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源。所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个 频域子资源的位置有关;或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。所述下行信息被所述U2用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
作为一个子实施例,所述K个频域子资源的带宽是固定的。
作为一个子实施例,所述K大于1,所述K个频域子资源的带宽是相等的。
作为一个子实施例,所述K个频域子资源是相互正交的。
作为一个子实施例,所述第一频域资源占据整个系统带宽。
作为一个子实施例,所述K个频域子资源是窄带的。
作为一个子实施例,所述下行信息是SIB(System Information Block,系统信息块)。
作为一个子实施例,所述下行信息被高层信令承载。
作为一个子实施例,所述下行信息是广播信息。
实施例2
实施例2示例了K个频域子资源在第一频域资源上的映射的示意图,如附图2所示。
在实施例2中,所述第一频域资源包括K个频域子资源,所述K是正整数,所述K个频域子资源在所述第一频域资源中的位置是不固定的。在附图2中,k是大于1并且小于所述K的正整数。
作为一个子实施例,所述K个频域子资源的带宽是固定的。
作为一个子实施例,所述K大于1,所述K个频域子资源的带宽是相等的。
作为一个子实施例,所述K个频域子资源是相互正交的。
作为一个子实施例,所述第一频域资源占据整个系统带宽。
作为一个子实施例,所述K个频域子资源是窄带的。
作为一个子实施例,所述K等于1。
作为一个子实施例,所述K大于1。
实施例3
实施例3示例了第一RS序列和第一参考序列之间关系的示意图,如附图3所示。
在实施例3中,本申请中的所述K等于1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于本申请中的所述K个频域子资源的位置有关,所述给定子载波在本申请中的所述第一频域资源之中且所述K个频域子资源之外。所述第一参考序列被用于生成所述第一RS序列。所述第一参考序列的长度等于所述第一RS序列的长度。所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。在附图3中,所述第一RS序列的长度由L表示。
作为一个子实施例,所述t1和所述K个频域子资源在所述第一频域资源中的位置有关。
作为一个子实施例,所述循环移位是向右循环移位,所述t1是目标RS在所述第一RS序列中的索引,所述目标RS是所述第一RS序列在所述K个频域子资源上传输的RS中对应最低频点的RS。
作为一个子实施例,所述循环移位是向右循环移位,所述t1是目标RS在所述第一RS序列中的索引,所述目标RS是所述第一RS序列在所述K个频域子资源上传输的RS中对应最高频点的RS。
作为一个子实施例,所述第一参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个子实施例,本申请中的所述用户设备的服务小区的标识被用于确定所述第一参考序列。作为实施例3的子实施例5的子实施例,所述服务小区的标识是C-RNTI。
作为一个子实施例,所述第一参考序列是小区特定的。
实施例4
实施例4示例了第一RS序列和{第二参考序列,第三参考序列}之间关系的示意图,附图4所示。
在实施例4中,所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在本申请中的所述第一频域资源的位置有关。所述给定子载波在所述第一频域资源之中且本申请中的所述K个频域子资源之外。 所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述第二参考序列被用于生成所述第一RS序列。所述第二参考序列的长度等于所述第一RS序列的长度。所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。在附图4中,所述第一RS序列的长度由L表示,所述第三参考序列的长度由L1表示,wk表示第k个给定RS在所述第一RS序列中的索引,所述第k个给定RS是所述第一RS序列在所述K个频域子资源中的第k个频域子资源上传输的RS中对应最低频点的RS,所述k是大于1并且不大于所述K的正整数。
作为一个子实施例,所述第二参考序列是伪随机序列。作为一个子实施例,所述伪随机序列是Gold序列的一部分。
作为一个子实施例,本申请中的所述用户设备的服务小区的标识被用于确定所述第二参考序列。作为上述实施例的子实施例,所述服务小区的标识是C-RNTI。
作为一个子实施例,所述第二参考序列是小区特定的。
作为一个子实施例,所述第三参考序列是伪随机序列。作为上述实施例的子实施例,所述伪随机序列是Gold序列的一部分。
作为一个子实施例,所述用户设备的服务小区的标识被用于确定所述第三参考序列。作为上述实施例的子实施例,所述服务小区的标识是C-RNTI。
作为一个子实施例,所述第三参考序列是小区特定的。
作为一个子实施例,所述第三参考序列的长度等于所述第一RS序列在所述K个频域子资源之中传输的RS的长度。
实施例5
实施例5是用于用户设备中的处理装置的结构框图,如附图5所示。附图5中,用户设备中的处理装置500主要由第一接收机模块501组成。
在实施例5中,第一接收机模块501在第一时频资源上接收第一无线信号。
在实施例5中,所述第一无线信号包括第一RS序列中的部分或者 全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源。所述第一频域资源包括K个频域子资源,所述K是正整数。所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源。所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关;或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
作为一个子实施例,所述第一接收机模块501还确定第一参考序列。其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关。所述第一参考序列被所述第一接收机模块501用于生成所述第一RS序列。所述第一参考序列的长度等于所述第一RS序列的长度。所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
作为一个子实施例,所述第一接收机模块501还确定第二参考序列。其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述第二参考序列被所述第一接收机模块501用于生成所述第一RS序列。所述第二参考序列的长度等于所述第一RS序列的长度。所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
作为一个子实施例,所述第一接收机模块501还确定第三参考序列。其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
作为一个子实施例,所述第一接收机模块501还接收下行信息。其中,所述下行信息被所述第一接收机模块501用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
实施例6
实施例6是用于基站中的处理装置的结构框图,如附图6所示。附图 6中,基站装置600主要由第一发送机模块601组成。
在实施例6中,第一发送机模块601在第一时频资源上发送第一无线信号。
在实施例6中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源。所述第一频域资源包括K个频域子资源,所述K是正整数。所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源。所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关;或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
作为一个子实施例,所述第一发送机模块601还确定第一参考序列。其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关。所述第一参考序列被所述第一发送机模块601用于生成所述第一RS序列。所述第一参考序列的长度等于所述第一RS序列的长度。所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
作为一个子实施例,所述第一发送机模块601还确定第二参考序列。其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关。所述第二参考序列被所述第一发送机模块601用于生成所述第一RS序列。所述第二参考序列的长度等于所述第一RS序列的长度。所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
作为一个子实施例,所述第一发送机模块601还确定第三参考序列。其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
作为一个子实施例,所述第一发送机模块601还发送下行信息。其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资 源在所述第一频域资源中的位置}中的至少之一。
实施例7
实施例7示例了第一RS序列在时频域上的资源映射的示意图,如附图7所示。
在实施例7中,所述第一RS序列中的RS在本申请中的所述第一时频资源内在频域从低到高被依次映射。所述第一RS序列在所述第一时频资源中的所有时频资源块内的图案(pattern)是相同的,如附图7所示。所述第一RS序列中的所有RS都位于所述第一时频资源之内。
在附图7中,所述第一时频资源由M个时频资源块组成,所述M个时频资源块的索引分别是#{0,…,M-1}。
作为一个子实施例,所述时频资源块是PRBP(Physical Resource Block Pair,物理资源块)。
作为一个子实施例,所述时频资源块在频域上占用正整数个子载波,在时域上占用正整数个多载波符号。
作为一个子实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个子实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个子实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个子实施例,所述第一RS序列在时频资源块内的图案(pattern)是CSI-RS在时频资源块内的图案。
作为一个子实施例,所述第一RS序列在时频资源块内的图案(pattern)是DMRS在时频资源块内的图案。
作为一个子实施例,所述第一RS序列中的所有RS是在相同的物理层信道上传输的。
作为一个子实施例,所述第一RS序列中的所有RS是由相同天线端口发送的。
实施例8
实施例8示例了第一无线信号的流程图,如附图8所示。
在实施例8中,本申请中的所述用户设备在第一时频资源上接收第一无线信号。其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
作为一个子实施例,所述K个频域子资源的带宽是固定的。
作为一个子实施例,所述K大于1,所述K个频域子资源的带宽是相等的。
作为一个子实施例,所述K个频域子资源是相互正交的。
作为一个子实施例,所述第一频域资源占据整个系统带宽。
作为一个子实施例,所述K个频域子资源是窄带的。
作为一个子实施例,所述第一RS序列中的所有RS是由相同天线端口发送的。
作为一个子实施例,所述第一RS序列在所述第一时频资源中的所有时频资源块内的图案(pattern)是相同的。
作为一个子实施例,所述时频资源块是PRBP。
作为一个子实施例,所述时频资源块在频域上占用正整数个子载波,在时域上占用正整数个多载波符号。
作为一个子实施例,所述多载波符号是OFDM符号。
作为一个子实施例,所述多载波符号是FBMC符号。
作为一个子实施例,所述多载波符号是DFT-S-OFDM符号。
作为一个子实施例,所述第一RS序列在时频资源块内的图案(pattern)是CSI-RS在时频资源块内的图案。
作为一个子实施例,所述第一RS序列在时频资源块内的图案 (pattern)是DMRS在时频资源块内的图案。
作为一个子实施例,所述第一RS序列中的所有RS是在同一个物理层信道上传输的。
作为一个子实施例,所述用户设备在候选频域子资源上进行盲检测来判断所述候选频域子资源是否属于所述K个频域子资源。
作为一个子实施例,所述候选频域子资源的带宽和所述K个频域子资源中任一频域子资源的带宽是相等的。
作为一个子实施例,所述候选频域子资源属于所述第一频域资源。
作为一个子实施例,所述盲检测是指:所述用户设备用所述第一RS序列在所述K个频域子资源中的RS来对所述候选频域子资源上接收到的无线信号进行相干接收和能量检测。如果所述能量检测的结果大于给定阈值,所述用户设备判断所述候选频域子资源属于所述K个频域子资源;否则所述用户设备判断所述候选频域子资源不属于所述K个频域子资源。
实施例9
实施例9示例了网络架构的示意图,如附图9所示。
附图9说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构900。LTE网络架构900可称为EPS(Evolved Packet System,演进分组系统)900。EPS 900可包括一个或一个以上UE(User Equipment,用户设备)901,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)902,5G-CN(5G-Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)910,HSS(Home Subscriber Server,归属签约用户服务器)920和因特网服务930。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图9所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR包括NR节点B(gNB)903和其它gNB904。gNB903提供朝向UE901的用户和控制平面协议终止。gNB903可经由X2接口(例如,回程)连接到其它gNB904。gNB903 也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB903为UE901提供对5G-CN/EPC910的接入点。UE901的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE901称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB903通过S1接口连接到5G-CN/EPC910。5G-CN/EPC910包括MME 911、其它MME914、S-GW(Service Gateway,服务网关)912以及P-GW(Packet Date Network Gateway,分组数据网络网关)913。MME911是处理UE901与5G-CN/EPC910之间的信令的控制节点。大体上,MME911提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW912传送,S-GW912自身连接到P-GW913。P-GW913提供UE IP地址分配以及其它功能。P-GW913连接到因特网服务930。因特网服务930包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE901对应本申请中的所述用户设备。
作为一个子实施例,所述gNB903对应本申请中的所述基站。
实施例10
实施例10示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图10所示。
附图10是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图10用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY1001。层2(L2层)1005在PHY1001 之上,且负责通过PHY1001在UE与gNB之间的链路。在用户平面中,L2层1005包括MAC(Medium Access Control,媒体接入控制)子层1002、RLC(Radio Link Control,无线链路层控制协议)子层1003和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层1004,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层1005之上的若干协议层,包括终止于网络侧上的P-GW913处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层1004提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层1004还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层1003提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层1002提供逻辑与传输信道之间的多路复用。MAC子层1002还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层1002还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层1001和L2层1005来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层1006。RRC子层1006负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图10中的无线协议架构适用于本申请中的所述用户设备。
作为一个子实施例,附图10中的无线协议架构适用于本申请中的所述基站。
作为一个子实施例,本申请中的所述第一无线信号生成于所述PHY1001。
作为一个子实施例,本申请中的所述第一RS序列生成于所述PHY1001。
作为一个子实施例,本申请中的所述第一参考序列生成于所述PHY1001。
作为一个子实施例,本申请中的所述第二参考序列生成于所述 PHY1001。
作为一个子实施例,本申请中的所述第三参考序列生成于所述PHY1001。
作为一个子实施例,本申请中的所述下行信息生成于所述RRC子层1006。
实施例11
实施例11示例了演进节点和UE的示意图,如附图11所示。附图11是在接入网络中相互通信的UE1150以及gNB1110的框图。
gNB1110包括控制器/处理器1175,存储器1176,接收处理器1170,发射处理器1116,信道估计器1178、发射器/接收器1118和天线1120。
UE1150包括控制器/处理器1159,存储器1160,数据源1167,发射处理器1168,接收处理器1156,信道估计器1158、发射器/接收器1154和天线1152。
在DL(Downlink,下行)中,在gNB1110处,来自核心网络的上层数据包被提供到控制器/处理器1175。控制器/处理器1175实施L2层的功能性。在DL中,控制器/处理器1175提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对UE1150的无线电资源进行分配。控制器/处理器1175还负责HARQ操作、丢失包的重新发射,和到UE1150的信令。发射处理器1116实施用于L1层(即,物理层)的各种信号处理功能,包括编码和交错以促进UE1150处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。经编码和经调制后的符号在发射处理器1116中经过空间预编码/波束赋型处理,生成一个或多个空间流。发射处理器1116随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)产生载运时域多载波符号流的物理信道。每一发射器1118把发射处理器1116提供的基带多载波符号流转化成射频流,随后提供到不同天线1120。
在DL(Downlink,下行)中,在UE1150处,每一接收器1154通过其相应天线1152接收信号。每一接收器1154恢复调制到射频载波上的信息, 且将射频流转化成基带多载波符号流提供到接收处理器1156。接收处理器1156和信道估计器1158实施L1层的各种信号处理功能。接收处理器1156使用快速傅立叶变换(FFT)将基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器1156解复用,其中参考信号将在信道估计器1158中被用于信道估计,物理层数据在接收处理器1156中经过多天线检测以恢复以UE1150为目的地的任何空间流。每一空间流上的符号在接收处理器1156中被解调和恢复,并生成软决策。随后接收处理器1156解码和解交错所述软决策以恢复在物理信道上由gNB1110发射的上层数据和控制信号,随后将上层数据和控制信号提供到控制器/处理器1159。控制器/处理器1159实施L2层的功能。控制器/处理器1159可与存储程序代码和数据的存储器1160相关联。存储器1160可称为计算机可读媒体。在DL中,控制器/处理器1159提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器1159还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE1150处,数据源1167将上层数据包提供到控制器/处理器1159。数据源1167表示L2层之上的所有协议层。类似于在DL中所描述gNB1110处的发送功能,控制器/处理器1159基于gNB1110的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器1159还负责HARQ操作、丢失包的重新发射,和到gNB1110的信令。由发射处理器1168选择适当的编码和调制方案,并提供多天线空间预编码/波束赋型处理。经天线空间预编码/波束赋型产生的空间流经由发射处理器1168调制成多载波/单载波符号流,再经由发射器1154提供到不同天线1152。每一发射器1154首先把发射处理器1168提供的基带符号流转化成射频符号流,再提供到天线1152。
在UL(Uplink,上行)中,gNB1110处的功能类似于在DL中所描述的UE1150处的接收功能。每一接收器1118通过其相应天线1120接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器1170。接收处理器1170和信道估计器1178实施L1层的功能,控制器 /处理器1175实施L2层功能。控制器/处理器1175可与存储程序代码和数据的存储器1176相关联。存储器1176可称为计算机可读媒体。在UL中,控制器/处理器1175提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE1150的上层数据包。来自控制器/处理器1175的上层数据包可提供到核心网络。控制器/处理器1175还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个子实施例,所述UE1150包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个子实施例,所述UE1150包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一时频资源上接收在本申请中的所述第一无线信号,确定本申请中的所述第一参考序列,确定本申请中的所述第二参考序列,确定本申请中的所述第三参考序列,生成本申请中的所述第一RS序列,和接收本申请中的所述下行信息。
作为一个子实施例,所述gNB1110包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。
作为一个子实施例,所述gNB1110包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一时频资源上发送本申请中的所述第一无线信号,确定本申请中的所述第一参考序列,确定本申请中的所述第二参考序列,确定本申请中的所述第三参考序列,生成本申请中的所述第一RS序列,和发送本申请中的所述下行信息。
作为一个子实施例,所述UE1150对应本申请中的所述用户设备。
作为一个子实施例,所述gNB1110对应本申请中的所述基站。
作为一个子实施例,所述天线1120、所述发射器1118、所述发射处理器1116和所述控制器/处理器1175中的至少之一被用于发送本申请中的所述第一无线信号,所述天线1152、所述接收器1154、所述接收处理器 1156、所述信道估计器1158和所述控制器/处理器1159中的至少之一被用于接收本申请中的所述第一无线信号。
作为一个子实施例,所述发射处理器1116被用于生成本申请中的所述第一RS序列,所述接收处理器1156和所述信道估计器1158中的至少之一被用于生成本申请中的所述第一RS序列。
作为一个子实施例,所述发射处理器1116被用于确定本申请中的所述第一参考序列,所述接收处理器1156和所述信道估计器1158中的至少之一被用于确定本申请中的所述第一参考序列。
作为一个子实施例,所述发射处理器1116被用于确定本申请中的所述第二参考序列,所述接收处理器1156和所述信道估计器1158中的至少之一被用于确定本申请中的所述第二参考序列。
作为一个子实施例,所述发射处理器1116被用于确定本申请中的所述第三参考序列,所述接收处理器1156和所述信道估计器1158中的至少之一被用于确定本申请中的所述第三参考序列。
作为一个子实施例,所述天线1120、所述发射器1118、所述发射处理器1116和所述控制器/处理器1175中的至少之一被用于发送本申请中的所述下行信息,所述天线1152、所述接收器1154、所述接收处理器1156、所述信道估计器1158和所述控制器/处理器1159中的至少之一被用于接收本申请中的所述下行信息。
作为一个子实施例,实施例5中的第一接收机模块501包括所述天线1152、所述接收器1154、所述接收处理器1156、所述信道估计器1158、所述控制器/处理器1159和所述存储器1160中的至少之一。
作为一个子实施例,实施例6中的第一发送机模块601包括所述天线1120、所述发射器1118、所述发射处理器1116、所述控制器/处理器1175和所述存储器1176中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的 形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、UE或者终端包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 支持广播信号的用户设备中的方法,其中,包括:
    -在第一时频资源上接收第一无线信号;
    其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    -确定第一参考序列;
    其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关;所述第一参考序列被用于生成所述第一RS序列;所述第一参考序列的长度等于所述第一RS序列的长度;所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
  3. 根据权利要求1所述的方法,其特征在于,包括:
    -确定第二参考序列;
    其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述第二参考序列被用于生成所述第一RS序列;所述第二参考序列的长度等于所述第一RS序列的长度;所述第一RS序列在所述K个频域子资源之外传输的RS是所述第二参考序列中相应的元素。
  4. 根据权利要求3所述的方法,其特征在于,包括:
    -确定第三参考序列;
    其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,包括:
    -接收下行信息;
    其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
  6. 支持广播信号的基站中的方法,其中,包括:
    -在第一时频资源上发送第一无线信号;
    其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
  7. 根据权利要求6所述的方法,其特征在于,包括:
    -确定第一参考序列;
    其中,所述K为1,所述第一RS序列在所述给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关;所述第一参考序列被用于生成所述第一RS序列;所述第一参考序列的长度等于所述第一RS序列的长度;所述第一RS序列是所述第一参考序列循环移位t1个元素后生成的,所述t1是正整数。
  8. 根据权利要求6所述的方法,其特征在于,包括:
    -确定第二参考序列;
    其中,所述第二参考序列在所述给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述第二参考序列被用于生成所述第一RS序列;所述第二参考序列的长度等于所述第一RS序列的长度;所述第一RS序列在所述K个频域子资源之外传输的RS是所述 第二参考序列中相应的元素。
  9. 根据权利要求8所述的方法,其特征在于,包括:
    -确定第三参考序列;
    其中,所述第三参考序列中的元素和所述第一RS序列在所述K个频域子资源之中传输的RS一一对应。
  10. 根据权利要求6至9中任一权利要求所述的方法,其特征在于,包括:
    -发送下行信息;
    其中,所述下行信息被用于确定{所述第一频域资源,所述K个频域子资源在所述第一频域资源中的位置}中的至少之一。
  11. 支持广播信号的用户设备,其中,包括:
    第一接收机模块,在第一时频资源上接收第一无线信号;
    其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
  12. 支持广播信号的基站设备,其中,包括:
    第一发送机模块,在第一时频资源上发送第一无线信号;
    其中,所述第一无线信号包括第一RS序列中的部分或者全部,所述第一RS序列中的RS在频域从低到高被依次映射,所述第一时频资源在频域上属于第一频域资源;所述第一频域资源包括K个频域子资源,所述K是正整数;所述K个频域子资源在所述第一频域资源中的位置是不固定的,所述第一RS序列在一个给定频域子资源中的RS和所述给定频域子资源在所述第一频域资源中的位置无关,所述给定频域子资源是 所述K个频域子资源中的任一频域子资源;所述K为1,所述第一RS序列在一个给定子载波上所对应的RS和所述给定子载波相对于所述K个频域子资源的位置有关,或者所述第一RS序列在给定子载波上所对应的RS和所述给定子载波在所述第一频域资源的位置有关;所述给定子载波在所述第一频域资源之中且所述K个频域子资源之外。
PCT/CN2017/094836 2016-08-29 2017-07-28 一种支持广播信号的无线通信系统中的方法和装置 WO2018040815A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/285,248 US11265194B2 (en) 2016-08-29 2019-02-26 Method and device in wireless communication system that supports broadcast signals
US17/565,481 US11616675B2 (en) 2016-08-29 2021-12-30 Method and device in wireless communication system that supports broadcast signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610754332.8A CN107786316B (zh) 2016-08-29 2016-08-29 一种无线传输中的方法和装置
CN201610754332.8 2016-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/285,248 Continuation US11265194B2 (en) 2016-08-29 2019-02-26 Method and device in wireless communication system that supports broadcast signals

Publications (1)

Publication Number Publication Date
WO2018040815A1 true WO2018040815A1 (zh) 2018-03-08

Family

ID=61300178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094836 WO2018040815A1 (zh) 2016-08-29 2017-07-28 一种支持广播信号的无线通信系统中的方法和装置

Country Status (3)

Country Link
US (2) US11265194B2 (zh)
CN (2) CN107786316B (zh)
WO (1) WO2018040815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131730A1 (en) * 2019-07-12 2022-04-28 Huawei Technologies Co., Ltd. Symbol processing method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057091B2 (en) * 2018-02-16 2021-07-06 Qualcomm Incorporated Reference signals for tracking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741793A (zh) * 2008-11-04 2010-06-16 华为技术有限公司 上行参考信号的发射方法、系统和设备
CN101841354A (zh) * 2009-03-17 2010-09-22 大唐移动通信设备有限公司 一种下行测量导频传输方法和装置
EP2290847A1 (en) * 2008-06-16 2011-03-02 ZTE Corporation Frequency hopping method and base station for downlink dedicated pilot frequency
CN102769592A (zh) * 2011-05-04 2012-11-07 普天信息技术研究院有限公司 一种用于通信系统的上行参考信号的生成方法及装置
CN104038320A (zh) * 2013-03-04 2014-09-10 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7603037B2 (en) * 2003-06-20 2009-10-13 Hrl Laboratories, Llc Ultra-dense wavelength and subcarrier multiplexed optical and RF/mm-wave transmission system
CN101330325B (zh) * 2008-07-29 2012-09-05 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法
US8953563B2 (en) * 2009-04-24 2015-02-10 Samsung Electronics Co., Ltd. Method and system for multi-layer beamforming
US10256963B2 (en) * 2015-04-10 2019-04-09 Technology In Ariscale, Llc Method and apparatus for transmitting and receiving channel state information reference signal in full dimension MIMO wireless communication system
CN105898872B (zh) * 2016-03-31 2021-01-22 电信科学技术研究院 一种上行传输方法及装置
EP3484216A4 (en) * 2016-07-29 2019-06-26 Huawei Technologies Co., Ltd. METHOD FOR MATCHING REFERENCE SIGNAL SEQUENCE, CONFIGURATION METHOD, BASE STATION, AND USER EQUIPMENT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290847A1 (en) * 2008-06-16 2011-03-02 ZTE Corporation Frequency hopping method and base station for downlink dedicated pilot frequency
CN101741793A (zh) * 2008-11-04 2010-06-16 华为技术有限公司 上行参考信号的发射方法、系统和设备
CN101841354A (zh) * 2009-03-17 2010-09-22 大唐移动通信设备有限公司 一种下行测量导频传输方法和装置
CN102769592A (zh) * 2011-05-04 2012-11-07 普天信息技术研究院有限公司 一种用于通信系统的上行参考信号的生成方法及装置
CN104038320A (zh) * 2013-03-04 2014-09-10 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131730A1 (en) * 2019-07-12 2022-04-28 Huawei Technologies Co., Ltd. Symbol processing method and apparatus
US11770281B2 (en) * 2019-07-12 2023-09-26 Huawei Technologies Co., Ltd. Symbol processing method and apparatus

Also Published As

Publication number Publication date
US11616675B2 (en) 2023-03-28
CN109743150B (zh) 2021-09-24
CN107786316B (zh) 2019-03-15
CN109743150A (zh) 2019-05-10
CN107786316A (zh) 2018-03-09
US20220123980A1 (en) 2022-04-21
US11265194B2 (en) 2022-03-01
US20190190759A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
US11949469B2 (en) Method and device for multi-antenna transmission in UE and base station
US20220141837A1 (en) Method and device in first node for wireless communication
WO2020119519A1 (zh) 一种无线通信中的第一节点中的方法和装置
WO2019028885A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019006578A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
US11616675B2 (en) Method and device in wireless communication system that supports broadcast signals
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2022222765A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019047090A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230030758A1 (en) Method and device in nodes used for wireless communication
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115395992B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845117

Country of ref document: EP

Kind code of ref document: A1