WO2021088610A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021088610A1
WO2021088610A1 PCT/CN2020/121094 CN2020121094W WO2021088610A1 WO 2021088610 A1 WO2021088610 A1 WO 2021088610A1 CN 2020121094 W CN2020121094 W CN 2020121094W WO 2021088610 A1 WO2021088610 A1 WO 2021088610A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
type
signaling
format
candidate
Prior art date
Application number
PCT/CN2020/121094
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021088610A1 publication Critical patent/WO2021088610A1/zh
Priority to US17/732,534 priority Critical patent/US20220263639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and more particularly to a transmission method and device related to a side link (Sidelink) in wireless communication.
  • Sidelink side link
  • V2X Vehicle-to-Everything
  • 3GPP has initiated standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP has defined 4 Use Case Groups for 5G V2X services, including: Automated Queued Driving (Vehicles Platnooning), support Extended sensors (Extended Sensors), semi/automatic driving (Advanced Driving) and remote driving (Remote Driving).
  • Automated Queued Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • NR V2X Compared with the existing LTE (Long-term Evolution) V2X system, NR V2X has a notable feature that supports unicast and multicast and supports HARQ (Hybrid Automatic Repeat reQuest) functions.
  • the PSFCH Physical Sidelink Feedback Channel
  • HARQ-ACK Acknowledgement
  • the mainstream view on PSFCH is that PSFCH is generated by sequence and carries 2 bits of information at most to reduce the design complexity of PSFCH.
  • PSFCH will carry more information bits, and the corresponding PSFCH configuration and design scheme need to be reconsidered.
  • V2X is only used as an example of an application scenario of the solution provided by this application; this application is also applicable to scenarios such as cellular networks and satellite communications, and achieves similar technical effects in V2X.
  • the present application is also applicable to scenarios where the feedback channel format is related to the configuration density of the data channel or the feedback channel itself, so as to achieve similar technical effects.
  • adopting a unified solution for different scenarios also helps reduce hardware complexity and cost.
  • the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node or the third node if there is no conflict; on the contrary, the second node in the present application
  • the embodiment in the node and the features in the embodiment can be applied to the first node; and the embodiment in the third node in this application and the features in the embodiment can be applied to the first node; in the case of no conflict,
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure the first type
  • the format of the channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to the first type of channel
  • the first parameter of a type of channel is related; the first signaling is physical layer signaling.
  • the advantage of the above method is that the format of the channel of the first type is linked with the frequency bandwidth corresponding to the associated channel of the second type.
  • the frequency bandwidth corresponding to the channel of the second type is wider, the corresponding first type of channel is wider.
  • the type channel can occupy more frequency band resources, and the first type channel can accommodate more feedback bits of the secondary link, so as to realize multiplexing of multiple feedback information on the secondary link and increase the flexibility of PSFCH configuration , Improve spectrum efficiency.
  • another advantage of the above method is that the format of the first type of channel is linked with the first parameter, and the first parameter corresponds to the density of the time-frequency resource occupied by the first type of channel, or the transmission mode ;
  • the above simplifies signaling overhead to cope with different performance requirements of PSFCH.
  • the above method is characterized in that the frequency bandwidth corresponding to the second type channel is a second frequency bandwidth, and the second frequency bandwidth is one of K1 candidate frequency bandwidths, so
  • the K1 candidate bandwidths are respectively associated with K1 candidate formats;
  • the format of the first type of channel is a candidate format associated with the second bandwidth among the K1 candidate formats.
  • the above method is characterized in that the first parameter is the configuration of the first type of channel in the time domain, the configuration of the first type of channel in the time domain is the first configuration, and the A configuration is one of K1 candidate configurations, and the K1 candidate configurations are respectively associated with K1 candidate formats; the format of the first type of channel is related to the first configuration among the K1 candidate formats Candidate format for the union.
  • the above method is characterized in that the first parameter is the number of multi-carrier symbols occupied by the first-type channel in a slot (Slot), and the first-type channel is in a time slot.
  • the number of multi-carrier symbols occupied in the slot is used to determine the format adopted by the first-type signal.
  • the above method is characterized in that the first parameter is related to the number of information bits carried by the first type channel, and the number of information bits carried by the first type channel is Used to determine the format adopted by the first type of signal.
  • the above method is characterized in that the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the The format used by the first type of signal.
  • the above method is characterized in that it includes:
  • the first signal is used to request a configuration information set of the first type channel, and the configuration information set includes the format of the first type channel.
  • the advantage of the above method is that the configuration information collection of the first type of signal is triggered based on the terminal itself, which prevents the base station or the group head from frequently broadcasting the configuration information collection of the first type of channel.
  • the resulting signaling overhead improves the spectrum efficiency.
  • the above method is characterized in that the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the above method is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first-type channel is the K1 candidate formats and the first time-frequency resource pool.
  • the candidate format associated with the resource pool is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first-type channel is the K1 candidate formats and the first time-frequency resource pool.
  • the candidate format associated with the resource pool is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type
  • the advantage of the above method is that the format used by the first-type channel is linked with the occupied time-frequency resource pool, that is, each time-frequency resource pool corresponds to a PSFCH format, which simplifies signaling Overhead, and more convenient PSFCH multiplexing and resource configuration.
  • the above method is characterized in that it includes:
  • the channel carrying the target signal is the second type channel
  • the channel carrying the target information group is the first type channel
  • the target information group is used to determine whether the target signal is correctly received
  • the frequency bandwidth corresponding to the target signal is used to determine the format of the first type of channel that carries the target information group, or the second parameter of the target information group is used to determine the target information group
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure the first type
  • the format of the channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to the first type of channel
  • the first parameter of a type of channel is related; the first signaling is physical layer signaling.
  • the above method is characterized in that the frequency bandwidth corresponding to the second type channel is a second frequency bandwidth, and the second frequency bandwidth is one of K1 candidate frequency bandwidths, so
  • the K1 candidate bandwidths are respectively associated with K1 candidate formats;
  • the format of the first type of channel is a candidate format associated with the second bandwidth among the K1 candidate formats.
  • the above method is characterized in that the first parameter is the configuration of the first type of channel in the time domain, the configuration of the first type of channel in the time domain is the first configuration, and the A configuration is one of K1 candidate configurations, and the K1 candidate configurations are respectively associated with K1 candidate formats; the format of the first type of channel is related to the first configuration among the K1 candidate formats Candidate format for the union.
  • the above method is characterized in that the first parameter is the number of multi-carrier symbols occupied by the first type channel in one time slot, and the first type channel is occupied in one time slot.
  • the number of occupied multi-carrier symbols is used to determine the format adopted by the first-type signal.
  • the above method is characterized in that the first parameter is related to the number of information bits carried by the first type channel, and the number of information bits carried by the first type channel is Used to determine the format adopted by the first type of signal.
  • the above method is characterized in that the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the The format used by the first type of signal.
  • the above method is characterized in that it includes:
  • the first signal is used to request a configuration information set of the first type channel, and the configuration information set includes the format of the first type channel.
  • the above method is characterized in that the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the above method is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first-type channel is the K1 candidate formats and the first time-frequency resource pool.
  • the candidate format associated with the resource pool is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first-type channel is the K1 candidate formats and the first time-frequency resource pool.
  • the candidate format associated with the resource pool is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type
  • This application discloses a method used in a third node for wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure the first type
  • the format of the channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to the first type of channel
  • the first parameter of a type of channel is related; the first signaling is physical layer signaling.
  • the above method is characterized in that the frequency bandwidth corresponding to the second type channel is a second frequency bandwidth, and the second frequency bandwidth is one of K1 candidate frequency bandwidths, so
  • the K1 candidate bandwidths are respectively associated with K1 candidate formats;
  • the format of the first type of channel is a candidate format associated with the second bandwidth among the K1 candidate formats.
  • the above method is characterized in that the first parameter is the configuration of the first type of channel in the time domain, the configuration of the first type of channel in the time domain is the first configuration, and the A configuration is one of K1 candidate configurations, and the K1 candidate configurations are respectively associated with K1 candidate formats; the format of the first type of channel is related to the first configuration among the K1 candidate formats Candidate format for the union.
  • the above method is characterized in that the first parameter is the number of multi-carrier symbols occupied by the first type channel in one time slot, and the first type channel is occupied in one time slot.
  • the number of occupied multi-carrier symbols is used to determine the format adopted by the first-type signal.
  • the above method is characterized in that the first parameter is related to the number of information bits carried by the first type channel, and the number of information bits carried by the first type channel is Used to determine the format adopted by the first type of signal.
  • the above method is characterized in that the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the The format used by the first type of signal.
  • the above method is characterized in that the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the above method is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first-type channel is the K1 candidate formats and the first time-frequency resource pool.
  • the candidate format associated with the resource pool is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first-type channel is the K1 candidate formats and the first time-frequency resource pool.
  • the candidate format associated with the resource pool is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the channel of the first type
  • the above method is characterized in that it includes:
  • the channel carrying the target signal is the second type channel
  • the channel carrying the target information group is the first type channel
  • the target information group is used to determine whether the target signal is correctly received
  • the target The frequency bandwidth corresponding to the signal is used to determine the format of the first-type channel carrying the target information group
  • the second parameter of the target information group is used to determine the second parameter of the target information group.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first transceiver receives the first signaling
  • the first receiver receives the second signaling in the first time-frequency resource set
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure the first type
  • the format of the channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to the first type of channel
  • the first parameter of a type of channel is related; the first signaling is physical layer signaling.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the third transceiver sends the first signaling
  • the first transmitter sends the second signaling in the first time-frequency resource set
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure the first type
  • the format of the channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to the first type of channel
  • the first parameter of a type of channel is related; the first signaling is physical layer signaling.
  • This application discloses a third node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the first signaling
  • a third receiver receiving the second signaling in the first time-frequency resource set
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure the first type
  • the format of the channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to the first type of channel
  • the first parameter of a type of channel is related; the first signaling is physical layer signaling.
  • this application has the following advantages:
  • the first parameter corresponds to the density of the time-frequency resource occupied by the first type of channel, or the transmission mode; simplifying the signaling overhead to cope with the difference of PSFCH Performance requirements;
  • the configuration information set of the first type signal is triggered based on the terminal itself, avoiding the signaling overhead caused by the base station or the group head frequently broadcasting the configuration information set of the first type channel, and improving the spectrum efficiency .
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Fig. 5 shows a flowchart of the first signaling according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a second frequency bandwidth according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the configuration of the first type of channel in the time domain according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the first type of channel in the time domain according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a first signal according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of second signaling according to an embodiment of the present application.
  • Fig. 11 shows a schematic diagram of second signaling according to another embodiment of the present application.
  • Fig. 12 shows a schematic diagram of a target signal and a target information group according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram used in the first node according to an embodiment of the present application.
  • Fig. 14 shows a structural block diagram used in a second node according to an embodiment of the present application.
  • Fig. 15 shows a structural block diagram used in the third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of the first node, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application receives the first signaling in step 101; in step 102, it receives the second signaling in the first time-frequency resource set.
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure The format of the first type of channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to The first parameter of the first type channel is related; the first signaling is physical layer signaling.
  • the first signaling is broadcast.
  • the first signaling is dynamic signaling.
  • the first signaling is unicast.
  • the first signaling is DCI (Downlink Control Information).
  • the physical layer channel that carries the first signaling includes PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first signaling is SCI (Sidelink Control Information, secondary link control information).
  • the physical layer channel that carries the first signaling includes PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the second signaling is RRC (Radio Resource Control, radio resource control) signaling for the secondary link.
  • RRC Radio Resource Control, radio resource control
  • the second signaling is RRC signaling transmitted on a cellular link.
  • the second signaling is broadcast signaling.
  • the second signaling is SIB (System Information Block, System Information Block).
  • the second signaling is RRC signaling.
  • the second signaling is exclusive to the user equipment.
  • the second signaling is used to configure PSFCH.
  • the second signaling includes periodPSFCHresource IE.
  • the second signaling includes MinTimeGapPSFCH IE.
  • the first signaling is used to indicate the frequency domain position of the subcarrier occupied by the first time-frequency resource set.
  • the first signaling is used to indicate the time domain position of the multi-carrier symbol occupied by the first time-frequency resource set.
  • the first time-frequency resource set occupies a positive integer number of REs (Resource Elements).
  • the RE occupies one subcarrier in the frequency domain and one multi-carrier symbol duration in the time domain.
  • the first type of channel is PSFCH.
  • the format of the first-type channel is one of K1 candidate formats, and the K1 is a positive integer not less than 2.
  • the K1 is equal to 4.
  • the K1 is equal to 2.
  • the K1 candidate formats are PSFCH format 0 to PSFCH format (K1-1), respectively.
  • the K1 candidate formats include at least a first candidate format and a second candidate format, the first type channel corresponding to the first candidate format is generated by a sequence, and the second candidate format The first type of channel corresponding to the format is generated by encoding.
  • the K1 candidate formats include at least a third candidate format, and the first type channel corresponding to the third candidate format is repeatedly transmitted.
  • the frequency bandwidth corresponding to the second type channel is used to determine the format of the first type channel.
  • the first parameter of the first type channel is used to determine the format of the first type channel.
  • the meaning of the second-type channel associated with the first-type channel in the above phrase includes: the first-type channel is used to determine whether the second-type channel is received correctly.
  • the meaning of the second-type channel associated with the first-type channel in the above phrase includes: the first-type channel is used to indicate whether the second-type channel is received correctly.
  • the meaning of the second type of channel associated with the first type of channel in the above phrase includes: the first type of channel is PSFCH, and the second type of signal is PSSCH (Physical Sidelink Shared Channel, physical secondary link) Shared channel), the first type of channel is used to indicate whether the second type of channel is received correctly.
  • the first type of channel is PSFCH
  • PSSCH Physical Sidelink Shared Channel, physical secondary link
  • both the first signaling and the second signaling are transmitted on a cellular link.
  • both the first signaling and the second signaling are transmitted on a secondary link.
  • both the first type of signaling and the second type of signaling are transmitted on a secondary link.
  • the secondary link refers to a wireless link between the terminal and the terminal.
  • the cellular link described in this application is a wireless link between a terminal and a base station.
  • the secondary link in this application corresponds to 5 ports of PC (Proximity Communication).
  • the cellular link in this application corresponds to a Uu port.
  • the secondary link in this application is used for V2X communication.
  • the cellular link in this application is used for cellular communication.
  • the resource unit in this application occupies one sub-carrier in the frequency domain and one multi-carrier symbol in the time domain.
  • the multi-carrier symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol in this application is an SC-FDMA (Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol in this application is a FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an OFDM symbol including a CP (Cyclic Prefix).
  • the multi-carrier symbol in this application is a DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing) symbol including CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS 5G System
  • EPS Evolved Packet System, evolved packet system
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that communicates with UE 201 in V2X, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management, unified data management) 220 and Internet services 230.
  • 5GS/EPS can be combined with Other access networks are interconnected, but these entities/interfaces are not shown for simplicity. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the UE201 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE 241 corresponds to the second node in this application.
  • the UE 241 corresponds to the third node in this application.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the air interface between the UE201 and the UE241 is a PC-5 interface.
  • the wireless link between the UE201 and the gNB203 is a cellular link.
  • the radio link between the UE201 and the UE241 is a secondary link.
  • the first node in this application is a terminal within the coverage of the gNB203.
  • the third node in this application is a terminal within the coverage of the gNB203.
  • the third node in this application is a terminal outside the coverage of the gNB203.
  • the UE 201 and the UE 241 support unicast transmission.
  • the UE 201 and the UE 241 support broadcast transmission.
  • the UE 201 and the UE 241 support multicast transmission.
  • the first node and the third node belong to a V2X pair (Pair).
  • the first node is a car.
  • the first node is a vehicle.
  • the first node is an RSU (Road Side Unit).
  • the first node is a group head of a terminal group.
  • the third node is a vehicle.
  • the third node is a car.
  • the third node is an RSU.
  • the third node is a group header (Group Header) of a terminal group.
  • the second node is a base station.
  • the second node is a serving cell.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for cross-zone movement between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated in the MAC352 or the MAC302.
  • the second signaling is generated in the MAC352 or the MAC302.
  • the second signaling is generated in the RRC306.
  • the first signal is generated in the PHY301 or the PHY351.
  • the first signal is generated in the MAC352 or the MAC302.
  • the target signal is generated in the PHY301 or the PHY351.
  • the target signal is generated in the MAC352 or the MAC302.
  • the target information group is generated in the PHY301 or the PHY351.
  • the target information group is generated in the MAC352 or the MAC302.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 450 and a second communication device 410 that communicate with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M-phase shift keying (M-PSK), and M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs a transmission simulation precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Used together with the at least one processor, the first communication device 450 means at least: receiving first signaling; and receiving second signaling in a first set of time-frequency resources; the first signaling is used to indicate all The first set of time-frequency resources, the second signaling occupies the first set of time-frequency resources; the second signaling is used to configure the format of the first type of channel, and the The format is related to the frequency bandwidth corresponding to the second-type channel associated with the first-type channel, or the format of the first-type channel is related to the first parameter of the first-type channel;
  • the signaling is physical layer signaling.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first A signaling; and receiving a second signaling in a first time-frequency resource set; the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time Frequency resource collection; the second signaling is used to configure the format of the first type of channel, the format of the first type of channel and the frequency bandwidth corresponding to the second type of channel associated with the first type of channel Relevant, or the format of the first type channel is related to the first parameter of the first type channel; the first signaling is physical layer signaling.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending first signaling; and sending second signaling in a first set of time-frequency resources; the first signaling is used to indicate the first set of time-frequency resources, The second signaling occupies the first time-frequency resource set; the second signaling is used to configure the format of the first type of channel, and the format of the first type of channel is the same as the first type of channel
  • the frequency bandwidth corresponding to the associated second type channel is related, or the format of the first type channel is related to the first parameter of the first type channel; the first signaling is physical layer signaling.
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending First signaling; and sending second signaling in a first set of time-frequency resources; the first signaling is used to indicate the first set of time-frequency resources, and the second signaling occupies the first set of time-frequency resources; Time-frequency resource collection; the second signaling is used to configure the format of the first type of channel, the format of the first type of channel and the frequency band corresponding to the second type of channel associated with the first type of channel
  • the width is related, or the format of the first type channel is related to the first parameter of the first type channel; the first signaling is physical layer signaling.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: receiving first signaling; and receiving second signaling in a first set of time-frequency resources; the first signaling is used to indicate the first set of time-frequency resources, The second signaling occupies the first time-frequency resource set; the second signaling is used to configure the format of the first type of channel, and the format of the first type of channel is the same as the first type of channel
  • the frequency bandwidth corresponding to the associated second type channel is related, or the format of the first type channel is related to the first parameter of the first type channel; the first signaling is physical layer signaling.
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving First signaling; and receiving second signaling in a first time-frequency resource set; the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first Time-frequency resource collection; the second signaling is used to configure the format of the first type of channel, the format of the first type of channel and the frequency band corresponding to the second type of channel associated with the first type of channel
  • the width is related, or the format of the first type channel is related to the first parameter of the first type channel; the first signaling is physical layer signaling.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a UE.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the first A signaling; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit the first Signaling.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used in the first
  • the second signaling is received in a time-frequency resource set; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 One is used to send the second signaling in the first set of time-frequency resources.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to transmit the first Signal; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used to receive the first signal.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 is used to receive the target Signal; at least one of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 is used to transmit a target signal.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 is used to send target information Group; at least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used to receive the target information group.
  • Embodiment 5 illustrates a flow chart of the first signaling, as shown in FIG. 5.
  • the first node U1 and the second node N2 communicate through a wireless link
  • the first node U1 and the third node U3 communicate through a wireless link; wherein, the standard in box F0
  • the steps are optional.
  • step S10 For the first node U1, in step S10 the first transmission signal, receiving a first signaling in step S11, in step S12, the second signaling receiver in a first frequency resource set, in step S13, the received target signal , In step S14, the target information group is sent.
  • step S20 receiving a first signal, a first signaling transmitted in step S21, the second signaling transmitted in step S22 in the first frequency resource set time.
  • step S30 the received first signaling, signaling a first receiving a second set of time-frequency resource in step S31, the target signal transmitted in step S32, the target receives the packet in step S33 .
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure The format of the first type of channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to The first parameter of the first type channel is related; the first signaling is physical layer signaling; the first signal is used to request a configuration information set of the first type channel, and the configuration information set includes The format of the first-type channel; the channel carrying the target signal is the second-type channel, the channel carrying the target information group is the first-type channel; the target information group is used for Determine whether the target signal is received correctly; the frequency bandwidth corresponding to the target signal is used to determine the format of the first type channel carrying the target information group, or the second parameter of the target information group is It is used to determine the format of the first type channel carrying the target information group.
  • the frequency bandwidth corresponding to the second type of channel is a second frequency bandwidth
  • the second frequency bandwidth is one of K1 candidate frequency bandwidths
  • the K1 candidate frequency bandwidths are respectively equal to K1 types of candidate formats are associated
  • the format of the first type of channel is a candidate format associated with the second frequency bandwidth among the K1 types of candidate formats.
  • the frequency bandwidth corresponding to the second-type channel refers to the minimum number of RBs (Resource Block, resource block) occupied by the second-type channel in the frequency domain.
  • the frequency bandwidth corresponding to the second-type channel refers to the actual number of RBs occupied by the second-type channel in the frequency domain.
  • the frequency bandwidth corresponding to the second-type channel refers to the granularity of frequency domain resources occupied by the second-type channel.
  • the frequency bandwidth corresponding to the second-type channel refers to the smallest frequency bandwidth that can be used for scheduling the second-type channel.
  • the frequency bandwidth corresponding to the second-type channel refers to the number of sub-channels (Subchanel) occupied by the second-type channel in the frequency domain.
  • the frequency bandwidth corresponding to the second-type channel refers to the number of RBs occupied by one sub-channel in the sub-channels occupied by the second-type channel in the frequency domain.
  • any of the K1 candidate bandwidths corresponds to a positive integer number of subcarriers.
  • any of the K1 candidate bandwidths corresponds to a positive integer number of RBs.
  • any of the K1 candidate bandwidths corresponds to a positive integer number of sub-channels.
  • the first parameter is the configuration of the first type of channel in the time domain
  • the configuration of the first type of channel in the time domain is the first configuration
  • the first configuration is among K1 candidate configurations
  • One of the K1 candidate configurations is respectively associated with K1 candidate formats
  • the format of the first type of channel is a candidate format associated with the first configuration among the K1 candidate formats.
  • the configuration of the first-type channel in the time domain refers to the number of multi-carrier symbols occupied by the first-type channel in a unit time.
  • the unit time is equal to a positive integer number of milliseconds.
  • the unit time is the period of the first type of channel.
  • the K1 candidate configurations respectively correspond to the number of K1 multi-carrier symbols occupied by the first-type channel in a unit time.
  • the configuration of the first-type channel in the time domain refers to the configuration period adopted by the first-type channel.
  • the K1 candidate configurations are respectively K1 different configuration periods of the first-type channels.
  • the first parameter is the number of multi-carrier symbols occupied by the channel of the first type in a time slot, and the number of multi-carrier symbols occupied by the channel of the first type in a time slot It is used to determine the format adopted by the first type of signal.
  • the number of multi-carrier symbols occupied by the first-type channel in a time slot is one of the K1 candidate positive integers, and the K1 candidate positive integers Corresponding to K1 candidate formats respectively, and the format of the first-type channel is a candidate among the K1 candidate formats that is associated with the number of multi-carrier symbols occupied by the first-type channel in a time slot format.
  • the number of multi-carrier symbols occupied by the first-type channel in a time slot is one of the K1 candidate positive integers, and the K1 candidate positive integers Include at least 1 and 2.
  • the first parameter is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used to determine the number of information bits of the first type of channel.
  • the format used by the signal is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used to determine the number of information bits of the first type of channel.
  • the number of information bits carried by the first-type channel is equal to Q1, and the Q1 belongs to one of the K1 intervals, and the K1 intervals correspond to K1 candidate formats, respectively,
  • the format of the first-type channel is a candidate format associated with the interval to which the Q1 belongs among the K1 candidate formats.
  • the K1 intervals include at least interval 1 and interval 2, the corresponding information bit of the interval 1 is equal to 1, and the corresponding information bit of the interval 2 is greater than 1.
  • the K1 intervals include at least interval 1 and interval 2, the corresponding information bits carried by the interval 1 are not greater than 2, and the corresponding information bits carried by the interval 2 are greater than 2.
  • the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the format adopted by the first type signal .
  • the frequency bandwidth occupied by the channel of the first type is a first frequency bandwidth
  • the first frequency bandwidth is one of K1 frequency bandwidths of the first type
  • the The K1 first-type frequency bandwidths are respectively associated with K1 candidate formats
  • the format of the first-type channel is a candidate format associated with the first frequency bandwidth among the K1 candidate formats.
  • the frequency bandwidth occupied by the first-type channel refers to the number of RBs occupied by the first-type channel in the frequency domain.
  • the frequency bandwidth occupied by the first-type channel refers to the number of sub-channels occupied by the first-type channel.
  • any first-type frequency bandwidth in the K1 first-type frequency bandwidths corresponds to a positive integer number of subcarriers.
  • any of the K1 first-type bandwidths corresponds to a positive integer number of RBs.
  • any of the K1 first-type bandwidths corresponds to a positive integer number of sub-channels.
  • the first signal is BSR (Buffer Status Report, Buffer Status Report).
  • the first signal is SR (Scheduling Request, scheduling request).
  • the first signal is used to request the establishment of the RRC connection of the secondary link.
  • the first signal is used to request RRC configuration related to the secondary link.
  • the first signal is used to request the sending of the first signaling and the sending of the second signaling.
  • the physical layer channel that carries the first signal includes PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • the physical layer channel that carries the first signal includes PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the first signaling is used to indicate the time interval between the second signaling and the first signaling.
  • the first signaling is sent in time slot N
  • the second signaling is sent in time slot N+N1
  • the first signaling is used to indicate all Said N1; Said N and said N1 are both non-negative integers.
  • the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the first type of channel is in the K1 Transmission in a first time-frequency resource pool in a candidate time-frequency resource pool, and the format of the first type of channel is a candidate format associated with the first time-frequency resource pool among the K1 candidate formats.
  • a given candidate time-frequency resource pool is any one of the K1 candidate time-frequency resource pools, and the given candidate time-frequency resource pool includes M1 candidates A time-frequency resource set, where at least two candidate time-frequency resource sets in the M1 candidate time-frequency resource sets are discrete.
  • a given candidate format is any one of the K1 candidate formats, and the given candidate format corresponds to a given candidate in the K1 candidate time-frequency resource pool.
  • the frequency resource pool is associated, the first node U1 determines that the first type channel adopts the given candidate format, and the first type channel is sent in the given candidate time-frequency resource pool.
  • any one of the K1 candidate time-frequency resource pools includes a positive integer number of REs.
  • the physical layer channel carrying the target signal is PSSCH.
  • the transmission channel carrying the target signal is SL-SCH (Sidelink Shared Channel, secondary link shared channel).
  • the target signal is generated by a TB (Transmission Block).
  • the target signal is transmitted on the secondary link.
  • the physical layer channel carrying the target information group is PSFCH.
  • the second parameter of the target information group is the configuration of the first type of channel in the time domain.
  • the second parameter of the target information group is the number of multi-carrier symbols occupied by the physical channel generated by the target information group in one time slot.
  • the second parameter of the target information group is the number of information bits carried by the target information group.
  • the second parameter of the target information group is the frequency bandwidth occupied by the physical channel generated by the target information group.
  • Embodiment 6 illustrates a schematic diagram of the second frequency bandwidth, as shown in FIG. 6.
  • the second bandwidth is one of K1 candidate bandwidths, and the K1 candidate bandwidths respectively correspond to K1 candidate formats; the K1 candidate bandwidths respectively correspond to the candidates in the figure.
  • Bandwidth #1 to Candidate Bandwidth #K1 the K1 candidate formats correspond to candidate format #1 to candidate format #K1 in the figure respectively; in the case of no conflict, the embodiment in embodiment 6 can be used Examples 7 to 9 and other examples in this application.
  • any candidate bandwidth among the K1 candidate bandwidths occupies a positive integer number of subcarriers.
  • the positive integer number of sub-carriers are continuous.
  • the K1 candidate bandwidths respectively correspond to K1 subcarriers of different numbers.
  • At least two candidate bandwidths in the K1 candidate bandwidths respectively correspond to two different numbers of subcarriers.
  • the K1 candidate formats respectively correspond to K1 different payloads.
  • the K1 candidate formats respectively correspond to the carrying quantity of K1 different information bits.
  • Embodiment 7 illustrates a schematic diagram of the configuration of the first type of channel in the time domain; as shown in FIG. 7.
  • the configuration of the first type of channel in the time domain is a first configuration
  • the first configuration is one of K1 candidate configurations
  • the K1 candidate configurations are respectively related to K1 candidate formats.
  • the format of the first type of channel is the candidate format associated with the first configuration among the K1 candidate formats; the K1 candidate configurations in the figure correspond to the K1 candidate formats; the shaded parts in the figure correspond The time domain resources occupied by the first-type channels under different candidate configurations; the K1 candidate configurations correspond to candidate configuration #1 to candidate configuration #K1 in FIG. 7, and the K1 candidate formats correspond to those in FIG. 7 respectively.
  • the K1 candidate configurations respectively correspond to K1 different configuration densities of the first type of channel in the time domain per unit time.
  • the K1 candidate configurations respectively correspond to the K1 different number of multi-carrier symbols occupied by the first-type channel in a unit time.
  • the K1 candidate configurations respectively correspond to K1 different configuration periods.
  • Embodiment 8 illustrates a schematic diagram of the first type of channel in the time domain; as shown in FIG. 8.
  • the number of multi-carrier symbols occupied by the first type channel in a time slot is one candidate positive integer among the K1 positive integers
  • the K1 positive candidate integers correspond to the K1 candidates respectively.
  • Format, the format of the first type channel is a candidate format associated with the number of multi-carrier symbols occupied by the first type channel in one time slot among the K1 candidate formats; the K1 The candidate positive integers are respectively the candidate positive integer #1 to the candidate positive integer #K1 shown in FIG. 8.
  • the K1 candidate formats correspond to the candidate format #1 to the candidate format #K1 in FIG. 8; the shaded in the figure
  • the part corresponds to the multi-carrier symbols occupied by the first-type channel in one time slot under different candidate positive integers.
  • the K1 candidate positive integers shown include at least 1 and 2.
  • At least two of the K1 candidate positive integers are different.
  • any two of the K1 candidate positive integers are different.
  • Embodiment 9 illustrates a schematic diagram of a first signal according to the present application, as shown in FIG. 9.
  • the first node detects the first signaling and the second signaling in a first time window after sending the first signal; the first signaling is used to indicate the second signaling Time domain resources occupied by signaling.
  • the first signal is PRACH.
  • the first signal is a BSR.
  • the first signaling is used to determine the update moment of the next broadcast signaling
  • the second signaling is broadcast signaling
  • the first signaling is used to determine the next update time of system information
  • the second signaling is system information
  • the first time window occupies a positive integer number of consecutive time slots in the time domain.
  • Embodiment 10 illustrates a schematic diagram of second signaling according to an embodiment of the present application, as shown in FIG. 10.
  • the second signaling includes K1 sub-signaling, and the K1 sub-signaling respectively corresponds to sub-signaling #1 to sub-signaling #K1 in the figure; the K1 sub-signaling includes K1 types respectively.
  • the K1 indexes respectively includes K1 indexes (corresponding to index #1 to index #K1), and the K1 indexes respectively correspond to the K1 candidate bandwidths corresponding to the second type of channel;
  • An example of IE (Information Elements) included in one sub-signaling in the K1 sub-signaling is given.
  • the information carried by the one sub-signaling includes at least one of the following:
  • the K1 sub-signals are respectively used to determine K1 time-frequency resource pools allocated to the first type of channel.
  • the K1 indexes are respectively associated with K1 time-frequency resource pools allocated to the second type of channel.
  • Embodiment 11 illustrates a schematic diagram of second signaling according to another embodiment of the present application, as shown in FIG. 11.
  • the second signaling includes K1 sub-signaling, and the K1 sub-signaling respectively corresponds to sub-signaling #1 to sub-signaling #K1 in the figure;
  • the K1 sub-signaling includes K1 types respectively The configuration information set of the first type of channel in the candidate format.
  • the K1 sub-signals in Figure 10 correspond to PSFCH-format0 to PSFCH-format (K1-1) respectively; the figure also shows the IE (Information Elements, included in one of the K1 sub-signals, As an example of information unit), as shown in the figure, the information carried by the one sub-signal includes at least one of the following:
  • the K1 sub-signals are respectively used to determine K1 time-frequency resource pools allocated to the first type of channel.
  • the K1 indexes are respectively associated with K1 time-frequency resource pools allocated to the second type of channel.
  • Embodiment 12 illustrates a schematic diagram of a target signal and target information group according to the present application, as shown in FIG. 12.
  • the time slot occupied by the target signal is time slot #Q1
  • the time slot occupied by the target information group is time slot #Q2
  • the time slot #Q2 is different from the time slot #Q1
  • the time interval between the time interval is not less than a first threshold
  • the Q1 and the Q2 are positive integers
  • the Q2 is greater than the Q1
  • the first threshold is equal to a positive integer number of milliseconds
  • the time slot #Q2 is a target time slot set A time slot in.
  • the format of the first type channel carrying the target information group is used to determine the target time slot set.
  • the frequency bandwidth corresponding to the target signal is used to determine the target time slot set.
  • the second parameter of the target information group is used to determine the target time slot set.
  • Embodiment 13 illustrates a structural block diagram in the first node, as shown in FIG. 13.
  • the first node 1300 includes a first transceiver 1301, a first receiver 1302, and a second transceiver 1303; wherein, the second transceiver 1303 is optional.
  • the first transceiver 1301 receives the first signaling
  • the first receiver 1302 receives the second signaling in the first time-frequency resource set
  • the second transceiver 1303 receives the target signal and sends the target information group
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure The format of the first type of channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to The first parameter of the first type channel is related; the first signaling is physical layer signaling; the first signal is used to request a configuration information set of the first type channel, and the configuration information set includes The format of the first-type channel; the channel carrying the target signal is the second-type channel, the channel carrying the target information group is the first-type channel; the target information group is used for Determine whether the target signal is received correctly; the frequency bandwidth corresponding to the target signal is used to determine the format of the first type channel carrying the target information group, or the second parameter of the target information group is It is used to determine the format of the first type channel carrying the target information group.
  • the frequency bandwidth corresponding to the second type of channel is a second frequency bandwidth
  • the second frequency bandwidth is one of K1 candidate frequency bandwidths
  • the K1 candidate frequency bandwidths are respectively equal to K1 types of candidate formats are associated
  • the format of the first type of channel is a candidate format associated with the second frequency bandwidth among the K1 types of candidate formats.
  • the first parameter is the configuration of the first type of channel in the time domain
  • the configuration of the first type of channel in the time domain is the first configuration
  • the first configuration is among K1 candidate configurations
  • One of the K1 candidate configurations is respectively associated with K1 candidate formats
  • the format of the first type of channel is a candidate format associated with the first configuration among the K1 candidate formats.
  • the first parameter is the number of multi-carrier symbols occupied by the channel of the first type in a time slot, and the number of multi-carrier symbols occupied by the channel of the first type in a time slot It is used to determine the format adopted by the first type of signal.
  • the first parameter is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used to determine the number of information bits of the first type of channel.
  • the format used by the signal is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used to determine the number of information bits of the first type of channel.
  • the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the format adopted by the first type signal .
  • the first transceiver 1301 sends a first signal; the first signal is used to request a configuration information set of the first type of channel, and the configuration information set includes the information of the first type of channel.
  • the format is used to request a configuration information set of the first type of channel, and the configuration information set includes the information of the first type of channel.
  • the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the first type of channel is in the K1 Transmission in a first time-frequency resource pool in a candidate time-frequency resource pool, and the format of the first type of channel is a candidate format associated with the first time-frequency resource pool among the K1 candidate formats.
  • the first transceiver 1301 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitting processor 457, the transmitting processor 468, the multi-antenna receiving processor 458, and the receiving processor in the fourth embodiment. 456. At least the first 6 of the controller/processor 459.
  • the first receiver 1302 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in the fourth embodiment.
  • the second transceiver 1303 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitting processor 457, the transmitting processor 468, the multi-antenna receiving processor 458, and the receiving processor in the fourth embodiment. 456. At least the first 6 of the controller/processor 459.
  • Embodiment 14 illustrates a structural block diagram in the second node, as shown in FIG. 14.
  • the second node 1400 includes a third transceiver 1401 and a first transmitter 1402.
  • the third transceiver 1401 sends the first signaling
  • the first transmitter 1402 sends the second signaling in the first time-frequency resource set
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure The format of the first type of channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to The first parameter of the first type channel is related; the first signaling is physical layer signaling.
  • the frequency bandwidth corresponding to the second type of channel is a second frequency bandwidth
  • the second frequency bandwidth is one of K1 candidate frequency bandwidths
  • the K1 candidate frequency bandwidths are respectively equal to K1 types of candidate formats are associated
  • the format of the first type of channel is a candidate format associated with the second frequency bandwidth among the K1 types of candidate formats.
  • the first parameter is the configuration of the first type of channel in the time domain
  • the configuration of the first type of channel in the time domain is the first configuration
  • the first configuration is among K1 candidate configurations
  • One of the K1 candidate configurations is respectively associated with K1 candidate formats
  • the format of the first type of channel is a candidate format associated with the first configuration among the K1 candidate formats.
  • the first parameter is the number of multi-carrier symbols occupied by the first-type channel in a time slot, and the multi-carrier symbols occupied by the first-type channel in a time slot The number is used to determine the format adopted by the first type of signal.
  • the first parameter is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used to determine the number of information bits of the first type of channel.
  • the format used by the signal is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used to determine the number of information bits of the first type of channel.
  • the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the format adopted by the first type signal .
  • the third transceiver 1401 receives a first signal; the first signal is used to request a configuration information set of the first type of channel, and the configuration information set includes information of the first type of channel The format.
  • the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats;
  • the first type of channel is in the K1 Transmission in a first time-frequency resource pool in a candidate time-frequency resource pool, and the format of the first type of channel is a candidate format associated with the first time-frequency resource pool among the K1 candidate formats.
  • the third transceiver 1401 includes the antenna 420, the receiver/transmitter 418, the multi-antenna receiving processor 472, the receiving processor 470, the multi-antenna transmitting processor 471, and the transmitting processor in the fourth embodiment. 416. At least the first 6 of the controller/processor 475.
  • the first transmitter 1402 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 in the fourth embodiment.
  • Embodiment 15 illustrates a structural block diagram in the third node, as shown in FIG. 15.
  • the third node 1500 includes a third transmitter 1501, a third receiver 1502, and a fourth transceiver 1503; wherein, the fourth transceiver 1503 is optional.
  • the second receiver 1501 receives the first signaling
  • the third receiver 1502 receives the second signaling in the first time-frequency resource set
  • the fourth transceiver 1503 sends a target signal, and receives a target information group;
  • the first signaling is used to indicate the first time-frequency resource set, and the second signaling occupies the first time-frequency resource set; the second signaling is used to configure The format of the first type of channel, the format of the first type of channel is related to the bandwidth of the second type of channel associated with the first type of channel, or the format of the first type of channel is related to The first parameter of the first type of channel is related; the first signaling is physical layer signaling; the channel that carries the target signal is the second type of channel, and the channel that carries the target information group is the The first type of channel; the target information group is used to determine whether the target signal is correctly received; the frequency bandwidth corresponding to the target signal is used to determine the first type of channel carrying the target information group The format, or the second parameter of the target information group is used to determine the format of the first-type channel carrying the target information group.
  • the above method is characterized in that the frequency bandwidth corresponding to the second type channel is a second frequency bandwidth, the second frequency bandwidth is one of K1 candidate frequency bandwidths, and the K1 The two candidate bandwidths are respectively associated with K1 candidate formats; the format of the first type of channel is a candidate format associated with the second bandwidth among the K1 candidate formats.
  • the above method is characterized in that the first parameter is the configuration of the first type of channel in the time domain, the configuration of the first type of channel in the time domain is the first configuration, and the first configuration Is one of the K1 candidate configurations, the K1 candidate configurations are respectively associated with K1 candidate formats; the format of the first type of channel is one of the K1 candidate formats associated with the first configuration Candidate format.
  • the above method is characterized in that the first parameter is the number of multi-carrier symbols occupied by the channel of the first type in a time slot, and the number of multi-carrier symbols occupied by the channel of the first type in a time slot The number of multi-carrier symbols is used to determine the format adopted by the first-type signal.
  • the above method is characterized in that the first parameter is related to the number of information bits carried by the channel of the first type, and the number of information bits carried by the channel of the first type is used for Determine the format adopted by the first type of signal.
  • the above method is characterized in that the first parameter is the frequency bandwidth occupied by the first type channel, and the frequency bandwidth occupied by the first type channel is used to determine the first type channel.
  • the format used by the analog signal is the first parameter.
  • the above method is characterized in that the first signaling is used to indicate the time domain resources occupied by the second signaling.
  • the above method is characterized in that the second signaling indicates K1 candidate time-frequency resource pools, and the K1 candidate time-frequency resource pools are respectively associated with the K1 candidate formats; the first The type channel is transmitted in the first time-frequency resource pool in the K1 candidate time-frequency resource pools, and the format of the first type channel is the K1 candidate formats and the first time-frequency resource pool The associated candidate format.
  • the second receiver 1501 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the third receiver 1502 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in the fourth embodiment.
  • the fourth transceiver 1401 includes the antenna 420, the receiver/transmitter 418, the multi-antenna receiving processor 472, the receiving processor 470, the multi-antenna transmitting processor 471, and the transmitting processor in the fourth embodiment. 416. At least the first 6 of the controller/processor 475.
  • the first and second nodes in this application include, but are not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, vehicles, vehicles, RSUs, and aircraft , Aircraft, drones, remote control aircraft and other wireless communication equipment.
  • the base stations in this application include, but are not limited to, macro cell base stations, micro cell base stations, home base stations, relay base stations, eNBs, gNBs, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, aerial base stations, RSUs and other wireless communication equipment .

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点首先接收第一信令,随后在第一时频资源集合中接收第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。本申请通过优化副链路上反馈信道的配置方式,以提升副链路上的频谱效率和系统的整体性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和副链路(Sidelink)相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成面向5G V2X业务的需求制定工作,并写入标准TS22.886。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究,且基于目前的讨论进展,副链路上支持广播(Broadcast)、组播(Groupcast)以及单播(Unicast)等多种传输类型。
发明内容
NR V2X和现有的LTE(Long-term Evolution,长期演进)V2X系统相比,一个显著的特征在于支持单播和组播并支持HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)功能。PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)信道被引入用于副链路上的HARQ-ACK(Acknowledgement,确认)传输。目前基于NR的Rel-16版本的V2X中,关于PSFCH的主流观点是PSFCH通过序列生成,且最大携带2比特信息的,以降低PSFCH的设计复杂度。未来Rel-17版本的V2X中,PSFCH将会承载更多的信息比特,进而相应的PSFCH的配置及设计方案需要被重新考虑。
针对上述问题,本申请公开了一种解决方案。需要说明的是,上述问题描述中,V2X仅作为本申请所提供方案的一个应用场景的举例;本申请也同样适用于例如蜂窝网络、卫星通信的场景,取得类似V2X中的技术效果。类似的,本申请也同样适用于反馈信道格式与数据信道或反馈信道自身的配置密度相关的场景,以取得类似的技术效果。此外,不同场景(包括但不限于V2X场景和非V2X场景)采用统一解决方案还有助于降低硬件复杂度和成本。
进一步需要说明的是,在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点、或第三节点中;反之,本申请中的第二节点中的实施例和实施例中的特征可以应用到第一节点;以及本申请中的第三节点中的实施例和实施例中的特征可以应用到第一节点;在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于包括:
接收第一信令;
在第一时频资源集合中接收第二信令;
其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信 道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,上述方法的好处在于:将第一类信道的格式与关联的第二类信道所对应的频带宽度建立联系,当第二类信道对应的频带宽度较宽时,对应的第一类信道能够占用更多的频带资源,进而第一类信道能够容纳更多的副链路的反馈比特,以实现副链路上多个反馈信息的复用(Multiplexing),增加PSFCH配置的灵活性,提高频谱效率。
作为一个实施例,上述方法的另一个好处在于:将第一类信道的格式与第一参数建立联系,第一参数对应所述第一类信道的所占用的时频资源的密度,或者传输方式;上述简化信令开销,以应对PSFCH的不同的性能需求。
根据本申请的一个方面,上述方法的特征在于,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道在一个时隙(Slot)中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信号;
其中,所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式。
作为一个实施例,上述方法的好处在于:所述第一类信号的配置信息集合是基于终端自身触发的,避免基站或组头(Group Head)频繁广播所述第一类信道的配置信息集合所造成的信令开销,提高频谱效率。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于指示所述第二信令所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
作为一个实施例,上述方法的好处在于:将所述第一类信道所采用的格式与所占用的时频资源池建立联系,即每个时频资源池对应一种PSFCH的格式,简化信令开销,且更加方便PSFCH的复用和资源配置。
根据本申请的一个方面,上述方法的特征在于,包括:
接收目标信号;
发送目标信息组;
其中,承载所述目标信号的信道是所述第二类信道,承载所述目标信息组的信道是 所述第一类信道;所述目标信息组被用于确定所述目标信号是否被正确接收;所述目标信号所对应的频带宽度被用于确定承载所述目标信息组的所述第一类信道的格式,或者所述目标信息组的第二参数被用于确定承载所述目标信息组的所述第一类信道的格式。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于包括:
发送第一信令;
在第一时频资源集合中发送第二信令;
其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
根据本申请的一个方面,上述方法的特征在于,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信号;
其中,所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于指示所述第二信令所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于包括:
接收第一信令;
在第一时频资源集合中接收第二信令;
其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
根据本申请的一个方面,上述方法的特征在于,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于指示所述第二信令所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
根据本申请的一个方面,上述方法的特征在于,包括:
发送目标信号;
接收目标信息组;
其中,承载所述目标信号的信道是第二类信道,承载所述目标信息组的信道是第一类信道;所述目标信息组被用于确定所述目标信号是否被正确接收;所述目标信号所对应的频带宽度被用于确定承载所述目标信息组的所述第一类信道的格式,或者所述目标信息组的第二参数被用于确定承载所述目标信息组的所述第一类信道的格式。
本申请公开了一种被用于无线通信的第一节点,其特征在于包括:
第一收发机,接收第一信令;
第一接收机,在第一时频资源集合中接收第二信令;
其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
本申请公开了一种被用于无线通信的第二节点,其特征在于包括:
第三收发机,发送第一信令;
第一发射机,在第一时频资源集合中发送第二信令;
其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
本申请公开了一种被用于无线通信的第三节点,其特征在于包括:
第二接收机,接收第一信令;
第三接收机,在第一时频资源集合中接收第二信令;
其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.将第一类信道的格式与关联的第二类信道所对应的频带宽度建立联系,当第二类信道对应的频带宽度较宽时,对应的第一类信道能够占用更多的频带资源,进而第一类信道能够容纳更多的副链路的反馈比特,以实现副链路上多个反馈信息的复用(Multiplexing),增加PSFCH配置的灵活性,提高频谱效率;
-.将第一类信道的格式与第一参数建立联系,第一参数对应所述第一类信道的所占用的时频资源的密度,或者传输方式;简化信令开销,以应对PSFCH的不同的性能需求;
-.所述第一类信号的配置信息集合是基于终端自身触发的,避免基站或组头(Group Head)频繁广播所述第一类信道的配置信息集合所造成的信令开销,提高频谱效率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信令的流程图;
图6示出了根据本申请的一个实施例的第二频带宽度的示意图;
图7示出了根据本申请的一个实施例的第一类信道在时域的配置的示意图;
图8示出了根据本申请的一个实施例的第一类信道在时域的示意图;
图9示出了根据本申请的一个实施例的第一信号的示意图;
图10示出了根据本申请的一个实施例的第二信令的示意图;
图11示出了根据本申请的另一个实施例的第二信令的示意图;
图12示出了根据本申请的一个实施例的目标信号和目标信息组的示意图;
图13示出了根据本申请的一个实施例的用于第一节点中的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中的结构框图;
图15示出了根据本申请的一个实施例的用于第三节点中的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信令;在步骤102中在第一时频资源集合中接收第二信令。
实施例1中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格 式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第一信令是广播的。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令的是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,承载所述第一信令的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一信令的是SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,承载所述第一信令的物理层信道包括PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第二信令是针对副链路的RRC(Radio Resource Control,无线资源控制)信信令。
作为一个实施例,所述第二信令是在蜂窝链路上传输的RRC信令。
作为一个实施例,所述第二信令是广播信令。
作为一个实施例,所述第二信令是SIB(System Information Block,系统信息块)。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令是用户设备专属的。
作为一个实施例,所述第二信令被用于配置PSFCH。
作为一个实施例,所述第二信令包括periodPSFCHresource IE。
作为一个实施例,所述第二信令包括MinTimeGapPSFCH IE。
作为一个实施例,所述第一信令被用于指示所述第一时频资源集合所占用的子载波的频域位置。
作为一个实施例,所述第一信令被用于指示所述第一时频资源集合所占用的多载波符号的时域位置。
作为一个实施例,所述第一时频资源集合占用正整数个RE(Resource Elements,资源单元)。
作为一个实施例,所述RE在频域占用一个子载波,在时域占用一个多载波符号的持续时间。
作为一个实施例,所述第一类信道是PSFCH。
作为一个实施例,所述第一类信道的格式是K1种候选格式中的一种,所述K1是不小于2的正整数。
作为该实施例的一个子实施例,所述K1等于4。
作为该实施例的一个子实施例,所述K1等于2。
作为该实施例的一个子实施例,所述K1种候选格式分别是PSFCH格式0至PSFCH格式(K1-1)。
作为该实施例的一个子实施例,所述K1种候选格式中至少包括第一候选格式和第二候选格式,所述第一候选格式对应的第一类信道通过序列生成,所述第二候选格式对应的第一类信道通过编码生成。
作为该实施例的一个子实施例,所述K1种候选格式中至少包括第三候选格式,所述第三候选格式对应的第一类信道是被重复传输的。
作为一个实施例,所述第二类信道所对应的所述频带宽度被用于确定所述第一类信道的所述格式。
作为一个实施例,所述第一类信道的所述第一参数被用于确定所述第一类信道的所述格 式。
作为一个实施例,上述短语所述第一类信道所关联的第二类信道的意思包括:所述第一类信道被用于确定所述第二类信道是否被正确接收。
作为一个实施例,上述短语所述第一类信道所关联的第二类信道的意思包括:所述第一类信道被用于指示所述第二类信道是否被正确接收。
作为一个实施例,上述短语所述第一类信道所关联的第二类信道的意思包括:所述第一类信道是PSFCH,所述第二类信号是PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道),所述第一类信道被用于指示所述第二类信道是否被正确接收。
作为一个实施例,所述第一信令和所述第二信令均在蜂窝链路上被传输。
作为一个实施例,所述第一信令和所述第二信令均在副链路上被传输。
作为一个实施例,所述第一类信令和所述第二类信令均在副链路上被传输。
作为一个实施例,所述副链路是指终端与终端之间的无线链路。
作为一个实施例,本申请中所述的蜂窝链路是终端与基站之间的无线链路。
作为一个实施例,本申请中的所述副链路对应PC(Proximity Communication,临近通信)5口。
作为一个实施例,本申请中的所述蜂窝链路对应Uu口。
作为一个实施例,本申请中的所述副链路被用于V2X通信。
作为一个实施例,本申请中的所述蜂窝链路被用于蜂窝通信。
作为一个实施例,本申请中的所述资源单元在频域占用一个子载波,在时域占用一个多载波符号。
作为一个实施例,本申请中所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,本申请中所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述多载波符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述多载波符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频的正交频分复用)符号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE 201进行V2X通信的UE 241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器 功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述UE241对应本申请中的所述第三节点。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC-5接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝链路。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖外的一个终端。
作为一个实施例,所述UE201和所述UE241之间支持单播传输。
作为一个实施例,所述UE201和所述UE241之间支持广播传输。
作为一个实施例,所述UE201和所述UE241之间支持组播传输。
作为一个实施例,所述第一节点和所述第三节点属于一个V2X对(Pair)。
作为一个实施例,所述第一节点是一辆汽车。
作为一个实施例,所述第一节点是一个交通工具。
作为一个实施例,所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第一节点是一个终端组的组头。
作为一个实施例,所述第三节点是一个交通工具。
作为一个实施例,所述第三节点是一辆汽车。
作为一个实施例,所述第三节点是一个RSU。
作为一个实施例,所述第三节点是一个终端组的组头(Group Header)。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个服务小区。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意 图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信令生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信令生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述第二信令生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述目标信号生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述目标信号生成于所述MAC352,或者所述MAC302。
作为一个实施例,所述目标信息组生成于所述PHY301,或者所述PHY351。
作为一个实施例,所述目标信息组生成于所述MAC352,或者所述MAC302。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接 收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信令;以及在第一时频资源集合中接收第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;以及在第一时频资源集合中接收第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信令;以及在第一时频资源集合中发送第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;以及在第一时频资源集合中发送第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:接收第一信令;以及在第一时频资源集合中接收第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存 储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;以及在第一时频资源集合中接收第二信令;所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于在第一时频资源集合中接收第二信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于在第一时频资源集合中发送第二信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收目标信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送目标信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送目标信息组;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收目标信息组。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信,且第一节点U1和第三节点U3之间通过无线链路进行通信;其中,方框F0中标准的步骤是可选的。
对于 第一节点U1,在步骤S10中发送第一信号,在步骤S11中接收第一信令,在步骤S12中在第一时频资源集合中接收第二信令,在步骤S13中接收目标信号,在步骤S14中发送目标信息组。
对于 第二节点N2,在步骤S20中接收第一信号,在步骤S21中发送第一信令,在步骤S22中在第一时频资源集合中发送第二信令。
对于 第三节点U3,在步骤S30中接收第一信令,在步骤S31中在第一时频资源集合中接收第二信令,在步骤S32中发送目标信号,在步骤S33中接收目标信息组。
实施例5中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所 述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令;所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式;承载所述目标信号的信道是所述第二类信道,承载所述目标信息组的信道是所述第一类信道;所述目标信息组被用于确定所述目标信号是否被正确接收;所述目标信号所对应的频带宽度被用于确定承载所述目标信息组的所述第一类信道的格式,或者所述目标信息组的第二参数被用于确定承载所述目标信息组的所述第一类信道的格式。
作为一个实施例,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
作为该实施例的一个子实施例,所述第二类信道所对应的所述频带宽度是指:所述第二类信道在频域所占用的最小RB(Resource Block,资源块)数。
作为该实施例的一个子实施例,所述第二类信道所对应的所述频带宽度是指:所述第二类信道在频域所占用的实际的RB数。
作为该实施例的一个子实施例,所述第二类信道所对应的所述频带宽度是指:所述第二类信道所占用的频域资源的颗粒度(granularity)。
作为该实施例的一个子实施例,所述第二类信道所对应的所述频带宽度是指:调度所述第二类信道所能采用的最小的频带宽度。
作为该实施例的一个子实施例,所述第二类信道所对应的所述频带宽度是指:所述第二类信道在频域所占用的子信道(Subchanel)数。
作为该实施例的一个子实施例,所述第二类信道所对应的所述频带宽度是指:所述第二类信道在频域所占用的子信道中一个子信道所占用的RB数。
作为该实施例的一个子实施例,所述K1个候选频带宽度中的任意候选频带宽度对应正整数个子载波。
作为该实施例的一个子实施例,所述K1个候选频带宽度中的任意候选频带宽度对应正整数个RB。
作为该实施例的一个子实施例,所述K1个候选频带宽度中的任意候选频带宽度对应正整数个子信道。
作为一个实施例,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
作为该实施例的一个子实施例,所述第一类信道在时域的所述配置是指:所述第一类信道在单位时间内所占用的多载波符号的个数。
作为该子实施例的一个附属实施例,所述单位时间等于正整数个毫秒。
作为该子实施例的一个附属实施例,所述单位时间是所述第一类信道的周期。
作为该实施例的一个子实施例,所述K1个候选配置分别对应所述第一类信道在单位时间内所占用的K1种多载波符号数。
作为该实施例的一个子实施例,所述第一类信道在时域的所述配置是指:所述第一类信道所采用的配置周期。
作为该实施例的一个子实施例,所述K1个候选配置分别是K1种不同的所述第一类信道的配置周期。
作为一个实施例,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
作为该实施例的一个子实施例,所述第一类信道在一个时隙中所占用的所述多载波符号数是K1个候选正整数中的一个候选正整数,所述K1个候选正整数分别对应K1个候选格式, 所述第一类信道的所述格式是所述K1种候选格式中与所述第一类信道在一个时隙中所占用的所述多载波符号数相关联的候选格式。
作为该实施例的一个子实施例,所述第一类信道在一个时隙中所占用的所述多载波符号数是K1个候选正整数中的一个候选正整数,所述K1个候选正整数至少包括1和2。
作为一个实施例,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
作为该实施例的一个子实施例,所述第一类信道所携带的信息比特的数量等于Q1,所述Q1属于K1个区间中的一个区间,所述K1个区间分别对应K1个候选格式,所述第一类信道的所述格式是所述K1个候选格式中与所述Q1所属的区间相关联的候选格式。
作为该子实施例的一个附属实施例,所述K1个区间中至少包括区间1和区间2,所述区间1对应携带的信息比特等于1,所述区间2对应携带的信息比特大于1。
作为该子实施例的一个附属实施例,所述K1个区间中至少包括区间1和区间2,所述区间1对应携带的信息比特不大于2,所述区间2对应携带的信息比特大于2。
作为一个实施例,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
作为该实施例的一个子实施例,所述第一类信道所占用的所述频带宽度是第一频带宽度,所述第一频带宽度是K1个第一类频带宽度中的之一,所述K1个第一类频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第一频带宽度相关联的候选格式。
作为该实施例的一个子实施例,所述第一类信道所占用的所述频带宽度是指:所述第一类信道在频域所占用的RB数。
作为该实施例的一个子实施例,所述第一类信道所占用的所述频带宽度是指:所述第一类信道所占用的子信道数。
作为该实施例的一个子实施例,所述K1个第一类频带宽度中的任意第一类频带宽度对应正整数个子载波。
作为该实施例的一个子实施例,所述K1个第一类频带宽度中的任意第一类频带宽度对应正整数个RB。
作为该实施例的一个子实施例,所述K1个第一类频带宽度中的任意第一类频带宽度对应正整数个子信道。
作为一个实施例,所述第一信号是BSR(Buffer Status Report,缓存状态汇报)。
作为一个实施例,所述第一信号是SR(Scheduling Request,调度请求)。
作为一个实施例,所述第一信号被用于请求建立副链路的RRC连接。
作为一个实施例,所述第一信号被用于请求副链路相关的RRC配置。
作为一个实施例,所述第一信号被用于请求所述第一信令的发送和所述第二信令的发送。
作为一个实施例,承载所述第一信号的物理层信道包括PRACH(Physical Random Access Channel,物理随机接入信道)。
作为一个实施例,承载所述第一信号的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一信令被用于指示所述第二信令所占用的时域资源。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第二信令到所述第一信令之间的时间间隔。
作为该实施例的一个子实施例,所述第一信令在时隙N被发送,且所述第二信令在时隙N+N1被发送,所述第一信令被用于指示所述N1;所述N和所述N1均是非负整数。
作为一个实施例,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池 相关联的候选格式。
作为该实施例的一个子实施例,给定候选时频资源池是所述K1个候选时频资源池中的任一候选时频资源池,所述给定候选时频资源池包括M1个候选时频资源集合,所述M1个候选时频资源集合中至少存在两个候选时频资源集合是离散的。
作为该实施例的一个子实施例,给定候选格式是所述K1种候选格式中的任一候选格式,所述给定候选格式与所述K1个候选时频资源池中的给定候选时频资源池相关联,所述第一节点U1确定所述第一类信道采用所述给定候选格式,所述第一类信道在所述给定候选时频资源池中被发送。
作为该实施例的一个子实施例,所述K1个候选时频资源池中的任一候选时频资源池包括正整数个RE。
作为一个实施例,承载所述目标信号的物理层信道是PSSCH。
作为一个实施例,承载所述目标信号的传输信道是SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,所述目标信号由一个TB(Transmission Block,传输块)生成。
作为一个实施例,所述目标信号在副链路上传输。
作为一个实施例,承载所述目标信息组的物理层信道是PSFCH。
作为一个实施例,所述目标信息组的第二参数是所述第一类信道在时域的配置。
作为一个实施例,所述目标信息组的第二参数是所述目标信息组所生成的物理信道在一个时隙中所占用的多载波符号数。
作为一个实施例,所述目标信息组的第二参数是所述目标信息组所携带的信息比特的数量。
作为一个实施例,所述目标信息组的第二参数是所述目标信息组所生成的物理信道所占用的频带宽度。
实施例6
实施例6示例了一个第二频带宽度的示意图,如附图6所示。在附图6中,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别对应K1种候选格式;所述K1个候选频带宽度分别对应图中的候选频带宽度#1至候选频带宽度#K1,所述K1种候选格式分别对应图中的候选格式#1至候选格式#K1;在不冲突的情况下,实施例6中的实施例能够被用于实施例7至实施例9,以及本申请中的其它实施例中。
作为一个实施例,所述K1个候选频带宽度中的任意候选频带宽度占用正整数个子载波。
作为该实施例的一个子实施例,所述正整数个子载波是连续的。
作为一个实施例,所述K1个候选频带宽度分别对应K1个不同数量的子载波。
作为一个实施例,所述K1个候选频带宽度中至少存在两个候选频带宽度分别对应两个不同数量的子载波。
作为一个实施例,所述K1种候选格式分别对应K1种不同的载荷(Payload)。
作为一个实施例,所述K1种候选格式分别对应K1种不同的信息比特的携带数量。
作为一个实施例,所述K1种候选格式中至少存在两种候选格式分别对应两种不同的载荷。
作为一个实施例,所述K1种候选格式中至少存在两种候选格式分别对应两种不同的信息比特的携带数量。
实施例7
实施例7示例了一个第一类信道在时域的配置的示意图;如附图7所示。在附图7中,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式;图中的K1种候选配置分别对应K1种候选格式;图中的阴影部分对应不同的候选配置下所述第一类信道占用的时域资源;所述K1个候选配置对应图7中的候选配置#1至候选配置#K1,所述K1种候选格式分别对应图7中的候选格式#1至候选 格式#K1。
作为一个实施例,所述K1种候选配置分别对应单位时间内所述第一类信道在时域的K1种不同的配置密度。
作为一个实施例,所述K1种候选配置分别对应单位时间内所述第一类信道所占用的K1种不同的多载波符号数。
作为一个实施例,所述K1种候选配置分别对应K1种不同的配置周期。
实施例8
实施例8示例了一个第一类信道在时域的示意图;如附图8所示。在附图8中,所述第一类信道在一个时隙中所占用的所述多载波符号数是K1个候选正整数中一个候选正整数,所述K1个候选正整数分别对应K1个候选格式,所述第一类信道的所述格式是所述K1种候选格式中与所述第一类信道在一个时隙中所占用的所述多载波符号数相关联的候选格式;所述K1个候选正整数分别是图8中所示的候选正整数#1至候选正整数#K1,所述K1种候选格式分别对应图8中的候选格式#1至候选格式#K1;图中的阴影部分对应不同的候选正整数下所述第一类信道在一个时隙中所占用的多载波符号。
作为一个实施例,所示的K1个候选正整数中至少包括1和2。
作为一个实施例,所述K1个候选正整数中至少有两个候选正整数是不同的。
作为一个实施例,所述K1个候选正整数中任意两个候选正整数都是不同的。
实施例9
实施例9示例了根据本申请的一个第一信号的示意图,如附图9所示。附图9中,所述第一节点在发送完所述第一信号后在第一时间窗中检测第一信令和第二信令;所述第一信令被用于指示所述第二信令所占用的时域资源。
作为一个实施例,所述第一信号是PRACH。
作为一个实施例,所述第一信号是BSR。
作为一个实施例,所述第一信令被用于确定下一次广播信令的更新时刻,所述第二信令是广播信令。
作为一个实施例,所述第一信令被用于确定下一次系统信息的更新时刻,所述第二信令是系统信息。
作为一个实施例,所述第一时间窗在时域占用正整数个连续的时隙。
实施例10
实施例10示例了根据本申请的一个实施例的第二信令的示意图,如附图10所示。附图10中,所述第二信令包括K1个子信令,所述K1个子信令分别对应图中的子信令#1至子信令#K1;所述K1个子信令分别包括K1种候选格式下所述第一类信道的配置信息集合。图10中所述K1个子信令分别包括K1个索引(对应索引#1至索引#K1),所述K1个索引分别对应所述第二类信道所对应的K1种候选频带宽度;图中还给出了所述K1个子信令中的一个子信令所包括的IE(Information Elements,信息单元)的示例,如图所示,所述一个子信令所承载的信息包括以下至少之一:
-nrofSymbols,指示第一类信道在一个时隙中所占用的多载波符号数;
-PSFCHPattern,指示第一类信道在一个时隙中图样;
-startingSymbolIndex,指示第一类信道在一个时隙中所占用的第一个多载波符号的位置;
-nrofPRB,指示第一类信道所占用的PRB数;
-PRBPattern,指示第一类信道所占用的PRB在频域的图样。
作为一个实施例,所述K1个子信令分别被用于确定K1个分配给所述第一类信道的时频资源池。
作为一个实施例,所述K1个索引分别被关联到K1个分配给所述第二类信道的时频资源池。
实施例11
实施例11示例了根据本申请的另一个实施例的第二信令的示意图,如附图11所示。附图11中,所述第二信令包括K1个子信令,所述K1个子信令分别对应图中的子信令#1至子信令#K1;所述K1个子信令分别包括K1种候选格式下所述第一类信道的配置信息集合。图10中所述K1个子信令分别对应PSFCH-format0至PSFCH-format(K1-1);图中还给出了所述K1个子信令中的一个子信令所包括的IE(Information Elements,信息单元)的示例,如图所示,所述一个子信令所承载的信息包括以下至少之一:
-nrofSymbols,指示第一类信道在一个时隙中所占用的多载波符号数;
-PSFCHPattern,指示第一类信道在一个时隙中图样;
-startingSymbolIndex,指示第一类信道在一个时隙中所占用第一个多载波符号的位置;
-nrofPRB,指示第一类信道所占用的PRB数;
-PRBPattern,指示第一类信道所占用的PRB在频域的图样。
作为一个实施例,所述K1个子信令分别被用于确定K1个分配给所述第一类信道的时频资源池。
作为一个实施例,所述K1个索引分别被关联到K1个分配给所述第二类信道的时频资源池。
实施例12
实施例12示例了根据本申请的一个目标信号和目标信息组的示意图,如附图12所示。附图12中,所述目标信号所占用的时隙是时隙#Q1,所述目标信息组所占用的时隙是时隙#Q2,所述时隙#Q2与所述时隙#Q1之间的时间间隔不小于第一阈值;所述Q1和所述Q2是正整数,所述Q2大于所述Q1,所述第一阈值等于正整数个毫秒;所述时隙#Q2是目标时隙集合中的一个时隙。
作为一个实施例,承载所述目标信息组的所述第一类信道的格式被用于确定所述目标时隙集合。
作为一个实施例,所述目标信号所对应的频带宽度被用于确定所述目标时隙集合。
作为一个实施例,所述目标信息组的第二参数被用于确定所述目标时隙集合。
实施例13
实施例13示例了一个第一节点中的结构框图,如附图13所示。附图13中,第一节点1300包括第一收发机1301,第一接收机1302和第二收发机1303;其中,所述第二收发机1303是可选的。
第一收发机1301,接收第一信令;
第一接收机1302,在第一时频资源集合中接收第二信令;
第二收发机1303,接收目标信号,以及发送目标信息组;
实施例13中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令;所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式;承载所述目标信号的信道是所述第二类信道,承载所述目标信息组的信道是所述第一类信道;所述目标信息组被用于确定所述目标信号是否被正确接收;所述目标信号所对应的频带宽度被用于确定承载所述目标信息组的所述第一类信道的格式,或者所述目标信息组的第二参数被用于确定承载所述目标信息组的所述第一类信道的格式。
作为一个实施例,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关 联的候选格式。
作为一个实施例,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
作为一个实施例,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
作为一个实施例,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
作为一个实施例,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
作为一个实施例,所述第一收发机1301发送第一信号;所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式。
作为一个实施例,所述第一信令被用于指示所述第二信令所占用的时域资源。
作为一个实施例,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
作为一个实施例,所述第一收发机1301包括实施例4中的天线452、发射器/接收机454、多天线发射处理器457、发射处理器468、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前6者。
作为一个实施例,所述第一接收机1302包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二收发机1303包括实施例4中的天线452、发射器/接收机454、多天线发射处理器457、发射处理器468、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前6者。
实施例14
实施例14示例了一个第二节点中的结构框图,如附图14所示。附图14中,第二节点1400包括第三收发机1401和第一发射机1402。
第三收发机1401,发送第一信令;
第一发射机1402,在第一时频资源集合中发送第二信令;
实施例14中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
作为一个实施例,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
作为一个实施例,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
作为一个实施例,,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类 信号所采用的格式。
作为一个实施例,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
作为一个实施例,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
作为一个实施例,所述第三收发机1401接收第一信号;所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式。
作为一个实施例,所述第一信令被用于指示所述第二信令所占用的时域资源。
作为一个实施例,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
作为一个实施例,所述第三收发机1401包括实施例4中的天线420、接收器/发射器418、多天线接收处理器472、接收处理器470、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前6者。
作为一个实施例,所述第一发射机1402包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
实施例15
实施例15示例了一个第三节点中的结构框图,如附图15所示。附图15中,第三节点1500包括第三发射机1501、第三接收机1502和第四收发机1503;其中,所述第四收发机1503是可选的。
第二接收机1501,接收第一信令;
第三接收机1502,在第一时频资源集合中接收第二信令;
第四收发机1503,发送目标信号,以及接收目标信息组;
实施例15中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令;承载所述目标信号的信道是所述第二类信道,承载所述目标信息组的信道是所述第一类信道;所述目标信息组被用于确定所述目标信号是否被正确接收;所述目标信号所对应的频带宽度被用于确定承载所述目标信息组的所述第一类信道的格式,或者所述目标信息组的第二参数被用于确定承载所述目标信息组的所述第一类信道的格式。
作为一个实施例,上述方法的特征在于,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
作为一个实施例,上述方法的特征在于,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
作为一个实施例,上述方法的特征在于,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
作为一个实施例,上述方法的特征在于,所述第一参数与所述第一类信道所携带的信息比特的数量有关,所述第一类信道所携带的所述信息比特的数量被用于确定所述第一类信号所采用的格式。
作为一个实施例,上述方法的特征在于,所述第一参数是所述第一类信道所占用的频带宽度,所述第一类信道所占用的所述频带宽度被用于确定所述第一类信号所采用的格式。
作为一个实施例,上述方法的特征在于,所述第一信令被用于指示所述第二信令所占用的时域资源。
作为一个实施例,上述方法的特征在于,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
作为一个实施例,所述第二接收机1501包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第三接收机1502包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第四收发机1401包括实施例4中的天线420、接收器/发射器418、多天线接收处理器472、接收处理器470、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前6者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于包括:
    第一收发机,接收第一信令;
    第一接收机,在第一时频资源集合中接收第二信令;
    其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第二类信道所对应的所述频带宽度是第二频带宽度,所述第二频带宽度是K1个候选频带宽度中的之一,所述K1个候选频带宽度分别与K1种候选格式相关联;所述第一类信道的所述格式是所述K1种候选格式中与所述第二频带宽度相关联的候选格式。
  3. 根据权利要求1所述的第一节点,其特征在于,所述第一参数是所述第一类信道在时域的配置,所述第一类信道在时域的配置是第一配置,所述第一配置是K1个候选配置中的之一,所述K1个候选配置分别与K1种候选格式相关联;所述第一类信道的所述格式是K1种候选格式中与所述第一配置相关联的候选格式。
  4. 根据权利要求1所述的第一节点,其特征在于,所述第一参数是所述第一类信道在一个时隙中所占用的多载波符号数,所述第一类信道在一个时隙中所占用的所述多载波符号数被用于确定所述第一类信号所采用的格式。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一收发机发送第一信号;所述第一信号被用于请求所述第一类信道的配置信息集合,所述配置信息集合包括所述第一类信道的所述格式。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一信令被用于指示所述第二信令所占用的时域资源。
  7. 根据权利要求2至6中任一权利要求所述的第一节点,其特征在于,所述第二信令指示K1个候选时频资源池,所述K1个候选时频资源池分别与所述K1种候选格式相关联;所述第一类信道在所述K1个候选时频资源池中的第一时频资源池中传输,所述第一类信道的所述格式是所述K1种候选格式中和所述第一时频资源池相关联的候选格式。
  8. 根据权利要求2至7中任一权利要求所述的第一节点,其特征在于,所述第一节点包括第二收发机,所述第二收发机接收目标信号,且所述第二收发机发送目标信息组;承载所述目标信号的信道是所述第二类信道,承载所述目标信息组的信道是所述第一类信道;所述目标信息组被用于确定所述目标信号是否被正确接收;所述目标信号所对应的频带宽度被用于确定承载所述目标信息组的所述第一类信道的格式,或者所述目标信息组的第二参数被用于确定承载所述目标信息组的所述第一类信道的格式;所述第一信令的发送者与所述目标信号的发送者不同。
  9. 一种被用于无线通信的第二节点,其特征在于包括:
    第三收发机,发送第一信令;
    第一发射机,在第一时频资源集合中发送第二信令;
    其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于包括:
    接收第一信令;
    在第一时频资源集合中接收第二信令;
    其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所 述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于包括:
    发送第一信令;
    在第一时频资源集合中发送第二信令;
    其中,所述第一信令被用于指示所述第一时频资源集合,所述第二信令占用所述第一时频资源集合;所述第二信令被用于配置第一类信道的格式,所述第一类信道的所述格式与所述第一类信道所关联的第二类信道所对应的频带宽度有关,或者所述第一类信道的所述格式与所述第一类信道的第一参数有关;所述第一信令是物理层信令。
PCT/CN2020/121094 2019-11-08 2020-10-15 一种被用于无线通信的节点中的方法和装置 WO2021088610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/732,534 US20220263639A1 (en) 2019-11-08 2022-04-29 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089595.1A CN112787782B (zh) 2019-11-08 2019-11-08 一种被用于无线通信的节点中的方法和装置
CN201911089595.1 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,534 Continuation US20220263639A1 (en) 2019-11-08 2022-04-29 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021088610A1 true WO2021088610A1 (zh) 2021-05-14

Family

ID=75748491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121094 WO2021088610A1 (zh) 2019-11-08 2020-10-15 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20220263639A1 (zh)
CN (1) CN112787782B (zh)
WO (1) WO2021088610A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121197A (zh) * 2017-06-24 2019-01-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109245869A (zh) * 2017-05-04 2019-01-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109565853A (zh) * 2016-07-01 2019-04-02 Lg 电子株式会社 在无线通信系统中发送和接收数据的方法及其装置
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187015A4 (en) * 2014-09-03 2017-09-20 Huawei Technologies Co., Ltd. System and method for d2d resource allocation
CN112953696A (zh) * 2017-08-07 2021-06-11 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11096043B2 (en) * 2018-02-16 2021-08-17 Apple Inc. Downlink control information format for ultra-reliable physical downlink control channel
CN110248411B (zh) * 2018-03-07 2021-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111769926B (zh) * 2018-03-12 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
KR20210104860A (ko) * 2018-12-29 2021-08-25 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 다이렉트 통신의 데이터 전송 방법, 장치 및 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565853A (zh) * 2016-07-01 2019-04-02 Lg 电子株式会社 在无线通信系统中发送和接收数据的方法及其装置
CN109245869A (zh) * 2017-05-04 2019-01-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109121197A (zh) * 2017-06-24 2019-01-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN112787782A (zh) 2021-05-11
CN112787782B (zh) 2022-08-26
US20220263639A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112291741B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088610A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116113024A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032480A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
WO2024088394A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
CN115395992B (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884152

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20884152

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20884152

Country of ref document: EP

Kind code of ref document: A1