WO2024088394A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024088394A1
WO2024088394A1 PCT/CN2023/127197 CN2023127197W WO2024088394A1 WO 2024088394 A1 WO2024088394 A1 WO 2024088394A1 CN 2023127197 W CN2023127197 W CN 2023127197W WO 2024088394 A1 WO2024088394 A1 WO 2024088394A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
reference signal
signal
pci
domain resource
Prior art date
Application number
PCT/CN2023/127197
Other languages
English (en)
French (fr)
Inventor
吴克颖
王平
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024088394A1 publication Critical patent/WO2024088394A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for wireless signals in a wireless communication system supporting a cellular network.
  • the present application discloses a solution. It should be noted that although the original intention of the present application is for SBFD scenarios, the present application can also be applied to other non-SBFD scenarios. Furthermore, the use of a unified design scheme for different scenarios (including but not limited to SBFD and other non-SBFD scenarios) can also help reduce hardware complexity and cost. In the absence of conflict, the embodiments and features in any node of the present application can be applied to any other node. In the absence of conflict, the embodiments and features in the embodiments of the present application can be arbitrarily combined with each other.
  • the present application discloses a method in a first node used for wireless communication, which includes:
  • the first reference signal is used to determine the spatial relationship of the first signal, and the first reference signal is used to determine the first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the problem to be solved by the present application includes: when the synchronization signal overlaps with the time domain resource configured as SBFD in the time domain, whether the first node receives the synchronization signal in the time domain resource configured as SBFD.
  • the above method determines whether the first node receives the synchronization signal in the time domain resource configured as SBFD according to whether the synchronization signal is a synchronization signal of an additional cell, thereby solving this problem.
  • the benefits of the above method include: improving the flexibility of base station configuration, which is beneficial to improving system performance.
  • the benefits of the above method include: improving the flexibility of UE reception.
  • the benefits of the above method include: the first node can flexibly select to preferentially receive the additional cell according to the demand; Synchronization signal or sending uplink physical layer signal.
  • the above method is characterized in that the first information block is used to determine the second PCI; whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI and the second PCI are the same; when the first PCI is equal to the second PCI, the first time domain resource and the first reference signal are mutually orthogonal in the time domain.
  • the above method is characterized in that, when the first PCI is not equal to the second PCI, whether the first time domain resource and the first reference signal overlap in the time domain is implementation-related.
  • the above method is characterized in that whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI.
  • the above method is characterized by receiving a second information block; wherein the second information block indicates configuration information of the first reference signal.
  • the above method is characterized in that the first reference signal is received in a first symbol set, or the second signal is sent in the first symbol set; wherein the first time domain resources and the first reference signal overlap in the time domain; the time domain resources occupied by the first reference signal include the first symbol set, and the time domain resources allocated to the second signal include the first symbol set.
  • the above method is characterized in that the first node includes a user equipment.
  • the above method is characterized in that the first node includes a relay node.
  • the present application discloses a method in a second node used for wireless communication, which includes:
  • the first reference signal is used to determine the spatial relationship of the first signal, and the first reference signal is used to determine the first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the above method is characterized in that the first information block is used to determine the second PCI; whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI and the second PCI are the same; when the first PCI is equal to the second PCI, the first time domain resource and the first reference signal are mutually orthogonal in the time domain.
  • the above method is characterized in that, when the first PCI is not equal to the second PCI, whether the first time domain resource and the first reference signal overlap in the time domain is implementation-related.
  • the above method is characterized in that whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI.
  • the above method is characterized in that a second information block is sent; wherein the second information block indicates configuration information of the first reference signal.
  • the above method is characterized in that the first reference signal is sent in a first symbol set, or the second signal is received in a first symbol set; wherein the first time domain resources and the first reference signal overlap in the time domain; the time domain resources occupied by the first reference signal include the first symbol set, and the time domain resources allocated to the second signal include the first symbol set.
  • the above method is characterized in that the second node is a base station.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the present application discloses a first node used for wireless communication, comprising:
  • a first processor receives a first information block, where the first information block is used to determine a first time domain resource, where the first time domain resource includes at least one symbol;
  • the first processor receives a first signal, or sends a first signal
  • the first reference signal is used to determine the spatial relationship of the first signal, and the first reference signal is used to determine the first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the present application discloses a second node used for wireless communication, comprising:
  • a second processor sends a first information block, where the first information block is used to determine a first time domain resource, where the first time domain resource includes at least one symbol;
  • the second processor sends a first signal, or receives a first signal
  • the first reference signal is used to determine the spatial relationship of the first signal, and the first reference signal is used to determine the first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • this application has the following advantages:
  • the first node can flexibly choose to preferentially receive the synchronization signal of the additional cell or send the uplink physical layer signal according to demand.
  • FIG1 shows a flow chart of a first information block and a first signal according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flow chart of transmission between a first node and a second node according to an embodiment of the present application
  • FIG6 shows a flow chart of transmission between a first node and a second node according to another embodiment of the present application
  • FIG7 shows a schematic diagram of a first information block being used to determine a second PCI according to an embodiment of the present application
  • FIG8 is a schematic diagram showing whether a first time domain resource and a first reference signal overlap in the time domain according to an embodiment of the present application
  • FIG9 is a schematic diagram showing whether the first time domain resource and the first reference signal overlap in the time domain and whether the first PCI type is related according to an embodiment of the present application;
  • FIG10 is a schematic diagram showing a first node receiving a first reference signal or sending a second signal according to an embodiment of the present application
  • FIG11 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG12 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first information block and a first signal according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node 100 described in the present application receives a first information block in step 101, receives a first signal in step 102, or sends a first signal.
  • the first information block is used to determine a first time domain resource, the first time domain resource includes at least one symbol; the first reference signal is used to determine the spatial relationship of the first signal, the first reference signal is used to determine a first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the PCI refers to: Physical Cell Identifier.
  • the PCI refers to: Physical Cell Identity.
  • the PCI refers to: Physical-layer Cell Identity, physical layer cell identifier.
  • the PCI refers to: physCellId.
  • the first information block is carried by higher layer signaling.
  • the first information block is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information block includes all or part of the information in a field (filed) in an RRC IE (Information Element).
  • the first information block includes information in all or part of the fields in the TDD-UL-DL-ConfigCommon IE.
  • the first information block includes information in all or part of the fields in the TDD-UL-DL-ConfigDedicated IE.
  • the first information block is carried by an RRC IE.
  • the name of the IE carrying the first information block includes "TDD-UL-DL-Config".
  • the name of the IE carrying the first information block includes "ServingCellConfig".
  • the first information block is carried by TDD-UL-DL-ConfigCommon IE.
  • the first information block is carried by TDD-UL-DL-ConfigDedicated IE.
  • the first information block is carried by ServingCellConfig IE.
  • the first information block is carried by ServingCellConfigCommon IE.
  • the first information block is carried by ServingCellConfigCommonSIB IE.
  • the first information block is carried by MAC CE (Medium Access Control layer Control Element).
  • MAC CE Medium Access Control layer Control Element
  • the first information block is carried by physical layer signaling.
  • the first information block is carried by DCI (Downlink control information).
  • DCI Downlink control information
  • the first information block includes information in one or more fields in a DCI.
  • the first information block is carried by DCI of DCI format 2_0.
  • the first information block is used by the first node 100 to determine the first time domain resource.
  • the first information block indicates that a sender of the first signal block simultaneously receives and sends wireless signals in the first time domain resources.
  • the first information block indicates that at least one symbol in the first time domain resource is used for both uplink transmission and downlink transmission.
  • the first information block indicates that any symbol in the first time domain resource is used for both uplink transmission and downlink transmission.
  • the first time domain resource includes at least one symbol.
  • the first time domain resource includes a symbol.
  • the first time domain resource includes a plurality of consecutive symbols.
  • the first time domain resource includes a plurality of discontinuous symbols.
  • the first time domain resource includes at least one time slot.
  • the first time domain resource includes at least one subframe.
  • a receiver of the first information block receives a wireless signal in a first time domain resource.
  • the receiver of the first information block sends a wireless signal in a first time domain resource.
  • the receiver of the first information block receives a wireless signal in a first time domain resource, or sends a wireless signal.
  • the sender of the first signal block simultaneously receives and sends wireless signals in the first time domain resources.
  • the sender of the first signal block simultaneously receives and sends wireless signals in at least one symbol in the first time domain resource.
  • the sender of the first signal block simultaneously receives and sends wireless signals in any symbol in the first time domain resource.
  • the sender of the first signal block simultaneously receives and sends wireless signals in the first time domain resources in the cell group where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends a wireless signal in at least one symbol in the first time domain resource in the cell group where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends a wireless signal in any symbol in the first time domain resource in the cell group where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends wireless signals in the first time domain resources in the cell where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends a wireless signal in at least one symbol in the first time domain resource in the cell where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends a wireless signal in any symbol in the first time domain resource in the cell where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends wireless signals in the first time domain resources in a BWP (Bandwidth part) of the cell where the first signal is located.
  • BWP Bandwidth part
  • the sender of the first signal block simultaneously receives and sends a wireless signal in at least one symbol in the first time domain resource in a BWP of the cell where the first signal is located.
  • the sender of the first signal block simultaneously receives and sends a wireless signal in any symbol in the first time domain resource in a BWP of the cell where the first signal is located.
  • the first time domain resources include symbols that can be used for both uplink transmission and downlink transmission.
  • At least one symbol in the first time domain resource can be used for uplink transmission and downlink transmission at the same time.
  • any symbol in the first time domain resource can be used for uplink transmission and downlink transmission at the same time.
  • the first time domain resources include symbols used for both uplink transmission and downlink transmission.
  • At least one symbol in the first time domain resource is used for uplink transmission and downlink transmission simultaneously.
  • any symbol in the first time domain resource is used for uplink transmission and downlink transmission at the same time.
  • the first time domain resources are used for both uplink transmission and downlink transmission in the cell group where the first signal is located.
  • At least one symbol in the first time domain resource is used for both uplink transmission and downlink transmission in the cell group where the first signal is located.
  • any symbol in the first time domain resource is used for both uplink transmission and downlink transmission in the cell group where the first signal is located.
  • the first time domain resource is used for both uplink transmission and downlink transmission in the cell where the first signal is located.
  • At least one symbol in the first time domain resource is used for both uplink transmission and downlink transmission in the cell where the first signal is located.
  • any symbol in the first time domain resource is used for both uplink transmission and downlink transmission in the cell where the first signal is located.
  • the first time domain resource is used for both uplink transmission and downlink transmission in a BWP of a cell where the first signal is located.
  • At least one symbol in the first time domain resource is used for both uplink transmission and downlink transmission in a BWP of a cell where the first signal is located.
  • any symbol in the first time domain resource is used for both uplink transmission and downlink transmission in a BWP of the cell where the first signal is located.
  • the first time domain resource is configured as full duplex.
  • the first time domain resource is configured as non-overlapping full duplex.
  • the first time domain resource is configured as SBFD.
  • At least one symbol in the first time domain resource is configured to be greater than one link direction.
  • any symbol in the first time domain resource is configured to be greater than one link direction.
  • the range of the link direction includes at least one of UL (Uplink), DL (Downlink), Flexible or SL (Sidelink).
  • the range of the link direction includes at least one of UL or DL.
  • the range of the link direction includes UL and DL.
  • the range of the link direction includes UL, DL and flexible.
  • the symbol includes OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the symbols include DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the symbol is obtained after the output of the transform precoder (Transform precoding) is subjected to OFDM symbol generation (Generation).
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal is unicast.
  • the first signal is UE-dedicated.
  • the first signal carries a TB (Transport block).
  • the first signal includes a signal transmitted on a physical channel.
  • the first signal includes a signal transmitted on a physical layer control channel.
  • the first signal includes a signal transmitted on PDCCH (Physical downlink control channel).
  • PDCCH Physical downlink control channel
  • the first signal includes a signal transmitted on PUCCH (Physical uplink control channel).
  • PUCCH Physical uplink control channel
  • the first signal is transmitted on PDCCH or PUCCH, and the CRC (Cyclic redundancy check) of the first signal is scrambled by C (Cell)-RNTI (Radio Network Temporary Identifier).
  • C Cell
  • RTI Radio Network Temporary Identifier
  • the first signal is transmitted on PDCCH or PUCCH, and C-RNTI is used to generate a scrambling code sequence of the first signal.
  • the first signal includes a signal transmitted on a physical layer shared channel.
  • the first signal includes a signal transmitted on PDSCH (Physical downlink shared channel).
  • PDSCH Physical downlink shared channel
  • the first signal is transmitted on PDSCH or PUSCH, and the CRC of the scheduling DCI of the first signal is scrambled by C-RNTI.
  • the first signal is transmitted on PDSCH or PUSCH, and C-RNTI is used to generate a scrambling code sequence of the first signal.
  • the first reference signal includes a baseband signal.
  • the first reference signal includes a wireless signal.
  • the first reference signal includes a radio frequency signal.
  • the first reference signal includes a downlink reference signal.
  • the first reference signal includes an SS/PBCH (Synchronization signal/Physical broadcast channel) block.
  • SS/PBCH Synchronization signal/Physical broadcast channel
  • the first reference signal is a downlink reference signal.
  • the first reference signal is SS/PBCH Block.
  • the first reference signal includes PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal) and PBCH.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Primary Synchronization Signal
  • the first reference signal includes PSS, SSS, PBCH and DMRS (Demodulation reference signal) of PBCH.
  • the first reference signal includes PSS, SSS and MIB (Master Information Block).
  • the first reference signal appears periodically in the time domain.
  • the first reference signal appears multiple times in the time domain.
  • the first reference signal appears only once in the time domain.
  • the first reference signal corresponds to an SS/PBCH Block index.
  • the channel occupied by the first reference signal includes PBCH.
  • the sender of the first reference signal is the cell identified by the first PCI.
  • the first reference signal is sent in a cell identified by the first PCI.
  • the first reference signal and the first signal belong to the same BWP.
  • the first reference signal and the first signal belong to the same carrier.
  • the first reference signal and the first signal belong to different BWPs.
  • the first reference signal and the first signal belong to different carriers.
  • the first reference signal and the first signal belong to the same cell.
  • the first reference signal and the first signal belong to different cells.
  • the SS sequence included in the first reference signal indicates the first PCI.
  • the PSS sequence and SSS sequence included in the first reference signal jointly indicate the first PCI.
  • the PSS sequence included in the first reference signal indicates the first PCI.
  • the SSS sequence included in the first reference signal indicates the first PCI.
  • the first node 100 can unambiguously obtain the first PCI from the SS sequence of the first reference signal.
  • the spatial relationship includes a TCI (Transmission configuration indicator) state.
  • TCI Transmission configuration indicator
  • the spatial relationship includes a QCL (Quasi co-location) assumption.
  • the spatial relationship includes QCL parameters.
  • the types of the QCL parameters include TypeA, TypeB, TypeC and TypeD.
  • the QCL parameters of Type A include Doppler shift, Doppler spread, average delay, and delay spread.
  • the QCL parameters of Type B include Doppler shift and Doppler spread.
  • the QCL parameters of Type C include Doppler shift and average delay.
  • the QCL parameter of TypeD includes a spatial reception parameter (Spatial Rx parameter).
  • TypeA As an embodiment, the specific definitions of TypeA, TypeB, TypeC and TypeD refer to Chapter 5.1.5 of 3GPP TS38.214.
  • the spatial relationship includes a spatial domain filter.
  • the spatial relationship includes a spatial domain transmission filter.
  • the spatial relationship includes a spatial domain receive filter.
  • the spatial relationship includes a spatial transmission parameter (Spatial Tx parameter).
  • the spatial relationship includes a spatial reception parameter (Spatial Rx parameter).
  • the spatial relationship includes large-scale properties.
  • the spatial relationship includes antenna ports.
  • the spatial relationship includes large-scale properties.
  • the large-scale characteristics include one or more of delay spread, Doppler spread, average gain, average delay, and spatial Rx parameters.
  • the sentence that the first reference signal is used to determine the spatial relationship of the first signal includes: the first reference signal and the first signal are quasi-co-located.
  • the sentence that the first reference signal is used to determine the spatial relationship of the first signal includes: the first reference signal and the first signal are quasi-co-located and correspond to QCL-TypeD.
  • the sentence that the first reference signal is used to determine the spatial relationship of the first signal means that the large-scale characteristics of the channel experienced by the first signal can be inferred from the large-scale characteristics of the channel experienced by the first reference signal.
  • the sentence that the first reference signal is used to determine the spatial relationship of the first signal includes: the same spatial characteristic is used by the first node 100 to receive the first reference signal and to send or receive the first signal.
  • the sentence that the first reference signal is used to determine the spatial relationship of the first signal means that the first node 100 assumes that the same spatial characteristics are used to receive the first reference signal and to send or receive the first signal.
  • the sentence that the first reference signal is used to determine the spatial relationship of the first signal includes: The first node 100 uses the same spatial domain filter to receive the first reference signal and to send or receive the first signal.
  • the first PCI is a non-negative integer.
  • the first PCI is a non-negative integer not greater than 1007.
  • the cell identified by the first PCI is a service cell of the first node.
  • the cell identified by the first PCI is not a service cell of the first node.
  • a cell identified by a PCI refers to a cell whose PCI is equal to the PCI.
  • the first PCI is used to generate the SS sequence included in the first reference signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2 .
  • FIG. 2 illustrates the network architecture of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced) and future 5G systems.
  • the network architecture of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System).
  • the 5G NR or LTE network architecture may be referred to as 5GS (5G System)/EPS200 or some other appropriate terminology.
  • 5GS/EPS200 may include one or more UE201, a UE241 communicating with UE201 via a sidelink, NG-RAN (Next Generation Radio Access Network) 202, 5G-CN (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and Internet service 230.
  • 5G System Next Generation Radio Access Network
  • 5G-CN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server
  • UDM Unified Data Management
  • 5GS/EPS200 may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG2 , 5GS/EPS200 provides packet switching services, but those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit switching services.
  • NG-RAN202 includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • gNB203 can be connected to other gNB204 via an Xn interface (e.g., backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a Basic Service Set (BSS), an Extended Service Set (ESS), a TRP (Transmitter Receiver Point), or some other suitable term.
  • gNB203 provides an access point to 5G-CN/EPC210 for UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 via the S1/NG interface.
  • the 5G-CN/EPC 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF 214, S-GW (Service Gateway)/UPF (User Plane Function) 212, and P-GW (Packet Data Network Gateway)/UPF 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • S-GW Service Gateway
  • User Plane Function User Plane Function
  • P-GW Packet Data Network Gateway
  • the MME/AMF/SMF 211 is a control node that processes signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which is itself connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem) and Packet switching services.
  • the first node in the present application includes the UE201.
  • the second node in the present application includes the gNB203.
  • the wireless link between the UE201 and the gNB203 includes a cellular network link.
  • the sender of the first information block includes the gNB203.
  • the receiver of the first information block includes the UE201.
  • the sender of the first signal includes the gNB203.
  • the receiver of the first signal includes the UE201.
  • the sender of the first signal includes the UE201.
  • the receiver of the first signal includes the gNB203.
  • the sender of the first reference signal includes the gNB203.
  • the sender of the first reference signal includes the gNB204.
  • the receiver of the first reference signal includes the UE201.
  • the gNB203 supports SBFD.
  • the gNB203 supports a more flexible duplex mode or a full-duplex mode.
  • the UE 201 supports SBFD.
  • the UE 201 supports a more flexible duplex mode or a full-duplex mode.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG3 .
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture for a first communication node device (RSU (Road Side Unit) in UE or V2X (Vehicle to Everything), a vehicle-mounted device or a vehicle-mounted communication module) and a second node device (gNB, RSU in UE or V2X, a vehicle-mounted device or a vehicle-mounted communication module), or a control plane 300 between two UEs using three layers: Layer 1 (Layer 1, L1), Layer 2 (Layer 2, L2) and Layer 3 (Layer 3, L3).
  • L1 is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 will be referred to as PHY 301 in this article.
  • L2 305 is above PHY 301 and is responsible for the link between the first node device and the second node device, or between two UEs through PHY 301.
  • L2305 includes a MAC sublayer 302, an RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, which terminate at the second node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC sublayer 306 in L3 in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1) and layer 2 (L2).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in L2355, the RLC sublayer 353 in L2355, and the MAC sublayer 352 in L2355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • L2355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS (Quality of Service) flows and data radio bearers (DRB) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above L2355, including a network layer (e.g., IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
  • a network layer e.g., IP layer
  • an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first information block is generated in the RRC sublayer 306.
  • the first information block is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first information block is generated in the PHY301 or the PHY351.
  • the first reference signal is generated by the PHY301 or the PHY351.
  • the first signal is generated in the RRC sublayer 306.
  • the first signal is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first signal is generated by the PHY301 or the PHY351.
  • the higher layer in the present application refers to a layer above the physical layer.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the controller/processor 475 implements the functionality of L2.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for L1 (i.e., physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-PSK, M-quadrature amplitude modulation (M-QAM), etc.).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding and beamforming processing, to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an Inverse Fast Fourier Transform (IFFT) to generate a physical channel carrying the time domain multi-carrier symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to different antennas 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of L1.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any parallel stream with the second communication device 450 as the destination.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of L2.
  • the controller/processor 459 may be associated with a memory 460 storing program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above L2.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an Acknowledgement (ACK) and/or Negative Acknowledgement (NACK) protocol to support HARQ operations.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above L2.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the first communication device 410, and implements L2 functions for the user plane and the control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is then processed by the transmit processor 468 after analog precoding/beamforming operations in the multi-antenna transmit processor 457.
  • the transmitter 454 provides signals to different antennas 452. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides the radio frequency symbol stream to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of L1.
  • the controller/processor 475 implements the L2 functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 450 device at least receives a first information block, the first information block is used to determine a first time domain resource, the first time domain resource includes at least one symbol; receives a first signal, or sends a first signal; a first reference signal is used to determine the spatial relationship of the first signal, the first reference signal is used to determine a first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the first information block; receiving a first signal, or sending a first signal.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the first communication device 410 device at least sends a first information block, the first information block is used to determine a first time domain resource, the first time domain resource includes at least one symbol; sends a first signal, or receives a first signal; a first reference signal is used to determine the spatial relationship of the first signal, the first reference signal is used to determine a first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first information block; sending a first signal, or receiving a first signal.
  • the first node in the present application includes the second communication device 450.
  • the second node in the present application includes the first communication device 410.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first information block.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data source 467 ⁇ is used to receive the first information block.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first signal.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data source 467 ⁇ is used to receive the first signal.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, the data source 467 ⁇ is used to send the first signal.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first signal.
  • Embodiment 5 illustrates a first flow chart of transmission between a first node and a second node according to an embodiment of the present application. 5, the first node U1 communicates with the second node N2 via a wireless link. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application. In FIG. 5, the steps in block F51 are optional.
  • a first information block is received in step S510; a second information block is received in step S5110; and a first signal is sent in step S511.
  • a first information block is sent in step S520; a second information block is sent in step S5210; and a first signal is received in step S521.
  • the first information block is used by the first node U1 to determine a first time domain resource, and the first time domain resource includes at least one symbol;
  • the first reference signal is used by the first node U1 to determine the spatial relationship of the first signal, and the first reference signal is used to determine a first PCI;
  • the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the first node U1 is the first node in this application.
  • the second node N2 is the second node in the present application.
  • the air interface between the second node N2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node N2 and the first node U1 includes a wireless interface between a relay node device and a user equipment.
  • the air interface between the second node N2 and the first node U1 includes a wireless interface between user equipments.
  • the step in box F51 in FIG. 5 exists; the second information block indicates configuration information of the first reference signal.
  • the configuration information of the first reference signal includes one or more of occupied time domain resources, period, transmission power, synchronization signal sequence, or subcarrier spacing.
  • the second information block is sent in the cell identified by the first PCI.
  • the second information block is sent in the cell identified by the second PCI.
  • the second information block is carried by higher layer signaling.
  • the second information block is carried by RRC signaling.
  • the second information block includes information in all or part of the fields in an RRC IE.
  • the second information block includes information of all or part of the fields in SIB1IE.
  • the second information block includes information of all or part of the fields in the ServingCellConfigCommon IE.
  • the second information block includes information of all or part of the fields in ServingCellConfigCommonSIB IE.
  • the second information block includes information of all or part of the fields in the ServingCellConfig IE.
  • the second information block includes information of all or part of the fields in the MimoParam-r17 IE.
  • the second information block includes information of all or part of the fields in the SSB-MTC-AdditionalPCI IE.
  • the second information block is carried by an RRC IE.
  • the second information block is carried by SIB1IE.
  • the second information block is carried by ServingCellConfigCommon IE.
  • the second information block is carried by ServingCellConfigCommonSIB IE.
  • the second information block is carried by ServingCellConfig IE.
  • the second information block is carried by MimoParam-r17 IE.
  • the second information block is carried by SSB-MTC-AdditionalPCI IE.
  • the second information block is carried by MAC CE.
  • the second information block is carried by physical layer signaling.
  • the first reference signal appears in the time domain earlier than the first information block.
  • the first reference signal appears in the time domain later than the first information block.
  • the first reference signal appears earlier than the second information block in the time domain.
  • the first reference signal appears later than the second information block in the time domain.
  • the first reference signal appears earlier than the first signal in the time domain.
  • the first reference signal appears later than the first signal in the time domain.
  • the first information block is earlier than the second information block in the time domain.
  • the first information block is later than the second information block in the time domain.
  • the first information block is transmitted on PDSCH.
  • the second information block is transmitted on PDSCH.
  • the first signal is transmitted on PUSCH.
  • the first signal is transmitted on PUCCH.
  • Embodiment 6 illustrates a flow chart of transmission between a first node and a second node according to another embodiment of the present application.
  • the first node U3 communicates with the second node N4 via a wireless link. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in the present application. In FIG6, the steps in box F61 are optional.
  • the first information block is received in step S630; the second information block is received in step S6110; and the first signal is received in step S511.
  • a first information block is sent in step S640; a second information block is sent in step S6210; and a first signal is sent in step S521.
  • the first information block is used by the first node U3 to determine a first time domain resource, and the first time domain resource includes at least one symbol;
  • the first reference signal is used by the first node U3 to determine the spatial relationship of the first signal, and the first reference signal is used to determine a first PCI;
  • the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the first node U3 is the first node in this application.
  • the second node N4 is the second node in this application.
  • the air interface between the second node N4 and the first node U3 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node N4 and the first node U3 includes a wireless interface between a relay node device and a user equipment.
  • the air interface between the second node N4 and the first node U3 includes a wireless interface between user equipments.
  • the step in box F61 in FIG. 6 exists; the second information block indicates configuration information of the first reference signal.
  • the first information block is earlier than the second information block in the time domain.
  • the first information block is later than the second information block in the time domain.
  • the first information block is transmitted on PDSCH.
  • the second information block is transmitted on PDSCH.
  • the first signal is transmitted on PDSCH.
  • the first signal is transmitted on PDCCH.
  • Embodiment 7 illustrates a schematic diagram of a first information block according to an embodiment of the present application being used to determine a second PCI; as shown in Figure 7, the first information block is used to determine the second PCI; whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI and the second PCI are the same; when the first PCI is equal to the second PCI, the first time domain resource and the first reference signal are mutually orthogonal in the time domain.
  • the first information block includes information of all or part of the fields in an RRC IE.
  • the first information block includes information of all or part of the fields in the CellGroupConfig IE.
  • the first information block includes information of all or part of the fields in the SpCellConfig IE.
  • the first information block includes information of all or part of the fields in the CellGroupConfig IE.
  • the first information block includes information of all or part of the fields in the SCellConfig IE.
  • the first information block is carried by an RRC IE.
  • the second information block is carried by CellGroupConfig IE.
  • the second information block is carried by SpCellConfig IE.
  • the servCellIndex field in the second information block is used to determine the second PCI.
  • the second information block is carried by SCellConfig IE.
  • the SCellIndex field in the second information block is used to determine the second PCI.
  • the sCellToAddModList field in the second information block is used to determine the second PCI.
  • the second PCI is explicitly indicated in the second information block.
  • the second PCI is implicitly indicated in the second information block.
  • the second information block indicates a cell index
  • the cell index is used to determine the second PCI.
  • the one cell index includes SCellIndex.
  • the one cell index includes ServCellIndex.
  • the cell identified by the second PCI is a service cell of the first node.
  • the sentence that the cell identified by the second PCI is the service cell of the first node means that the first node performs secondary service cell addition (SCell addition) for the cell identified by the second PCI.
  • SCell addition secondary service cell addition
  • the sentence that the cell identified by the second PCI is the service cell of the first node means that: the cell identified by the second PCI is configured through the sCellToAddModList IE.
  • the sentence that the cell identified by the second PCI is a service cell of the first node means that the first node is allocated an SCellIndex for the cell identified by the second PCI.
  • the sentence that the cell identified by the second PCI is a service cell of the first node means that the first node is allocated a ServCellIndex for the cell identified by the second PCI.
  • the sentence that the cell identified by the second PCI is a service cell of the first node means that an RRC connection has been established between the first node and the cell identified by the second PCI.
  • the sentence that the cell identified by the second PCI is a serving cell of the first node means that the C-RNTI of the first node is allocated by the cell identified by the second PCI.
  • the cell identified by the second PCI is the SpCell (Special Cell) of the first node.
  • the cell identified by the second PCI is the PCell (Primary Cell) of the first node.
  • the cell identified by the second PCI is the SCell (Secondary Cell) of the first node.
  • the cell when a cell is configured through sCellToAddModList IE, the cell is a service cell; when a cell is SpCell, the cell is a service cell.
  • the cell when a cell is neither configured through the sCellToAddModList IE nor is a SpCell, the cell is not a serving cell.
  • the cell when a cell is neither configured through the sCellToAddModList IE nor is a SpCell, the cell is an additional cell or a secondary cell.
  • the cell identified by the first PCI is the service cell of the first node.
  • the cell identified by the first PCI is a SpCell or the cell identified by the first PCI is configured through the sCellToAddModList IE.
  • the first node when the first PCI is equal to the second PCI, the first node does not expect the first time domain resource and the first reference signal to overlap in the time domain.
  • the first node when the first PCI is equal to the second PCI, and the first time domain resource and the first reference signal overlap in the time domain, the first node considers that an error has occurred.
  • Embodiment 8 illustrates a schematic diagram of whether the first time domain resource and the first reference signal overlap in the time domain according to an embodiment of the present application; As shown in FIG. 8 , when the first PCI is not equal to the second PCI, whether the first time domain resource and the first reference signal overlap in the time domain is implementation-dependent.
  • the cell identified by the first PCI is not a service cell of the first node.
  • the sentence that the cell identified by the first PCI is not a serving cell of the first node means that the first node does not perform secondary serving cell addition for the cell identified by the first PCI.
  • the sentence that the cell identified by the first PCI is not a service cell of the first node means that the sCellToAddModList most recently received by the first node does not include the cell identified by the first PCI.
  • the sentence that the cell identified by the first PCI is not a service cell of the first node means that neither the sCellToAddModList nor the sCellToAddModListSCG most recently received by the first node includes the cell identified by the first PCI.
  • the sentence that the cell identified by the first PCI is not a service cell of the first node means that the first node is not allocated an SCellIndex for the cell identified by the first PCI.
  • the sentence that the cell identified by the first PCI is not a service cell of the first node means that the first node is not allocated a ServCellIndex for the cell identified by the first PCI.
  • the sentence that the cell identified by the first PCI is not a service cell of the first node means that no RRC connection is established between the first node and the cell identified by the first PCI.
  • the sentence that the cell identified by the first PCI is not a serving cell of the first node means that the C-RNTI of the first node is not allocated by the cell identified by the first PCI.
  • the cell identified by the first PCI is an additional cell or a secondary cell.
  • the cell identified by the first PCI is neither configured through the sCellToAddModList IE nor is a SpCell.
  • the sender of the first information block determines by itself whether the first time domain resource and the first reference signal overlap in the time domain.
  • the first time domain resource and the first reference signal overlap in the time domain.
  • the first node when the first PCI is not equal to the second PCI, and the first time domain resource and the first reference signal overlap in the time domain, the first node does not consider that an error has occurred.
  • the first time domain resource and the first reference signal are orthogonal in the time domain.
  • Embodiment 9 illustrates a schematic diagram of whether the first time domain resource and the first reference signal overlap in the time domain and are related to the first PCI type according to an embodiment of the present application; as shown in FIG9 , whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI.
  • the meaning that whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI includes: whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI is a service cell PCI or an additional PCI.
  • the first time domain resource and the first reference signal are orthogonal in the time domain.
  • the first node when the first PCI is a serving cell PCI, the first node does not expect (expect) the first time domain resource and the first reference signal to overlap in the time domain.
  • the first node when the first PCI is a serving cell PCI, and the first time domain resource and the first reference signal overlap in the time domain, the first node considers that an error has occurred.
  • the first PCI is an additional PCI
  • the first time domain resource and the first reference signal are in the time domain Whether or not overlap occurs is implementation dependent.
  • the sender of the first information block determines by itself whether the first time domain resource and the first reference signal overlap in the time domain.
  • the first time domain resource and the first reference signal overlap in the time domain.
  • the first node when the first PCI is an additional PCI, and the first time domain resource and the first reference signal overlap in the time domain, the first node does not consider that an error has occurred.
  • the meaning that whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI includes: whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI corresponds to a ServCellIndex.
  • the first time domain resource and the first reference signal are orthogonal in the time domain.
  • the first node when the first PCI corresponds to a ServCellIndex, the first node does not expect (expect) the first time domain resource and the first reference signal to overlap in the time domain.
  • the first node when the first PCI corresponds to a ServCellIndex, and the first time domain resource and the first reference signal overlap in the time domain, the first node considers that an error has occurred.
  • the first node when the first node is not allocated the ServCellIndex for the cell identified by the first PCI, whether the first time domain resource and the first reference signal overlap in the time domain is implementation-related.
  • the sender of the first information block determines by itself whether the first time domain resource and the first reference signal overlap in the time domain.
  • the first time domain resource and the first reference signal overlap in the time domain.
  • the first node when the first node is not allocated the ServCellIndex for the cell identified by the first PCI, and the first time domain resource and the first reference signal overlap in the time domain, the first node does not consider that an error has occurred.
  • the ServCellIndex is a non-negative integer not greater than 31.
  • the meaning that whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI includes: whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI corresponds to an SCellIndex.
  • the first time domain resource and the first reference signal are orthogonal in the time domain.
  • the first node when the first PCI corresponds to an SCellIndex, the first node does not expect (expect) the first time domain resource and the first reference signal to overlap in the time domain.
  • the first node when the first PCI corresponds to an SCellIndex, and the first time domain resource and the first reference signal overlap in the time domain, the first node considers that an error has occurred.
  • whether the first time domain resource and the first reference signal overlap in the time domain is implementation-related.
  • the sender of the first information block determines whether the first time domain resource and the first reference signal overlap in the time domain.
  • the first time domain resource and the first reference signal overlap in the time domain.
  • the first node when the first node is not allocated the SCellIndex for the cell identified by the first PCI, and the first time domain resource and the first reference signal overlap in the time domain, the first node does not consider that an error has occurred.
  • the SCellIndex is a positive integer not greater than 31.
  • Embodiment 10 illustrates a schematic diagram of a first node receiving a first reference signal or sending a second signal according to an embodiment of the present application;
  • the first node receives the first reference signal in a first symbol set, or sends a second signal in the first symbol set; wherein the first time domain resources and the first reference signal overlap in the time domain; the time domain resources occupied by the first reference signal include the first symbol set, and the time domain resources allocated to the second signal include the first symbol set.
  • the first symbol set includes at least one symbol.
  • the first symbol set includes one symbol.
  • the first symbol set includes a plurality of consecutive symbols.
  • the first symbol set includes a plurality of discontinuous symbols.
  • the first symbol set includes at least one time slot.
  • the first symbol set includes at least one subframe.
  • the first symbol set is RRC configured.
  • the first symbol set includes time domain resources allocated to the second signal.
  • the first symbol set includes time domain resources occupied by the first reference signal.
  • the first symbol set includes the first time domain resource.
  • the first time domain resource includes the first symbol set.
  • the first symbol set overlaps with the first time domain resource in the time domain.
  • the first symbol set includes at least one symbol belonging to the first time domain resource.
  • any symbol in the first symbol set belongs to the first time domain resource.
  • the first symbol set includes at least one symbol that does not belong to the first time domain resource.
  • the first time domain resource includes at least one symbol that does not belong to the first symbol set.
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes a signal transmitted on a physical channel.
  • the second signal includes a signal transmitted on a physical layer control channel.
  • the second signal includes a signal transmitted on PUCCH.
  • the second signal is transmitted on the PUCCH, and the CRC of the second signal is scrambled by the C-RNTI.
  • the second signal is transmitted on the PUCCH, and the C-RNTI is used to generate a scrambling code sequence for the first signal.
  • the second signal includes a signal transmitted on a physical layer shared channel.
  • the second signal includes a signal transmitted on the PUSCH.
  • the second signal is transmitted on the PUSCH, and the CRC of the scheduling DCI of the second signal is scrambled by the C-RNTI.
  • the second signal is transmitted on the PUSCH, and the C-RNTI is used to generate a scrambling code sequence of the second signal.
  • the first reference signal and the second signal occupy the same one or more symbols.
  • the first reference signal is configured to occupy the same one or more symbols as the second signal.
  • the first reference signal resource is configured to occupy the same one or more symbols as the second signal.
  • one or more symbols configured by the first reference signal are occupied by the second signal.
  • one or more symbols configured by the first reference signal resource are occupied by the second signal.
  • all symbols occupied by the first reference signal are occupied by the second signal.
  • At least one symbol occupied by the first reference signal is not occupied by the second signal.
  • At least one occurrence of the first reference signal resource in the time domain and the second signal occupy mutually orthogonal time resources.
  • the first reference signal and any one of the at least one occurrence are orthogonal in the time domain.
  • the first node determines by itself whether to receive the first reference signal or to send the second signal in the first symbol set.
  • the priority of the second signal is used to determine whether the first node receives the first reference signal or sends the second signal in the first symbol set.
  • a second reference signal resource set is used to determine the spatial relationship of the second signal, and whether the first node receives the first reference signal or sends the second signal in the first symbol set is related to the second reference signal resource set.
  • the second reference signal resource set includes a second reference signal resource, a second reference signal is transmitted in the second reference signal resource, and the second reference signal is used to determine the spatial relationship of the second signal.
  • the second reference signal includes a synchronization signal.
  • the second reference signal includes an SS/PBCH block.
  • the second reference signal is SS/PBCH block.
  • the sentence that the second reference signal is used to determine the spatial relationship of the second signal includes: the second reference signal and the second signal are quasi-co-located.
  • the sentence that the second reference signal is used to determine the spatial relationship of the second signal includes: the second reference signal and the second signal: the first node assumes that the same spatial characteristics are used to receive the second reference signal and send the second signal.
  • the sentence that the second reference signal is used to determine the spatial relationship of the second signal includes: the large-scale characteristics of the channel experienced by the first signal can be inferred from the large-scale characteristics experienced by the second reference signal.
  • the sentence that the second reference signal is used to determine the spatial relationship of the second signal includes: the first node uses the same spatial domain filter to receive the second reference signal and send the second signal.
  • the second reference signal is used to determine a third PCI.
  • the third PCI is a non-negative integer.
  • the third PCI is a non-negative integer not greater than 1007.
  • the sender of the second reference signal is the cell identified by the third PCI.
  • the SS sequence included in the second reference signal indicates the third PCI.
  • the PSS sequence and SSS sequence included in the second reference signal jointly indicate the third PCI.
  • the PSS sequence included in the second reference signal indicates the third PCI.
  • the SSS sequence included in the second reference signal indicates the third PCI.
  • the first node can unambiguously obtain the third PCI from the SS sequence of the second reference signal.
  • the first node when the third PCI is equal to the second PCI, the first node receives the first reference signal in the first symbol set.
  • the first node when the third PCI is equal to the first PCI, the first node sends a second signal in the first symbol set.
  • the physical channel occupied by the second signal is used to determine whether the first node receives the first reference signal or sends the second signal in the first symbol set.
  • the second signal is transmitted on the PUCCH, and the first node sends the second signal in the first symbol set.
  • the second signal is transmitted on the PUCCH, and the first node receives the first reference signal in the first symbol set.
  • the second signal is transmitted on the PUSCH, and the first node sends the second signal in the first symbol set.
  • the second signal is transmitted on the PUSCH, and the first node receives the first reference signal in the first symbol set.
  • the second signal is transmitted on PRACH (Physical random access channel), and the first node sends the second signal in the first symbol set.
  • PRACH Physical random access channel
  • the second signal is transmitted on PRACH, and the first node receives the first reference signal in the first symbol set.
  • the second signal is based on a dynamically scheduled PUSCH transmission, and the first node sends the second signal in the first symbol set.
  • the second signal is based on a dynamically scheduled PUSCH transmission, and the first node transmits the first symbol set receiving the first reference signal.
  • the second signal is a PUSCH transmission based on a configured grant, and the first node sends the second signal in the first symbol set.
  • the second signal is based on a configured scheduled PUSCH transmission, and the first node receives the first reference signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type A based on dynamic scheduling, and the first node sends the second signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type A based on dynamic scheduling, and the first node receives the first reference signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type A based on the configuration scheduling, and the first node sends the second signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type A based on the configuration scheduling, and the first node receives the first reference signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type B based on dynamic scheduling, and the first node sends the second signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type B based on dynamic scheduling, and the first node receives the first reference signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type B based on the configuration scheduling, and the first node sends the second signal in the first symbol set.
  • the second signal is a PUSCH transmission of repetition type B based on the configuration scheduling, and the first node receives the first reference signal in the first symbol set.
  • the second signal carries a first bit block
  • the first bit block includes UCI (Uplink control information)
  • the first node sends the second signal in the first symbol set.
  • the first bit block includes CSI (Channel state information).
  • the first bit block includes HARQ-ACK (Hybrid automatic repeat request-Acknowledgement).
  • HARQ-ACK Hybrid automatic repeat request-Acknowledgement
  • the HARQ-ACK includes ACK.
  • the HARQ-ACK includes NACK (Negative ACK).
  • the first bit block includes SR (Scheduling Request) information.
  • Embodiment 11 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG11.
  • a processing device 1100 in a first node includes a first processor 1101.
  • the first processor 1101 receives first information; receives a first signal, or sends a first signal; the first information block is used to determine a first time domain resource, the first time domain resource includes at least one symbol; a first reference signal is used to determine a spatial relationship of the first signal, the first reference signal is used to determine a first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the first information block is used to determine the second PCI; whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI and the second PCI are the same; when the first PCI is equal to the second PCI, the first time domain resource and the first reference signal are mutually orthogonal in the time domain.
  • whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI.
  • the first processor 1101 receives a second information block; the second information block indicates configuration information of the first reference signal.
  • the first processor 1101 receives the first reference signal in a first symbol set, or The second signal is sent from a symbol set; wherein the first time domain resources and the first reference signal overlap in the time domain; the time domain resources occupied by the first reference signal include the first symbol set, and the time domain resources allocated to the second signal include the first symbol set.
  • the first node is user equipment.
  • the first node is a relay node device.
  • the sender of the first signal block simultaneously receives and sends wireless signals in at least one symbol in the first time domain resource.
  • the first node when the first PCI is equal to the second PCI, the first node does not expect (expect) the first time domain resource and the first reference signal to overlap in the time domain; when the first time domain resource and the first signal overlap in the time domain, the first node 1100 believes that an error has occurred.
  • the sender of the first information block determines whether the first time domain resource and the first reference signal overlap in the time domain; when the first time domain resource and the first reference signal overlap in the time domain, the first node 1100 does not consider that an error has occurred; when the first time domain resource and the first reference signal overlap in the time domain, the first node 1100 determines whether to receive the first reference signal.
  • the first processor 1101 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in embodiment 4.
  • the first processor 1101 includes at least one of ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • Embodiment 12 illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application, as shown in FIG12.
  • the processing device 1200 in the second node includes a second processor 1201.
  • the second processor 1201 sends a first information block; sends a first signal, or receives a first signal; the first information block is used to determine a first time domain resource, the first time domain resource includes at least one symbol; a first reference signal is used to determine a spatial relationship of the first signal, the first reference signal is used to determine a first PCI; the first reference signal includes a synchronization signal; whether the first time domain resource and the first reference signal overlap in the time domain is related to the first PCI.
  • the first information block is used to determine the second PCI; whether the first time domain resource and the first reference signal overlap in the time domain is related to whether the first PCI and the second PCI are the same; when the first PCI is equal to the second PCI, the first time domain resource and the first reference signal are mutually orthogonal in the time domain.
  • whether the first time domain resource and the first reference signal overlap in the time domain is related to the type of the first PCI.
  • the second processor 1201 receives a second information block; the second information block indicates configuration information of the first reference signal.
  • the second processor 1201 sends the first reference signal in a first symbol set, or receives the second signal in a first symbol set; the first time domain resources and the first reference signal overlap in the time domain; the time domain resources occupied by the first reference signal include the first symbol set, and the time domain resources allocated to the second signal include the first symbol set.
  • the second node is a base station device.
  • the second node is user equipment.
  • the second node is a relay node device.
  • the sender of the first signal block simultaneously receives and sends wireless signals in at least one symbol in the first time domain resource.
  • the receiver of the first signal block when the first PCI is equal to the second PCI, the receiver of the first signal block does not expect (expect) the first time domain resource to overlap with the first reference signal in the time domain; when the first time domain resource and the first signal overlap in the time domain, the receiver of the first signal block believes that an error has occurred.
  • the second node 1200 determines by itself whether the first time domain resource and the first reference signal overlap in the time domain; when the first time domain resource and the first reference signal overlap in the time domain, the The receiver of the first information block does not consider that an error has occurred; when the first time domain resource and the first reference signal overlap in the time domain, the receiver of the first signal block determines whether to receive the first reference signal.
  • the second processor 1201 includes at least one of ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second processor 1201 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, transportation tools, vehicles, RSUs, wireless sensors, Internet cards, Internet of Things terminals, RFID (Radio Frequency Identification) terminals, NB-IoT (Narrow Band Internet of Things) terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, transportation tools, vehicles, RSUs, wireless sensors, Internet cards, Internet of Things terminals, RFID (Radio Frequency Identification) terminals, NB-IoT (Narrow Band Internet of Things) terminals, MTC (Machine Type Communication) terminals,
  • the base stations or system equipment in this application include but are not limited to macrocell base stations, microcell base stations, small cell base stations, home base stations, relay base stations, eNB (evolved Node B), gNB, TRP, GNSS (Global Navigation Satellite System), relay satellites, satellite base stations, aerial base stations, RSU, drones, test equipment, such as transceivers that simulate some functions of base stations or signaling testers and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;所述第一处理器,接收第一信号,或者,发送第一信号;第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。该方法提高了基站配置的灵活性,有利于提升系统性能,同时第一节点可以根据需求灵活的选择优先接收附加小区的同步信号或发送上行物理层信号。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在现有的NR(New Radio,新无线)系统中,频谱资源被静态地划分为FDD(Frequency Division Duplexing,频分双工)频谱和TDD(Time Division Duplexing,时分双工)频谱。对于TDD频谱,基站和UE(User Equipment,用户设备)都工作在半双工模式。这种半双工模式避免了自干扰并能够缓解跨链路干扰(Cross link interference,CLI)的影响,但是也带来了资源利用率的下降和延时的增大。针对这些问题,在TDD频谱或FDD频谱上支持灵活的双工模式或可变的链路方向(上行或下行或灵活)成为一种可能的解决方案。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#88e次会议和3GPP R-18workshop中,在NR R-18中支持更灵活的双工模式或全双工模式得到了广泛的关注和讨论,特别是gNB(NR节点B)端的子带非重叠全双工(Subband non-overlapping Full Duplex,SBFD)模式。在这个模式下的通信会受到严重的干扰,包括自干扰和CLI。为了解决干扰问题,需要采用先进的干扰消除技术,包括天线隔离,波束赋型,RF(Radio Frequency,射频)级干扰消除和数字干扰消除。
发明内容
申请人通过研究发现,在SBFD的场景下,用于上行传输和下行传输的频谱分配将会变得更加灵活,干扰状况也会更加复杂。UE是否会在被配置为SBFD的时域资源中接收同步信号是需要解决的问题,在这一场景中,现有的传输方案需要被重新考虑。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然本申请的初衷是针对SBFD场景,本申请也能应用其他非SBFD场景,进一步的,对不同场景(包括但不限于SBFD和其他非SBFD场景)采用统一的设计方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
接收第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
接收第一信号,或者,发送第一信号;
其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,本申请要解决的问题的包括:当同步信号与被配置为SBFD的时域资源在时域交叠时,所述第一节点是否在被配置为SBFD的时域资源中接收所述同步信号。上述方法根据所述同步信号是否是附加小区的同步信号来确定第一节点是否在被配置为SBFD的时域资源中接收所述同步信号,从而解决了这一问题。
作为一个实施例,上述方法的好处包括:提高了基站配置的灵活性,有利于提升系统性能。
作为一个实施例,上述方法的好处包括:提高了UE接收的灵活性。
作为一个实施例,上述方法的好处包括:所述第一节点可以根据需求灵活的选择优先接收附加小区的 同步信号或发送上行物理层信号。
根据本申请的一个方面,上述方法的特征在于,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
根据本申请的一个方面,上述方法的特征在于,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
根据本申请的一个方面,上述方法的特征在于,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
根据本申请的一个方面,上述方法的特征在于,接收第二信息块;其中,所述第二信息块指示所述第一参考信号的配置信息。
根据本申请的一个方面,上述方法的特征在于,在第一符号集合中接收所述第一参考信号,或者,在第一符号集合中发送第二信号;其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
根据本申请的一个方面,上述方法的特征在于,所述第一节点包括一个用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点包括一个中继节点。
本申请公开了被用于无线通信的第二节点中的方法,其中,包括:
发送第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
发送第一信号,或者,接收第一信号;
其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
根据本申请的一个方面,上述方法的特征在于,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
根据本申请的一个方面,上述方法的特征在于,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
根据本申请的一个方面,上述方法的特征在于,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
根据本申请的一个方面,上述方法的特征在于,发送第二信息块;其中,所述第二信息块指示所述第一参考信号的配置信息。
根据本申请的一个方面,上述方法的特征在于,在第一符号集合中发送所述第一参考信号,或者,在第一符号集合中接收第二信号;其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点,其中,包括:
第一处理器,接收第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
所述第一处理器,接收第一信号,或者,发送第一信号;
其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
本申请公开了一种被用于无线通信的第二节点,其中,包括:
第二处理器,发送第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
所述第二处理器,发送第一信号,或者,接收第一信号;
其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,和传统方案相比,本申请具备如下优势:
提高了基站配置的灵活性,有利于提升系统性能;
所述第一节点可以根据需求灵活的选择优先接收附加小区的同步信号或发送上行物理层信号。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息块和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一节点和第二节点之间传输的流程图;
图6示出了根据本申请的另一个实施例的第一节点和第二节点之间传输的流程图;
图7示出了根据本申请的一个实施例的第一信息块的示意图被用于确定第二PCI的示意图;
图8示出了根据本申请的一个实施例的第一时域资源与第一参考信号在时域是否交叠的示意图;
图9示出了根据本申请的一个实施例的第一时域资源与第一参考信号在时域是否交叠与第一PCI类型有关的示意图;
图10示出了根据本申请的一个实施例的第一节点接收第一参考信号或发送第二信号的示意图;
图11示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息块和第一信号的流程图,如附图1所示。在附图1中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请所述的第一节点100在步骤101中接收第一信息块,在步骤102中接收第一信号,或者,发送第一信号。
在实施例1中,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述PCI是指:Physical Cell Identifier,物理小区标识。
作为一个实施例,所述PCI是指:Physical Cell Identity,物理小区标识。
作为一个实施例,所述PCI是指:Physical-layer Cell Identity,物理层小区标识。
作为一个实施例,所述PCI是指:physCellId。
作为一个实施例,所述第一信息块由更高层(higher layer)信令携带。
作为一个实施例,所述第一信息块由RRC(Radio Resource Control,无线电资源控制)信令携带。
作为一个实施例,所述第一信息块包括一个RRC IE(Information Element,信息单元)中全部或部分域(filed)中的信息。
作为一个实施例,所述第一信息块包括TDD-UL-DL-ConfigCommon IE中全部或部分域中的信息。
作为一个实施例,所述第一信息块包括TDD-UL-DL-ConfigDedicated IE中全部或部分域中的信息。
作为一个实施例,所述第一信息块由一个RRC IE携带。
作为上述实施例的一个子实施例,携带所述第一信息块的IE的名称里包括“TDD-UL-DL-Config”。
作为上述实施例的一个子实施例,携带所述第一信息块的IE的名称里包括“ServingCellConfig”。
作为一个实施例,所述第一信息块由TDD-UL-DL-ConfigCommon IE携带。
作为一个实施例,所述第一信息块由TDD-UL-DL-ConfigDedicated IE携带。
作为一个实施例,所述第一信息块由ServingCellConfig IE携带。
作为一个实施例,所述第一信息块由ServingCellConfigCommon IE携带。
作为一个实施例,所述第一信息块由ServingCellConfigCommonSIB IE携带。
作为一个实施例,所述第一信息块由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)携带。
作为一个实施例,所述第一信息块由物理层信令携带。
作为一个实施例,所述第一信息块由DCI(Downlink control information,下行控制信息)携带。
作为一个实施例,所述第一信息块包括一个DCI中的一个或多个域中的信息。
作为一个实施例,所述第一信息块由DCI format 2_0的DCI携带。
作为一个实施例,所述第一信息块被所述第一节点100用于确定所述第一时域资源。
作为一个实施例,所述第一信息块指示:所述第一信号块的发送者在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信息块指示:所述第一时域资源中的至少一个符号同时被用于上行传输和下行传输。
作为一个实施例,所述第一信息块指示:所述第一时域资源中的任一符号同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源包括至少一个符号(symbol)。
作为一个实施例,所述第一时域资源包括一个符号。
作为一个实施例,所述第一时域资源包括多个连续的符号。
作为一个实施例,所述第一时域资源包括多个不连续的符号。
作为一个实施例,所述第一时域资源包括至少一个时隙(slot)。
作为一个实施例,所述第一时域资源包括至少一个子帧(subframe)。
作为一个实施例,所述第一信息块的接收者在第一时域资源中接收无线信号。
作为一个实施例,所述第一信息块的接收者在第一时域资源中发送无线信号。
作为一个实施例,所述第一信息块的接收者在第一时域资源中接收无线信号,或者,发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一时域资源中的至少一个符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一时域资源中的任一符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区组(cell group)中在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区组中在所述第一时域资源中的至少一个符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区组中在所述第一时域资源中的任一符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区中在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区中在所述第一时域资源中的至少一个符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区中在所述第一时域资源中的任一符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区的一个BWP(Bandwidth part,部分带宽)中在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区的一个BWP中在所述第一时域资源中的至少一个符号中同时接收和发送无线信号。
作为一个实施例,所述第一信号块的发送者在所述第一信号所在的小区的一个BWP中在所述第一时域资源中的任一符号中同时接收和发送无线信号。
作为一个实施例,所述第一时域资源包括可以被同时用于上行传输和下行传输的符号。
作为一个实施例,所述第一时域资源中的至少一个符号可以同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的任一符号可以同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源包括被同时用于上行传输和下行传输的符号。
作为一个实施例,所述第一时域资源中的至少一个符号被同时用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的任一符号被同时用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中在所述第一信号所在的小区组中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的至少一个符号在所述第一信号所在的小区组中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的任一符号在所述第一信号所在的小区组中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中在所述第一信号所在的小区中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的至少一个符号在所述第一信号所在的小区中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的任一符号在所述第一信号所在的小区中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中在所述第一信号所在的小区的一个BWP中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的至少一个符号在所述第一信号所在的小区的一个BWP中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源中的任一符号在所述第一信号所在的小区的一个BWP中同时被用于上行传输和下行传输。
作为一个实施例,所述第一时域资源被配置为全双工(Full duplex)。
作为一个实施例,所述第一时域资源被配置为非交叠全双工(non-overlapping full duplex)。
作为一个实施例,所述第一时域资源被配置为SBFD。
作为一个实施例,所述第一时域资源中的至少一个符号被配置为大于一个链路方向。
作为一个实施例,所述第一时域资源中的任一符号被配置为大于一个链路方向。
作为一个实施例,所述链路方向的范围包括UL(Uplink,上行链路)、DL(Downlink,下行链路)、灵活(Flexible)或者SL(Sidelink,副链路)中的至少之一。
作为一个实施例,所述链路方向的范围包括UL或者DL中的至少之一。
作为一个实施例,所述链路方向的范围包括UL和DL。
作为一个实施例,所述链路方向的范围包括UL、DL和灵活。
作为一个实施例,所述符号包括OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号包括DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变换正交频分复用)符号。
作为一个实施例,所述符号是转换预编码器(Transform precoding)的输出经过OFDM符号发生(Generation)后得到的。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号是单播(unicast)的。
作为一个实施例,所述第一信号是UE专用(UE-dedicated)的。
作为一个实施例,所述第一信号携带一个TB(Transport block,传输块)。
作为一个实施例,所述第一信号包括在物理信道上传送的信号。
作为一个实施例,所述第一信号包括在物理层控制信道上传送的信号。
作为一个实施例,所述第一信号包括在PDCCH(Physical downlink control channel,物理下行控制信道)上传送的信号。
作为一个实施例,所述第一信号包括在PUCCH(Physical uplink control channel,物理上行控制信道)上传送的信号。
作为一个实施例,所述第一信号在PDCCH或PUCCH上传输,所述第一信号的CRC(Cyclic redundancy check,循环冗余校验)被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所加扰(Scrambled)。
作为一个实施例,所述第一信号在PDCCH或PUCCH上传输,C-RNTI被用于生成所述第一信号的扰码序列。
作为一个实施例,所述第一信号包括在物理层共享信道上传送的信号。
作为一个实施例,所述第一信号包括在PDSCH(Physical downlink shared channel,物理下行共享信道)上传送的信号。
作为一个实施例,所述第一信号包括在PUSCH(Physical uplink shared channel,物理上行共享信道)上传送的信号。
作为一个实施例,所述第一信号在PDSCH或PUSCH上传输,所述第一信号的调度DCI的CRC被C-RNTI所加扰。
作为一个实施例,所述第一信号在PDSCH或PUSCH上传输,C-RNTI被用于生成所述第一信号的扰码序列。
作为一个实施例,所述第一参考信号包括基带信号。
作为一个实施例,所述第一参考信号包括无线信号。
作为一个实施例,所述第一参考信号包括射频信号。
作为一个实施例,所述第一参考信号包括下行参考信号。
作为一个实施例,所述第一参考信号包括SS/PBCH(Synchronization signal/Physical broadcast channel,同步信号/物理广播信道)块(block)。
作为一个实施例,所述第一参考信号是下行参考信号。
作为一个实施例,所述第一参考信号是SS/PBCH Block。
作为一个实施例,所述第一参考信号包括PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)和PBCH。
作为一个实施例,所述第一参考信号包括PSS,SSS,PBCH和PBCH的DMRS(Demodulation reference signal,解调参考信号)。
作为一个实施例,所述第一参考信号包括PSS,SSS和MIB(Master Information Block,主系统信息块)。
作为一个实施例,所述第一参考信号在时域周期性出现。
作为一个实施例,所述第一参考信号在时域多次出现。
作为一个实施例,所述第一参考信号在时域仅出现一次。
作为一个实施例,所述第一参考信号对应一个SS/PBCH Block索引。
作为一个实施例,所述第一参考信号占用的信道包括PBCH。
作为一个实施例,所述第一参考信号的发送者是被所述第一PCI所标识的小区。
作为一个实施例,所述第一参考信号在被所述第一PCI所标识的小区中发送。
作为一个实施例,所述第一参考信号和所述第一信号属于同一个BWP。
作为一个实施例,所述第一参考信号和所述第一信号属于同一个载波(Carrier)。
作为一个实施例,所述第一参考信号和所述第一信号属于不同的BWP。
作为一个实施例,所述第一参考信号和所述第一信号属于不同的载波。
作为一个实施例,所述第一参考信号和所述第一信号属于同一个小区。
作为一个实施例,所述第一参考信号和所述第一信号属于不同的小区。
作为一个实施例,所述第一参考信号包括的SS序列指示所述第一PCI。
作为一个实施例,所述第一参考信号包括的PSS序列和SSS序列共同指示所述第一PCI。
作为一个实施例,所述第一参考信号包括的PSS序列指示所述第一PCI。
作为一个实施例,所述第一参考信号包括的SSS序列指示所述第一PCI。
作为一个实施例,所述第一节点100从所述第一参考信号的SS序列中能无疑义的得到所述第一PCI。
作为一个实施例,所述空间关系包括TCI(Transmission configuration indicator,传输配置指示)状态(state)。
作为一个实施例,所述空间关系包括QCL(Quasi co-location,准共址)假设(assumption)。
作为一个实施例,所述空间关系包括QCL参数。
作为一个实施例,所述QCL参数的类型包括TypeA,TypeB,TypeC和TypeD。
作为一个实施例,所述QCL参数类型为TypeA的QCL参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread),平均延时(average delay),延时扩展(delay spread)。
作为一个实施例,所述QCL参数类型为TypeB的QCL参数包括多普勒位移(Doppler shift),多普勒扩展(Doppler spread)。
作为一个实施例,所述QCL参数类型为TypeC的QCL参数包括多普勒位移(Doppler shift),平均延时(average delay)。
作为一个实施例,所述QCL参数类型为TypeD的QCL参数包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述TypeA,所述TypeB,所述TypeC和所述TypeD的具体定义参见3GPP TS38.214的第5.1.5章节。
作为一个实施例,所述空间关系包括空域滤波器(spatial domain filter)。
作为一个实施例,所述空间关系包括空域发送滤波器(spatial domain transmission filter)。
作为一个实施例,所述空间关系包括空域接收滤波器(spatial domain receive filter)。
作为一个实施例,所述空间关系包括空间发送参数(Spatial Tx parameter)。
作为一个实施例,所述空间关系包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述空间关系包括大尺度特性(large-scale properties)。
作为一个实施例,所述空间关系包括天线端口(antenna ports)。
作为一个实施例,所述空间关系包括大尺度特性(large-scale properties)。
作为一个实施例,所述大尺度特性包括时延扩展(delay spread),多普勒频移(Doppler spread),平均增益(average gain),平均时延(average delay),空间接收参数(spatial Rx parameters)中的一种或多种。
作为一个实施例,所述句子所述第一参考信号被用于确定所述第一信号的空间关系的意思包括:所述第一参考信号和所述第一信号准共址。
作为一个实施例,所述句子所述第一参考信号被用于确定所述第一信号的空间关系的意思包括:所述第一参考信号和所述第一信号准共址且对应QCL-TypeD。
作为一个实施例,所述句子所述第一参考信号被用于确定所述第一信号的空间关系的意思包括:从所述第一参考信号所经历的信道的大尺度特性可以推断出所述第一信号所经历的信道的大尺度特性。
作为一个实施例,所述句子所述第一参考信号被用于确定所述第一信号的空间关系的意思包括:相同的空间特性被所述第一节点100用于接收所述第一参考信号和发送或者接收所述第一信号。
作为一个实施例,所述句子所述第一参考信号被用于确定所述第一信号的空间关系的意思包括:所述第一节点100假设(assume)相同的空间特性被用于接收所述第一参考信号和发送或者接收所述第一信号。
作为一个实施例,所述句子所述第一参考信号被用于确定所述第一信号的空间关系的意思包括:所述 第一节点100用和相同的空域滤波器来接收所述第一参考信号和发送或接收所述第一信号。
作为一个实施例,所述第一PCI是一个非负整数。
作为一个实施例,所述第一PCI是不大于1007的非负整数。
作为一个实施例,所述第一PCI所标识的小区是所述第一节点的服务小区。
作为一个实施例,所述第一PCI所标识的小区不是所述第一节点的服务小区。
作为一个实施例,一个PCI所标识的小区是指:PCI等于所述一个PCI的小区。
作为一个实施例,所述第一PCI被用于生成所述第一参考信号包括的SS序列。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构。LTE,LTE-A及未来5G系统的网络架构称为EPS(Evolved Packet System,演进分组系统)。5G NR或LTE网络架构可称为5GS(5G System)/EPS200或某种其它合适术语。5GS/EPS200可包括一个或一个以上UE201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(Next Generation Radio Access Network,下一代无线接入网络)202,5G-CN(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmitter Receiver Point,发送接收节点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(Session Initiation Protocol,SIP)电话、膝上型计算机、个人数字助理(Personal Digital Assistant,PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路包括蜂窝网链路。
作为一个实施例,所述第一信息块的发送者包括所述gNB203。
作为一个实施例,所述第一信息块的接收者包括所述UE201。
作为一个实施例,所述第一信号的发送者包括所述gNB203。
作为一个实施例,所述第一信号的接收者包括所述UE201。
作为一个实施例,所述第一信号的发送者包括所述UE201。
作为一个实施例,所述第一信号的接收者包括所述gNB203。
作为一个实施例,所述第一参考信号的发送者包括所述gNB203。
作为一个实施例,所述第一参考信号的发送者包括所述gNB204。
作为一个实施例,所述第一参考信号的接收者包括所述UE201。
作为一个实施例,所述gNB203支持SBFD。
作为一个实施例,所述gNB203支持更灵活的双工模式或全双工模式。
作为一个实施例,所述UE201支持SBFD。
作为一个实施例,所述UE201支持更灵活的双工模式或全双工模式。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE或V2X(Vehicle to Everything,车联网)中的RSU(Road Side Unit,路边单元),车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1(Layer1,L1)、层2(Layer2,L2)和层3(Layer3,L3)。L1是最低层且实施各种PHY(物理层)信号处理功能。L1在本文将称为PHY301。L2305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备之间,或者两个UE之间的链路。L2305包括MAC子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的L3中的RRC子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1)和层2(L2),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2355中的PDCP子层354,L2355中的RLC子层353和L2355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS(Quality of Service,服务质量)流和数据无线承载(Data Radio Bearer,DRB)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信息块生成于所述RRC子层306。
作为一个实施例,所述第一信息块生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一信息块生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一参考信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述RRC子层306。
作为一个实施例,所述第一信号生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向纠错(Forward Error Correction,FEC),以及基于各种调制方案(例如,二进制相移键控(Binary Phase Shift Keying,BPSK)、正交相移键控(Quadrature Phase Shift Keying,QPSK)、M进制相移键控(M-PSK)、M进制正交振幅调制(M-Quadrature Amplitude Modulation,M-QAM)等)的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(Inverse Fast Fourier Transform,IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(Fast Fourier Transform,FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(Acknowledgement,ACK)和/或否定确认(Negative Acknowledgement,NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发 射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1的功能。控制器/处理器475实施L2功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少接收第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;接收第一信号,或者,发送第一信号;第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信息块;接收第一信号,或者,发送第一信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少发送第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;发送第一信号,或者,接收第一信号;第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信息块;发送第一信号,或者,接收第一信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信息块。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于发送所述第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的第一节点和第二节点之间的传输的第一个流程图。在附图 5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在附图5中,方框F51中的步骤是可选的。
对于第一节点U1,在步骤S510中接收第一信息块;在步骤S5110中接收第二信息块;在步骤S511中发送第一信号。
对于第二节点N2,在步骤S520中发送第一信息块;在步骤S5210中发送第二信息块;在步骤S521中接收第一信号。
实施例5中,所述第一信息块被所述第一节点U1用于确定第一时域资源,所述第一时域资源包括至少一个符号;第一参考信号被所述第一节点U1用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点N2是本申请中的所述第二节点。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,附图5中的方框F51中的步骤存在;所述第二信息块指示所述第一参考信号的配置信息。
作为一个实施例,所述第一参考信号的所述配置信息包括占用的时域资源,周期,发送功率,同步信号序列,或子载波间隔中的一种或多种。
作为一个实施例,所述第二信息块在所述第一PCI所标识的小区中被发送。
作为一个实施例,所述第二信息块在所述第二PCI所标识的小区中被发送。
作为一个实施例,所述第二信息块由更高层信令携带。
作为一个实施例,所述第二信息块由RRC信令携带。
作为一个实施例,所述第二信息块包括一个RRC IE中的全部或者部分域中的信息。
作为一个实施例,所述第二信息块包括SIB1IE中的全部或者部分域的信息。
作为一个实施例,所述第二信息块包括ServingCellConfigCommon IE中的全部或者部分域的信息。
作为一个实施例,所述第二信息块包括ServingCellConfigCommonSIB IE中的全部或者部分域的信息。
作为一个实施例,所述第二信息块包括ServingCellConfig IE中的全部或者部分域的信息。
作为一个实施例,所述第二信息块包括MimoParam-r17 IE中的全部或者部分域的信息。
作为一个实施例,所述第二信息块包括SSB-MTC-AdditionalPCI IE中的全部或者部分域的信息。
作为一个实施例,所述第二信息块由一个RRC IE携带。
作为一个实施例,所述第二信息块由SIB1IE携带。
作为一个实施例,所述第二信息块由ServingCellConfigCommon IE携带。
作为一个实施例,所述第二信息块由ServingCellConfigCommonSIB IE携带。
作为一个实施例,所述第二信息块由ServingCellConfig IE携带。
作为一个实施例,所述第二信息块由MimoParam-r17 IE携带。
作为一个实施例,所述第二信息块由SSB-MTC-AdditionalPCI IE携带。
作为一个实施例,所述第二信息块由MAC CE携带。
作为一个实施例,所述第二信息块由物理层信令携带。
作为一个实施例,所述第一参考信号在时域的一次出现早于所述第一信息块。
作为一个实施例,所述第一参考信号在时域的一次出现晚于所述第一信息块。
作为一个实施例,所述第一参考信号在时域的一次出现早于所述第二信息块。
作为一个实施例,所述第一参考信号在时域的一次出现晚于所述第二信息块。
作为一个实施例,所述第一参考信号在时域的一次出现早于所述第一信号。
作为一个实施例,所述第一参考信号在时域的一次出现晚于所述第一信号。
作为一个实施例,所述第一信息块在时域早于所述第二信息块。
作为一个实施例,所述第一信息块在时域晚于所述第二信息块。
作为一个实施例,所述第一信息块在PDSCH上被传输。
作为一个实施例,所述第二信息块在PDSCH上被传输。
作为一个实施例,所述第一信号在PUSCH上被传输。
作为一个实施例,所述第一信号在PUCCH上被传输。
实施例6
实施例6示例了根据本申请的另一个实施例的第一节点和第二节点之间传输的流程图。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在附图6中,方框F61中的步骤是可选的。
对于第一节点U3,在步骤S630中接收第一信息块;在步骤S6110中接收第二信息块;在步骤S511中接收第一信号。
对于第二节点N4,在步骤S640中发送第一信息块;在步骤S6210中发送第二信息块;在步骤S521中发送第一信号。
实施例6中,所述第一信息块被所述第一节点U3用于确定第一时域资源,所述第一时域资源包括至少一个符号;第一参考信号被所述第一节点U3用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述第一节点U3是本申请中的所述第一节点。
作为一个实施例,所述第二节点N4是本申请中的所述第二节点。
作为一个实施例,所述第二节点N4和所述第一节点U3之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N4和所述第一节点U3之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N4和所述第一节点U3之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,附图6中的方框F61中的步骤存在;所述第二信息块指示所述第一参考信号的配置信息。
作为一个实施例,所述第一信息块在时域早于所述第二信息块。
作为一个实施例,所述第一信息块在时域晚于所述第二信息块。
作为一个实施例,所述第一信息块在PDSCH上被传输。
作为一个实施例,所述第二信息块在PDSCH上被传输。
作为一个实施例,所述第一信号在PDSCH上被传输。
作为一个实施例,所述第一信号在PDCCH上被传输。
实施例7
实施例7示例了根据本申请的一个实施例的第一信息块的示意图被用于确定第二PCI的示意图;如附图7所示,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
作为一个实施例,所述第一信息块包括一个RRC IE中的全部或者部分域的信息。
作为一个实施例,所述第一信息块包括CellGroupConfig IE中的全部或者部分域的信息。
作为一个实施例,所述第一信息块包括SpCellConfig IE中的全部或者部分域的信息。
作为一个实施例,所述第一信息块包括CellGroupConfig IE中的全部或者部分域的信息。
作为一个实施例,所述第一信息块包括SCellConfig IE中的全部或者部分域的信息。
作为一个实施例,所述第一信息块由一个RRC IE携带。
作为一个实施例,所述第二信息块由CellGroupConfig IE携带。
作为一个实施例,所述第二信息块由SpCellConfig IE携带。
作为一个实施例,所述第二信息块中的servCellIndex域被用于确定所述第二PCI。
作为一个实施例,所述第二信息块由SCellConfig IE携带。
作为一个实施例,所述第二信息块中的SCellIndex域被用于确定所述第二PCI。
作为一个实施例,所述第二信息块中的sCellToAddModList域被用于确定所述第二PCI。
作为一个实施例,所述第二信息块中显式地指示所述第二PCI。
作为一个实施例,所述第二信息块中隐式地指示所述第二PCI。
作为一个实施例,所述第二信息块指示一个小区索引,所述一个小区索引被用于确定所述第二PCI。
作为一个实施例,所述一个小区索引包括SCellIndex。
作为一个实施例,所述一个小区索引包括ServCellIndex。
作为一个实施例,所述第二PCI所标识的小区是所述第一节点的服务小区。
作为一个实施例,所述句子所述第二PCI所标识的小区是所述第一节点的服务小区的意思包括:所述第一节点针对所述第二PCI所标识的小区执行了辅服务小区添加(SCell addition)。
作为一个实施例,所述句子所述第二PCI所标识的小区是所述第一节点的服务小区的意思包括:所述第二PCI所标识的小区通过sCellToAddModList IE被配置。
作为一个实施例,所述句子所述第二PCI所标识的小区是所述第一节点的服务小区的意思包括:所述第一节点被分配了针对所述第二PCI所标识的小区的SCellIndex。
作为一个实施例,所述句子所述第二PCI所标识的小区是所述第一节点的服务小区的意思包括:所述第一节点被分配了针对所述第二PCI所标识的小区的ServCellIndex。
作为一个实施例,所述句子所述第二PCI所标识的小区是所述第一节点的服务小区的意思包括:所述第一节点与所述第二PCI所标识的小区之间已建立RRC连接。
作为一个实施例,所述句子所述第二PCI所标识的小区是所述第一节点的服务小区的意思包括:所述第一节点的C-RNTI是由所述第二PCI所标识的小区分配的。
作为一个实施例,所述第二PCI所标识的小区是所述第一节点的SpCell(Special Cell,特殊小区)。
作为一个实施例,所述第二PCI所标识的小区是所述第一节点的PCell(Primary Cell,主小区)。
作为一个实施例,所述第二PCI所标识的小区是所述第一节点的SCell(Secondary Cell,辅小区)。
作为一个实施例,当一个小区通过sCellToAddModList IE被配置时,所述一个小区是服务小区;当一个小区是SpCell时,所述一个小区是服务小区。
作为一个实施例,当一个小区既未通过sCellToAddModList IE被配置也不是SpCell时,所述一个小区不是服务小区。
作为一个实施例,当一个小区既未通过sCellToAddModList IE被配置也不是SpCell时,所述一个小区是附加小区或辅助小区。
作为一个实施例,当所述第一PCI等于所述第二PCI时,所述第一PCI标识的小区是所述第一节点的服务小区。
作为一个实施例,当所述第一PCI等于所述第二PCI时,所述第一PCI标识的小区是SpCell或者所述第一PCI标识的小区通过sCellToAddModList IE被配置。
作为一个实施例,当所述第一PCI等于所述第二PCI时,所述第一节点不期望(expect)所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当所述第一PCI等于所述第二PCI,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点认为发生了一个错误。
实施例8
实施例8示例了根据本申请的一个实施例的第一时域资源与第一参考信号在时域是否交叠的示意图; 如附图8所示,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一PCI标识的小区不是所述第一节点的服务小区。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点未针对所述第一PCI所标识的小区执行辅服务小区添加。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点最新接收的sCellToAddModList不包括所述第一PCI所标识的小区。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点最新接收的sCellToAddModList和sCellToAddModListSCG都不包括所述第一PCI所标识的小区。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点未被分配针对所述第一PCI所标识的小区的SCellIndex。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点未被分配针对所述第一PCI所标识的小区的ServCellIndex。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点与所述第一PCI所标识的小区之间没有建立RRC连接。
作为一个实施例,所述句子所述第一PCI所标识的小区不是所述第一节点的服务小区的意思包括:所述第一节点的C-RNTI不是由所述第一PCI所标识的小区分配的。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一PCI标识的小区是一个附加小区或辅助小区。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一PCI标识的小区既未通过sCellToAddModList IE被配置也不是SpCell。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一信息块的发送者自行确定所述第一时域资源和所述第一参考信号在时域是否交叠。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当所述第一PCI不等于所述第二PCI,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点不认为发生了错误。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域正交。
实施例9
实施例9示例了根据本申请的一个实施例的第一时域资源与第一参考信号在时域是否交叠与第一PCI类型有关的示意图;如附图9所示,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
作为一个实施例,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关的意思包括:第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI是一个服务小区PCI还是一个附加PCI有关。
作为一个实施例,当所述第一PCI是一个服务小区PCI时,所示第一时域资源和所述第一参考信号在时域正交。
作为一个实施例,当所述第一PCI是一个服务小区PCI时,所述第一节点不期望(expect)所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当所述第一PCI是一个服务小区PCI,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点认为发生了一个错误。
作为一个实施例,当所述第一PCI是一个附加PCI时,所述第一时域资源和所述第一参考信号在时域 是否交叠是实现相关的。
作为一个实施例,当所述第一PCI是一个附加PCI时,所述第一信息块的发送者自行确定所述第一时域资源和所述第一参考信号在时域是否交叠。
作为一个实施例,当所述第一PCI是一个附加PCI时,所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当所述第一PCI是一个附加PCI,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点不认为发生了错误。
作为一个实施例,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关的意思包括:第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI是否对应一个ServCellIndex有关。
作为一个实施例,当所述第一PCI对应一个ServCellIndex时,所述第一时域资源和所述第一参考信号在时域正交。
作为一个实施例,当所述第一PCI对应一个ServCellIndex时,所述第一节点不期望(expect)所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当所述第一PCI对应一个ServCellIndex时,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点认为发生了一个错误。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的ServCellIndex时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的ServCellIndex时,所述第一信息块的发送者自行确定所述第一时域资源和所述第一参考信号在时域是否交叠。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的ServCellIndex时,所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的ServCellIndex时,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点不认为发生了错误。
作为一个实施例,所述ServCellIndex是不大于31的非负整数。
作为一个实施例,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关的意思包括:第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI是否对应一个SCellIndex有关。
作为一个实施例,当所述第一PCI对应一个SCellIndex时,所述第一时域资源和所述第一参考信号在时域正交。
作为一个实施例,当所述第一PCI对应一个SCellIndex时,所述第一节点不期望(expect)所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当所述第一PCI对应一个SCellIndex时,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点认为发生了一个错误。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的SCellIndex时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的SCellIndex时,所述第一信息块的发送者自行确定所述第一时域资源和所述第一参考信号在时域是否交叠。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的SCellIndex时,所述第一时域资源和所述第一参考信号在时域交叠。
作为一个实施例,当第一节点未被分配针对所述第一PCI所标识的小区的SCellIndex时,并且所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点不认为发生了错误。
作为一个实施例,所述SCellIndex是不大于31的正整数。
实施例10
实施例10示例了根据本申请的一个实施例的第一节点接收第一参考信号或发送第二信号的示意图; 所述第一节点在第一符号集合中接收所述第一参考信号,或者,在第一符号集合中发送第二信号;其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
作为一个实施例,所述第一符号集合包括至少一个符号。
作为一个实施例,所述第一符号集合包括一个符号。
作为一个实施例,所述第一符号集合包括多个连续的符号。
作为一个实施例,所述第一符号集合包括多个不连续的符号。
作为一个实施例,所述第一符号集合包括至少一个时隙。
作为一个实施例,所述第一符号集合包括至少一个子帧。
作为一个实施例,所述第一符号集合是RRC配置的。
作为一个实施例,所述第一符号集合包括被分配给第二信号的时域资源。
作为一个实施例,所述第一符号集合包括所述第一参考信号占用的时域资源。
作为一个实施例,所述第一符号集合包括所述第一时域资源。
作为一个实施例,所述第一时域资源包括所述第一符号集合。
作为一个实施例,所述第一符号集合与所述第一时域资源在时域交叠。
作为一个实施例,所述第一符号集合包括至少一个符号属于所述第一时域资源。
作为一个实施例,所述第一符号集合中的任一符号属于所述第一时域资源。
作为一个实施例,所述第一符号集合中包括至少一个符号不属于所述第一时域资源。
作为一个实施例,所述第一时域资源中包括至少一个符号不属于所述第一符号集合。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括在物理信道上传送的信号。
作为一个实施例,所述第二信号包括在物理层控制信道上传送的信号。
作为一个实施例,所述第二信号包括在PUCCH上传送的信号。
作为一个实施例,所述第二信号在PUCCH上传输,所述第二信号的CRC被C-RNTI所加扰。
作为一个实施例,所述第二信号在PUCCH上传输,C-RNTI被用于生成所述第一信号的扰码序列。
作为一个实施例,所述第二信号包括在物理层共享信道上传送的信号。
作为一个实施例,所述第二信号包括在PUSCH上传送的信号。
作为一个实施例,所述第二信号在PUSCH上传输,所述第二信号的调度DCI的CRC被C-RNTI所加扰。
作为一个实施例,所述第二信号在PUSCH上传输,C-RNTI被用于生成所述第二信号的扰码序列。
作为一个实施例,所述第一参考信号和所述第二信号占用相同的一个或多个符号。
作为一个实施例,所述第一参考信号被配置占用和所述第二信号相同的一个或多个符号。
作为一个实施例,所述第一参考信号资源被配置占用和所述第二信号相同的一个或多个符号。
作为一个实施例,所述第一参考信号被配置的一个或多个符号被所述第二信号占用。
作为一个实施例,所述第一参考信号资源被配置的一个或多个符号被所述第二信号占用。
作为一个实施例,所述第一参考信号占用的所有符号被所述第二信号占用。
作为一个实施例,所述第一参考信号占用的至少一个符号不被所述第二信号占用。
作为一个实施例,所述第一参考信号资源在时域的至少一次出现和所述第二信号占用相互正交的时间资源。
作为上述实施例的一个子实施例,所述第一参考信号和所述至少一次出现中的任一次出现在时域正交。
作为一个实施例,所述第一节点自行确定在所述第一符号集合中接收所述第一参考信号还是发送所述第二信号。
作为一个实施例,所述第二信号的优先级被用于确定所述第一节点在所述第一符号集合中接收所述第一参考信号还是发送所述第二信号。
作为一个实施例,第二参考信号资源集合被用于确定所述第二信号的空间关系,所述第一节点在所述第一符号集合中接收所述第一参考信号还是发送所述第二信号和所述第二参考信号资源集合有关。
作为一个实施例,所述第二参考信号资源集合包括第二参考信号资源,第二参考信号在所述第二参考信号资源中被传输,所述第二参考信号被用于确定所述第二信号的空间关系。
作为一个实施例,所述第二参考信号包括同步信号。
作为一个实施例,所述第二参考信号包括SS/PBCH block。
作为一个实施例,所述第二参考信号是SS/PBCH block。
作为一个实施例,所述句子所述第二参考信号被用于确定所述第二信号的空间关系包括:所述第二参考信号和所述第二信号准共址。
作为一个实施例,所述句子所述第二参考信号被用于确定所述第二信号的空间关系包括:所述第二参考信号和所述第二信号:所述第一节点假设(assume)相同的空间特性被用于接收所述第二参考信号和发送所述第二信号。
作为一个实施例,所述句子所述第二参考信号被用于确定所述第二信号的空间关系包括:从所述第二参考信号所经历的大尺度特性可以推断出所述第一信号所经历的信道的大尺度特性。
作为一个实施例,所述句子所述第二参考信号被用于确定所述第二信号的空间关系包括:所述第一节点用相同的空域滤波器来接收所述第二参考信号和发送所述第二信号。
作为一个实施例,所述第二参考信号被用于确定第三PCI。
作为一个实施例,所述第三PCI是一个非负整数。
作为一个实施例,所述第三PCI是一个不大于1007的非负整数。
作为一个实施例,所述第二参考信号的发送者是被所述第三PCI所标识的小区。
作为一个实施例,所述第二参考信号包括的SS序列指示所述第三PCI。
作为一个实施例,所述第二参考信号包括的PSS序列和SSS序列共同指示所述第三PCI。
作为一个实施例,所述第二参考信号包括的PSS序列指示所述第三PCI。
作为一个实施例,所述第二参考信号包括的SSS序列指示所述第三PCI。
作为一个实施例,所述第一节点从所述第二参考信号的SS序列中能无疑义的得到所述第三PCI。
作为一个实施例,当所述第三PCI等于所述第二PCI时,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,当所述第三PCI等于所述第一PCI时,所述第一节点在所述第一符号集合中发送第二信号。
作为一个实施例,所述第二信号所占用的物理信道被用于确定所述第一节点在所述第一符号集合中接收所述第一参考信号还是发送所述第二信号。
作为一个实施例,所述第二信号在PUCCH上传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号在PUCCH上传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号在PUSCH上传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号在PUSCH上传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号在PRACH(Physical random access channel,物理随机接入信道)上传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号在PRACH上传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号是基于动态调度(dynamically scheduled)的PUSCH传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号是基于动态调度的PUSCH传输,所述第一节点在所述第一符号集合 中接收所述第一参考信号。
作为一个实施例,所述第二信号是基于配置调度(configured grant)的PUSCH传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号是基于配置调度的PUSCH传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号是基于动态调度的重复类型A的PUSCH传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号是基于动态调度的重复类型A的PUSCH传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号是基于配置调度的重复类型A的PUSCH传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号是基于配置调度的重复类型A的PUSCH传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号是基于动态调度的重复类型B的PUSCH传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号是基于动态调度的重复类型B的PUSCH传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号是基于配置调度的重复类型B的PUSCH传输,所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第二信号是基于配置调度的重复类型B的PUSCH传输,所述第一节点在所述第一符号集合中接收所述第一参考信号。
作为一个实施例,所述第二信号携带第一比特块,所述第一比特块包括UCI(Uplink control information,上行控制信息),所述第一节点在所述第一符号集合中发送所述第二信号。
作为一个实施例,所述第一比特块包括CSI(Channel state information,信道状态信息)。
作为一个实施例,所述第一比特块包括HARQ-ACK(Hybrid automatic repeat request-Acknowledgement,混合自动重传请求-确认)。
作为一个实施例,所述HARQ-ACK包括ACK。
作为一个实施例,所述HARQ-ACK包括NACK(Negative ACK,否定的确认)。
作为一个实施例,所述第一比特块包括SR(Scheduling Request,调度请求)信息。
实施例11
实施例11示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图,如附图11所示。在附图11中,第一节点中的处理装置1100包括第一处理机1101。
在实施例11中,所述第一处理机1101接收第一信息;接收第一信号,或者,发送第一信号;所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
作为一个实施例,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
作为一个实施例,所述第一处理机1101接收第二信息块;所述第二信息块指示所述第一参考信号的配置信息。
作为一个实施例,所述第一处理机1101在第一符号集合中接收所述第一参考信号,或者,在第一符 号集合中发送第二信号;其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
作为一个实施例,所述第一节点是用户设备。
作为一个实施例,所述第一节点是中继节点设备。
作为一个实施例,所述第一信号块的发送者在所述第一时域资源中的至少一个符号中同时接收和发送无线信号。
作为一个实施例,当所述第一PCI等于所述第二PCI时,所述第一节点不期望(expect)所述第一时域资源与第一参考信号在时域交叠;当所述第一时域资源和所述第一信号在时域交叠时,所述第一节点1100认为发生了一个错误。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一信息块的发送者自行确定所述第一时域资源和所述第一参考信号在时域是否交叠;当所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点1100不认为发生了错误;当所述第一时域资源和所述第一参考信号在时域交叠时,所述第一节点1100自行确定是否接收第一参考信号。作为一个实施例,所述第一处理机1101包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理机1101包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例12
实施例12示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图,如附图12所示。在附图12中,第二节点中的处理装置1200包括第二处理机1201。
在实施例12中,所述第二处理机1201发送第一信息块;发送第一信号,或者,接收第一信号;所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
作为一个实施例,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
作为一个实施例,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
作为一个实施例,所述第二处理机1201接收第二信息块;所述第二信息块指示所述第一参考信号的配置信息。
作为一个实施例,所述第二处理机1201在第一符号集合中发送所述第一参考信号,或者,在第一符号集合中接收第二信号;所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
作为一个实施例,所述第二节点是基站设备。
作为一个实施例,所述第二节点是用户设备。
作为一个实施例,所述第二节点是中继节点设备。
作为一个实施例,所述第一信号块的发送者在所述第一时域资源中的至少一个符号中同时接收和发送无线信号。
作为一个实施例,当所述第一PCI等于所述第二PCI时,所述第一信号块的接收者不期望(expect)所述第一时域资源与第一参考信号在时域交叠;当所述第一时域资源和所述第一信号在时域交叠时,所述第一信号块的接收者认为发生了一个错误。
作为一个实施例,当所述第一PCI不等于所述第二PCI时,所述第二节点1200自行确定所述第一时域资源和所述第一参考信号在时域是否交叠;当所述第一时域资源和所述第一参考信号在时域交叠时,所 述第一信息块的接收者不认为发生了错误;当所述第一时域资源和所述第一参考信号在时域交叠时,所述第一信号块的接收者自行确定是否接收第一参考信号。
作为一个实施例,所述第二处理机1201包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二处理机1201包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID(Radio Frequency Identification,射频识别技术)终端,NB-IoT(Narrow Band Internet of Things,窄带物联网)终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB(evolved Node B,演进的无线基站),gNB,TRP,GNSS(Global Navigation Satellite System,全球导航卫星系统),中继卫星,卫星基站,空中基站,RSU,无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (24)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理器,接收第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
    所述第一处理器,接收第一信号,或者,发送第一信号;
    其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
  3. 根据权利要求2所述的第一节点设备,其特征在于,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器接收第二信息块;其中,所述第二信息块指示所述第一参考信号的配置信息。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器在第一符号集合中接收所述第一参考信号,或者,在第一符号集合中发送第二信号;其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
  7. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二处理器,发送第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
    所述第二处理器,发送第一信号,或者,接收第一信号;
    其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
  8. 根据权利要求7所述的第二节点设备,其特征在于,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
  9. 根据权利要求8所述的第二节点设备,其特征在于,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
  10. 根据权利要求7至9中任一权利要求所述的第二节点设备,其特征在于,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
  11. 根据权利要求7至10中任一权利要求所述的第二节点设备,其特征在于,所述第二处理机接收第二信息块;所述第二信息块指示所述第一参考信号的配置信息。
  12. 根据权利要求7至11中任一权利要求所述的第二节点设备,其特征在于,所述第二处理机在第一符号集合中发送所述第一参考信号,或者,在第一符号集合中接收第二信号;所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
  13. 一种被用于无线通信的第一节点的方法,其特征在于,包括:
    接收第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
    接收第一信号,或者,发送第一信号;
    其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
  15. 根据权利要求14所述的方法,其特征在于,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
  16. 根据权利要求13至15中任一权利要求所述的方法,其特征在于,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
  17. 根据权利要求13至16中任一权利要求所述的方法,其特征在于,包括:
    接收第二信息块;
    其中,所述第二信息块指示所述第一参考信号的配置信息。
  18. 根据权利要求13至17中任一权利要求所述的方法,其特征在于,包括:
    在第一符号集合中接收所述第一参考信号,或者,在第一符号集合中发送第二信号;
    其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
  19. 一种被用于无线通信的第二节点的方法,其特征在于,包括:
    发送第一信息块,所述第一信息块被用于确定第一时域资源,所述第一时域资源包括至少一个符号;
    发送第一信号,或者,接收第一信号;
    其中,第一参考信号被用于确定所述第一信号的空间关系,所述第一参考信号被用于确定第一PCI;所述第一参考信号包括同步信号;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI有关。
  20. 根据权利要求19所述的方法,其特征在于,所述第一信息块被用于确定第二PCI;所述第一时域资源和所述第一参考信号在时域是否交叠与所述第一PCI和所述第二PCI是否相同有关;当所述第一PCI等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域相互正交。
  21. 根据权利要求20所述的方法,其特征在于,当所述第一PCI不等于所述第二PCI时,所述第一时域资源和所述第一参考信号在时域是否交叠是实现相关的。
  22. 根据权利要求19至21中任一权利要求所述的方法,其特征在于,所述第一时域资源和所述第一参考信号在时域是否交叠和所述第一PCI的类型有关。
  23. 根据权利要求19至22中任一权利要求所述的方法,其特征在于,包括:
    发送第二信息块;
    其中,所述第二信息块指示所述第一参考信号的配置信息。
  24. 根据权利要求19至23中任一权利要求所述的方法,其特征在于,包括:
    在第一符号集合中发送所述第一参考信号,或者,在第一符号集合中接收第二信号;
    其中,所述第一时域资源和所述第一参考信号在时域交叠;所述第一参考信号所占用的时域资源包括所述第一符号集合,被分配给所述第二信号的时域资源包括所述第一符号集合。
PCT/CN2023/127197 2022-10-28 2023-10-27 一种被用于无线通信的节点中的方法和装置 WO2024088394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211333654.7A CN117956587A (zh) 2022-10-28 2022-10-28 一种被用于无线通信的节点中的方法和装置
CN202211333654.7 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024088394A1 true WO2024088394A1 (zh) 2024-05-02

Family

ID=90800540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127197 WO2024088394A1 (zh) 2022-10-28 2023-10-27 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117956587A (zh)
WO (1) WO2024088394A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105850189A (zh) * 2013-12-26 2016-08-10 三星电子株式会社 用于高级蜂窝网络的休眠小区控制信令的方法和装置
CN110890947A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 通信方法及装置
WO2020066852A1 (ja) * 2018-09-27 2020-04-02 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN114978447A (zh) * 2021-02-18 2022-08-30 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105850189A (zh) * 2013-12-26 2016-08-10 三星电子株式会社 用于高级蜂窝网络的休眠小区控制信令的方法和装置
CN110890947A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 通信方法及装置
WO2020066852A1 (ja) * 2018-09-27 2020-04-02 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN114978447A (zh) * 2021-02-18 2022-08-30 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117956587A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220159647A1 (en) Method and device in nodes used for wireless communication
US20230412318A1 (en) Method and device in nodes used for wireless communication
CN113543357B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11109374B2 (en) Method and device in UE and base station for wireless communication
WO2024088394A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088397A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207705A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246672A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置