WO2024032480A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024032480A1
WO2024032480A1 PCT/CN2023/111144 CN2023111144W WO2024032480A1 WO 2024032480 A1 WO2024032480 A1 WO 2024032480A1 CN 2023111144 W CN2023111144 W CN 2023111144W WO 2024032480 A1 WO2024032480 A1 WO 2024032480A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
type
time
length
subset
Prior art date
Application number
PCT/CN2023/111144
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024032480A1 publication Critical patent/WO2024032480A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to transmission schemes and devices related to sidelinks in wireless communications.
  • NR SL New Radio Sidelink, New Radio Sidelink
  • Rel-16 Release-16, version 16
  • V2X Vehicle-To-Everything, Internet of Vehicles
  • Public Safety Public Safety
  • Rel-17 introduces periodic-based partial sensing (PBPS), continuous partial sensing (CPS), random selection and discontinuous reception (Discontinuous Reception, DRX) and other power saving schemes have also introduced a variety of inter-UE coordination schemes to provide more reliable channel resources.
  • PBPS periodic-based partial sensing
  • CPS continuous partial sensing
  • DRX discontinuous Reception
  • NRRel-18 needs to support the enhanced positioning technology of Sidelink Positioning (SL Positioning).
  • the mainstream sidelink positioning technologies include SL RTT technology, SLAOA, SLTDOA and SLAOD. , and the execution of these technologies requires the measurement of SL PRS (Sidelink Positioning Reference Signal).
  • SL PRS Sidelink Positioning Reference Signal
  • an SLBWP Bandwidth Part, bandwidth component
  • the existing method of determining the SL resource pool cannot meet the needs of SL PRS, seriously affecting the resource utilization of SL.
  • this application discloses a resource pool determination method for SL PRS, thereby effectively improving the utilization of SL resources. It should be noted that, as long as there is no conflict, the embodiments and features in the embodiments of the user equipment of the present application can be applied to the base station, and vice versa. The embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict. Furthermore, although the original intention of this application is for SL, this application can also be used for UL (Uplink). Furthermore, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for V2X scenarios
  • this application is also applicable to communication scenarios between terminals and base stations, terminals and relays, and relays and base stations, achieving similar technical effects in V2X scenarios.
  • using unified solutions for different scenarios can also help reduce hardware complexity and costs.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and any resource pool in the multiple resource pools is The time domain includes at least one time slot; the first time slot set includes a plurality of time slots, and the number of first type symbols included in any time slot in the first time slot set is equal to the at least one first type length. is used to determine at least one first type time slot subset from the first time slot set, and the number of first type symbols included in any time slot in the first time slot set is the same as the second type time slot subset.
  • the length is used to determine a second time slot subset from the first time slot set, the first type of symbols includes at least uplink symbols; any first type time slot subset in the at least one first type time slot subset A subset of slots is used to determine the location of at least one of the plurality of resource pools.
  • the second time slot subset is used to determine the time domain resources occupied by at least one of the multiple resource pools;
  • the first time-frequency resource block belongs to the first resource pool ,
  • the first resource pool is one of the plurality of resource pools,
  • the first time slot subset is one of the at least one first type time slot subset, and the first time slot subset is used to determine the time domain resources occupied by the first resource pool, and
  • the first length is a first type length of the at least one first type length that is used to determine the first time slot subset; the first length is used to determine the first time slot subset;
  • the number of symbols occupied by the target positioning reference signal in the time domain is not greater than the first length.
  • the problem to be solved by this application is: the existing method of determining the SL resource pool cannot meet the needs of the SL PRS, seriously affecting the resource utilization of the SL.
  • the method of this application is to introduce a new resource determination method for SL PRS.
  • the method of the present application is: establishing a relationship between the first bandwidth component and at least one first type length and a second length.
  • the method of this application is to propose a relationship between at least one first type length and a first time slot subset.
  • the method of this application is to propose a relationship between at least one first type length and the first resource pool.
  • the advantage of the above method is to implement a flexible resource determination method and improve the utilization rate of effective resources.
  • the above method is characterized in that the second subset of time slots is used to determine the time domain resources occupied by a second resource pool, and the second resource pool is one of the plurality of resource pools. a resource pool different from the first resource pool.
  • the above method is characterized in that the target positioning reference signal is used for secondary link positioning (SL positioning).
  • SL positioning secondary link positioning
  • the above method is characterized in that the number of symbols occupied by the target positioning reference signal in the time domain is equal to the first length.
  • the above method is characterized in that the first length and the second length are not equal.
  • the above method is characterized in that the at least one first type length and at least one first type bitmap are jointly used to determine the at least one first type time slot subset.
  • the above method is characterized in that the first bitmap is one of the at least one first type bitmap, and the first candidate time slot is any time slot in the first time slot set. slot, the relationship between the number of first type symbols included in the first candidate time slot and the first length and the first bit map are jointly used to determine whether the first candidate time slot Belongs to the first time slot subset.
  • the above method is characterized in that the first time-frequency resource block is determined by the first node from the first resource pool.
  • the above method is characterized in that the first time-frequency resource block is designated from the first resource pool by a downlink signaling.
  • the above method is characterized by comprising:
  • the first configuration information is used to configure the at least one first type length of the first bandwidth component.
  • the above method is characterized by comprising:
  • the second configuration information is used to configure the multiple resource pools.
  • the above method is characterized by comprising:
  • the first control information is used to indicate the first time-frequency resource block; the second time-frequency resource block belongs to the first resource pool, or the second time-frequency resource block belongs to the Second resource pool.
  • the above method is characterized in that the first node is user equipment.
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a base station.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and any resource pool in the multiple resource pools is The time domain includes at least one time slot; the first time slot set includes a plurality of time slots, The number of first-type symbols included in any time slot in the first time slot set and the at least one first-type length are used to determine at least one first-type time slot from the first time slot set. Slot subset, the number of first-type symbols included in any time slot in the first time slot set and the second length are used to determine the second time slot sub-set from the first time slot set.
  • the first type of symbols includes at least uplink symbols; any first type of time slot subset in the at least one first type of time slot subset is used to determine at least one resource pool among the plurality of resource pools Occupied time domain resources, the second time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools; the first time-frequency resource block belongs to the first resource pool, the first resource pool is one of the plurality of resource pools, the first time slot subset is one of the at least one first type time slot subset, the first time slot subset The set is used to determine the time domain resources occupied by the first resource pool, and the first length is a first type length of the at least one first type length used to determine the first time slot subset; The number of symbols occupied by the target positioning reference signal in the time domain is not greater than the first length.
  • the above method is characterized in that the second subset of time slots is used to determine the time domain resources occupied by a second resource pool, and the second resource pool is one of the plurality of resource pools. a resource pool different from the first resource pool.
  • the above method is characterized in that the target positioning reference signal is used for secondary link positioning.
  • the above method is characterized in that the number of symbols occupied by the target positioning reference signal in the time domain is equal to the first length.
  • the above method is characterized in that the first length and the second length are not equal.
  • the above method is characterized in that the at least one first type length and at least one first type bitmap are jointly used to determine the at least one first type time slot subset.
  • the above method is characterized in that the first bitmap is one of the at least one first type bitmap, and the first candidate time slot is any time slot in the first time slot set. slot, the relationship between the number of first type symbols included in the first candidate time slot and the first length and the first bit map are jointly used to determine whether the first candidate time slot Belongs to the first time slot subset.
  • the above method is characterized in that the first time-frequency resource block is determined by the first node from the first resource pool.
  • the above method is characterized in that the first time-frequency resource block is designated from the first resource pool by a downlink signaling.
  • the above method is characterized by comprising:
  • the first configuration information is used to configure the at least one first type length of the first bandwidth component.
  • the above method is characterized by comprising:
  • the second configuration information is used to configure the multiple resource pools.
  • the above method is characterized by comprising:
  • the first control information is used to indicate the first time-frequency resource block; the second time-frequency resource block belongs to the first resource pool, or the second time-frequency resource block belongs to the Second resource pool.
  • the above method is characterized in that the second node is user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a base station.
  • This application discloses a method used in a third node of wireless communication, which is characterized by including:
  • the first configuration information is used to configure at least a first type length and a second length of the first bandwidth component;
  • the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and the second Configuration information is used to configure the multiple resource pools;
  • any resource pool in the multiple resource pools includes at least one time slot in the time domain;
  • the first time slot set includes multiple time slots, and the first time slot
  • the number of first-type symbols included in any time slot in the slot set and the at least one first-type length are used to determine at least one first-type time slot subset from the first time slot set, so The number of first-type symbols included in any time slot in the first time slot set and the second length are used to determine a second time slot subset from the first time slot set, and the second time slot subset is determined from the first time slot set.
  • One type of symbols includes at least uplink symbols; the at least one first type of time slot subset Any first type of time slot subset is used to determine the time domain resources occupied by at least one of the multiple resource pools, and the second time slot subset is used to determine the multiple resource pools.
  • the above method is characterized in that the third node is a base station.
  • the above method is characterized in that the third node is a relay node.
  • the above method is characterized in that the third node is user equipment.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first transmitter sends the target positioning reference signal on the first time-frequency resource block
  • the first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and any resource pool in the multiple resource pools is The time domain includes at least one time slot; the first time slot set includes a plurality of time slots, and the number of first type symbols included in any time slot in the first time slot set is equal to the at least one first type length. is used to determine at least one first type time slot subset from the first time slot set, and the number of first type symbols included in any time slot in the first time slot set is the same as the second type time slot subset.
  • the length is used to determine a second time slot subset from the first time slot set, the first type of symbols including at least uplink symbols; any first type time slot subset in the at least one first type time slot subset
  • the slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools, and the second time slot subset is used to determine at least one of the plurality of resource pools.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the target positioning reference signal on the first time-frequency resource block
  • the first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and any resource pool in the multiple resource pools is The time domain includes at least one time slot; the first time slot set includes a plurality of time slots, and the number of first type symbols included in any time slot in the first time slot set is equal to the at least one first type length. is used to determine at least one first type time slot subset from the first time slot set, and the number of first type symbols included in any time slot in the first time slot set is the same as the second type time slot subset.
  • the length is used to determine a second time slot subset from the first time slot set, the first type of symbols includes at least uplink symbols; any first type time slot subset in the at least one first type time slot subset
  • the slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools, and the second time slot subset is used to determine at least one of the plurality of resource pools.
  • This application discloses a third node used for wireless communication, which is characterized by including:
  • the third transmitter sends the first configuration information and the second configuration information
  • the first configuration information is used to configure at least a first type length and a second length of the first bandwidth component;
  • the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and the second Configuration information is used to configure the multiple resource pools;
  • any resource pool in the multiple resource pools includes at least one time slot in the time domain;
  • the first time slot set includes multiple time slots, and the first time slot
  • the number of first-type symbols included in any time slot in the slot set and the at least one first-type length are used to determine at least one first-type time slot subset from the first time slot set, so The number of first-type symbols included in any time slot in the first time slot set and the second length are used to determine a second time slot subset from the first time slot set, and the second time slot subset is determined from the first time slot set.
  • One type of symbols includes at least uplink symbols; any first type time slot subset in the at least one first type time slot subset is used to determine the time domain occupied by at least one of the plurality of resource pools. resources, and the second subset of time slots is used to determine time domain resources occupied by at least one resource pool among the plurality of resource pools.
  • this application has the following advantages:
  • the application relates a first bandwidth component to at least one first type length and a second length.
  • This application proposes a relationship of at least one first type length to a first subset of time slots.
  • This application associates at least one first category length with the first resource pool proposal.
  • This application implements a flexible resource determination method and improves the utilization of effective resources.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of the relationship between the first time slot set, the first type of time slot subset and the second time slot subset according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the relationship between the first time slot subset, the second time slot subset and the first resource pool according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of the relationship between the first alternative time slot, the first bit map and the first time slot subset according to an embodiment of the present application
  • Figure 9 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
  • Figure 10 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step.
  • the first node in this application performs step 101 and sends the target positioning reference signal on the first time-frequency resource block;
  • the first bandwidth component is configured with at least a first type length and a second length;
  • the first bandwidth component includes frequency domain resources occupied by a plurality of resource pools, and any resource pool in the plurality of resource pools includes at least one time slot in the time domain;
  • the first time slot set includes a plurality of time slots, the The number of first-type symbols included in any time slot in the first time slot set and the at least one first-type length are used to determine at least one first-type time slot sub-section from the first time slot set.
  • the first type of symbols includes at least uplink symbols; any first type of time slot subset in the at least one first type of time slot subset is used to determine the occupation of at least one of the plurality of resource pools.
  • the second time slot subset is used to determine the time domain resources occupied by at least one resource pool among the plurality of resource pools; the first time-frequency resource block belongs to the first resource pool, The first resource pool is one of the plurality of resource pools, the first time slot subset is one of the at least one first type time slot subset, and the first time slot subset is Used to determine the time domain resources occupied by the first resource pool, the first length is a first type length of the at least one first type length used to determine the first time slot subset; said The number of symbols occupied by the target positioning reference signal in the time domain is not greater than the first length.
  • the first bandwidth component is a continuous bandwidth in a carrier frequency (Carrier Frequency).
  • the first bandwidth component is a continuous frequency domain resource in a carrier frequency.
  • the frequency domain resources occupied by the first bandwidth component are within one carrier frequency.
  • the first bandwidth component includes multiple subcarriers, and the multiple subcarriers included in the first bandwidth component all belong to the same carrier frequency.
  • the first bandwidth component includes multiple subcarriers, and the multiple subcarriers included in the first bandwidth component are continuous.
  • the first bandwidth component includes multiple subcarriers, and the subcarrier intervals of any two subcarriers among the multiple subcarriers included in the first bandwidth component are equal.
  • the first bandwidth component includes at least one Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • any physical resource block in the first bandwidth component includes multiple subcarriers.
  • the first bandwidth component includes at least one subchannel (Subchannel).
  • any sub-channel in the first bandwidth component includes multiple physical resource blocks.
  • the first bandwidth component is used for secondary link communications.
  • the first bandwidth component is used for secondary link transmission and secondary link reception.
  • the first bandwidth component is used to carry SL-SSB (SL-SS/PSBCH block, Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block, Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block) .
  • SL-SSB SL-SS/PSBCH block, Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block, Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block
  • the first bandwidth component is used to carry SCI (Sidelink Control Information).
  • the first bandwidth component is used to carry SL-SCH (Sidelink Shared Channel).
  • the first bandwidth component is used to carry SL HARQ (Sidelink Hybrid Automatic Repeat ReQuest, Sidelink Hybrid Automatic Repeat Request) information.
  • SL HARQ Segment Hybrid Automatic Repeat ReQuest, Sidelink Hybrid Automatic Repeat Request
  • the first bandwidth component is used to carry SL PTRS (Sidelink Phase Tracking Reference Signal, secondary link phase tracking reference signal).
  • SL PTRS Segment Phase Tracking Reference Signal, secondary link phase tracking reference signal
  • the first bandwidth component is used to carry SL PRS (Sidelink Positioning Reference Signal).
  • SL PRS Segment Positioning Reference Signal
  • the first bandwidth component is used to carry SL CSI-RS (Sidelink Channel Status Information Reference Signal, Sidelink Channel Status Information Reference Signal).
  • SL CSI-RS Segment Channel Status Information Reference Signal, Sidelink Channel Status Information Reference Signal
  • the first bandwidth component is used to carry PSCCH DMRS (Physical Sidelink Control Channel Demodulation Reference Signal, Physical Sidelink Control Channel Reference Signal).
  • PSCCH DMRS Physical Sidelink Control Channel Demodulation Reference Signal, Physical Sidelink Control Channel Reference Signal
  • the first bandwidth component is used to carry PSSCH DMRS (Physical Sidelink Shared Channel Demodulation Reference Signal, Physical Sidelink Shared Channel Reference Signal).
  • PSSCH DMRS Physical Sidelink Shared Channel Demodulation Reference Signal, Physical Sidelink Shared Channel Reference Signal
  • the first bandwidth part is a BWP (bandwidth part).
  • the definition of the BWP can be found in Chapter 6.3.2 of 3GPP TS38.331.
  • the first bandwidth component is a SL BWP (Secondary Link Bandwidth Component).
  • SLBWP As an example, the definition of SLBWP can be found in Chapter 6.3.5 of 3GPP TS38.331.
  • the first bandwidth component is configured with the at least one first type length.
  • the first bandwidth component configured with the at least one first type length means that the first bandwidth component is associated with the at least one first type length.
  • the first bandwidth component configured with the at least one first type length means that the parameters of the first bandwidth component include the at least one first type length.
  • any first type length in the at least one first type length is the number of symbols (Symbols) used for the secondary link in a time slot.
  • any first type length in the at least one first type length is the number of symbols used for secondary link positioning in a time slot.
  • At least one of the at least one first type length is the number of symbols used for the secondary link positioning reference signal in a time slot.
  • At least one of the at least one first type length is the number of symbols used for the secondary link in a time slot without SL-SSB.
  • At least one of the at least one first type length is the number of symbols used for SL PRS in one time slot.
  • any first type length in the at least one first type length is a positive integer.
  • the at least one first type length includes at least one of 4 symbols, 6 symbols, 8 symbols, and 14 symbols.
  • the at least one first type length includes at least one of 4, 6, 8, and 14.
  • one of the at least one first type length is 4 symbols.
  • one of the at least one first type length is 6 symbols.
  • one of the at least one first type length is 8 symbols.
  • one of the at least one first type length is 14 symbols.
  • one of the at least one first type length is 4.
  • one of the at least one first type length is 6.
  • one of the at least one first type length is 8.
  • one of the at least one first type length is 14.
  • the at least one first type length is configured by an RRC IE (Radio Resource Control Information Element).
  • RRC IE Radio Resource Control Information Element
  • the at least one first type length is configured by SL-BWP-Config.
  • the first bandwidth component is configured with the at least one first type length and the second length.
  • the first bandwidth component configured with the at least one first type length and the second length refers to the first bandwidth component with the at least one first type length and the second length. association.
  • the first bandwidth component is configured with the at least one first type length and the second length, which means that the parameters of the first bandwidth component include the at least one first type length and the second length. Two lengths.
  • the second length is the number of symbols used for the secondary link in a time slot.
  • the second length is the number of symbols used for secondary link communication in a time slot.
  • the second length is the number of symbols used for the secondary link in a time slot without SL-SSB.
  • the second length is the number of symbols used for PSCCH and PSSCH in one time slot.
  • the second length is the number of symbols used for PSCCH, PSSCH and PSFCH in one time slot.
  • the second length is a positive integer.
  • the second length is one of 7 symbols, 8 symbols, 9 symbols, 10 symbols, 11 symbols, 12 symbols, 13 symbols and 14 symbols.
  • the second length is one of 7, 8, 9, 10, 11, 12, 13, and 14.
  • the second length is 7 symbols.
  • the second length is 8 symbols.
  • the second length is 12 symbols.
  • the second length is 14 symbols.
  • the second length is 7.
  • the second length is 8.
  • the second length is 12.
  • the second length is 14.
  • the second length is configured by an RRC IE.
  • the at least one first type length and the second length are both configured by SL-BWP-Config.
  • the second length is not equal to any first type length in the at least one first type length.
  • the second length is not less than any first type length among the at least one first type length.
  • the second length is greater than any one of the at least one first type length.
  • the second length is equal to a first type length in the at least one first type length.
  • the second length is smaller than one of the at least one first type length.
  • any two first type lengths in the at least one first type length are unequal.
  • the first length is one of the at least one first type of length.
  • the first length and the second length are different.
  • the first length is no longer than the second length.
  • the first length is smaller than the second length.
  • the first length is equal to the second length.
  • the first length is greater than the second length.
  • the first length is 4, and the second length is 7.
  • the first length is 14 and the second length is 8.
  • the first length is 4 symbols
  • the second length is 7 symbols.
  • the first length is 14 symbols
  • the second length is 8 symbols
  • a time slot is a unit of time.
  • a time slot is a time domain resource.
  • a symbol is a unit of time.
  • a symbol is a time domain resource.
  • said one time slot includes at least one symbol.
  • one time slot includes multiple symbols.
  • any symbol in one time slot is one of a first type of symbol or a second type of symbol.
  • the one time slot includes at least one first type symbol and at least one second type symbol.
  • any symbol in one time slot is a first-type symbol.
  • any symbol in one time slot is a second type of symbol.
  • the first type of symbols includes at least the former of uplink symbols and flexible symbols.
  • the first type of symbol is an Uplink Symbol.
  • the first type of symbols are semi-statically configured uplink symbols.
  • the first type of symbols are semi-statically configured uplink symbols in a time slot.
  • the second type of symbols includes at least one of downlink symbols and flexible symbols.
  • the second type of symbols are downlink symbols.
  • the second type of symbols are flexible symbols.
  • any symbol in one time slot is a multi-carrier symbol.
  • any symbol in a time slot is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbols are SC-FDMA (Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the multi-carrier symbols are DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbols are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the multi-carrier symbols are FDMA (Frequency Division Multiple Access, Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol is a FBMC (Filter Bank Multi-Carrier) symbol.
  • the multi-carrier symbols are IFDMA (Interleaved Frequency Division Multiple Access) symbols.
  • the first bandwidth component includes frequency domain resources occupied by multiple resource pools.
  • the frequency domain resources occupied by the multiple resource pools belong to the first bandwidth component.
  • any resource pool among the plurality of resource pools is a sidelink resource pool (Sidelink Resource Pool).
  • any resource pool among the plurality of resource pools includes all or part of the resources of a secondary link resource pool.
  • any resource pool among the plurality of resource pools includes at least one time slot in the time domain.
  • any resource pool among the plurality of resource pools includes multiple time slots in the time domain.
  • any resource pool among the plurality of resource pools includes multiple symbols in any time slot in the time domain.
  • any resource pool among the plurality of resource pools includes a plurality of first-type symbols in any time slot in the time domain.
  • the time domain resources occupied by any one of the multiple resource pools include at least one time slot.
  • the time domain resources occupied by any one of the multiple resource pools include multiple time slots.
  • any time slot in the time domain resource occupied by any one of the plurality of resource pools includes multiple symbols.
  • any time slot in the time domain resource occupied by any one of the plurality of resource pools includes a plurality of first-type symbols.
  • any resource pool among the plurality of resource pools includes a plurality of physical resource blocks in the frequency domain.
  • any physical resource block in the frequency domain of any resource pool in the plurality of resource pools includes multiple subcarriers.
  • any of the multiple resource pools includes multiple sub-channels in the frequency domain.
  • any resource pool in the multiple resource pools includes multiple physical resource blocks in any sub-channel in the frequency domain.
  • the frequency domain resources occupied by any one of the multiple resource pools include multiple physical resource blocks.
  • any physical resource block in the frequency domain resources occupied by any one of the multiple resource pools includes multiple subcarriers.
  • the frequency domain resources occupied by any one of the multiple resource pools include multiple sub-channels.
  • any sub-channel in the frequency domain resources occupied by any one of the multiple resource pools includes multiple physical resource blocks.
  • the multiple resource pools include multiple sub-channels in the frequency domain.
  • the multiple resource pools include multiple physical resource blocks in the frequency domain.
  • the multiple resource pools include multiple subcarriers in the frequency domain.
  • the frequency domain resources occupied by the multiple resource pools include multiple sub-channels.
  • the frequency domain resources occupied by the multiple resource pools include multiple physical resource blocks.
  • the frequency domain resources occupied by the multiple resource pools include multiple subcarriers.
  • any resource pool among the multiple resource pools includes multiple time-frequency resource blocks.
  • any time-frequency resource block in any one of the multiple resource pools includes multiple symbols in the time domain.
  • the time domain resources occupied by any time-frequency resource block in any one of the multiple resource pools include multiple symbols.
  • the time domain resource occupied by any time-frequency resource block in any one of the multiple resource pools belongs to one time slot.
  • any time-frequency resource block in any one of the multiple resource pools includes multiple subcarriers in the frequency domain.
  • any time-frequency resource block in any resource pool in the plurality of resource pools includes at least one physical resource block in the frequency domain.
  • any time-frequency resource block in any resource pool among the plurality of resource pools includes at least one sub-channel in the frequency domain.
  • the frequency domain resources occupied by any time-frequency resource block in any of the multiple resource pools include multiple subcarriers.
  • the frequency domain resources occupied by any time-frequency resource block in any resource pool in the plurality of resource pools include at least one physical resource block.
  • the frequency domain resources occupied by any time-frequency resource block in any resource pool in the plurality of resource pools include at least one sub-channel.
  • the frequency domain resource occupied by any time-frequency resource block in any resource pool in the plurality of resource pools belongs to a sub-channel.
  • At least one time-frequency resource block in one of the plurality of resource pools includes PSCCH.
  • At least one time-frequency resource block in one of the plurality of resource pools includes PSSCH.
  • At least one time-frequency resource block in one of the plurality of resource pools includes PSFCH.
  • At least one time-frequency resource block in one of the multiple resource pools includes PSCCH and PSSCH.
  • At least one time-frequency resource block in one of the multiple resource pools includes PSCCH, PSSCH and PSFCH.
  • At least one time-frequency resource block in one of the plurality of resource pools is used to carry SL PRS.
  • the target positioning reference signal is used for secondary link positioning (SL Positioning).
  • the target positioning reference signal is used to obtain absolute position (Absolute Position).
  • the target positioning reference signal is used to obtain relative position (Relative Position).
  • the target positioning reference signal is used to obtain distance (Distance).
  • the target positioning reference signal is used to obtain a range (Range).
  • the target positioning reference signal is a PRS (Positioning Reference Signal).
  • the target positioning reference signal is a SL PRS.
  • the target positioning reference signal includes at least one of SL PRS, SL PTRS, SL CSI-RS, PSCCH DMRS, PSSCH DMRS, and SL-SSB.
  • the target positioning reference signal includes SL PRS.
  • the target positioning reference signal includes SL SSB.
  • the target positioning reference signal includes SL PTRS.
  • the target positioning reference signal includes SL CSI-RS.
  • the target positioning reference signal includes a first sequence.
  • a first sequence is used to generate the target positioning reference signal.
  • the first sequence is a pseudo-random sequence (Pseudo-Random Sequence).
  • the first sequence is a Low-PAPR Sequence, Low-Peak to Average Power Ratio Sequence.
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a ZC (Zadeoff-Chu) sequence.
  • the target positioning reference signal is obtained after the first sequence undergoes sequence generation (Sequence Generation), physical resource mapping (Mapping to physical resources), and time slot mapping (Mapping to slots).
  • sequence generation Sequence Generation
  • physical resource mapping Mapping to physical resources
  • time slot mapping Mapping to slots
  • the time domain resource occupied by the target positioning reference signal includes at least one symbol.
  • the target positioning reference signal occupies at least one symbol in the time domain.
  • the time domain resource occupied by the target positioning reference signal includes at least one symbol in a time slot.
  • the target positioning reference signal occupies at least one symbol in a time slot in the time domain.
  • the time domain resources occupied by the target positioning reference signal include multiple symbols.
  • the target positioning reference signal occupies multiple symbols in the time domain.
  • the time domain resources occupied by the target positioning reference signal include multiple symbols in one time slot.
  • the target positioning reference signal occupies multiple symbols in one time slot in the time domain.
  • the number of symbols occupied by the target positioning reference signal in the time domain is not greater than the first length.
  • the number of symbols occupied by the target positioning reference signal in the time domain is less than the first length.
  • the number of symbols occupied by the target positioning reference signal in the time domain is equal to the first length.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that communicates with the UE 201 on a side link, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/ EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB203 can return process) to connect to other gNB204.
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • examples of gNB203 include satellites, aircraft, or ground base stations relayed through satellites.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the UE241.
  • the third node in this application includes the gNB203.
  • the user equipment in this application includes the UE201.
  • the user equipment in this application includes the UE241.
  • the base station in this application includes the gNB203.
  • the relay node in this application includes the gNB203.
  • the sender of the target positioning reference signal in this application includes the UE201.
  • the receivers of the target positioning reference signal in this application include the UE241.
  • the sender of the first control information in this application includes the UE201.
  • the recipient of the first control information in this application includes the UE241.
  • the recipient of the first configuration information in this application includes the UE201.
  • the sender of the first configuration information in this application includes the UE201.
  • the sender of the first configuration information in this application includes the gNB203.
  • the recipient of the second configuration information in this application includes the UE201.
  • the sender of the second configuration information in this application includes the UE201.
  • the sender of the second configuration information in this application includes the gNB203.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows with three layers a first node device (UE or RSU in V2X, a vehicle-mounted device or a vehicle-mounted communication module). ) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted device or vehicle-mounted communication module), or the radio protocol architecture of the control plane 300 between the two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control, media access control) sublayer 302, an RLC (Radio Link Control, a wireless link layer control protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol, packet Data Convergence Protocol) sublayer 304, these sublayers terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the link between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • L1 layer layer 1
  • L2 layer layer 2
  • Radio protocol architecture for the first node device and the second node device in the user plane 350 For the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the target positioning reference signal in this application is generated by the PHY301.
  • the first control information in this application is generated from the PHY301.
  • the first control information in this application is generated in the MAC sublayer 302.
  • the first control information in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the first configuration information in this application is generated in the RRC sublayer 306.
  • the first configuration information in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the second configuration information in this application is generated in the RRC sublayer 306.
  • the second configuration information in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then Provided to different antennas 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is user equipment
  • the second node is user equipment
  • the first node is user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is user equipment
  • the first node is a relay node
  • the second node is a relay node
  • the first node is user equipment
  • the second node is user equipment
  • the third node is a base station.
  • the first node is a relay node
  • the second node is user equipment
  • the third node is a base station.
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one A controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK). ) protocol performs error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 at least: transmits a target positioning reference signal on a first time-frequency resource block; the first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component includes a plurality of Frequency domain resources occupied by resource pools.
  • Any resource pool in the multiple resource pools includes at least one time slot in the time domain; the first time slot set includes multiple time slots, and the first time slot set includes The number of first-type symbols included in any time slot and the at least one first-type length are used to determine at least one first-type time slot subset from the first time slot set, and the first time slot The number of first-type symbols included in any time slot in the slot set and the second length are used to determine a second time slot subset from the first time slot set, and the first-type symbols include At least uplink symbols; any first-type time slot subset in the at least one first-type time slot subset is used to determine the time domain resources occupied by at least one resource pool in the plurality of resource pools, The second time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools; the first time-frequency resource block belongs to the first resource pool, and the first resource pool is In one of the plurality of resource pools, the first time slot subset is one of the at least one first type time slot sub
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first The target positioning reference signal is sent on a time-frequency resource block; the first bandwidth component is configured with at least a first type length and a second length; the first bandwidth component includes frequency domain resources occupied by multiple resource pools, and the multiple resource pools are Any resource pool in the resource pools includes at least one time slot in the time domain; the first time slot set includes a plurality of time slots, and the number of first type symbols included in any time slot in the first time slot set is The number and the at least one first type length are used to determine at least one first type time slot subset from the first time slot set, and any time slot in the first time slot set includes a first The number of class symbols and the second length are used to determine a second time slot subset from the first time slot set, the first class of symbols includes at least uplink symbols; the at least one first class of time slots Any first type of time slot subset
  • the first time slot subset is used to determine the time domain resources occupied by the first resource pool.
  • the first length is a first type length among the at least one first type length used to determine the first time slot subset; the number of symbols occupied by the target positioning reference signal in the time domain is not greater than the first One length.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: receives a target positioning reference signal on a first time-frequency resource block; a first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component includes a plurality of Frequency domain resources occupied by resource pools.
  • Any resource pool in the multiple resource pools includes at least one time slot in the time domain; the first time slot set includes multiple time slots, and the first time slot set includes The number of first-type symbols included in any time slot and the at least one first-type length are used to determine at least one first-type time slot subset from the first time slot set, and the first time slot The number of first-type symbols included in any time slot in the slot set and the second length are used to determine a second time slot subset from the first time slot set, and the first-type symbols include At least uplink symbols; any first-type time slot subset in the at least one first-type time slot subset is used to determine the time domain resources occupied by at least one resource pool in the plurality of resource pools, The second time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools; the first time-frequency resource block belongs to the first resource pool, and the first resource pool is In one of the plurality of resource pools, the first time slot subset is one of the at least one first type time slot sub
  • the first communication device 410 includes: a memory that stores a computer-readable instruction program, and the computer The program of readable instructions, when executed by at least one processor, produces actions, the actions including: receiving a target positioning reference signal on a first time-frequency resource block; the first bandwidth component is configured with at least one first type length and a second length ; The first bandwidth component includes frequency domain resources occupied by multiple resource pools, and any resource pool in the multiple resource pools includes at least one time slot in the time domain; the first time slot set includes multiple time slots , the number of first-type symbols included in any time slot in the first time slot set and the at least one first-type length are used to determine at least one first-type symbol from the first time slot set A subset of time slots, the number of first type symbols included in any time slot in the first time slot set and the second length are used to determine a second time slot from the first time slot set subset, the first type of symbols includes at least uplink symbols; any first type of time slot subset in the at least one first type of time slot subset
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to transmit the target positioning reference signal on the first time-frequency resource block.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to transmit the first control information on the second time-frequency resource block.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the target positioning reference signal on the first time-frequency resource block.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the first control information on the second time-frequency resource block.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U1, the second node U2 and the third node U3 communicate through the air interface.
  • the steps in the dotted box F0 and the dotted box F1 are respectively optional.
  • the first configuration information is received in step S11; the second configuration information is received in step S12; the first control information is sent on the second time-frequency resource block in step S13; and the first control information is sent on the second time-frequency resource block in step S14.
  • the target positioning reference signal is sent on a time-frequency resource block.
  • step S21 the first control information is received on the second time-frequency resource block; in step S22, the target positioning reference signal is received on the first time-frequency resource block.
  • the first configuration information is sent in step S31; the second configuration information is sent in step S22.
  • the first configuration information is used to configure at least one first type length and a second length of the first bandwidth component; the second configuration information is used to configure multiple resource pools, and the third A bandwidth component includes frequency domain resources occupied by the plurality of resource pools, and any resource pool in the plurality of resource pools includes at least one time slot in the time domain; the first time slot set includes a plurality of time slots, so The number of first-type symbols included in any time slot in the first time slot set, the at least one first-type length and the at least one first-type bitmap are jointly used to select from the first time slot set Determine at least one first-type time slot subset, the number of first-type symbols included in any time slot in the first time slot set, the second length and the second bitmap are jointly used from A second time slot subset is determined in the first time slot set, and the first type of symbols includes at least uplink symbols; any first type of time slot subset in the at least one first type of time slot subset is used In order to determine the time domain resources occupied by at least one
  • the first time-frequency resource block belongs to a first resource pool, the first resource pool is one of the plurality of resource pools, and the first time slot subset is the at least one first type of time slot.
  • One of the slot subsets, the first slot subset is used to determine the time domain resources occupied by the first resource pool, and the first length is one of the at least one first type length that is used to determine the time domain resources occupied by the first resource pool.
  • communication between the first node U1 and the second node U2 is through the PC5 interface.
  • communication between the first node U1 and the third node U3 is through the Uu interface.
  • the steps in block F0 in Figure 5 exist, and the steps in block F1 in Figure 5 exist.
  • the steps in block F0 in Figure 5 do not exist, and the steps in block F1 in Figure 5 do not exist.
  • the steps in block F0 in Figure 5 do not exist, and the steps in block F1 in Figure 5 do not exist. does not exist.
  • the step in box F1 in Figure 5 does not exist.
  • the first configuration information is preconfigured (Preconfigured).
  • the second configuration information is preconfigured.
  • the first configuration information is provided by a higher layer of the first node U1.
  • the second configuration information is provided by a higher layer of the first node U1.
  • the first configuration information is obtained by the physical layer of the first node U1 from a higher layer of the first node U1.
  • the second configuration information is obtained by the physical layer of the first node U1 from a higher layer of the first node U1.
  • the first resource pool is one of the plurality of resource pools, the first resource pool includes a plurality of time-frequency resource blocks, and the first resource pool includes the first time-frequency resource block. frequency resource block.
  • the first resource pool is one of the plurality of resource pools, the first resource pool includes a plurality of time-frequency resource blocks, and the first time-frequency resource block belongs to the first The multiple time-frequency resource blocks included in a resource pool.
  • the first resource pool is one of the plurality of resource pools, the first resource pool includes a plurality of time-frequency resource blocks, and the first time-frequency resource block is the third One time-frequency resource block among the plurality of time-frequency resource blocks included in a resource pool.
  • the first time-frequency resource block is used to carry the target positioning reference signal.
  • the first time-frequency resource block is used to carry SL PRS.
  • the first time-frequency resource block includes PSCCH.
  • the first time-frequency resource block does not include PSCCH.
  • the first time-frequency resource block includes PSSCH.
  • the first time-frequency resource block does not include PSSCH.
  • the first time-frequency resource block is used to carry SL PRS, and the first time-frequency resource block includes PSCCH.
  • the first time-frequency resource block is only used to carry SL PRS, and the first time-frequency resource block does not include PSCCH and PSSCH.
  • the first node U1 selects the first time-frequency resource block from the plurality of time-frequency resource blocks included in the first resource pool.
  • the first node U1 determines the first time-frequency resource block by itself from the plurality of time-frequency resource blocks included in the first resource pool.
  • a downlink signaling indicates the first time-frequency resource block from the plurality of time-frequency resource blocks included in the first resource pool.
  • the one downlink signaling indicates the position of the first time-frequency resource block among the plurality of time-frequency resource blocks included in the first resource pool.
  • the first configuration information is used to configure the at least one first type length of the first bandwidth component.
  • the first configuration information is used to configure the at least one first type length and the second length of the first bandwidth component.
  • the first configuration information is used to configure relevant parameters of the first bandwidth component.
  • the first configuration information includes the at least one first type length.
  • the first configuration information includes the at least one first type length and the second length.
  • the first configuration information includes all or part of an RRC (Radio Resource Control, Radio Resource Control) layer signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the first configuration information includes one or more fields in an RRC IE (Information Element).
  • the first configuration information includes an RRC IE, SL-BWP-Config.
  • SL-BWP-Config refers to Chapter 6.3.5 of 3GPP TS38.331.
  • the first configuration information includes a field in an RRC IE, SL-BWP-Generic.
  • SL-BWP-Generic refers to Chapter 6.3.5 of 3GPP TS38.331.
  • the second configuration information is used to configure the multiple resource pools, and the frequency domain resources occupied by the multiple resource pools all belong to the first bandwidth component.
  • the second configuration information is used to configure relevant parameters of the first bandwidth component.
  • the second configuration information includes an identification of any resource pool among the plurality of resource pools.
  • the second configuration information includes time-frequency resources occupied by any one of the multiple resource pools.
  • the second configuration information includes relevant parameters of any one of the multiple resource pools.
  • the second configuration information includes all or part of an RRC layer signaling.
  • the second configuration information includes one or more fields in an RRC IE.
  • the second configuration information includes an RRC IE, SL-BWP-PoolConfig.
  • SL-BWP-PoolConfig refers to Chapter 6.3.5 of 3GPP TS38.331.
  • the first configuration information includes an RRC IE, SL-ResourcePool.
  • the definition of the SL-ResourcePool refers to Chapter 6.3.5 of 3GPP TS38.331.
  • the first control information is used to indicate the first time-frequency resource block.
  • the first control information is used to indicate the first resource pool.
  • the first control information is used to indicate the first time-frequency resource block from the first resource pool.
  • the first control information is used to indicate the target positioning reference signal.
  • the first control information is used to indicate relevant parameters of the target positioning reference signal.
  • the first control information is used to indicate the first sequence
  • the first sequence is used to generate the target positioning reference signal.
  • the first control information is used to indicate symbols occupied by the target positioning reference signal.
  • the first control information is used to indicate the symbols occupied by the target positioning reference signal in a time slot.
  • the second time-frequency resource block belongs to the first resource pool.
  • the second time-frequency resource block is one of multiple time-frequency resource blocks included in the first resource pool.
  • the second time-frequency resource block belongs to the second resource pool.
  • the second time-frequency resource block is one of multiple time-frequency resource blocks included in the second resource pool.
  • the first time-frequency resource block belongs to the first resource pool
  • the second time-frequency resource block belongs to the second resource pool
  • both the first time-frequency resource block and the second time-frequency resource block belong to the first resource pool.
  • the first time-frequency resource block and the second time-frequency resource block are respectively two time-frequency resource blocks in the first resource pool.
  • the first time-frequency resource block is a time-frequency resource block in the first resource pool
  • the second time-frequency resource block is a time-frequency resource block in the second resource pool.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first time slot set, the first type of time slot subset and the second time slot subset according to an embodiment of the present application, as shown in FIG. 6 .
  • the first time slot set includes multiple time slots, and the number of first type symbols included in any time slot in the first time slot set is consistent with the configuration of the first bandwidth component.
  • the at least one first type length is used to determine at least one first type time slot subset from the first time slot set; the first type included in any time slot in the first time slot set
  • the number of symbols and the second configured length of the first bandwidth component are used to determine a second subset of time slots from the first set of time slots; the first type of symbols are uplink symbols.
  • the first time slot set includes multiple time slots.
  • the number of the plurality of time slots included in the first time slot set is a multiple of 10240.
  • the number of the plurality of time slots included in the first time slot set is related to the subcarrier spacing of subcarriers in the first bandwidth component.
  • the number of the plurality of time slots included in the first time slot set is equal to the product of 10240 and 2 ⁇ , where ⁇ is an integer from 0 to 6.
  • the ⁇ is related to the sub-carrier spacing of the sub-carriers in the first bandwidth component.
  • the sub-carrier spacing of sub-carriers in the first bandwidth component is used to determine the ⁇ .
  • the sub-carrier spacing of the sub-carriers in the first bandwidth component is 15 kHz, and the ⁇ is 0.
  • the sub-carrier spacing of the sub-carriers in the first bandwidth component is 60 kHz, and the ⁇ is 2.
  • the first time slot set includes any first type time slot subset in the at least one first type time slot subset.
  • any first-type time slot subset in the at least one first-type time slot subset belongs to the first time slot set.
  • any first-type time slot subset in the at least one first-type time slot subset includes multiple time slots.
  • the plurality of time slots included in any first-type time slot subset in the at least one first-type time slot subset belong to the first time slot set.
  • any time slot in any first type time slot subset in the at least one first type time slot subset is a time slot in the first time slot set.
  • the number of first-type symbols included in any time slot in the first time slot set and the at least one first-type length configured by the first bandwidth component are used to obtain from all The at least one first type time slot subset is determined from the first time slot set.
  • the relationship between the number of first-type symbols included in any time slot in the first time slot set and the at least one first-type length configured by the first bandwidth component is used Determining the at least one first type time slot subset from the first time slot set.
  • the number of first-type symbols included in any time slot in the first time slot set is used together with the at least one first-type length configured by the first bandwidth component.
  • the at least one first type slot subset is determined from the first set of slots.
  • the first alternative length is any first type length among the at least one first type length
  • the first type symbol included in any time slot in the first time slot set is The number and the first candidate length are used to determine a first candidate time slot subset from the first time slot set, the first candidate time slot subset is the at least one first type One of a subset of time slots.
  • the first candidate time slot subset is any first type time slot subset in the at least one first type time slot subset, and any time slot in the first time slot set includes The number of symbols of the first type and the first candidate length are used to determine the first candidate time slot subset from the first time slot set, and the first candidate length is the One of at least one subset of type 1 slots.
  • the number of first type symbols included in any time slot in the first time slot set is equal to the number of the first type symbols in the at least one first type length configured by the first bandwidth component.
  • the size relationship of a type length is used to determine a first type time slot subset in the at least one first type time slot subset from the first time slot set.
  • the relationship between the number of first-type symbols included in any time slot in the first time slot set and the at least one first-type length configured by the first bandwidth component are respectively is used to determine the at least one first time slot set from the first time slot set A subset of time slots.
  • the first alternative length is any first type length among the at least one first type length
  • the first type symbol included in any time slot in the first time slot set is The relationship between the number and the first candidate length is used to determine a first candidate time slot subset from the first time slot set, and the first candidate time slot subset is the at least one One of a subset of type 1 time slots.
  • the first candidate time slot subset is any first type time slot subset in the at least one first type time slot subset, and any time slot in the first time slot set includes The relationship between the number of first type symbols and the first candidate length is used to determine the first candidate time slot subset from the first time slot set, the first candidate length Is one of the at least one first type time slot subset.
  • the first candidate time slot is a time slot in the first time slot set
  • the first candidate length is a first type length in the at least one first type length
  • the first candidate time slot is a time slot in the first time slot set.
  • the relationship between the number of the first type of symbols included in an alternative time slot and the first alternative length is used to determine whether the first alternative time slot belongs to the first alternative time slot Subset.
  • the first candidate time slot is a time slot in the first time slot set
  • the first candidate length is a first type length in the at least one first type length
  • the first candidate time slot is a time slot in the first time slot set. Whether an alternative time slot belongs to the first alternative time slot subset is related to the relationship between the number of the first type of symbols included in the first alternative time slot and the first alternative length. .
  • the first candidate time slot is any time slot in the first time slot set.
  • the first candidate time slot is any time slot in the first time slot set that does not carry SL-SSB.
  • whether the number of the first type symbols included in the first candidate time slot is not less than the first candidate length is used to determine whether the first candidate time slot Belongs to the first candidate time slot subset.
  • whether the number of the first type of symbols included in the first candidate time slot is equal to the first candidate length is used to determine whether the first candidate time slot belongs to The first subset of candidate time slots.
  • whether the first candidate time slot belongs to the first candidate time slot subset and whether the number of the first type symbols included in the first candidate time slot are not the same. is less than the first alternative length.
  • whether the first candidate time slot belongs to the first candidate time slot subset and whether the number of the first type of symbols included in the first candidate time slot is equal to The first alternative length is related.
  • the number of the first type of symbols included in the first candidate time slot is less than the first candidate length, and the first candidate time slot does not belong to the first candidate time slot.
  • a subset of alternative time slots is provided.
  • the number of the first type of symbols included in the first candidate time slot is greater than the first candidate length, and the first candidate time slot belongs to the first candidate time slot. Select a subset of time slots.
  • the number of the first type of symbols included in the first candidate time slot is equal to the first candidate length, and the first candidate time slot belongs to the first candidate time slot. Select a subset of time slots.
  • the number of the first type of symbols included in the first candidate time slot is not equal to the first candidate length, and the first candidate time slot does not belong to the first candidate time slot.
  • a subset of alternative time slots is not equal to the first candidate length, and the first candidate time slot does not belong to the first candidate time slot.
  • the first candidate time slot when the number of the first type symbols included in the first candidate time slot is less than the first candidate length, the first candidate time slot does not belong to the A first candidate time slot subset; when the number of the first type symbols included in the first candidate time slot is equal to the first candidate length, the first candidate time slot Belonging to the first candidate time slot subset; when the number of the first type symbols included in the first candidate time slot is greater than the first candidate length, the first candidate time slot The selected time slot belongs to the first subset of candidate time slots.
  • the first candidate time slot belongs to the first candidate time slot.
  • a subset of alternative time slots when the number of the first type of symbols included in the first alternative time slot is not equal to the first alternative length, the first alternative time slot does not belong to the first candidate time slot subset.
  • the first type of symbols is used to determine whether the first candidate time slot belongs to the first candidate time slot subset, X1 is equal to the first candidate length, and Y1 is an integer from 0 to 7 .
  • At least one of the Y1th, Y1+1th, ..., (Y1+X1-1)th symbols in the first candidate time slot is not the Symbols of the first type, the first candidate time slot does not belong to the first candidate time slot subset, X1 is equal to the first candidate length, and Y1 is an integer from 0 to 7.
  • any of the Y1th, Y1+1,..., (Y1+X1-1)th symbols in the first candidate time slot One symbol is the first type of symbol, the first candidate time slot belongs to the first candidate time slot subset, X1 is equal to the first candidate length, and Y1 is an integer from 0 to 7 .
  • At least one symbol among the Y1th, Y1+1,..., (Y1+X1-1)th symbols in the first candidate time slot is not half Staticly configured for uplink, the first candidate time slot does not belong to the first candidate time slot subset, X1 is equal to the first candidate length, and Y1 is an integer from 0 to 7.
  • any of the Y1th, Y1+1,..., (Y1+X1-1)th symbols in the first candidate time slot is semi-statically
  • the ground is configured as uplink
  • the first candidate time slot belongs to the first candidate time slot subset
  • X1 is equal to the first candidate length
  • Y1 is an integer from 0 to 7.
  • the first time slot set includes the first time slot subset.
  • the first time slot subset belongs to the first time slot set.
  • the first time slot subset is one of the at least one first type time slot subset.
  • the first subset of time slots includes multiple time slots.
  • the plurality of time slots included in the first time slot subset all belong to the first time slot set.
  • any time slot in the first time slot subset is a time slot in the first time slot set.
  • the first length is used to determine a first time slot subset from the first time slot set, and the first time slot subset is the at least one first type time slot subset. one of.
  • the first time slot subset includes multiple time slots, and the number of the first type of symbols included in any time slot in the first time slot subset is not less than the first length. .
  • the first time slot subset includes multiple time slots, and the number of the first type of symbols included in any time slot in the first time slot subset is greater than the first length.
  • the first time slot subset includes multiple time slots, and the number of the first type of symbols included in any time slot in the first time slot subset is equal to the first length.
  • any of the Y1th, Y1+1,..., (Y1+X1-1)th symbols in any time slot in the first time slot subset The symbol is the first type of symbol, X1 is equal to the first length, and Y1 is an integer from 0 to 7.
  • any of the Y1th, Y1+1,..., (Y1+X1-1)th symbols in any time slot in the first time slot subset Symbols are configured semi-statically into uplines, X1 is equal to the first length and Y1 is an integer from 0 to 7.
  • the first time slot set includes the second time slot subset.
  • the second time slot subset belongs to the first time slot set.
  • the second subset of time slots includes multiple time slots.
  • the plurality of time slots included in the second time slot subset all belong to the first time slot set.
  • any time slot in the second time slot subset is a time slot in the first time slot set.
  • the number of first-type symbols included in any time slot in the first time slot set and the second length are used to determine the second type of symbols from the first time slot set.
  • the relationship between the number of first type symbols included in any time slot in the first time slot set and the second length is used to determine the first time slot set from the first time slot set. Describe the second subset of time slots.
  • the second alternative time slot is a time slot in the first time slot set, and the number of the first type of symbols included in the second alternative time slot and the second The length relationship is used to determine whether the second candidate time slot belongs to the second time slot subset.
  • the second alternative time slot is a time slot in the first time slot set. Whether the second alternative time slot belongs to the second time slot subset and the second alternative time slot The number of the first type of symbols included in the time slot is related to the size of the second length.
  • the second candidate time slot is any time slot in the first time slot set.
  • the second candidate time slot is any time slot in the first time slot set that does not carry SL-SSB.
  • whether the number of the first type symbols included in the second candidate time slot is not less than the second length is used to determine whether the second candidate time slot belongs to the Describe the second subset of time slots.
  • any of the Y-th, Y+1,..., (Y+X-1)-th symbols in the second alternative time slot Whether the number is the first type of symbol is used to determine whether the second candidate time slot belongs to the second time slot subset, X is equal to the second length, and Y is an integer from 0 to 7 .
  • At least one of the Y-th, Y+1,..., (Y+X-1)-th symbols in the second alternative time slot is not the Symbols of the first type, the second candidate time slot does not belong to the second time slot subset, X is equal to the second length, and Y is an integer from 0 to 7.
  • any of the Y-th, Y+1,..., (Y+X-1)-th symbols in the second alternative time slot is the Symbols of the first type, the second candidate time slot belongs to the second time slot subset, X is equal to the second length, and Y is an integer from 0 to 7.
  • At least one symbol among the Y-th, Y+1,..., (Y+X-1)-th symbols in the second alternative time slot is not half Staticly configured for uplink, the second alternative time slot does not belong to the second time slot subset, X is equal to the second length, and Y is an integer from 0 to 7.
  • any of the Y-th, Y+1,..., (Y+X-1)-th symbols in the second alternative time slot is semi-statically
  • the ground is configured as uplink
  • the second candidate time slot belongs to the second time slot subset
  • X is equal to the second length
  • Y is an integer from 0 to 7.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first time slot subset, the second time slot subset and the first resource pool according to an embodiment of the present application, as shown in FIG. 7 .
  • the large solid line box represents the first resource pool in this application; the large dotted line box represents the second resource pool in this application; the solid rectangles in the large solid line box represent the third resource pool in this application.
  • Time-frequency resource blocks of a resource pool; the dotted rectangles in the large solid-line box represent time-frequency resource blocks that do not belong to the first resource pool in this application; the solid-line rectangles in the large dotted box represent the time-frequency resource blocks in this application that belong to the second resource pool.
  • Time-frequency resource blocks of the resource pool; the dotted rectangle in the large dotted box represents the time-frequency resource blocks in this application that do not belong to the second resource pool.
  • the first time slot subset is used to determine the time domain resources occupied by the first resource pool
  • the second time slot subset is used to determine the time domain resources occupied by the second resource pool.
  • resources, the second resource pool and the first resource pool are two different resource pools among the plurality of resource pools in this application.
  • the first candidate time slot subset is any first type time slot subset in the at least one first type time slot subset, and the first candidate time slot subset includes multiple time slots. gap.
  • the first candidate time slot subset is used to determine the time domain resources occupied by at least one resource pool among the plurality of resource pools.
  • the first candidate time slot subset is used to determine that the time domain resources occupied by at least one resource pool among the plurality of resource pools belong to the first candidate time slot subset. the multiple time slots.
  • the first candidate time slot subset is used to determine whether the time domain resources occupied by at least one of the plurality of resource pools are included in the first candidate time slot subset. the multiple time slots.
  • the first candidate time slot subset is used to determine that the time domain resources occupied by at least one of the multiple resource pools include multiple time slots, and the time domain resources occupied by the at least one resource pool are Any time slot in the occupied time domain resource is a time slot in the first candidate time slot subset.
  • the first resource pool is one of the plurality of resource pools.
  • the first resource pool is used for secondary link positioning.
  • the first resource pool is used for secondary link communication.
  • the first resource pool is used for secondary link communication and secondary link positioning.
  • the first resource pool is only used for secondary link positioning.
  • the first resource pool is used to carry SL PRS.
  • the first resource pool is used to carry SL-SCH.
  • the first resource pool is used to carry SCI.
  • the first resource pool is used to carry SL MAC CE (Multimedia Access Control Control Element, control element of multimedia access control).
  • SL MAC CE Multimedia Access Control Control Element, control element of multimedia access control
  • the first resource pool is used to carry PSCCH DMRS.
  • the first resource pool is used to carry PSSCH DMRS.
  • the first resource pool includes PSCCH.
  • the first resource pool includes PSCCH and PSSCH.
  • the first resource pool includes PSCCH, PSSCH and PSFCH.
  • the first resource pool is used to carry SL PRS, and the first resource pool includes at least the former of PSCCH and PSSCH.
  • the first resource pool is used to carry SL PRS, and the first resource pool does not include PSSCH.
  • the first resource pool is used to carry SL PRS, the first resource pool includes PSCCH, and the first resource pool does not include PSSCH.
  • the first resource pool is used to carry SL PRS, and the first resource pool does not include PSCCH and PSSCH.
  • the first resource pool is only used to carry SL PRS.
  • the first subset of time slots is used to determine the time domain resources occupied by the first resource pool.
  • the first resource pool includes multiple time slots in the time domain, all of which belong to the first time slot subset.
  • the time domain resources occupied by the first resource pool include multiple time slots, and any time slot in the time domain resources occupied by the first resource pool is a subset of the first time slots. a time slot.
  • the plurality of time slots included in the first resource pool in the time domain correspond to the plurality of time slots included in the first time slot subset in a one-to-one correspondence.
  • the plurality of time slots included in the first resource pool in the time domain are respectively the plurality of time slots included in the first time slot subset.
  • the second resource pool is one of the plurality of resource pools.
  • the second resource pool is used for secondary link communication.
  • the second resource pool is used for secondary link communication and secondary link positioning.
  • the second resource pool is used to carry SL-SCH.
  • the second resource pool is used to carry SCI.
  • the second resource pool is used to carry SL MAC CE.
  • the second resource pool is used to carry SL PRS.
  • the second resource pool is used to carry PSCCH DMRS.
  • the second resource pool is used to carry PSSCH DMRS.
  • the second resource pool includes PSCCH.
  • the second resource pool includes PSCCH and PSSCH.
  • the second resource pool includes PSCCH, PSSCH and PSFCH.
  • the second resource pool includes at least the former of PSCCH and PSSCH, and the second resource pool is used to carry SL PRS.
  • the second resource pool includes at least the former of PSCCH and PSSCH, and the second resource pool is not used to carry SL PRS.
  • the second subset of time slots is used to determine time domain resources occupied by at least one resource pool among the plurality of resource pools.
  • the second resource pool is one of the at least one resource pool among the plurality of resource pools determined by the second time slot subset.
  • the second time slot subset is used to determine that the time domain resources occupied by at least one resource pool among the plurality of resource pools belong to the plurality of time slot subsets included in the second time slot subset. time slot.
  • the second time slot subset is used to determine that the time domain resources occupied by at least one resource pool among the plurality of resource pools are the plurality of time domain resources included in the second time slot subset. time slot.
  • the second subset of time slots is used to determine that the time domain resources occupied by at least one of the plurality of resource pools include multiple time slots, and the time domain resources occupied by the at least one resource pool are Any time slot in the time domain resource is a time slot in the second time slot subset.
  • the second subset of time slots is used to determine the time domain resources occupied by the second resource pool.
  • the second resource pool includes multiple time slots in the time domain, all of which belong to the second time slot subset.
  • the time domain resources occupied by the second resource pool include multiple time slots, and any time slot in the time domain resources occupied by the second resource pool is a subset of the second time slots. a time slot.
  • the plurality of time slots included in the second resource pool in the time domain correspond to the plurality of time slots included in the second time slot subset in a one-to-one correspondence.
  • the plurality of time slots included in the second resource pool in the time domain are respectively the plurality of time slots included in the second time slot subset.
  • the first resource pool is used for secondary link positioning
  • the second resource pool is used for secondary link communication
  • the first resource pool is used to carry SL PRS
  • the second resource pool includes at least the former of PSCCH and PSSCH.
  • the first resource pool is used to carry SL PRS
  • the first resource pool includes PSCCH
  • the second resource pool includes at least the former of PSCCH and PSSCH.
  • the second resource pool is orthogonal to the first resource pool.
  • the second resource pool and the first resource pool are orthogonal in the frequency domain.
  • the second resource pool and the first resource pool are orthogonal in the time domain.
  • the second resource pool overlaps with the first resource pool.
  • the second resource pool and the first resource pool overlap in the time domain.
  • the second resource pool and the first resource pool overlap in the frequency domain.
  • the second resource pool and the first resource pool are orthogonal in the frequency domain, and the second resource pool and the first resource pool overlap in the time domain.
  • the second resource pool and the first resource pool are orthogonal in the time domain, and the second resource pool and the first resource pool overlap in the frequency domain.
  • the second resource pool and the first resource pool are FDM.
  • the second resource pool and the first resource pool are TDM.
  • the second resource pool and the first resource pool belong to the same carrier frequency.
  • the frequency domain resources occupied by the second resource pool and the frequency domain resources occupied by the first resource pool belong to the same carrier frequency.
  • the second resource pool and the first resource pool belong to the same bandwidth component.
  • the frequency domain resources occupied by the second resource pool and the frequency domain resources occupied by the first resource pool belong to the same bandwidth component.
  • the frequency domain resources occupied by the second resource pool and the frequency domain resources occupied by the first resource pool belong to the same SL BWP.
  • the number of sub-channels included in the second resource pool is not equal to the number of sub-channels included in the first resource pool.
  • the number of sub-channels included in the second resource pool is equal to the number of sub-channels included in the first resource pool.
  • the number of sub-channels included in the second resource pool is greater than the number of sub-channels included in the first resource pool.
  • the number of sub-channels included in the second resource pool is smaller than the number of sub-channels included in the first resource pool.
  • the frequency domain resources occupied by any sub-channel in the second resource pool are equal to the frequency domain resources occupied by any sub-channel in the first resource pool.
  • the frequency domain resources occupied by any sub-channel in the second resource pool are not equal to the frequency domain resources occupied by any sub-channel in the first resource pool.
  • the frequency domain resources occupied by any sub-channel in the second resource pool are greater than the frequency domain resources occupied by any sub-channel in the first resource pool.
  • the frequency domain resources occupied by any sub-channel in the second resource pool are smaller than the frequency domain resources occupied by any sub-channel in the first resource pool.
  • the number of physical resource blocks included in any sub-channel in the second resource pool is the same as the number of physical resource blocks in the first resource pool.
  • the number of physical resource blocks included in any subchannel is equal.
  • the number of physical resource blocks included in any sub-channel in the second resource pool is not equal to the number of physical resource blocks included in any sub-channel in the first resource pool.
  • the number of physical resource blocks included in any sub-channel in the second resource pool is greater than the number of physical resource blocks included in any sub-channel in the first resource pool.
  • the number of physical resource blocks included in any sub-channel in the second resource pool is smaller than the number of physical resource blocks included in any sub-channel in the first resource pool.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first alternative time slot, the first bit map and the first time slot subset according to an embodiment of the present application, as shown in FIG. 8 .
  • the large solid-line box represents the first resource pool of this application
  • the solid-line rectangle represents the first alternative time slot in this application
  • the diagonally filled rectangle represents a time slot in the first time slot subset in this application.
  • the first bitmap is one of the at least one first type bitmap
  • the first candidate time slot is any time slot in the first time slot set
  • the first candidate time slot is any time slot in the first time slot set.
  • the relationship between the number of first type symbols included in the selected time slot and the first length and the first bit map are jointly used to determine whether the first candidate time slot belongs to the first time slot Subset.
  • the at least one first type length and at least one first type bitmap are jointly used to determine the at least one first type time slot subset.
  • the first candidate length is one of the at least one first type length
  • the first candidate bitmap is one of the first type bitmaps
  • the first candidate bitmap is one of the first type bitmaps.
  • a candidate length and the first candidate bitmap are jointly used to determine a first type time slot subset of the at least one first type time slot subset.
  • the first alternative length is one of the at least one first type length
  • the first bit image is one of the first type bitmaps
  • the first alternative length is one of the first type bitmaps.
  • the slot subset is one of the at least one first type slot subset
  • the first candidate length and the first candidate bitmap are jointly used to determine the first candidate slot subset.
  • the first candidate time slot is a time slot in the first time slot set, and the number of the first type of symbols included in the first candidate time slot is equal to the number of the first type of symbols.
  • a size relationship of a candidate length and the first candidate bitmap are jointly used to determine the first candidate time slot subset.
  • the first candidate time slot is a time slot in the first time slot set, and whether the number of the first type symbols included in the first candidate time slot is not less than the The first candidate length and the first candidate bitmap are jointly used to determine the first candidate time slot subset.
  • the first alternative time slot is a time slot in the first time slot set, and the number of the first type symbols included in the first alternative time slot is not less than the A first candidate length
  • the first candidate bitmap includes a plurality of bits
  • the first candidate time slot corresponds to one bit in the first candidate bitmap
  • the first candidate bitmap The one bit in is used to indicate whether the first candidate time slot belongs to the first candidate time slot subset.
  • the first alternative time slot is a time slot in the first time slot set, and the number of the first type symbols included in the first alternative time slot is not less than the A first alternative length
  • the first alternative bitmap includes a plurality of bits, the first alternative time slot corresponds to one bit in the first alternative bitmap; the first alternative bitmap The value of the one bit in is 1, the first candidate time slot belongs to the first candidate time slot subset, or the value of the one bit in the first candidate bitmap is 0.
  • the first candidate time slot does not belong to the first candidate time slot subset.
  • the first length and the first bit map are jointly used to determine the first subset of time slots.
  • the first candidate time slot is a time slot in the first time slot set, and whether the number of the first type symbols included in the first candidate time slot is not less than the The first length and the first bit pattern are jointly used to determine the first subset of time slots.
  • the first candidate time slot is a time slot in the first time slot set, and the number of the first type of symbols included in the first candidate time slot is equal to the number of the first type of symbols.
  • a size relationship of a length and the first bit map are used together to determine the first subset of time slots.
  • the first bit map is one of the at least one first type bit map, and the first bit map includes a plurality of bits.
  • the first time slot set includes a first time slot group, the first time slot group includes a plurality of time slots, and the first type of symbols included in any time slot in the first time slot The number is not less than the first length.
  • the first time slot set includes a first time slot group, the first time slot group includes a plurality of time slots, and the first type of symbols included in any time slot in the first time slot The number is equal to the first length.
  • the plurality of bits included in the first bit map respectively correspond to the plurality of time slots included in the first time slot group in a one-to-one manner.
  • the plurality of bits included in the first bit map respectively indicate whether the plurality of time slots included in the first time slot group belong to the first time slot subset.
  • the first alternative time slot is a time slot in the first time slot set, and the number of the first type symbols included in the first alternative time slot is not less than the a first length, the first bit pattern includes a plurality of bits, the first alternative time slot corresponds to one bit in the first bit pattern, and the one bit in the first bit pattern is used To indicate whether the first candidate time slot belongs to the first time slot subset.
  • the first candidate time slot is a time slot in the first time slot set, and the number of the first type of symbols included in the first candidate time slot is equal to the number of the first type of symbols.
  • a length the first bit pattern includes a plurality of bits, the first candidate time slot corresponds to one bit in the first bit pattern, and the one bit in the first bit pattern is used for Indicates whether the first candidate time slot belongs to the first time slot subset.
  • the first alternative time slot is a time slot in the first time slot set, and the number of the first type symbols included in the first alternative time slot is not less than the A first length, the first bit pattern includes a plurality of bits, the first alternative time slot corresponds to one bit in the first bit pattern; the value of the one bit in the first bit pattern is 1, the first candidate time slot belongs to the first time slot subset, or the value of the one bit in the first bit map is 0, the first candidate time slot does not belong to The first subset of time slots.
  • the first candidate time slot is a time slot in the first time slot set, and the number of the first type of symbols included in the first candidate time slot is equal to the number of the first type of symbols.
  • a first length, the first bit map includes a plurality of bits, the first alternative time slot corresponds to one bit in the first selected bit map; the one bit in the first bit map is The value is 1, the first candidate time slot belongs to the first time slot subset, or the value of the one bit in the first bit map is 0, the first candidate time slot does not Belongs to the first time slot subset.
  • the first candidate time slot is a time slot in the first time slot group
  • the first bit pattern includes a plurality of bits
  • the first candidate time slot is identical to the first time slot.
  • One bit in the bitmap corresponds to; the value of the one bit in the bitmap is 1, the first candidate time slot belongs to the first time slot subset, or the first The value of one bit in the bitmap is 0, and the first candidate time slot does not belong to the first time slot subset.
  • Embodiment 9 illustrates a structural block diagram of a processing device in the first node, as shown in FIG. 9 .
  • the first node device processing device 900 mainly consists of a first receiver 901, a first transmitter 902 and a second transmitter 903.
  • the first receiver 901 includes the antenna 452, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 in Figure 4 of this application. at least one of.
  • the first transmitter 902 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory 460 in Figure 4 of this application. and at least one of data sources 467.
  • the second transmitter 903 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory 460 in Figure 4 of this application. and at least one of data sources 467.
  • the first transmitter 902 transmits the target positioning reference signal on the first time-frequency resource block;
  • the first bandwidth component is configured with at least a first type length and a second length;
  • the first bandwidth component Including frequency domain resources occupied by multiple resource pools, any one of the multiple resource pools includes at least one time slot in the time domain;
  • the first time slot set includes multiple time slots, and the first time slot
  • the number of first-type symbols included in any time slot in the set and the at least one first-type length are used to determine at least one first-type time slot subset from the first time slot set, and the The number of first-type symbols included in any time slot in the first time slot set and the second length are used to determine a second time slot subset from the first time slot set.
  • the class symbols include at least uplink symbols; any first class time slot subset in the at least one first class time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools. , the second time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools; the first time-frequency resource block belongs to the first resource pool, and the first The resource pool is one of the plurality of resource pools, the first time slot subset is one of the at least one first type time slot subset, and the first time slot subset is used to determine the The time domain resources occupied by the first resource pool, the first length is the at least one A first type of length is used to determine the first time slot subset; the number of symbols occupied by the target positioning reference signal in the time domain is not greater than the first length.
  • the second subset of time slots is used to determine the time domain resources occupied by a second resource pool, which is different from the first resource among the plurality of resource pools.
  • a resource pool of pools is used to determine the time domain resources occupied by a second resource pool, which is different from the first resource among the plurality of resource pools.
  • the target positioning reference signal is used for secondary link positioning.
  • the number of symbols occupied by the target positioning reference signal in the time domain is equal to the first length.
  • the first length and the second length are not equal.
  • the at least one first type length and at least one first type bitmap are jointly used to determine the at least one first type time slot subset.
  • the first bitmap is one of the at least one first type bitmap
  • the first candidate time slot is any time slot in the first time slot set
  • the first candidate time slot is any time slot in the first time slot set.
  • the relationship between the number of first-type symbols included in a time slot and the first length and the first bit map are jointly used to determine whether the first candidate time slot belongs to the first time slot sub-sub. set.
  • the first time-frequency resource block is determined by the first node from the first resource pool.
  • the first time-frequency resource block is designated from the first resource pool by a downlink signaling.
  • the first receiver 901 receives first configuration information; the first configuration information is used to configure the at least one first type length of the first bandwidth component.
  • the first receiver 901 receives second configuration information; the second configuration information is used to configure the multiple resource pools.
  • the second transmitter 903 sends the first control information on the second time-frequency resource block; the first control information is used to indicate the first time-frequency resource block; the second time-frequency resource block The frequency resource block belongs to the first resource pool, or the second time-frequency resource block belongs to the second resource pool.
  • the first node 900 is user equipment.
  • the first node 900 is a relay node.
  • the first node 900 is a base station device.
  • Embodiment 10 illustrates a structural block diagram of a processing device in the second node, as shown in FIG. 10 .
  • the second node device processing apparatus 1000 mainly consists of a second receiver 1001 and a third receiver 1002.
  • the second receiver 1001 includes the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application. at least one of.
  • the third receiver 1002 includes the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application. at least one of.
  • the second receiver 1101 receives the target positioning reference signal on the first time-frequency resource block; the first bandwidth component is configured with at least one first type length and a second length; the first bandwidth component Including frequency domain resources occupied by multiple resource pools, any one of the multiple resource pools includes at least one time slot in the time domain; the first time slot set includes multiple time slots, and the first time slot The number of first-type symbols included in any time slot in the set and the at least one first-type length are used to determine at least one first-type time slot subset from the first time slot set, and the The number of first-type symbols included in any time slot in the first time slot set and the second length are used to determine a second time slot subset from the first time slot set.
  • the class symbols include at least uplink symbols; any first class time slot subset in the at least one first class time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools. , the second time slot subset is used to determine the time domain resources occupied by at least one of the plurality of resource pools; the first time-frequency resource block belongs to the first resource pool, and the first The resource pool is one of the plurality of resource pools, the first time slot subset is one of the at least one first type time slot subset, and the first time slot subset is used to determine the The time domain resources occupied by the first resource pool, the first length is a first type length of the at least one first type length used to determine the first time slot subset; the target positioning reference signal The number of symbols occupied in the time domain is not greater than the first length.
  • the second subset of time slots is used to determine the time domain resources occupied by a second resource pool, which is different from the first resource among the plurality of resource pools.
  • a resource pool of pools is used to determine the time domain resources occupied by a second resource pool, which is different from the first resource among the plurality of resource pools.
  • the target positioning reference signal is used for secondary link positioning.
  • the number of symbols occupied by the target positioning reference signal in the time domain is equal to the first length.
  • the first length and the second length are not equal.
  • the at least one first type length and at least one first type bitmap are jointly used to determine the at least one first type time slot subset.
  • the first bitmap is one of the at least one first type bitmap
  • the first candidate time slot is any time slot in the first time slot set
  • the first candidate time slot is any time slot in the first time slot set.
  • the relationship between the number of first-type symbols included in a time slot and the first length and the first bit map are jointly used to determine whether the first candidate time slot belongs to the first time slot sub-sub. set.
  • the first time-frequency resource block is determined by the first node from the first resource pool.
  • the first time-frequency resource block is designated from the first resource pool by a downlink signaling.
  • the third receiver 1002 receives first configuration information; the first configuration information is used to configure the at least one first type length of the first bandwidth component.
  • the third receiver 1002 receives second configuration information; the second configuration information is used to configure the multiple resource pools.
  • the third receiver 1002 receives the first control information on a second time-frequency resource block; the first control information is used to indicate the first time-frequency resource block; the second The time-frequency resource block belongs to the first resource pool, or the second time-frequency resource block belongs to the second resource pool.
  • the second node 1000 is user equipment.
  • the second node 1000 is a relay node.
  • the second node 1000 is a base station device.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment The second node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点在第一时频资源块上发送目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述至少一个第一类长度被用于从第一时隙集合中确定至少一个第一类时隙子集,所述第二长度被用于从所述第一时隙集合中确定第二时隙子集;第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。本申请实现灵活的资源确定方法,提高有效资源的利用率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)相关的传输方案和装置。
背景技术
从LTE(Long Term Evolution,长期演进)开始,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)已经在发展SL(Sidelink,副链路)作为用户与用户之间的直连通信方式,并在Rel-16(Release-16,版本16)中完成了“5G V2X with NR Sidelink”的第一个NR SL(New Radio Sidelink,新空口副链路)标准。在Rel-16中,NR SL主要被设计用于V2X(Vehicle-To-Everything,车联网),但它也可以用于公共安全(Public Safety)。随着NR SL进一步增强,Rel-17引入了周期性的部分感知(periodic-based partial sensing,PBPS),连续性的部分感知(contiguous partial sensing,CPS),随机选择(random selection)和非连续接收(Discontinuous Reception,DRX)等功率节省方案,也引入了多种用户间协调(inter-UE coordination)方案以提供更可靠的信道资源。
为了满足商业化的应用场景,工业界又对V2X提出了新的需求,更高的数据吞吐量以及对新载波频率的支持。因此,在3GPP RAN-#94e次会议上,通过了针对NR SL演进的工作项目说明(Work Item Description,WID)RP-213678,正式开启了NR V2X Rel-18的标准化工作。
发明内容
根据RP-213588中的工作计划,NRRel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL RTT技术、SLAOA、SLTDOA和SLAOD等,而这些技术的执行都需要依赖对SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)的测量。不同于DL PRS(Downlink Positioning Reference Signal,下行定位参考信号),一个SLBWP(Bandwidth Part,带宽部件)上需要分配用于承载SL PRS的资源池。而现有的SL资源池的确定方法无法满足SL PRS的需求,严重影响SL的资源利用率。
针对上述问题,本申请公开了一种针对SL PRS的资源池确定方法,从而有效提高SL资源的利用率。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一时频资源块上发送目标定位参考信号;
其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所 占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,本申请要解决的问题是:现有的SL资源池的确定方法无法满足SL PRS的需求,严重影响SL的资源利用率。
作为一个实施例,本申请的方法是:针对SL PRS引入一种新的资源确定方法。
作为一个实施例,本申请的方法是:将第一带宽部件与至少一个第一类长度和第二长度建立关系。
作为一个实施例,本申请的方法是:将至少一个第一类长度与第一时隙子集建议关系。
作为一个实施例,本申请的方法是:将至少一个第一类长度与第一资源池建议关系。
作为一个实施例,上述方法的好处在于,实现灵活的资源确定方法,提高有效资源的利用率。
根据本申请的一个方面,上述方法的特征在于,所述第二时隙子集被用于确定第二资源池所占用的时域资源,所述第二资源池是所述多个资源池中的不同于所述第一资源池的一个资源池。
根据本申请的一个方面,上述方法的特征在于,所述目标定位参考信号被用于副链路定位(SL positioning)。
根据本申请的一个方面,上述方法的特征在于,所述目标定位参考信号在时域所占用的符号的个数等于所述第一长度。
根据本申请的一个方面,上述方法的特征在于,所述第一长度与所述第二长度不相等。
根据本申请的一个方面,上述方法的特征在于,所述至少一个第一类长度和至少一个第一类位图共同被用于确定所述至少一个第一类时隙子集。
根据本申请的一个方面,上述方法的特征在于,第一位图是所述至少一个第一类位图中的之一,第一备选时隙是所述第一时隙集合中的任一时隙,所述第一备选时隙所包括的第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一备选时隙是否属于所述第一时隙子集。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源块是所述第一节点从所述第一资源池中自行确定的。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源块是被一个下行信令从所述第一资源池中指定的。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一配置信息;
其中,所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二配置信息;
其中,所述第二配置信息被用于配置所述多个资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二时频资源块上发送第一控制信息;
其中,所述第一控制信息被用于指示所述第一时频资源块;所述第二时频资源块属于所述第一资源池,或者,所述第二时频资源块属于所述第二资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一时频资源块上接收目标定位参考信号;
其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙, 所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
根据本申请的一个方面,上述方法的特征在于,所述第二时隙子集被用于确定第二资源池所占用的时域资源,所述第二资源池是所述多个资源池中的不同于所述第一资源池的一个资源池。
根据本申请的一个方面,上述方法的特征在于,所述目标定位参考信号被用于副链路定位。
根据本申请的一个方面,上述方法的特征在于,所述目标定位参考信号在时域所占用的符号的个数等于所述第一长度。
根据本申请的一个方面,上述方法的特征在于,所述第一长度与所述第二长度不相等。
根据本申请的一个方面,上述方法的特征在于,所述至少一个第一类长度和至少一个第一类位图共同被用于确定所述至少一个第一类时隙子集。
根据本申请的一个方面,上述方法的特征在于,第一位图是所述至少一个第一类位图中的之一,第一备选时隙是所述第一时隙集合中的任一时隙,所述第一备选时隙所包括的第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一备选时隙是否属于所述第一时隙子集。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源块是所述第一节点从所述第一资源池中自行确定的。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源块是被一个下行信令从所述第一资源池中指定的。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一配置信息;
其中,所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二配置信息;
其中,所述第二配置信息被用于配置所述多个资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二时频资源块上接收第一控制信息;
其中,所述第一控制信息被用于指示所述第一时频资源块;所述第二时频资源块属于所述第一资源池,或者,所述第二时频资源块属于所述第二资源池。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于,包括:
发送第一配置信息和第二配置信息;
其中,所述第一配置信息被用于配置第一带宽部件的至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述第二配置信息被用于配置所述多个资源池;所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的 任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第三节点是基站。
根据本申请的一个方面,上述方法的特征在于,所述第三节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第三节点是用户设备。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,在第一时频资源块上发送目标定位参考信号;
其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,在第一时频资源块上接收目标定位参考信号;
其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
本申请公开了一种被用于无线通信的第三节点,其特征在于,包括:
第三发射机,发送第一配置信息和第二配置信息;
其中,所述第一配置信息被用于配置第一带宽部件的至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述第二配置信息被用于配置所述多个资源池;所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源。
作为一个实施例,本申请具备如下优势:
-本申请要解决的问题是:现有的SL资源池的确定方法无法满足SL PRS的需求,严重影响SL的资源利用率。
-本申请针对SL PRS引入一种新的资源确定方法。
-本申请将第一带宽部件与至少一个第一类长度和第二长度建立关系。
-本申请将至少一个第一类长度与第一时隙子集建议关系。
-本申请将至少一个第一类长度与第一资源池建议关系。
-本申请实现灵活的资源确定方法,提高有效资源的利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一时隙集合与第一类时隙子集和第二时隙子集之间关系的示意图;
图7示出了根据本申请的一个实施例的第一时隙子集,第二时隙子集与第一资源池之间关系的示意图;
图8示出了根据本申请的一个实施例的第一备选时隙,第一位图与第一时隙子集之间关系的示意图;
图9示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点执行步骤101,在第一时频资源块上发送目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述第一带宽部件是一个载波频率(Carrier Frequency)中的一段连续的带宽。
作为一个实施例,所述第一带宽部件是一个载波频率中的一段连续的频域资源。
作为一个实施例,所述第一带宽部件所占用的频域资源在一个载波频率内。
作为一个实施例,所述第一带宽部件包括多个子载波,所述第一带宽部件包括的所述多个子载波都属于同一个载波频率。
作为一个实施例,所述第一带宽部件包括多个子载波,所述第一带宽部件包括的所述多个子载波是连续的。
作为一个实施例,所述第一带宽部件包括多个子载波,所述第一带宽部件包括的所述多个子载波中的任意两个子载波的子载波间隔都相等。
作为一个实施例,所述第一带宽部件包括至少一个物理资源块(PRB,Physical Resource Block)。
作为一个实施例,所述第一带宽部件中的任一物理资源块包括多个子载波。
作为一个实施例,所述第一带宽部件包括至少一个子信道(Subchannel)。
作为一个实施例,所述第一带宽部件中的任一子信道包括多个物理资源块。
作为一个实施例,所述第一带宽部件被用于副链路通信。
作为一个实施例,所述第一带宽部件被用于副链路发送和副链路接收。
作为一个实施例,所述第一带宽部件被用于承载SL-SSB(SL-SS/PSBCH block,Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block,副链路同步信号/物理副链路广播信道块)。
作为一个实施例,所述第一带宽部件被用于承载SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一带宽部件被用于承载SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,所述第一带宽部件被用于承载SL HARQ(Sidelink Hybrid Automatic Repeat reQuest,副链路混合自动重传请求)信息。
作为一个实施例,所述第一带宽部件被用于承载SL PTRS(Sidelink Phase Tracking Reference Signal,副链路相位跟踪参考信号)。
作为一个实施例,所述第一带宽部件被用于承载SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)。
作为一个实施例,所述第一带宽部件被用于承载SL CSI-RS(Sidelink Channel Status Information Reference Signal,副链路信道状态信息参考信号)。
作为一个实施例,所述第一带宽部件被用于承载PSCCH DMRS(Physical Sidelink Control Channel Demodulation Reference Signal,物理副链路控制信道参考信号)。
作为一个实施例,所述第一带宽部件被用于承载PSSCH DMRS(Physical Sidelink Shared Channel Demodulation Reference Signal,物理副链路共享信道参考信号)。
作为一个实施例,所述第一带宽部件是一个BWP(bandwidth part,带宽部件)。
作为一个实施例,所述BWP的定义参见3GPP TS38.331的章节6.3.2。
作为一个实施例,所述第一带宽部件是一个SL BWP(副链路带宽部件)。
作为一个实施例,所述SLBWP的定义参见3GPP TS38.331的章节6.3.5。
作为一个实施例,所述第一带宽部件被配置所述至少一个第一类长度。
作为一个实施例,所述第一带宽部件被配置所述至少一个第一类长度是指所述第一带宽部件与所述至少一个第一类长度关联。
作为一个实施例,所述第一带宽部件被配置所述至少一个第一类长度是指所述第一带宽部件的参数包括所述至少一个第一类长度。
作为一个实施例,所述至少一个第一类长度中的任一第一类长度是一个时隙中被用于副链路的符号(Symbol)的个数。
作为一个实施例,所述至少一个第一类长度中的任一第一类长度是一个时隙中被用于副链路定位的符号的个数。
作为一个实施例,所述至少一个第一类长度中的至少一个第一类长度是一个时隙中被用于所述副链路定位参考信号的符号的个数。
作为一个实施例,所述至少一个第一类长度中的至少一个第一类长度是一个没有SL-SSB的时隙中被用于副链路的符号的个数。
作为一个实施例,所述至少一个第一类长度中的至少一个第一类长度是被用于一个时隙中被用于SL PRS的符号的个数。
作为一个实施例,所述至少一个第一类长度中的任一第一类长度是一个正整数。
作为一个实施例,所述至少一个第一类长度包括4个符号,6个符号,8个符号,14个符号四者中的至少之一。
作为一个实施例,所述至少一个第一类长度包括4,6,8,14四者中的至少之一。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是4个符号。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是6个符号。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是8个符号。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是14个符号。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是4。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是6。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是8。
作为一个实施例,所述至少一个第一类长度中的一个第一类长度是14。
作为一个实施例,所述至少一个第一类长度是被一个RRC IE(Radio Resource Control Information Element,无线资源控制信息单元)配置的。
作为一个实施例,所述至少一个第一类长度是被SL-BWP-Config配置的。
作为一个实施例,所述SL-BWP-Config的定义参见3GPP TS38.331的章节6.3.5。
作为一个实施例,所述第一带宽部件被配置所述至少一个第一类长度和所述第二长度。
作为一个实施例,所述第一带宽部件被配置所述至少一个第一类长度和所述第二长度是指所述第一带宽部件与所述至少一个第一类长度和所述第二长度关联。
作为一个实施例,所述第一带宽部件被配置所述至少一个第一类长度和所述第二长度是指所述第一带宽部件的参数包括所述至少一个第一类长度和所述第二长度。
作为一个实施例,所述第二长度是一个时隙中被用于副链路的符号的个数。
作为一个实施例,所述第二长度是一个时隙中被用于副链路通信的符号的个数。
作为一个实施例,所述第二长度是一个没有SL-SSB的时隙中被用于副链路的符号的个数。
作为一个实施例,所述第二长度是被用于一个时隙中被用于PSCCH和PSSCH的符号的个数。
作为一个实施例,所述第二长度是被用于一个时隙中被用于PSCCH,PSSCH和PSFCH的符号的个数。
作为一个实施例,所述第二长度是一个正整数。
作为一个实施例,所述第二长度是7个符号,8个符号,9个符号,10个符号,11个符号,12个符号,13个符号和14个符号八者中的之一。
作为一个实施例,所述第二长度是7,8,9,10,11,12,13,14八者中的之一。
作为一个实施例,所述第二长度是7个符号。
作为一个实施例,所述第二长度是8个符号。
作为一个实施例,所述第二长度是12个符号。
作为一个实施例,所述第二长度是14个符号。
作为一个实施例,所述第二长度是7。
作为一个实施例,所述第二长度是8。
作为一个实施例,所述第二长度是12。
作为一个实施例,所述第二长度是14。
作为一个实施例,所述第二长度是被一个RRC IE配置的。
作为一个实施例,所述至少一个第一类长度和所述第二长度都是被SL-BWP-Config配置的。
作为一个实施例,所述第二长度不等于所述至少一个第一类长度中的任一第一类长度。
作为一个实施例,所述第二长度不小于所述至少一个第一类长度中的任一第一类长度。
作为一个实施例,所述第二长度大于所述至少一个第一类长度中的任一第一类长度。
作为一个实施例,所述第二长度等于所述至少一个第一类长度中的一个第一类长度。
作为一个实施例,所述第二长度小于所述至少一个第一类长度中的一个第一类长度。
作为一个实施例,所述至少一个第一类长度中的任意两个第一类长度都不等。
作为一个实施例,所述第一长度是所述至少一个第一类长度中的之一。
作为一个实施例,所述第一长度与所述第二长度不等。
作为一个实施例,所述第一长度不大于所述第二长度。
作为一个实施例,所述第一长度小于所述第二长度。
作为一个实施例,所述第一长度等于所述第二长度。
作为一个实施例,所述第一长度大于所述第二长度。
作为一个实施例,所述第一长度是4,所述第二长度是7。
作为一个实施例,所述第一长度是14,所述第二长度是8。
作为一个实施例,所述第一长度是4个符号,所述第二长度是7个符号。
作为一个实施例,所述第一长度是14个符号,所述第二长度是8个符号。
作为一个实施例,一个时隙是时间单位。
作为一个实施例,一个时隙是时域资源。
作为一个实施例,一个符号是时间单位。
作为一个实施例,一个符号是时域资源。
作为一个实施例,所述一个时隙包括至少一个符号。
作为一个实施例,所述一个时隙包括多个符号。
作为一个实施例,所述一个时隙中的任一符号是第一类符号或者第二类符号二者中的之一。
作为一个实施例,所述一个时隙包括至少一个第一类符号和至少一个第二类符号。
作为一个实施例,所述一个时隙中的任一符号都是第一类符号。
作为一个实施例,所述一个时隙中的任一符号都是第二类符号。
作为一个实施例,所述第一类符号包括上行符号和灵活符号(Flexible Symbol)二者中的至少前者。
作为一个实施例,所述第一类符号是上行符号(Uplink Symbol)。
作为一个实施例,所述第一类符号是被半静态配置成上行的符号。
作为一个实施例,所述第一类符号是一个时隙中的被半静态配置成上行的符号。
作为一个实施例,所述第二类符号包括下行符(Downlink Symbol)号和灵活符号二者中的至少之一。
作为一个实施例,所述第二类符号是下行符号。
作为一个实施例,所述第二类符号是灵活符号。
作为一个实施例,所述一个时隙中的任一符号是一个多载波符号。
作为一个实施例,所述一个时隙中的任一符号是一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一带宽部件包括多个资源池所占用的频域资源。
作为一个实施例,所述多个资源池所占用的频域资源属于所述第一带宽部件。
作为一个实施例,所述多个资源池中的任一资源池是一个副链路资源池(Sidelink Resource Pool)。
作为一个实施例,所述多个资源池中的任一资源池包括一个副链路资源池的全部或部分资源。
作为一个实施例,所述多个资源池中的任一资源池在时域包括至少一个时隙。
作为一个实施例,所述多个资源池中的任一资源池在时域包括多个时隙。
作为一个实施例,所述多个资源池中的任一资源池在时域中的任一时隙包括多个符号。
作为一个实施例,所述多个资源池中的任一资源池在时域中的任一时隙包括多个第一类符号。
作为一个实施例,所述多个资源池中的任一资源池所占用的时域资源包括至少一个时隙。
作为一个实施例,所述多个资源池中的任一资源池所占用的时域资源包括多个时隙。
作为一个实施例,所述多个资源池中的任一资源池所占用的时域资源中的任一时隙包括多个符号。
作为一个实施例,所述多个资源池中的任一资源池所占用的时域资源中的任一时隙包括多个第一类符号。
作为一个实施例,所述多个资源池中的任一资源池在频域包括多个物理资源块。
作为一个实施例,所述多个资源池中的任一资源池在频域中的任一物理资源块包括多个子载波。
作为一个实施例,所述多个资源池中的任一资源池在频域包括多个子信道。
作为一个实施例,所述多个资源池中的任一资源池在频域中的任一子信道包括多个物理资源块。
作为一个实施例,所述多个资源池中的任一资源池所占用的频域资源包括多个物理资源块。
作为一个实施例,所述多个资源池中的任一资源池所占用的频域资源中的任一物理资源块包括多个子载波。
作为一个实施例,所述多个资源池中的任一资源池所占用的频域资源包括多个子信道。
作为一个实施例,所述多个资源池中的任一资源池所占用的频域资源中的任一子信道包括多个物理资源块。
作为一个实施例,所述多个资源池在频域包括多个子信道。
作为一个实施例,所述多个资源池在频域包括多个物理资源块。
作为一个实施例,所述多个资源池在频域包括多个子载波。
作为一个实施例,所述多个资源池所占用的所述频域资源包括多个子信道。
作为一个实施例,所述多个资源池所占用的所述频域资源包括多个物理资源块。
作为一个实施例,所述多个资源池所占用的所述频域资源包括多个子载波。
作为一个实施例,所述多个资源池中的任一资源池包括多个时频资源块。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块在时域包括多个符号。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块所占用的时域资源包括多个符号。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块所占用的时域资源属于一个时隙。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块在频域包括多个子载波。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块在频域包括至少一个物理资源块。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块在频域包括至少一个子信道。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块所占用的频域资源包括多个子载波。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块所占用的频域资源包括至少一个物理资源块。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块所占用的频域资源包括至少一个子信道。
作为一个实施例,所述多个资源池中的任一资源池中的任一时频资源块所占用的频域资源属于一个子信道。
作为一个实施例,所述多个资源池中的一个资源池中的至少一个时频资源块包括PSCCH。
作为一个实施例,所述多个资源池中的一个资源池中的至少一个时频资源块包括PSSCH。
作为一个实施例,所述多个资源池中的一个资源池中的至少一个时频资源块包括PSFCH。
作为一个实施例,所述多个资源池中的一个资源池中的至少一个时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述多个资源池中的一个资源池中的至少一个时频资源块包括PSCCH,PSSCH和PSFCH。
作为一个实施例,所述多个资源池中的一个资源池中的至少一个时频资源块被用于承载SL PRS。
作为一个实施例,所述目标定位参考信号被用于副链路定位(SL Positioning)。
作为一个实施例,所述目标定位参考信号被用于获得绝对位置(Absolute Position)。
作为一个实施例,所述目标定位参考信号被用于获得相对位置(Relative Position)。
作为一个实施例,所述目标定位参考信号被用于获得距离(Distance)。
作为一个实施例,所述目标定位参考信号被用于获得范围(Range)。
作为一个实施例,所述目标定位参考信号是一个PRS(Positioning Reference Signal,定位参考信号)。
作为一个实施例,所述目标定位参考信号是一个SL PRS。
作为一个实施例,所述目标定位参考信号包括SL PRS,SL PTRS,SL CSI-RS,PSCCH DMRS,PSSCH DMRS,SL-SSB中的至少之一。
作为一个实施例,所述目标定位参考信号包括SL PRS。
作为一个实施例,所述目标定位参考信号包括SL SSB。
作为一个实施例,所述目标定位参考信号包括SL PTRS。
作为一个实施例,所述目标定位参考信号包括SL CSI-RS。
作为一个实施例,所述目标定位参考信号包括第一序列。
作为一个实施例,第一序列被用于生成所述目标定位参考信号。
作为一个实施例,所述第一序列是伪随机序列(Pseudo-Random Sequence)。
作为一个实施例,所述第一序列是低峰均比序列(Low-PAPR Sequence,Low-Peak to Average Power Ratio Sequence)。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是ZC(Zadeoff-Chu)序列。
作为一个实施例,所述第一序列经过序列生成(Sequence Generation),物理资源映射(Mapping to physical resources),时隙映射(Mapping to slots)之后得到所述目标定位参考信号。
作为一个实施例,所述目标定位参考信号所占用的时域资源包括至少一个符号。
作为一个实施例,所述目标定位参考信号在时域占用至少一个符号。
作为一个实施例,所述目标定位参考信号所占用的时域资源包括一个时隙中的至少一个符号。
作为一个实施例,所述目标定位参考信号在时域占用一个时隙中的至少一个符号。
作为一个实施例,所述目标定位参考信号所占用的时域资源包括多个符号。
作为一个实施例,所述目标定位参考信号在时域占用多个符号。
作为一个实施例,所述目标定位参考信号所占用的时域资源包括一个时隙中的多个符号。
作为一个实施例,所述目标定位参考信号在时域占用一个时隙中的多个符号。
作为一个实施例,所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述目标定位参考信号在时域所占用的符号的个数小于所述第一长度。
作为一个实施例,所述目标定位参考信号在时域所占用的符号的个数等于所述第一长度。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回 程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。在NTN网络中,gNB203的实例包括卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点包括所述UE201。
作为一个实施例,本申请中的第二节点包括所述UE241。
作为一个实施例,本申请中的第三节点包括所述gNB203。
作为一个实施例,本申请中的用户设备包括所述UE201。
作为一个实施例,本申请中的用户设备包括所述UE241。
作为一个实施例,本申请中的基站包括所述gNB203。
作为一个实施例,本申请中的中继节点包括所述gNB203。
作为一个实施例,本申请中的目标定位参考信号的发送者包括所述UE201。
作为一个实施例,本申请中的目标定位参考信号的接收者包括所述UE241。
作为一个实施例,本申请中的第一控制信息的发送者包括所述UE201。
作为一个实施例,本申请中的第一控制信息的接收者包括所述UE241。
作为一个实施例,本申请中的第一配置信息的接收者包括所述UE201。
作为一个实施例,本申请中的第一配置信息的发送者包括所述UE201。
作为一个实施例,本申请中的第一配置信息的发送者包括所述gNB203。
作为一个实施例,本申请中的第二配置信息的接收者包括所述UE201。
作为一个实施例,本申请中的第二配置信息的发送者包括所述UE201。
作为一个实施例,本申请中的第二配置信息的发送者包括所述gNB203。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组 数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述目标定位参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一控制信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一控制信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一控制信息经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一配置信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一配置信息经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第二配置信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二配置信息经由所述MAC子层302传输到所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后 提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备,所述第三节点是基站。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备,所述第三节点是基站。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一 个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:在第一时频资源块上发送目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源块上发送目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在第一时频资源块上接收目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机 可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源块上接收目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一时频资源块上发送目标定位参考信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第二时频资源块上发送第一控制信息。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第一时频资源块上接收目标定位参考信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第二时频资源块上接收第一控制信息。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点U1,第二节点U2与第三节点U3之间是通过空中接口进行通信。在附图5中,虚线方框F0和虚线方框F1中的步骤分别是可选的。
对于第一节点U1,在步骤S11中接收第一配置信息;在步骤S12中接收第二配置信息;在步骤S13中在第二时频资源块上发送第一控制信息;在步骤S14中在第一时频资源块上发送目标定位参考信号。
对于第二节点U2,在步骤S21中在第二时频资源块上接收第一控制信息;在步骤S22中在第一时频资源块上接收目标定位参考信号。
对于第三节点U3,在步骤S31中发送第一配置信息;在步骤S22中发送第二配置信息。
在实施例5中,所述第一配置信息被用于配置第一带宽部件的至少一个第一类长度和第二长度;所述第二配置信息被用于配置多个资源池,所述第一带宽部件包括所述多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数,所述至少一个第一类长度和至少一个第一类位图共同被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数,所述第二长度和第二位图共同被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度;所述第二时隙子集被用于确 定第二资源池所占用的时域资源,所述第二资源池是所述多个资源池中的不同于所述第一资源池的一个资源池;所述第一时频资源块是所述第一节点U1从所述第一资源池中自行确定的,或者,所述第一时频资源块是被一个下行信令从所述第一资源池中指定的;所述第一控制信息被用于指示所述第一时频资源块;所述第二时频资源块属于所述第一资源池,或者,所述第二时频资源块属于所述第二资源池。
作为一个实施例,所述第一节点U1和所述第二节点U2之间是通过PC5接口进行通信。
作为一个实施例,所述第一节点U1和所述第三节点U3之间是通过Uu接口进行通信。
作为一个实施例,附图5中的方框F0中的步骤存在,附图5中的方框F1中的步骤存在。
作为一个实施例,附图5中的方框F0中的步骤不存在,附图5中的方框F1中的步骤不存在。
作为一个实施例,当所述第一配置信息和所述第二配置信息都是预配置时,附图5中的方框F0中的步骤不存在,附图5中的方框F1中的步骤不存在。
作为一个实施例,当所述第一节点U1的更高层提供所述第一配置信息和所述第二配置信息给所述第一节点U1的物理层时,附图5中的方框F0中的步骤不存在,附图5中的方框F1中的步骤不存在。
作为一个实施例,当所述第一节点U1的物理层从所述第一节点的更高层获得所述第一配置信息和所述第二配置信息时,附图5中的方框F0中的步骤不存在,附图5中的方框F1中的步骤不存在。
作为一个实施例,所述第一配置信息是预配置的(Preconfigured)。
作为一个实施例,所述第二配置信息是预配置的。
作为一个实施例,所述第一配置信息是所述第一节点U1的更高层提供的。
作为一个实施例,所述第二配置信息是所述第一节点U1的更高层提供的。
作为一个实施例,所述第一配置信息是所述第一节点U1的物理层从所述第一节点U1的更高层获得的。
作为一个实施例,所述第二配置信息是所述第一节点U1的物理层从所述第一节点U1的更高层获得的。
作为一个实施例,所述第一资源池是所述多个资源池中的一个资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括所述第一时频资源块。
作为一个实施例,所述第一资源池是所述多个资源池中的一个资源池,所述第一资源池包括多个时频资源块,所述第一时频资源块属于所述第一资源池所包括的所述多个时频资源块。
作为一个实施例,所述第一资源池是所述多个资源池中的一个资源池,所述第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第一时频资源块被用于承载所述目标定位参考信号。
作为一个实施例,所述第一时频资源块被用于承载SL PRS。
作为一个实施例,所述第一时频资源块包括PSCCH。
作为一个实施例,所述第一时频资源块不包括PSCCH。
作为一个实施例,所述第一时频资源块包括PSSCH。
作为一个实施例,所述第一时频资源块不包括PSSCH。
作为一个实施例,所述第一时频资源块被用于承载SL PRS,所述第一时频资源块包括PSCCH。
作为一个实施例,所述第一时频资源块仅被用于承载SL PRS,所述第一时频资源块不包括PSCCH和PSSCH。
作为一个实施例,所述第一节点U1从所述第一资源池包括的所述多个时频资源块中选择所述第一时频资源块。
作为一个实施例,所述第一节点U1从所述第一资源池包括的所述多个时频资源块中自行确定所述第一时频资源块。
作为一个实施例,一个下行信令从所述第一资源池包括的所述多个时频资源块中指示所述第一时频资源块。
作为一个实施例,所述一个下行信令指示所述第一时频资源块在所述第一资源池包括的所述多个时频资源块中的位置。
作为一个实施例,所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度。
作为一个实施例,所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度和第二长度。
作为一个实施例,所述第一配置信息被用于配置所述第一带宽部件的相关参数。
作为一个实施例,所述第一配置信息包括所述至少一个第一类长度。
作为一个实施例,所述第一配置信息包括所述至少一个第一类长度和所述第二长度。
作为一个实施例,所述第一配置信息包括一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第一配置信息包括有一个RRC IE(Information Element,信息元素)中的一个或多个域(field)。
作为一个实施例,所述第一配置信息包括一个RRC IE,SL-BWP-Config。
作为一个实施例,所述SL-BWP-Config的定义参考3GPP TS38.331的章节6.3.5。
作为一个实施例,所述第一配置信息包括一个RRC IE中的一个域,SL-BWP-Generic。
作为一个实施例,所述SL-BWP-Generic的定义参考3GPP TS38.331的章节6.3.5。
作为一个实施例,所述第二配置信息被用于配置所述多个资源池,所述多个资源池所占用的频域资源都属于所述第一带宽部件。
作为一个实施例,所述第二配置信息被用于配置所述第一带宽部件的相关参数。
作为一个实施例,所述第二配置信息包括所述多个资源池中的任一资源池的标识。
作为一个实施例,所述第二配置信息包括所述多个资源池中的任一资源池所占用的时频资源。
作为一个实施例,所述第二配置信息包括所述多个资源池中的任一资源池的相关参数。
作为一个实施例,所述第二配置信息包括一个RRC层信令中的全部或部分。
作为一个实施例,所述第二配置信息包括有一个RRC IE中的一个或多个域(field)。
作为一个实施例,所述第二配置信息包括一个RRC IE,SL-BWP-PoolConfig。
作为一个实施例,所述SL-BWP-PoolConfig的定义参考3GPP TS38.331的章节6.3.5。
作为一个实施例,所述第一配置信息包括一个RRC IE,SL-ResourcePool。
作为一个实施例,所述SL-ResourcePool的定义参考3GPP TS38.331的章节6.3.5。
作为一个实施例,所述第一控制信息被用于指示所述第一时频资源块。
作为一个实施例,所述第一控制信息被用于指示所述第一资源池。
作为一个实施例,所述第一控制信息被用于从所述第一资源池中指示所述第一时频资源块。
作为一个实施例,所述第一控制信息被用于指示所述目标定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述目标定位参考信号的相关参数。
作为一个实施例,所述第一控制信息被用于指示所述第一序列,所述第一序列被用于生成所述目标定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述目标定位参考信号所占用的符号。
作为一个实施例,所述第一控制信息被用于指示所述目标定位参考信号在一个时隙中所占用的符号。
作为一个实施例,所述第二时频资源块属于所述第一资源池。
作为一个实施例,所述第二时频资源块是所述第一资源池包括的多个时频资源块中的之一。
作为一个实施例,所述第二时频资源块属于所述第二资源池。
作为一个实施例,所述第二时频资源块是所述第二资源池包括的多个时频资源块中的之一。
作为一个实施例,所述第一时频资源块属于所述第一资源池,所述第二时频资源块属于所述第二资源池。
作为一个实施例,所述第一时频资源块和所述第二时频资源块都属于所述第一资源池。
作为一个实施例,所述第一时频资源块和所述第二时频资源块分别是所述第一资源池中的两个时频资源块。
作为一个实施例,所述第一时频资源块是所述第一资源池中的一个时频资源块,所述第二时频资源块是所述第二资源池中的一个时频资源块。
实施例6
实施例6示例了根据本申请的一个实施例的第一时隙集合与第一类时隙子集和第二时隙子集之间关系的示意图,如附图6所示。
在实施例6中,所述第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第一带宽部件被配置的所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集;所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第一带宽部件被配置的所述第二长度被用于从所述第一时隙集合中确定第二时隙子集;所述第一类符号是上行符号。
作为一个实施例,所述第一时隙集合包括多个时隙。
作为一个实施例,所述第一时隙集合包括的所述多个时隙的个数是10240的倍数。
作为一个实施例,所述第一时隙集合包括的所述多个时隙的个数与所述第一带宽部件中的子载波的子载波间隔有关。
作为一个实施例,所述第一时隙集合包括的所述多个时隙的个数等于10240与2μ的乘积,μ是从0到6中的一个整数。
作为上述实施例的一个子实施例,所述μ与所述第一带宽部件中的子载波的子载波间隔有关。
作为上述实施例的一个子实施例,所述第一带宽部件中的子载波的所述子载波间隔被用于确定所述μ。
作为上述实施例的一个子实施例,所述第一带宽部件中的子载波的所述子载波间隔是15kHz,所述μ是0。
作为上述实施例的一个子实施例,所述第一带宽部件中的子载波的所述子载波间隔是60kHz,所述μ是2。
作为一个实施例,所述第一时隙集合包括所述至少一个第一类时隙子集中的任一第一类时隙子集。
作为一个实施例,所述至少一个第一类时隙子集中的任一第一类时隙子集属于所述第一时隙集合。
作为一个实施例,所述至少一个第一类时隙子集中的任一第一类时隙子集包括多个时隙。
作为一个实施例,所述至少一个第一类时隙子集中的任一第一类时隙子集所包括的所述多个时隙都属于所述第一时隙集合。
作为一个实施例,所述至少一个第一类时隙子集中的任一第一类时隙子集中的任一时隙是所述第一时隙集合中的一个时隙。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第一带宽部件被配置的所述至少一个第一类长度被用于从所述第一时隙集合中确定所述至少一个第一类时隙子集。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第一带宽部件被配置的所述至少一个第一类长度的大小关系被用于从所述第一时隙集合中确定所述至少一个第一类时隙子集。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数分别与所述第一带宽部件被配置的所述至少一个第一类长度一起被用于从所述第一时隙集合中确定所述至少一个第一类时隙子集。
作为一个实施例,第一备选长度是所述至少一个第一类长度中的任一第一类长度,所述第一时隙集合中的任一时隙所包括的第一类符号的所述个数与所述第一备选长度被用于从所述第一时隙集合中确定第一备选时隙子集,所述第一备选时隙子集是所述至少一个第一类时隙子集中的之一。
作为一个实施例,第一备选时隙子集是所述至少一个第一类时隙子集中的任一第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的所述个数与第一备选长度被用于从所述第一时隙集合中确定所述第一备选时隙子集,所述第一备选长度是所述至少一个第一类时隙子集中的之一。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第一带宽部件被配置的所述至少一个第一类长度中的任一第一类长度的大小关系被用于从所述第一时隙集合中确定所述至少一个第一类时隙子集中的一个第一类时隙子集。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数分别与所述第一带宽部件被配置的所述至少一个第一类长度的大小关系分别被用于从所述第一时隙集合中确定所述至少一个第 一类时隙子集。
作为一个实施例,第一备选长度是所述至少一个第一类长度中的任一第一类长度,所述第一时隙集合中的任一时隙所包括的第一类符号的所述个数与所述第一备选长度的大小关系被用于从所述第一时隙集合中确定第一备选时隙子集,所述第一备选时隙子集是所述至少一个第一类时隙子集中的之一。
作为一个实施例,第一备选时隙子集是所述至少一个第一类时隙子集中的任一第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的所述个数与第一备选长度的大小关系被用于从所述第一时隙集合中确定所述第一备选时隙子集,所述第一备选长度是所述至少一个第一类时隙子集中的之一。
作为一个实施例,第一备选时隙是所述第一时隙集合中的一个时隙,第一备选长度是所述至少一个第一类长度中的一个第一类长度,所述第一备选时隙所包括的所述第一类符号的个数和所述第一备选长度的大小关系被用于确定所述第一备选时隙是否属于所述第一备选时隙子集。
作为一个实施例,第一备选时隙是所述第一时隙集合中的一个时隙,第一备选长度是所述至少一个第一类长度中的一个第一类长度,所述第一备选时隙是否属于所述第一备选时隙子集与所述第一备选时隙所包括的所述第一类符号的个数与所述第一备选长度的大小关系有关。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的任一时隙。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中未承载SL-SSB的任一时隙。
作为一个实施例,所述第一备选时隙所包括的所述第一类符号的所述个数是否不小于所述第一备选长度被用于确定所述第一备选时隙是否属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙所包括的所述第一类符号的所述个数是否等于所述第一备选长度被用于确定所述第一备选时隙是否属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙是否属于所述第一备选时隙子集与所述第一备选时隙所包括的所述第一类符号的所述个数是否不小于所述第一备选长度有关。
作为一个实施例,所述第一备选时隙是否属于所述第一备选时隙子集与所述第一备选时隙所包括的所述第一类符号的所述个数是否等于所述第一备选长度有关。
作为一个实施例,所述第一备选时隙所包括的所述第一类符号的所述个数小于所述第一备选长度,所述第一备选时隙不属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙所包括的所述第一类符号的所述个数大于所述第一备选长度,所述第一备选时隙属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙所包括的所述第一类符号的所述个数等于所述第一备选长度,所述第一备选时隙属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙所包括的所述第一类符号的所述个数不等于所述第一备选长度,所述第一备选时隙不属于所述第一备选时隙子集。
作为一个实施例,当所述第一备选时隙所包括的所述第一类符号的所述个数小于所述第一备选长度时,所述第一备选时隙不属于所述第一备选时隙子集;当所述第一备选时隙所包括的所述第一类符号的所述个数等于所述第一备选长度时,所述第一备选时隙属于所述第一备选时隙子集;当所述第一备选时隙所包括的所述第一类符号的所述个数大于所述第一备选长度时,所述第一备选时隙属于所述第一备选时隙子集。
作为一个实施例,当所述第一备选时隙所包括的所述第一类符号的所述个数等于所述第一备选长度时,所述第一备选时隙属于所述第一备选时隙子集;当所述第一备选时隙所包括的所述第一类符号的所述个数不等于所述第一备选长度时,所述第一备选时隙不属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的任一符号是否是所述第一类符号被用于确定所述第一备选时隙是否属于所述第一备选时隙子集,X1等于所述第一备选长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一备选时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的至少一符号不是所述第一类符号,所述第一备选时隙不属于所述第一备选时隙子集,X1等于所述第一备选长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一备选时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的任 一符号是所述第一类符号,所述第一备选时隙属于所述第一备选时隙子集,X1等于所述第一备选长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一备选时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的至少一符号未被半静态地配置成上行,所述第一备选时隙不属于所述第一备选时隙子集,X1等于所述第一备选长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一备选时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的任一符号被半静态地配置成上行,所述第一备选时隙属于所述第一备选时隙子集,X1等于所述第一备选长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一时隙集合包括所述第一时隙子集。
作为一个实施例,所述第一时隙子集属于所述第一时隙集合。
作为一个实施例,所述第一时隙子集是所述至少一个第一类时隙子集中的之一。
作为一个实施例,所述第一时隙子集包括多个时隙。
作为一个实施例,所述第一时隙子集所包括的所述多个时隙都属于所述第一时隙集合。
作为一个实施例,所述第一时隙子集中的任一时隙是所述第一时隙集合中的一个时隙。
作为一个实施例,所述第一长度被用于从所述第一时隙集合中确定第一时隙子集,所述第一时隙子集是所述至少一个第一类时隙子集中的之一。
作为一个实施例,所述第一时隙子集包括多个时隙,所述第一时隙子集中的任一时隙所包括的所述第一类符号的个数不小于所述第一长度。
作为一个实施例,所述第一时隙子集包括多个时隙,所述第一时隙子集中的任一时隙所包括的所述第一类符号的个数大于所述第一长度。
作为一个实施例,所述第一时隙子集包括多个时隙,所述第一时隙子集中的任一时隙所包括的所述第一类符号的个数等于所述第一长度。
作为一个实施例,所述第一时隙子集中的任一时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的任一符号是所述第一类符号,X1等于所述第一长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一时隙子集中的任一时隙中的第Y1个,第Y1+1个,......,第(Y1+X1-1)个符号中的任一符号被半静态地配置成上行,X1等于所述第一长度,Y1是从0到7中的一个整数。
作为一个实施例,所述第一时隙集合包括所述第二时隙子集。
作为一个实施例,所述第二时隙子集属于所述第一时隙集合。
作为一个实施例,所述第二时隙子集包括多个时隙。
作为一个实施例,所述第二时隙子集所包括的所述多个时隙都属于所述第一时隙集合。
作为一个实施例,所述第二时隙子集中的任一时隙是所述第一时隙集合中的一个时隙。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定所述第二时隙子集。
作为一个实施例,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度的大小关系被用于从所述第一时隙集合中确定所述第二时隙子集。
作为一个实施例,第二备选时隙是所述第一时隙集合中的一个时隙,所述第二备选时隙所包括的所述第一类符号的个数和所述第二长度的大小关系被用于确定所述第二备选时隙是否属于所述第二时隙子集。
作为一个实施例,第二备选时隙是所述第一时隙集合中的一个时隙,所述第二备选时隙是否属于所述第二时隙子集与所述第二备选时隙所包括的所述第一类符号的个数与所述第二长度的大小关系有关。
作为一个实施例,所述第二备选时隙是所述第一时隙集合中的任一时隙。
作为一个实施例,所述第二备选时隙是所述第一时隙集合中未承载SL-SSB的任一时隙。
作为一个实施例,所述第二备选时隙所包括的所述第一类符号的所述个数是否不小于所述第二长度被用于确定所述第二备选时隙是否属于所述第二时隙子集。
作为一个实施例,所述第二备选时隙是否属于所述第二时隙子集与所述第二备选时隙所包括的所述第一类符号的所述个数是否不小于所述第二长度有关。
作为一个实施例,所述第二备选时隙中的第Y个,第Y+1个,......,第(Y+X-1)个符号中的任一符 号是否是所述第一类符号被用于确定所述第二备选时隙是否属于所述第二时隙子集,X等于所述第二长度,Y是从0到7中的一个整数。
作为一个实施例,所述第二备选时隙中的第Y个,第Y+1个,......,第(Y+X-1)个符号中的至少一符号不是所述第一类符号,所述第二备选时隙不属于所述第二时隙子集,X等于所述第二长度,Y是从0到7中的一个整数。
作为一个实施例,所述第二备选时隙中的第Y个,第Y+1个,......,第(Y+X-1)个符号中的任一符号是所述第一类符号,所述第二备选时隙属于所述第二时隙子集,X等于所述第二长度,Y是从0到7中的一个整数。
作为一个实施例,所述第二备选时隙中的第Y个,第Y+1个,......,第(Y+X-1)个符号中的至少一符号未被半静态地配置成上行,所述第二备选时隙不属于所述第二时隙子集,X等于所述第二长度,Y是从0到7中的一个整数。
作为一个实施例,所述第二备选时隙中的第Y个,第Y+1个,......,第(Y+X-1)个符号中的任一符号被半静态地配置成上行,所述第二备选时隙属于所述第二时隙子集,X等于所述第二长度,Y是从0到7中的一个整数。
实施例7
实施例7示例了根据本申请的一个实施例的第一时隙子集,第二时隙子集与第一资源池之间关系的示意图,如附图7所示。在附图7中,实线大方框代表本申请中的第一资源池;虚线大方框代表本申请中的第二资源池;实线大方框中的实线矩形分别代表本申请中的属于第一资源池的时频资源块;实线大方框中的虚线矩形代表本申请中的不属于第一资源池的时频资源块;虚线大方框中的实线矩形代表本申请中的属于第二资源池的时频资源块;虚线大方框中的虚线矩形代表本申请中的不属于第二资源池的时频资源块。
在实施例7中,所述第一时隙子集被用于确定第一资源池所占用的时域资源,所述第二时隙子集被用于确定第二资源池所占用的时域资源,所述第二资源池与所述第一资源池是本申请中的所述多个资源池中的两个不同资源池。
作为一个实施例,第一备选时隙子集是所述至少一个第一类时隙子集中的任一第一类时隙子集,所述第一备选时隙子集包括多个时隙。
作为一个实施例,所述第一备选时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源。
作为一个实施例,所述第一备选时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源属于所述第一备选时隙子集包括的所述多个时隙。
作为一个实施例,所述第一备选时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源是所述第一备选时隙子集包括的所述多个时隙。
作为一个实施例,所述第一备选时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源包括多个时隙,所述至少一个资源池所占用的所述时域资源中的任一时隙是所述第一备选时隙子集中的一个时隙。
作为一个实施例,所述第一资源池是所述多个资源池中的一个资源池。
作为一个实施例,所述第一资源池被用于副链路定位。
作为一个实施例,所述第一资源池被用于副链路通信。
作为一个实施例,所述第一资源池被用于副链路通信和副链路定位。
作为一个实施例,所述第一资源池仅被用于副链路定位。
作为一个实施例,所述第一资源池被用于承载SL PRS。
作为一个实施例,所述第一资源池被用于承载SL-SCH。
作为一个实施例,所述第一资源池被用于承载SCI。
作为一个实施例,所述第一资源池被用于承载SL MAC CE(Multimedia Access Control Control Element,多媒体接入控制的控制元素)。
作为一个实施例,所述第一资源池被用于承载PSCCH DMRS。
作为一个实施例,所述第一资源池被用于承载PSSCH DMRS。
作为一个实施例,所述第一资源池包括PSCCH。
作为一个实施例,所述第一资源池包括PSCCH和PSSCH。
作为一个实施例,所述第一资源池包括PSCCH,PSSCH和PSFCH。
作为一个实施例,所述第一资源池被用于承载SL PRS,所述第一资源池包括PSCCH和PSSCH二者中的至少前者。
作为一个实施例,所述第一资源池被用于承载SL PRS,所述第一资源池不包括PSSCH。
作为一个实施例,所述第一资源池被用于承载SL PRS,所述第一资源池包括PSCCH,所述第一资源池不包括PSSCH。
作为一个实施例,所述第一资源池被用于承载SL PRS,所述第一资源池不包括PSCCH和PSSCH。
作为一个实施例,所述第一资源池仅被用于承载SL PRS。
作为一个实施例,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源。
作为一个实施例,所述第一资源池在时域包括多个时隙都属于所述第一时隙子集。
作为一个实施例,所述第一资源池所占用的时域资源包括多个时隙,所述第一资源池所占用的时域资源中的任一时隙是所述第一时隙子集中的一个时隙。
作为一个实施例,所述第一资源池在时域包括的所述多个时隙与所述第一时隙子集包括的所述多个时隙一一对应。
作为一个实施例,所述第一资源池在时域包括的所述多个时隙分别是所述第一时隙子集包括的所述多个时隙。
作为一个实施例,所述第二资源池是所述多个资源池中的一个资源池。
作为一个实施例,所述第二资源池被用于副链路通信。
作为一个实施例,所述第二资源池被用于副链路通信和副链路定位。
作为一个实施例,所述第二资源池被用于承载SL-SCH。
作为一个实施例,所述第二资源池被用于承载SCI。
作为一个实施例,所述第二资源池被用于承载SL MAC CE。
作为一个实施例,所述第二资源池被用于承载SL PRS。
作为一个实施例,所述第二资源池被用于承载PSCCH DMRS。
作为一个实施例,所述第二资源池被用于承载PSSCH DMRS。
作为一个实施例,所述第二资源池包括PSCCH。
作为一个实施例,所述第二资源池包括PSCCH和PSSCH。
作为一个实施例,所述第二资源池包括PSCCH,PSSCH和PSFCH。
作为一个实施例,所述第二资源池包括PSCCH和PSSCH二者中的至少前者,所述第二资源池被用于承载SL PRS。
作为一个实施例,所述第二资源池包括PSCCH和PSSCH二者中的至少前者,所述第二资源池不被用于承载SL PRS。
作为一个实施例,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源。
作为一个实施例,所述第二资源池是所述多个资源池中的被所述第二时隙子集确定的所述至少一个资源池中的一个资源池。
作为一个实施例,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源属于所述第二时隙子集包括的所述多个时隙。
作为一个实施例,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源是所述第二时隙子集包括的所述多个时隙。
作为一个实施例,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源包括多个时隙,所述至少一个资源池所占用的所述时域资源中的任一时隙是所述第二时隙子集中的一个时隙。
作为一个实施例,所述第二时隙子集被用于确定所述第二资源池所占用的时域资源。
作为一个实施例,所述第二资源池在时域包括多个时隙都属于所述第二时隙子集。
作为一个实施例,所述第二资源池所占用的时域资源包括多个时隙,所述第二资源池所占用的时域资源中的任一时隙是所述第二时隙子集中的一个时隙。
作为一个实施例,所述第二资源池在时域包括的所述多个时隙与所述第二时隙子集包括的所述多个时隙一一对应。
作为一个实施例,所述第二资源池在时域包括的所述多个时隙分别是所述第二时隙子集包括的所述多个时隙。
作为一个实施例,所述第一资源池被用于副链路定位,所述第二资源池被用于副链路通信。
作为一个实施例,所述第一资源池被用于承载SL PRS,所述第二资源池包括PSCCH和PSSCH二者中的至少前者。
作为一个实施例,所述第一资源池被用于承载SL PRS,所述第一资源池包括PSCCH,所述第二资源池包括PSCCH和PSSCH二者中的至少前者。
作为一个实施例,所述第二资源池与所述第一资源池是正交的。
作为一个实施例,所述第二资源池与所述第一资源池在频域上是正交的。
作为一个实施例,所述第二资源池与所述第一资源池在时域上是正交的。
作为一个实施例,所述第二资源池与所述第一资源池有交叠。
作为一个实施例,所述第二资源池与所述第一资源池在时域上有交叠。
作为一个实施例,所述第二资源池与所述第一资源池在频域上有交叠。
作为一个实施例,所述第二资源池与所述第一资源池在频域上是正交的,所述第二资源池与所述第一资源池在时域上有交叠。
作为一个实施例,所述第二资源池与所述第一资源池在时域上是正交的,所述第二资源池与所述第一资源池在频域上有交叠。
作为一个实施例,所述第二资源池与所述第一资源池是FDM的。
作为一个实施例,所述第二资源池与所述第一资源池是TDM的。
作为一个实施例,所述第二资源池与所述第一资源池属于同一个载波频率。
作为一个实施例,所述第二资源池所占用的频域资源和所述第一资源池所占用的频域资源属于同一个载波频率。
作为一个实施例,所述第二资源池与所述第一资源池属于同一个带宽部件。
作为一个实施例,所述第二资源池所占用的频域资源和所述第一资源池所占用的频域资源属于同一个带宽部件。
作为一个实施例,所述第二资源池所占用的频域资源和所述第一资源池所占用的频域资源属于同一个SL BWP。
作为一个实施例,所述第二资源池包括的子信道的个数与所述第一资源池包括的子信道的个数不等。
作为一个实施例,所述第二资源池包括的子信道的个数与所述第一资源池包括的子信道的个数相等。
作为一个实施例,所述第二资源池包括的子信道的个数大于所述第一资源池包括的子信道的个数。
作为一个实施例,所述第二资源池包括的子信道的个数小于所述第一资源池包括的子信道的个数。
作为一个实施例,所述第二资源池中的任一子信道所占用的频域资源与所述第一资源池中的任一子信道所占用的频域资源相等。
作为一个实施例,所述第二资源池中的任一子信道所占用的频域资源与所述第一资源池中的任一子信道所占用的频域资源不等。
作为一个实施例,所述第二资源池中的任一子信道所占用的频域资源大于所述第一资源池中的任一子信道所占用的频域资源。
作为一个实施例,所述第二资源池中的任一子信道所占用的频域资源小于所述第一资源池中的任一子信道所占用的频域资源。
作为一个实施例,所述第二资源池中的任一子信道所包括的物理资源块的个数与所述第一资源池中的 任一子信道所包括的物理资源块的个数相等。
作为一个实施例,所述第二资源池中的任一子信道所包括的物理资源块的个数与所述第一资源池中的任一子信道所包括的物理资源块的个数不等。
作为一个实施例,所述第二资源池中的任一子信道所包括的物理资源块的个数大于所述第一资源池中的任一子信道所包括的物理资源块的个数。
作为一个实施例,所述第二资源池中的任一子信道所包括的物理资源块的个数小于所述第一资源池中的任一子信道所包括的物理资源块的个数。
实施例8
实施例8示例了根据本申请的一个实施例的第一备选时隙,第一位图与第一时隙子集之间关系的示意图,如附图8所示。实线大方框代表本申请的第一资源池,实线矩形代表本申请中的第一备选时隙,斜纹填充的矩形代表本申请中的第一时隙子集中的一个时隙。
在实施例8中,第一位图是所述至少一个第一类位图中的之一,第一备选时隙是所述第一时隙集合中的任一时隙,所述第一备选时隙所包括的第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一备选时隙是否属于所述第一时隙子集。
作为一个实施例,所述至少一个第一类长度和至少一个第一类位图共同被用于确定所述至少一个第一类时隙子集。
作为一个实施例,所述第一备选长度是所述至少一个第一类长度中的之一,所述第一备选位图是所述第一类位图中的之一,所述第一备选长度和所述第一备选位图共同被用于确定所述至少一个第一类时隙子集中的一个第一类时隙子集。
作为一个实施例,所述第一备选长度是所述至少一个第一类长度中的之一,所述第一位图是所述第一类位图中的之一,第一备选时隙子集是述至少一个第一类时隙子集中的之一,所述第一备选长度和所述第一备选位图共同被用于确定所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数与所述第一备选长度的大小关系和所述第一备选位图共同被用于确定所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数是否不小于所述第一备选长度和所述第一备选位图共同被用于确定所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数不小于所述第一备选长度,所述第一备选位图包括多个比特,所述第一备选时隙与所述第一备选位图中的一个比特对应,所述第一备选位图中的所述一个比特被用于指示所述第一备选时隙是否属于所述第一备选时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数不小于所述第一备选长度,所述第一备选位图包括多个比特,所述第一备选时隙与所述第一备选位图中的一个比特对应;所述第一备选位图中的所述一个比特的值为1,所述第一备选时隙属于所述第一备选时隙子集,或者,所述第一备选位图中的所述一个比特的值为0,所述第一备选时隙不属于所述第一备选时隙子集。
作为一个实施例,所述第一长度和所述第一位图共同被用于确定所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数是否不小于所述第一长度和所述第一位图共同被用于确定所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一时隙子集。
作为一个实施例,所述第一位图是所述至少一个第一类位图中的之一,所述第一位图包括多个比特。
作为一个实施例,所述第一时隙集合包括第一时隙组,所述第一时隙组包括多个时隙,所述第一时隙中的任一时隙所包括的第一类符号的个数不小于所述第一长度。
作为一个实施例,所述第一时隙集合包括第一时隙组,所述第一时隙组包括多个时隙,所述第一时隙中的任一时隙所包括的第一类符号的个数等于所述第一长度。
作为一个实施例,所述第一位图包括的所述多个比特分别与所述第一时隙组包括的所述多个时隙一一对应。
作为一个实施例,所述第一位图包括的所述多个比特分别指示所述第一时隙组包括的所述多个时隙是否属于所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数不小于所述第一长度,所述第一位图包括多个比特,所述第一备选时隙与所述第一位图中的一个比特对应,所述第一位图中的所述一个比特被用于指示所述第一备选时隙是否属于所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数等于所述第一长度,所述第一位图包括多个比特,所述第一备选时隙与所述第一位图中的一个比特对应,所述第一位图中的所述一个比特被用于指示所述第一备选时隙是否属于所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数不小于所述第一长度,所述第一位图包括多个比特,所述第一备选时隙与所述第一位图中的一个比特对应;所述第一位图中的所述一个比特的值为1,所述第一备选时隙属于所述第一时隙子集,或者,所述第一位图中的所述一个比特的值为0,所述第一备选时隙不属于所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙集合中的一个时隙,所述第一备选时隙包括的所述第一类符号的个数等于于所述第一长度,所述第一位图包括多个比特,所述第一备选时隙与所述第一选位图中的一个比特对应;所述第一位图中的所述一个比特的值为1,所述第一备选时隙属于所述第一时隙子集,或者,所述第一位图中的所述一个比特的值为0,所述第一备选时隙不属于所述第一时隙子集。
作为一个实施例,所述第一备选时隙是所述第一时隙组中的一个时隙,所述第一位图包括多个比特,所述第一备选时隙与所述第一位图中的一个比特对应;所述第一位图中的所述一个比特的值为1,所述第一备选时隙属于所述第一时隙子集,或者,所述第一位图中的所述一个比特的值为0,所述第一备选时隙不属于所述第一时隙子集。
实施例9
实施例9示例了一个用于第一节点中的处理装置的结构框图,如附图9所示。在实施例9中,第一节点设备处理装置900主要由第一接收机901、第一发射机902和第二发射机903组成。
作为一个实施例,第一接收机901包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460中的至少之一。
作为一个实施例,第一发射机902包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第二发射机903包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例9中,所述第一发射机902在第一时频资源块上发送目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第 一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述第二时隙子集被用于确定第二资源池所占用的时域资源,所述第二资源池是所述多个资源池中的不同于所述第一资源池的一个资源池。
作为一个实施例,所述目标定位参考信号被用于副链路定位。
作为一个实施例,所述目标定位参考信号在时域所占用的符号的个数等于所述第一长度。
作为一个实施例,所述第一长度与所述第二长度不相等。
作为一个实施例,所述至少一个第一类长度和至少一个第一类位图共同被用于确定所述至少一个第一类时隙子集。
作为一个实施例,第一位图是所述至少一个第一类位图中的之一,第一备选时隙是所述第一时隙集合中的任一时隙,所述第一备选时隙所包括的第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一备选时隙是否属于所述第一时隙子集。
作为一个实施例,所述第一时频资源块是所述第一节点从所述第一资源池中自行确定的。
作为一个实施例,所述第一时频资源块是被一个下行信令从所述第一资源池中指定的。
作为一个实施例,所述第一接收机901接收第一配置信息;所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度。
作为一个实施例,所述第一接收机901接收第二配置信息;所述第二配置信息被用于配置所述多个资源池。
作为一个实施例,所述第二发射机903在第二时频资源块上发送第一控制信息;所述第一控制信息被用于指示所述第一时频资源块;所述第二时频资源块属于所述第一资源池,或者,所述第二时频资源块属于所述第二资源池。
作为一个实施例,所述第一节点900是用户设备。
作为一个实施例,所述第一节点900是中继节点。
作为一个实施例,所述第一节点900是基站设备。
实施例10
实施例10示例了一个用于第二节点中的处理装置的一个结构框图,如附图10所示。在实施例10中,第二节点设备处理装置1000主要由第二接收机1001和第三接收机1002组成。
作为一个实施例,第二接收机1001包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,第三接收机1002包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
在实施例11中,所述第二接收机1101在第一时频资源块上接收目标定位参考信号;第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
作为一个实施例,所述第二时隙子集被用于确定第二资源池所占用的时域资源,所述第二资源池是所述多个资源池中的不同于所述第一资源池的一个资源池。
作为一个实施例,所述目标定位参考信号被用于副链路定位。
作为一个实施例,所述目标定位参考信号在时域所占用的符号的个数等于所述第一长度。
作为一个实施例,所述第一长度与所述第二长度不相等。
作为一个实施例,所述至少一个第一类长度和至少一个第一类位图共同被用于确定所述至少一个第一类时隙子集。
作为一个实施例,第一位图是所述至少一个第一类位图中的之一,第一备选时隙是所述第一时隙集合中的任一时隙,所述第一备选时隙所包括的第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一备选时隙是否属于所述第一时隙子集。
作为一个实施例,所述第一时频资源块是所述第一节点从所述第一资源池中自行确定的。
作为一个实施例,所述第一时频资源块是被一个下行信令从所述第一资源池中指定的。
作为一个实施例,所述第三接收机1002接收第一配置信息;所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度。
作为一个实施例,所述第三接收机1002接收接收第二配置信息;所述第二配置信息被用于配置所述多个资源池。
作为一个实施例,所述第三接收机1002接收在第二时频资源块上接收第一控制信息;所述第一控制信息被用于指示所述第一时频资源块;所述第二时频资源块属于所述第一资源池,或者,所述第二时频资源块属于所述第二资源池。
作为一个实施例,所述第二节点1000是用户设备。
作为一个实施例,所述第二节点1000是中继节点。
作为一个实施例,所述第二节点1000是基站设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一发射机,在第一时频资源块上发送目标定位参考信号;
    其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第二时隙子集被用于确定第二资源池所占用的时域资源,所述第二资源池是所述多个资源池中的不同于所述第一资源池的一个资源池。
  3. 根据权利要求1所述的第一节点,其特征在于,所述目标定位参考信号被用于副链路定位(SL positioning)。
  4. 根据权利要求1或3所述的第一节点,其特征在于,所述目标定位参考信号在时域所占用的符号的个数等于所述第一长度。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一长度与所述第二长度不相等。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述至少一个第一类长度和至少一个第一类位图共同被用于确定所述至少一个第一类时隙子集。
  7. 根据权利要求6所述的第一节点,其特征在于,第一位图是所述至少一个第一类位图中的之一,第一备选时隙是所述第一时隙集合中的任一时隙,所述第一备选时隙所包括的第一类符号的个数与所述第一长度的大小关系和所述第一位图共同被用于确定所述第一备选时隙是否属于所述第一时隙子集。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,所述第一时频资源块是所述第一节点从所述第一资源池中自行确定的。
  9. 根据权利要求1至7中任一权利要求所述的第一节点,所述第一时频资源块是被一个下行信令从所述第一资源池中指定的。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,包括:
    第一接收机,接收第一配置信息;
    其中,所述第一配置信息被用于配置所述第一带宽部件的所述至少一个第一类长度。
  11. 根据权利要求1至10中任一权利要求所述的第一节点,包括:
    第一接收机,接收第二配置信息;
    其中,所述第二配置信息被用于配置所述多个资源池。
  12. 根据权利要求1至11中任一权利要求所述的第一节点,包括:
    第二发射机,在第二时频资源块上发送第一控制信息;
    其中,所述第一控制信息被用于指示所述第一时频资源块;所述第二时频资源块属于所述第一资源池,或者,所述第二时频资源块属于所述第二资源池。
  13. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,在第一时频资源块上接收目标定位参考信号;
    其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
  14. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一时频资源块上发送目标定位参考信号;
    其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述目标时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
  15. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一时频资源块上接收目标定位参考信号;
    其中,第一带宽部件被配置至少一个第一类长度和第二长度;所述第一带宽部件包括多个资源池所占用的频域资源,所述多个资源池中的任一资源池在时域包括至少一个时隙;第一时隙集合包括多个时隙,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述至少一个第一类长度被用于从所述第一时隙集合中确定至少一个第一类时隙子集,所述第一时隙集合中的任一时隙所包括的第一类符号的个数与所述第二长度被用于从所述第一时隙集合中确定第二时隙子集,所述第一类符号包括至少上行符号;所述至少一个第一类时隙子集中的任一第一类时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源,所述第二时隙子集被用于确定所述多个资源池中的至少一个资源池所占用的时域资源;所述第一时频资源块属于第一资源池,所述第一资源池是所述多个资源池中的一个资源池,第一时隙子集是所述至少一个第一类时隙子集中的之一,所述第一时隙子集被用于确定所述第一资源池所占用的时域资源,第一长度是所述至少一个第一类长度中被用于确定所述第一时隙子集的一个第一类长度;所述目标定位参考信号在时域所占用的符号的个数不大于所述第一长度。
PCT/CN2023/111144 2022-08-08 2023-08-04 一种被用于无线通信的节点中的方法和装置 WO2024032480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210945343.XA CN117579239A (zh) 2022-08-08 2022-08-08 一种被用于无线通信的节点中的方法和装置
CN202210945343.X 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024032480A1 true WO2024032480A1 (zh) 2024-02-15

Family

ID=89850760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111144 WO2024032480A1 (zh) 2022-08-08 2023-08-04 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117579239A (zh)
WO (1) WO2024032480A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020005133A1 (en) * 2018-06-25 2020-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Method of generating ss-ocng in a radio node
WO2020078272A1 (zh) * 2018-10-15 2020-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111901079A (zh) * 2020-01-03 2020-11-06 中兴通讯股份有限公司 参考信号发送、接收方法、装置、通信节点及介质
CN112203351A (zh) * 2019-07-08 2021-01-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021160015A1 (zh) * 2020-02-13 2021-08-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022022397A1 (zh) * 2020-07-27 2022-02-03 华为技术有限公司 通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020005133A1 (en) * 2018-06-25 2020-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Method of generating ss-ocng in a radio node
WO2020078272A1 (zh) * 2018-10-15 2020-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112203351A (zh) * 2019-07-08 2021-01-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111901079A (zh) * 2020-01-03 2020-11-06 中兴通讯股份有限公司 参考信号发送、接收方法、装置、通信节点及介质
WO2021160015A1 (zh) * 2020-02-13 2021-08-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022022397A1 (zh) * 2020-07-27 2022-02-03 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN117579239A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN112468271B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113114437B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11949469B2 (en) Method and device for multi-antenna transmission in UE and base station
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019047090A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021077961A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032480A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116113024A (zh) 一种被用于无线通信的节点中的方法和装置
CN115314170B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021088610A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061229A1 (zh) 用于无线通信的方法和装置
WO2024027608A1 (zh) 一种用于无线通信的方法和装置
WO2023221800A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240224242A1 (en) Method and device in nodes used for wireless communication
WO2024032518A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851701

Country of ref document: EP

Kind code of ref document: A1