WO2024032518A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024032518A1
WO2024032518A1 PCT/CN2023/111367 CN2023111367W WO2024032518A1 WO 2024032518 A1 WO2024032518 A1 WO 2024032518A1 CN 2023111367 W CN2023111367 W CN 2023111367W WO 2024032518 A1 WO2024032518 A1 WO 2024032518A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference signal
control information
positioning reference
type
Prior art date
Application number
PCT/CN2023/111367
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024032518A1 publication Critical patent/WO2024032518A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to transmission schemes and devices related to sidelinks in wireless communications.
  • NR SL New Radio Sidelink, New Radio Sidelink
  • Rel-16 Release-16, version 16
  • V2X Vehicle-To-Everything, Internet of Vehicles
  • Public Safety Public Safety
  • Rel-17 introduces periodic-based partial sensing (PBPS), continuous partial sensing (CPS), random selection (random selection) and discontinuous reception (PBX).
  • PBPS periodic-based partial sensing
  • CPS continuous partial sensing
  • random selection random selection
  • discontinuous reception Power saving solutions such as Discontinuous Reception (DRX) have also introduced a variety of inter-UE coordination solutions to provide more reliable channel resources.
  • DRX Discontinuous Reception
  • NR Rel-18 needs to support the enhanced positioning technology of Sidelink Positioning (SL Positioning).
  • the mainstream sidelink positioning technologies include SL RTT technology, SL AOA, and SL TDOA. and SL AOD, etc., and the execution of these technologies requires the measurement of SL PRS (Sidelink Positioning Reference Signal).
  • SL PRS Sidelink Positioning Reference Signal
  • the sending parameter information of SL PRS is very different from traditional SL data. Directly referencing the existing SCI (Sidelink Control Information) cannot satisfy the configuration, activation, invalidation and triggering of SL PRS.
  • this application discloses a signaling indication method for SL PRS, thereby achieving effective configuration of SL PRS resources.
  • the embodiments and features in the embodiments of the user equipment of the present application can be applied to the base station, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • the original intention of this application is for SL
  • this application can also be used for UL (Uplink).
  • UL Uplink
  • the original intention of this application is for single-carrier communication
  • this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for V2X scenarios
  • this application is also applicable to communication scenarios between terminals and base stations, terminals and relays, and relays and base stations, achieving similar technical effects in V2X scenarios.
  • using unified solutions for different scenarios can also help reduce hardware complexity and costs.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first control information includes at least one of a source identification field and a destination identification field, the source identification field is used to indicate the first node, and the destination identification field is used to indicate The target receiver of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH is related to the first signal.
  • the problem to be solved by this application is: the existing SCI cannot meet the configuration, activation, invalidation and triggering of SL PRS.
  • the method of this application is to introduce a new resource allocation and indication method for SL PRS.
  • the method of this application is to establish a relationship between the channel on which the first control information is carried and the first signal.
  • the method of this application is to propose a relationship between the first control information and the first positioning reference signal.
  • the advantage of the above method is that it can effectively realize resource allocation and indication of SL PRS and SL data, and improve the utilization of effective resources.
  • the above method is characterized in that whether the first control information includes a first field is related to the first signal, and the first field is used to indicate that the first signal is a first positioning A reference signal, or the first field is used to indicate the format of the first control information.
  • the above method is characterized in that whether the first control information is carried on the first PSCCH is related to whether the first signal is a first positioning reference signal.
  • the above method is characterized in that the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; or, the first signal is the first data, and the first control information is carried on the first PSSCH.
  • the above method is characterized in that the first signal is a first positioning reference signal, and whether the first control information is carried on the first PSCCH is consistent with the first positioning reference signal.
  • Type-related, candidates of the type of the first positioning reference signal include a first positioning type and a second positioning type.
  • the above method is characterized in that the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first PSCCH; or, The type of the first positioning reference signal is the second positioning type, and the first control information is carried on the first PSSCH.
  • the above method is characterized in that the first positioning type and the second positioning type are respectively associated with two different time-frequency spectra of the first positioning reference signal.
  • the above method is characterized in that the type of the first positioning reference signal is the first positioning type, and the time-frequency resource occupied by the first positioning reference signal is consistent with the first positioning reference signal.
  • the time-frequency resources occupied by the control information share the same resource pool; or, the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first positioning reference signal are the same as the time-frequency resources occupied by the first positioning reference signal.
  • the time-frequency resources occupied by the first control information respectively belong to different resource pools.
  • the above method is characterized by comprising:
  • the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal is associated with the second positioning reference signal.
  • the above method is characterized by whether the first control information indicates that the time-frequency resource occupied by the first signal is related to the first signal.
  • the above method is characterized in that the first signal is the first positioning reference signal, and the first control information indicates the time-frequency resource occupied by the first signal; or, The first signal is the first data, the first control information is not used to indicate the time-frequency resource occupied by the first signal, and the second control information is used to indicate the time-frequency resource occupied by the first signal. frequency resources.
  • the above method is characterized in that the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal is the first positioning reference signal.
  • the control information indicates the time-frequency resource occupied by the first signal, or the type of the first positioning reference signal is the second positioning type, and the first control information is not used to indicate the first positioning reference signal.
  • the time-frequency resources occupied by a signal and the second control information are used to indicate the time-frequency resources occupied by the first signal.
  • the above method is characterized in that the first node is user equipment (UE, User Equipment).
  • UE user equipment
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a roadside unit (RSU, Road Side Unit).
  • RSU Road Side Unit
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first control information includes at least one of a source identification field and a destination identification field, the source identification field is used to indicate the first node, and the destination identification field is used to indicate The target receiver of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH is related to the first signal.
  • the above method is characterized in that whether the first control information includes a first field is related to the first signal, and the first field is used to indicate that the first signal is a first positioning reference signal, or the first field is used to indicate the first control format of the information.
  • the above method is characterized in that whether the first control information is carried on the first PSCCH is related to whether the first signal is a first positioning reference signal.
  • the above method is characterized in that the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; or, the first signal is the first data, and the first control information is carried on the first PSSCH.
  • the above method is characterized in that the first signal is a first positioning reference signal, and whether the first control information is carried on the first PSCCH is consistent with the first positioning reference signal.
  • Type-related, candidates of the type of the first positioning reference signal include a first positioning type and a second positioning type.
  • the above method is characterized in that the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first PSCCH; or, The type of the first positioning reference signal is the second positioning type, and the first control information is carried on the first PSSCH.
  • the above method is characterized in that the first positioning type and the second positioning type are respectively associated with two different time-frequency spectra of the first positioning reference signal.
  • the above method is characterized in that the type of the first positioning reference signal is the first positioning type, and the time-frequency resource occupied by the first positioning reference signal is consistent with the first positioning reference signal.
  • the time-frequency resources occupied by the control information share the same resource pool; or, the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first positioning reference signal are the same as the time-frequency resources occupied by the first positioning reference signal.
  • the time-frequency resources occupied by the first control information respectively belong to different resource pools.
  • the above method is characterized by comprising:
  • the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal is associated with the second positioning reference signal.
  • the above method is characterized by whether the first control information indicates that the time-frequency resource occupied by the first signal is related to the first signal.
  • the above method is characterized in that the first signal is the first positioning reference signal, and the first control information indicates the time-frequency resource occupied by the first signal; or, The first signal is the first data, the first control information is not used to indicate the time-frequency resource occupied by the first signal, and the second control information is used to indicate the time-frequency resource occupied by the first signal. frequency resources.
  • the above method is characterized in that the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal is the first positioning reference signal.
  • the control information indicates the time-frequency resource occupied by the first signal, or the type of the first positioning reference signal is the second positioning type, and the first control information is not used to indicate the first positioning reference signal.
  • the time-frequency resources occupied by a signal and the second control information are used to indicate the time-frequency resources occupied by the first signal.
  • the above method is characterized in that the second node is user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a roadside device.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first transmitter that sends first control information and a first signal
  • the first control information includes at least one of a source identification field and a destination identification field, the source identification field is used to indicate the first node, and the destination identification field is used to indicate The target receiver of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH is related to the first signal.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second receiver to receive the first control information and the first signal
  • the first control information includes at least one of a source identification field and a destination identification field, the source identification field is used to indicate the first node, and the destination identification field is used to indicate The target receiver of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH is related to the first signal.
  • this application has the following advantages:
  • This application establishes a relationship between the channel on which the first control information is carried and the first signal.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of the relationship between first control information and a first signal according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of the relationship between the first control information and the first signal according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of the relationship between the first control information, the first domain and the first signal according to an embodiment of the present application
  • Figure 9 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
  • Figure 10 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step.
  • the first node in this application performs step 101 and sends first control information and a first signal;
  • the first control information includes at least one of a source identification field and a destination identification field,
  • the source identification field is used to indicate the first node, and the destination identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or not related to the first signal on the first PSSCH.
  • the first PSCCH is a PSCCH (Physical Sidelink Control Channel).
  • the first PSCCH occupies at least one multi-carrier symbol (Symbol) in the time domain.
  • the time domain resource occupied by the first PSCCH belongs to one time slot (Slot), and the one time slot includes multiple multi-carrier symbols.
  • the first PSCCH occupies at least one multi-carrier symbol in one time slot in the time domain.
  • the first PSCCH occupies multiple subcarriers (Subcarriers) in the frequency domain.
  • the first PSCCH occupies at least one Physical Resource Block (PRB) in the frequency domain, and the one physical resource block includes multiple subcarriers.
  • PRB Physical Resource Block
  • the first PSCCH occupies at least one subchannel (Subchannel) in the frequency domain, and the one subchannel includes at least one physical resource block.
  • the frequency domain resource occupied by the first PSCCH belongs to a subchannel, and the subchannel includes at least one physical resource block.
  • the first PSCCH occupies at least one physical resource block in a subchannel in the frequency domain.
  • the first PSCCH occupies multiple multi-carrier symbols in the time domain, and the first PSCCH occupies multiple physical resource blocks in the frequency domain.
  • the first PSCCH is used for SL (Sidelink, secondary link) transmission or communication.
  • the first PSCCH is used to carry SCI (Sidelink Control Information).
  • the first PSCCH carries the first level SCI.
  • the first PSSCH is a PSSCH (Physical Sidelink Shared Channel).
  • the first PSSCH occupies at least one multi-carrier symbol in the time domain.
  • the time domain resource occupied by the first PSSCH belongs to one time slot.
  • the first PSSCH occupies multiple multi-carrier symbols in one time slot in the time domain.
  • the first PSSCH occupies multiple subcarriers in the frequency domain.
  • the first PSSCH occupies at least one physical resource block in the frequency domain.
  • the first PSSCH occupies at least one sub-channel in the frequency domain.
  • the frequency domain resource occupied by the first PSSCH belongs to a sub-channel.
  • the first PSSCH occupies multiple multi-carrier symbols in the time domain, and the first PSSCH occupies at least one sub-channel in the frequency domain.
  • the first PSSCH is used for SL transmission or communication.
  • the first PSSCH is used to carry SL-SCH.
  • the first PSSCH is used to carry SCI and SL-SCH.
  • the first PSSCH carries the second level SCI.
  • any multi-carrier symbol occupied by the first PSCCH in the time domain is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • any multi-carrier symbol occupied by the first PSCCH in the time domain is an SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • any multi-carrier symbol occupied by the first PSCCH in the time domain is DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) )symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • any multi-carrier symbol occupied by the first PSCCH in the time domain is an FDMA (Frequency Division Multiple Access) symbol.
  • FDMA Frequency Division Multiple Access
  • any multi-carrier symbol occupied by the first PSCCH in the time domain is an FBMC (Filter Bank Multi-Carrier) symbol.
  • any multi-carrier symbol occupied by the first PSCCH in the time domain is an IFDMA (Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access
  • any multi-carrier symbol occupied by the first PSSCH in the time domain is an OFDM symbol.
  • any multi-carrier symbol occupied by the first PSSCH in the time domain is an SC-FDMA symbol.
  • any multi-carrier symbol occupied by the first PSSCH in the time domain is a DFT-S-OFDM symbol.
  • any multi-carrier symbol occupied by the first PSSCH in the time domain is an FDMA symbol.
  • any multi-carrier symbol occupied by the first PSSCH in the time domain is an FBMC symbol.
  • any multi-carrier symbol occupied by the first PSSCH in the time domain is an IFDMA symbol.
  • the first control information is a first -stage sidelink control information (SCI).
  • SCI sidelink control information
  • the definition of the first-level SCI can be found in Chapter 8.3 of 3GPP TS38.212.
  • the first control information is a second-stage SCI ( 2nd -stage Sidelink Control Information).
  • the definition of the second-level SCI can be found in Chapter 8.4 of 3GPP TS38.212.
  • the first control information is used to transmit sidelink scheduling information (sidelink scheduling information).
  • the first control information is used to transmit inter-UE coordination related information.
  • the first control information is used to transmit sidelink positioning related information.
  • the first control information is used to transmit sidelink positioning reference signal related information.
  • the first control information is used to indicate the first signal.
  • the first control information is used to schedule the first signal.
  • the first control information is used to indicate time domain resources occupied by the first signal.
  • the first control information is used to indicate the time-frequency resource occupied by the first signal.
  • the first control information is used to determine the time-frequency resources occupied by the first signal.
  • the first control information is used to indicate a time-frequency spectrum (Pattern) of the first signal.
  • the first control information is used to indicate a resource pool to which the time-frequency resource occupied by the first signal belongs.
  • the first control information is used to determine the resource pool to which the time-frequency resource occupied by the first signal belongs.
  • the first control information is used to indicate the source identification and destination identification of the first signal.
  • the first control information is carried on one of the first PSCCH or the first PSSCH.
  • the first control information is carried on the first PSCCH.
  • the first control information is carried on the first PSSCH.
  • whether the first control information is carried on the first PSCCH or the first PSSCH is related to the first signal.
  • the first signal is used to determine whether the first control information is carried on the first PSCCH or the first PSSCH.
  • the format of the first control information is SCI format 1-B (SCI format 1-B).
  • the format of the first control information is SCI format 2-A (SCI format 2-A), SCI format 2-B (SCI format 2-B) and SCI format 2-C (SCI format 2- C) one of.
  • the format of the first control information is one of SCI format 1-B, SCI format 2-A, SCI format 2-B and SCI format 2-C.
  • the format of the first control information is SCI format 2-A.
  • the format of the first control information is SCI format 2-B.
  • the format of the first control information is SCI format 2-C.
  • candidates for the format of the first control information include SCI format 2-A, SCI format 2-B and SCI format 2-C.
  • candidates for the format of the first control information include SCI format 1-B, SCI format 2-A, SCI format 2-B and SCI format 2-C.
  • the first control information includes at least one of a source identification field and a destination identification field.
  • the first control information includes the source identification field.
  • the first control information includes the destination identification field.
  • the first control information includes the source identification field and the destination identification field.
  • the first control information includes the source identification field, and the first control information does not include the destination identification field.
  • the first control information includes the destination identification field, and the first control information does not include the source identification field.
  • the source identification field is used to indicate source identification (Source ID, Source Identity).
  • the source identification field is used to indicate the first node.
  • the source identification field is used to indicate the sender of the first control information.
  • the source identification field is used to indicate the sender of the first signal.
  • the source identification field includes a positive integer number of bits.
  • the source identification field includes 8 bits.
  • the destination identification field is used to indicate a destination identification (Destination ID, Destination Identity).
  • the destination identification field is used to indicate a target recipient of the first control information.
  • the destination identification field is used to indicate a target recipient of the first signal.
  • the destination identifier includes a positive integer number of bits.
  • the destination identifier includes 16 bits.
  • the first signal is one of a first positioning reference signal or first data.
  • the first signal is the first positioning reference signal.
  • the first signal is the first data.
  • the first signal is a first positioning reference signal
  • the type of the first positioning reference signal is a first positioning type or the type of the first positioning reference signal is a second positioning type.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 for sidelink communication with UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, evolved packet core) 210, HSS (Home Subscriber Server, owned subscriber server)/UDM (Unified Data Management, unified data management) 220 and Internet services 230.
  • 5GS/ EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • examples of gNB203 include satellites, aircraft, or ground base stations relayed through satellites.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Date Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the UE241.
  • the user equipment in this application includes the UE201.
  • the user equipment in this application includes the UE241.
  • the relay node in this application includes the UE201.
  • the relay node in this application includes the UE241.
  • the roadside device in this application includes the UE201.
  • the roadside device in this application includes the UE241.
  • the sender of the first control information in this application includes the UE201.
  • the recipient of the first control information in this application includes the UE241.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the UE241.
  • the sender of the second control information in this application includes the UE201.
  • the recipient of the second control information in this application includes the UE241.
  • the sender of the second positioning reference signal in this application includes the UE241.
  • the receiver of the second positioning reference signal in this application includes the UE201.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows with three layers a first node device (UE or RSU in V2X, a vehicle-mounted device or a vehicle-mounted communication module). ) and the second node device (gNB, UE or RSU in V2X, vehicle-mounted device or vehicle-mounted communication module), or the radio protocol architecture of the control plane 300 between the two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node device and the second node device and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides hand-off support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first node devices.
  • MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using the link between the second node device and the first node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). Radio protocol architecture for the first node device and the second node device in the user plane 350.
  • L1 layer layer 1
  • L2 layer layer 2
  • Radio protocol architecture for the first node device and the second node device in the user plane 350 For the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g., remote UE, server, etc.) application layer.
  • a network layer eg, IP layer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signal in this application is generated by the PHY301.
  • the first signal in this application is generated in the RRC sublayer 306.
  • the first signal in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the first control information in this application is generated from the PHY301.
  • the first control information in this application is generated in the MAC sublayer 302.
  • the first control information in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the second control information in this application is generated from the PHY301.
  • the second control information in this application is generated in the MAC sublayer 302.
  • the second control information in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the second positioning reference signal in this application is generated by the PHY301.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the second communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first provides the multi-antenna transmit processor 457
  • the baseband symbol stream is converted into a radio frequency symbol stream and then provided to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is user equipment
  • the second node is user equipment
  • the first node is user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is user equipment
  • the first node is a relay node
  • the second node is a relay node
  • the first node is user equipment
  • the second node is a roadside node
  • the first node is a roadside node
  • the second node is user equipment
  • the first node is a roadside node
  • the second node is a roadside node
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK). ) protocol performs error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 at least: sends first control information and a first signal; the first control information includes at least one of a source identification field and a destination identification field, and the source identification field is used In order to indicate the first node, the destination identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH is related to the related to the first signal mentioned above.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A control information and a first signal; the first control information includes at least one of a source identification field and a destination identification field, the source identification field being used to indicate the first node, the destination The identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH is related to the first signal.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least: receives first control information and a first signal; wherein the first control information includes at least one of a source identification field and a destination identification field, and the source identification field is used to indicate the first node, the destination identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH related to the first signal.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A control information and a first signal; wherein the first control information includes at least one of a source identification field and a destination identification field, and the source identification field is used to indicate the first node, and the The destination identification field is used to indicate the target recipient of the first signal; the first control information is carried on the first PSCCH It is still related to the first signal carried on the first PSSCH.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to send the first control information.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to transmit the first signal.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in this application to send the second control information.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 ⁇ One is used in this application to receive the second positioning reference signal on the target time-frequency resource block.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the first control information.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the first signal.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used in this application to receive the second control information.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used in this application to transmit the second positioning reference signal on the target time-frequency resource block.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U1 and the second node U2 communicate through the air interface.
  • the steps in the dotted box F0 and the dotted box F1 are respectively optional.
  • the second control information is sent in step S11; the first control information is sent in step S12; the first signal is sent in step S13; and the second positioning is received on the target time-frequency resource block in step S14. reference signal.
  • For the second node U2 receive the second control information in step S21; receive the first control information in step S22; receive the first signal in step S23; and send the second positioning on the target time-frequency resource block in step S24. reference signal.
  • the first control information includes at least one of a source identification field and a destination identification field.
  • the source identification field is used to indicate the first node, and the destination identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or is carried on the first PSSCH and is related to the first signal; whether the first control information includes The first field is related to the first signal, and the first field is used to indicate that the first signal is a first positioning reference signal, or the first field is used to indicate that the first control information is Format: whether the first control information indicates that the time-frequency resource occupied by the first signal is related to the first signal.
  • whether the first control information is carried on the first PSCCH is related to whether the first signal is a first positioning reference signal; the first signal is the first positioning reference signal, The first control information is carried on the first PSCCH, and the first control information indicates the time-frequency resource occupied by the first signal; or the first signal is first data, and the first signal A control information is carried on the first PSSCH, the first control information is not used to indicate the time-frequency resource occupied by the first signal and the second control information is used to indicate the time-frequency resource occupied by the first signal. The time and frequency resources occupied.
  • the first signal is the first positioning reference signal
  • whether the first control information is carried on the first PSCCH is related to the type of the first positioning reference signal.
  • Candidates for the type of a positioning reference signal include a first positioning type and a second positioning type, the first positioning type and the second positioning type being respectively associated to two different positions of the first positioning reference signal.
  • the type of the first positioning reference signal is the first positioning type
  • the first control information is carried on the On the first PSCCH
  • the time-frequency resources occupied by the first positioning reference signal and the time-frequency resources occupied by the first control information share the same resource pool, and the first control information indicates that the first signal occupied time-frequency resources
  • the type of the first positioning reference signal is the second positioning type
  • the first control information is carried on the first PSSCH
  • the first positioning reference signal The occupied time-frequency resources and the time-frequency resources occupied by the first control information respectively belong to different resource pools
  • the first positioning reference signal is associated with the second positioning reference signal
  • the first control information does not is used to indicate the time-frequency resource occupied by the first signal and the second control information is used to indicate the time-frequency resource occupied by the first signal.
  • whether the first control information is carried on the first PSCCH is related to whether the first signal is a first positioning reference signal; when the first signal is the first positioning reference signal When, the first control information is carried on the first PSCCH, and the first control information indicates the time-frequency resource occupied by the first signal; when the first signal is first data, the first control information indicates the time-frequency resource occupied by the first signal.
  • the first control information is carried on the first PSSCH, the first control information is not used to indicate the time-frequency resource occupied by the first signal and the second control information is used to indicate the first The time-frequency resources occupied by the signal.
  • the first signal is the first positioning reference signal, and whether the first control information is carried on the first PSCCH is related to the type of the first positioning reference signal.
  • the type of a positioning reference signal includes a first positioning type and a second positioning type, and the first positioning type and the second positioning type are respectively associated with two different times of the first positioning reference signal.
  • the first positioning reference signal when the type of the first positioning reference signal is the first positioning type, the first control information is carried on the first PSCCH, and the first positioning reference signal occupies The time-frequency resources share the same resource pool with the time-frequency resources occupied by the first control information, and the first control information indicates the time-frequency resources occupied by the first signal; when all the time-frequency resources of the first positioning reference signal When the type is the second positioning type, the first control information is carried on the first PSSCH, and the time-frequency resources occupied by the first positioning reference signal are the same as those occupied by the first control information.
  • the time-frequency resources respectively belong to different resource pools
  • the first positioning reference signal is associated with the second positioning reference signal
  • the first control information is not used to indicate the time-frequency resources occupied by the first signal
  • the second control information is used to indicate the time-frequency resources occupied by the first signal.
  • communication between the first node U1 and the second node U2 is through the PC5 interface.
  • the steps in block F0 in Figure 5 exist, and the steps in block F1 in Figure 5 do not exist.
  • the steps in block F0 in Figure 5 do not exist, and the steps in block F1 in Figure 5 exist.
  • the steps in block F0 in Figure 5 exist, and the steps in block F1 in Figure 5 do not exist.
  • the steps in block F0 in FIG. 5 do not exist, and the steps in block F1 in FIG. 5 exist.
  • the first data is a baseband signal.
  • the first data is a radio frequency signal.
  • the first data is a wireless signal.
  • the first data includes a data packet (Packet).
  • Packet data packet
  • the first data includes secondary link data (SL data).
  • SL data secondary link data
  • the first data includes available SL data in one or more logical channels.
  • the first data includes one or more MAC PDUs (Protocol Data Units, protocol data units).
  • MAC PDUs Protocol Data Units, protocol data units.
  • the first data includes one or more MAC SDUs (Service Data Units, Service Data Units).
  • MAC SDUs Service Data Units, Service Data Units.
  • the first data includes one or more TBs (Transport Blocks).
  • the first data is a TB (Transport Block).
  • the first data includes all or part of a higher layer signaling.
  • the first data includes an RRC-IE (Radio Resource Control-Information Element).
  • RRC-IE Radio Resource Control-Information Element
  • the first data includes a MAC-CE (Multimedia Access Control-Control Element, Multimedia Access Control-Control Element).
  • MAC-CE Multimedia Access Control-Control Element, Multimedia Access Control-Control Element.
  • the first data is carried on PSSCH.
  • the first data is carried on the first PSSCH.
  • the first signal is the first data, and both the first control signal and the first signal are carried on the first PSSCH.
  • the propagation type of the first data is one of unicast (Unicast), groupcast (Groupcast) or broadcast (Broadcast).
  • the first data includes a first bit block, and the first bit block includes at least one bit.
  • the first bit block is used to generate the first data.
  • the first bit block comes from SL-SCH (Sidelink SharedChannel, secondary link shared channel).
  • the first bit block includes 1 CW (Codeword, codeword).
  • the first bit block includes 1 CB (Code Block).
  • the first bit block includes 1 CBG (Code Block Group).
  • the first bit block includes 1 TB (Transport Block).
  • all or part of the bits in the first bit block are sequentially subjected to transmission block level CRC (Cyclic Redundancy Check) attachment (Attachment), code block segmentation (Code Block Segmentation), and encoding.
  • Block-level CRC attachment Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping ( Antenna Port Mapping), mapping to Physical Resource Blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first data.
  • CRC Cyclic Redundancy Check
  • Block-level CRC attachment Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping ( Antenna Port Mapping), mapping to Physical Resource Blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion)
  • the first data is the first bit block that sequentially passes through a modulation mapper (Modulation Mapper), a layer mapper (Layer Mapper), a precoding (Precoding), and a resource particle mapper (Resource Element Mapper). , the output after multi-carrier symbol generation.
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding precoding
  • Resource Element Mapper resource particle mapper
  • the channel coding is based on polar codes.
  • the channel coding is based on LDPC (Low-density Parity-Check, low-density parity check) code.
  • LDPC Low-density Parity-Check, low-density parity check
  • the first positioning reference signal is used for secondary link positioning (SL Positioning).
  • the first positioning reference signal is used to obtain an absolute position (Absolute Position).
  • the first positioning reference signal is used to obtain a relative position (Relative Position).
  • the first positioning reference signal is used to obtain distance (Distance).
  • the first positioning reference signal is used to obtain a range (Range).
  • the first positioning reference signal is a PRS (Positioning Reference Signal).
  • the first positioning reference signal is a SL PRS (Sidelink Positioning Reference Signal).
  • the first positioning reference signal includes SL PRS.
  • the first positioning reference signal includes SL SSB (Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block, S-SS/PSBCH block, secondary link synchronization signal/physical side link broadcast channel block).
  • SL SSB Segment Synchronization Signal/Physical Sidelink Broadcast Channel block
  • S-SS/PSBCH Secondary link synchronization signal/physical side link broadcast channel block
  • the first positioning reference signal includes SL PTRS (Sidelink Phase Tracking Reference Signal).
  • the first positioning reference signal includes SL CSI-RS (Sidelink Channel State Information Reference Signal).
  • the first positioning reference signal includes PSCCH DMRS (PSCCH Demodulation Reference Signal, PSCCH demodulation reference signal).
  • PSCCH DMRS PSCCH Demodulation Reference Signal, PSCCH demodulation reference signal
  • the first positioning reference signal includes PSSCH DMRS (PSSCH Demodulation Reference Signal, PSSCH demodulation reference signal).
  • PSSCH DMRS PSSCH Demodulation Reference Signal, PSSCH demodulation reference signal
  • the first positioning reference signal includes at least one of SL PRS, SL PTRS, SL CSI-RS, PSCCH DMRS, PSSCH DMRS, and SL-SSB.
  • the first positioning reference signal includes a first sequence.
  • a first sequence is used to generate the first positioning reference signal.
  • the first sequence is a pseudo-random sequence (Pseudo-Random Sequence).
  • the first sequence is a Low-PAPR Sequence, Low-Peak to Average Power Ratio Sequence.
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a ZC (Zadeoff-Chu) sequence.
  • the first positioning reference signal is obtained after the first sequence undergoes sequence generation (Sequence Generation), mapping to physical resources (Mapping to physical resources), and time slot mapping (Mapping to slots).
  • the time domain resource occupied by the first positioning reference signal belongs to one time slot.
  • the time domain resource occupied by the first positioning reference signal includes at least one symbol.
  • the first positioning reference signal occupies at least one symbol in the time domain.
  • the first positioning reference signal occupies at least one symbol in a time slot in the time domain.
  • the frequency domain resources occupied by the first positioning reference signal belong to a resource pool.
  • the time domain resources occupied by the first positioning reference signal include at least one physical resource block.
  • the time domain resource occupied by the first positioning reference signal includes at least one sub-channel.
  • the first positioning reference signal occupies at least one physical resource block in the frequency domain.
  • the first positioning reference signal occupies at least one physical resource block in a resource pool in the frequency domain.
  • the first positioning reference signal occupies at least one sub-channel in the frequency domain.
  • the first positioning reference signal occupies at least one sub-channel in a resource pool in the frequency domain.
  • the candidates for the type of the first positioning reference signal include a first positioning type and a second positioning type.
  • the type of the first positioning reference signal is one of a first positioning type or a second positioning type.
  • the candidates for the type of the first positioning reference signal include multiple positioning types, and the first positioning type and the second positioning type are respectively two of the multiple positioning types.
  • the type of the first positioning reference signal is one of a plurality of positioning types, and the plurality of positioning types include a first positioning type and a second positioning type.
  • the type of the first positioning reference signal is the first positioning type.
  • the type of the first positioning reference signal is the second positioning type.
  • the second positioning reference signal is used for secondary link positioning.
  • the second positioning reference signal is used to obtain the absolute position.
  • the second positioning reference signal is used to obtain the relative position.
  • the second positioning reference signal is used to obtain the distance.
  • the second positioning reference signal is used to obtain the range.
  • the second positioning reference signal is a PRS.
  • the second positioning reference signal is a SL PRS.
  • the second positioning reference signal includes SL PRS.
  • the second positioning reference signal includes SL SSB.
  • the second positioning reference signal includes SL PTRS.
  • the second positioning reference signal includes SL CSI-RS.
  • the second positioning reference signal includes PSCCH DMRS.
  • the second positioning reference signal includes PSSCH DMRS.
  • the second positioning reference signal includes at least one of SL PRS, SL PTRS, SL CSI-RS, PSCCH DMRS, PSSCH DMRS, and SL-SSB.
  • the second positioning reference signal includes a second sequence.
  • the second sequence is used to generate the second positioning reference signal.
  • the second sequence is a pseudo-random sequence.
  • the second sequence is a low peak-to-average ratio sequence.
  • the second sequence is a Gold sequence.
  • the second sequence is an M sequence.
  • the second sequence is a ZC sequence.
  • the second positioning reference signal is obtained after the second sequence undergoes sequence generation, physical resource mapping, and time slot mapping.
  • the time domain resource occupied by the second positioning reference signal belongs to one time slot.
  • the time domain resource occupied by the second positioning reference signal includes at least one symbol.
  • the second positioning reference signal occupies at least one symbol in the time domain.
  • the second positioning reference signal occupies at least one symbol in a time slot in the time domain.
  • the frequency domain resources occupied by the second positioning reference signal belong to a resource pool.
  • the time domain resources occupied by the second positioning reference signal include at least one physical resource block.
  • the time domain resource occupied by the second positioning reference signal includes at least one sub-channel.
  • the second positioning reference signal occupies at least one physical resource block in the frequency domain.
  • the second positioning reference signal occupies at least one physical resource block in a resource pool in the frequency domain.
  • the second positioning reference signal occupies at least one sub-channel in the frequency domain.
  • the second positioning reference signal occupies at least one sub-channel in a resource pool in the frequency domain.
  • the first positioning reference signal is associated with the second positioning reference signal.
  • the sending of the first positioning reference signal is used to trigger the reception of the second positioning reference signal.
  • the time domain resources occupied by the first positioning reference signal are used to determine the time domain resources occupied by the second positioning reference signal.
  • the time-frequency resources occupied by the first positioning reference signal are used to determine the time-frequency resources occupied by the second positioning reference signal.
  • the time domain resources occupied by the first positioning reference signal are used to determine the target time-frequency resource block, and the target time-frequency resource block is used to carry the second positioning reference signal.
  • the time-frequency resource occupied by the first positioning reference signal is used to determine the target time-frequency resource block, and the target time-frequency resource block is used to carry the second positioning reference signal.
  • the first control information is associated with the first positioning reference signal, and the first control information is used to indicate the second positioning reference signal.
  • the first control information is used to indicate the first positioning reference signal, and the first control information is used to indicate a resource pool to which the time-frequency resource occupied by the second positioning reference signal belongs.
  • the first control information is used to indicate the first positioning reference signal
  • the first control information is used to indicate the resource pool to which the target time-frequency resource block belongs
  • the target time-frequency Resource blocks are used to carry the second positioning reference signal.
  • the first control information is used to indicate the time-frequency resource occupied by the first positioning reference signal, and the first control information is used to indicate the time-frequency resource occupied by the second positioning reference signal.
  • the first control information is used to indicate the resource pool to which the time-frequency resource occupied by the first positioning reference signal belongs, and the first control information is used to indicate the target time-frequency resource block to which it belongs. resource pool, and the target time-frequency resource block is used to carry the second positioning reference signal.
  • the first control information is used to indicate the first positioning reference signal, and the first control information is used to indicate the second positioning reference signal.
  • the first control information is used to indicate the first positioning reference signal, and the first control information is used to indicate the time-frequency resource occupied by the second positioning reference signal.
  • the first control information is used to indicate the first positioning reference signal
  • the first control information is used to indicate the target time-frequency resource block
  • the target time-frequency resource block is used to carry the second positioning reference signal.
  • the first control information is used to indicate the time-frequency resource occupied by the first positioning reference signal, and the first control information is used to indicate the time-frequency resource occupied by the second positioning reference signal. frequency resources.
  • the first control information is used to indicate the time-frequency resource occupied by the first positioning reference signal
  • the first control information is used to indicate the target time-frequency resource block
  • the target Time-frequency resource blocks are used to carry the second positioning reference signal.
  • whether the first positioning reference signal is associated with the second positioning reference signal is related to the type of the first positioning reference signal.
  • the type of the first positioning reference signal is used to determine whether the first positioning reference signal is associated with the second positioning reference signal.
  • the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal is associated with the second positioning reference signal.
  • the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal is not associated with the second positioning reference signal.
  • the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal is associated with the second positioning reference signal.
  • the first positioning reference signal is associated with the second positioning reference signal.
  • the first positioning reference signal when the type of the first positioning reference signal is the first positioning type, the first positioning reference signal is not associated with the second positioning reference signal.
  • the first positioning reference signal when the type of the first positioning reference signal is the first positioning type, the first positioning reference signal is associated with the second positioning reference signal.
  • the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal is associated with the second positioning reference signal; or, the first positioning reference signal The type is the first positioning type, and the first positioning reference signal is not associated with the second positioning reference signal.
  • the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal is associated with the second positioning reference signal; or, the first positioning reference signal The type is the second positioning type, and the first positioning reference signal is not associated with the second positioning reference signal.
  • the first positioning reference signal when the type of the first positioning reference signal is the second positioning type, the first positioning reference signal is associated with the second positioning reference signal; when the first positioning reference signal When the type of signal is the first positioning type, the first positioning reference signal is not associated with the second positioning reference signal.
  • the first positioning reference signal when the type of the first positioning reference signal is the first positioning type, the first positioning reference signal is associated with the second positioning reference signal; when the first positioning reference signal When the type of signal is the second positioning type, the first positioning reference signal is not associated with the second positioning reference signal.
  • the target time-frequency resource block is used to carry the second positioning reference signal.
  • the target time-frequency resource block is used to carry SL PRS.
  • the target time-frequency resource block includes PSCCH.
  • the target time-frequency resource block does not include PSCCH.
  • the target time-frequency resource block includes PSSCH.
  • the target time-frequency resource block does not include PSSCH.
  • the target time-frequency resource block is used to carry SL PRS, and the target time-frequency resource block includes PSCCH.
  • the target time-frequency resource block is only used to carry SL PRS, and the target time-frequency resource block does not include PSCCH and PSSCH.
  • the second node U2 determines the target time-frequency resource block by itself from multiple time-frequency resource blocks included in a resource pool.
  • the second node U2 randomly selects the target time-frequency resource block from multiple time-frequency resource blocks included in a resource pool.
  • a downlink signaling indicates the target time-frequency resource block from multiple time-frequency resource blocks included in a resource pool.
  • a downlink signaling indicates the position of the target time-frequency resource block among multiple time-frequency resource blocks included in a resource pool.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first control information and the first signal according to an embodiment of the present application, as shown in FIG. 6 .
  • the rectangle filled with diagonal grids represents the first control information in this application
  • the rectangle filled with diagonal stripes represents the first signal in this application
  • the rectangle filled with wavy points represents the second control information in this application.
  • the channel on which the first control information is carried is related to the first signal, and the channel on which the first control information is carried is both the first PSCCH or the first PSSCH.
  • the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; in the case of Embodiment 6 In B, the first signal is the first data, and the first control information is carried on the first PSSCH.
  • the first signal is used to determine the channel on which the first control information is carried.
  • candidates for the channel on which the first control information is carried include the first PSCCH and the first PSSCH.
  • the channel on which the first control information is carried is one of the first PSCCH or the first PSSCH.
  • the channel on which the first control information is carried is the first PSCCH.
  • the channel on which the first control information is carried is the first PSSCH.
  • the first control information is carried on the first PSCCH.
  • the first control information is carried on the first PSSCH.
  • the channel in which the first control information is carried is related to whether the first signal is the first positioning reference signal.
  • whether the first control information is carried on the first PSCCH is related to the first signal.
  • whether the first control information is carried on the first PSCCH is related to whether the first signal is the first positioning reference signal.
  • the first signal is the first positioning reference signal
  • the first control information is carried on the first PSCCH.
  • the first signal is not the first positioning reference signal, and the first control information is not carried on the first PSCCH.
  • the first signal is not the first positioning reference signal, and the first control information is carried on the first PSSCH.
  • the first signal is the first data, and the first control information is not carried on the first PSCCH.
  • the first signal is the first data
  • the first control information is carried on the first PSSCH.
  • the first control information is carried on the first PSCCH.
  • the first control information is carried on the first PSSCH.
  • the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; or, the first signal is not the first positioning reference signal. , the first control information is carried on the first PSSCH.
  • the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; or the first signal is the first data, so The first control information is carried on the first PSSCH.
  • the first control information is carried on the first PSCCH; when the first signal is the first data , the first control information is carried on the first PSSCH.
  • whether the first control information indicates that the time-frequency resource occupied by the first signal is related to the first signal is related to the first signal.
  • the time-frequency resources occupied by the first signal include time domain resources occupied by the first signal.
  • the time-frequency resources occupied by the first signal include frequency domain resources occupied by the first signal.
  • whether the first control information indicates the time-frequency resource occupied by the first signal is related to whether the first signal is the first positioning reference signal.
  • the first signal is the first positioning reference signal
  • the first control information indicates the time-frequency resource occupied by the first signal
  • the first signal is the first positioning reference signal
  • the first control information is the first level SCI
  • the first signal is the first positioning reference signal
  • the first control information is a single-level SCI.
  • the first signal is the first positioning reference signal, and the first signal is only associated with the first control information.
  • the first signal is the first positioning reference signal, and the first signal is only associated with a single-level SCI.
  • the first signal is the first positioning reference signal, and the first signal is only associated with one SCI.
  • the first signal is the first data
  • the first control information is not used to indicate the time-frequency resources occupied by the first signal.
  • the first signal is the first data
  • the first control information is not used to indicate the time-frequency resources occupied by the first signal
  • the second control information is used to indicate the The time-frequency resources occupied by the first signal.
  • the first signal is the first data
  • the first control information is the second level SCI
  • the second control information is the first level SCI
  • the first signal is the first data, and the first signal is associated with the first control information and the second control information.
  • the first signal is the first data, and the first signal is associated with a two-level SCI.
  • the first signal is the first data, and the first signal is associated with two SCIs.
  • the first control information indicates the time-frequency resource occupied by the first signal.
  • the first signal is the first positioning reference signal
  • the first control information indicates the time-frequency resource occupied by the first signal; or, the first signal is the first positioning reference signal.
  • the first control information is not used to indicate the time-frequency resources occupied by the first signal and the second control information is used to indicate the time-frequency resources occupied by the first signal.
  • the first control information when the first signal is the first positioning reference signal, the first control information indicates the time-frequency resource occupied by the first signal; when the first signal is the first positioning reference signal, the first control information indicates the time-frequency resource occupied by the first signal; When there is a data, the first control information is not used to indicate the time-frequency resources occupied by the first signal and the second control information is used to indicate the time-frequency resources occupied by the first signal.
  • the first signal is the first positioning reference signal, and the first signal is only associated with the first control information; or, the first signal is the first data, and the first signal is the first data.
  • a first signal is associated with the first control information and the second control information.
  • the first signal when the first signal is the first positioning reference signal, the first signal is only associated with the first control information; when the first signal is the first data, The first signal is associated with the first control information and the second control information.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal respectively belong to two different time slots.
  • the time-frequency resource occupied by the first PSSCH and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal respectively belong to two different resource pools.
  • the time-frequency resources occupied by the first PSSCH and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the time-frequency resource occupied by the first PSCCH and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • whether the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool is related to the first signal.
  • whether the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot is related to the first signal.
  • whether the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same A resource pool is related to whether the first signal is the first positioning reference signal.
  • whether the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot is related to whether the first signal is the first positioning reference signal.
  • the first signal is the first positioning reference signal
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different resources. pool.
  • the first signal is the first positioning reference signal
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different time-frequency resources. gap.
  • the first signal is the first data
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the first signal is the first data
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same time slot.
  • the first signal is the first positioning reference signal, and the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different resources. pool; or, the first signal is the first data, and the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the first signal is the first positioning reference signal, and the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different time-frequency resources. slot; or, the first signal is the first data, and the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different resource pool.
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different time slot.
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different resource pool; when the first signal is the first data, the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal respectively belong to two different time slot; when the first signal is the first data, the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the first signal is the first positioning reference signal
  • the first control information is carried on the first PSCCH
  • the time-frequency resource occupied by the first PSCCH is the same as the first positioning reference signal.
  • the time-frequency resources occupied by one signal belong to two different resource pools respectively; or, the first signal is the first data, the first control information is carried on the first PSSCH, and the third The time-frequency resources occupied by a PSSCH and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the first signal is the first positioning reference signal
  • the first control information is carried on the first PSCCH
  • the time-frequency resource occupied by the first PSCCH is the same as the first positioning reference signal.
  • the time-frequency resources occupied by one signal respectively belong to two different time slots; or the first signal is the first data
  • the first control information is carried on the first PSSCH, and the third
  • the time-frequency resource occupied by a PSSCH and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the first signal is the first positioning reference signal
  • the first control information is carried on the first PSCCH
  • the time-frequency resource occupied by the first PSCCH is the same as the first positioning reference signal.
  • the time-frequency resources occupied by one signal belong to two different resource pools respectively; or, the first signal is the first data, and both the first control information and the first signal are carried in the first One PSSCH on.
  • the first signal is the first positioning reference signal
  • the first control information is carried on the first PSCCH
  • the time-frequency resource occupied by the first PSCCH is the same as the first positioning reference signal.
  • the time-frequency resources occupied by one signal belong to two different time slots respectively; or the first signal is the first data, and both the first control information and the first signal are carried in the first 1 PSSCH superior.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first control information and the first signal according to an embodiment of the present application, as shown in FIG. 7 .
  • the rectangle filled with diagonal grids represents the first control information in this application
  • the rectangle filled with diagonal stripes represents the first positioning reference signal in this application
  • the rectangle filled with wavy points represents the second control information in this application.
  • Information in case A, the type of the first positioning reference signal is the time-frequency spectrum associated with the first positioning type in this application; in case B, the type of the first positioning reference signal is the time-frequency spectrum associated with the first positioning type in this application The time-frequency spectrum associated with the second positioning type.
  • the first signal is the first positioning reference signal; the channel on which the first control information is carried is related to the type of the first positioning reference signal, and the first control information is carried
  • the channel is one of the first PSCCH or the first PSSCH; the candidates of the type of the first positioning reference signal include the first positioning type and the second positioning type .
  • the type of the first positioning reference signal is the first positioning type
  • the first control information is carried on the first PSCCH.
  • the type of the first positioning reference signal is the second positioning type
  • the first control information is carried on the first PSSCH.
  • the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first PSCCH; or, the first positioning reference signal is The type is the second positioning type, and the first control information is carried on the first PSSCH.
  • the first control information is carried on the first PSCCH.
  • the first control information is carried on the first PSSCH.
  • the first control information is carried on the first PSCCH; when the first positioning reference signal When the type is the second positioning type, the first control information is carried on the first PSSCH.
  • the first signal is the first positioning reference signal, and whether the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool and the related to the type of the first positioning reference signal.
  • the first signal is the first positioning reference signal, and whether the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot and the same time slot as the first positioning reference signal. related to the type of the first positioning reference signal.
  • the first signal is the first positioning reference signal, and whether the time-frequency resources occupied by the first control information and the time-frequency resources occupied by the first signal belong to the same resource pool and the It is related to whether the type of the first positioning reference signal is the first positioning type.
  • the first signal is the first positioning reference signal, and whether the time-frequency resource occupied by the first control information and the time-frequency resource occupied by the first signal belong to the same time slot and the same time slot as the first positioning reference signal. It is related to whether the type of the first positioning reference signal is the first positioning type.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the time-frequency resources occupied by the first control information
  • the time-frequency resources occupied by the first signal belong to two different resource pools respectively.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the time-frequency resources occupied by the first control information The time-frequency resources occupied by the first signal respectively belong to two different time slots.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first control information It belongs to the same resource pool as the time-frequency resource occupied by the first signal.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first control information It belongs to the same time slot as the time-frequency resource occupied by the first signal.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the time-frequency resources occupied by the first control information
  • the time-frequency resources occupied by the first signal belong to two different resource pools respectively; or, the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first control information
  • the time-frequency resources and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the time-frequency resources occupied by the first control information
  • the time-frequency resources occupied by the first signal belong to two different time slots respectively; or, the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first control information
  • the time-frequency resource belongs to the same time slot as the time-frequency resource occupied by the first signal.
  • the first signal is the first positioning reference signal; when the type of the first positioning reference signal is the first positioning type, the time-frequency resources occupied by the first control information The time-frequency resources occupied by the first signal belong to two different resource pools respectively.
  • the first signal is the first positioning reference signal; when the type of the first positioning reference signal is the first positioning type, the time occupied by the first control information
  • the time-frequency resources and the time-frequency resources occupied by the first signal respectively belong to two different time slots.
  • the first signal is the first positioning reference signal; when the type of the first positioning reference signal is the second positioning type, the time occupied by the first control information
  • the frequency resources and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the first signal is the first positioning reference signal; when the type of the first positioning reference signal is the second positioning type, the time occupied by the first control information
  • the frequency resource and the time-frequency resource occupied by the first signal belong to the same time slot.
  • the first signal is the first positioning reference signal; when the type of the first positioning reference signal is the first positioning type, the time occupied by the first control information The frequency resources and the time-frequency resources occupied by the first signal belong to two different resource pools respectively; when the type of the first positioning reference signal is the second positioning type, the first control information The occupied time-frequency resources and the time-frequency resources occupied by the first signal belong to the same resource pool.
  • the first signal is the first positioning reference signal; when the type of the first positioning reference signal is the first positioning type, the time occupied by the first control information The frequency resources and the time-frequency resources occupied by the first signal respectively belong to two different time slots; when the type of the first positioning reference signal is the second positioning type, the first control information The occupied time-frequency resources and the time-frequency resources occupied by the first signal belong to the same time slot.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first positioning reference signal.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal respectively belong to two different resource pools; or, the type of the first positioning reference signal is For the second positioning type, the first control information is carried on the first PSSCH, and the time-frequency resources occupied by the first PSSCH and the time-frequency resources occupied by the first signal belong to the same resource. pool.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first positioning reference signal.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal respectively belong to two different time slots; or, the type of the first positioning reference signal is
  • the first control information is carried on the first PSSCH, and the time-frequency resources occupied by the first PSSCH and the time-frequency resources occupied by the first signal belong to the same time-frequency resource. gap.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first positioning reference signal.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal respectively belong to two different resource pools; or, the type of the first positioning reference signal is The second positioning type, the first control information and the first signal are all carried on the first PSSCH.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first positioning reference signal.
  • the time-frequency resources occupied by the first PSCCH and the time-frequency resources occupied by the first signal respectively belong to two different time slots; or, the type of the first positioning reference signal is The second positioning type, the first control information and the first signal are all carried on the first PSSCH.
  • the first positioning type and the second positioning type are respectively associated with two different time-frequency patterns (Patterns) of the first positioning reference signal.
  • the first positioning type and the second positioning type are respectively associated with two different port numbers (Port Numbers) of the first positioning reference signal.
  • the type of the first positioning reference signal is the first positioning type
  • the pattern of the first positioning reference signal is an interleaved pattern
  • the type of the first positioning reference signal is the first positioning type, and the pattern of the first positioning reference signal is a fully staggered pattern.
  • the type of the first positioning reference signal is the first positioning type
  • the pattern of the first positioning reference signal is a partially staggered pattern
  • the type of the first positioning reference signal is the second positioning type, and the pattern of the first positioning reference signal is an Unstaggered pattern.
  • the type of the first positioning reference signal is the second positioning type
  • the pattern of the first positioning reference signal is a semi-interleaved pattern
  • the type of the first positioning reference signal is the first positioning type, and the pattern of the first positioning reference signal is an interleaved pattern; or, the type of the first positioning reference signal It is the second positioning type, and the pattern of the first positioning reference signal is a non-interleaved pattern.
  • the type of the first positioning reference signal is the first positioning type, and the spectrum of the first positioning reference signal is a fully interleaved spectrum; or, the spectrum of the first positioning reference signal is The type is the second positioning type, and the pattern of the first positioning reference signal is a semi-interleaved pattern.
  • the type of the first positioning reference signal is the first positioning type, and the spectrum of the first positioning reference signal is a fully interleaved spectrum; or, the spectrum of the first positioning reference signal is The type is the second positioning type, and the pattern of the first positioning reference signal is a non-interleaved pattern.
  • the type of the first positioning reference signal is the first positioning type, and the spectrum of the first positioning reference signal is a non-interleaved spectrum; or, the type of the first positioning reference signal It is the second positioning type, and the spectrum of the first positioning reference signal is a fully interleaved spectrum.
  • the first positioning type and the second positioning type are respectively associated with two different numbers of multi-carrier symbols occupied by the first positioning reference signal in the time domain.
  • the type of the first positioning reference signal is the first positioning type
  • the first positioning reference signal occupies L1 multi-carrier symbols in the time domain
  • L1 is a positive integer not greater than 14.
  • the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal occupies L2 multi-carrier symbols in the time domain, and L2 is a positive integer not greater than 14, L2 is different from L1.
  • the L1 is larger than the L2.
  • the L1 is smaller than the L2.
  • the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal occupies 12 multi-carrier symbols in the time domain.
  • the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal occupies 2 multi-carrier symbols in the time domain.
  • the type of the first positioning reference signal is the first positioning type, and the first positioning reference signal occupies L1 multi-carrier symbols in the time domain; or, the first positioning reference signal The type is the second positioning type.
  • the first positioning reference signal occupies L2 multi-carrier symbols in the time domain.
  • L2 is a positive integer not greater than 14, and L2 is different from L1.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first control information, the first domain and the first signal according to an embodiment of the present application, as shown in FIG. 8 .
  • the rectangle filled with diagonal grids represents the first domain in this application, and the rectangle filled with diagonal grids represents the first signal in this application.
  • the first field is used to indicate the Whether the first signal is the first positioning reference signal, or the first field is used to indicate the format of the first control information, or the first field is used to indicate the first positioning reference The stated type of signal.
  • the first field includes a positive integer number of bits.
  • the first field is 1 bit.
  • the first signal is the first positioning reference signal
  • the first control information includes the first domain
  • the first signal is the first data, and the first control information does not include the first domain.
  • the first field is used to indicate whether the first signal is the first positioning reference signal.
  • the value of the first field is 1, and the first signal is the first positioning reference signal.
  • the value of the first field is 0, and the first signal is the first data.
  • the value of the first field is 1, and the first signal is the first positioning reference signal; or, the value of the first field is 0, and the first signal is the first positioning reference signal.
  • One data is 1, and the first signal is the first positioning reference signal; or, the value of the first field is 0, and the first signal is the first positioning reference signal.
  • the first field is used to indicate the type of the first positioning reference signal.
  • the value of the first field is 1, and the type of the first positioning reference signal is the first positioning type.
  • the value of the first field is 0, and the type of the first positioning reference signal is the second positioning type.
  • the value of the first field is 1, and the type of the first positioning reference signal is the first positioning type; or, the value of the first field is 0, and the first positioning reference signal is the first positioning type. Said type of positioning reference signal is said second positioning type.
  • the first field is used to indicate the format of the first control information.
  • the value of the first field is 1, and the format of the first control information is SCI format 1-B.
  • the value of the first field is 0, and the format of the first control information is SCI format 1-A.
  • the value of the first field is 1, and the format of the first control information is SCI format 1-B; or, the value of the first field is 0, and the first control information
  • the format described is SCI format 1-A.
  • Embodiment 9 illustrates a structural block diagram of a processing device in the first node, as shown in FIG. 9 .
  • the first node device processing device 900 mainly consists of a first transmitter 901 and a first receiver 902.
  • the first transmitter 901 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory 460 in Figure 4 of this application. and at least one of data sources 467.
  • the first receiver 902 includes the antenna 452, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, and the memory 460 in Figure 4 of this application. at least one of.
  • the first transmitter 901 sends first control information and a first signal;
  • the first control information includes at least one of a source identification field and a destination identification field, and the source identification field
  • the destination identification field is used to indicate the first node, and the destination identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or the first PSSCH. The above is related to the first signal.
  • whether the first control information includes a first field is related to the first signal, and the first field is used to indicate that the first signal is a first positioning reference signal, or whether the first signal is a first positioning reference signal.
  • a field is used to indicate the format of the first control information.
  • whether the first control information is carried on the first PSCCH is related to whether the first signal is a first positioning reference signal.
  • the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; or, the first signal is first data, and the first control information is carried on the first PSCCH.
  • a control information is carried on the first PSSCH.
  • the first signal is a first positioning reference signal
  • whether the first control information is carried on the first PSCCH is related to the type of the first positioning reference signal.
  • Candidates for the type of reference signal include a first positioning type and a second positioning type.
  • the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first PSCCH; or, the first positioning reference signal is The type is the second positioning type, and the first control information is carried on the first PSSCH.
  • the first positioning type and the second positioning type are respectively associated with two of the first positioning reference signals. Different time-frequency spectra.
  • the type of the first positioning reference signal is the first positioning type, and the time-frequency resources occupied by the first positioning reference signal are the same as the time-frequency resources occupied by the first control information. share the same resource pool; or, the type of the first positioning reference signal is the second positioning type, and the time-frequency resources occupied by the first positioning reference signal are the same as the time-frequency resources occupied by the first control information. Frequency resources belong to different resource pools.
  • the first receiver 902 receives a second positioning reference signal on a target time-frequency resource block; the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal is of the second positioning type.
  • the reference signal is associated with the second positioning reference signal.
  • whether the first control information indicates that the time-frequency resource occupied by the first signal is related to the first signal is related to the first signal.
  • the first signal is the first positioning reference signal
  • the first control information indicates the time-frequency resource occupied by the first signal; or, the first signal is the first positioning reference signal.
  • the first control information is not used to indicate the time-frequency resources occupied by the first signal and the second control information is used to indicate the time-frequency resources occupied by the first signal.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first control information indicates the first signal
  • the time-frequency resources occupied, or the type of the first positioning reference signal is the second positioning type, and the first control information is not used to indicate the time-frequency resources occupied by the first signal.
  • the second control information is used to indicate the time-frequency resource occupied by the first signal.
  • the first node 900 is user equipment.
  • the first node 900 is a relay node.
  • the first node 900 is a roadside device.
  • Embodiment 10 illustrates a structural block diagram of a processing device in the second node, as shown in FIG. 10 .
  • the second node device processing device 1000 mainly consists of a second receiver 1001 and a second transmitter 1002.
  • the second receiver 1001 includes the antenna 420, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application. at least one of.
  • the second transmitter 1002 includes the antenna 420 in Figure 4 of this application, the transmitter/receiver 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476. at least one of.
  • the second receiver 1001 receives the first control information and the first signal;
  • the first control information includes at least one of a source identification field and a destination identification field, and the source identification field field is used to indicate the first node, and the destination identification field is used to indicate the target recipient of the first signal; whether the first control information is carried on the first PSCCH or on the first PSSCH The above is related to the first signal.
  • whether the first control information includes a first field is related to the first signal, and the first field is used to indicate that the first signal is a first positioning reference signal, or whether the first signal is a first positioning reference signal.
  • a field is used to indicate the format of the first control information.
  • whether the first control information is carried on the first PSCCH is related to whether the first signal is a first positioning reference signal.
  • the first signal is the first positioning reference signal, and the first control information is carried on the first PSCCH; or, the first signal is first data, and the first control information is carried on the first PSCCH.
  • a control information is carried on the first PSSCH.
  • the first signal is a first positioning reference signal
  • whether the first control information is carried on the first PSCCH is related to the type of the first positioning reference signal.
  • Candidates for the type of reference signal include a first positioning type and a second positioning type.
  • the type of the first positioning reference signal is the first positioning type, and the first control information is carried on the first PSCCH; or, the first positioning reference signal is The type is the second positioning type, and the first control information is carried on the first PSSCH.
  • the first positioning type and the second positioning type are respectively associated with two different time-frequency spectra of the first positioning reference signal.
  • the type of the first positioning reference signal is the first positioning type, and the time-frequency resources occupied by the first positioning reference signal are the same as the time-frequency resources occupied by the first control information. share the same resource pool; or, the first positioning reference signal
  • the type is the second positioning type, and the time-frequency resources occupied by the first positioning reference signal and the time-frequency resources occupied by the first control information respectively belong to different resource pools.
  • the second transmitter 1002 sends a second positioning reference signal on the target time-frequency resource block; the type of the first positioning reference signal is the second positioning type, and the first positioning reference signal is of the second positioning type.
  • the reference signal is associated with the second positioning reference signal.
  • whether the first control information indicates that the time-frequency resource occupied by the first signal is related to the first signal is related to the first signal.
  • the first signal is the first positioning reference signal
  • the first control information indicates the time-frequency resource occupied by the first signal; or, the first signal is the first positioning reference signal.
  • the first control information is not used to indicate the time-frequency resources occupied by the first signal and the second control information is used to indicate the time-frequency resources occupied by the first signal.
  • the first signal is the first positioning reference signal; the type of the first positioning reference signal is the first positioning type, and the first control information indicates the first signal
  • the time-frequency resources occupied, or the type of the first positioning reference signal is the second positioning type, and the first control information is not used to indicate the time-frequency resources occupied by the first signal.
  • the second control information is used to indicate the time-frequency resource occupied by the first signal.
  • the second node 1000 is user equipment.
  • the second node 1000 is a relay node.
  • the second node 1000 is a roadside device.
  • the first node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc.
  • Wireless communications equipment The second node devices in this application include but are not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. Wireless communications equipment.
  • the user equipment or UE or terminal in this application includes but is not limited to mobile phones, tablets, notebooks, Internet cards, low-power devices, eMTC equipment, NB-IoT equipment, vehicle-mounted communication equipment, aircraft, aircraft, drones, remote controls Wireless communication equipment such as aircraft.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, aerial Base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点发送第一控制信息和第一信号;所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。本申请有效实现SL PRS和SL数据的资源分配和指示,提高有效资源的利用率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)相关的传输方案和装置。
背景技术
从LTE(Long Term Evolution,长期演进)开始,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)已经在发展SL(Sidelink,副链路)作为用户与用户之间的直连通信方式,并在Rel-16(Release-16,版本16)中完成了“5G V2X with NR Sidelink”的第一个NR SL(New Radio Sidelink,新空口副链路)标准。在Rel-16中,NR SL主要被设计用于V2X(Vehicle-To-Everything,车联网),但它也可以用于公共安全(Public Safety)。随着NR SL进一步增强,Rel-17引入了周期性的部分感知(periodic-basedpartial sensing,PBPS),连续性的部分感知(contiguous partial sensing,CPS),随机选择(random selection)和非连续接收(Discontinuous Reception,DRX)等功率节省方案,也引入了多种用户间协调(inter-UE coordination)方案以提供更可靠的信道资源。
为了满足商业化的应用场景,工业界又对V2X提出了新的需求,更高的数据吞吐量以及对新载波频率的支持。因此,在3GPP RAN-#94e次会议上,通过了针对NR SL演进的工作项目说明(Work Item Description,WID)RP-213678,正式开启了NR V2X Rel-18的标准化工作。
发明内容
根据RP-213588中的工作计划,NR Rel-18需要支持副链路定位(Sidelink Positioning,SL Positioning)的增强定位技术,其中主流的副链路定位技术包括基于SL RTT技术、SL AOA、SL TDOA和SL AOD等,而这些技术的执行都需要依赖对SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)的测量。SL PRS的发送参数信息与传统的SL数据大为不同,直接引用现有的SCI(Sidelink Control Information,副链路控制信息)无法满足SL PRS的配置、激活、无效和触发。
针对上述问题,本申请公开了一种针对SL PRS的信令指示方法,从而实现SL PRS资源的有效配置。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
发送第一控制信息和第一信号;
其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,本申请要解决的问题是:现有的SCI无法满足SL PRS的配置、激活、无效和触发。
作为一个实施例,本申请的方法是:针对SL PRS引入一种新的资源分配和指示方法。
作为一个实施例,本申请的方法是:将第一控制信息被承载的信道与第一信号建立关系。
作为一个实施例,本申请的方法是:将第一控制信息与第一定位参考信号建议关系。
作为一个实施例,上述方法的好处在于,有效实现SL PRS和SL数据的资源分配和指示,提高有效资源的利用率。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
根据本申请的一个方面,上述方法的特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
根据本申请的一个方面,上述方法的特征在于,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱。
根据本申请的一个方面,上述方法的特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
在目标时频资源块上接收第二定位参考信号;
其中,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备(UE,User Equipment)。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是路侧设备(RSU,Road Side Unit)。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一控制信息和第一信号;
其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控 制信息的格式。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
根据本申请的一个方面,上述方法的特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
根据本申请的一个方面,上述方法的特征在于,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱。
根据本申请的一个方面,上述方法的特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
根据本申请的一个方面,上述方法的特征在于,包括:
在目标时频资源块上发送第二定位参考信号;
其中,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是路侧设备。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,发送第一控制信息和第一信号;
其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,接收第一控制信息和第一信号;
其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,本申请具备如下优势:
-本申请要解决的问题是:现有的SCI无法满足SL PRS的配置、激活、无效和触发。
-本申请针对SL PRS引入一种新的资源分配和指示方法。
-本申请将第一控制信息被承载的信道与第一信号建立关系。
-本申请将第一控制信息与第一定位参考信号建议关系。
-本申请有效实现SL PRS和SL数据的资源分配和指示,提高有效资源的利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一控制信息与第一信号之间关系的示意图;
图7示出了根据本申请的一个实施例的第一控制信息与第一信号之间关系的示意图;
图8示出了根据本申请的一个实施例的第一控制信息,第一域与第一信号之间关系的示意图;
图9示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点执行步骤101,发送第一控制信息和第一信号;所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,所述第一PSCCH是一个PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一PSCCH在时域占用至少一个多载波符号(Symbol)。
作为一个实施例,所述第一PSCCH所占用的时域资源属于一个时隙(Slot),所述一个时隙包括多个多载波符号。
作为一个实施例,所述第一PSCCH在时域占用一个时隙中的至少一个多载波符号。
作为一个实施例,所述第一PSCCH在频域占用多个子载波(Subcarriers)。
作为一个实施例,所述第一PSCCH在频域占用至少一个物理资源块(Physical Resource Block,PRB),所述一个物理资源块包括多个子载波。
作为一个实施例,所述第一PSCCH在频域占用至少一个子信道(Subchannel),所述一个子信道包括至少一个物理资源块。
作为一个实施例,所述第一PSCCH所占用的频域资源属于一个子信道,所述一个子信道包括至少一个物理资源块。
作为一个实施例,所述第一PSCCH在频域占用一个子信道中的至少一个物理资源块。
作为一个实施例,所述第一PSCCH在时域占用多个多载波符号,所述第一PSCCH在频域占用多个物理资源块。
作为一个实施例,所述第一PSCCH被用于SL(Sidelink,副链路)传输或通信。
作为一个实施例,所述第一PSCCH被用于承载SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一PSCCH承载第一级SCI。
作为一个实施例,所述第一PSSCH是一个PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一PSSCH在时域占用至少一个多载波符号。
作为一个实施例,所述第一PSSCH所占用的时域资源属于一个时隙。
作为一个实施例,所述第一PSSCH在时域占用一个时隙中的多个多载波符号。
作为一个实施例,所述第一PSSCH在频域占用多个子载波。
作为一个实施例,所述第一PSSCH在频域占用至少一个物理资源块。
作为一个实施例,所述第一PSSCH在频域占用至少一个子信道。
作为一个实施例,所述第一PSSCH所占用的频域资源属于一个子信道。
作为一个实施例,所述第一PSSCH在时域占用多个多载波符号,所述第一PSSCH在频域占用至少一个子信道。
作为一个实施例,所述第一PSSCH被用于SL传输或通信。
作为一个实施例,所述第一PSSCH被用于承载SL-SCH。
作为一个实施例,所述第一PSSCH被用于承载SCI和SL-SCH。
作为一个实施例,所述第一PSSCH承载第二级SCI。
作为一个实施例,所述第一PSCCH在时域所占用的任一多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述第一PSCCH在时域所占用的任一多载波符号是SC-FDMA(Single-Carrier Frequency Division MultipleAccess,单载波-频分多址)符号。
作为一个实施例,所述第一PSCCH在时域所占用的任一多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,所述第一PSCCH在时域所占用的任一多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,所述第一PSCCH在时域所占用的任一多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,所述第一PSCCH在时域所占用的任一多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一PSSCH在时域所占用的任一多载波符号是OFDM符号。
作为一个实施例,所述第一PSSCH在时域所占用的任一多载波符号是SC-FDMA符号。
作为一个实施例,所述第一PSSCH在时域所占用的任一多载波符号是DFT-S-OFDM符号。
作为一个实施例,所述第一PSSCH在时域所占用的任一多载波符号是FDMA符号。
作为一个实施例,所述第一PSSCH在时域所占用的任一多载波符号是FBMC符号。
作为一个实施例,所述第一PSSCH在时域所占用的任一多载波符号是IFDMA符号。
作为一个实施例,所述第一控制信息是一个第一级SCI(1st-stage Sidelink Control Information,第一级副链路控制信息)。
作为一个实施例,所述第一级SCI的定义参见3GPP TS38.212的章节8.3。
作为一个实施例,所述第一控制信息是一个第二级SCI(2nd-stage Sidelink Control Information,第二级副链路控制信息)。
作为一个实施例,所述第二级SCI的定义参见3GPP TS38.212的章节8.4。
作为一个实施例,所述第一控制信息被用于传输(transport)副链路调度信息(sidelink scheduling information)。
作为一个实施例,所述第一控制信息被用于传输用户间协作相关信息(Inter-UE coordination related information)。
作为一个实施例,所述第一控制信息被用于传输副链路定位相关信息(sidelink positioning related information)。
作为一个实施例,所述第一控制信息被用于传输副链路定位参考信号相关信息(sidelink positioning reference signal related information)。
作为一个实施例,所述第一控制信息被用于指示所述第一信号。
作为一个实施例,所述第一控制信息被用于调度所述第一信号。
作为一个实施例,所述第一控制信息被用于指示所述第一信号所占用的时域资源。
作为一个实施例,所述第一控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一控制信息被用于确定所述第一信号所占用的时频资源。
作为一个实施例,所述第一控制信息被用于指示所述第一信号的时频图谱(Pattern)。
作为一个实施例,所述第一控制信息被用于指示所述第一信号占用的时频资源所属的资源池。
作为一个实施例,所述第一控制信息被用于确定所述第一信号占用的时频资源所属的资源池。
作为一个实施例,所述第一控制信息被用于指示所述第一信号的源标识和目的地标识。
作为一个实施例,所述第一控制信息被承载在所述第一PSCCH或者所述第一PSSCH二者中的之一。
作为一个实施例,所述第一控制信息被承载在所述第一PSCCH上。
作为一个实施例,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一控制信息被承载在所述第一PSCCH还是被承载在所述第一PSSCH与所述第一信号有关。
作为一个实施例,所述第一信号被用于确定所述第一控制信息被承载在所述第一PSCCH还是被承载所述第一PSSCH上。
作为一个实施例,所述第一控制信息的格式是SCI格式1-B(SCI format 1-B)。
作为一个实施例,所述第一控制信息的格式是SCI格式2-A(SCI format 2-A),SCI格式2-B(SCI format 2-B)和SCI格式2-C(SCI format 2-C)中的之一。
作为一个实施例,所述第一控制信息的格式是SCI格式1-B,SCI格式2-A,SCI格式2-B和SCI格式2-C中的之一。
作为一个实施例,所述第一控制信息的所述格式是SCI格式2-A。
作为一个实施例,所述第一控制信息的所述格式是SCI格式2-B。
作为一个实施例,所述第一控制信息的所述格式是SCI格式2-C。
作为一个实施例,所述第一控制信息的所述格式的候选包括SCI格式2-A,SCI格式2-B和SCI格式2-C。
作为一个实施例,所述第一控制信息的所述格式的候选包括SCI格式1-B,SCI格式2-A,SCI格式2-B和SCI格式2-C。
作为一个实施例,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一。
作为一个实施例,所述第一控制信息包括所述源标识域。
作为一个实施例,所述第一控制信息包括所述目的地标识域。
作为一个实施例,所述第一控制信息包括所述源标识域和所述目的地标识域。
作为一个实施例,所述第一控制信息包括所述源标识域,所述第一控制信息不包括所述目的地标识域。
作为一个实施例,所述第一控制信息包括所述目的地标识域,所述第一控制信息不包括所述源标识域。
作为一个实施例,所述源标识域被用于指示源标识(Source ID,Source Identity)。
作为一个实施例,所述源标识域被用于指示所述第一节点。
作为一个实施例,所述源标识域被用于指示所述第一控制信息的发送者。
作为一个实施例,所述源标识域被用于指示所述第一信号的发送者。
作为一个实施例,所述源标识域包括正整数个比特。
作为一个实施例,所述源标识域包括8个比特。
作为一个实施例,所述目的地标识域被用于指示目的地标识(Destination ID,Destination Identity)。
作为一个实施例,所述目的地标识域被用于指示所述第一控制信息的目标接收者。
作为一个实施例,所述目的地标识域被用于指示所述第一信号的目标接收者。
作为一个实施例,所述目的地标识包括正整数个比特。
作为一个实施例,所述目的地标识包括16个比特。
作为一个实施例,所述第一信号是第一定位参考信号或者第一数据二者中的之一。
作为一个实施例,所述第一信号是所述第一定位参考信号。
作为一个实施例,所述第一信号是所述第一数据。
作为一个实施例,所述第一信号是第一定位参考信号,所述第一定位参考信号的类型是第一定位类型或者,所述第一定位参考信号的类型是第二定位类型。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。在NTN网络中,gNB203的实例包括卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点包括所述UE201。
作为一个实施例,本申请中的第二节点包括所述UE241。
作为一个实施例,本申请中的用户设备包括所述UE201。
作为一个实施例,本申请中的用户设备包括所述UE241。
作为一个实施例,本申请中的中继节点包括所述UE201。
作为一个实施例,本申请中的中继节点包括所述UE241。
作为一个实施例,本申请中的路侧设备包括所述UE201。
作为一个实施例,本申请中的路侧设备包括所述UE241。
作为一个实施例,本申请中的第一控制信息的发送者包括所述UE201。
作为一个实施例,本申请中的第一控制信息的接收者包括所述UE241。
作为一个实施例,本申请中的第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的第一信号的接收者包括所述UE241。
作为一个实施例,本申请中的第二控制信息的发送者包括所述UE201。
作为一个实施例,本申请中的第二控制信息的接收者包括所述UE241。
作为一个实施例,本申请中的第二定位参考信号的发送者包括所述UE241。
作为一个实施例,本申请中的第二定位参考信号的接收者包括所述UE201。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信号经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一控制信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一控制信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一控制信息经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第二控制信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二控制信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二控制信息经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第二定位参考信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供 的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是路侧节点。
作为上述实施例的一个子实施例,所述第一节点是路侧节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是路侧节点,所述第二节点是路侧节点。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:发送第一控制信息和第一信号;所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一控制信息和第一信号;所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收第一控制信息和第一信号;其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一控制信息和第一信号;其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH 还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的发送第一控制信息。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的发送第一信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的发送第二控制信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460}中的至少之一被用于本申请中的在目标时频资源块上接收第二定位参考信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第一控制信息。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第二控制信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在目标时频资源块上发送第二定位参考信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点U1与第二节点U2之间是通过空中接口进行通信。在附图5中,虚线方框F0和虚线方框F1中的步骤分别是可选的。
对于第一节点U1,在步骤S11中发送第二控制信息;在步骤S12中发送第一控制信息;在步骤S13中发送第一信号;在步骤S14中在目标时频资源块上接收第二定位参考信号。
对于第二节点U2,在步骤S21中接收第二控制信息;在步骤S22中接收第一控制信息;在步骤S23中接收第一信号;在步骤S24中在目标时频资源块上发送第二定位参考信号。
在实施例5中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关;所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式;所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
作为一个实施例,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关;所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所 述第一PSCCH上,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池,所述第一定位参考信号与所述第二定位参考信号关联,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关;当所述第一信号是所述第一定位参考信号时,所述第一控制信息被承载在所述第一PSCCH上,所述第一控制信息指示所述第一信号所占用的时频资源;当所述第一信号是第一数据时,所述第一控制信息被承载在所述第一PSSCH上,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的包括第一定位类型和第二定位类型,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱;当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息被承载在所述第一PSCCH上,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池,所述第一控制信息指示所述第一信号所占用的时频资源;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息被承载在所述第一PSSCH上,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池,所述第一定位参考信号与所述第二定位参考信号关联,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一节点U1和所述第二节点U2之间是通过PC5接口进行通信。
作为一个实施例,附图5中的方框F0中的步骤存在,附图5中的方框F1中的步骤不存在。
作为一个实施例,附图5中的方框F0中的步骤不存在,附图5中的方框F1中的步骤存在。
作为一个实施例,附图5中的方框F0中的步骤和方框F1中的步骤都不存在。
作为一个实施例,当所述第一控制信息被承载在所述第一PSSCH上时,附图5中的方框F0中的步骤存在,附图5中的方框F1中的步骤不存在。
作为一个实施例,当所述第一控制信息被承载在所述第一PSCCH上时,附图5中的方框F0中的步骤不存在,附图5中的方框F1中的步骤存在。
作为一个实施例,当所述第一控制信息被承载在所述第一PSCCH上时,附图5中的方框F0中的步骤和方框F1中的步骤都不存在。
作为一个实施例,所述第一数据是基带信号。
作为一个实施例,所述第一数据是射频信号。
作为一个实施例,所述第一数据是无线信号。
作为一个实施例,所述第一数据包括一个数据包(Packet)。
作为一个实施例,所述第一数据包括副链路数据(SL data)。
作为一个实施例,所述第一数据包括一个或多个逻辑信道中的可用SL data。
作为一个实施例,所述第一数据包括一个或多个MAC PDUs(Protocol Data Units,协议数据单元)。
作为一个实施例,所述第一数据包括一个或多个MAC SDUs(Service Data Units,服务数据单元)。
作为一个实施例,所述第一数据包括一个或多个TBs(Transport Blocks,传输块)。
作为一个实施例,所述第一数据是一个TB(Transport Block,传输块)。
作为一个实施例,所述第一数据包括一个更高层(Higher layer)信令中的全部或部分。
作为一个实施例,所述第一数据包括一个RRC-IE(Radio Resource Control-Information Element,无线资源控制-信息单元)。
作为一个实施例,所述第一数据包括一个MAC-CE(Multimedia Access Control-Control Element,多媒体接入控制-控制单元)。
作为一个实施例,所述第一数据被承载在PSSCH上。
作为一个实施例,所述第一数据被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信号和所述第一信号都被承载在所述第一PSSCH上。
作为一个实施例,所述第一数据的传播类型是单播(Unicast),组播(Groupcast)或广播(Broadcast)中的之一。
作为一个实施例,所述第一数据包括第一比特块,所述第一比特块包括至少一个比特。
作为一个实施例,所述第一比特块被用于生成所述第一数据。
作为一个实施例,所述第一比特块来自SL-SCH(Sidelink SharedChannel,副链路共享信道)。
作为一个实施例,所述第一比特块包括1个CW(Codeword,码字)。
作为一个实施例,所述第一比特块包括1个CB(Code Block,编码块)。
作为一个实施例,所述第一比特块包括1个CBG(Code Block Group,编码块组)。
作为一个实施例,所述第一比特块包括1个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块中的所有或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到物理资源块(Mappingto Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第一数据。
作为一个实施例,所述第一数据是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation)之后的输出。
作为一个实施例,所述信道编码基于极化(polar)码。
作为一个实施例,所述信道编码基于LDPC(Low-density Parity-Check,低密度奇偶校验)码。
作为一个实施例,所述第一定位参考信号被用于副链路定位(SL Positioning)。
作为一个实施例,所述第一定位参考信号被用于获得绝对位置(Absolute Position)。
作为一个实施例,所述第一定位参考信号被用于获得相对位置(Relative Position)。
作为一个实施例,所述第一定位参考信号被用于获得距离(Distance)。
作为一个实施例,所述第一定位参考信号被用于获得范围(Range)。
作为一个实施例,所述第一定位参考信号是一个PRS(Positioning Reference Signal,定位参考信号)。
作为一个实施例,所述第一定位参考信号是一个SL PRS(Sidelink Positioning Reference Signal,副链路定位参考信号)。
作为一个实施例,所述第一定位参考信号包括SL PRS。
作为一个实施例,所述第一定位参考信号包括SL SSB(Sidelink Synchronization Signal/Physical Sidelink Broadcast Channel block,S-SS/PSBCH block,副链路同步信号/物理副链路广播信道块)。
作为一个实施例,所述第一定位参考信号包括SL PTRS(Sidelink Phase Tracking Reference Signal,副链路相位跟踪参考信号)。
作为一个实施例,所述第一定位参考信号包括SL CSI-RS(Sidelink Channel State Information Reference Signal,副链路信道状态信息参考信号)。
作为一个实施例,所述第一定位参考信号包括PSCCH DMRS(PSCCH Demodulation Reference Signal,PSCCH解调参考信号)。
作为一个实施例,所述第一定位参考信号包括PSSCH DMRS(PSSCH Demodulation Reference Signal,PSSCH解调参考信号)。
作为一个实施例,所述第一定位参考信号包括SL PRS,SL PTRS,SL CSI-RS,PSCCH DMRS,PSSCH DMRS,SL-SSB中的至少之一。
作为一个实施例,所述第一定位参考信号包括第一序列。
作为一个实施例,第一序列被用于生成所述第一定位参考信号。
作为一个实施例,所述第一序列是伪随机序列(Pseudo-Random Sequence)。
作为一个实施例,所述第一序列是低峰均比序列(Low-PAPR Sequence,Low-Peak to Average Power Ratio Sequence)。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是ZC(Zadeoff-Chu)序列。
作为一个实施例,所述第一序列经过序列生成(Sequence Generation),物理资源映射(Mapping to physical resources),时隙映射(Mapping to slots)之后得到所述第一定位参考信号。
作为一个实施例,所述第一定位参考信号所占用的时域资源属于一个时隙。
作为一个实施例,所述第一定位参考信号所占用的时域资源包括至少一个符号。
作为一个实施例,所述第一定位参考信号在时域占用至少一个符号。
作为一个实施例,所述第一定位参考信号在时域占用一个时隙中的至少一个符号。
作为一个实施例,所述第一定位参考信号所占用的频域资源属于一个资源池。
作为一个实施例,所述第一定位参考信号所占用的时域资源包括至少一个物理资源块。
作为一个实施例,所述第一定位参考信号所占用的时域资源包括至少一个子信道。
作为一个实施例,所述第一定位参考信号在频域占用至少一个物理资源块。
作为一个实施例,所述第一定位参考信号在频域占用一个资源池中的至少一个物理资源块。
作为一个实施例,所述第一定位参考信号在频域占用至少一个子信道。
作为一个实施例,所述第一定位参考信号在频域占用一个资源池中的至少一个子信道。
作为一个实施例,所述第一定位参考信号的类型的候选包括第一定位类型和第二定位类型。
作为一个实施例,所述第一定位参考信号的类型是第一定位类型或者第二定位类型二者中的之一。
作为一个实施例,所述第一定位参考信号的类型的候选包括多个定位类型,第一定位类型和第二定位类型分别是所述多个定位类型中的之二。
作为一个实施例,所述第一定位参考信号的类型是多个定位类型中的之一,所述多个定位类型包括第一定位类型和第二定位类型。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型。
作为一个实施例,所述第二定位参考信号被用于副链路定位。
作为一个实施例,所述第二定位参考信号被用于获得绝对位置。
作为一个实施例,所述第二定位参考信号被用于获得相对位置。
作为一个实施例,所述第二定位参考信号被用于获得距离。
作为一个实施例,所述第二定位参考信号被用于获得范围。
作为一个实施例,所述第二定位参考信号是一个PRS。
作为一个实施例,所述第二定位参考信号是一个SL PRS。
作为一个实施例,所述第二定位参考信号包括SL PRS。
作为一个实施例,所述第二定位参考信号包括SL SSB。
作为一个实施例,所述第二定位参考信号包括SL PTRS。
作为一个实施例,所述第二定位参考信号包括SL CSI-RS。
作为一个实施例,所述第二定位参考信号包括PSCCH DMRS。
作为一个实施例,所述第二定位参考信号包括PSSCH DMRS。
作为一个实施例,所述第二定位参考信号包括SL PRS,SL PTRS,SL CSI-RS,PSCCH DMRS,PSSCH DMRS,SL-SSB中的至少之一。
作为一个实施例,所述第二定位参考信号包括第二序列。
作为一个实施例,第二序列被用于生成所述第二定位参考信号。
作为一个实施例,所述第二序列是伪随机序列。
作为一个实施例,所述第二序列是低峰均比序列。
作为一个实施例,所述第二序列是Gold序列。
作为一个实施例,所述第二序列是M序列。
作为一个实施例,所述第二序列是ZC序列。
作为一个实施例,所述第二序列经过序列生成,物理资源映射,时隙映射之后得到所述第二定位参考信号。
作为一个实施例,所述第二定位参考信号所占用的时域资源属于一个时隙。
作为一个实施例,所述第二定位参考信号所占用的时域资源包括至少一个符号。
作为一个实施例,所述第二定位参考信号在时域占用至少一个符号。
作为一个实施例,所述第二定位参考信号在时域占用一个时隙中的至少一个符号。
作为一个实施例,所述第二定位参考信号所占用的频域资源属于一个资源池。
作为一个实施例,所述第二定位参考信号所占用的时域资源包括至少一个物理资源块。
作为一个实施例,所述第二定位参考信号所占用的时域资源包括至少一个子信道。
作为一个实施例,所述第二定位参考信号在频域占用至少一个物理资源块。
作为一个实施例,所述第二定位参考信号在频域占用一个资源池中的至少一个物理资源块。
作为一个实施例,所述第二定位参考信号在频域占用至少一个子信道。
作为一个实施例,所述第二定位参考信号在频域占用一个资源池中的至少一个子信道。
作为一个实施例,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,所述第一定位参考信号的发送被用于触发接收所述第二定位参考信号。
作为一个实施例,所述第一定位参考信号所占用的时域资源被用于确定所述第二定位参考信号所占用的时域资源。
作为一个实施例,所述第一定位参考信号所占用的时频资源被用于确定所述第二定位参考信号所占用的时频资源。
作为一个实施例,所述第一定位参考信号所占用的时域资源被用于确定所述目标时频资源块,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述第一定位参考信号所占用的时频资源被用于确定所述目标时频资源块,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述第一控制信息与所述第一定位参考信号关联,所述第一控制信息被用于指示所述第二定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号,所述第一控制信息被用于指示所述第二定位参考信号占用的时频资源所属的资源池。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号,所述第一控制信息被用于指示所述目标时频资源块所属的资源池,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号所占用的时频资源,所述第一控制信息被用于指示所述第二定位参考信号占用的时频资源所属的资源池。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号占用的时频资源所属的资源池,所述第一控制信息被用于指示所述目标时频资源块所属的资源池,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号,所述第一控制信息被用于指示所述第二定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号,所述第一控制信息被用于指示所述第二定位参考信号所占用的时频资源。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号,所述第一控制信息被用于指示所述目标时频资源块,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号所占用的时频资源,所述第一控制信息被用于指示所述第二定位参考信号所占用的时频资源。
作为一个实施例,所述第一控制信息被用于指示所述第一定位参考信号所占用的时频资源,所述第一控制信息被用于指示所述目标时频资源块,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述第一定位参考信号是否与所述第二定位参考信号关联与所述第一定位参考信号的所述类型有关。
作为一个实施例,所述第一定位参考信号的所述类型被用于确定所述第一定位参考信号是否与所述第二定位参考信号关联。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号不与所述第二定位参考信号关联。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一定位参考信号不与所述第二定位参考信号关联。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联;或者,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号不与所述第二定位参考信号关联。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号与所述第二定位参考信号关联;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号不与所述第二定位参考信号关联。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一定位参考信号与所述第二定位参考信号关联;当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一定位参考信号不与所述第二定位参考信号关联。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一定位参考信号与所述第二定位参考信号关联;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一定位参考信号不与所述第二定位参考信号关联。
作为一个实施例,所述目标时频资源块被用于承载所述第二定位参考信号。
作为一个实施例,所述目标时频资源块被用于承载SL PRS。
作为一个实施例,所述目标时频资源块包括PSCCH。
作为一个实施例,所述目标时频资源块不包括PSCCH。
作为一个实施例,所述目标时频资源块包括PSSCH。
作为一个实施例,所述目标时频资源块不包括PSSCH。
作为一个实施例,所述目标时频资源块被用于承载SL PRS,所述目标时频资源块包括PSCCH。
作为一个实施例,所述目标时频资源块仅被用于承载SL PRS,所述目标时频资源块不包括PSCCH和PSSCH。
作为一个实施例,所述第二节点U2从一个资源池包括的多个时频资源块中自行确定所述目标时频资源块。
作为一个实施例,所述第二节点U2从一个资源池包括的多个时频资源块中随机选择所述目标时频资源块。
作为一个实施例,一个下行信令从一个资源池包括的多个时频资源块中指示所述目标时频资源块。
作为一个实施例,一个下行信令指示所述目标时频资源块在一个资源池包括的多个时频资源块中的位置。
实施例6
实施例6示例了根据本申请的一个实施例的第一控制信息与第一信号之间关系的示意图,如附图6所示。在附图6中,斜方格填充的矩形代表本申请中的第一控制信息,斜纹填充的矩形代表本申请中的第一信号,波点填充的矩形代表本申请中的第二控制信息。
在实施例6中,所述第一控制信息被承载的信道与所述第一信号有关,所述第一控制信息被承载的所述信道是所述第一PSCCH或者所述第一PSSCH二者中的之一;在实施例6的情况A中,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;在实施例6的情况B中,所述第一信号是所述第一数据,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号被用于确定所述第一控制信息被承载的所述信道。
作为一个实施例,所述第一控制信息被承载的所述信道的候选包括所述第一PSCCH和所述第一PSSCH。
作为一个实施例,所述第一控制信息被承载的所述信道是所述第一PSCCH或者所述第一PSSCH二者中的之一。
作为一个实施例,所述第一控制信息被承载的所述信道是所述第一PSCCH。
作为一个实施例,所述第一控制信息被承载的所述信道是所述第一PSSCH。
作为一个实施例,所述第一控制信息被承载在所述第一PSCCH上。
作为一个实施例,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一控制信息被承载的所述信道与所述第一信号是否是所述第一定位参考信号有关
作为一个实施例,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号有关。
作为一个实施例,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是所述第一定位参考信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上。
作为一个实施例,所述第一信号不是所述第一定位参考信号,所述第一控制信息不被承载在所述第一PSCCH上。
作为一个实施例,所述第一信号不是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息不被承载在所述第一PSCCH上。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息被承载在所述第一PSCCH上。
作为一个实施例,当所述第一信号是所述第一数据时,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号不是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是所述第一数据,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息被承载在所述第一PSCCH上;当所述第一信号是所述第一数据时,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
作为一个实施例,所述第一信号所占用的时频资源包括所述第一信号所占用的时域资源。
作为一个实施例,所述第一信号所占用的时频资源包括所述第一信号所占用的频域资源。
作为一个实施例,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号是否是所述第一定位参考信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息是第一级SCI。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息是单级SCI。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一信号只与所述第一控制信息关联。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一信号只与单级SCI关联。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一信号只与一个SCI关联。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源,第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息是第二级SCI,所述第二控制信息是第一级SCI。
作为一个实施例,所述第一信号是所述第一数据,所述第一信号与所述第一控制信息和所述第二控制信息关联。
作为一个实施例,所述第一信号是所述第一数据,所述第一信号与两级SCI关联。
作为一个实施例,所述第一信号是所述第一数据,所述第一信号与两个SCIs关联。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且所述第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息指示所述第一信号所占用的时频资源;当所述第一信号是所述第一数据时,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且所述第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一信号仅与所述第一控制信息关联;或者,所述第一信号是所述第一数据,所述第一信号与所述第一控制信息和所述第二控制信息关联。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一信号仅与所述第一控制信息关联;当所述第一信号是所述第一数据时,所述第一信号与所述第一控制信息和所述第二控制信息关联。
作为一个实施例,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙。
作为一个实施例,所述第一PSSCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池。
作为一个实施例,所述第一PSSCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一资源池与所述第一信号有关。
作为一个实施例,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一时隙与所述第一信号有关。
作为一个实施例,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同 一资源池与所述第一信号是否是所述第一定位参考信号有关。
作为一个实施例,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一时隙与所述第一信号是否是所述第一定位参考信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;或者,所述第一信号是所述第一数据,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;或者,所述第一信号是所述第一数据,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙。
作为一个实施例,当所述第一信号是所述第一数据时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,当所述第一信号是所述第一数据时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;当所述第一信号是所述第一数据时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,当所述第一信号是所述第一定位参考信号时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;当所述第一信号是所述第一数据时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;或者,所述第一信号是所述第一数据,所述第一控制信息被承载在所述第一PSSCH上,所述第一PSSCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;或者,所述第一信号是所述第一数据,所述第一控制信息被承载在所述第一PSSCH上,所述第一PSSCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;或者,所述第一信号是所述第一数据,所述第一控制信息和所述第一信号都被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;或者,所述第一信号是所述第一数据,所述第一控制信息和所述第一信号都被承载在所述第一PSSCH 上。
实施例7
实施例7示例了根据本申请的一个实施例的第一控制信息与第一信号之间关系的示意图,如附图7所示。在附图7中,斜方格填充的矩形代表本申请中的第一控制信息,斜纹填充的矩形代表本申请中的第一定位参考信号,波点填充的矩形代表本申请中的第二控制信息;在情况A中,所述第一定位参考信号的类型是本申请中的第一定位类型所关联的时频图谱;在情况B中,所述第一定位参考信号的类型是本申请中的第二定位类型所关联的时频图谱。
在实施例7中,所述第一信号是所述第一定位参考信号;所述第一控制信息被承载的信道与所述第一定位参考信号的类型有关,所述第一控制信息被承载的所述信道是所述第一PSCCH或者所述第一PSSCH二者中的之一;所述第一定位参考信号的所述类型的候选包括所述第一定位类型和所述第二定位类型。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息被承载在所述第一PSCCH上。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息被承载在所述第一PSCCH上;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一资源池与所述第一定位参考信号的所述类型有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一时隙与所述第一定位参考信号的所述类型有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一资源池与所述第一定位参考信号的所述类型是否是所述第一定位类型有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源是否属于同一时隙与所述第一定位参考信号的所述类型是否是所述第一定位类型有关。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;当第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;当所述第一定位参考信号的所述类型是所述第一定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;当所述第一定位参考信号的所述类型是所述第二定位类型时,所述第一控制信息所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上,所述第一PSSCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个资源池。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上,所述第一PSSCH所占用的时频资源与所述第一信号所占用的时频资源属于同一个时隙。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息和所述第一信号都被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上,所述第一PSCCH所占用的时频资源与所述第一信号所占用的时频资源分别属于两个不同的时隙;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息和所述第一信号都被承载在所述第一PSSCH上。
作为一个实施例,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱(Patterns)。
作为一个实施例,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的端口号(Port Number)。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是交错图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是全交错图谱(Full staggered pattern)。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是半交错图谱(Partially staggered pattern)。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号的图谱是非交错图谱(Unstaggered pattern)。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号的图谱是半交错图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是交错图谱;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号的图谱是非交错图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是全交错图谱;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号的图谱是半交错图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是全交错图谱;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号的图谱是非交错图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号的图谱是非交错图谱;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号的图谱是全交错图谱。
作为一个实施例,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号在时域所占用的两种不同的多载波符号数。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号在时域占用L1个多载波符号,L1是不大于14的正整数。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号在时域占用L2个多载波符号,L2是不大于14的正整数,L2与L1不等。
作为一个实施例,所述L1大于所述L2。
作为一个实施例,所述L1小于所述L2。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号在时域占用12个多载波符号。
作为一个实施例,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号在时域占用2个多载波符号。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号在时域占用L1个多载波符号;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号在时域占用L2个多载波符号,L2是不大于14的正整数,L2与L1不等。
实施例8
实施例8示例了根据本申请的一个实施例的第一控制信息,第一域与第一信号之间关系的示意图,如附图8所示。斜方格填充的矩形代表本申请中的第一域,斜纹填充的矩形代表本申请中的第一信号。
在实施例8中,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述 第一信号是否是所述第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式,或者,所述第一域被用于指示所述第一定位参考信号的所述类型。
作为一个实施例,所述第一域包括正整数个比特。
作为一个实施例,所述第一域是1个比特。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息包括所述第一域。
作为一个实施例,所述第一信号是所述第一数据,所述第一控制信息不包括所述第一域。
作为一个实施例,所述第一域被用于指示所述第一信号是否是所述第一定位参考信号。
作为一个实施例,所述第一域的值为1,所述第一信号是所述第一定位参考信号。
作为一个实施例,所述第一域的值为0,所述第一信号是所述第一数据。
作为一个实施例,所述第一域的值为1,所述第一信号是所述第一定位参考信号;或者,所述第一域的值为0,所述第一信号是所述第一数据。
作为一个实施例,所述第一域被用于指示所述第一定位参考信号的所述类型。
作为一个实施例,所述第一域的值为1,所述第一定位参考信号的所述类型是所述第一定位类型。
作为一个实施例,所述第一域的值为0,所述第一定位参考信号的所述类型是所述第二定位类型。
作为一个实施例,所述第一域的值为1,所述第一定位参考信号的所述类型是所述第一定位类型;或者,所述第一域的值为0,所述第一定位参考信号的所述类型是所述第二定位类型。
作为一个实施例,所述第一域被用于指示所述第一控制信息的格式。
作为一个实施例,所述第一域的值为1,所述第一控制信息的所述格式是SCI format 1-B。
作为一个实施例,所述第一域的值为0,所述第一控制信息的所述格式是SCI format 1-A。
作为一个实施例,所述第一域的值为1,所述第一控制信息的所述格式是SCI format 1-B;或者,所述第一域的值为0,所述第一控制信息的所述格式是SCI format 1-A。
实施例9
实施例9示例了一个用于第一节点中的处理装置的结构框图,如附图9所示。在实施例9中,第一节点设备处理装置900主要由第一发射机901和第一接收机902组成。
作为一个实施例,第一发射机901包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一接收机902包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460中的至少之一。
在实施例9中,所述第一发射机901发送第一控制信息和第一信号;所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
作为一个实施例,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个 不同的时频图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
作为一个实施例,所述第一接收机902在目标时频资源块上接收第二定位参考信号;所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。。
作为一个实施例,所述第一节点900是用户设备。
作为一个实施例,所述第一节点900是中继节点。
作为一个实施例,所述第一节点900是路侧设备。
实施例10
实施例10示例了一个用于第二节点中的处理装置的一个结构框图,如附图10所示。在实施例10中,第二节点设备处理装置1000主要由第二接收机1001和第二发射机1002组成。
作为一个实施例,第二接收机1001包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,第二发射机1002包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476中的至少之一。
在实施例10中,所述第二接收机1001接收第一控制信息和第一信号;所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
作为一个实施例,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
作为一个实施例,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
作为一个实施例,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱。
作为一个实施例,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的 所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
作为一个实施例,所述第二发射机1002在目标时频资源块上发送第二定位参考信号;所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
作为一个实施例,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
作为一个实施例,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
作为一个实施例,所述第二节点1000是用户设备。
作为一个实施例,所述第二节点1000是中继节点。
作为一个实施例,所述第二节点1000是路侧设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (48)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一发射机,发送第一控制信息和第一信号;
    其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
  4. 根据权利要求3所述的第一节点,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
  5. 根据权利要求1或2所述的第一节点,其特征在于,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
  6. 根据权利要求5所述的第一节点,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
  7. 根据权利要求5或6所述的第一节点,其特征在于,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱(pattern)。
  8. 根据权利要求5至7中任一权利要求所述的第一节点,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
  9. 根据权利要求5至8中任一权利要求所述的第一节点,其特征在于,包括:
    第一接收机,在目标时频资源块上接收所述第二定位参考信号;
    其中,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与第二定位参考信号关联。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
  11. 根据权利要求10所述的第一节点,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  12. 根据权利要求10所述的第一节点,其特征在于,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  13. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收第一控制信息和第一信号;
    其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
  14. 根据权利要求13所述的第二节点,其特征在于,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
  15. 根据权利要求13或14所述的第二节点,其特征在于,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
  16. 根据权利要求15所述的第二节点,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
  17. 根据权利要求13或14所述的第二节点,其特征在于,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
  18. 根据权利要求17所述的第二节点,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
  19. 根据权利要求17或18所述的第二节点,其特征在于,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱。
  20. 根据权利要求17至19中任一权利要求所述的第二节点,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
  21. 根据权利要求17至20中任一权利要求所述的第二节点,其特征在于,包括:所述第二发射机在目标时频资源块上发送第二定位参考信号;所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
  22. 根据权利要求13至21中任一权利要求所述的第二节点,其特征在于,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
  23. 根据权利要求22所述的第二节点,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  24. 根据权利要求22所述的第二节点,其特征在于,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  25. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    发送第一控制信息和第一信号;
    其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
  26. 根据权利要求25所述的第一节点中的方法,其特征在于,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
  27. 根据权利要求25或26所述的第一节点中的方法,其特征在于,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
  28. 根据权利要求27所述的第一节点中的方法,其特征在于,所述第一信号是所述第一定位参 考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
  29. 根据权利要求25或26所述的第一节点中的方法,其特征在于,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
  30. 根据权利要求29所述的第一节点中的方法,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
  31. 根据权利要求29或30所述的第一节点中的方法,其特征在于,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱。
  32. 根据权利要求29至31中任一权利要求所述的第一节点中的方法,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
  33. 根据权利要求29至32中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    在目标时频资源块上接收第二定位参考信号;
    其中,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
  34. 根据权利要求25至33中任一权利要求所述的第一节点中的方法,其特征在于,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
  35. 根据权利要求34所述的第一节点中的方法,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  36. 根据权利要求34所述的第一节点中的方法,其特征在于,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  37. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第一控制信息和第一信号;
    其中,所述第一控制信息包括源标识域和目的地标识域二者中的至少之一,所述源标识域被用于指示所述第一节点,所述目的地标识域被用于指示所述第一信号的目标接收者;所述第一控制信息被承载在第一PSCCH还是被承载在第一PSSCH上与所述第一信号有关。
  38. 根据权利要求37所述的第二节点中的方法,其特征在于,所述第一控制信息是否包括第一域与所述第一信号有关,所述第一域被用于指示所述第一信号是第一定位参考信号,或者,所述第一域被用于指示所述第一控制信息的格式。
  39. 根据权利要求37或38所述的第二节点中的方法,其特征在于,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一信号是否是第一定位参考信号有关。
  40. 根据权利要求39所述的第二节点中的方法,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一信号是第一数据,所述第一控制信息被承载在所述第一PSSCH上。
  41. 根据权利要求37或38所述的第二节点中的方法,其特征在于,所述第一信号是第一定位参考信号,所述第一控制信息是否被承载在所述第一PSCCH上与所述第一定位参考信号的类型有关,所述第一定位参考信号的所述类型的候选包括第一定位类型和第二定位类型。
  42. 根据权利要求41所述的第二节点中的方法,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息被承载在所述第一PSCCH上;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息被承载在所述第一PSSCH上。
  43. 根据权利要求41或42所述的第二节点中的方法,其特征在于,所述第一定位类型和所述第二定位类型分别被关联到所述第一定位参考信号的两个不同的时频图谱。
  44. 根据权利要求41至43中任一权利要求所述的第二节点中的方法,其特征在于,所述第一定位参考信号的所述类型是所述第一定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源共享同一资源池;或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号所占用的时频资源与所述第一控制信息所占用的时频资源分别属于不同的资源池。
  45. 根据权利要求41至44中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    在目标时频资源块上发送第二定位参考信号;
    其中,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一定位参考信号与所述第二定位参考信号关联。
  46. 根据权利要求37至45中任一权利要求所述的第二节点中的方法,其特征在于,所述第一控制信息是否指示所述第一信号所占用的时频资源与所述第一信号有关。
  47. 根据权利要求46所述的第二节点中的方法,其特征在于,所述第一信号是所述第一定位参考信号,所述第一控制信息指示所述第一信号所占用的时频资源;或者,所述第一信号是所述第一数据,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
  48. 根据权利要求46所述的第二节点中的方法,其特征在于,所述第一信号是所述第一定位参考信号;所述第一定位参考信号的所述类型是所述第一定位类型,所述第一控制信息指示所述第一信号所占用的时频资源,或者,所述第一定位参考信号的所述类型是所述第二定位类型,所述第一控制信息不被用于指示所述第一信号所占用的时频资源且第二控制信息被用于指示所述第一信号所占用的时频资源。
PCT/CN2023/111367 2022-08-10 2023-08-07 一种被用于无线通信的节点中的方法和装置 WO2024032518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210961211.6 2022-08-10
CN202210961211.6A CN117675130A (zh) 2022-08-10 2022-08-10 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024032518A1 true WO2024032518A1 (zh) 2024-02-15

Family

ID=89850754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111367 WO2024032518A1 (zh) 2022-08-10 2023-08-07 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117675130A (zh)
WO (1) WO2024032518A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200323023A1 (en) * 2019-07-17 2020-10-08 Honglei Miao Sidelink communication range signaling
US20200359367A1 (en) * 2018-02-06 2020-11-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User device, and method for inter-user-device sending and receiving of positioning signal
CN112436927A (zh) * 2019-08-26 2021-03-02 联发科技(新加坡)私人有限公司 侧链路传送方法和装置
CN113347648A (zh) * 2020-03-02 2021-09-03 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2022117087A1 (zh) * 2020-12-04 2022-06-09 维沃移动通信有限公司 副链路sl上的定位方法、装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200359367A1 (en) * 2018-02-06 2020-11-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User device, and method for inter-user-device sending and receiving of positioning signal
US20200323023A1 (en) * 2019-07-17 2020-10-08 Honglei Miao Sidelink communication range signaling
CN112436927A (zh) * 2019-08-26 2021-03-02 联发科技(新加坡)私人有限公司 侧链路传送方法和装置
CN113347648A (zh) * 2020-03-02 2021-09-03 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2022117087A1 (zh) * 2020-12-04 2022-06-09 维沃移动通信有限公司 副链路sl上的定位方法、装置及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Correction to TX resource pool sidelink mode 1 and 2 in 38.331 for V2X", 3GPP TSG-RAN WG2 MEETING #111 ELECTRONIC, R2-2007198, 7 August 2020 (2020-08-07), XP051912005 *

Also Published As

Publication number Publication date
CN117675130A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019028885A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230030758A1 (en) Method and device in nodes used for wireless communication
WO2024032518A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
CN114499792A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027609A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240224242A1 (en) Method and device in nodes used for wireless communication
WO2024032480A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046249A1 (zh) 一种被用于定位的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023236853A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022257865A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023000976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230049210A1 (en) Method and device in nodes used for wireless communication
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851739

Country of ref document: EP

Kind code of ref document: A1