WO2022257865A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022257865A1
WO2022257865A1 PCT/CN2022/097041 CN2022097041W WO2022257865A1 WO 2022257865 A1 WO2022257865 A1 WO 2022257865A1 CN 2022097041 W CN2022097041 W CN 2022097041W WO 2022257865 A1 WO2022257865 A1 WO 2022257865A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
time
frequency resource
threshold
resource pool
Prior art date
Application number
PCT/CN2022/097041
Other languages
English (en)
French (fr)
Inventor
刘瑾
张浩翔
Original Assignee
上海推络通信科技合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海推络通信科技合伙企业(有限合伙) filed Critical 上海推络通信科技合伙企业(有限合伙)
Priority to CN202280006876.XA priority Critical patent/CN116458248A/zh
Publication of WO2022257865A1 publication Critical patent/WO2022257865A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a sidelink-related transmission scheme and device in wireless communication.
  • SL Segment, secondary link
  • Rel-16 Release-16, version 16
  • NR SL New Radio Sidelink, new air interface secondary link
  • V2X Vehicle-To-Everything, Internet of Vehicles
  • NR SL Rel-16 cannot fully support the business requirements and working scenarios identified by 3GPP for 5G V2X. Therefore 3GPP will study enhanced NR SL in Rel-17.
  • VRU Vehicleable road user, vulnerable road user
  • PUE pedestrian user equipment, pedestrian user equipment
  • VRU or PUE uses random resource selection, periodic partial sensing or continuous partial sensing to determine the time-frequency resources for sending signals.
  • random resource selection is allowed, and partially-aware and fully-aware users share the same resource pool.
  • VRUs or PUEs use random resource selection and do not perform channel sensing, interference to adjacent users cannot be avoided, and sensing users have to take the time-frequency resources that actively avoid interference. As a result, the transmission performance of high-end perception users is affected.
  • a threshold is set for the shared resource pool, and when the data priority of the VRU or PUE is low, avoid entering the shared resource pool, so as not to cause performance impact on high-end perception users.
  • the resource pool has fewer users and more resources, adopting a unified priority threshold will result in lower resource utilization.
  • the present application discloses a method for setting priority thresholds for resource pools, thereby effectively avoiding the problem of low resource pool utilization. It should be noted that, if there is no conflict, the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily. Further, although the original intention of this application is for SL, this application can also be used for UL (Uplink, uplink). Further, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for V2X scenarios
  • this application is also applicable to communication scenarios between terminals and base stations, terminals and relays, and relays and base stations, achieving similar technical effects in V2X scenarios.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first threshold list including a plurality of priority thresholds
  • the result of the channel proportion detection is used to determine a first priority threshold from the plurality of priority thresholds included in the first threshold list; the first priority and the first priority The size relationship of the threshold is used to determine whether to send the target signal in the first resource pool; the first priority is associated to a target bit block, and the target bit block is used to generate the target signal.
  • the problem to be solved in this application is: when the number of users in the shared resource pool is relatively small and the resources are relatively abundant, using a unified priority threshold will cause some users who use random resource selection to be unable to access the resource pool. This results in lower resource utilization.
  • the method of the present application is: adjusting the use threshold of the user using random resource selection according to the level of channel proportion in the resource pool.
  • the advantage of the above method is to strike a balance between resource utilization and avoidance of interference to high-end perception users.
  • the above method is characterized in that the multiple measurement value ranges correspond one-to-one to the multiple priority thresholds included in the first threshold list; the result of the channel proportion detection belongs to the multiple A first range of measured values in a range of measured values; the first range of measured values is used to determine the first priority threshold from the first threshold list; the first priority threshold is the first priority threshold A priority threshold corresponding to the first measurement value range in a threshold list.
  • the above method is characterized in that it includes:
  • the first priority is equal to a first integer, and the first priority threshold is equal to a second integer; when the first integer is not greater than the second integer, the target is sent on the first time-frequency resource block signal; when the first integer is greater than the second integer, abandon sending the target signal in the first resource pool;
  • the first resource pool includes multiple time-frequency resource blocks, and the first time-frequency resource block is a time-frequency resource block in the first resource pool.
  • the above method is characterized in that it includes:
  • the first integer is not greater than the second integer.
  • the above method is characterized in that the first node is a user equipment.
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a base station.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first resource pool includes multiple time-frequency resource blocks, and the first time-frequency resource block is a time-frequency resource block in the first resource pool;
  • the target signal carries a first priority, and the first time-frequency resource block A priority is associated to the target bit block, the target signal comprising the target bit block.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a base station.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first processor determining a first priority and a first threshold list, the first threshold list including a plurality of priority thresholds
  • the first receiver performs channel ratio detection in the first resource pool
  • a first transmitter determining whether to send a target signal in the first resource pool
  • the result of the channel proportion detection is used to determine a first priority threshold from the plurality of priority thresholds included in the first threshold list; the first priority and the first priority The size relationship of the threshold is used to determine whether to send the target signal in the first resource pool; the first priority is associated to a target bit block, and the target bit block is used to generate the target signal.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the target signal on the first time-frequency resource block
  • the first resource pool includes multiple time-frequency resource blocks, and the first time-frequency resource block is a time-frequency resource block in the first resource pool;
  • the target signal carries a first priority, and the first time-frequency resource block A priority is associated to the target bit block, the target signal comprising the target bit block.
  • this application has the following advantages:
  • This application adjusts the use threshold of users who use random resource selection according to the level of channel ratio in the resource pool;
  • This application strikes a balance between resource utilization and avoiding interference to high-end perception users.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between a first time-frequency resource block and a first resource pool according to an embodiment of the present application
  • Fig. 7 shows a flow chart of determining whether to send a target signal in the first resource pool according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between a first threshold list and multiple measurement value ranges according to an embodiment of the present application
  • FIG. 9 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
  • Fig. 10 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node in an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in the present application first executes step 101 to determine a first priority and a first threshold list, and the first threshold list includes multiple priority thresholds; then executes step 102, in the first The resource pool performs channel ratio detection; finally, step 103 is executed to determine whether to send the target signal in the first resource pool; the result of the channel ratio detection is used for the multiple thresholds included in the first threshold list determining a first priority threshold among priority thresholds; the size relationship between the first priority and the first priority threshold is used to determine whether to send the target signal in the first resource pool; the A first priority is associated to a target block of bits that is used to generate the target signal.
  • the first resource pool includes all or part of resources of a Sidelink Resource Pool (Sidelink Resource Pool).
  • Sidelink Resource Pool Sidelink Resource Pool
  • the first resource pool is a secondary link resource pool.
  • the first resource pool includes multiple time-frequency resource blocks.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a plurality of REs (Resource Elements, resource units).
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols (Symbol(s)) in the time domain
  • the first resource Any time-frequency resource block in the plurality of time-frequency resource blocks included in the pool occupies a positive integer number of subcarriers (Subcarrier(s)) in the frequency domain.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any one of the time-frequency resource blocks occupies a positive integer number of physical resource blocks (Physical Resource Block(s), PRB(s)) in the frequency domain.
  • Physical Resource Block(s), PRB(s) Physical Resource Block
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any time-frequency resource block in the time-frequency resource blocks occupies a positive integer number of subchannels (Subchannel(s)) in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of time slots (Slot(s)) in the time domain, and the first resource pool Any one of the multiple time-frequency resource blocks included in the frequency domain occupies a positive integer number of subcarriers.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of time slots in the time domain, and the plurality of time-frequency resource blocks included in the first resource pool Any time-frequency resource block in the time-frequency resource blocks occupies a positive integer number of physical resource blocks in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of time slots in the time domain, and the plurality of time-frequency resource blocks included in the first resource pool Any time-frequency resource block in the time-frequency resource blocks occupies a positive integer number of sub-channels in the frequency domain.
  • the first resource pool includes multiple time-domain resource blocks.
  • the first resource pool includes multiple time-domain resource blocks, and the multiple time-frequency resource blocks included in the first resource pool belong to all time-domain resource blocks included in the first resource pool.
  • the plurality of time-domain resource blocks are examples of time-domain resource blocks.
  • the first resource pool includes multiple time-domain resource blocks, and any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool belongs to the first resource block in the time domain.
  • any time domain resource block in the plurality of time domain resource blocks included in the first resource pool occupies a positive integer number of time slots.
  • any time domain resource block in the plurality of time domain resource blocks included in the first resource pool occupies one time slot.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols.
  • the first resource pool includes multiple frequency domain resource blocks.
  • the first resource pool includes multiple frequency-domain resource blocks, and the multiple time-frequency resource blocks included in the first resource pool belong to all the resource blocks included in the first resource pool in the frequency domain.
  • the plurality of frequency domain resource blocks are configured to be used to generate the first resource pool.
  • the first resource pool includes a plurality of frequency-domain resource blocks, and any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool belongs to the first resource block in the frequency domain.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of subcarriers.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies a positive integer number of physical resource blocks.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies one physical resource block.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of subchannels.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies one subchannel.
  • the multi-carrier symbols in this application are SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • the multi-carrier symbols in this application are FDMA (Frequency Division Multiple Access, Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is an FBMC (Filter Bank Multi-Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an IFDMA (Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access
  • the target signal includes a baseband signal.
  • the target signal includes a radio frequency signal.
  • the target signal includes a wireless signal.
  • the target signal is transmitted on a PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Control Channel
  • the target signal is transmitted on a PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • the target signal is transmitted on PSCCH and PSSCH.
  • the target signal includes all or part of a higher layer signaling (Higher Layer Signaling).
  • the target signal includes all or part of an RRC (Radio Resource Control, radio resource control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • the target signal includes all or part of a MAC (Multimedia Access Control, multimedia access control) layer signaling.
  • MAC Multimedia Access Control, multimedia access control
  • the target signal includes one or more fields in a PHY (Physical Layer, physical layer) layer signaling.
  • PHY Physical Layer, physical layer
  • the target signal includes one or more fields in an SCI (Sidelink Control Information, sidelink control information).
  • SCI Servicelink Control Information, sidelink control information
  • SCI refers to Section 8.3 and Section 8.4 of 3GPP TS38.212.
  • the target signal includes target signaling.
  • the target signaling includes a positive integer number of bits.
  • the target signaling includes a positive integer number of fields.
  • the target signaling includes an SCI.
  • the target signal includes a target bit block, and the target bit block includes a positive integer number of bits.
  • the target signal includes the target signaling and the target bit block.
  • the target signaling in the target signal is transmitted on the PSCCH, and the target bit block in the target signal is transmitted on the PSSCH.
  • the target signal does not include target signaling
  • the target signaling is transmitted on the PSCCH
  • the target signal is transmitted on the PSSCH.
  • the target signaling is SCI format 1-A
  • the target signal includes SCI format 2-A
  • the target bit block in the target signal comes from SL-SCH.
  • the target signaling is SCI format 1-A
  • the target signal includes SCI format 2-B
  • the target bit block in the target signal comes from SL-SCH.
  • both the target signaling in the target signal and the target bit block in the target signal are transmitted on the PSSCH.
  • the target signaling is SCI format 2-A, and the target bit block in the target signal comes from SL-SCH.
  • the target signaling is SCI format 2-B, and the target bit block in the target signal comes from SL-SCH.
  • the target signaling and the target signal are transmitted on the first time-frequency resource block, and the first time-frequency resource block belongs to the first resource pool.
  • the target signaling includes one or more fields in one SCI, and the target signal includes the target bit block.
  • the target signaling includes one or more domains in one SCI
  • the target signal includes the target bit block
  • the target bit block comes from SL-SCH (Sidelink Shared Channel, secondary link sharing channel).
  • SCI format 1-A refers to section 8.3 of 3GPP TS38.212.
  • SCI format 2-A refers to section 8.4 of 3GPP TS38.212.
  • SCI format 2-B refers to section 8.4 of 3GPP TS38.212.
  • the target bit block is used to generate the target signal, and the target bit block includes a positive integer number of bits.
  • the target bit block includes a positive integer number of bits, and all or some of the positive integer number of bits included in the target bit block are used to generate the target signal.
  • the target bit block includes 1 CW (Codeword, codeword).
  • the target bit block includes 1 CB (Code Block, coding block).
  • the target bit block includes 1 CBG (Code Block Group, coding block group).
  • the target bit block includes 1 TB (Transport Block, transport block).
  • all or some bits of the target bit block are sequentially subjected to transmission block level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) attachment (Attachment), code block segmentation (Code Block Segmentation), code block level CRC Attachment, Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping Mapping), mapped to physical resource blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the target signal.
  • CRC Cyclic Redundancy Check
  • Cyclic Redundancy Check Cyclic Redundancy Check
  • Cyclic Redundancy Check Cyclic Redundancy Check
  • the target signal is that the target bit block sequentially passes through a modulation mapper (Modulation Mapper), a layer mapper (Layer Mapper), precoding (Precoding), a resource particle mapper (Resource Element Mapper), and more Output after carrier symbol generation (Generation).
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding Precoding
  • Resource Element Mapper resource particle mapper
  • Geneation Output after carrier symbol generation
  • the channel coding is based on polar codes.
  • the channel coding is based on an LDPC (Low-density Parity-Check, low-density parity check) code.
  • LDPC Low-density Parity-Check, low-density parity check
  • the target signaling in the target signal is used to schedule the target bit blocks in the target signal.
  • the target signaling in the target signal indicates the time-frequency resource occupied by the target signal, and the time-frequency resource occupied by the target signal belongs to the first resource pool.
  • the target signaling in the target signal indicates the time-frequency resource occupied by the target signal, and the time-frequency resource occupied by the target signal belongs to a first time-frequency resource block, and the first The time-frequency resource block belongs to the first resource pool.
  • the target signaling in the target signal indicates the time-frequency resource occupied by the target signal
  • the time-frequency resource occupied by the target signal is a first time-frequency resource block
  • the first The time-frequency resource block belongs to the first resource pool.
  • the target signaling in the target signal indicates the time-frequency resource occupied by the target bit block in the target signal, and the time-frequency resource occupied by the target bit block belongs to the first time-frequency resource.
  • the target signaling in the target signal indicates the time-frequency resource occupied by the target bit block in the target signal, and the time-frequency resource occupied by the target bit block is the first time A frequency resource block, the first time-frequency resource block belongs to the first resource pool.
  • the target signaling in the target signal indicates a modulation and coding mode experienced by the target bit block in the target signal.
  • the target signaling in the target signal indicates a demodulation reference signal used by the target signal.
  • the first priority is associated with the target signal.
  • the first priority is associated to the target bit block.
  • the first priority is associated to the target bit block, and the target bit block is used to generate the target signal.
  • the target signal includes the target bit block, and the first priority is the priority of the target bit block.
  • the target bit block is used to generate the target signal, the target signal is transmitted on the first time-frequency resource block, and the first priority is the priority of the target bit block .
  • the target bit block is used to generate the target signal
  • the target signal is transmitted on the first time-frequency resource block
  • the first priority is the priority of the target bit block
  • the target signaling is used to indicate the first priority
  • a magnitude relationship between the first priority and the first priority threshold is used to determine whether the target bit block is used to generate the target signal.
  • the first priority is associated with the target bit block, and the size relationship between the first priority and the first priority threshold is used to determine whether it is in the first resource pool sending the target signal; when the first node determines to send the target signal in the first resource pool, the target bit block is used to generate the target signal; when the first node determines to abandon the The target signal is sent in the first resource pool, and the target bit block is not used to generate the target signal.
  • the first priority is a positive integer.
  • the first priority is a positive integer among P positive integers, where P is a positive integer.
  • the first priority is a positive integer from 1 to P.
  • the first priority is a positive integer among the P positive integers, and the larger the value among the P positive integers,
  • said P is equal to 8.
  • said P is equal to 9.
  • the first priority is a Layer 1 (L1) priority.
  • the first priority is used for sending the first signal.
  • the first priority is configured by higher layer signaling.
  • the first priority is indicated by higher layer signaling.
  • the first priority is indicated by an RRC layer signaling.
  • the first priority is a field in an RRC IE (Information Element, information element).
  • the first priority corresponds to a logical channel (Logical Channel) priority.
  • the first priority corresponds to a priority of a logical channel for transmitting secondary link data.
  • the first priority indicates the priority of secondary link data passing through the logical channel.
  • the first priority indicates the priority of secondary link data passing through the logical channel
  • the first priority is equal to a first integer
  • the first integer is the first priority is the One of the P positive integers, the greater the value of the first integer among the P positive integers, the lower the priority of the secondary link data indicated by the first priority.
  • the first priority indicates the priority of the target bit block
  • the first priority is equal to a first integer
  • the first integer is that the first priority is the P positive One positive integer among the integers, the greater the value of the first integer among the P positive integers, the lower the priority indicated by the first priority of the target bit block.
  • the first threshold list includes multiple priority thresholds.
  • the first threshold list includes multiple positive integers.
  • the multiple priority thresholds included in the first threshold list are respectively multiple positive integers.
  • any priority threshold among the plurality of priority thresholds included in the first threshold list is a positive integer among the P positive integers.
  • any priority threshold in the plurality of priority thresholds included in the first threshold list is a positive integer from 1 to the P.
  • the first threshold list is configured by a higher layer of the first node.
  • the first signaling is used to indicate the first threshold list.
  • the first signaling is higher layer signaling of the first node, and the first signaling is used to indicate the first threshold list.
  • the first node receives first signaling, where the first signaling is used to indicate the first threshold list.
  • the first signaling includes one or more fields in one PHY layer signaling.
  • the first signaling includes one or more fields in one SCI.
  • the first signaling includes one or more fields in a DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes all or part of a higher layer signaling.
  • the first signaling includes all or part of one RRC layer signaling.
  • the first signaling includes all or part of one MAC layer signaling.
  • the channels occupied by the first signaling include at least one of PSCCH and PSSCH.
  • the channel ratio detection includes Sidelink Channel Occupancy Ratio (SL CR) Evaluating.
  • SL CR Sidelink Channel Occupancy Ratio
  • performing the channel proportion detection in the first resource pool means that the first resource pool is configured with a total of M time-frequency resource blocks in the first measurement window, and in the first It is detected that M1 time-frequency resource blocks are used for transmission in the first measurement window in the resource pool, and it is detected that M2 time-frequency resource blocks are authorized in the first measurement window in the first resource pool (granted), and then divide M by the sum of M1 and M2, where M1 is a non-negative integer, M2 is a non-negative integer, and M is a positive integer.
  • detecting that M1 time-frequency resource blocks are used for transmission in the first measurement window refers to monitoring N1 first-type signaling in the first measurement window, and the N1 first-type signaling The signaling is used to indicate the M1 time-frequency resource blocks, and N1 is a positive integer not greater than M1.
  • the N1 first-type signaling signals are used to instruct the N1 first-type signals to be sent on the M1 time-frequency resource blocks.
  • the N1 first-type signalings are used to schedule the N1 first-type signals to be sent on the M1 time-frequency resource blocks.
  • the N1 first-type signalings are respectively N1 SCIs.
  • the N1 first-type signalings are respectively N1 SCI format 1-A.
  • any time-frequency resource block in the M1 time-frequency resource blocks in the first measurement window occupies one subchannel in the frequency domain.
  • detecting that M2 time-frequency resource blocks are authorized in the first measurement window refers to monitoring N2 first-type signaling in the first measurement window, and the N2 first-type signaling The order is used to indicate the M2 time-frequency resource blocks, and N2 is a positive integer not greater than M2.
  • the N2 signaling of the first type is used to reserve the M2 time-frequency resource blocks.
  • the N2 first-type signalings are respectively N2 SCIs.
  • the N2 first-type signalings are N2 SCI format 1-A respectively.
  • any one of the M2 time-frequency resource blocks in the first measurement window occupies one subchannel in the frequency domain.
  • detecting that M2 time-frequency resource blocks are used for transmission in the first measurement window means that N2 first-type signalings are detected in the first measurement window, and the N1 first-type signaling Type signaling is used to indicate the M1 time-frequency resource blocks, and N1 is a positive integer not greater than M1.
  • the N1 first-type signalings are respectively N1 SCIs.
  • the N1 first-type signalings are respectively N1 SCI format 1-A.
  • the first measurement window includes multiple time-domain resource blocks in the first resource pool in the time domain.
  • the first measurement window includes, in the time domain, the multiple time-domain resource blocks in the first resource pool respectively being multiple time slots.
  • the first measurement window includes, in the time domain, that the multiple time-domain resource blocks in the first resource pool are respectively multiple multi-carrier symbols.
  • the M time-frequency resource blocks included in the first resource pool belong to the first measurement window in the time domain.
  • the M1 time-frequency resource blocks included in the first resource pool belong to the first measurement window in the time domain
  • the M2 time-frequency resource blocks included in the first resource pool belong to the first measurement window in the time domain.
  • domain belongs to the first measurement window
  • performing the channel proportion detection in the first resource pool means that the first resource pool is configured with a total of M time-frequency resource blocks in the first measurement window, and the first measurement The window includes a first sub-measurement window and a second sub-measurement window, and it is detected that M1 time-frequency resource blocks are used for transmission in the first sub-measurement window in the first resource pool, and in the first resource pool In the second sub-measurement window in the pool, it is detected that M2 time-frequency resource blocks are authorized (granted), and then the sum of M1 and M2 is divided by M, the M1 is a non-negative integer, and the M2 is a non-negative integer , the M is a positive integer.
  • detecting that M1 time-frequency resource blocks are used for transmission in the sub-measurement window means that N1 first-type signalings are monitored in the first sub-measurement window, and the N1 first-type signaling One type of signaling is used to indicate the M1 time-frequency resource blocks, and N1 is a positive integer not greater than M1.
  • the N1 first-type signaling signals are used to instruct the N1 first-type signals to be sent on the M1 time-frequency resource blocks.
  • the N1 first-type signalings are used to schedule the N1 first-type signals to be sent on the M1 time-frequency resource blocks.
  • detecting that M2 time-frequency resource blocks are authorized in the second sub-measurement window refers to monitoring N2 first-type signaling in the second sub-measurement window, and the N2 first-type signaling The signaling is used to indicate the M2 time-frequency resource blocks, and N2 is a positive integer not greater than M2.
  • the N2 signaling of the first type is used to reserve the M2 time-frequency resource blocks.
  • the first sub-measurement window includes multiple time-domain resource blocks in the first resource pool in the time domain.
  • the first sub-measurement window includes a plurality of time-domain resource blocks in the first resource pool in the time domain, respectively being a plurality of time slots.
  • the first sub-measurement window includes, in the time domain, the multiple time-domain resource blocks in the first resource pool respectively being multiple multi-carrier symbols.
  • the second sub-measurement window includes multiple time-domain resource blocks in the first resource pool in the time domain.
  • the second sub-measurement window includes a plurality of time-domain resource blocks in the first resource pool in the time domain, respectively being a plurality of time slots.
  • the second sub-measurement window includes, in the time domain, the multiple time-domain resource blocks in the first resource pool respectively being multiple multi-carrier symbols.
  • the M1 time-frequency resource blocks included in the first resource pool belong to the first sub-measurement window in the time domain.
  • the M2 time-frequency resource blocks included in the first resource pool belong to the second sub-measurement window in the time domain.
  • the result of the channel proportion detection includes SL CR.
  • the first resource pool is configured with a total of M time-frequency resource blocks in the first measurement window, and the first resource pool includes the M1 time-frequency resources in the first measurement window block and the M2 time-frequency resource blocks, the M1 time-frequency resource blocks are used for transmission, and the M2 time-frequency resource blocks are authorized;
  • the result of the channel proportion detection refers to the sum of M1 and M2 Divided by a quotient of M, the M1 is a non-negative integer, the M2 is a non-negative integer, and the M is a positive integer.
  • the first resource pool is configured with a total of M time-frequency resource blocks in the first measurement window
  • the first measurement window includes a first sub-measurement window and a second sub-measurement window
  • the first measurement window includes a first sub-measurement window and a second sub-measurement window.
  • a resource pool includes the M1 time-frequency resource blocks in the first sub-measurement window and the M2 time-frequency resource blocks in the second sub-measurement window, and the M1 time-frequency resource blocks are used For transmission, the M2 time-frequency resource blocks are authorized;
  • the result of the channel proportion detection refers to the quotient of dividing the sum of M1 and M2 by M, the M1 is a non-negative integer, and the M2 is a non-negative integer, so Said M is a positive integer.
  • the channel ratio detection includes Sidelink Channel Busy Ratio (SL CBR) Measuring.
  • SL CBR Sidelink Channel Busy Ratio
  • performing the channel ratio detection in the first resource pool refers to the SL RSSI (Sidelink) on the time-frequency resource block sensed (Sense) by the first resource pool in the second measurement window.
  • Received Signal Strength Indicator, secondary link received signal strength indicator exceeds the ratio of the given threshold.
  • performing the channel proportion detection in the first resource pool means that the first resource pool perceives a total of M0 time-frequency resource blocks in the second measurement window, and the first resource pool In the M3 time-frequency resource blocks detected in the second measurement window, the SL RSSI on the M3 time-frequency resource blocks exceeds a given threshold, and then M3 is divided by M0, the M3 is a non-negative integer, and the M0 is a positive integer.
  • sensing M0 time-frequency resource blocks in the two measurement windows refers to monitoring N0 first-type signaling in the second measurement window in the first resource pool, and the N0
  • the first type of signaling is used to indicate the M0 time-frequency resource blocks, and N0 is a positive integer not greater than M0.
  • the N0 first-type signaling signals are used to instruct the N0 first-type signals to be sent on the M0 time-frequency resource blocks.
  • the N0 first-type signalings are used to schedule the N0 first-type signals to be sent on the M0 time-frequency resource blocks.
  • sensing M3 time-frequency resource blocks in the second measurement window means that N3 first-type signalings are detected in the second measurement window in the first resource pool, and the N3 The signaling of the first type is used to indicate the M3 time-frequency resource blocks, and N3 is a positive integer not greater than M3.
  • the N3 first-type signalings are used to instruct the N3 first-type signals to be sent on the M3 time-frequency resource blocks.
  • the N3 first-type signalings are used to schedule the N3 first-type signals to be sent on the M3 time-frequency resource blocks.
  • the first resource pool perceives a total of M0 time-frequency resource blocks within the second measurement window, and the first resource pool perceives M3 time-frequency resource blocks within the second measurement window , the SL RSSI on the M3 time-frequency resource blocks exceeds a given threshold, the result of the channel proportion detection is the ratio of M3 divided by M0, the M3 is a non-negative integer, and the M0 is a positive integer.
  • the result of the channel ratio detection includes SLCBR.
  • the N0 first-type signaling are respectively N0 SCIs.
  • the N0 first-type signalings are N0 SCI format 1-A respectively.
  • the N3 first-type signalings are respectively N3 SCIs.
  • the N3 first-type signalings are N3 SCI format 1-A respectively.
  • the second measurement window includes multiple time-domain resource blocks in the first resource pool in the time domain.
  • the second measurement window includes, in the time domain, that the multiple time domain resource blocks in the first resource pool are respectively multiple time slots.
  • the second measurement window includes in the time domain that the multiple time-domain resource blocks in the first resource pool are respectively multiple multi-carrier symbols.
  • the M0 time-frequency resource blocks included in the first resource pool belong to the second measurement window in the time domain.
  • the M3 time-frequency resource blocks included in the first resource pool belong to the second measurement window in the time domain.
  • the unit of the result of the channel proportion detection is dB (decibel).
  • the unit of the result of the channel proportion detection is dBm (millidb).
  • the unit of the result of the channel ratio detection is W (Watt).
  • the unit of the result of the channel proportion detection is mW (milliwatt).
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • Accompanying drawing 2 illustrates 5G NR, the diagram of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UEs (User Equipment, User Equipment) 201, a UE241 performing Sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/ The EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiver Node
  • examples of gNB 203 include satellites, aircraft or ground base stations relayed through satellites.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the UE241.
  • the user equipment in this application includes the UE201.
  • the user equipment in this application includes the UE241.
  • the base station equipment in this application includes the gNB203.
  • the sender of the first signaling in this application includes the UE241.
  • the sender of the first signaling in this application includes the UE201.
  • the receiver of the first signaling in this application includes the UE201.
  • the sender of the target signal in this application includes the UE201.
  • the receiver of the target signal in this application includes the UE241.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows three layers for a first node device (UE or RSU in V2X, vehicle equipment or vehicle communication module) ) and the second node device (gNB, UE or RSU in V2X, vehicle device or vehicle communication module), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301, through which the PHY 301 is responsible for the link between the first node device and the second node device and the two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides handoff support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and implements retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the communication between the second node device and the first node device RRC signaling to configure the lower layers.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and a network layer terminating at the other end of the connection.
  • Application layer at eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • the target signal in this application is generated by the PHY301.
  • the target signal in this application is generated in the MAC sublayer 302 .
  • the target signal in this application is generated in the RRC sublayer 306 .
  • the target signal in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is a relay node
  • the second node is a relay node
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a base station
  • the second node is a user equipment
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: determining a first priority and a first threshold list, the first threshold list includes a plurality of priority thresholds; performing channel ratio detection in the first resource pool; determining whether to use the The target signal is sent in the first resource pool; the result of the channel ratio detection is used to determine a first priority threshold from the multiple priority thresholds included in the first threshold list; the first priority The size relationship with the first priority threshold is used to determine whether to send the target signal in the first resource pool; the first priority is associated to a target bit block, and the target bit block is used for generating the target signal.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: determining the first A priority and a first threshold list, the first threshold list includes a plurality of priority thresholds; perform channel ratio detection in the first resource pool; determine whether to send a target signal in the first resource pool; the channel The result of the proportion detection is used to determine a first priority threshold from the plurality of priority thresholds included in the first threshold list; the size relationship between the first priority and the first priority threshold is determined by For determining whether to send the target signal in the first resource pool; the first priority is associated to a target bit block, and the target bit block is used to generate the target signal.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: receiving the target signal on the first time-frequency resource block; the first resource pool includes a plurality of time-frequency resource blocks, and the first time-frequency resource block is in the first resource pool A time-frequency resource block of ; the target signal carries a first priority, the first priority is associated with a target bit block, and the target signal includes the target bit block.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: A target signal is received on a time-frequency resource block; the first resource pool includes a plurality of time-frequency resource blocks, and the first time-frequency resource block is a time-frequency resource block in the first resource pool; the target signal carries A first priority, the first priority being associated to a target block of bits, the target signal comprising the target block of bits.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for monitoring the first signaling in the first resource pool in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for determining the first priority in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for determining the first threshold list in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for performing channel proportion detection in the first resource pool in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in the present application to determine whether to send a target signal at the first resource pool.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for randomly selecting the first time-frequency resource block from the first resource pool in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for transmitting the target signal on the first time-frequency resource block in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used for receiving the target signal on the first time-frequency resource block in this application.
  • Embodiment 5 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • step S11 determine the first priority and the first threshold list in step S11; perform channel ratio detection in the first resource pool in step S12; determine whether to send the target in the first resource pool in step S13 Signal; in step S14, randomly select the first time-frequency resource block in the first resource pool; in step S15, send the target signal on the first time-frequency resource block.
  • step S21 the target signal is received on the first time-frequency resource block.
  • the first threshold list includes a plurality of priority thresholds; the result of the channel ratio detection is used by the first node U1 to select from the priority thresholds included in the first threshold list.
  • the first priority threshold is determined in the first priority threshold; the size relationship between the first priority and the first priority threshold is used by the first node U1 to determine whether to send the target in the first resource pool signal, the first resource pool includes a plurality of time-frequency resource blocks; the first priority is associated to a target bit block, and the target bit block is used to generate the target signal; a plurality of measurement value ranges and the The plurality of priority thresholds included in the first threshold list are in one-to-one correspondence; the result of the channel proportion detection belongs to the first measurement value range in the plurality of measurement value ranges; the first measurement value range is is used to determine the first priority threshold from the first threshold list; the first priority threshold is the corresponding priority threshold in the first threshold list and the first measurement value range; the The first priority is equal to a first integer, and the first priority threshold is
  • the first integer is equal to the second integer
  • the first time-frequency resource block is used by the first node U1 to send the target signal
  • the first time-frequency resource block is the A time-frequency resource block in the first resource pool
  • the first time-frequency resource block is randomly selected by the first node U1 among the multiple time-frequency resource blocks included in the first resource pool .
  • the first integer is smaller than the second integer
  • the first time-frequency resource block is used by the first node U1 to send the target signal
  • the first time-frequency resource block is the A time-frequency resource block in the first resource pool
  • the first time-frequency resource block is randomly selected by the first node U1 among the multiple time-frequency resource blocks included in the first resource pool .
  • the first integer is greater than the second integer, and the target signal is not sent by the first node U1 in the first resource pool.
  • the first node U1 gives up sending the target signal in the first resource pool.
  • the first node U1 and the second node U2 communicate through the PC5 interface.
  • the step of box F0 in accompanying drawing 5 exists; when the first integer is greater than the second integer, in accompanying drawing 5 The step of box F0 does not exist.
  • the first integer is smaller than the second integer, and the step of block F0 in Fig. 5 exists.
  • the first integer is equal to the second integer, and the step of box F0 in Fig. 5 exists.
  • the first integer is greater than the second integer, and the step of box F0 in Fig. 5 does not exist.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first time-frequency resource block and the first resource pool according to an embodiment of the present application, as shown in FIG. 6 .
  • the dotted line big box represents the first resource pool in this application;
  • the rectangle in the dotted line box represents the time-frequency resource block in the first resource pool;
  • the dotted rectangle filled with oblique squares represents the first candidate time-frequency resource block in this application;
  • the rectangle filled with horizontal lines represents the second time-frequency resource block in this application.
  • the first resource pool includes multiple time-frequency resource blocks
  • the first time-frequency resource block in this application means that the first resource pool includes one of the multiple time-frequency resource blocks frequency resource blocks; the first node in this application randomly selects the first time-frequency resource block from the multiple time-frequency resource blocks included in the first resource pool.
  • the first time-frequency resource block includes multiple REs.
  • the first resource pool includes the first time-frequency resource block.
  • the first resource pool includes a plurality of time-frequency resource blocks
  • the first time-frequency resource block is a time-frequency resource in the plurality of time-frequency resource blocks included in the first resource pool piece.
  • the first time-frequency resource block occupies a positive integer number of multi-carrier symbols in a time slot in the time domain, and the first time-frequency resource block occupies a positive integer number of subchannels in the frequency domain.
  • the first time-frequency resource block includes a PSCCH.
  • the first time-frequency resource block includes a PSSCH.
  • the first time-frequency resource block includes PSCCH and PSSCH.
  • the first time-frequency resource block includes PSCCH, PSSCH and PSFCH (Physical Sidelink Feedback Channel, physical sidelink feedback channel).
  • the first time-frequency resource block is randomly selected by the first node from the multiple time-frequency resource blocks included in the first resource pool.
  • the first time-frequency resource block is selected by the first node with a medium probability from the multiple time-frequency resource blocks included in the first resource pool.
  • the first node determines the first time-frequency resource block from the first resource pool in a non-perceptual manner.
  • the non-aware manner includes random resource selection (Random Resource Selection).
  • the non-perceptual manner includes continuous partial sensing (Contiguous Partial Sensing).
  • the target signal is sent on the first time-frequency resource block.
  • Embodiment 7 illustrates a flow chart of determining whether to send a target signal in the first resource pool according to an embodiment of the present application, as shown in FIG. 7 .
  • step S701 it is judged whether the first integer is not greater than the second integer; when the first integer is less than or equal to the second integer, step S702 is executed to send the target signal on the first time-frequency resource block; When the first integer is greater than the second integer, step S703 is executed to give up sending the target signal in the first resource pool.
  • the first priority threshold is one of the multiple priority thresholds included in the first threshold list, and when the first priority is higher than the first priority threshold , the target signal is sent on the first time-frequency resource block; when the first priority is lower than the first priority threshold, the target signal is not sent in the first resource pool .
  • the first priority threshold is one of the multiple priority thresholds included in the first threshold list, and when the first priority is higher than or equal to the first priority threshold, the target signal is sent on the first time-frequency resource block; when the first priority is lower than the first priority threshold, the target signal is not in the first resource pool is sent.
  • the first priority threshold is one of the multiple priority thresholds included in the first threshold list, and the first priority is higher than the first priority threshold, so The target signal is sent on the first time-frequency resource block.
  • the first priority threshold is one of the multiple priority thresholds included in the first threshold list, the first priority is equal to the first priority threshold, and the The target signal is sent on the first time-frequency resource block.
  • the first priority threshold is one of the multiple priority thresholds included in the first threshold list, and the first priority is lower than the first priority threshold, so The target signal is not sent in the first resource pool.
  • the first priority is equal to the first integer
  • the first priority threshold is equal to the second integer; when the first integer is less than or equal to the second integer, the The first node sends the target signal on the first time-frequency resource block; when the first integer is greater than the second integer, the first node gives up sending the target signal in the first resource pool target signal.
  • the first integer is smaller than the second integer, and the first priority is higher than the first priority threshold.
  • the first integer is equal to the second integer
  • the first priority is equal to the first priority threshold
  • the first integer is greater than the second integer, and the first priority is lower than the first priority threshold.
  • the first priority is equal to a first integer
  • the first priority threshold is equal to a second integer
  • the second integer is one of the plurality of positive integers included in the first threshold list. an integer, the first integer is smaller than the second integer, and the target signal is sent on the first time-frequency resource block.
  • the first priority is equal to a first integer
  • the first priority threshold is equal to a second integer
  • the second integer is one of the plurality of positive integers included in the first threshold list.
  • an integer the first integer is equal to the second integer
  • the target signal is sent on the first time-frequency resource block.
  • the first priority is equal to a first integer
  • the first priority threshold is equal to a second integer
  • the second integer is one of the plurality of positive integers included in the first threshold list. an integer, the first integer is greater than the second integer, and the target signal is not sent on the first time-frequency resource block.
  • the first priority is equal to a first integer
  • the first priority threshold is equal to a second integer
  • the second integer is one of the plurality of positive integers included in the first threshold list. Integer, where the first integer is greater than the second integer, and the sending of the target signal in the first resource pool is abandoned.
  • the giving up sending the target signal in the first resource pool means that the transmit power of the first node is 0.
  • the giving up sending the target signal in the first resource pool refers to any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool by the first node The transmit power on is 0.
  • the giving up sending the target signal in the first resource pool means that the first node does not occupy any of the multiple time-frequency resource blocks included in the first resource pool. frequency resource block.
  • the giving up sending the target signal in the first resource pool refers to sending the target signal in a second resource pool, and the second resource pool is configured by higher layer signaling, so The second resource pool is different from the first resource pool.
  • the giving up sending the target signal in the first resource pool means that the first node reports to a higher layer to update resource determination methods, and the resource determination methods include random selection, partial perception and complete resource determination.
  • the updated resource determination method includes one of partial perception and full perception.
  • the giving up sending the target signal in the first resource pool means that the first node reports to a higher layer to update resource determination methods, and the resource determination methods include random selection, continuous partial sensing, One of periodic partial awareness and full awareness, and the updated resource determination manner includes one of continuous partial awareness, periodic partial awareness, and full awareness.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first threshold list and multiple measurement value ranges according to an embodiment of the present application, as shown in FIG. 8 .
  • P 1 , P 2 ,..., P N respectively represent multiple priority thresholds included in the first threshold list in the present application; [Q 0 , Q 1 ), [Q 1 , Q 2 ), ..., [Q N-1 , Q N ) represent multiple measurement value ranges in this application respectively; P x represent the first priority threshold in this application respectively; [Q x , Q y ) represent this application
  • the first measured value range in the application; P n is one of ⁇ P 1 , P 2 , ..., P N ⁇ , said P n is a non-negative integer, and n is ⁇ 1, 2, ..., A positive integer in N ⁇ ; Q i is one of ⁇ Q 0 , Q 1 ,..., Q N-1 , Q N ⁇ , said Q i is a real number, and i is ⁇ 0
  • the multiple measurement value ranges correspond one-to-one to the multiple priority thresholds included in the first threshold list; the first priority threshold is all the priority thresholds included in the first threshold list A priority threshold among the plurality of priority thresholds; the first measurement value range is a measurement value range corresponding to the first priority threshold among the plurality of measurement value ranges; the channel ratio The detected result belongs to the first measurement value range, and the first measurement value range is used to determine the first priority threshold from the plurality of priority thresholds included in the first threshold list.
  • the first priority threshold is a priority threshold in the plurality of priority thresholds included in the first threshold list.
  • the multiple priority thresholds included in the first threshold list are respectively ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the first priority threshold is a positive integer.
  • the first priority threshold is a positive integer in ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • any measured value range in the plurality of measured value ranges is a real number not smaller than Q i and smaller than Q j , and Q i is ⁇ Q 0 , Q 1 , ..., Q N-1 , Q N ⁇ , Q j is one of ⁇ Q 0 , Q 1 ,..., Q N-1 , Q N ⁇ , Q i is smaller than Q j .
  • any measurement value range in the plurality of measurement value ranges is a real number greater than Q i and less than Q j , and Q i is ⁇ Q 0 , Q 1 ,..., Q N-1 , One of Q N ⁇ , Q j is one of ⁇ Q 0 , Q 1 ,..., Q N-1 , Q N ⁇ , Q i is smaller than Q j .
  • ⁇ Q 0 , Q 1 , . . . , Q N-1 , Q N ⁇ are respectively N+1 real numbers, and N is a positive integer.
  • any one of the plurality of measured value ranges is a real number that is not smaller than a first real number and smaller than a second real number, and the first real number is smaller than the second real number.
  • any one of the plurality of measured value ranges is a real number greater than a first real number and smaller than a second real number, and the first real number is smaller than the second real number.
  • the first measurement value range is a measurement value range among the plurality of measurement value ranges.
  • the first measured value range is a real number not less than Q x and less than Q y
  • Q x is one of ⁇ Q 0 , Q 1 ,..., Q N-1 , Q N ⁇
  • Q y is one of ⁇ Q 0 , Q 1 ,..., Q N-1 , Q N ⁇
  • Q x is smaller than Q y .
  • the first measured value range is a real number greater than Q x and less than Q y
  • Q x is one of ⁇ Q 0 , Q 1 ,..., Q N-1 , Q N ⁇
  • Q y is one of ⁇ Q 0 , Q 1 , . . . , Q N-1 , Q N ⁇
  • Q x is smaller than Q y .
  • the first measured value range is a real number not smaller than the first target real number and smaller than the second target real number, and the first target real number is smaller than the second target real number.
  • the first measured value range is a real number greater than a first target real number and smaller than a second target real number, and the first target real number is smaller than the second target real number.
  • the result of the channel ratio detection belongs to the first measurement value range, and the first priority is the same as the first priority threshold among the multiple priority thresholds included in the first threshold list.
  • the result of the channel proportion detection belonging to the first measurement value range means that the result of the channel proportion detection is not less than the first target real number and less than the second target real number, the The first target real number and the second target real number are two real numbers in the N+1 real numbers respectively, and the first target real number is smaller than the second target real number.
  • the result of the channel ratio detection belonging to the first measurement value range means that the result of the channel ratio detection is greater than the first target real number and smaller than the second target real number, and the second target real number is A target real number and the second target real number are two real numbers in the N+1 real numbers respectively, and the first target real number is smaller than the second target real number.
  • the result of the channel proportion detection belonging to the first measurement value range means that the channel proportion detection result is not less than the Q x and less than the Q y .
  • the result of the channel proportion detection belonging to the first measurement value range means that the channel proportion detection result is greater than the Q x and less than the Q y .
  • the result of the channel proportion detection is not less than the first target real number and less than the second target real number
  • the first priority threshold is the plurality of priorities included in the first threshold list.
  • a priority threshold corresponding to the first measured value range in the level threshold, the first target real number and the second target real number are two real numbers in the N+1 real numbers respectively, and the first The target real number is smaller than the second target real number.
  • the result of the channel proportion detection is greater than the first target real number and smaller than the second target real number
  • the first priority threshold is the multiple priorities included in the first threshold list
  • a priority threshold corresponding to the first measured value range among the thresholds, the first target real number and the second target real number are respectively two real numbers in the N+1 real numbers, and the first target The real number is less than the second target real number.
  • the result of the channel proportion detection is not less than the Q x and less than the Q y , and the first priority threshold is the same as that of the multiple priority thresholds included in the first threshold list.
  • the result of the channel proportion detection is greater than the Q x and less than the Q y
  • the first priority threshold is equal to the priority threshold among the plurality of priority thresholds included in the first threshold list.
  • Embodiment 9 illustrates a structural block diagram of a processing device used in the first node, as shown in FIG. 9 .
  • the first node device processing apparatus 900 is mainly composed of a first processor 901 , a first receiver 902 and a first transmitter 903 .
  • the first processor 901 includes at least one of the transmitter/receiver 454, the receiving processor 456, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first receiver 902 includes the antenna 452 in the accompanying drawing 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467 .
  • the first transmitter 903 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory 460 in the accompanying drawing 4 of the present application. and at least one of data sources 467 .
  • the first processor 901 determines the first priority and the first threshold list; the first receiver 902 performs channel ratio detection in the first resource pool; the first transmitter 903 determines Whether to send a target signal in the first resource pool; the first threshold list includes a plurality of priority thresholds, and the result of the channel proportion detection is used for the plurality of priority thresholds included in the first threshold list A first priority threshold is determined among the priority thresholds; the size relationship between the first priority and the first priority threshold is used to determine whether to send the target signal in the first resource pool; the second A priority is associated to the target bit block that is used to generate the target signal.
  • the multiple measurement value ranges correspond one-to-one to the multiple priority thresholds included in the first threshold list; the result of the channel proportion detection belongs to the first of the multiple measurement value ranges. range of measured values; the first range of measured values is used to determine the first priority threshold from the first threshold list; the first priority threshold is the A corresponding priority threshold for a measurement range.
  • the first priority is equal to a first integer
  • the first priority threshold is equal to a second integer
  • the first transmitter 903 Send the target signal on the first time-frequency resource block
  • the first transmitter 903 gives up sending the target signal in the first resource pool
  • the first resource pool includes multiple time-frequency resource blocks, and the first time-frequency resource block is a time-frequency resource block in the first resource pool.
  • the first transmitter 903 randomly selects the first time-frequency resource block from the multiple time-frequency resource blocks included in the first resource pool; the first integer is not greater than the the second integer.
  • the first node device 900 is user equipment.
  • the first node device 900 is a relay node.
  • the first node device 900 is a base station device.
  • Embodiment 10 illustrates a structural block diagram of a processing device used in the second node, as shown in FIG. 10 .
  • the second node device processing apparatus 1000 is mainly composed of a second receiver 1001 .
  • the second receiver 1001 includes the antenna 420 in the accompanying drawing 4 of the present application, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 at least one of the .
  • the second receiver 1001 receives the target signal on the first time-frequency resource block;
  • the first resource pool includes a plurality of time-frequency resource blocks, and the first time-frequency resource block is the first A time-frequency resource block in a resource pool;
  • the target signal carries a first priority, the first priority is associated with a target bit block, and the target signal includes the target bit block.
  • the second node device 1000 is a user equipment.
  • the second node device 1000 is a relay node.
  • the second node device 1000 is a base station device.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点确定第一优先级和第一阈值列表;在第一资源池执行信道占比检测;确定是否在所述第一资源池中发送目标信号;所述信道占比检测的结果被用于从所述第一阈值列表包括的多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。本申请在资源利用率和避免对高端感知用户干扰之间取得平衡。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)相关的传输方案和装置。
背景技术
从LTE(Long Term Evolution,长期演进)开始,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)已经在发展SL(Sidelink,副链路)作为用户与用户之间的直连通信方式,并在Rel-16(Release-16,版本16)中完成了“5G V2X with NR Sidelink”的第一个NR SL(New Radio Sidelink,新空口副链路)标准。在Rel-16中,NR SL主要被设计用于V2X(Vehicle-To-Everything,车联网),但它也可以用于公共安全(Public Safety)。
但由于时间限制,NR SL Rel-16不能完全支持足3GPP为5G V2X识别的业务需求和工作场景。因此3GPP将在Rel-17中研究增强NR SL。
发明内容
一般VRU(Vulnerable road user,弱势道路用户)和PUE(Pedestrian user equipment,行人用户设备)的电池寿命较短,处理复杂度较低。为了节省功率,VRU或者PUE经常采用随机资源选择,周期性部分感知或者连续部分感知的方式确定发送信号的时频资源。在NR SL系统中,允许随机资源选择,部分感知以及完全感知的用户共享同一个资源池,当一个感知用户感知到临近的VRU或者PUE用户所占用的时频资源,尽管感知用户的数据优先级高于临近的VRU或者PUE的数据优先级,但由于VRU或者PUE采用随机资源选择的方式而不执行信道感知导致无法避免对临近用户的干扰,感知用户不得不采取主动避让干扰的时频资源,导致高端的感知用户的传输性能受到影响。因此,对共享资源池会设一个阈值,当VRU或者PUE的数据优先级较低时避免进入该共享资源池,以免引发对高端感知用户的性能影响。但是当该资源池用户数较少,资源比较丰富时,采用统一优先级阈值将会导致资源利用率较低。
针对上述问题,本申请公开了一种用于资源池的优先级阈值设定方法,从而有效避免资源池利用率不高的问题。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;
在第一资源池执行信道占比检测;
确定是否在所述第一资源池中发送目标信号;
其中,所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
作为一个实施例,本申请要解决的问题是:当共享资源池的用户数较少,资源比较丰富时,采用统一优先级阈值将会导致一些采用随机资源选择的用户无法接入该资源池,从而使资源利用率较低。
作为一个实施例,本申请的方法是:根据资源池信道占比的水平调整采用随机资源选择的用户的使用门槛。
作为一个实施例,上述方法的好处在于,在资源利用率和避免对高端感知用户干扰之间取得平衡。
根据本申请的一个方面,上述方法的特征在于,多个测量值范围与所述第一阈值列表包括的所述多个优先级阈值一一对应;所述信道占比检测的结果属于所述多个测量值范围中的第一测量值范围;所述第一测量值范围被用于从所述第一阈值列表中确定所述第一优先级阈值;所述第一优先级阈值是所述第一阈值列表中和所述第一测量值范围的对应的优先级阈值。
根据本申请的一个方面,上述方法的特征在于,包括:
所述第一优先级等于第一整数,所述第一优先级阈值等于第二整数;当所述第一整数不大于所述第二整数时,在第一时频资源块上发送所述目标信号;当所述第一整数大于所述第二整数时,放弃在所述第一资源池中发送所述目标信号;
其中,所述第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块。
根据本申请的一个方面,上述方法的特征在于,包括:
在所述第一资源池包括的所述多个时频资源块中随机选择所述第一时频资源块;
其中,所述第一整数不大于所述第二整数。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一时频资源块上接收目标信号;
其中,第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理器,确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;
第一接收机,在第一资源池执行信道占比检测;
第一发射机,确定是否在所述第一资源池中发送目标信号;
其中,所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机,在第一时频资源块上接收目标信号;
其中,第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
作为一个实施例,本申请具备如下优势:
-本申请要解决的问题是:当共享资源池的用户数较少,资源比较丰富时,采用统一优先级阈值将会导致一些采用随机资源选择的用户无法接入该资源池,从而使资源利用率较低;
-本申请根据资源池信道占比的水平调整采用随机资源选择的用户的使用门槛;
-本申请在资源利用率和避免对高端感知用户干扰之间取得平衡。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一时频资源块与第一资源池之间关系的示意图;
图7示出了根据本申请的一个实施例的确定是否在第一资源池中发送目标信号的流程图;
图8示出了根据本申请的一个实施例的第一阈值列表与多个测量值范围之间关系的示意图;
图9示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点首先执行步骤101,确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;然后执行步骤102,在第一资源池执行信道占比检测;最后执行步骤103,确定是否在所述第一资源池中发送目标信号;所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
作为一个实施例,所述第一资源池包括一个副链路资源池(Sidelink Resource Pool)的全部或部分资源。
作为一个实施例,所述第一资源池是一个副链路资源池。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块包括多个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号(Symbol(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子载波(Subcarrier(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个物理资源块(Physical Resource Block(s),PRB(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子信道(Subchannel(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个时隙(Slot(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子载波。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个时隙,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个物理资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个时隙,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子信道。
作为一个实施例,所述第一资源池包括多个时域资源块。
作为一个实施例,所述第一资源池包括多个时域资源块,所述第一资源池包括的所述多个时频资源块在时域上都属于所述第一资源池包括的所述多个时域资源块。
作为一个实施例,所述第一资源池包括多个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域上属于所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个时隙。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用一个时隙。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个多载波符号。
作为一个实施例,所述第一资源池包括多个频域资源块。
作为一个实施例,所述第一资源池包括多个频域资源块,所述第一资源池包括的所述多个时频资源块在频域上都属于所述第一资源池包括的所述多个频域资源块。
作为一个实施例,所述第一资源池包括多个频域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域上属于所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个子载波。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个物理资源块。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用一个物理资源块。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个子信道。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用一个子信道。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述目标信号包括基带信号。
作为一个实施例,所述目标信号包括射频信号。
作为一个实施例,所述目标信号包括无线信号。
作为一个实施例,所述目标信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上传输。
作为一个实施例,所述目标信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上传输。
作为一个实施例,所述目标信号在PSCCH和PSSCH上传输。
作为一个实施例,所述目标信号包括一个更高层信令(Higher Layer Signaling)中的全部或部分。
作为一个实施例,所述目标信号包括一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述目标信号包括一个MAC(Multimedia Access Control,多媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述目标信号包括一个PHY(Physical Layer,物理层)层信令中的一个或多个域。
作为一个实施例,所述目标信号包括一个SCI(Sidelink Control Information,副链路控制信息)中的一个或多个域。
作为一个实施例,SCI的定义参考3GPP TS38.212的章节8.3和章节8.4。
作为一个实施例,所述目标信号包括目标信令。
作为一个实施例,所述目标信令包括正整数个比特。
作为一个实施例,所述目标信令包括正整数个域。
作为一个实施例,所述目标信令包括一个SCI。
作为一个实施例,所述目标信号包括目标比特块,所述目标比特块包括正整数个比特。
作为一个实施例,所述目标信号包括所述目标信令和所述目标比特块。
作为一个实施例,所述目标信号中的所述目标信令在PSCCH上传输,所述目标信号中的所述目标比特块在PSSCH上传输。
作为一个实施例,所述目标信号不包括目标信令,所述目标信令在PSCCH上传输,所述目标信号在PSSCH上传输。
作为一个实施例,所述目标信令是SCI format 1-A,所述目标信号包括SCI format 2-A,所述目标信号中的所述目标比特块来自SL-SCH。
作为一个实施例,所述目标信令是SCI format 1-A,所述目标信号包括SCI format 2-B,所述目标信号中的所述目标比特块来自SL-SCH。
作为一个实施例,所述目标信号中的所述目标信令和所述目标信号中的所述目标比特块都在PSSCH上传输。
作为一个实施例,所述目标信令是SCI format 2-A,所述目标信号中的所述目标比特块来自SL-SCH。
作为一个实施例,所述目标信令是SCI format 2-B,所述目标信号中的所述目标比特块来自SL-SCH。
作为一个实施例,所述目标信令和所述目标信号在所述第一时频资源块上传输,所述第一时频资源块属于所述第一资源池。
作为一个实施例,所述目标信令包括一个SCI中的一个或多个域,所述目标信号包括所述目标比特块。
作为一个实施例,所述目标信令包括一个SCI中的一个或多个域,所述目标信号包括所述目标比特块,所述目标比特块来自SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,SCI format 1-A的定义参考3GPP TS38.212的章节8.3。
作为一个实施例,SCI format 2-A的定义参考3GPP TS38.212的章节8.4。
作为一个实施例,SCI format 2-B的定义参考3GPP TS38.212的章节8.4。
作为一个实施例,所述目标比特块被用于生成所述目标信号,所述目标比特块包括正整数个比特。
作为一个实施例,所述目标比特块包括正整数个比特,所述目标比特块包括的所述正整数个比特中的所有或部分比特被用于生成所述目标信号。
作为一个实施例,所述目标比特块包括1个CW(Codeword,码字)。
作为一个实施例,所述目标比特块包括1个CB(Code Block,编码块)。
作为一个实施例,所述目标比特块包括1个CBG(Code Block Group,编码块组)。
作为一个实施例,所述目标比特块包括1个TB(Transport Block,传输块)。
作为一个实施例,所述目标比特块的所有或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到物理资源块(Mapping to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述目标信号。
作为一个实施例,所述目标信号是所述目标比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation)之后的输出。
作为一个实施例,所述信道编码基于极化(polar)码。
作为一个实施例,所述信道编码基于LDPC(Low-density Parity-Check,低密度奇偶校验)码。
作为一个实施例,所述目标信号中的所述目标信令被用于调度所述目标信号中的所述目标比特块。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号所占用的时频资源,所述目标信号所占用的时频资源属于所述第一资源池。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号所占用的时频资源,所述目标信号所占用的时频资源属于第一时频资源块,所述第一时频资源块属于所述第一资源池。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号所占用的时频资源,所述目标信号所占用的时频资源是第一时频资源块,所述第一时频资源块属于所述第一资源池。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号中的所述目标比特块所占用的时频资源,所述目标比特块所占用的时频资源属于第一时频资源块,所述第一时频资源块属于所述第一资源池。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号中的所述目标比特块所占用的时频资源,所述目标比特块所占用的时频资源是第一时频资源块,所述第一时频资源块属于所述第一资源池。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号中的所述目标比特块所经历的调制编码方式。
作为一个实施例,所述目标信号中的所述目标信令指示所述目标信号所采用的解调参考信号。
作为一个实施例,所述第一优先级被关联到所述目标信号。
作为一个实施例,所述第一优先级被关联到所述目标比特块。
作为一个实施例,所述第一优先级被关联到所述目标比特块,所述目标比特块被用于生成所述目标信号。
作为一个实施例,所述目标信号包括所述目标比特块,所述第一优先级是所述目标比特块的优先级。
作为一个实施例,所述目标比特块被用于生成所述目标信号,所述目标信号在所述第一时频资源块上传输,所述第一优先级是所述目标比特块的优先级。
作为一个实施例,所述目标比特块被用于生成所述目标信号,所述目标信号在所述第一时频资源块上传输,所述第一优先级是所述目标比特块的优先级,所述目标信令被用于指示所述第一优先级。
作为一个实施例,所述第一优先级与所述第一优先级阈值的大小关系被用于确定所述目标比特块是否被用于生成所述目标信号。
作为一个实施例,所述第一优先级被关联到所述目标比特块,所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;当所述第一节点确定在所述第一资源池中发送所述目标信号,所述目标比特块被用于生成所述目标信号;当所述第一节点确定放弃在所述第一资源池中发送所述目标信号,所述目标比特块不被用于生成所述目标信号。
作为一个实施例,所述第一优先级是一个正整数。
作为一个实施例,所述第一优先级是P个正整数中的一个正整数,P是正整数。
作为一个实施例,所述第一优先级是从1到P中的一个正整数。
作为一个实施例,所述第一优先级是所述P个正整数中的一个正整数,所述P个正整数中的数值越大,
作为一个实施例,所述P等于8。
作为一个实施例,所述P等于9。
作为一个实施例,所述第一优先级是层1(L1)优先级。
作为一个实施例,所述第一优先级被用于所述第一信号的发送。
作为一个实施例,所述第一优先级是更高层信令配置的。
作为一个实施例,所述第一优先级是更高层信令指示的。
作为一个实施例,所述第一优先级是一个RRC层信令指示的。
作为一个实施例,所述第一优先级是一个RRC IE(Information Element,信息元素)中的一个域。
作为一个实施例,所述第一优先级对应逻辑信道(Logical Channel)优先级。
作为一个实施例,所述第一优先级对应传输副链路数据的逻辑信道的优先级。
作为一个实施例,所述第一优先级指示经过逻辑信道的副链路数据的优先级。
作为一个实施例,所述第一优先级指示经过逻辑信道的副链路数据的优先级,所述第一优先级等于第一整数,所述第一整数是所述第一优先级是所述P个正整数中的一个正整数,所述第一整数在所述P个正整数中的值越大,所述第一优先级指示所述副链路数据的所述优先级越低。
作为一个实施例,所述第一优先级指示所述目标比特块的优先级,所述第一优先级等于第一整数,所述第一整数是所述第一优先级是所述P个正整数中的一个正整数,所述第一整数在所述P个正整数中的值越大,所述第一优先级指示所述目标比特块的所述优先级越低。
作为一个实施例,所述第一阈值列表包括多个优先级阈值。
作为一个实施例,所述第一阈值列表包括多个正整数。
作为一个实施例,所述第一阈值列表包括的所述多个优先级阈值分别是多个正整数。
作为一个实施例,所述第一阈值列表包括的所述多个优先级阈值中的任一优先级阈值是所述P个正整数中的一个正整数。
作为一个实施例,所述第一阈值列表包括的所述多个优先级阈值中的任一优先级阈值是从1到所述P中的一个正整数。
作为一个实施例,所述第一阈值列表是所述第一节点的更高层配置的。
作为一个实施例,第一信令被用于指示所述第一阈值列表。
作为一个实施例,所述第一信令是所述第一节点的更高层信令,所述第一信令被用于指示所述第一阈值列表。
作为一个实施例,所述第一节点接收第一信令,所述第一信令被用于指示所述第一阈值列表。
作为一个实施例,所述第一信令包括一个PHY层信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个SCI中的一个或多个域。
作为一个实施例,所述第一信令包括一个DCI(Downlink Control Information,下行控制信息)中的一个或多个域。
作为一个实施例,所述第一信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第一信令占用的信道包括PSCCH和PSSCH中的至少之一。
作为一个实施例,所述信道占比检测包括Sidelink Channel Occupancy Ratio(SL CR)Evaluating。
作为一个实施例,在所述第一资源池中执行所述信道占比检测是指所述第一资源池在第一测量窗内总共被配置了M个时频资源块,在所述第一资源池中的所述第一测量窗内检测出M1个时频资源块被用于发送,在所述第一资源池中的所述第一测量窗内检测出M2个时频资源块被授权(granted),再用M1与M2的和与M相除,所述M1是非负整数,所述M2是非负整数,所述M是正整数。
作为一个实施例,在所述一测量窗内检测出M1个时频资源块被用于发送是指所述第一测量窗内监测到N1个第一类信令,所述N1个第一类信令被用于指示所述M1个时频资源块,N1是不大于M1的正整数。
作为上述实施例的一个子实施例,所述N1个第一类信令被用于指示N1个第一类信号在所述M1个时频资源块上发送。
作为上述实施例的一个子实施例,所述N1个第一类信令被用于调度N1个第一类信号在所述M1个时频资源块上发送。
作为一个实施例,所述N1个第一类信令分别是N1个SCI。
作为一个实施例,所述N1个第一类信令分别是N1个SCI format 1-A。
作为一个实施例,所述第一测量窗内的所述M1个时频资源块中的任一时频资源块在频域占用一个子信道。
作为一个实施例,在所述一测量窗内检测出M2个时频资源块被授权是指所述第一测量窗内的监测到N2个第一类信令,所述N2个第一类信令被用于指示所述M2个时频资源块,N2是不大于M2的正整数。
作为上述实施例的一个子实施例,所述N2个第一类信令被用于预留所述M2个时频资源块。
作为一个实施例,所述N2个第一类信令分别是N2个SCI。
作为一个实施例,所述N2个第一类信令分别是N2个SCI format 1-A。
作为一个实施例,所述第一测量窗内的所述M2个时频资源块中的任一时频资源块在频域占用一个子信道。
作为一个实施例,在所述一测量窗内检测出M2个时频资源块被用于发送是指所述第一测量窗内的监测到N2个第一类信令,所述N1个第一类信令被用于指示所述M1个时频资源块,N1是不大于M1的正整数。
作为一个实施例,所述N1个第一类信令分别是N1个SCI。
作为一个实施例,所述N1个第一类信令分别是N1个SCI format 1-A。
作为一个实施例,所述第一测量窗在时域包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第一测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个时隙。
作为一个实施例,所述第一测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个多载波符号。
作为一个实施例,所述第一资源池包括的所述M个时频资源块在时域属于所述第一测量窗。
作为一个实施例,所述第一资源池包括的所述M1个时频资源块在时域属于所述第一测量窗,所述第一资源池包括的所述M2个时频资源块在时域属于所述第一测量窗。
作为一个实施例,在所述第一资源池中执行所述信道占比检测是指所述第一资源池在第一测量窗内总共被配置了M个时频资源块,所述第一测量窗包括第一子测量窗和第二子测量窗,在所述第一资源池中的所述第一子测量窗内检测出M1个时频资源块被用于发送,在所述第一资源池中的所述第二子测量窗内检测出M2个时频资源块被授权(granted),再用M1与M2的和与M相除,所述M1是非负整数,所述M2是非负整数,所述M是正整数。
作为一个实施例,在所述一子测量窗内检测出M1个时频资源块被用于发送是指所述第一子测量窗内监测到N1个第一类信令,所述N1个第一类信令被用于指示所述M1个时频资源块,N1是不大于M1的正整数。
作为上述实施例的一个子实施例,所述N1个第一类信令被用于指示N1个第一类信号在所述M1个时频资源块上发送。
作为上述实施例的一个子实施例,所述N1个第一类信令被用于调度N1个第一类信号在所述M1个时频资源块上发送。
作为一个实施例,在所述二子测量窗内检测出M2个时频资源块被授权是指所述第二子测量窗内的监测到N2个第一类信令,所述N2个第一类信令被用于指示所述M2个时频资源块,N2是不大于M2的正整数。
作为上述实施例的一个子实施例,所述N2个第一类信令被用于预留所述M2个时频资源块。
作为一个实施例,所述第一子测量窗在时域包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第一子测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个时隙。
作为一个实施例,所述第一子测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个多载波符号。
作为一个实施例,所述第二子测量窗在时域包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第二子测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个时隙。
作为一个实施例,所述第二子测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个多载波符号。
作为一个实施例,所述第一资源池包括的所述M1个时频资源块在时域属于所述第一子测量窗。
作为一个实施例,所述第一资源池包括的所述M2个时频资源块在时域属于所述第二子测量窗。
作为一个实施例,所述信道占比检测的结果包括SL CR。
作为一个实施例,所述第一资源池在第一测量窗内总共被配置了M个时频资源块,所述第一资源池包括所述第一测量窗中的所述M1个时频资源块和所述M2个时频资源块,所述M1个时频资源块被用于发送,所述M2个时频资源块被授权;所述信道占比检测的结果是指M1与M2的和除以M的商,所述M1是非负整数,所述M2是非负整数,所述M是正整数。
作为一个实施例,所述第一资源池在第一测量窗内总共被配置了M个时频资源块,所述第一测量窗包括第一子测量窗和第二子测量窗,所述第一资源池包括所述第一子测量窗中的所述M1个时频资源块和所述第二子测量窗中的所述M2个时频资源块,所述M1个时频资源块被用于发送,所述M2个时频资源块被授权;所述信道占比检测的结果是指M1与M2的和除以M的商,所述M1是非负整数,所述M2是非负整数,所述M是正整数。
作为一个实施例,所述信道占比检测包括Sidelink Channel Busy Ratio(SL CBR)Measuring。
作为一个实施例,在所述第一资源池中执行所述信道占比检测是指所述第一资源池在第二测量窗内感知(Sense)到的时频资源块上的SL RSSI(Sidelink Received Signal Strength Indicator,副链路接收信号强度指示)超过给定门限的比值。
作为一个实施例,在所述第一资源池中执行所述信道占比检测是指所述第一资源池在第二测量窗内总共感知到M0个时频资源块,所述第一资源池在第二测量窗内检测到的M3个时频资源块,所述M3个时频资源块上SL RSSI超过给定门限,再用M3除以M0,所述M3是非负整数,所述M0是正整数。
作为一个实施例,在所述二测量窗内感知到M0个时频资源块是指所述第一资源池中的所述第二测量窗内监测到N0个第一类信令,所述N0个第一类信令被用于指示所述M0个时频资源块,N0是不大于M0的正整数。
作为上述实施例的一个子实施例,所述N0个第一类信令被用于指示N0个第一类信号在所述M0个时频资源块上发送。
作为上述实施例的一个子实施例,所述N0个第一类信令被用于调度N0个第一类信号在所述M0个时频资源块上发送。
作为一个实施例,在所述二测量窗内感知到M3个时频资源块是指所述第一资源池中的所述第二测量窗内监测到N3个第一类信令,所述N3个第一类信令被用于指示所述M3个时频资源块,N3是不大于M3的正整数。
作为上述实施例的一个子实施例,所述N3个第一类信令被用于指示N3个第一类信号在所述M3个时频资源块上发送。
作为上述实施例的一个子实施例,所述N3个第一类信令被用于调度N3个第一类信号在所述M3个时频资源块上发送。
作为一个实施例,所述第一资源池在第二测量窗内总共感知到M0个时频资源块,所述第一资源池在所述第二测量窗内感知到的M3个时频资源块,所述M3个时频资源块上SL RSSI超过给定门限,所述信道占比检测的结果是M3除以M0的比值,所述M3是非负整数,所述M0是正整数。
作为一个实施例,所述信道占比检测的结果包括SL CBR。
作为一个实施例,所述N0个第一类信令分别是N0个SCI。
作为一个实施例,所述N0个第一类信令分别是N0个SCI format 1-A。
作为一个实施例,所述N3个第一类信令分别是N3个SCI。
作为一个实施例,所述N3个第一类信令分别是N3个SCI format 1-A。
作为一个实施例,所述第二测量窗在时域包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第二测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个时隙。
作为一个实施例,所述第二测量窗在时域包括所述第一资源池中的所述多个时域资源块分别是多个多载波符号。
作为一个实施例,所述第一资源池包括的所述M0个时频资源块在时域属于所述第二测量窗。
作为一个实施例,所述第一资源池包括的所述M3个时频资源块在时域属于所述第二测量窗。
作为一个实施例,所述信道占比检测的结果的单位是dB(分贝)。
作为一个实施例,所述信道占比检测的结果的单位是dBm(毫分贝)。
作为一个实施例,所述信道占比检测的结果的单位是W(瓦)。
作为一个实施例,所述信道占比检测的结果的单位是mW(毫瓦)。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。在NTN网络中,gNB203的实例包括卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点包括所述UE201。
作为一个实施例,本申请中的第二节点包括所述UE241。
作为一个实施例,本申请中的用户设备包括所述UE201。
作为一个实施例,本申请中的用户设备包括所述UE241。
作为一个实施例,本申请中的基站设备包括所述gNB203。
作为一个实施例,本申请中的第一信令的发送者包括所述UE241。
作为一个实施例,本申请中的第一信令的发送者包括所述UE201。
作为一个实施例,本申请中的第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的目标信号的发送者包括所述UE201。
作为一个实施例,本申请中的目标信号的接收者包括所述UE241。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述目标信号生成于所述PHY301。
作为一个实施例,本申请中的所述目标信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述目标信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述目标信号经由所述MAC子层302传输到所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资 源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是基站,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;在第一资源池执行信道占比检测;确定是否在所述第一资源池中发送目标信号;所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;在第一资源池执行信道占比检测;确定是否在所述第一资源池中发送目标信号;所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在第一时频资源块上接收目标信号;第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源块上接收目标信号;第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一资源池中监测第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的确定第一优先级。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的确定第一阈值列表。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一资源池执行信道占比检测。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的确定是否在 第一资源池发送目标信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一资源池随机选择第一时频资源块。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一时频资源块上发送目标信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第一时频资源块上接收目标信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点U1与第二节点U2之间是通过空中接口进行通信。
对于 第一节点U1,在步骤S11中确定第一优先级和第一阈值列表;在步骤S12中在第一资源池执行信道占比检测;在步骤S13中确定是否在第一资源池中发送目标信号;在步骤S14中在第一资源池随机选择第一时频资源块;在步骤S15中在第一时频资源块上发送目标信号。
对于 第二节点U2,在步骤S21中在第一时频资源块上接收目标信号。
在实施例5中,所述第一阈值列表包括多个优先级阈值;所述信道占比检测的结果被所述第一节点U1用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被所述第一节点U1用于确定是否在所述第一资源池中发送所述目标信号,所述第一资源池包括多个时频资源块;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号;多个测量值范围与所述第一阈值列表包括的所述多个优先级阈值一一对应;所述信道占比检测的结果属于所述多个测量值范围中的第一测量值范围;所述第一测量值范围被用于从所述第一阈值列表中确定所述第一优先级阈值;所述第一优先级阈值是所述第一阈值列表中和所述第一测量值范围的对应的优先级阈值;所述第一优先级等于第一整数,所述第一优先级阈值等于第二整数;当所述第一整数不大于所述第二整数时,所述第一时频资源块被所述第一节点U1用于发送所述目标信号,所述第一时频资源块是所述第一资源池中的一个时频资源块,所述第一时频资源块是在所述第一资源池包括的所述多个时频资源块中随机选择的;当所述第一整数大于所述第二整数时,所述目标信号未在所述第一资源池中被所述第一节点U1发送。
作为一个实施例,所述第一整数等于所述第二整数,所述第一时频资源块被所述第一节点U1用于发送所述目标信号,所述第一时频资源块是所述第一资源池中的一个时频资源块,所述第一时频资源块是在所述第一资源池包括的所述多个时频资源块中被所述第一节点U1随机选择的。
作为一个实施例,所述第一整数小于所述第二整数,所述第一时频资源块被所述第一节点U1用于发送所述目标信号,所述第一时频资源块是所述第一资源池中的一个时频资源块,所述第一时频资源块是在所述第一资源池包括的所述多个时频资源块中被所述第一节点U1随机选择的。
作为一个实施例,所述第一整数大于所述第二整数,所述目标信号未在所述第一资源池中被第一节点U1发送。
作为一个实施例,所述第一整数大于所述第二整数,所述第一节点U1放弃在所述第一资源池中发送所述目标信号。
作为一个实施例,所述第一节点U1和所述第二节点U2之间是通过PC5接口进行通信。
作为一个实施例,附图5中的方框F0的步骤存在。
作为一个实施例,附图5中的方框F0的步骤不存在。
作为一个实施例,当所述第一整数不大于所述第二整数时,附图5中的方框F0的步骤存在;当所述第一整数大于所述第二整数时,附图5中的方框F0的步骤不存在。
作为一个实施例,所述第一整数小于所述第二整数,附图5中的方框F0的步骤存在。
作为一个实施例,所述第一整数等于所述第二整数,附图5中的方框F0的步骤存在。
作为一个实施例,所述第一整数大于所述第二整数,附图5中的方框F0的步骤不存在。
实施例6
实施例6示例了根据本申请的一个实施例的第一时频资源块与第一资源池之间关系的示意图,如附图6所示。在附图6中,虚线大方框代表本申请中的第一资源池;虚线方框中的矩形代表所述第一资源池中的时频资源块;斜纹填充的矩形代表本申请中的第一时频资源块;斜方格填充的虚线矩形代表本申请中的第一备选时频资源块;横线填充的矩形代表本申请中的第二时频资源块。
在实施例6中,所述第一资源池包括多个时频资源块,本申请中的第一时频资源块是所述第一资源池包括所述多个时频资源块中的一个时频资源块;本申请中的所述第一节点从所述第一资源池包括的所述多个时频资源块中随机选择出所述第一时频资源块。
作为一个实施例,所述第一时频资源块包括多个REs。
作为一个实施例,所述第一资源池包括所述第一时频资源块。
作为一个实施例,所述第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第一时频资源块在时域占用一个时隙中的正整数个多载波符号,所述第一时频资源块在频域占用正整数个子信道。
作为一个实施例,所述第一时频资源块包括PSCCH。
作为一个实施例,所述第一时频资源块包括PSSCH。
作为一个实施例,所述第一时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述第一时频资源块包括PSCCH,PSSCH和PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一时频资源块是所述第一节点从所述第一资源池包括的所述多个时频资源块中随机选择的。
作为一个实施例,所述第一时频资源块是所述第一节点从所述第一资源池包括的所述多个时频资源块中等概率选择的。
作为一个实施例,所述第一节点采用非感知的方式从所述第一资源池中确定所述第一时频资源块。
作为一个实施例,所述非感知的方式包括随机资源选择(Random Resource Selection)。
作为一个实施例,所述非感知的方式包括连续部分感知(Contiguous Partial Sensing)。
作为一个实施例,所述目标信号在所述第一时频资源块上发送。
实施例7
实施例7示例了根据本申请的一个实施例的确定是否在第一资源池中发送目标信号的流程图,如附图7所示。
在实施例7中,在步骤S701中,判断第一整数是否不大于第二整数;当第一整数小于或者等于第二整数时,执行步骤S702,在第一时频资源块上发送目标信号;当第一整数大于第二整数时,执行步骤S703,放弃在第一资源池中发送目标信号。
作为一个实施例,第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈值,当所述第一优先级高于所述第一优先级阈值时,所述目标信号在所述第一时频资源块上被发送;当所述第一优先级低于所述第一优先级阈值,所述目标信号未在所述第一资源池中被发送。
作为一个实施例,第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈值,当所述第一优先级高于或者等于所述第一优先级阈值时,所述目标信号在所述第一时频资源块上被发送;当所述第一优先级低于所述第一优先级阈值,所述目标信号未在所述第一资源池中被发送。
作为一个实施例,第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈值,所述第一优先级高于所述第一优先级阈值,所述目标信号在所述第一时频资源块上被发送。
作为一个实施例,第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈 值,所述第一优先级等于所述第一优先级阈值,所述目标信号在所述第一时频资源块上被发送。
作为一个实施例,第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈值,所述第一优先级低于所述第一优先级阈值,所述目标信号未在所述第一资源池中被发送。
作为一个实施例,所述第一优先级等于所述第一整数,所述第一优先级阈值等于所述第二整数;当所述第一整数小于或者等于所述第二整数时,所述第一节点在所述第一时频资源块上发送所述目标信号;当所述第一整数大于所述第二整数时,所述第一节点放弃在所述第一资源池中发送所述目标信号。
作为一个实施例,所述第一整数小于所述第二整数,所述第一优先级高于所述第一优先级阈值。
作为一个实施例,所述第一整数等于所述第二整数,所述第一优先级等于所述第一优先级阈值。
作为一个实施例,所述第一整数大于所述第二整数,所述第一优先级低于所述第一优先级阈值。
作为一个实施例,所述第一优先级等于第一整数,第一优先级阈值等于第二整数,所述第二整数是所述第一阈值列表包括的所述多个正整数中的一个正整数,所述第一整数小于所述第二整数,所述目标信号在所述第一时频资源块上被发送。
作为一个实施例,所述第一优先级等于第一整数,第一优先级阈值等于第二整数,所述第二整数是所述第一阈值列表包括的所述多个正整数中的一个正整数,所述第一整数等于所述第二整数,所述目标信号在所述第一时频资源块上被发送。
作为一个实施例,所述第一优先级等于第一整数,第一优先级阈值等于第二整数,所述第二整数是所述第一阈值列表包括的所述多个正整数中的一个正整数,所述第一整数大于所述第二整数,所述目标信号未在所述第一时频资源块上被发送。
作为一个实施例,所述第一优先级等于第一整数,第一优先级阈值等于第二整数,所述第二整数是所述第一阈值列表包括的所述多个正整数中的一个正整数,所述第一整数大于所述第二整数,放弃在所述第一资源池中发送所述目标信号。
作为一个实施例,所述放弃在所述第一资源池中发送所述目标信号是指所述第一节点的发射功率为0。
作为一个实施例,所述放弃在所述第一资源池中发送所述目标信号是指所述第一节点在第一资源池包括的所述多个时频资源块中的任一时频资源块上的发射功率为0。
作为一个实施例,所述放弃在所述第一资源池中发送所述目标信号是指所述第一节点未占用所述第一资源池包括的所述多个时频资源块中的任一时频资源块。
作为一个实施例,所述放弃在所述第一资源池中发送所述目标信号是指在第二资源池中发送所述目标信号,所述第二资源池是更高层信令配置的,所述第二资源池不同于所述第一资源池。
作为一个实施例,所述放弃在所述第一资源池中发送所述目标信号是指所述第一节点向更高层报告更新资源确定方式,所述资源确定方式包括随机选择,部分感知和完全感知三者中的之一,所述更新后的资源确定方式包括部分感知和完全感知二者中的之一。
作为一个实施例,所述放弃在所述第一资源池中发送所述目标信号是指所述第一节点向更高层报告更新资源确定方式,所述资源确定方式包括随机选择,连续部分感知,周期性部分感知和完全感知四者中的之一,所述更新后的资源确定方式包括连续部分感知,周期性部分感知和完全感知三者中的之一。
实施例8
实施例8示例了根据本申请的一个实施例的第一阈值列表与多个测量值范围之间关系的示意图,如附图8所示。在附图8中,P 1,P 2,...,P N分别代表本申请中的第一阈值列表包括的多个优先级阈值;[Q 0,Q 1),[Q 1,Q 2),...,[Q N-1,Q N)分别代表本申请中的多个测量值范围;P x分别代表本申请中的第一优先级阈值;[Q x,Q y)代表本申请中的第一测量值范围;P n是{P 1,P 2,...,P N}中的之一,所述P n是非负整数,n是{1,2,...,N}中的一个正整数;Q i是{Q 0,Q 1,...,Q N-1,Q N}中的之一,所述Q i是实数,i是{0,1,2,...,N-1,N}中的一个非负整数,N是正整数。
在实施例8中,所述多个测量值范围与所述第一阈值列表包括的所述多个优先级阈值一一对应;所述第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈值;所述第一测量值范围是所述多个测量值范围中的与所述第一优先级阈值对应的一个测量值范围;所述信道占比检测的结果属于所述第一测量值范围,所述第一测量值范围被用于从所述第一阈值列表包括的所述多个优先级阈值中确 定所述第一优先级阈值。
作为一个实施例,所述第一优先级阈值是所述第一阈值列表包括的所述多个优先级阈值中的一个优先级阈值。
作为一个实施例,所述第一阈值列表包括的所述多个优先级阈值分别是{1,2,3,4,5,6,7,8}。
作为一个实施例,所述第一优先级阈值是一个正整数。
作为一个实施例,所述第一优先级阈值是{1,2,3,4,5,6,7,8}中的一个正整数。
作为一个实施例,所述多个测量值范围中的任一测量值范围是不小于Q i且小于Q j的一个实数,Q i是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q j是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q i小于Q j
作为一个实施例,所述多个测量值范围中的任一测量值范围是大于Q i且小于Q j的一个实数,Q i是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q j是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q i小于Q j
作为一个实施例,{Q 0,Q 1,...,Q N-1,Q N}分别是N+1个实数,N是正整数。
作为一个实施例,所述多个测量值范围中的任一测量值范围是不小于第一实数且小于第二实数的一个实数,所述第一实数小于所述第二实数。
作为一个实施例,所述多个测量值范围中的任一测量值范围是大于第一实数且小于第二实数的一个实数,所述第一实数小于所述第二实数。
作为一个实施例,所述第一测量值范围是所述多个测量值范围中的一个测量值范围。
作为一个实施例,所述第一测量值范围是不小于Q x且小于Q y的一个实数,Q x是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q y是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q x小于Q y
作为一个实施例,所述第一测量值范围是大于Q x且小于Q y的一个实数,Q x是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q y是{Q 0,Q 1,...,Q N-1,Q N}的之一,Q x小于Q y
作为一个实施例,所述第一测量值范围是不小于第一目标实数且小于第二目标实数的一个实数,所述第一目标实数小于所述第二目标实数。
作为一个实施例,所述第一测量值范围是大于第一目标实数且小于第二目标实数的一个实数,所述第一目标实数小于所述第二目标实数。
作为一个实施例,所述信道占比检测的结果属于所述第一测量值范围,所述第一优先级是所述第一阈值列表包括的所述多个优先级阈值中与所述第一测量值范围对应的一个优先级阈值。
作为一个实施例,所述信道占比检测的结果属于所述第一测量值范围是指所述信道占比检测的结果不小于所述第一目标实数且小于所述第二目标实数,所述第一目标实数和所述第二目标实数分别是所述N+1个实数中的两个实数,所述第一目标实数小于所述第二目标实数。
作为一个实施例,所述信道占比检测的结果属于所述第一测量值范围是指所述信道占比检测的结果大于所述第一目标实数且小于所述第二目标实数,所述第一目标实数和所述第二目标实数分别是所述N+1个实数中的两个实数,所述第一目标实数小于所述第二目标实数。
作为一个实施例,所述信道占比检测的结果属于所述第一测量值范围是指所述信道占比检测的结果不小于所述Q x且小于所述Q y
作为一个实施例,所述信道占比检测的结果属于所述第一测量值范围是指所述信道占比检测的结果大于所述Q x且小于所述Q y
作为一个实施例,所述信道占比检测的结果不小于所述第一目标实数且小于所述第二目标实数,所述第一优先级阈值是述第一阈值列表包括的所述多个优先级阈值中与所述第一测量值范围对应的一个优先级阈值,所述第一目标实数和所述第二目标实数分别是所述N+1个实数中的两个实数,所述第一目标实数小于所述第二目标实数。
作为一个实施例,所述信道占比检测的结果大于所述第一目标实数且小于所述第二目标实数,所述第一优先级阈值是述第一阈值列表包括的所述多个优先级阈值中与所述第一测量值范围对应的一个优先级阈值,所述第一目标实数和所述第二目标实数分别是所述N+1个实数中的两个实数,所述第一目标实数小于所述第二目标实数。
作为一个实施例,所述信道占比检测的结果不小于所述Q x且小于所述Q y,所述第一优先级阈值是述第一阈值列表包括的所述多个优先级阈值中与所述第一测量值范围对应的一个优先级阈值。
作为一个实施例,所述信道占比检测的结果大于所述Q x且小于所述Q y,所述第一优先级阈值是述第一阈值列表包括的所述多个优先级阈值中与所述第一测量值范围对应的一个优先级阈值。
实施例9
实施例9示例了一个用于第一节点中的处理装置的结构框图,如附图9所示。在实施例9中,第一节点设备处理装置900主要由第一处理器901,第一接收机902和第一发射机903组成。
作为一个实施例,第一处理器901包括本申请附图4中的发射器/接收器454,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一接收机902包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机903包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例9中,所述第一处理器901确定第一优先级和第一阈值列表;所述第一接收机902在第一资源池执行信道占比检测;所述第一发射机903确定是否在所述第一资源池中发送目标信号;所述第一阈值列表包括多个优先级阈值,所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
作为一个实施例,多个测量值范围与所述第一阈值列表包括的所述多个优先级阈值一一对应;所述信道占比检测的结果属于所述多个测量值范围中的第一测量值范围;所述第一测量值范围被用于从所述第一阈值列表中确定所述第一优先级阈值;所述第一优先级阈值是所述第一阈值列表中和所述第一测量值范围的对应的优先级阈值。
作为一个实施例,所述第一优先级等于第一整数,所述第一优先级阈值等于第二整数;当所述第一整数不大于所述第二整数时,所述第一发射机903在第一时频资源块上发送所述目标信号;当所述第一整数大于所述第二整数时,所述第一发射机903放弃在所述第一资源池中发送所述目标信号;所述第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块。
作为一个实施例,所述第一发射机903在所述第一资源池包括的所述多个时频资源块中随机选择所述第一时频资源块;所述第一整数不大于所述第二整数。
作为一个实施例,所述第一节点设备900是用户设备。
作为一个实施例,所述第一节点设备900是中继节点。
作为一个实施例,所述第一节点设备900是基站设备。
实施例10
实施例10示例了一个用于第二节点中的处理装置的结构框图,如附图10所示。在实施例10中,第二节点设备处理装置1000主要由第二接收机1001组成。
作为一个实施例,第二接收机1001包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
在实施例10中,所述第二接收机1001在第一时频资源块上接收目标信号;第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
作为一个实施例,所述第二节点设备1000是用户设备。
作为一个实施例,所述第二节点设备1000是中继节点。
作为一个实施例,所述第二节点设备1000是基站设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或 部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理器,确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;
    第一接收机,在第一资源池执行信道占比检测;
    第一发射机,确定是否在所述第一资源池中发送目标信号;
    其中,所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
  2. 根据权利要求1所述的第一节点设备,其特征在于,多个测量值范围与所述第一阈值列表包括的所述多个优先级阈值一一对应;所述信道占比检测的结果属于所述多个测量值范围中的第一测量值范围;所述第一测量值范围被用于从所述第一阈值列表中确定所述第一优先级阈值;所述第一优先级阈值是所述第一阈值列表中和所述第一测量值范围的对应的优先级阈值。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,包括:
    所述第一优先级等于第一整数,所述第一优先级阈值等于第二整数;当所述第一整数不大于所述第二整数时,所述第一发射机在第一时频资源块上发送所述目标信号;当所述第一整数大于所述第二整数时,所述第一发射机放弃在所述第一资源池中发送所述目标信号;
    其中,所述第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块。
  4. 根据权利要求3所述的第一节点设备,其特征在于,包括:
    所述第一发射机在所述第一资源池包括的所述多个时频资源块中随机选择所述第一时频资源块;
    其中,所述第一整数不大于所述第二整数。
  5. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二接收机,在第一时频资源块上接收目标信号;
    其中,第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
  6. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    确定第一优先级和第一阈值列表,所述第一阈值列表包括多个优先级阈值;
    在第一资源池执行信道占比检测;
    确定是否在所述第一资源池中发送目标信号;
    其中,所述信道占比检测的结果被用于从所述第一阈值列表包括的所述多个优先级阈值中确定第一优先级阈值;所述第一优先级与所述第一优先级阈值的大小关系被用于确定是否在所述第一资源池中发送所述目标信号;所述第一优先级被关联到目标比特块,所述目标比特块被用于生成所述目标信号。
  7. 根据权利要求6所述的方法,其特征在于,多个测量值范围与所述第一阈值列表包括的所述多个优先级阈值一一对应;所述信道占比检测的结果属于所述多个测量值范围中的第一测量值范围;所述第一测量值范围被用于从所述第一阈值列表中确定所述第一优先级阈值;所述第一优先级阈值是所述第一阈值列表中和所述第一测量值范围的对应的优先级阈值。
  8. 根据权利要求6或7所述的方法,其特征在于,包括:
    所述第一优先级等于第一整数,所述第一优先级阈值等于第二整数;当所述第一整数不大于所述第二整数时,在第一时频资源块上发送所述目标信号;当所述第一整数大于所述第二整数时,在所述第一资源池中发送所述目标信号;
    其中,所述第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块。
  9. 根据权利要求8所述的方法,其特征在于,包括:
    所述第一发射机在所述第一资源池包括的所述多个时频资源块中随机选择所述第一时频资源块;
    其中,所述第一整数不大于所述第二整数。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一时频资源块上接收目标信号;
    其中,第一资源池包括多个时频资源块,所述第一时频资源块是所述第一资源池中的一个时频资源块;所述目标信号携带第一优先级,所述第一优先级被关联到目标比特块,所述目标信号包括所述目标比特块。
PCT/CN2022/097041 2021-06-06 2022-06-06 一种被用于无线通信的节点中的方法和装置 WO2022257865A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280006876.XA CN116458248A (zh) 2021-06-06 2022-06-06 一种被用于无线通信的节点中的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110628015 2021-06-06
CN202110628015.2 2021-06-06

Publications (1)

Publication Number Publication Date
WO2022257865A1 true WO2022257865A1 (zh) 2022-12-15

Family

ID=84424736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097041 WO2022257865A1 (zh) 2021-06-06 2022-06-06 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116458248A (zh)
WO (1) WO2022257865A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091492A1 (ko) * 2018-11-02 2020-05-07 주식회사 아이티엘 Nr v2x 시스템에서 harq 피드백 절차 수행 방법 및 그 장치
CN111988757A (zh) * 2019-05-21 2020-11-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112436873A (zh) * 2020-08-27 2021-03-02 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置
CN112821997A (zh) * 2019-11-15 2021-05-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112910608A (zh) * 2019-11-19 2021-06-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091492A1 (ko) * 2018-11-02 2020-05-07 주식회사 아이티엘 Nr v2x 시스템에서 harq 피드백 절차 수행 방법 및 그 장치
CN111988757A (zh) * 2019-05-21 2020-11-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112821997A (zh) * 2019-11-15 2021-05-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112910608A (zh) * 2019-11-19 2021-06-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112436873A (zh) * 2020-08-27 2021-03-02 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116458248A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022073432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021213251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041811A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244383A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022257865A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023000976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030351A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230049210A1 (en) Method and device in nodes used for wireless communication
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040920A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032518A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023078080A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230199721A1 (en) Method and device in nodes used for wireless communication
WO2023138555A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027609A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083236A1 (zh) 用于无线通信的方法和装置
WO2023098549A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023029240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207243A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280006876.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE