WO2023030351A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023030351A1
WO2023030351A1 PCT/CN2022/116022 CN2022116022W WO2023030351A1 WO 2023030351 A1 WO2023030351 A1 WO 2023030351A1 CN 2022116022 W CN2022116022 W CN 2022116022W WO 2023030351 A1 WO2023030351 A1 WO 2023030351A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
candidate
frequency resource
signal
resource block
Prior art date
Application number
PCT/CN2022/116022
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to CN202280007338.2A priority Critical patent/CN116584069A/zh
Publication of WO2023030351A1 publication Critical patent/WO2023030351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a sidelink-related transmission scheme and device in wireless communication.
  • SL Segment, secondary link
  • Rel-16 Release-16, version 16
  • NR SL New Radio Sidelink, new air interface secondary link
  • V2X Vehicle-To-Everything, Internet of Vehicles
  • NR SL Rel-16 cannot fully support the business requirements and working scenarios identified by 3GPP for 5G V2X. Therefore 3GPP will study enhanced NR SL in Rel-17.
  • NR SL Rel-16 multiple retransmissions based on Hybrid Automatic Repeat reQuest (HARQ) are introduced into the V2X system, while allowing random resource selection, partially aware and fully aware UEs to share the same resource pool .
  • a low-priority UE User Equipment, user equipment
  • random resource selection mode cannot perform sensing, resulting in persistent resource conflict and interference to high-priority sensing UEs in the same resource pool.
  • random resource selection UE This effect is further exacerbated when multiple retransmissions occur.
  • the present application discloses a resource allocation method during retransmission, thereby effectively reducing the problem of resource conflicts among UEs using different resource allocation modes in a shared resource pool. It should be noted that, if there is no conflict, the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily. Further, although the original intention of this application is for SL, this application can also be used for UL (Uplink, uplink). Further, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for V2X scenarios
  • this application is also applicable to communication scenarios between terminals and base stations, terminals and relays, and relays and base stations, achieving similar technical effects in V2X scenarios.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the candidate resource set includes a plurality of candidate time-frequency resource blocks
  • the first bit block is used to generate the first signal, the first signal carries the K1th retransmission of the first bit block, the first bit block includes at least one bit, and K1 is a positive integer;
  • the first number of transmissions is equal to the number of transmissions selected by the first node, the first number of transmissions is a positive integer, and the K1 is smaller than the first number of transmissions;
  • the K1 is used to determine the target parameter value, and the target The parameter value is a non-negative positive integer, and at least the latter of the first number of transmissions and the target parameter value is used to determine the first candidate time-frequency resource block from the candidate resource set.
  • the problem to be solved in this application is: UEs using different resource allocation methods in the shared resource pool cause resource conflicts to aggravate due to retransmission.
  • the method of the present application is: when the number of retransmissions reaches a certain threshold, a backoff time is introduced before retransmission is performed.
  • the above method has the advantage of reducing the problem of aggravated shared resource conflicts caused by multiple retransmissions.
  • the above method is characterized in that it includes:
  • the first bit block is used to generate the second signal, and the second signal carries the K2th transmission of the first bit block, K2 is a positive integer not greater than the K1;
  • the second an acknowledgment signal is used to determine whether the first block of bits is correctly decoded, the first acknowledgment signal is earlier than the first signal, the first acknowledgment signal is later than the second signal;
  • Two candidate time-frequency resource blocks are used to determine the first feedback resource block;
  • the target parameter value is used to determine the difference between the first candidate time-frequency resource block and the second candidate time-frequency resource block relationship between.
  • the above method is characterized in that it includes:
  • the first bit block is used to generate the second signal, the second signal is earlier than the first signal; the first response signal indicates that the first bit block has not been correctly decoded, The first response signal is earlier than the first signal, and the first response signal is later than the second signal; the second candidate time-frequency resource block is used to determine the first feedback resource block; The target parameter value is used to determine the relationship between the first candidate time-frequency resource block and the second candidate time-frequency resource block.
  • the above method is characterized in that the target parameter value is equal to the K1.
  • the above method is characterized in that the target parameter value is equal to the difference of the first number of transmissions minus K1+1.
  • the above method is characterized in that the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than the first backoff time, and the target parameter value
  • the size relationship with the first threshold is used to determine the first backoff time
  • the first signaling indicates the first priority
  • the first threshold is related to the first priority or from the first resource pool At least one of the two ways of determining the candidate resource set is related.
  • the above method is characterized in that the first candidate time-frequency resource block is a candidate time-frequency resource block in a target resource subset, and the target resource subset belongs to the candidate resource set ;
  • the size relationship between the target parameter value and the first threshold is used to determine the target start time, the target start time is the start time of the target resource subset;
  • the first signaling indicates the first priority level, the first threshold is related to at least one of the first priority or a manner of determining the candidate resource set from the first resource pool.
  • the above method is characterized in that the target parameter value is equal to the K1; when the target parameter value is not greater than the first threshold, the target starting moment is the first starting moment; When the target parameter value is greater than the first threshold, the target start time is a second start time; the second start time is later than the first start time.
  • the above method is characterized in that the target parameter value is equal to the difference between the first number of transmissions minus K1+1; when the target parameter value is greater than the first threshold, the target The starting moment is the first starting moment; when the target parameter value is not greater than the first threshold, the target starting moment is the second starting moment; the second starting moment is later than the first starting moment start moment.
  • the above method is characterized in that the first number of transmissions, the delay budget of the remaining data packets and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the above method is characterized in that the first node is a user equipment.
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a base station.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the second signal carries a first bit block
  • the first signal carries the K1th retransmission carrying the first bit block
  • the first bit block includes at least one bit
  • K1 is a positive integer
  • the The second signal carries the K2th transmission of the first bit block, K2 is a positive integer not greater than the K1
  • the first response signal is used to indicate that the first bit block has not been correctly decoded, so The first response signal is earlier than the first signal, and the first response signal is later than the second signal
  • the second candidate time-frequency resource block is used to determine the first feedback resource block
  • the K1 is used to determine a target parameter value, the target parameter value is a non-negative positive integer, and the target parameter value is used to determine the first candidate time-frequency resource block and the second candidate time-frequency resource block
  • the above method is characterized in that the target parameter value is equal to the K1.
  • the above method is characterized in that the target parameter value is equal to the difference between the first number of transmissions minus K1+1, and the first number of transmissions is equal to the transmission selected by the sender of the first signal times, the first number of transmissions is a positive integer, and the K1 is smaller than the first number of transmissions.
  • the above method is characterized in that the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than a first backoff time, and the first backoff The time is related to the size relationship between the target parameter value and the first threshold, and the first threshold is related to at least one of the first priority or the way the sender of the first signal determines the candidate resource set ; Both the first candidate time-frequency resource block and the second candidate time-frequency resource block belong to the candidate resource set.
  • the above method is characterized in that the first candidate time-frequency resource block is a candidate time-frequency resource block in a target resource subset, and the target resource subset belongs to the candidate resource set ;
  • the size relationship between the target parameter value and the first threshold is used to determine the target start time, the target start time is the start time of the target resource subset; the first threshold and the first priority Or at least one of the manners in which the sender of the first signal determines the candidate resource set from the first resource pool is related.
  • the above method is characterized in that the target parameter value is equal to the K1; when the target parameter value is not greater than the first threshold, the target starting moment is the first starting moment; When the target parameter value is greater than the first threshold, the target start time is a second start time; the second start time is later than the first start time.
  • the above method is characterized in that the target parameter value is equal to the difference between the first number of transmissions minus K1+1; when the target parameter value is greater than the first threshold, the target The starting moment is the first starting moment; when the target parameter value is not greater than the first threshold, the target starting moment is the second starting moment; the second starting moment is later than the first starting moment start moment.
  • the above method is characterized in that the first number of transmissions, the delay budget of the remaining data packets and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a base station.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives first signaling, where the first signaling indicates a first resource pool
  • the first processor determines a candidate resource set from the first resource pool, where the candidate resource set includes multiple candidate time-frequency resource blocks;
  • the first transmitter sends a first signal on a first candidate time-frequency resource block, where the first candidate time-frequency resource block is a candidate time-frequency resource block in the candidate resource set;
  • the first bit block is used to generate the first signal, the first signal carries the K1th retransmission of the first bit block, the first bit block includes at least one bit, and K1 is a positive integer;
  • the first number of transmissions is equal to the number of transmissions selected by the first node, the first number of transmissions is a positive integer, and the K1 is smaller than the first number of transmissions;
  • the K1 is used to determine the target parameter value, and the target The parameter value is a non-negative positive integer, and at least the latter of the first number of transmissions and the target parameter value is used to determine the first candidate time-frequency resource block from the candidate resource set.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second receiver receiving a second signal on a second candidate time-frequency resource block, where the second candidate time-frequency resource block is a time-frequency resource block in the first resource pool;
  • a second transmitter sending a first response signal on the first feedback resource block
  • the second receiver receives the first signal on a first candidate time-frequency resource block, where the first candidate time-frequency resource block is a time-frequency resource block in the first resource pool;
  • the second signal carries a first bit block
  • the first signal carries the K1th retransmission carrying the first bit block
  • the first bit block includes at least one bit
  • K1 is a positive integer
  • the The second signal carries the K2th transmission of the first bit block, K2 is a positive integer not greater than the K1
  • the first response signal is used to indicate that the first bit block has not been correctly decoded, so The first response signal is earlier than the first signal, and the first response signal is later than the second signal
  • the second candidate time-frequency resource block is used to determine the first feedback resource block
  • the K1 is used to determine a target parameter value, the target parameter value is a non-negative positive integer, and the target parameter value is used to determine the first candidate time-frequency resource block and the second candidate time-frequency resource block
  • this application has the following advantages:
  • UEs adopting different resource allocation methods in the shared resource pool cause resource conflicts to aggravate due to retransmission.
  • the application determines a backoff time according to the relationship between the number of retransmission times and the first threshold, and then performs retransmission.
  • the present application reduces the problem of aggravated shared resource conflicts caused by multiple retransmissions.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between a candidate resource set, a second candidate time-frequency resource block, a first feedback resource block, and a first candidate time-frequency resource block according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of the relationship between the first candidate time-frequency resource block, the second candidate time-frequency resource block and the first backoff time according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of the relationship between the first start time, the second start time, the target resource subset and the target start time according to an embodiment of the present application
  • FIG. 9 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
  • Fig. 10 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node in an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application first executes step 101 to receive the first signaling indicating the first resource pool; then executes step 102 to determine from the first resource pool A set of candidate resources, the set of candidate resources includes a plurality of candidate time-frequency resource blocks; finally, step 103 is executed to send a first signal on the first candidate time-frequency resource block, and the first candidate time-frequency resource block
  • the block is a candidate time-frequency resource block in the candidate resource set;
  • the first bit block is used to generate the first signal, and the first signal carries the K1th retransmission of the first bit block , the first bit block includes at least one bit, K1 is a positive integer;
  • the first number of transmissions is equal to the number of transmissions selected by the first node, the first number of transmissions is a positive integer, and the K1 is less than the first number of transmissions
  • the number of times; the K1 is used to determine the target parameter value, the target parameter value is a non-negative positive integer, and at least the latter of the first
  • the first resource pool includes all or part of resources of a Sidelink Resource Pool (Sidelink Resource Pool).
  • Sidelink Resource Pool Sidelink Resource Pool
  • the first resource pool includes multiple time-frequency resource blocks.
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Control Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSFCH (Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSCCH and a PSSCH.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies multiple REs (Resource Elements, resource units).
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols (Symbol(s)) in the time domain
  • the first resource Any time-frequency resource block in the plurality of time-frequency resource blocks included in the pool occupies a positive integer number of subcarriers (Subcarrier(s)) in the frequency domain.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any one of the time-frequency resource blocks occupies a positive integer number of physical resource blocks (Physical Resource Block(s), PRB(s)) in the frequency domain.
  • Physical Resource Block(s), PRB(s) Physical Resource Block
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any time-frequency resource block in the time-frequency resource blocks occupies a positive integer number of subchannels (Subchannel(s)) in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of time slots (Slot(s)) in the time domain, and the first resource pool Any one of the multiple time-frequency resource blocks included in the frequency domain occupies a positive integer number of Subcarrier(s).
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of Slot(s) in the time domain, and the time-frequency resource blocks included in the first resource pool Any one of the multiple time-frequency resource blocks occupies a positive integer number of PRB(s) in the frequency domain.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of Slot(s) in the time domain, and the time-frequency resource blocks included in the first resource pool Any one of the multiple time-frequency resource blocks occupies a positive integer number of Subchannel(s) in the frequency domain.
  • the time-domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Slot(s).
  • the time-domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Symbol(s).
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Subchannel(s).
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of PRB(s).
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Subcarrier(s).
  • the first resource pool includes multiple time-domain resource blocks.
  • the first resource pool includes multiple time-domain resource blocks, and the multiple time-frequency resource blocks included in the first resource pool belong to all time-domain resource blocks included in the first resource pool.
  • the plurality of time-domain resource blocks are examples of time-domain resource blocks.
  • the first resource pool includes multiple time-domain resource blocks, and any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool is the first time-frequency resource block in the time domain.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies a positive integer number of Slot(s).
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies a positive integer number of Symbol(s).
  • the first resource pool includes multiple frequency domain resource blocks.
  • the first resource pool includes multiple frequency-domain resource blocks, and the multiple time-frequency resource blocks included in the first resource pool belong to all the resource blocks included in the first resource pool in the frequency domain.
  • the plurality of frequency domain resource blocks are configured to be used to generate the first resource pool.
  • the first resource pool includes a plurality of frequency domain resource blocks, and any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool is the first resource block in the frequency domain.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of Subcarrier(s).
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of PRB(s).
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of Subchannel(s).
  • the multi-carrier symbols in this application are SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • the multi-carrier symbols in this application are FDMA (Frequency Division Multiple Access, Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is an FBMC (Filter Bank Multi-Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an IFDMA (Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access
  • the first signaling includes all or part of higher layer signaling (Higher Layer Signaling).
  • the first signaling includes all or part of one RRC (Radio Resource Control, radio resource control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling includes all or part of a MAC (Multimedia Access Control, multimedia access control) layer signaling.
  • MAC Multimedia Access Control, multimedia access control
  • the first signaling includes one or more fields in a PHY (Physical Layer, physical layer) layer signaling.
  • PHY Physical Layer, physical layer
  • the first signaling includes one or more fields in an SCI (Sidelink Control Information, sidelink control information).
  • SCI Servicelink Control Information, sidelink control information
  • SCI refers to Section 8.3 and Section 8.4 of 3GPP TS38.212.
  • the first signaling includes one or more fields in a DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the channels occupied by the first signaling include at least one of PSCCH and PSSCH.
  • the first signaling indicates at least one of the first resource pool, the first priority, and the delay budget of remaining data packets.
  • the first signaling directly indicates the first resource pool.
  • the first signaling indirectly indicates the first resource pool.
  • the first signaling indicates the first priority.
  • the first signaling indicates a delay budget of remaining data packets (the remaining Packet Delay Budget, the remaining PDB).
  • the first signaling indicates the first resource pool, the first priority and the delay budget of the remaining data packets.
  • the first signaling indicates time domain resources occupied by the first resource pool.
  • the first signaling indicates frequency domain resources occupied by the first resource pool.
  • the first signaling includes multiple domains, and the first resource pool is at least one domain in the multiple domains included in the first signaling.
  • the first signaling includes multiple fields, the time domain resources occupied by the first resource pool, the frequency domain resources occupied by the first resource pool, the first priority and the The delay budgets of the remaining data packets are respectively at least four fields in the plurality of fields included in the first signaling.
  • the first resource pool includes the candidate resource set.
  • the candidate resource set includes multiple candidate time-frequency resource blocks.
  • any candidate time-frequency resource block in the plurality of candidate time-frequency resource blocks included in the candidate resource set is the plurality of time-frequency resource blocks included in the first resource pool A time-frequency resource block in .
  • the candidate resource set includes multiple candidate time-domain resource blocks.
  • any candidate time domain resource block in the plurality of candidate time domain resource blocks included in the candidate resource set is the plurality of time domain resource blocks included in the first resource pool A time-domain resource block in .
  • the time-domain resource occupied by any candidate time-frequency resource block among the plurality of candidate time-frequency resource blocks included in the candidate resource set is the time-domain resource included in the candidate resource set.
  • the candidate resource set includes multiple candidate frequency domain resource blocks.
  • any candidate frequency domain resource block in the plurality of candidate frequency domain resource blocks included in the candidate resource set is the plurality of frequency domain resource blocks included in the first resource pool A frequency-domain resource block in .
  • the frequency domain resources occupied by any of the multiple candidate time-frequency resource blocks included in the candidate resource set are the frequency domain resources included in the candidate resource set.
  • the multiple candidate time-frequency resource blocks included in the candidate resource set are available resources used for transmitting SL.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the plurality of candidate time-frequency resource blocks included in the candidate resource set.
  • the first candidate time-frequency resource block and the second candidate time-frequency resource block are respectively two of the plurality of candidate time-frequency resource blocks included in the candidate resource set Alternative time-frequency resource blocks.
  • the first candidate time-frequency resource block is randomly selected from the multiple candidate time-frequency resource blocks included in the candidate resource set.
  • the first candidate time-frequency resource block and the second candidate time-frequency resource block are respectively randomly selected from the multiple candidate time-frequency resource blocks included in the candidate resource set out.
  • the first candidate time-frequency resource block is used as a retransmission opportunity (retransmission opportunity).
  • the second candidate time-frequency resource block is used as a retransmission opportunity.
  • the second candidate time-frequency resource block is used as an initial transmission opportunity (initial transmission opportunity).
  • the first candidate time-frequency resource block and the second candidate time-frequency resource block are respectively randomly selected from the multiple candidate time-frequency resource blocks included in the candidate resource set
  • the first candidate time-frequency resource block and the second candidate time-frequency resource block are respectively used as two retransmission opportunities.
  • the first candidate time-frequency resource block and the second candidate time-frequency resource block are respectively randomly selected from the multiple candidate time-frequency resource blocks included in the candidate resource set
  • the second candidate time-frequency resource block is used as an initial transmission opportunity
  • the first candidate time-frequency resource block is used as a retransmission opportunity.
  • the first bit block is used to generate the first signal and the second signal respectively, and the first signal and the second signal are respectively in the first candidate time-frequency resource block and the second candidate time-frequency resource block.
  • both the first signal and the second signal carry the first bit block, and the first signal and the second signal are respectively in the first candidate time-frequency resource block and the sent on the second candidate time-frequency resource block.
  • the first candidate time-frequency resource block and the second candidate time-frequency resource block are time division multiplexed (Time Division Multiplexing, TDM).
  • TDM Time Division Multiplexing
  • the first candidate time-frequency resource block is later than the second candidate time-frequency resource block in the time domain.
  • the time domain resource occupied by the first candidate time-frequency resource block is later than the time domain resource occupied by the second candidate time-frequency resource block.
  • the first signal includes a baseband signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a wireless signal.
  • the first signal is transmitted on the PSCCH.
  • the first signal is transmitted on the PSSCH.
  • the first signal is transmitted on the PSCCH and the PSSCH.
  • the first signal includes all or part of a higher layer signaling.
  • the first signal includes the first bit block, and the first bit block includes at least one bit.
  • the first bit block in the first signal is transmitted on a PSSCH.
  • the first bit block in the first signal comes from SL-SCH (Sidelink Shared Channel, sidelink shared channel).
  • the first bit block includes a positive integer number of bits, and all or some of the positive integer number of bits included in the first bit block are used to generate the first signal.
  • the first bit block includes 1 CW (Codeword, codeword).
  • the first bit block includes 1 CB (Code Block, coding block).
  • the first bit block includes 1 CBG (Code Block Group, coding block group).
  • the first bit block includes 1 TB (Transport Block, transport block).
  • all or part of the bits of the first bit block undergo transmission block-level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) attachment (Attachment), code block segmentation (Code Block Segmentation), code block Level CRC attachment, channel coding (Channel Coding), rate matching (Rate Matching), code block concatenation (Code Block Concatenation), scrambling (scrambling), modulation (Modulation), layer mapping (Layer Mapping), antenna port mapping (Antenna Port Mapping), mapped to physical resource blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first signal.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the first signal is that the first bit block sequentially passes through a modulation mapper (Modulation Mapper), a layer mapper (Layer Mapper), a precoding (Precoding), and a resource element mapper (Resource Element Mapper) , the output after multi-carrier symbol generation (Generation).
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding Precoding
  • Resource Element Mapper resource element mapper
  • the channel coding is based on polar codes.
  • the channel coding is based on an LDPC (Low-density Parity-Check, low-density parity check) code.
  • LDPC Low-density Parity-Check, low-density parity check
  • the first signal includes first sub-signaling and the first bit block.
  • the first sub-signaling in the first signal is used to schedule the first bit block in the first signal.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first signal.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first signal, and the time-frequency resource occupied by the first signal belongs to the first candidate Time-frequency resource block.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first bit block in the first signal
  • the first sub-signaling in the first signal The time-frequency resource occupied by a bit block belongs to the first candidate time-frequency resource block.
  • the first sub-signaling in the first signal indicates the first candidate time-frequency resource block.
  • the first sub-signaling in the first signal indicates a modulation and coding scheme (Modulation and Coding Scheme, MCS) experienced by the first bit block in the first signal.
  • MCS Modulation and Coding Scheme
  • the first sub-signaling in the first signal indicates a demodulation reference signal (Demodulation Reference Signal, DMRS) used by the first signal.
  • DMRS Demodulation Reference Signal
  • the first signal includes one or more fields.
  • the first signal includes one or more fields in one SCI.
  • the first bit block is retransmitted K1 times
  • the first signal carries a K1-th retransmission of the K1 retransmissions of the first bit block
  • K1 is a positive integer
  • the first bit block is retransmitted K1 times
  • the first signal includes a K1-th retransmission among the K1 retransmissions of the first bit block
  • K1 is a positive integer
  • the first bit block is retransmitted K1 times
  • the first signal is a K1th retransmission in the K1 retransmissions of the first bit block
  • K1 is a positive integer
  • the first bit block is transmitted K1+1 times, the first signal carries the K1+1th transmission in the K1+1 transmissions of the first bit block, and the K1 is a positive integer .
  • the first bit block is transmitted K1+1 times, the first signal includes the K1+1th transmission in the K1+1 transmissions of the first bit block, and the K1 is a positive integer .
  • the first bit block is transmitted K1+1 times
  • the first signal is the K1+1th transmission in the K1+1 transmissions of the first bit block
  • K1 is a positive integer
  • the first bit block is used to generate the first target signal and K1 first-type signals respectively, the first target signal and the K1 first-type signals are transmitted sequentially, and K1 is a positive integer .
  • the first bit block is used to generate the first target signal and K1 first-type signals respectively, and the first target signal and the K1 first-type signals are respectively transmitted in K1+1 Opportunities are transmitted sequentially, and K1 is a positive integer.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal carries the initial transmission of the first bit block
  • the K1 first-type signals Any first-type signal in one type of signal carries a retransmission of the first bit block.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal carries the initial transmission of the first bit block
  • the K1 first-type signals One type of signal respectively carries K1 retransmissions of the first bit block.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal carries the initial transmission of the first bit block
  • the K1 first-type signals One type of signal respectively carries K1 retransmissions of the first bit block;
  • the first signal is the K1th first type signal among the K1 first type signals, and the first signal carries the K1th first type signal K1-th retransmission among the K1 retransmissions of one bit block, where K1 is a positive integer.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal is the initial transmission of the first bit block
  • the K1 first-type signals One type of signal is K1 retransmissions of the first bit block; the first signal is a first type signal among the K1 first type signals, and the first signal is the retransmission of the first bit block The K1th retransmission in the K1 retransmissions, where K1 is a positive integer.
  • the K1 is equal to 1.
  • the K1 is equal to 2.
  • the K1 is equal to 31.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals, the first target signal is transmitted on an initial transmission opportunity, and the K1 first-type signals are respectively Transmit on K1 retransmission opportunities; the first signal is a first-type signal among the K1 first-type signals, the first signal is transmitted on the K1 retransmission opportunity, and K1 is a positive integer.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals, the first target signal is transmitted on an initial transmission opportunity, and the K1 first-type signals are respectively Transmission on K1 retransmission opportunities; the first signal is a first-type signal among the K1 first-type signals, and the first signal is on the last retransmission opportunity among the K1 retransmission opportunities Transmission, K1 is a positive integer.
  • the initial transmission opportunity occupies a candidate time-frequency resource block in the candidate resource set.
  • the K1 retransmission opportunities respectively occupy K1 candidate time-frequency resource blocks in the candidate resource set, and the K1 candidate time-frequency resource blocks are TDM.
  • the one candidate time-frequency resource block in the candidate resource set occupied by the initial transmission opportunity is earlier in the time domain than the candidate resource set occupied by the K1 retransmission opportunities Any candidate time-frequency resource block in the K1 candidate time-frequency resource blocks in .
  • the K1 retransmission opportunities respectively occupy K1 candidate time-frequency resource blocks in the candidate resource set
  • the K1 candidate time-frequency resource blocks are TDM
  • the first The selected time-frequency resource block is the latest time-frequency resource block candidate in the time domain among the K1 candidate time-frequency resource blocks.
  • the first number of transmission times is a positive integer.
  • the first number of transmissions is equal to the number of transmissions selected by the first node.
  • the first number of transmissions is equal to the maximum number of transmissions selected by the first node.
  • the first number of transmissions is equal to the maximum number of transmissions of the first bit block selected by the first node.
  • the first number of transmissions is equal to the maximum number of transmissions of the PSSCH selected by the first node.
  • the first number of transmissions is equal to the selected number of HARQ retransmissions (the selected number of HARQ retransmissions).
  • the first number of transmissions is equal to the number of HARQ retransmissions selected by the first node.
  • the number of transmissions selected by the first node is the maximum number of transmissions of the first bit block.
  • the number of transmissions selected by the first node is the maximum number of transmissions of one TB.
  • the number of transmissions selected by the first node is the maximum number of transmissions of one MAC PDU.
  • the number of transmissions selected by the first node is a maximum number of transmissions of a PSSCH.
  • the number of transmissions selected by the first node is the number of HARQ retransmissions.
  • the first number of transmissions is configured by higher layer signaling.
  • the first number of transmissions is SL-MaxTransNum.
  • SL-MaxTransNum refers to 3GPP TS38.331.
  • the first number of transmissions is a positive integer among 32 consecutive positive integers ranging from 1 to 32.
  • the first number of transmissions is a positive integer selected from K consecutive positive integers from 1 to K, and K is a positive integer not greater than 32.
  • the first number of transmissions is a positive integer selected by the first node from K consecutive positive integers from 1 to K, where K is a positive integer not greater than 32.
  • the K is indicated by higher layer signaling.
  • the K is indicated by sl-MaxTxTransNumPSSCH signaling.
  • the definition of sl-MaxTransNumPSSCH signaling refers to 3GPP TS38.331.
  • the K1 is smaller than the first number of transmissions.
  • the K1 is equal to the first number of transmissions minus 1.
  • the K1 is a positive integer less than the first number of transmissions.
  • the K1 is used to determine the target parameter value.
  • the target parameter value is equal to a linear function of the K1.
  • the target parameter value is equal to the sum of the K1 and a first offset value, and the first offset value is a positive integer.
  • the target parameter value is equal to a difference between the K1 and a first offset value, and the first offset value is a positive integer.
  • the target parameter value is equal to the K1.
  • the K1 and the first number of transmissions are jointly used to determine the target parameter value.
  • the target parameter value is equal to a linear function of the K1 and the first number of transmissions.
  • the target parameter value is equal to a difference between the first number of transmissions and the linear subtraction of K1.
  • the target parameter value is equal to the difference between the first number of transmissions minus the K1.
  • the target parameter value is equal to a difference between the first number of transmissions minus K1+1.
  • the target parameter value is equal to the first number of transmissions minus the difference between K1 and a second offset value, where the second offset value is a positive integer.
  • the second offset value is equal to 1.
  • the target parameter value is a non-negative integer.
  • the target parameter value is a positive integer.
  • the target parameter value is equal to 0.
  • At least the latter of the first number of transmissions and the target parameter value is used to determine the first candidate time-frequency resource block from the candidate resource set.
  • the target parameter value is used to determine the first candidate time-frequency resource block from the multiple candidate time-frequency resource blocks included in the candidate resource set.
  • the first number of transmission times and the target parameter value are jointly used to determine the first candidate time-frequency resource block from the candidate resource set.
  • the first number of transmissions and the K1 are used to determine the target parameter value, and the target parameter value is used for the plurality of candidate time-frequency options included in the candidate resource set
  • the first candidate time-frequency resource block is determined in the resource block.
  • the first candidate time-frequency resource block is related to the target parameter value and the second candidate time-frequency resource block in this application.
  • the target parameter value and the second candidate time-frequency resource block in this application are jointly used to determine the first candidate time-frequency resource block from the candidate time-frequency resource set.
  • the target parameter value is used to determine the first candidate time-frequency resource block from the candidate time-frequency resource set, and the first candidate time-frequency resource block is the same as the The second candidate time-frequency resource block is related.
  • the first candidate time-frequency resource block is related to at least the last two of the first number of transmissions, the target parameter value and the second candidate time-frequency resource block in this application .
  • the first candidate time-frequency resource block is related to the first number of transmissions, the target parameter value and the second candidate time-frequency resource block in this application.
  • At least the first two of the first number of transmissions, the target parameter value and the second candidate time-frequency resource block in this application are used to determine from the candidate resource set The first candidate time-frequency resource block.
  • At least the last two of the first number of transmissions, the target parameter value and the second candidate time-frequency resource block in this application are used to determine from the set of candidate resources The first candidate time-frequency resource block.
  • the first number of transmissions, the target parameter value and the second candidate time-frequency resource block in this application are jointly used to determine the first candidate resource block from the candidate resource set. Select a time-frequency resource block.
  • both the first number of transmissions and the target parameter value are used to determine the first candidate time-frequency resource block from the candidate resource set, and the first candidate time-frequency The resource block is related to the second candidate time-frequency resource block in this application.
  • the first number of transmissions and the K1 are used to determine the target parameter value, and the target parameter value and the second candidate time-frequency resource block in this application are used together to obtain the The first candidate time-frequency resource block is determined from the multiple candidate time-frequency resource blocks included in the candidate resource set.
  • the first number of transmissions and the K1 are used to determine the target parameter value, and the target parameter value is used for the plurality of candidate time-frequency options included in the candidate resource set
  • the first candidate time-frequency resource block is determined in the resource block, and the first candidate time-frequency resource block is related to the second candidate time-frequency resource block in this application.
  • the frequency domain resource occupied by the second candidate time-frequency resource block in this application is used to determine the frequency domain resource occupied by the first candidate time-frequency resource block; the target parameter value is determined by It is used to determine the first candidate time-frequency resource block.
  • the frequency domain resource occupied by the second candidate time-frequency resource block in this application is used to determine the frequency domain resource occupied by the first candidate time-frequency resource block from the candidate resource set Resource: the target parameter value is used to determine the time-domain resource occupied by the first candidate time-frequency resource block from the candidate resource set.
  • the frequency domain resource occupied by the second candidate time-frequency resource block in this application is used to determine the frequency domain resource occupied by the first candidate time-frequency resource block; the target parameter value and The time domain resource occupied by the second candidate time-frequency resource block is used to determine the time domain resource occupied by the first candidate time-frequency resource block.
  • the frequency domain resource occupied by the second candidate time-frequency resource block in this application is used to determine the frequency domain resource occupied by the first candidate time-frequency resource block from the candidate resource set resources; the target parameter value and the time domain resource occupied by the second candidate time-frequency resource block are used to determine the time occupied by the first candidate time-frequency resource block from the candidate resource set Domain resources.
  • the second candidate time-frequency resource block is used to determine the first feedback resource block, and the target parameter value and the first feedback resource block are used to determine the The first candidate time-frequency resource block is determined in the resource set.
  • the frequency domain resource occupied by the second candidate time-frequency resource block is used to determine the frequency domain resource occupied by the first candidate time-frequency resource block; the target parameter value and the The time-domain resources occupied by the first feedback resource block are used to determine the first candidate time-frequency resource block.
  • the difference between the first number of transmissions and the target parameter value is used to determine the first candidate time-frequency resource block from the multiple candidate time-frequency resource blocks included in the candidate resource set. frequency resource block.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1, and the target parameter value is used for the multiple candidate time frequencies included in the candidate resource set
  • the first candidate time-frequency resource block is determined in the resource block.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • Accompanying drawing 2 illustrates 5G NR, the diagram of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS200 may include one or more UE (User Equipment, User Equipment) 201, a UE241 for sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS May be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiver Node
  • examples of gNB 203 include satellites, aircraft or ground base stations relayed through satellites.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the UE241.
  • the user equipment in this application includes the UE201.
  • the user equipment in this application includes the UE241.
  • the base station equipment in this application includes the gNB203.
  • the sender of the first signaling in this application includes the UE201.
  • the receiver of the first signaling in this application includes the UE201.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the UE241.
  • the sender of the second signal in this application includes the UE201.
  • the receiver of the second signal in this application includes the UE241.
  • the sender of the first response signal in this application includes the UE241.
  • the receiver of the first response signal in this application includes the UE201.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows three layers for a first node device (UE or RSU in V2X, vehicle equipment or vehicle communication module) ) and the second node device (gNB, UE or RSU in V2X, vehicle device or vehicle communication module), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • L1 layer will be referred to herein as PHY 301.
  • a layer 2 (L2 layer) 305 is above the PHY 301, through which the PHY 301 is responsible for the link between the first node device and the second node device and the two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides handoff support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and implements retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the communication between the second node device and the first node device RRC signaling to configure the lower layers.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and a network layer terminating at the other end of the connection.
  • Application layer at eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • the first signal in this application is generated by the PHY301.
  • the first signal in this application is generated in the MAC sublayer 302 .
  • the first signal in this application is generated in the RRC sublayer 306 .
  • the first signal in this application is transmitted to the PHY 301 through the MAC sublayer 302 .
  • the second signal in this application is generated by the PHY301.
  • the second signal in this application is generated in the MAC sublayer 302 .
  • the second signal in this application is generated in the RRC sublayer 306 .
  • the second signal in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • the first response signal in this application is generated by the PHY301.
  • the first response signal in this application is generated in the MAC sublayer 302 .
  • the first response signal in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a user equipment
  • the second node is a base station
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is a relay node
  • the second node is a relay node
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving first signaling, where the first signaling indicates a first resource pool; determining a candidate resource set from the first resource pool, where the candidate resource set includes multiple A candidate time-frequency resource block; sending a first signal on the first candidate time-frequency resource block, where the first candidate time-frequency resource block is a candidate time-frequency resource block in the set of candidate resources;
  • the first bit block is used to generate the first signal, the first signal carries the K1th retransmission of the first bit block, the first bit block includes at least one bit, and K1 is a positive integer; the first The number of transmissions is equal to the number of transmissions selected by the first node, the first number of transmissions is a positive integer, and the K1 is smaller than the first number of transmissions; the K1 is used to
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A signaling, the first signaling indicates a first resource pool; determine a candidate resource set from the first resource pool, the candidate resource set includes a plurality of candidate time-frequency resource blocks; The first signal is sent on the selected time-frequency resource block, and the first candidate time-frequency resource block is a candidate time-frequency resource block in the candidate resource set; the first bit block is used to generate the first signal, the first signal carries the K1th retransmission of the first bit block, the first bit block includes at least one bit, K1 is a positive integer; the first number of transmissions is equal to the number of transmissions selected by the first node Times, the first number of transmissions is a positive integer, the K1 is less than the first number of transmissions; the K1 is used to determine the target parameter value, the target parameter value is a non-negative positive integer
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: receiving a second signal on a second candidate time-frequency resource block, where the second candidate time-frequency resource block is a time-frequency resource block in the first resource pool; Sending a first response signal on a feedback resource block; receiving the first signal on a first candidate time-frequency resource block, where the first candidate time-frequency resource block is a time-frequency resource block in the first resource pool ;
  • the second signal carries a first bit block, the first signal carries the K1th retransmission of the first bit block, the first bit block includes at least one bit, and K1 is a positive integer;
  • the second signal is earlier than the first signal; the first acknowledgment signal is used to indicate that the first block of bits has not been correctly decoded, the first acknowledgment signal is earlier than the first signal,
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: Receive a second signal on two candidate time-frequency resource blocks, the second candidate time-frequency resource block is a time-frequency resource block in the first resource pool; send a first response signal on the first feedback resource block; receiving a first signal on a first candidate time-frequency resource block, where the first candidate time-frequency resource block is a time-frequency resource block in the first resource pool; the second signal carries a first bit block, The first signal carries the K1th retransmission of the first bit block, the first bit block includes at least one bit, and K1 is a positive integer; the second signal is earlier than the first signal; the A first acknowledgment signal is used to indicate that the first block of bits was not correctly decoded, the first acknowledgment signal is earlier than the first signal, the first acknowledgment signal is later than the second signal; The second candidate time-frequency resource block is used to determine
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in the present application to determine a set of candidate resources from the first resource pool.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for transmitting the second signal on the second candidate time-frequency resource block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first acknowledgment signal on the first feedback resource block in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for sending the first signal on the first candidate time-frequency resource block in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used for receiving the second signal on the second candidate time-frequency resource block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One is used for sending the first response signal on the first feedback resource block in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used for receiving the first signal on the first candidate time-frequency resource block in this application.
  • Embodiment 5 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the first signaling is received in step S11; the candidate resource set is determined from the first resource pool in step S12; the second signal is sent on the second candidate time-frequency resource block in step S13 ; In step S14, the first response signal is received on the first feedback resource block; in step S15, the first signal is sent on the first candidate time-frequency resource block.
  • For the second node U2 receive the second signal on the second candidate time-frequency resource block in step S21; send the first response signal on the first feedback resource block in step S22; The first signal is received on the selected time-frequency resource block.
  • the first signaling indicates a first resource pool; the candidate resource set includes multiple candidate time-frequency resource blocks; the first candidate time-frequency resource block and the second candidate resource block
  • the selected time-frequency resource block is a candidate time-frequency resource block in the candidate resource set;
  • the first bit block is used to generate the first signal and the second signal respectively, and the first signal carries the The K1th retransmission of the first bit block, the second signal carries the K2th transmission of the first bit block, the first bit block includes at least one bit, K1 is a positive integer, and K2 is not greater than the specified
  • the first number of transmissions is equal to the number of transmissions selected by the first node, the first number of transmissions is a positive integer, and the K1 is smaller than the first number of transmissions;
  • the K1 is used to determine the target A parameter value, the target parameter value is a non-negative positive integer, at least the latter of the first number of transmissions and the target parameter value is used to determine the first candidate from
  • the first response signal indicates that the first bit block is not correctly decoded.
  • the first response signal being used to determine whether the first bit block is correctly decoded includes the first response signal indicating that the first bit block is not correctly decoded.
  • the target parameter value is equal to the K1.
  • the target parameter value is equal to a difference between the first number of transmissions minus K1+1.
  • the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than the first backoff time, and the relationship between the target parameter value and the first threshold is determined by For determining the first backoff time, the first signaling indicates a first priority, the first threshold and the first priority or determine the candidate resource set from the first resource pool in at least one of the two ways.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the target resource subset, and the target resource subset belongs to the candidate resource set;
  • the target parameter value is the same as the first
  • a magnitude relationship of a threshold is used to determine a target start time, the target start time is equal to the start time of the target resource subset;
  • the first signaling indicates a first priority, and the first threshold and At least one of the first priority or the manner of determining the candidate resource set from the first resource pool is related.
  • the target parameter value is equal to the K1; when the target parameter value is not greater than the first threshold, the target starting moment is the first starting moment; when the target parameter value is greater than the
  • the target start time is a second start time; the second start time is later than the first start time.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; when the target parameter value is greater than the first threshold, the target start time is the first start time ; When the target parameter value is not greater than the first threshold, the target start time is a second start time; the second start time is later than the first start time.
  • the first number of transmissions, the delay budget of the remaining data packets and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the first node U1 and the second node U2 communicate through the PC5 interface.
  • the first signaling is sent by a higher layer of the first node U1 to a physical layer of the first node U1.
  • the higher layer of the first node U1 includes at least one of the RRC layer of the first node U1 or the MAC layer of the first node U1.
  • the first signaling is sent by a higher layer of the first node U1.
  • the first signaling is received by the physical layer of the first node U1.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the candidate resource set, the second candidate time-frequency resource block, the first feedback resource block, and the first candidate time-frequency resource block according to an embodiment of the present application, as shown in the accompanying drawing 6.
  • the dotted big box represents the candidate resource set in this application; the diagonal filled rectangle represents the second candidate time-frequency resource block in this application; the diagonal filled rectangle represents the first resource block in this application Feedback resource block; the rectangle filled with squares represents the first candidate time-frequency resource block in this application.
  • the first bit block in the present application is used to generate the second signal and the first signal respectively, and the first signal carries the K1th retransmission of the first bit block,
  • the second signal carries the K2th transmission of the first bit block, K1 is a positive integer, and K2 is a positive integer not greater than K1;
  • the first response signal is used to determine whether the first bit block is correctly decoded, the first acknowledgment signal is earlier than the first signal, and the first acknowledgment signal is later than the second signal;
  • the first acknowledgment signal is transmitted on the first feedback resource block , the second candidate time-frequency resource block is used to determine the first feedback resource block;
  • the target parameter value is used to determine the first candidate time-frequency resource block and the second candidate time-frequency resource block The relationship between frequency resource blocks.
  • the second signal includes a baseband signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes a wireless signal.
  • the second signal is transmitted on the PSCCH.
  • the second signal is transmitted on the PSSCH.
  • the second signal is transmitted on the PSCCH and the PSSCH.
  • the second signal includes all or part of a higher layer signaling.
  • the second signal includes the first bit block, and the first bit block includes at least one bit.
  • the second signal carries the first bit block, and the first bit block includes at least one bit.
  • the first bit block is used to generate the second signal, and the first bit block includes at least one bit.
  • the first bit block in the second signal is transmitted on the PSSCH.
  • the first bit block in the second signal is from SL-SCH.
  • the first bit block includes a positive integer number of bits, and all or some of the positive integer number of bits included in the first bit block are used to generate the second signal.
  • all or some bits of the first bit block are sequentially subjected to transport block level CRC attachment, coding block segmentation, coding block level CRC attachment, channel coding, rate matching, coding block concatenation, scrambling, modulation, Layer mapping, antenna port mapping, mapping to physical resource blocks, baseband signal generation, modulation and frequency up-conversion to obtain the second signal.
  • the second signal is an output of the first bit block after sequentially passing through a modulation mapper, a layer mapper, precoding, a resource element mapper, and multi-carrier symbols.
  • the second signal includes the second sub-signaling and the first bit block.
  • the second sub-signaling in the second signal is used to schedule the first bit block in the second signal.
  • the second sub-signaling in the second signal indicates the time-frequency resource occupied by the second signal.
  • the second sub-signaling in the second signal indicates the time-frequency resource occupied by the second signal, and the time-frequency resource occupied by the second signal belongs to the second candidate Time-frequency resource block.
  • the second sub-signaling in the second signal indicates the time-frequency resource occupied by the second signal, and the time-frequency resource occupied by the second signal is the second candidate Time-frequency resource block.
  • the second sub-signaling in the second signal indicates the time-frequency resource occupied by the first bit block in the second signal, and the first bit block in the second signal
  • the time-frequency resource occupied by a bit block belongs to the second candidate time-frequency resource block.
  • the second sub-signaling in the second signal indicates the second candidate time-frequency resource block.
  • the second sub-signaling in the second signal indicates a modulation and coding mode experienced by the first bit block in the second signal.
  • the second sub-signaling in the second signal indicates a demodulation reference signal used by the second signal.
  • the second signal includes one or more fields.
  • the second signal includes one or more fields in one SCI.
  • the second signal includes an SCI.
  • the second signal includes a DCI.
  • the second signal carries the initial transmission of the first bit block.
  • the second signal includes an initial transmission of the first bit block.
  • the second signal is an initial transmission of the first bit block.
  • the first bit block is retransmitted K1 times
  • the second signal carries the K1-1th retransmission among the K1 retransmissions of the first bit block, and the K1 is greater than 1 positive integer of .
  • the first bit block is retransmitted K1 times
  • the second signal includes the K1-1th retransmission among the K1 retransmissions of the first bit block
  • the K1 is greater than 1 positive integer of .
  • the first bit block is retransmitted K1 times
  • the second signal is the K1-1th retransmission in the K1 retransmissions of the first bit block
  • the K1 is greater than 1 positive integer of .
  • the first bit block is retransmitted K1 times
  • the second signal carries the K2-1th retransmission in the K1 retransmissions of the first bit block
  • K2 is greater than 1 and not A positive integer greater than K1, where K1 is a positive integer greater than 1.
  • the first bit block is retransmitted K1 times
  • the second signal includes the K2-1th retransmission among the K1 retransmissions of the first bit block
  • K2 is greater than 1 and not A positive integer greater than K1, where K1 is a positive integer greater than 1.
  • the first bit block is retransmitted K1 times
  • the second signal is the K2-1th retransmission in the K1 retransmissions of the first bit block
  • K2 is greater than 1 and not A positive integer greater than K1, where K1 is a positive integer greater than 1.
  • the K2 is equal to the K1.
  • the K2 is greater than 1 and the K2 is smaller than the K1.
  • the first bit block is transmitted K1+1 times
  • the second signal carries the K2th transmission in the K1+1 transmissions of the first bit block
  • K2 is a positive number not greater than K1 Integer
  • the K1 is a positive integer
  • the first bit block is transmitted K1+1 times
  • the second signal includes the K2th transmission in the K1+1 transmissions of the first bit block
  • K2 is a positive value not greater than K1 Integer
  • the K1 is a positive integer
  • the first bit block is transmitted K1+1 times
  • the second signal is the K2th transmission in the K1+1 transmissions of the first bit block
  • K2 is a positive signal not greater than K1 Integer
  • the K1 is a positive integer
  • the K2 is equal to 1.
  • the K2 is equal to the K1.
  • the K2 is smaller than the K1.
  • the K1+1 transmissions of the first bit block include an initial transmission of the first bit block.
  • the K1+1 transmissions of the first bit block include initial transmission of the first bit block and K1 retransmissions of the first bit block.
  • the first bit block is transmitted K1+1 times, and the K1+1 transmissions of the first bit block include the initial transmission of the first bit block and the K1 times of the first bit block retransmission; the second signal carries the K2th transmission in the K1+1 transmissions of the first bit block, and the first signal carries the K1th transmission in the K1 retransmissions of the first bit block K1 times of retransmission, K1 is a positive integer, and K2 is a positive integer not greater than the K1.
  • the K2 is equal to 1
  • the K1 is equal to 1.
  • the K2 is equal to 1, and the K1 is greater than 1.
  • the K2 is equal to the K1.
  • the K2 is smaller than the K1.
  • the first bit block is transmitted K1+1 times; the second signal carries the K2th transmission in the K1+1 transmissions of the first bit block, and the first signal carries the In the K1+1th transmission of the K1+1 transmissions of the first bit block, K1 is a positive integer, and K2 is a positive integer not greater than the K1.
  • the first bit block is retransmitted K1 times; the second signal carries the K2-1th retransmission among the K1 retransmissions of the first bit block, and the first signal carries In the K1-th retransmission of the K1 retransmissions of the first bit block, K1 is a positive integer greater than 1, and K2 is a positive integer not greater than K1.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal carries the initial transmission of the first bit block
  • the K1 first-type signals One type of signal respectively carries K1 retransmissions of the first bit block
  • the second signal is the first target signal
  • the first signal is the K1th of the K1 first type signals
  • K1 is a positive integer.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal carries the initial transmission of the first bit block
  • the K1 first-type signals One type of signal respectively carries K1 retransmissions of the first bit block
  • the second signal is the K1-1th first type signal among the K1 first type signals
  • the first signal is the The K1-th first-type signal among the above-mentioned K1 first-type signals
  • K1 is a positive integer greater than 1.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals
  • the first target signal carries the initial transmission of the first bit block
  • the K1 first-type signals One type of signal respectively carries K1 retransmissions of the first bit block
  • the second signal is the K2th first type signal among the K1 first type signals
  • the first signal is the K1 K1-th first-type signal among the first-type signals
  • K1 is a positive integer greater than 1
  • K2 is a positive integer smaller than K1.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals, the first target signal is transmitted on an initial transmission opportunity, and the K1 first-type signals are respectively Transmission on K1 retransmission opportunities;
  • the first signal is a first-type signal among the K1 first-type signals, and the first signal is transmitted on the K1-th retransmission opportunity among the K1 retransmission opportunities
  • the second signal is the first target signal, and the second signal is transmitted on the first transmission opportunity;
  • K1 is a positive integer.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals, the first target signal is transmitted on an initial transmission opportunity, and the K1 first-type signals are respectively Transmission on K1 retransmission opportunities; the first signal and the second signal are two first-type signals in the K1 first-type signals respectively, and the first signal is in the K1 retransmission opportunities Transmit on the K1th retransmission opportunity; transmit the second signal on the K1-1th retransmission opportunity among the K1 retransmission opportunities; K1 is a positive integer greater than 1.
  • the first bit block is sequentially used to generate a first target signal and K1 first-type signals, the first target signal is transmitted on an initial transmission opportunity, and the K1 first-type signals are respectively Transmission on K1 retransmission opportunities; the first signal and the second signal are two first-type signals in the K1 first-type signals respectively, and the first signal is in the K1 retransmission opportunities Transmission on the K1th retransmission opportunity; the second signal is transmitted on the K2th retransmission opportunity among the K1 retransmission opportunities; K1 is a positive integer greater than 1, and K2 is a positive integer smaller than the K1 .
  • the first bit block is sequentially used to generate K2 first-type signals, and the K2 first-type signals respectively carry K2 transmissions of the first bit block;
  • the second signal is A K2-th first-type signal among the K2 first-type signals, the second signal carrying a K2-th transmission among the K2 transmissions of the first bit block, where K2 is a positive integer.
  • the first bit block is sequentially used to generate K2 first-type signals, and the K2 first-type signals respectively carry K2 transmissions of the first bit block, and the first bit block
  • the K2 transmissions include the initial transmission of the first bit block;
  • the second signal is the K2th first-type signal among the K2 first-type signals, and the second signal carries the first A K2-th transmission among the K2 transmissions of one bit block, where K2 is a positive integer.
  • the first bit block is sequentially used to generate K2 first-type signals, and the K2 first-type signals respectively carry K2 transmissions of the first bit block, and the first bit block
  • the K2 transmissions include the initial transmission of the first bit block;
  • the second signal is the K2th first-type signal among the K2 first-type signals, and the second signal carries the first
  • the last transmission among the K2 transmissions of one bit block, K2 is a positive integer.
  • the first bit block is sequentially used to generate K1+1 first-type signals, and the K1+1 first-type signals respectively carry K1+1 transmissions of the first bit block;
  • the second signal is the K2th first-type signal among the K1+1 first-type signals, and the second signal carries the K2th in the K1+1 transmission of the first bit block transmission times, K1 is a positive integer, and K2 is a positive integer not greater than the K1.
  • the first bit block is sequentially used to generate K1+1 first-type signals, and the K1+1 first-type signals respectively carry K1+1 transmissions of the first bit block
  • the K1+1 transmissions of the first bit block include the initial transmission of the first bit block;
  • the second signal is the K2th first type signal among the K1+1 first type signals , the second signal carries the K2th transmission in the K1+1 transmissions of the first bit block, K1 is a positive integer, and K2 is a positive integer not greater than the K1.
  • the first response signal is sent on PSFCH.
  • the first response signal is sent on the first feedback resource block.
  • the first response signal is sent.
  • the first response signal is sent on the first feedback resource block.
  • the first response signal is sent on the PSFCH.
  • the first response signal is used to determine whether the first bit block is decoded correctly.
  • the first response signal indicates that the first bit block is not correctly decoded, or that the first bit block is correctly decoded.
  • the first response signal indicates that the first bit block is not correctly decoded.
  • the first response signal indicates that the first bit block is correctly decoded.
  • phase rotations of the first sequence are respectively used to indicate whether the first bit block is decoded correctly.
  • the first phase rotation of the first sequence is one of the multiple phase rotations of the first sequence, and the first phase rotation of the first sequence is used to indicate The first block of bits was not correctly decoded.
  • the second phase rotation of the first sequence is one of the multiple phase rotations of the first sequence, and the second phase rotation of the first sequence is used to indicate The first block of bits is decoded correctly.
  • the first phase rotation is different from the second phase rotation.
  • the frequency domain resource occupied by the first feedback resource block is one frequency domain resource block in the plurality of frequency domain resource blocks included in the candidate resource set.
  • the first feedback resource block occupies one frequency domain resource block among multiple frequency domain resource blocks.
  • the first response signal includes HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) information.
  • HARQ Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request
  • the first response signal includes HARQ-ACK (Hybrid Automatic Repeat Request-Acknowledge, Hybrid Automatic Repeat Request-Acknowledge) information.
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledge, Hybrid Automatic Repeat Request-Acknowledge
  • the first response signal includes ACK (Acknowledgment, confirmation) or NACK (Negative Acknowledgment, negative response).
  • the first response signal only includes NACK.
  • the first response signal includes a first sequence.
  • the first sequence is used to generate the first response signal.
  • the first sequence is a pseudo-random sequence (Pseudo-Random Sequence).
  • the first sequence is a low peak-to-average ratio sequence (Low-PAPR Sequence, Low-Peak to Average Power Ratio).
  • the first sequence is Low-PAPR sequence type 1.
  • the first sequence is Low-PAPR sequence type 2.
  • Low-PAPR sequence type 1 refers to section 5.2.2 of 3GPP TS38.211.
  • Low-PAPR sequence type 1 refers to section 5.2.3 of 3GPP TS38.211.
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a ZC (Zadeoff-Chu) sequence.
  • the first sequence is obtained after sequence generation (Sequence Generation), discrete Fourier transform, modulation (Modulation) and resource element mapping (Resource Element Mapping), and broadband symbol generation (Generation). answer signal.
  • the length of the first sequence is 12.
  • the first response signal is mapped to multiple REs occupied by the first feedback resource block.
  • the correct decoding of the first bit block includes: performing channel decoding on the second signal, and a result of performing channel decoding on the second signal passes a CRC check.
  • the correct decoding of the first bit block includes: performing channel decoding on the K2 first-type signals, and the results of performing channel decoding on the K2 first-type signals pass the CRC check , the second signal is a first-type signal among the K2 first-type signals, and K2 is a positive integer.
  • the correct decoding of the first bit block includes: performing channel decoding and soft combining on the K2 first-type signals, and performing channel decoding and soft combining on the K2 first-type signals The result is checked by CRC, the second signal is one of the K2 first-type signals, and K2 is a positive integer.
  • the correct decoding of the first bit block includes: the first bit block is sequentially used to generate K2 first-type signals, and performing channel decoding and soft decoding on the K2 first-type signals Combining, the result of performing channel decoding and soft combining on the K2 first-type signals passes the CRC check, the second signal is a first-type signal among the K2 first-type signals, K2 is a positive integer.
  • the correct decoding of the first bit block includes: K2 first-type signals respectively carrying the first bit block, performing channel decoding and soft combining on the K2 first-type signals, and The results of performing channel decoding and soft combining on the K2 first-type signals pass the CRC check, the second signal is one of the K2 first-type signals, and K2 is a positive integer.
  • the soft-combining includes bit-level soft-combining.
  • the soft combining includes symbol-level soft-combining.
  • the failure to correctly decode the first bit block includes: performing channel decoding on the second signal, and a result of performing channel decoding on the second signal fails a CRC check.
  • the incorrect decoding of the first bit block includes: performing channel decoding on the K2 first-type signals, and the results of channel decoding on the K2 first-type signals fail to pass the CRC Verifying that the second signal is a first-type signal among the K2 first-type signals, and K2 is a positive integer.
  • the incorrect decoding of the first bit block includes: performing channel decoding and soft combining on the K2 first-type signals, and performing channel decoding and soft combining on the K2 first-type signals
  • the combined result fails the CRC check
  • the second signal is one of the K2 first-type signals
  • K2 is a positive integer
  • the failure of the first bit block to be correctly decoded includes: the first bit block is sequentially used to generate K2 first-type signals, and performing channel decoding and summing on the K2 first-type signals Soft combining, the result of performing channel decoding and soft combining on the K2 first-type signals does not pass the CRC check, and the second signal is a first-type signal among the K2 first-type signals , K2 is a positive integer.
  • the incorrect decoding of the first bit block includes: K2 first-type signals respectively carrying the first bit block, performing channel decoding and soft combining on the K2 first-type signals, The result of performing channel decoding and soft combining on the K2 first-type signals fails the CRC check, the second signal is one of the K2 first-type signals, and K2 is a positive integer.
  • the channel decoding is based on Viterbi algorithm.
  • the channel decoding is based on iteration.
  • the channel decoding is based on a BP (Belief Propagation, Belief Propagation) algorithm.
  • BP Belief Propagation, Belief Propagation
  • the channel decoding is based on the LLR (Log Likelihood Ratio, log likelihood ratio)-BP algorithm.
  • the first feedback resource block belongs to one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool.
  • the first feedback resource block belongs to a candidate time-frequency resource block in the plurality of candidate time-frequency resource blocks included in the candidate resource set.
  • the time domain resource occupied by the first feedback resource block belongs to one time domain resource block in the plurality of time domain resource blocks included in the first resource pool.
  • the frequency domain resource occupied by the first feedback resource block belongs to one frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool.
  • the time-domain resource occupied by the first feedback resource block belongs to one candidate time-domain resource block in the plurality of candidate time-domain resource blocks included in the candidate resource set.
  • the frequency domain resource occupied by the first feedback resource block belongs to one candidate frequency domain resource block in the plurality of candidate frequency domain resource blocks included in the candidate resource set.
  • the time domain resource occupied by the first feedback resource block includes a positive integer number of Symbol(s).
  • the time domain resource occupied by the first feedback resource block is a Symbol.
  • the time-domain resources occupied by the first feedback resource block are two consecutive Symbols.
  • the time-domain resources occupied by the first feedback resource block are three consecutive Symbols.
  • the frequency domain resource occupied by the first feedback resource block includes a positive integer number of PRB(s).
  • the frequency domain resource occupied by the first feedback resource block is a PRB.
  • the frequency domain resource occupied by the first feedback resource block includes multiple Subcarrier(s).
  • the first feedback resource block is used to transmit the first response signal.
  • the time domain resource occupied by the first response signal belongs to the time domain resource occupied by the first feedback resource block.
  • the frequency domain resource occupied by the first response signal belongs to the frequency domain resource occupied by the first feedback resource block.
  • the first resource pool includes a plurality of feedback occasions (feedback occasions), and any feedback occasion in the plurality of feedback occasions belongs to the plurality of time-domain resource blocks included in the first resource pool
  • a time-domain resource block in the first feedback resource block, the time-domain resource occupied by the first feedback resource block is a feedback opportunity in the plurality of feedback opportunities.
  • two adjacent feedback opportunities are separated by N time-domain resource blocks, where N is a positive integer.
  • the first feedback opportunity and the second feedback opportunity are respectively any two adjacent feedback opportunities among the plurality of feedback opportunities included in the first resource pool, and the first feedback opportunity and the The second feedback opportunity is separated by the N time-domain resource blocks.
  • the first feedback opportunity and the second feedback opportunity are respectively any two adjacent feedback opportunities among the plurality of feedback opportunities included in the first resource pool, and the time to which the first feedback opportunity belongs
  • the N time-domain resource blocks are spaced between the domain resource block and the time-domain resource block to which the second feedback opportunity belongs.
  • the sum of the index of the time-domain resource block to which the first feedback opportunity belongs in the plurality of time-domain resource blocks included in the first resource pool and the N is equal to the second feedback opportunity An index of the time-domain resource block to which it belongs in the multiple time-domain resource blocks included in the first resource pool.
  • the index of the time-domain resource block to which the second feedback opportunity belongs in the plurality of time-domain resource blocks included in the first resource pool minus the time-domain resource to which the first feedback opportunity belongs is equal to the N.
  • the N is equal to 1.
  • said N is equal to 2.
  • said N is equal to 4.
  • any one of the multiple feedback opportunities included in the first resource pool includes multiple feedback resource blocks, and any one of the multiple feedback opportunities includes the multiple Any one of the feedback resource blocks includes at least one frequency domain resource block in the first resource pool.
  • any one of the multiple feedback opportunities included in the first resource pool includes multiple feedback resource blocks, and any one of the multiple feedback opportunities includes the multiple Any feedback resource block in the feedback resource blocks occupies a positive integer number of PRB(s) in the frequency domain.
  • any one of the multiple feedback opportunities included in the first resource pool includes multiple feedback resource blocks, and any one of the multiple feedback opportunities includes the multiple Any feedback resource block in the feedback resource blocks occupies one PRB in the frequency domain.
  • any feedback opportunity in the plurality of feedback opportunities included in the first resource pool belongs to one SL Slot, and any feedback opportunity in the plurality of feedback opportunities includes a plurality of feedback resource blocks, so Any feedback resource block in the multiple feedback resource blocks included in any of the multiple feedback opportunities included in the first resource pool occupies one PRB in the frequency domain.
  • the first target feedback opportunity is one of the multiple feedback opportunities included in the first resource pool, the first target feedback opportunity includes at least one feedback resource block, and the first feedback The resource block is a feedback resource block in the at least one feedback resource block included in the first target feedback opportunity.
  • the at least one feedback resource block included in the first target feedback opportunity occupies the same feedback opportunity in the time domain.
  • the feedback opportunity occupied by the at least one feedback resource block included in the first target feedback opportunity in the time domain is the first target feedback opportunity.
  • the first target feedback opportunity includes M1 feedback resource blocks, where M1 is a positive integer.
  • the time domain resource occupied by the first feedback resource block is the first target feedback opportunity.
  • the time-frequency resource occupied by the first response signal belongs to the first feedback resource block
  • the time-frequency resource occupied by the second signal belongs to the second candidate time-frequency resource block
  • the time-frequency resource occupied by the first response signal belongs to the first feedback resource block
  • the time-frequency resource occupied by the second signal belongs to the second candidate time-frequency resource block, so The time-frequency resource occupied by the first signal belongs to the first candidate time-frequency resource block.
  • the first feedback resource block includes time-frequency resources occupied by the first response signal
  • the second candidate time-frequency resource block includes time-frequency resources occupied by the second signal
  • the first feedback resource block includes the time-frequency resource occupied by the first response signal
  • the second candidate time-frequency resource block includes the time-frequency resource occupied by the second signal
  • the first candidate time-frequency resource block includes time-frequency resources occupied by the first signal
  • the first feedback resource block is related to the second candidate time-frequency resource block.
  • the second candidate time-frequency resource block is used to determine the first feedback resource block.
  • the time domain resource occupied by the second candidate time-frequency resource block is used to determine the time domain resource occupied by the first feedback resource block.
  • the frequency domain resource occupied by the second candidate time-frequency resource block is used to determine the frequency domain resource occupied by the first feedback resource block.
  • the time domain resource occupied by the second candidate time-frequency resource block is used to determine the first target feedback opportunity.
  • the first target feedback opportunity is later in the time domain than the time domain resource occupied by the second candidate time-frequency resource block.
  • the time domain resource occupied by the second candidate time-frequency resource block is separated from the first target feedback opportunity by a minimum time gap (Minimum Time Gap), and the minimum time gap includes a positive integer number of time domains resource blocks.
  • Minimum Time Gap Minimum Time Gap
  • the minimum time slot includes a positive integer number of Slot(s).
  • the minimum time gap is indicated by higher layer signaling.
  • the first target feedback opportunity is the latest feedback opportunity after the time domain resource occupied by the second candidate time-frequency resource block is offset from the minimum time gap.
  • the first target feedback opportunity is the resource offset of the time-domain resource occupied by the second candidate time-frequency resource block among the multiple feedback opportunities included in the first resource pool.
  • the first feedback opportunity after the stated minimum time gap.
  • the first target feedback timing is after the time-domain resource occupied by the second candidate time-frequency resource block means that the first feedback timing is later than the second candidate time in the time domain.
  • the first target feedback timing is after the time-domain resource occupied by the second candidate time-frequency resource block deviates from the minimum time gap means that the first target feedback timing is later than the The time domain resources occupied by the second candidate time-frequency resource block are offset backward by the minimum time gap.
  • the candidate resource set includes M candidate time-frequency resource blocks associated with the first target feedback opportunity, where M is a positive integer.
  • the M candidate time-frequency resource blocks included in the candidate resource set are respectively associated with the plurality of feedback resource blocks included in the first target feedback opportunity.
  • the M candidate time-frequency resource blocks included in the candidate resource set are respectively mapped to the plurality of feedback resource blocks included in the first target feedback opportunity.
  • the M candidate time-frequency resource blocks included in the candidate resource set are in one-to-one correspondence with the plurality of feedback resource blocks included in the first target feedback opportunity.
  • the N is used to determine the M.
  • the M is equal to the product of the N and the M1.
  • the frequency domain resource occupied by the second candidate time-frequency resource block is used to determine the first feedback resource block in the plurality of feedback resource blocks included in the first target feedback opportunity index of.
  • the second candidate time-frequency resource block is a candidate time-frequency resource block among the M candidate time-frequency resource blocks included in the candidate resource set, and the second candidate The position of the time-frequency resource block in the M candidate time-frequency resource blocks is used to determine the position of the first feedback resource block in the plurality of feedback resource blocks included in the first target feedback opportunity.
  • the first feedback resource block includes PSFCH.
  • the second candidate time-frequency resource block includes PSCCH and PSSCH
  • the first feedback resource block includes PSFCH
  • the second candidate time-frequency resource block includes PSCCH and PSSCH
  • the first feedback resource block includes PSFCH
  • the first candidate time-frequency resource block includes PSCCH and PSSCH.
  • the first response signal is earlier than the first signal means that the first feedback resource block is earlier than the first candidate time-frequency resource block in the time domain.
  • the fact that the first response signal is later than the second signal means that the first feedback resource block is later than the second candidate time-frequency resource block in the time domain.
  • the second signal is sent on the second candidate time-frequency resource block
  • the first response signal is received on the first feedback resource block
  • the first signal is sent on the second candidate time-frequency resource block.
  • the time-domain resource occupied by the second candidate time-frequency resource block is earlier than the time-domain resource occupied by the first feedback resource block
  • the first feedback The time domain resource occupied by the resource block is earlier than the time domain resource occupied by the first candidate time-frequency resource block.
  • the second signal is sent on the second candidate time-frequency resource block
  • the first response signal is received on the first feedback resource block
  • the first signal is sent on the second candidate time-frequency resource block.
  • the time-domain resource occupied by the first feedback resource block is earlier than the time-domain resource occupied by the first candidate time-frequency resource block
  • the first feedback is later than the time domain resource occupied by the second candidate time-frequency resource block.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the first candidate time-frequency resource block, the second candidate time-frequency resource block and the first backoff time according to an embodiment of the present application, as shown in FIG. 7 .
  • the long box of solid line represents the time-domain resource block in the first resource pool in this application;
  • the rectangle of dotted line represents the time-frequency resource block in the first resource pool;
  • the rectangle filled with slanted lines represents the second candidate time-frequency resource block in this application;
  • the rectangle filled with oblique squares represents the first feedback resource block in this application; the square filled
  • the rectangle in represents the first candidate time-frequency resource block in this application.
  • the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than the first backoff time, and the size relationship between the target parameter value and the first threshold Used to determine the first backoff time, the first signaling indicates the first priority, the first threshold and the first priority or determine the candidate resource from the first resource pool At least one of the two is related in the way of collection.
  • the first threshold is a non-negative integer.
  • the first threshold is a positive integer.
  • the first threshold is a non-negative integer not greater than 32.
  • the first threshold is a positive integer not greater than 32.
  • the first threshold is configured by higher layer signaling.
  • the first threshold is pre-configured (Pre-Configured).
  • the first threshold is a first-type threshold among multiple first-type thresholds; the first priority is one of multiple priorities; the multiple first-type thresholds correspond to the plurality of priorities respectively; the first priority is used to determine the first threshold from the plurality of first-type thresholds.
  • the first priority is used to indicate an index of the first threshold among the plurality of thresholds of the first type.
  • the manner of determining the set of candidate resources from the first resource pool is a resource determination manner among multiple resource determination manners, and the multiple resource determination manners include the sensing (Sensing ), or at least one of Random Resource Selection.
  • the manner of determining the set of candidate resources from the first resource pool is a resource determination manner in a plurality of resource determination manners, and the plurality of resource determination manners include full sensing (Full Sensing ), Partial Sensing, or random resource selection at least one of the three.
  • the manner of determining the set of candidate resources from the first resource pool is one of multiple resource determination manners, and the multiple resource determination manners include full perception, based on a period At least one of Periodic-based Partial Sensing, Contiguous Partial Sensing, or random resource selection.
  • the manner of determining the candidate resource set from the first resource pool is random resource selection.
  • the manner of determining the candidate resource set from the first resource pool is fully aware.
  • the manner of determining the candidate resource set from the first resource pool is partial perception.
  • the manner of determining the candidate resource set from the first resource pool is period-based partial perception.
  • the manner of determining the candidate resource set from the first resource pool is partial awareness of continuity.
  • the first threshold is a second-type threshold among multiple second-type thresholds; the multiple second-type thresholds are in one-to-one correspondence with the multiple resource determination methods; from the first The manner of determining the set of candidate resources in a resource pool is used to determine the first threshold from the plurality of thresholds of the second type.
  • the manner of determining the candidate resource set from the first resource pool is used to indicate an index of the first threshold in the plurality of second-type thresholds.
  • the first threshold list is a threshold list among multiple threshold lists, any threshold list in the multiple threshold lists includes multiple third-type thresholds, and the first threshold is the first A third-type threshold in the threshold list;
  • the multiple threshold lists correspond to the multiple resource determination methods one by one; the method of determining the candidate resource set from the first resource pool is used for Determining the first threshold list from the multiple threshold lists;
  • the multiple third-type thresholds included in the first threshold list correspond to the multiple priorities one by one; the first priority is determined by and used for determining the first threshold from the plurality of thresholds of the third type included in the first threshold list.
  • the method of determining the candidate resource set from the first resource pool is used to indicate the index of the first threshold list in the plurality of threshold lists; the first priority The class is used to indicate the index of the first threshold in the plurality of thresholds of the third type included in the first threshold list.
  • the first threshold list is a threshold list among multiple threshold lists, any threshold list in the multiple threshold lists includes multiple third-type thresholds, and the first threshold is the first A threshold of the third type in the threshold list;
  • the plurality of threshold lists correspond to the plurality of priorities one by one; the first priority is used to determine the first threshold from the plurality of threshold lists list;
  • the plurality of third-type thresholds included in the first threshold list correspond one-to-one to the plurality of resource determination methods; the method of determining the candidate resource set from the first resource pool is determined by and used for determining the first threshold from the plurality of thresholds of the third type included in the first threshold list.
  • the first priority is used to indicate the index of the first threshold list in the plurality of threshold lists; determine the candidate resource set from the first resource pool The mode is used to indicate the index of the first threshold in the plurality of thresholds of the third type included in the first threshold list.
  • the first backoff time is a decimal.
  • the first backoff time is a real number not greater than 5.
  • the first backoff time is a real number not greater than 1920.
  • a unit of the first backoff time is millisecond (millisecond, ms).
  • the first backoff time is randomly selected according to a normal distribution (uniform distribution) between 0 and the first backoff threshold.
  • the first backoff time is selected randomly.
  • the first backoff threshold is a non-negative integer.
  • the first backoff threshold is a positive integer.
  • the first backoff threshold is a multiple of 5.
  • the first backoff threshold is an integer in ⁇ 0, 5, 10, 20, 30, 40, 60, 80, 120, 160, 240, 320, 480, 960, 1920 ⁇ .
  • the unit of the first backoff threshold is ms.
  • the time domain interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block is not less than the first backoff time.
  • a time domain interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block is greater than the first backoff time.
  • a time domain interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block is equal to the first backoff time.
  • the first candidate time-frequency resource block is later in the time domain than the first backoff time after the second candidate time-frequency resource block.
  • a difference between the time domain resource occupied by the first candidate time-frequency resource block and the time domain resource occupied by the second candidate time-frequency resource block is greater than the first backoff time.
  • a difference between the time domain resource occupied by the first candidate time-frequency resource block and the time domain resource occupied by the second candidate time-frequency resource block is equal to the first backoff time.
  • a magnitude relationship between the target parameter value and the first threshold is used to determine the first backoff time.
  • the first candidate time and the second candidate time are respectively two random values according to the normal distribution from 0 to the first backoff threshold, and the first candidate time is less than the second Alternate time.
  • the first candidate time is equal to 0ms
  • the second candidate time is equal to 2.8ms.
  • the target parameter value is not greater than the first threshold, and the first backoff time is the first candidate time.
  • the target parameter value is smaller than the first threshold, and the first backoff time is the first candidate time.
  • the target parameter value is equal to the first threshold
  • the first backoff time is the first candidate time
  • the target parameter value is greater than the first threshold, and the first backoff time is the second candidate time.
  • the target parameter value is equal to the first threshold
  • the first backoff time is the second candidate time
  • the first backoff time is the first candidate time; when the target parameter value is greater than the first threshold, the The first backoff time is the second candidate time; the first candidate time is less than the second candidate time.
  • the first backoff time is the first candidate time; when the target parameter value is not less than the first threshold, the The first backoff time is the second candidate time; the first candidate time is less than the second candidate time.
  • a magnitude relationship between the target parameter value and the first threshold is used to determine the first backoff threshold.
  • the first alternative threshold and the second alternative threshold are respectively equal to two non-negative integers among X non-negative integers, and X is a positive integer greater than 1; the first alternative threshold is smaller than the first Two alternative thresholds.
  • the X non-negative integers include at least two of 0, 5, 10, 20, 30, 40, 60, 80, 120, 160, 240, 320, 480, 960, and 1920.
  • the first candidate threshold is equal to 0ms
  • the second candidate threshold is equal to 20ms.
  • the target parameter value is not greater than the first threshold, and the first backoff threshold is the first alternative threshold.
  • the target parameter value is smaller than the first threshold, and the first backoff threshold is the first candidate threshold.
  • the target parameter value is equal to the first threshold
  • the first backoff threshold is the first candidate threshold
  • the target parameter value is greater than the first threshold, and the first backoff threshold is the second candidate threshold.
  • the target parameter value is equal to the first threshold
  • the first backoff threshold is the second alternative threshold
  • the first backoff threshold when the target parameter value is not greater than the first threshold, the first backoff threshold is the first alternative threshold; when the target parameter value is greater than the first threshold, the The first backoff threshold is the second candidate threshold; the first candidate threshold is smaller than the second candidate threshold.
  • the first backoff threshold when the target parameter value is less than the first threshold, the first backoff threshold is the first alternative threshold; when the target parameter value is not less than the first threshold, the The first backoff threshold is the second candidate threshold; the first candidate threshold is smaller than the second candidate threshold.
  • the first priority is associated with the first signal.
  • the first priority is associated to the second signal.
  • the first priority is associated to the first bit block.
  • the first priority is the priority of the first bit block.
  • the first priority is a Layer 1 priority (Layer1priority, L1priority).
  • the first priority is a layer 1 priority of the first bit block.
  • the first priority is equal to a non-negative integer.
  • the first priority is equal to a positive integer.
  • the first priority is equal to one non-negative integer among P non-negative integers, where P is a positive integer.
  • the first priority is equal to a positive integer from 1 to P, where P is a positive integer.
  • the first priority is one of P priorities, and P is a positive integer; the P priorities are respectively equal to the P positive integers; the P priorities are the same as the The size relationship between the P positive integers is monotonously decreasing.
  • the P is equal to 8.
  • said P is equal to 9.
  • the first priority, the second priority and the target resource subpool are jointly used to determine the target threshold.
  • a combination of the first priority, the second priority and the target resource subpool is used to determine the target threshold.
  • the first priority, the second priority and the target resource subpool are jointly used to determine the target threshold from the X1 first-type thresholds.
  • a combination of the first priority, the second priority and the target resource subpool is used to determine the target threshold from the X1 first-type thresholds.
  • the first priority and the second priority are jointly used to determine the X1 thresholds of the first type, and the target resource subpool is used to determine the X1 thresholds of the first type Determine the target threshold in .
  • the first priority and the second priority are jointly used to determine the X1 first-type thresholds, and the index of the target resource subpool in the X1 resource subpools is equal to An index of the target threshold in the X1 first-type thresholds.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first start time, the second start time, the target resource subset and the target start time according to an embodiment of the present application, as shown in FIG. 8 .
  • the large dotted line box represents the candidate resource set in this application; the implementation rectangle represents the candidate time-frequency resource blocks in the candidate resource set; the thick dotted line box represents the target start time in this application is the target resource subset at the first starting time; the thick solid line box represents the target resource subset at the second starting time in this application; the rectangle filled with oblique squares represents the first resource subset in this application Alternative time-frequency resource blocks.
  • the magnitude relationship between the target parameter value and the first threshold is used to determine the target starting time, and the target starting time is one starting time among multiple starting times; the The target start time is the start time of the target resource subset; the first candidate time-frequency resource block is a candidate time-frequency resource block in the target resource subset, and the target resource subset belongs to the The set of alternative resources described above.
  • the target parameter value is used to determine the target resource subset
  • the target resource subset is used to determine the first candidate time-frequency resource block and the second candidate time-frequency resource block Relationships between resource blocks.
  • the target parameter value is used to determine the target start time
  • the target start time is the start time of the target resource subset
  • the target resource subset is used to determine the The relationship between the first candidate time-frequency resource block and the second candidate time-frequency resource block is described.
  • the magnitude relationship between the target parameter value and the first threshold is used to determine the target start time
  • the target start time is the start time of the target resource subset
  • the The target resource subset is used to determine the relationship between the first candidate time-frequency resource block and the second candidate time-frequency resource block.
  • the magnitude relationship between the target parameter value and the first threshold is used to determine the target start time
  • the target start time is the start time of the target resource subset
  • the The target start time is used to determine the relationship between the first candidate time-frequency resource block and the second candidate time-frequency resource block.
  • the relationship between the first candidate time-frequency resource block and the second candidate time-frequency resource block includes that the first candidate time-frequency resource block is one of the target resource subsets A candidate time-frequency resource block, the second candidate time-frequency resource block is a candidate time-frequency resource block in the candidate resource set except for the target resource subset.
  • the relationship between the first candidate time-frequency resource block and the second candidate time-frequency resource block includes that the first candidate time-frequency resource block starts later than the target in the time domain.
  • the second candidate time-frequency resource block is earlier than the target starting moment in the time domain.
  • the candidate resource set includes the target resource subset.
  • the target resource subset includes multiple candidate time-frequency resource blocks, and any candidate time-frequency resource block in the multiple candidate time-frequency resource blocks included in the target resource subset is A candidate time-frequency resource block in the plurality of candidate time-frequency resource blocks included in the candidate resource set.
  • the target resource subset includes the first candidate time-frequency resource block.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the plurality of candidate time-frequency resource blocks included in the target resource subset.
  • the target start time is used to determine a relationship in the time domain between the first candidate time-frequency resource block and the second candidate time-frequency resource block.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block among the multiple candidate time-frequency resource blocks included in the target resource subset
  • the second candidate The time-frequency resource block is a candidate time-frequency resource block in the candidate resource set except the target resource subset.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block among the multiple candidate time-frequency resource blocks included in the target resource subset
  • the second candidate The time-frequency resource block is different from any candidate time-frequency resource block in the plurality of candidate time-frequency resource blocks included in the target resource subset.
  • the second candidate time-frequency resource block is earlier than the target start time in the time domain.
  • the time domain resource occupied by the second candidate time-frequency resource block is earlier than the target start time.
  • the first candidate time-frequency resource block is not earlier than the target start time in the time domain.
  • the first candidate time-frequency resource block is later than the target start moment in the time domain.
  • the time domain resource occupied by the first candidate time-frequency resource block is not earlier than the target start time.
  • the time domain resource occupied by the first candidate time-frequency resource block is later than the target start time.
  • the target starting moment is one starting moment among multiple starting moments.
  • the magnitude relationship between the target parameter value and the first threshold is used to determine the target starting time from the multiple starting times.
  • the first starting moment and the second starting moment are respectively two starting moments in the plurality of starting moments, and the target starting moment is the first starting moment or the second starting moment One of the two starting moments; the second starting moment is later than the first starting moment.
  • the target parameter value is equal to the K1; when the target parameter value is not greater than the first threshold, the target starting moment is the first starting moment; when the target parameter value When greater than the first threshold, the target start time is the second start time; the second start time is later than the first start time.
  • the target parameter value is not greater than the first threshold, and the target start time is the first start time.
  • the target parameter value is greater than the first threshold, and the target start time is a second start time.
  • the target parameter value is equal to the K1; the target parameter value is not greater than the first threshold, and the target start time is the first start time.
  • the target parameter value is equal to the K1; the target parameter value is smaller than the first threshold, and the target starting moment is the first starting moment.
  • the target parameter value is equal to the K1; the target parameter value is equal to the first threshold, and the target start time is the first start time.
  • the target parameter value is equal to the K1; the target parameter value is greater than the first threshold, and the target start time is a second start time.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; when the target parameter value is greater than the first threshold, the target starting moment is the first when the target parameter value is not greater than the first threshold, the target starting moment is the second starting moment; the second starting moment is later than the first starting moment.
  • the target parameter value is greater than the first threshold, and the target start time is the first start time.
  • the target parameter value is not greater than the first threshold, and the target start time is the second start time.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; the target parameter value is greater than the first threshold, and the target start time is the first start time .
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; the target parameter value is not greater than the first threshold, and the target start time is the second start moment.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; the target parameter value is smaller than the first threshold, and the target start time is the second start time time.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; the target parameter value is equal to the first threshold, and the target start time is the second start time time.
  • the remaining data packet delay budget and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the remaining data packet delay budget and the target parameter value are jointly used to determine the first candidate time-frequency resource block from the candidate resource set.
  • the first number of transmissions is used to determine the target parameter value, and the remaining data packet delay budget and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the first number of transmissions is used to determine the target parameter value, and the remaining packet delay budget and the target parameter value are jointly used to determine the first A candidate time-frequency resource block.
  • the first number of transmissions, the remaining data packet delay budget and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the first number of transmissions, the remaining data packet delay budget and the target parameter value are jointly used to determine the first candidate time-frequency resource block from the candidate resource set.
  • the time domain resource occupied by the first candidate time-frequency resource block is within the remaining data packet delay budget.
  • the time-domain resource occupied by the first candidate time-frequency resource block is within a difference of the remaining data packet delay budget minus the first time offset.
  • the remaining data packet delay budget is indicated by the first signaling.
  • the remaining data packet delay budget is a positive real number.
  • the unit of the remaining data packet delay budget is milliseconds.
  • the remaining data packet delay budget includes multiple time-domain resource blocks in the first resource pool.
  • the remaining data packet delay budget includes a plurality of time slots.
  • the first time offset is a positive real number.
  • the unit of the first time offset is milliseconds.
  • the first time offset includes multiple time-domain resource blocks in the first resource pool.
  • the first time offset includes multiple time slots.
  • the first time offset includes multiple multi-carrier symbols.
  • the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than the first backoff time, and the size of the target parameter value and the first threshold The relationship is used to determine the first backoff time, and the time domain resource occupied by the first candidate time-frequency resource block is within the remaining data packet delay budget.
  • the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than the first backoff time, and the size of the target parameter value and the first threshold The relationship is used to determine the first backoff time, and the time domain resource occupied by the first candidate time-frequency resource block is within the difference between the remaining data packet delay budget minus the first time offset.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the target resource subset, and the target resource subset belongs to the candidate resource set;
  • the target parameter value is the same as the first
  • a magnitude relationship of a threshold is used to determine a target start time, the target start time is the start time of the target resource subset, and the time-domain resources occupied by the first candidate time-frequency resource block are within the within the remaining packet delay budget described above.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the target resource subset, and the target resource subset belongs to the candidate resource set; the target parameter value is the same as the first
  • the size relationship of a threshold is used to determine a target start time, the target start time is the start time of the target resource subset, and the time domain resource occupied by the first candidate time-frequency resource block is within the within the remaining packet delay budget minus the first time offset.
  • Embodiment 9 illustrates a structural block diagram of a processing device used in the first node, as shown in FIG. 9 .
  • the first node device processing apparatus 900 is mainly composed of a first receiver 901 , a first processor 902 and a first transmitter 903 .
  • the first receiver 901 includes the antenna 452 in the accompanying drawing 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467 .
  • the first processor 902 includes antenna 452, transmitter/receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and At least one of the data sources 467 .
  • the first transmitter 903 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmit processor 468, the controller/processor 459, and the memory 460 in the accompanying drawing 4 of the present application. and at least one of data sources 467 .
  • the first receiver 901 receives first signaling, and the first signaling indicates a first resource pool; the first processor 902 determines candidate resources from the first resource pool set, the set of candidate resources includes a plurality of candidate time-frequency resource blocks; the first transmitter 903 sends a first signal on the first candidate time-frequency resource block, and the first candidate time-frequency resource block is a candidate time-frequency resource block in the candidate resource set; the first bit block is used to generate the first signal, and the first signal carries the K1th retransmission of the first bit block,
  • the first bit block includes at least one bit, the K1 is a positive integer; the first number of transmissions is equal to the number of transmissions selected by the first node, the first number of transmissions is a positive integer, and the K1 is less than the first The number of transmissions; the K1 is used to determine a target parameter value, the target parameter value is a non-negative positive integer, and at least the latter of the first number of transmissions and the target parameter value is used to obtain from
  • the first transmitter 903 transmits the second signal on the second candidate time-frequency resource block, and the second candidate time-frequency resource block is a candidate time in the candidate resource set frequency resource block;
  • the first receiver 901 receives the first response signal on the first feedback resource block;
  • the first bit block is used to generate the second signal, and the second signal is earlier than the first A signal;
  • the first acknowledgment signal is used to determine whether the first bit block is correctly decoded, the first acknowledgment signal is earlier than the first signal, the first acknowledgment signal is later than the first Two signals;
  • the second candidate time-frequency resource block is used to determine the first feedback resource block;
  • the target parameter value is used to determine the first candidate time-frequency resource block and the second candidate time-frequency resource block Select the relationship between time-frequency resource blocks.
  • the first transmitter 903 transmits the second signal on the second candidate time-frequency resource block, and the second candidate time-frequency resource block is a candidate time in the candidate resource set frequency resource block;
  • the first receiver 901 receives the first response signal on the first feedback resource block;
  • the first bit block is used to generate the second signal, and the second signal is earlier than the first a signal;
  • the first acknowledgment signal indicating that the first block of bits was not correctly decoded, the first acknowledgment signal being earlier than the first signal, the first acknowledgment signal being later than the second signal;
  • the second candidate time-frequency resource block is used to determine the first feedback resource block;
  • the target parameter value is used to determine the first candidate time-frequency resource block and the second candidate time-frequency resource block Relationships between resource blocks.
  • the target parameter value is equal to the K1.
  • the target parameter value is equal to a difference between the first number of transmissions minus K1+1.
  • the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than the first backoff time, and the relationship between the target parameter value and the first threshold is determined by For determining the first backoff time, the first signaling indicates a first priority, the first threshold and the first priority or determine the candidate resource set from the first resource pool in at least one of the two ways.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the target resource subset, and the target resource subset belongs to the candidate resource set;
  • the target parameter value is the same as the first
  • a magnitude relationship of a threshold is used to determine a target start time, the target start time being the start time of the target resource subset;
  • the first signaling indicates a first priority, and the first threshold and At least one of the first priority or the manner of determining the candidate resource set from the first resource pool is related.
  • the target parameter value is equal to the K1; when the target parameter value is not greater than the first threshold, the target starting moment is the first starting moment; when the target parameter value is greater than the
  • the target start time is a second start time; the second start time is later than the first start time.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; when the target parameter value is greater than the first threshold, the target start time is the first start time ; When the target parameter value is not greater than the first threshold, the target start time is a second start time; the second start time is later than the first start time.
  • the first number of transmissions, the delay budget of the remaining data packets and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the first node device 900 is user equipment.
  • the first node device 900 is a relay node.
  • the first node device 900 is a base station device.
  • Embodiment 10 illustrates a structural block diagram of a processing device used in the second node, as shown in FIG. 10 .
  • the second node device processing apparatus 1000 is mainly composed of a second receiver 1001 and a second transmitter 1002 .
  • the second receiver 1001 includes the antenna 420 in the accompanying drawing 4 of the present application, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 at least one of the .
  • the second transmitter 1002 includes the antenna 420, the transmitter/receiver 418, the multi-antenna transmitter processor 471, the transmitting processor 416, the controller/processor 475, and the memory 476 in the accompanying drawing 4 of the present application. at least one of the .
  • the second receiver 1001 receives the second signal on a second candidate time-frequency resource block, and the second candidate time-frequency resource block is a time-frequency resource block in the first resource pool ;
  • the second transmitter 1002 sends the first response signal on the first feedback resource block;
  • the second receiver 1001 receives the first signal on the first candidate time-frequency resource block, and the first candidate time-frequency resource block
  • the frequency resource block is a time-frequency resource block in the first resource pool;
  • the second signal carries the first bit block, and the first signal carries the K1th retransmission carrying the first bit block, so
  • the first bit block includes at least one bit, the K1 is a positive integer;
  • the second signal is earlier than the first signal;
  • the first response signal is used to indicate that the first bit block has not been correctly decoded , the first response signal is earlier than the first signal, and the first response signal is later than the second signal;
  • the second candidate time-frequency resource block is used to determine the first feedback resource block ;
  • the target parameter value is equal to the K1.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1, the first number of transmissions is equal to the number of transmissions selected by the sender of the first signal, and the first number of transmissions is a positive integer, and the K1 is less than the first number of transmissions.
  • the interval between the first candidate time-frequency resource block and the second candidate time-frequency resource block in the time domain is not less than a first backoff time, and the first backoff time and the target parameter value are the same as
  • the magnitude relationship of the first threshold is related to at least one of the first priority or the way the sender of the first signal determines the candidate resource set; when the first candidate Both the frequency resource block and the second candidate time-frequency resource block belong to the candidate resource set.
  • the first candidate time-frequency resource block is a candidate time-frequency resource block in the target resource subset, and the target resource subset belongs to the candidate resource set; the target parameter value is the same as the first
  • the size relationship of a threshold is used to determine the target start time, the target start time is the start time of the target resource subset; the first threshold and the first priority or the sending of the first signal or at least one of the manners of determining the candidate resource set from the first resource pool.
  • the target parameter value is equal to the K1; when the target parameter value is not greater than the first threshold, the target starting moment is the first starting moment; when the target parameter value is greater than the
  • the target start time is a second start time; the second start time is later than the first start time.
  • the target parameter value is equal to the difference between the first number of transmissions minus K1+1; when the target parameter value is greater than the first threshold, the target start time is the first start time ; When the target parameter value is not greater than the first threshold, the target start time is a second start time; the second start time is later than the first start time.
  • the first number of transmissions, the delay budget of the remaining data packets and the target parameter value are jointly used to determine the first candidate time-frequency resource block.
  • the second node device 1000 is a user equipment.
  • the second node device 1000 is a relay node.
  • the second node device 1000 is a base station device.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令指示第一资源池;从所述第一资源池中确定备选资源集合;在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,K1是正整数;第一传输次数等于所述第一节点所选择的传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。本申请降低了由于多次重传导致共享资源冲突加剧的问题。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)相关的传输方案和装置。
背景技术
从LTE(Long Term Evolution,长期演进)开始,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)已经在发展SL(Sidelink,副链路)作为用户与用户之间的直连通信方式,并在Rel-16(Release-16,版本16)中完成了“5G V2X with NR Sidelink”的第一个NR SL(New Radio Sidelink,新空口副链路)标准。在Rel-16中,NR SL主要被设计用于V2X(Vehicle-To-Everything,车联网),但它也可以用于公共安全(Public Safety)。
但由于时间限制,NR SL Rel-16不能完全支持足3GPP为5G V2X识别的业务需求和工作场景。因此3GPP将在Rel-17中研究增强NR SL。
发明内容
在NR SL Rel-16中,基于混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的多次重传被引入V2X系统,同时允许随机资源选择,部分感知以及完全感知的UE共享同一个资源池。一个低优先级的采用随机资源选择模式的UE(User Equipment,用户设备)无法执行感知,导致对同一资源池的高优先级的感知UE带来持续性的资源冲突和干扰,当随机资源选择UE发生多次重传时,这种影响将会进一步加剧。
针对上述问题,本申请公开了一种重传时的资源分配方法,从而有效降低共享资源池中的采用不同资源分配方式的UEs资源冲突的问题。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令指示第一资源池;
从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;
在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;
其中,第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,本申请要解决的问题是:共享资源池中采用不同资源分配方式的UEs由于重传导致资源冲突加剧的问题。
作为一个实施例,本申请的方法是:当重传次数到达一定阈值时,引入一个退避时间再执行重传。
作为一个实施例,上述方法的好处在于,降低由于多次重传导致共享资源冲突加剧的问题。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二备选时频资源块上发送第二信号,所述第二备选时频资源块是所述备选资源集合中的一个备选时频资源块;
在第一反馈资源块上接收第一应答信号;
其中,所述第一比特块被用于生成所述第二信号,所述第二信号携带所述第一比特块的第K2次传输,K2是不大于所述K1的正整数;所述第一应答信号被用于确定所述第一比特块是否被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二备选时频资源块上发送第二信号,所述第二备选时频资源块是所述备选资源集合中的一个备选时频资源块;
在第一反馈资源块上接收第一应答信号;
其中,所述第一比特块被用于生成所述第二信号,所述第二信号早于所述第一信号;所述第一应答信号指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述K1。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述第一传输次数减去K1+1的差。
根据本申请的一个方面,上述方法的特征在于,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
根据本申请的一个方面,上述方法的特征在于,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻;所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
根据本申请的一个方面,上述方法的特征在于,所述第一传输次数,剩余数据包的延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第二备选时频资源块上接收第二信号,所述第二备选时频资源块是第一资源池中的一个时频资源块;
在第一反馈资源块上发送第一应答信号;
在第一备选时频资源块上接收第一信号,所述第一备选时频资源块是所述第一资源池中的一个时频资 源块;
其中,所述第二信号携带第一比特块,所述第一信号携带携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;所述第二信号携带所述第一比特块的第K2次传输,K2是不大于所述K1的正整数;所述第一应答信号被用于指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述K1。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于第一传输次数减去K1+1的差,所述第一传输次数等于所述第一信号的发送者所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数。
根据本申请的一个方面,上述方法的特征在于,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述第一退避时间与所述目标参数值与第一阈值的大小关系有关,所述第一阈值与第一优先级或者所述第一信号的发送者确定备选资源集合的方式二者中的至少之一有关;所述第一备选时频资源块和所述第二备选时频资源块都属于所述备选资源集合。
根据本申请的一个方面,上述方法的特征在于,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻;所述第一阈值与第一优先级或者所述第一信号的发送者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
根据本申请的一个方面,上述方法的特征在于,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
根据本申请的一个方面,上述方法的特征在于,所述第一传输次数,剩余数据包的延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令指示第一资源池;
第一处理机,从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;
第一发射机,在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;
其中,第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机,在第二备选时频资源块上接收第二信号,所述第二备选时频资源块是第一资源池中的一个时频资源块;
第二发射机,在第一反馈资源块上发送第一应答信号;
所述第二接收机,在第一备选时频资源块上接收第一信号,所述第一备选时频资源块是所述第一资源池中的一个时频资源块;
其中,所述第二信号携带第一比特块,所述第一信号携带携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;所述第二信号携带所述第一比特块的第K2次传输,K2是不大于所述K1的正整数;所述第一应答信号被用于指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
作为一个实施例,本申请具备如下优势:
-本申请要解决的问题是:共享资源池中采用不同资源分配方式的UEs由于重传导致资源冲突加剧的问题。
-本申请根据重传次数与第一阈值的大小关系确定一个退避时间,再执行重传。
-本申请降低了由于多次重传导致共享资源冲突加剧的问题。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的备选资源集合,第二备选时频资源块,第一反馈资源块与第一备选时频资源块之间关系的示意图;
图7示出了根据本申请的一个实施例的第一备选时频资源块,第二备选时频资源块与第一退避时间之间关系的示意图;
图8示出了根据本申请的一个实施例的第一起始时刻,第二起始时刻与目标资源子集和目标起始时刻之间关系的示意图;
图9示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点首先执行步骤101,接收第一信令,所述第一信令指示第一资源池;然后执行步骤102,从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;最后执行步骤103,在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一资源池包括一个副链路资源池(Sidelink Resource Pool)的全部或部分资源。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSCCH (Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块占用多个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号(Symbol(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子载波(Subcarrier(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个物理资源块(Physical Resource Block(s),PRB(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子信道(Subchannel(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个时隙(Slot(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个Slot(s),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个Slot(s),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个Subchannel(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的时域资源是正整数个Slot(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的时域资源是正整数个Symbol(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是正整数个Subchannel(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括多个时域资源块。
作为一个实施例,所述第一资源池包括多个时域资源块,所述第一资源池包括的所述多个时频资源块在时域上都属于所述第一资源池包括的所述多个时域资源块。
作为一个实施例,所述第一资源池包括多个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域上是所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个Slot(s)。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个Symbol(s)。
作为一个实施例,所述第一资源池包括多个频域资源块。
作为一个实施例,所述第一资源池包括多个频域资源块,所述第一资源池包括的所述多个时频资源块在频域上都属于所述第一资源池包括的所述多个频域资源块。
作为一个实施例,所述第一资源池包括多个频域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域上是所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个Subchannel(s)。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一信令包括一个更高层信令(Higher Layer Signaling)中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个MAC(Multimedia Access Control,多媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个PHY(Physical Layer,物理层)层信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个SCI(Sidelink Control Information,副链路控制信息)中的一个或多个域。
作为一个实施例,SCI的定义参考3GPP TS38.212的章节8.3和章节8.4。
作为一个实施例,所述第一信令包括一个DCI(Downlink Control Information,下行控制信息)中的一个或多个域。
作为一个实施例,所述第一信令占用的信道包括PSCCH和PSSCH中的至少之一。
作为一个实施例,所述第一信令指示所述第一资源池,第一优先级,剩余数据包的延迟预算三者中的至少之一。
作为一个实施例,所述第一信令直接指示所述第一资源池。
作为一个实施例,所述第一信令间接指示所述第一资源池。
作为一个实施例,所述第一信令指示所述第一优先级。
作为一个实施例,所述第一信令指示剩余数据包的延迟预算(the remaining Packet Delay Budget,the remaining PDB)。
作为一个实施例,所述第一信令指示所述第一资源池,所述第一优先级和所述剩余数据包的延迟预算。
作为一个实施例,所述第一信令指示所述第一资源池所占用的时域资源。
作为一个实施例,所述第一信令指示所述第一资源池所占用的频域资源。
作为一个实施例,所述第一信令包括多个域,所述第一资源池是所述第一信令包括的所述多个域中的至少一个域。
作为一个实施例,所述第一信令包括多个域,所述第一资源池所占用的时域资源,所述第一资源池所占用的频域资源,所述第一优先级和所述剩余数据包的延迟预算分别是所述第一信令包括的所述多个域中 的至少四个域。
作为一个实施例,所述第一资源池包括所述备选资源集合。
作为一个实施例,所述备选资源集合包括多个备选时频资源块。
作为一个实施例,所述备选资源集合包括的所述多个备选时频资源块中的任一备选时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选资源集合包括多个备选时域资源块。
作为一个实施例,所述备选资源集合包括的所述多个备选时域资源块中的任一备选时域资源块是所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述备选资源集合包括的所述多个备选时频资源块中的任一备选时频资源块所占用的时域资源是所述备选资源集合包括的所述多个备选时域资源块中的一个备选时域资源块。
作为一个实施例,所述备选资源集合包括多个备选频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个备选频域资源块中的任一备选频域资源块是所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个备选时频资源块中的任一备选时频资源块所占用的频域资源是所述备选资源集合包括的所述多个备选频域资源块中的一个备选频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个备选时频资源块是被用于传输SL的可用资源。
作为一个实施例,所述第一备选时频资源块是所述备选资源集合包括的所述多个备选时频资源块中的一个备选时频资源块。
作为一个实施例,所述第一备选时频资源块和所述第二备选时频资源块分别是所述备选资源集合包括的所述多个备选时频资源块中的两个备选时频资源块。
作为一个实施例,所述第一备选时频资源块是从所述备选资源集合包括的所述多个备选时频资源块中随机选出的。
作为一个实施例,所述第一备选时频资源块和所述第二备选时频资源块分别是从所述备选资源集合包括的所述多个备选时频资源块中随机选出的。
作为一个实施例,所述第一备选时频资源块被作为一个重传机会(retransmission opportunity)。
作为一个实施例,所述第二备选时频资源块被作为一个重传机会。
作为一个实施例,所述第二备选时频资源块被作为一个初传机会(initial transmission opportunity)。
作为一个实施例,所述第一备选时频资源块和所述第二备选时频资源块是分别从所述备选资源集合包括的所述多个备选时频资源块中随机选出的,所述第一备选时频资源块和所述第二备选时频资源块分别被作为两个重传机会。
作为一个实施例,所述第一备选时频资源块和所述第二备选时频资源块是分别从所述备选资源集合包括的所述多个备选时频资源块中随机选出的,所述第二备选时频资源块被作为一个初传机会,所述第一备选时频资源块被作为一个重传机会。
作为一个实施例,所述第一比特块分别被用于生成所述第一信号和所述第二信号,所述第一信号和所述第二信号分别在所述第一备选时频资源块和所述第二备选时频资源块上被发送。
作为一个实施例,所述第一信号和所述第二信号都携带所述第一比特块,所述第一信号和所述第二信号分别在所述第一备选时频资源块和所述第二备选时频资源块上被发送。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块是时分复用的(Time Division Multiplexing,TDM)。
作为一个实施例,所述第一备选时频资源块在时域晚于所述第二备选时频资源块。
作为一个实施例,所述第一备选时频资源块所占用的时域资源晚于所述第二备选时频资源块所占用的时域资源。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号在PSCCH上传输。
作为一个实施例,所述第一信号在PSSCH上传输。
作为一个实施例,所述第一信号在PSCCH和PSSCH上传输。
作为一个实施例,所述第一信号包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信号包括所述第一比特块,所述第一比特块包括至少一个比特。
作为一个实施例,所述第一信号中的所述第一比特块在PSSCH上传输。
作为一个实施例,所述第一信号中的所述第一比特块来自SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,所述第一比特块包括正整数个比特,所述第一比特块包括的所述正整数个比特中的所有或部分比特被用于生成所述第一信号。
作为一个实施例,所述第一比特块包括1个CW(Codeword,码字)。
作为一个实施例,所述第一比特块包括1个CB(Code Block,编码块)。
作为一个实施例,所述第一比特块包括1个CBG(Code Block Group,编码块组)。
作为一个实施例,所述第一比特块包括1个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块的所有或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到物理资源块(Mapping to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第一信号。
作为一个实施例,所述第一信号是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation)之后的输出。
作为一个实施例,所述信道编码基于极化(polar)码。
作为一个实施例,所述信道编码基于LDPC(Low-density Parity-Check,低密度奇偶校验)码。
作为一个实施例,所述第一信号包括第一子信令和所述第一比特块。
作为一个实施例,所述第一信号中的所述第一子信令被用于调度所述第一信号中的所述第一比特块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源,所述第一信号所占用的时频资源属于所述第一备选时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号中的所述第一比特块所占用的时频资源,所述第一信号中的所述第一比特块所占用的所述时频资源属于所述第一备选时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一备选时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号中的所述第一比特块所经历的调制编码方式(Modulation and Coding Scheme,MCS)。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所采用的解调参考信号(Demodulation Reference Signal,DMRS)。
作为一个实施例,所述第一信号包括一个或多个域。
作为一个实施例,所述第一信号包括一个SCI中的一个或多个域。
作为一个实施例,所述第一比特块被重传K1次,所述第一信号携带所述第一比特块的K1次重传中的第K1次重传,所述K1是正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第一信号包括所述第一比特块的K1次重传中的第K1次重传,所述K1是正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第一信号是所述第一比特块的K1次重传中的第K1次重传,所述K1是正整数。
作为一个实施例,所述第一比特块被传输K1+1次,所述第一信号携带所述第一比特块的K1+1次传输中的第K1+1次传输,所述K1是正整数。
作为一个实施例,所述第一比特块被传输K1+1次,所述第一信号包括所述第一比特块的K1+1次传输中的第K1+1次传输,所述K1是正整数。
作为一个实施例,所述第一比特块被传输K1+1次,所述第一信号是所述第一比特块的K1+1次传输中的第K1+1次传输,所述K1是正整数。
作为一个实施例,所述第一比特块分别被用于生成第一目标信号和K1个第一类信号,所述第一目标信号和所述K1个第一类信号被依次传输,K1是正整数。
作为一个实施例,所述第一比特块分别被用于生成第一目标信号和K1个第一类信号,所述第一目标信号和所述K1个第一类信号分别在K1+1个传输机会上被依次传输,K1是正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号携带所述第一比特块的初传,所述K1个第一类信号中的任一第一类信号携带所述第一比特块的一次重传。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号携带所述第一比特块的初传,所述K1个第一类信号分别携带所述第一比特块的K1次重传。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号携带所述第一比特块的初传,所述K1个第一类信号分别携带所述第一比特块的K1次重传;所述第一信号是所述K1个第一类信号中的第K1个第一类信号,所述第一信号携带所述第一比特块的所述K1次重传中的第K1次重传,K1是正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号是所述第一比特块的初传,所述K1个第一类信号分别是所述第一比特块的K1次重传;第一信号是所述K1个第一类信号中的一个第一类信号,所述第一信号是所述第一比特块的所述K1次重传中的第K1次重传,K1是正整数。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K1等于2。
作为一个实施例,所述K1等于31。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号在初传机会上传输,所述K1个第一类信号分别在K1个重传机会上传输;所述第一信号是所述K1个第一类信号中的一个第一类信号,所述第一信号在第K1个重传机会上传输,K1是正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号在初传机会上传输,所述K1个第一类信号分别在K1个重传机会上传输;所述第一信号是所述K1个第一类信号中的一个第一类信号,所述第一信号在K1个重传机会中的最后一个重传机会上传输,K1是正整数。
作为一个实施例,所述初传机会占用所述备选资源集合中的一个备选时频资源块。
作为一个实施例,所述K1个重传机会分别占用所述备选资源集合中的K1个备选时频资源块,所述K1个备选时频资源块是TDM的。
作为一个实施例,所述初传机会占用的所述备选资源集合中的所述一个备选时频资源块在时域上早于所述K1个重传机会占用的所述备选资源集合中的所述K1个备选时频资源块中的任一备选时频资源块。
作为一个实施例,所述K1个重传机会分别占用所述备选资源集合中的K1个备选时频资源块,所述K1个备选时频资源块是TDM的,所述第一备选时频资源块是所述K1个备选时频资源块中在时域最晚的一个备选时频资源块。
作为一个实施例,所述第一传输次数是正整数。
作为一个实施例,所述第一传输次数等于所述第一节点所选择的传输次数。
作为一个实施例,所述第一传输次数等于所述第一节点所选择的最大传输次数。
作为一个实施例,所述第一传输次数等于所述第一节点所选择的所述第一比特块的最大传输次数。
作为一个实施例,所述第一传输次数等于所述第一节点所选择的是PSSCH的最大传输次数。
作为一个实施例,所述第一传输次数等于选择的HARQ重传次数(the selected number of HARQ retransmissions)。
作为一个实施例,所述第一传输次数等于所述第一节点所选择的HARQ重传次数。
作为一个实施例,所述第一节点所选择的传输次数是所述第一比特块的最大传输次数。
作为一个实施例,所述第一节点所选择的传输次数是一个TB的最大传输次数。
作为一个实施例,所述第一节点所选择的传输次数是一个MAC PDU的最大传输次数。
作为一个实施例,所述第一节点所选择的传输次数是一个PSSCH的最大传输次数。
作为一个实施例,所述第一节点所选择的传输次数是HARQ重传次数。
作为一个实施例,所述第一传输次数是更高层信令配置的。
作为一个实施例,所述第一传输次数是SL-MaxTransNum。
作为一个实施例,SL-MaxTransNum的定义参考3GPP TS38.331。
作为一个实施例,所述第一传输次数是从1到32连续的32个正整数中的一个正整数。
作为一个实施例,所述第一传输次数是从1到K连续的K个正整数中选择的一个正整数,K是不大于32的一个正整数。
作为一个实施例,所述第一传输次数是所述第一节点从1到K连续的K个正整数中选择的一个正整数,K是不大于32的一个正整数。
作为一个实施例,所述K是更高层信令指示的。
作为一个实施例,所述K是sl-MaxTxTransNumPSSCH信令指示的。
作为一个实施例,sl-MaxTransNumPSSCH信令的定义参考3GPP TS38.331。
作为一个实施例,所述K1小于所述第一传输次数。
作为一个实施例,所述K1等于所述第一传输次数减去1。
作为一个实施例,所述K1是小于所述第一传输次数的一个正整数。
作为一个实施例,所述K1被用于确定所述目标参数值。
作为一个实施例,所述目标参数值等于所述K1的一次函数。
作为一个实施例,所述目标参数值等于所述K1与第一偏移值的和,所述第一偏移值是正整数。
作为一个实施例,所述目标参数值等于所述K1与第一偏移值的差,所述第一偏移值是正整数。
作为一个实施例,所述目标参数值等于所述K1。
作为一个实施例,所述K1和所述第一传输次数共同被用于确定所述目标参数值。
作为一个实施例,所述目标参数值等于所述K1和所述第一传输次数的一次函数。
作为一个实施例,所述目标参数值等于所述第一传输次数与所述K1线性相减的差。
作为一个实施例,所述目标参数值等于所述第一传输次数减去所述K1的差。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差。
作为一个实施例,所述目标参数值等于所述第一传输次数减去所述K1和第二偏移值的差,所述第二偏移值是正整数。
作为一个实施例,所述第二偏移值等于1。
作为一个实施例,所述目标参数值是非负整数。
作为一个实施例,所述目标参数值是正整数。
作为一个实施例,所述目标参数值等于0。
作为一个实施例,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述目标参数值被用于从所述备选资源集合包括的所述多个备选时频资源块中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数和所述目标参数值共同被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数和所述K1被用于确定所述目标参数值,所述目标参数值被用于从所述备选资源集合包括的所述多个备选时频资源块中确定所述第一备选时频资源块。
作为一个实施例,所述第一备选时频资源块与所述目标参数值和本申请中的第二备选时频资源块有关。
作为一个实施例,所述目标参数值和本申请中的第二备选时频资源块共同被用于从所述备选时频资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述目标参数值被用于从所述备选时频资源集合中确定所述第一备选时频资源块,所述第一备选时频资源块与本申请中的第二备选时频资源块有关。
作为一个实施例,所述第一备选时频资源块与所述第一传输次数,所述目标参数值和本申请中的第二备选时频资源块三者中的至少后两者有关。
作为一个实施例,所述第一备选时频资源块与所述第一传输次数,所述目标参数值和本申请中的第二备选时频资源块三者有关。
作为一个实施例,所述第一传输次数,所述目标参数值和本申请中的第二备选时频资源块三者中的至少前二者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数,所述目标参数值和本申请中的第二备选时频资源块三者中的至少后二者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数,所述目标参数值和本申请中的第二备选时频资源块三者共同被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数和所述目标参数值二者被用于从所述备选资源集合中确定所述第一备选时频资源块,所述第一备选时频资源块与本申请中的第二备选时频资源块有关。
作为一个实施例,所述第一传输次数和所述K1被用于确定所述目标参数值,所述目标参数值和本申请中的第二备选时频资源块共同被用于从所述备选资源集合包括的所述多个备选时频资源块中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数和所述K1被用于确定所述目标参数值,所述目标参数值被用于从所述备选资源集合包括的所述多个备选时频资源块中确定所述第一备选时频资源块,所述第一备选时频资源块与本申请中的第二备选时频资源块有关。
作为一个实施例,本申请中的第二备选时频资源块所占用的频域资源被用于确定所述第一备选时频资源块所占用的频域资源;所述目标参数值被用于确定所述第一备选时频资源块。
作为一个实施例,本申请中的第二备选时频资源块所占用的频域资源被用于从所述备选资源集合中确定所述第一备选时频资源块所占用的频域资源;所述目标参数值被用于从所述备选资源集合中确定所述第一备选时频资源块所占用的时域资源。
作为一个实施例,本申请中的第二备选时频资源块所占用的频域资源被用于确定所述第一备选时频资源块所占用的频域资源;所述目标参数值和所述第二备选时频资源块所占用的时域资源被用于确定所述第一备选时频资源块所占用的时域资源。
作为一个实施例,本申请中的第二备选时频资源块所占用的频域资源被用于从所述备选资源集合中确定所述第一备选时频资源块所占用的频域资源;所述目标参数值和所述第二备选时频资源块所占用的时域资源被用于从所述备选资源集合中确定所述第一备选时频资源块所占用的时域资源。
作为一个实施例,所述第二备选时频资源块被用于确定所述第一反馈资源块,所述目标参数值和所述第一反馈资源块被用于从所述备选时频资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第二备选时频资源块所占用的频域资源被用于确定所述第一备选时频资源块所占用的频域资源;所述目标参数值和所述第一反馈资源块所占用的时域资源被用于确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数和所述目标参数值的差被用于从所述备选资源集合包括的所述多个备选时频资源块中确定所述第一备选时频资源块。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差,所述目标参数值被用于从所述备选资源集合包括的所述多个备选时频资源块中确定所述第一备选时频资源块。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet  System,演进分组系统)200某种其它合适术语。5GS/EPS200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。在NTN网络中,gNB203的实例包括卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点包括所述UE201。
作为一个实施例,本申请中的第二节点包括所述UE241。
作为一个实施例,本申请中的用户设备包括所述UE201。
作为一个实施例,本申请中的用户设备包括所述UE241。
作为一个实施例,本申请中的基站设备包括所述gNB203。
作为一个实施例,本申请中的第一信令的发送者包括所述UE201。
作为一个实施例,本申请中的第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的第一信号的接收者包括所述UE241。
作为一个实施例,本申请中的第二信号的发送者包括所述UE201。
作为一个实施例,本申请中的第二信号的接收者包括所述UE241。
作为一个实施例,本申请中的第一应答信号的发送者包括所述UE241。
作为一个实施例,本申请中的第一应答信号的接收者包括所述UE201。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文 将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信号经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信号经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一应答信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一应答信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一应答信号经由所述MAC子层302传输到所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器 416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令指示第一资源池;从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令指示第一资源池;从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在第二备选时频资源块上接收第二信号,所述第二备选时频资源块是第一资源池中的一个时频资源块;在第一反馈资源块上发送第一应答信号;在第一备选时频资源块上接收第一信号,所述第一备选时频资源块是所述第一资源池中的一个时频资源块;所述第二信号携带第一比特块,所述第一信号携带携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;所述第二信号早于所述第一信号;所述第一应答信号被用于指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第二备选时频资源块上接收第二信号,所述第二备选时频资源块是第一资源池中的一个时频资源块;在第一反馈资源块上发送第一应答信号;在第一备选时频资源块上接收第一信号,所述第一备选时频资源块是所述第一资源池中的一个时频资源块;所述第二信号携带第一比特块,所述第一信号携带携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;所述第二信号早于所述第一信号;所述第一应答信号被用于指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块 之间的关系。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的从第一资源池中确定备选资源集合。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第二备选时频资源块上发送第二信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一反馈资源块上接收第一应答信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一备选时频资源块上发送第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第二备选时频资源块上接收第二信号。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第一反馈资源块上发送第一应答信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在第一备选时频资源块上接收第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点U1与第二节点U2之间是通过空中接口进行通信。
对于 第一节点U1,在步骤S11中接收第一信令;在步骤S12中从第一资源池中确定备选资源集合;在步骤S13中在第二备选时频资源块上发送第二信号;在步骤S14中在第一反馈资源块上接收第一应答信号;在步骤S15中在第一备选时频资源块上发送第一信号。
对于 第二节点U2,在步骤S21中在第二备选时频资源块上接收第二信号;在步骤S22中在第一反馈资源块上发送第一应答信号;在步骤S23中在第一备选时频资源块上接收第一信号。
在实施例5中,所述第一信令指示第一资源池;所述备选资源集合包括多个备选时频资源块;所述第一备选时频资源块和所述第二备选时频资源块是所述备选资源集合中的一个备选时频资源块;第一比特块分别被用于生成所述第一信号和所述第二信号,所述第一信号携带所述第一比特块的第K1次重传,所述第二信号携带所述第一比特块的第K2次传输,所述第一比特块包括至少一个比特,K1是正整数,K2是不大于所述K1的正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块;所述第一应答信号被用于确定所述第一比特块是否被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值共被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
作为一个实施例,所述第一应答信号指示所述第一比特块未被正确译码。
作为一个实施例,所述第一应答信号被用于确定所述第一比特块是否被正确译码包括所述第一应答信号指示所述第一比特块未被正确译码。
作为一个实施例,所述目标参数值等于所述K1。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
作为一个实施例,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻等于所述目标资源子集的起始时刻;所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
作为一个实施例,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述第一传输次数,剩余数据包的延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
作为一个实施例,所述第一节点U1和所述第二节点U2之间是通过PC5接口进行通信。
作为一个实施例,所述第一信令是所述第一节点U1的更高层发送给所述第一节点U1的物理层。
作为一个实施例,所述第一节点U1的更高层包括所述第一节点U1的RRC层或者所述第一节点U1的MAC层中的至少之一。
作为一个实施例,所述第一信令是由所述第一节点U1的更高层发送的。
作为一个实施例,所述第一信令是由所述第一节点U1的物理层接收的。
实施例6
实施例6示例了根据本申请的一个实施例的备选资源集合,第二备选时频资源块,第一反馈资源块与第一备选时频资源块之间关系的示意图,如附图6所示。在附图6中,虚线大方框代表本申请中的备选资源集合;斜纹填充的矩形代表本申请中的第二备选时频资源块;斜方格填充的矩形代表本申请中的第一反馈资源块;正方格填充的矩形代表本申请中的第一备选时频资源块。
在实施例6中,本申请中的第一比特块分别被用于生成所述第二信号和所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第二信号携带所述第一比特块的第K2次传输,K1是正整数,K2是不大于所述K1的正整数;所述第一应答信号被用于确定所述第一比特块是否被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第一应答信号在所述第一反馈资源块上被传输,所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值被用于确定所述第一备选时频资源块与所述第二备选时频资源块之间的关系。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号在PSCCH上传输。
作为一个实施例,所述第二信号在PSSCH上传输。
作为一个实施例,所述第二信号在PSCCH和PSSCH上传输。
作为一个实施例,所述第二信号包括一个更高层信令中的全部或部分。
作为一个实施例,所述第二信号包括所述第一比特块,所述第一比特块包括至少一个比特。
作为一个实施例,所述第二信号携带所述第一比特块,所述第一比特块包括至少一个比特。
作为一个实施例,所述第一比特块被用于生成所述第二信号,所述第一比特块包括至少一个比特。
作为一个实施例,所述第二信号中的所述第一比特块在PSSCH上传输。
作为一个实施例,所述第二信号中的所述第一比特块来自SL-SCH。
作为一个实施例,所述第一比特块包括正整数个比特,所述第一比特块包括的所述正整数个比特中的所有或部分比特被用于生成所述第二信号。
作为一个实施例,所述第一比特块的所有或部分比特依次经过传输块级CRC附着,编码块分段,编码块级CRC附着,信道编码,速率匹配,编码块串联,加扰,调制,层映射,天线端口映射,映射到物理资源块,基带信号发生,调制和上变频之后得到所述第二信号。
作为一个实施例,所述第二信号是所述第一比特块依次经过调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生之后的输出。
作为一个实施例,所述第二信号包括第二子信令和所述第一比特块。
作为一个实施例,所述第二信号中的所述第二子信令被用于调度所述第二信号中的所述第一比特块。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二信号所占用的时频资源。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二信号所占用的时频资源,所述第二信号所占用的时频资源属于所述第二备选时频资源块。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二信号所占用的时频资源,所述第二信号所占用的时频资源是所述第二备选时频资源块。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二信号中的所述第一比特块所占用的时频资源,所述第二信号中的所述第一比特块所占用的所述时频资源属于所述第二备选时频资源块。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二备选时频资源块。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二信号中的所述第一比特块所经历的调制编码方式。
作为一个实施例,所述第二信号中的所述第二子信令指示所述第二信号所采用的解调参考信号。
作为一个实施例,所述第二信号包括一个或多个域。
作为一个实施例,所述第二信号包括一个SCI中的一个或多个域。
作为一个实施例,所述第二信号包括一个SCI。
作为一个实施例,所述第二信号包括一个DCI。
作为一个实施例,所述第二信号携带所述第一比特块的初传。
作为一个实施例,所述第二信号包括所述第一比特块的初传。
作为一个实施例,所述第二信号是所述第一比特块的初传。
作为一个实施例,所述第一比特块被重传K1次,所述第二信号携带所述第一比特块的K1次重传中的第K1-1次重传,所述K1是大于1的正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第二信号包括所述第一比特块的K1次重传中的第K1-1次重传,所述K1是大于1的正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第二信号是所述第一比特块的K1次重传中的第K1-1次重传,所述K1是大于1的正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第二信号携带所述第一比特块的K1次重传中的第K2-1次重传,K2是大于1且不大于K1的正整数,所述K1是大于1的正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第二信号包括所述第一比特块的K1次重传中的第K2-1次重传,K2是大于1且不大于K1的正整数,所述K1是大于1的正整数。
作为一个实施例,所述第一比特块被重传K1次,所述第二信号是所述第一比特块的K1次重传中的第K2-1次重传,K2是大于1且不大于K1的正整数,所述K1是大于1的正整数。
作为上述实施例的一个子实施例,所述K2等于所述K1。
作为上述实施例的一个子实施例,所述K2大于1且所述K2小于所述K1。
作为一个实施例,所述第一比特块被传输K1+1次,所述第二信号携带所述第一比特块的K1+1次传输中的第K2次传输,K2是不大于K1的正整数,所述K1是正整数。
作为一个实施例,所述第一比特块被传输K1+1次,所述第二信号包括所述第一比特块的K1+1次传输中的第K2次传输,K2是不大于K1的正整数,所述K1是正整数。
作为一个实施例,所述第一比特块被传输K1+1次,所述第二信号是所述第一比特块的K1+1次传输中的第K2次传输,K2是不大于K1的正整数,所述K1是正整数。
作为上述实施例的一个子实施例,所述K2等于1。
作为上述实施例的一个子实施例,所述K2等于所述K1。
作为上述实施例的一个子实施例,所述K2小于所述K1。
作为一个实施例,所述第一比特块的所述K1+1次传输中包括所述第一比特块的初传。
作为一个实施例,所述第一比特块的所述K1+1次传输中包括所述第一比特块的初传和所述第一比特块的K1次重传。
作为一个实施例,所述第一比特块被传输K1+1次,所述第一比特块的K1+1次传输包括所述第一比特块的初传和所述第一比特块的K1次重传;所述第二信号携带所述第一比特块的所述K1+1次传输中的第K2次传输,所述第一信号携带所述第一比特块的K1次重传中的第K1次重传,K1是正整数,K2是不大于所述K1的正整数。
作为上述实施例的一个子实施例,所述K2等于1,所述K1等于1。
作为上述实施例的一个子实施例,所述K2等于1,所述K1大于1。
作为上述实施例的一个子实施例,所述K2等于所述K1。
作为上述实施例的一个子实施例,所述K2小于所述K1。
作为一个实施例,所述第一比特块被传输K1+1次;所述第二信号携带所述第一比特块的K1+1次传输中的第K2次传输,所述第一信号携带所述第一比特块的所述K1+1次传输中的第K1+1次传输,K1是正整数,K2是不大于所述K1的正整数。
作为一个实施例,所述第一比特块被重传K1次;所述第二信号携带所述第一比特块的K1次重传中的第K2-1次重传,所述第一信号携带所述第一比特块的所述K1次重传中的第K1次重传,K1是大于1的正整数,K2是不大于所述K1的正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号携带所述第一比特块的初传,所述K1个第一类信号分别携带所述第一比特块的K1次重传;所述第二信号是所述第一目标信号,所述第一信号是所述K1个第一类信号中的第K1个第一类信号;K1是正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号携带所述第一比特块的初传,所述K1个第一类信号分别携带所述第一比特块的K1次重传;所述第二信号是所述K1个第一类信号中的第K1-1个第一类信号,所述第一信号是所述K1个第一类信号中的第K1个第一类信号;K1是大于1的正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号携带所述第一比特块的初传,所述K1个第一类信号分别携带所述第一比特块的K1次重传;所述第二信号是所述K1个第一类信号中的第K2个第一类信号,所述第一信号是所述K1个第一类信号中的第K1个第一类信号;K1是大于1的正整数,K2是小于所述K1的正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号在初传机会上传输,所述K1个第一类信号分别在K1个重传机会上传输;第一信号是所述K1个第一类信号中的一个第一类信号,所述第一信号在所述K1个重传机会中的第K1个重传机会上传输;第二信号是所述第一目标信号,所述第二信号在所述初传机会上传输;K1是正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号在初传机会上传输,所述K1个第一类信号分别在K1个重传机会上传输;第一信号和第二信号分别是所述K1个第一类信号中的两个第一类信号,所述第一信号在所述K1个重传机会中的第K1个重传机会上传输;所述第二信号在所述K1个重传机会中的第K1-1个重传机会上传输;K1是大于1的正整数。
作为一个实施例,所述第一比特块依次被用于生成第一目标信号和K1个第一类信号,所述第一目标信号在初传机会上传输,所述K1个第一类信号分别在K1个重传机会上传输;第一信号和第二信号分别是所述K1个第一类信号中的两个第一类信号,所述第一信号在所述K1个重传机会中的第K1个重传机会上传输;所述第二信号在所述K1个重传机会中的第K2个重传机会上传输;K1是大于1的正整数,K2 是小于所述K1的正整数。
作为一个实施例,所述第一比特块依次被用于生成K2个第一类信号,所述K2个第一类信号分别携带所述第一比特块的K2次传输;所述第二信号是所述K2个第一类信号中的第K2个第一类信号,所述第二信号携带所述第一比特块的所述K2次传输中的第K2次传输,K2是正整数。
作为一个实施例,所述第一比特块依次被用于生成K2个第一类信号,所述K2个第一类信号分别携带所述第一比特块的K2次传输,所述第一比特块的所述K2次传输包括所述第一比特块的初传;所述第二信号是所述K2个第一类信号中的第K2个第一类信号,所述第二信号携带所述第一比特块的所述K2次传输中的第K2次传输,K2是正整数。
作为一个实施例,所述第一比特块依次被用于生成K2个第一类信号,所述K2个第一类信号分别携带所述第一比特块的K2次传输,所述第一比特块的所述K2次传输包括所述第一比特块的初传;所述第二信号是所述K2个第一类信号中的第K2个第一类信号,所述第二信号携带所述第一比特块的所述K2次传输中的最后一次传输,K2是正整数。
作为一个实施例,所述第一比特块依次被用于生成K1+1个第一类信号,所述K1+1个第一类信号分别携带所述第一比特块的K1+1次传输;所述第二信号是所述K1+1个第一类信号中的第K2个第一类信号,所述第二信号携带所述第一比特块的所述K1+1次传输中的第K2次传输,K1是正整数,K2是不大于所述K1的正整数。
作为一个实施例,所述第一比特块依次被用于生成K1+1个第一类信号,所述K1+1个第一类信号分别携带所述第一比特块的K1+1次传输,所述第一比特块的所述K1+1次传输包括所述第一比特块的初传;所述第二信号是所述K1+1个第一类信号中的第K2个第一类信号,所述第二信号携带所述第一比特块的所述K1+1次传输中的第K2次传输,K1是正整数,K2是不大于所述K1的正整数。
作为一个实施例,所述第一应答信号在PSFCH上被发送。
作为一个实施例,所述第一应答信号在所述第一反馈资源块上被发送。
作为一个实施例,作为接收所述第二信号的响应,所述第一应答信号被发送。
作为一个实施例,作为接收所述第二信号的响应,所述第一应答信号在所述第一反馈资源块上被发送。
作为一个实施例,作为在PSSCH上接收所述第二信号的响应,所述第一应答信号在PSFCH上被发送。
作为一个实施例,所述第一应答信号被用于确定所述第一比特块是否被正确译码。
作为一个实施例,所述第一应答信号指示所述第一比特块未被正确译码,或者,所述第一比特块被正确译码。
作为一个实施例,所述第一应答信号指示所述第一比特块未被正确译码。
作为一个实施例,所述第一应答信号指示所述第一比特块被正确译码。
作为一个实施例,所述第一序列的多个相位旋转(phase rotations)分别被用于指示所述第一比特块是否被正确译码。
作为一个实施例,所述第一序列的第一相位旋转是所述第一序列的所述多个相位旋转中的一个相位旋转,所述第一序列的所述第一相位旋转被用于指示所述第一比特块未被正确译码。
作为一个实施例,所述第一序列的第二相位旋转是所述第一序列的所述多个相位旋转中的一个相位旋转,所述第一序列的所述第二相位旋转被用于指示所述第一比特块被正确译码。
作为一个实施例,所述第一相位旋转与所述第二相位旋转不同。
作为一个实施例,所述第一反馈资源块占用的频域资源是所述备选资源集合包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一反馈资源块占用多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一应答信号包括HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)信息。
作为一个实施例,所述第一应答信号包括HARQ-ACK(Hybrid Automatic Repeat Request-Acknowledge,混合自动重传请求-确认)信息。
作为一个实施例,所述第一应答信号包括ACK(Acknowledgement,确认)或者NACK(Negative Acknowledgement,消极应答)。
作为一个实施例,所述第一应答信号只包括NACK。
作为一个实施例,所述第一应答信号包括第一序列。
作为一个实施例,所述第一序列被用于生成所述第一应答信号。
作为一个实施例,所述第一序列是伪随机序列(Pseudo-Random Sequence)。
作为一个实施例,所述第一序列是低峰均比序列(Low-PAPR Sequence,Low-Peak to Average Power Ratio)。
作为一个实施例,所述第一序列是Low-PAPR序列类型1。
作为一个实施例,所述第一序列是Low-PAPR序列类型2。
作为一个实施例,Low-PAPR序列类型1的定义参考3GPP TS38.211的章节5.2.2。
作为一个实施例,Low-PAPR序列类型1的定义参考3GPP TS38.211的章节5.2.3。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是ZC(Zadeoff-Chu)序列。
作为一个实施例,所述第一序列经过序列生成(Sequence Generation),离散傅里叶变换,调制(Modulation)和资源粒子映射(Resource Element Mapping),宽带符号生成(Generation)之后得到所述第一应答信号。
作为一个实施例,所述第一序列的长度为12。
作为一个实施例,所述第一应答信号被映射到所述第一反馈资源块所占用的多个REs上。
作为一个实施例,所述第一比特块被正确译码包括:对所述第二信号执行信道译码,所述对所述第二信号执行信道译码的结果通过CRC校验。
作为一个实施例,所述第一比特块被正确译码包括:对K2个第一类信号执行信道译码,所述对所述K2个第一类信号执行信道译码的结果通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述第一比特块被正确译码包括:对K2个第一类信号执行信道译码和软合并,所述对所述K2个第一类信号执行信道译码和软合并的结果通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述第一比特块被正确译码包括:所述第一比特块依次被用于生成K2个第一类信号,对所述K2个第一类信号执行信道译码和软合并,所述对所述K2个第一类信号执行信道译码和软合并的结果通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述第一比特块被正确译码包括:K2个第一类信号分别携带所述第一比特块,对所述K2个第一类信号执行信道译码和软合并,所述对所述K2个第一类信号执行信道译码和软合并的结果通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述软合并(soft-combining)包括比特级软合并(bit-level soft-combining)。
作为一个实施例,所述软合并包括符号级软合并(symbol-level soft-combining)。
作为一个实施例,所述第一比特块未被正确译码包括:对所述第二信号执行信道译码,所述对所述第二信号执行信道译码的结果未通过CRC校验。
作为一个实施例,所述第一比特块未被正确译码包括:对K2个第一类信号执行信道译码,所述对所述K2个第一类信号执行信道译码的结果未通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述第一比特块未被正确译码包括:对K2个第一类信号执行信道译码和软合并,所述对所述K2个第一类信号执行信道译码和软合并的结果未通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述第一比特块未被正确译码包括:所述第一比特块依次被用于生成K2个第一类信号,对所述K2个第一类信号执行信道译码和软合并,所述对所述K2个第一类信号执行信道译码和软合并的结果未通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述第一比特块未被正确译码包括:K2个第一类信号分别携带所述第一比特块, 对所述K2个第一类信号执行信道译码和软合并,所述对所述K2个第一类信号执行信道译码和软合并的结果未通过CRC校验,所述第二信号是所述K2个第一类信号中的一个第一类信号,K2是正整数。
作为一个实施例,所述信道译码是基于维特比算法。
作为一个实施例,所述信道译码是基于迭代的。
作为一个实施例,所述信道译码是基于BP(Belief Propagation,可信度传播)算法。
作为一个实施例,所述信道译码是基于LLR(Log Likelihood Ratio,对数似然比)-BP算法。
作为一个实施例,所述第一反馈资源块属于所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第一反馈资源块属于所述备选资源集合包括的所述多个备选时频资源块中的一个备选时频资源块。
作为一个实施例,所述第一反馈资源块所占用的时域资源属于所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述第一反馈资源块所占用的频域资源属于所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一反馈资源块所占用的时域资源属于所述备选资源集合包括的所述多个备选时域资源块中的一个备选时域资源块。
作为一个实施例,所述第一反馈资源块所占用的频域资源属于所述备选资源集合包括的所述多个备选频域资源块中的一个备选频域资源块。
作为一个实施例,所述第一反馈资源块所占用的时域资源包括正整数个Symbol(s)。
作为一个实施例,所述第一反馈资源块所占用的时域资源是一个Symbol。
作为一个实施例,所述第一反馈资源块所占用的时域资源是两个连续的Symbols。
作为一个实施例,所述第一反馈资源块所占用的时域资源是三个连续的Symbols。
作为一个实施例,所述第一反馈资源块所占用的频域资源包括正整数个PRB(s)。
作为一个实施例,所述第一反馈资源块所占用的频域资源是一个PRB。
作为一个实施例,所述第一反馈资源块所占用的频域资源包括多个Subcarrier(s)。
作为一个实施例,所述第一反馈资源块被用于传输所述第一应答信号。
作为一个实施例,所述第一应答信号所占用的时域资源属于所述第一反馈资源块所占用的时域资源。
作为一个实施例,所述第一应答信号所占用的频域资源属于所述第一反馈资源块所占用的频域资源。
作为一个实施例,所述第一资源池包括多个反馈时机(feedback occasions),所述多个反馈时机中的任一反馈时机属于所述第一资源池包括的所述多个时域资源块中的一个时域资源块,所述第一反馈资源块所占用的时域资源是所述多个反馈时机中的一个反馈时机。
作为一个实施例,所述第一资源池包括的所述多个反馈时机中相邻的两个反馈时机间隔N个时域资源块,N是正整数。
作为一个实施例,第一反馈时机和第二反馈时机分别是所述第一资源池包括的所述多个反馈时机中的任意相邻的两个反馈时机,所述第一反馈时机与所述第二反馈时机间隔所述N个时域资源块。
作为一个实施例,第一反馈时机和第二反馈时机分别是所述第一资源池包括的所述多个反馈时机中的任意相邻的两个反馈时机,所述第一反馈时机所属的时域资源块与所述第二反馈时机所属的时域资源块之间间隔所述N个时域资源块。
作为一个实施例,所述第一反馈时机所属的时域资源块在所述第一资源池包括的所述多个时域资源块中的索引与所述N的和等于所述第二反馈时机所属的时域资源块在所述第一资源池包括的所述多个时域资源块中的索引。
作为一个实施例,所述第二反馈时机所属的时域资源块在所述第一资源池包括的所述多个时域资源块中的索引减去所述第一反馈时机所属的时域资源块在所述第一资源池包括的所述多个时域资源块中的索引的差等于所述N。
作为一个实施例,所述N等于1。
作为一个实施例,所述N等于2。
作为一个实施例,所述N等于4。
作为一个实施例,所述第一资源池包括的所述多个反馈时机中的任一反馈时机包括多个反馈资源块,所述多个反馈时机中的任一反馈时机包括的所述多个反馈资源块中的任一反馈资源块包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个反馈时机中的任一反馈时机包括多个反馈资源块,所述多个反馈时机中的任一反馈时机包括的所述多个反馈资源块中的任一反馈资源块在频域占用正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个反馈时机中的任一反馈时机包括多个反馈资源块,所述多个反馈时机中的任一反馈时机包括的所述多个反馈资源块中的任一反馈资源块在频域占用一个PRB。
作为一个实施例,所述第一资源池包括的所述多个反馈时机中的任一反馈时机属于一个SL Slot,所述多个反馈时机中的任一反馈时机包括多个反馈资源块,所述第一资源池包括的所述多个反馈时机中的任一反馈时机包括的所述多个反馈资源块中的任一反馈资源块在频域占用一个PRB。
作为一个实施例,第一目标反馈时机是所述第一资源池包括的所述多个反馈时机中的一个反馈时机,所述第一目标反馈时机包括至少一个反馈资源块,所述第一反馈资源块是所述第一目标反馈时机包括的所述至少一个反馈资源块中的一个反馈资源块。
作为一个实施例,所述第一目标反馈时机包括的所述至少一个反馈资源块在时域占用同一反馈时机。
作为一个实施例,所述第一目标反馈时机包括的所述至少一个反馈资源块在时域占用的反馈时机是所述第一目标反馈时机。
作为一个实施例,所述第一目标反馈时机包括M1个反馈资源块,M1是正整数。
作为一个实施例,所述第一反馈资源块所占用的时域资源是所述第一目标反馈时机。
作为一个实施例,所述第一应答信号所占用的时频资源属于所述第一反馈资源块,所述第二信号所占用的时频资源属于所述第二备选时频资源块。
作为一个实施例,所述第一应答信号所占用的时频资源属于所述第一反馈资源块,所述第二信号所占用的时频资源属于所述第二备选时频资源块,所述第一信号所占用的时频资源属于所述第一备选时频资源块。
作为一个实施例,所述第一反馈资源块包括所述第一应答信号所占用的时频资源,所述第二备选时频资源块包括所述第二信号所占用的时频资源。
作为一个实施例,所述第一反馈资源块包括所述第一应答信号所占用的时频资源,所述第二备选时频资源块包括所述第二信号所占用的时频资源,所述第一备选时频资源块包括所述第一信号所占用的时频资源。
作为一个实施例,所述第一反馈资源块与所述第二备选时频资源块有关。
作为一个实施例,所述第二备选时频资源块被用于确定所述第一反馈资源块。
作为一个实施例,所述第二备选时频资源块所占用的时域资源被用于确定所述第一反馈资源块所占用的时域资源。
作为一个实施例,所述第二备选时频资源块所占用的频域资源被用于确定所述第一反馈资源块所占用的频域资源。
作为一个实施例,所述第二备选时频资源块所占用的时域资源被用于确定所述第一目标反馈时机。
作为一个实施例,所述第一目标反馈时机在时域晚于所述第二备选时频资源块所占用的时域资源。
作为一个实施例,所述第二备选时频资源块所占用的时域资源与所述第一目标反馈时机间隔最小时间间隙(Minimum Time Gap),所述最小时间间隙包括正整数个时域资源块。
作为一个实施例,所述最小时间间隙包括正整数个Slot(s)。
作为一个实施例,所述最小时间间隙是更高层信令指示的。
作为一个实施例,所述第一目标反馈时机是所述第二备选时频资源块所占用的时域资源偏移所述最小时间间隙之后的最近的一个反馈时机。
作为一个实施例,所述第一目标反馈时机是所述第一资源池包括的所述多个反馈时机中的在所述第二 备选时频资源块所占用的时域资源资源偏移所述最小时间间隙之后的第一个反馈时机。
作为一个实施例,所述第一目标反馈时机在所述第二备选时频资源块所占用的时域资源之后是指所述第一反馈时机在时域晚于所述第二备选时频资源块所占用的时域资源。
作为一个实施例,所述第一目标反馈时机在所述第二备选时频资源块所占用的时域资源偏移所述最小时间间隙之后是指所述第一目标反馈时机晚于所述第二备选时频资源块所占用的时域资源向后偏移所述最小时间间隙。
作为一个实施例,所述备选资源集合包括M个备选时频资源块与所述第一目标反馈时机关联,M是正整数。
作为一个实施例,所述备选资源集合包括的所述M个备选时频资源块分别与所述第一目标反馈时机包括的所述多个反馈资源块关联。
作为一个实施例,所述备选资源集合包括的所述M个备选时频资源块分别被映射到所述第一目标反馈时机包括的所述多个反馈资源块。
作为一个实施例,所述备选资源集合包括的所述M个备选时频资源块分别与所述第一目标反馈时机包括的所述多个反馈资源块一一对应。
作为一个实施例,所述N被用于确定所述M。
作为一个实施例,所述M等于所述N与所述M1的乘积。
作为一个实施例,所述第二备选时频资源块所占用的频域资源被用于确定所述第一反馈资源块在所述第一目标反馈时机包括的所述多个反馈资源块中的索引。
作为一个实施例,所述第二备选时频资源块是所述备选资源集合包括的所述M个备选时频资源块中的一个备选时频资源块,所述第二备选时频资源块在所述M个备选时频资源块中的位置被用于确定所述第一反馈资源块在所述第一目标反馈时机包括的所述多个反馈资源块中的位置。
作为一个实施例,所述第一反馈资源块包括PSFCH。
作为一个实施例,所述第二备选时频资源块包括PSCCH和PSSCH,所述第一反馈资源块包括PSFCH。
作为一个实施例,所述第二备选时频资源块包括PSCCH和PSSCH,所述第一反馈资源块包括PSFCH,所述第一备选时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述第一应答信号早于所述第一信号是指所述第一反馈资源块在时域早于所述第一备选时频资源块。
作为一个实施例,所述第一应答信号晚于所述第二信号是指所述第一反馈资源块在时域晚于所述第二备选时频资源块。
作为一个实施例,所述第二信号在所述第二备选时频资源块上被发送,所述第一应答信号在所述第一反馈资源块上被接收,所述第一信号在所述第一备选时频资源块上被发送,所述第二备选时频资源块所占用的时域资源早于所述第一反馈资源块所占用的时域资源,所述第一反馈资源块所占用的时域资源早于所述第一备选时频资源块所占用的时域资源。
作为一个实施例,所述第二信号在所述第二备选时频资源块上被发送,所述第一应答信号在所述第一反馈资源块上被接收,所述第一信号在所述第一备选时频资源块上被发送,所述第一反馈资源块所占用的时域资源早于所述第一备选时频资源块所占用的时域资源,所述第一反馈资源块所占用的时域资源晚于所述第二备选时频资源块所占用的时域资源。
实施例7
实施例7示例了根据本申请的一个实施例的第一备选时频资源块,第二备选时频资源块与第一退避时间之间关系的示意图,如附图7所示。在附图7中,实线长方框代表本申请中的第一资源池中的时域资源块;虚线矩形代表所述第一资源池中的时频资源块;虚线长方框代表本申请中的第一资源池中的反馈时机;斜纹填充的矩形代表本申请中的第二备选时频资源块;斜方格填充的矩形代表本申请中的第一反馈资源块;正方格填充的矩形代表本申请中的第一备选时频资源块。
在实施例7中,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一 有关。
作为一个实施例,所述第一阈值是一个非负整数。
作为一个实施例,所述第一阈值是一个正整数。
作为一个实施例,所述第一阈值是不大于32的非负整数。
作为一个实施例,所述第一阈值是不大于32的正整数。
作为一个实施例,所述第一阈值是更高层信令配置的。
作为一个实施例,所述第一阈值是预配置的(Pre-Configured)。
作为一个实施例,所述第一阈值是多个第一类阈值中的一个第一类阈值;所述第一优先级是多个优先级中的一个优先级;所述多个第一类阈值分别与所述多个优先级一一对应;所述第一优先级被用于从所述多个第一类阈值中确定所述第一阈值。
作为一个实施例,所述第一优先级被用于指示所述第一阈值在所述多个第一类阈值中的索引。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是多个资源确定方式中的一个资源确定方式,所述多个资源确定方式包括所述感知(Sensing),或者随机资源选择(Random Resource Selection)二者中的至少之一。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是多个资源确定方式中的一个资源确定方式,所述多个资源确定方式包括完全感知(Full Sensing),部分感知(Partial Sensing),或者随机资源选择三者中的至少之一。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是多个资源确定方式中的一个资源确定方式,所述多个资源确定方式包括完全感知,基于周期的部分感知(Periodic-based Partial Sensing),连续性的部分感知(Contiguous Partial Sensing)或者随机资源选择四者中的至少之一。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是随机资源选择。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是完全感知。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是部分感知。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是基于周期的部分感知。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式是连续性的部分感知。
作为一个实施例,所述第一阈值是多个第二类阈值中的一个第二类阈值;所述多个第二类阈值分别与所述多个资源确定方式一一对应;从所述第一资源池中确定所述备选资源集合的所述方式被用于从所述多个第二类阈值中确定所述第一阈值。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式被用于指示所述第一阈值在所述多个第二类阈值中的索引。
作为一个实施例,第一阈值列表是多个阈值列表中的一个阈值列表,所述多个阈值列表中的任一阈值列表包括多个第三类阈值,所述第一阈值是所述第一阈值列表中的一个第三类阈值;所述多个阈值列表与所述多个资源确定方式一一对应;从所述第一资源池中确定所述备选资源集合的所述方式被用于从所述多个阈值列表中确定所述第一阈值列表;所述第一阈值列表包括的所述多个第三类阈值与所述多个优先级一一对应;所述第一优先级被用于从所述第一阈值列表包括的所述多个第三类阈值中确定所述第一阈值。
作为一个实施例,从所述第一资源池中确定所述备选资源集合的所述方式被用于指示所述第一阈值列表在所述多个阈值列表中的索引;所述第一优先级被用于指示所述第一阈值在所述第一阈值列表包括的所述多个第三类阈值中的索引。
作为一个实施例,第一阈值列表是多个阈值列表中的一个阈值列表,所述多个阈值列表中的任一阈值列表包括多个第三类阈值,所述第一阈值是所述第一阈值列表中的一个第三类阈值;所述多个阈值列表与所述多个优先级一一对应;所述第一优先级被用于从所述多个阈值列表中确定所述第一阈值列表;所述第一阈值列表包括的所述多个第三类阈值与所述多个资源确定方式一一对应;从所述第一资源池中确定所述备选资源集合的所述方式被用于从所述第一阈值列表包括的所述多个第三类阈值中确定所述第一阈值。
作为一个实施例,所述第一优先级被用于指示所述第一阈值列表在所述多个阈值列表中的索引;从所述第一资源池中确定所述备选资源集合的所述方式被用于指示所述第一阈值在所述第一阈值列表包括的所述多个第三类阈值中的索引。
作为一个实施例,所述第一退避时间是一个小数。
作为一个实施例,所述第一退避时间是一个不大于5的实数。
作为一个实施例,所述第一退避时间是一个不大于1920的实数。
作为一个实施例,所述第一退避时间的单位是毫秒(millisecond,ms)。
作为一个实施例,所述第一退避时间是根据从0到第一退避门限之间正态分布(uniform distribution)的随机取值。
作为一个实施例,所述第一退避时间是随机选择的。
作为一个实施例,所述第一退避门限是一个非负整数。
作为一个实施例,所述第一退避门限是一个正整数。
作为一个实施例,所述第一退避门限是5的倍数。
作为一个实施例,所述第一退避门限是{0,5,10,20,30,40,60,80,120,160,240,320,480,960,1920}中的一个整数。
作为一个实施例,所述第一退避门限的单位是ms。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于所述第一退避时间。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔大于所述第一退避时间。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔等于所述第一退避时间。
作为一个实施例,所述第一备选时频资源块在时域晚于所述第二备选时频资源块之后的所述第一退避时间。
作为一个实施例,所述第一备选时频资源块所占用的时域资源与所述第二备选时频资源块所占用的时域资源之间的差大于所述第一退避时间。
作为一个实施例,所述第一备选时频资源块所占用的时域资源与所述第二备选时频资源块所占用的时域资源之间的差等于所述第一退避时间。
作为一个实施例,所述目标参数值与所述第一阈值的大小关系被用于确定所述第一退避时间。
作为一个实施例,第一备选时间和第二备选时间分别是根据从0到第一退避门限之间正态分布的两个随机取值,所述第一备选时间小于所述第二备选时间。
作为一个实施例,所述第一备选时间等于0ms,所述第二备选时间等于2.8ms。
作为一个实施例,所述目标参数值不大于所述第一阈值,所述第一退避时间是所述第一备选时间。
作为一个实施例,所述目标参数值小于所述第一阈值,所述第一退避时间是所述第一备选时间。
作为一个实施例,所述目标参数值等于所述第一阈值,所述第一退避时间是所述第一备选时间。
作为一个实施例,所述目标参数值大于所述第一阈值,所述第一退避时间是所述第二备选时间。
作为一个实施例,所述目标参数值等于所述第一阈值,所述第一退避时间是所述第二备选时间。
作为一个实施例,当所述目标参数值不大于所述第一阈值时,所述第一退避时间是所述第一备选时间;当所述目标参数值大于所述第一阈值时,所述第一退避时间是所述第二备选时间;所述第一备选时间小于所述第二备选时间。
作为一个实施例,当所述目标参数值小于所述第一阈值时,所述第一退避时间是所述第一备选时间;当所述目标参数值不小于所述第一阈值时,所述第一退避时间是所述第二备选时间;所述第一备选时间小于所述第二备选时间。
作为一个实施例,所述目标参数值与所述第一阈值的大小关系被用于确定所述第一退避门限。
作为一个实施例,第一备选门限和第二备选门限分别等于X个非负整数中的两个非负整数,X是大于1的正整数;所述第一备选门限小于所述第二备选门限。
作为一个实施例,所述X个非负整数包括0,5,10,20,30,40,60,80,120,160,240,320,480,960,1920中的至少之二。
作为一个实施例,所述第一备选门限等于0ms,所述第二备选门限等于20ms。
作为一个实施例,所述目标参数值不大于所述第一阈值,所述第一退避门限是所述第一备选门限。
作为一个实施例,所述目标参数值小于所述第一阈值,所述第一退避门限是所述第一备选门限。
作为一个实施例,所述目标参数值等于所述第一阈值,所述第一退避门限是所述第一备选门限。
作为一个实施例,所述目标参数值大于所述第一阈值,所述第一退避门限是所述第二备选门限。
作为一个实施例,所述目标参数值等于所述第一阈值,所述第一退避门限是所述第二备选门限。
作为一个实施例,当所述目标参数值不大于所述第一阈值时,所述第一退避门限是所述第一备选门限;当所述目标参数值大于所述第一阈值时,所述第一退避门限是所述第二备选门限;所述第一备选门限小于所述第二备选门限。
作为一个实施例,当所述目标参数值小于所述第一阈值时,所述第一退避门限是所述第一备选门限;当所述目标参数值不小于所述第一阈值时,所述第一退避门限是所述第二备选门限;所述第一备选门限小于所述第二备选门限。
作为一个实施例,所述第一优先级被关联到所述第一信号。
作为一个实施例,所述第一优先级被关联到所述第二信号。
作为一个实施例,所述第一优先级被关联到所述第一比特块。
作为一个实施例,所述第一优先级是所述第一比特块的优先级。
作为一个实施例,所述第一优先级是层1优先级(Layer1priority,L1priority)。
作为一个实施例,所述第一优先级是所述第一比特块的层1优先级。
作为一个实施例,所述第一优先级等于一个非负整数。
作为一个实施例,所述第一优先级等于一个正整数。
作为一个实施例,所述第一优先级等于P个非负整数中的一个非负整数,P是正整数。
作为一个实施例,所述第一优先级等于从1到P中的一个正整数,P是正整数。
作为一个实施例,所述第一优先级是P个优先级中的一个优先级,P是正整数;所述P个优先级分别等于所述P个正整数;所述P个优先级与所述P个正整数之间相比较的大小关系是单调递减的。
作为一个实施例。所述P等于8。
作为一个实施例,所述P等于9。
作为一个实施例,所述第一优先级,所述第二优先级和所述目标资源子池共同被用于确定所述目标阈值。
作为一个实施例,所述第一优先级,所述第二优先级和所述目标资源子池三者的组合被用于确定所述目标阈值。
作为一个实施例,所述第一优先级,所述第二优先级和所述目标资源子池共同被用于从所述X1个第一类阈值中确定所述目标阈值。
作为一个实施例,所述第一优先级,所述第二优先级和所述目标资源子池三者的组合被用于从所述X1个第一类阈值中确定所述目标阈值。
作为一个实施例,所述第一优先级和所述第二优先级共同被用于确定所述X1个第一类阈值,所述目标资源子池被用于从所述X1个第一类阈值中确定所述目标阈值。
作为一个实施例,所述第一优先级和所述第二优先级共同被用于确定所述X1个第一类阈值,所述目标资源子池在所述X1个资源子池中的索引等于所述目标阈值在所述X1个第一类阈值中的索引。
实施例8
实施例8示例了根据本申请的一个实施例的第一起始时刻,第二起始时刻与目标资源子集和目标起始时刻之间关系的示意图,如附图8所示。在附图8中,虚线大方框代表本申请中的备选资源集合;实现矩形代表所述备选资源集合中的备选时频资源块;粗虚线方框代表本申请中的目标起始时刻为第一起始时刻的目标资源子集;粗实线方框代表本申请中的目标起始时刻为第二起始时刻的目标资源子集;斜方格填充的矩形代表本申请中的第一备选时频资源块。
在实施例8中,所述目标参数值与所述第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是多个起始时刻中的一个起始时刻;所述目标起始时刻是所述目标资源子集的起始时刻;所述第一备选时频资源块是所述目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合。
作为一个实施例,所述目标参数值被用于确定所述目标资源子集,所述目标资源子集被用于确定所述第一备选时频资源块与所述第二备选时频资源块之间的关系。
作为一个实施例,所述目标参数值被用于确定所述目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻,所述目标资源子集被用于确定所述第一备选时频资源块与所述第二备选时频资源块之间的关系。
作为一个实施例,所述目标参数值与所述第一阈值的大小关系被用于确定所述目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻,所述目标资源子集被用于确定所述第一备选时频资源块与所述第二备选时频资源块之间的关系。
作为一个实施例,所述目标参数值与所述第一阈值的大小关系被用于确定所述目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻,所述目标起始时刻被用于确定所述第一备选时频资源块与所述第二备选时频资源块之间的关系。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块之间的关系包括所述第一备选时频资源块是所述目标资源子集中的一个备选时频资源块,所述第二备选时频资源块是所述备选资源集合中的除所述目标资源子集之外的一个备选时频资源块。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块之间的关系包括所述第一备选时频资源块在时域晚于所述目标起始时刻,所述第二备选时频资源块在时域早于所述目标起始时刻。
作为一个实施例,所述备选资源集合包括所述目标资源子集。
作为一个实施例,所述目标资源子集包括多个备选时频资源块,所述目标资源子集包括的所述多个备选时频资源块中的任一备选时频资源块是所述备选资源集合包括的所述多个备选时频资源块中的一个备选时频资源块。
作为一个实施例,所述目标资源子集包括所述第一备选时频资源块。
作为一个实施例,所述第一备选时频资源块是所述目标资源子集包括的所述多个备选时频资源块中的一个备选时频资源块。
作为一个实施例,所述目标起始时刻被用于确定所述第一备选时频资源块与所述第二备选时频资源块之间在时域的关系。
作为一个实施例,所述第一备选时频资源块是所述目标资源子集包括的所述多个备选时频资源块中的一个备选时频资源块,所述第二备选时频资源块是所述备选资源集合中的除所述目标资源子集之外的一个备选时频资源块。
作为一个实施例,所述第一备选时频资源块是所述目标资源子集包括的所述多个备选时频资源块中的一个备选时频资源块,所述第二备选时频资源块与所述目标资源子集包括的所述多个备选时频资源块中的任一备选时频资源块都不同。
作为一个实施例,所述第二备选时频资源块在时域早于所述目标起始时刻。
作为一个实施例,所述第二备选时频资源块所占用的时域资源早于所述目标起始时刻。
作为一个实施例,所述第一备选时频资源块在时域不早于所述目标起始时刻。
作为一个实施例,所述第一备选时频资源块在时域晚于所述目标起始时刻。
作为一个实施例,所述第一备选时频资源块所占用的时域资源不早于所述目标起始时刻。
作为一个实施例,所述第一备选时频资源块所占用的时域资源晚于所述目标起始时刻。
作为一个实施例,所述目标起始时刻是多个起始时刻中的一个起始时刻。
作为一个实施例,所述目标参数值与所述第一阈值的大小关系被用于从所述多个起始时刻中确定所述目标起始时刻。
作为一个实施例,第一起始时刻和第二起始时刻分别是所述多个起始时刻中的两个起始时刻,所述目标起始时刻是所述第一起始时刻或者所述第二起始时刻二者中的之一;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是所述第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是所述第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述目标参数值不大于所述第一阈值,所述目标起始时刻是所述第一起始时刻。
作为一个实施例,所述目标参数值大于所述第一阈值,所述目标起始时刻是第二起始时刻。
作为一个实施例,所述目标参数值等于所述K1;所述目标参数值不大于所述第一阈值,所述目标起始时刻是所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述K1;所述目标参数值小于所述第一阈值,所述目标起始时刻是所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述K1;所述目标参数值等于所述第一阈值,所述目标起始时刻是所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述K1;所述目标参数值大于所述第一阈值,所述目标起始时刻是第二起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是所述第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是所述第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述目标参数值大于所述第一阈值,所述目标起始时刻是所述第一起始时刻。
作为一个实施例,所述目标参数值不大于所述第一阈值,所述目标起始时刻是所述第二起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;所述目标参数值大于所述第一阈值,所述目标起始时刻是所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;所述目标参数值不大于所述第一阈值,所述目标起始时刻是所述第二起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;所述目标参数值小于所述第一阈值,所述目标起始时刻是所述第二起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;所述目标参数值等于所述第一阈值,所述目标起始时刻是所述第二起始时刻。
作为一个实施例,所述剩余数据包延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
作为一个实施例,所述剩余数据包延迟预算和所述目标参数值共同被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数被用于确定所述目标参数值,所述剩余数据包延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数被用于确定所述目标参数值,所述剩余数据包延迟预算和所述目标参数值共同被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数,所述剩余数据包延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
作为一个实施例,所述第一传输次数,所述剩余数据包延迟预算和所述目标参数值共同被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一备选时频资源块所占用的时域资源在所述剩余数据包延迟预算之内。
作为一个实施例,所述第一备选时频资源块所占用的时域资源在所述剩余数据包延迟预算减去第一时间偏移的差之内。
作为一个实施例,所述剩余数据包延迟预算是所述第一信令指示的。
作为一个实施例,所述剩余数据包延迟预算是一个正实数。
作为一个实施例,所述剩余数据包延迟预算的单位是毫秒。
作为一个实施例,所述剩余数据包延迟预算包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述剩余数据包延迟预算包括多个时隙。
作为一个实施例,所述第一时间偏移是一个正实数。
作为一个实施例,所述第一时间偏移的单位是毫秒。
作为一个实施例,所述第一时间偏移包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第一时间偏移包括多个时隙。
作为一个实施例,所述第一时间偏移包括多个多载波符号。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于所述第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一备选时频资源块所占用的时域资源在所述剩余数据包延迟预算之内。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于所述第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一备选时频资源块所占用的时域资源在所述剩余数据包延迟预算减去所述第一时间偏移的差之内。
作为一个实施例,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻,所述第一备选时频资源块所占用的时域资源在所述剩余数据包延迟预算之内。
作为一个实施例,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻,所述第一备选时频资源块所占用的时域资源在所述剩余数据包延迟预算减去所述第一时间偏移的差之内。
实施例9
实施例9示例了一个用于第一节点中的处理装置的结构框图,如附图9所示。在实施例9中,第一节点设备处理装置900主要由第一接收机901,第一处理机902和第一发射机903组成。
作为一个实施例,第一接收机901包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一处理机902包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机903包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例9中,所述第一接收机901接收第一信令,所述第一信令指示第一资源池;所述第一处理机902从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;所述第一发射机903在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,所述K1是正整数;第一传输次数等于所述第一节点所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
作为一个实施例,所述第一发射机903在第二备选时频资源块上发送第二信号,所述第二备选时频资源块是所述备选资源集合中的一个备选时频资源块;所述第一接收机901在第一反馈资源块上接收第一应答信号;所述第一比特块被用于生成所述第二信号,所述第二信号早于所述第一信号;所述第一应答信号被用于确定所述第一比特块是否被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
作为一个实施例,所述第一发射机903在第二备选时频资源块上发送第二信号,所述第二备选时频资源块是所述备选资源集合中的一个备选时频资源块;所述第一接收机901在第一反馈资源块上接收第一应答信号;所述第一比特块被用于生成所述第二信号,所述第二信号早于所述第一信号;所述第一应答信号指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
作为一个实施例,所述目标参数值等于所述K1。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
作为一个实施例,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻;所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
作为一个实施例,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述第一传输次数,剩余数据包的延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
作为一个实施例,所述第一节点设备900是用户设备。
作为一个实施例,所述第一节点设备900是中继节点。
作为一个实施例,所述第一节点设备900是基站设备。
实施例10
实施例10示例了一个用于第二节点中的处理装置的结构框图,如附图10所示。在实施例10中,第二节点设备处理装置1000主要由第二接收机1001和第二发射机1002组成。
作为一个实施例,第二接收机1001包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,第二发射机1002包括本申请附图4中的天线420,发射器/接收器418,多天线发射器处理器471,发射处理器416,控制器/处理器475,存储器476中的至少之一。
在实施例10中,所述第二接收机1001在第二备选时频资源块上接收第二信号,所述第二备选时频资源块是第一资源池中的一个时频资源块;所述第二发射机1002在第一反馈资源块上发送第一应答信号;所述第二接收机1001在第一备选时频资源块上接收第一信号,所述第一备选时频资源块是所述第一资源池中的一个时频资源块;所述第二信号携带第一比特块,所述第一信号携带携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,所述K1是正整数;所述第二信号早于所述第一信号;所述第一应答信号被用于指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
作为一个实施例,所述目标参数值等于所述K1。
作为一个实施例,所述目标参数值等于第一传输次数减去K1+1的差,所述第一传输次数等于所述第一信号的发送者所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数。
作为一个实施例,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述第一退避时间与所述目标参数值与第一阈值的大小关系有关,所述第一阈值与第一优先级或者所述第一信号的发送者确定备选资源集合的方式二者中的至少之一有关;所述第一备选时频资源块和所述第二备选时频资源块都属于所述备选资源集合。
作为一个实施例,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻;所述第一阈值与第一优先级或者所述第一信号的发送者从所述 第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
作为一个实施例,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
作为一个实施例,所述第一传输次数,剩余数据包的延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
作为一个实施例,所述第二节点设备1000是用户设备。
作为一个实施例,所述第二节点设备1000是中继节点。
作为一个实施例,所述第二节点设备1000是基站设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令指示第一资源池;
    第一处理机,从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;
    第一发射机,在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;
    其中,第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点设备所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
  2. 根据权利要求1所述的第一节点设备,其特征在于,
    所述第一发射机,在第二备选时频资源块上发送第二信号,所述第二备选时频资源块是所述备选资源集合中的一个备选时频资源块;
    所述第一接收机,在第一反馈资源块上接收第一应答信号;
    其中,所述第一比特块被用于生成所述第二信号,所述第二信号携带所述第一比特块的第K2次传输,K2是不大于所述K1的正整数;所述第一应答信号被用于确定所述第一比特块是否被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述目标参数值等于所述K1,或者,所述目标参数值等于所述第一传输次数减去K1+1的差。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一备选时频资源块与所述第二备选时频资源块在时域间隔不小于第一退避时间,所述目标参数值与第一阈值的大小关系被用于确定所述第一退避时间,所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
  5. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一备选时频资源块是目标资源子集中的一个备选时频资源块,所述目标资源子集属于所述备选资源集合;所述目标参数值与第一阈值的大小关系被用于确定目标起始时刻,所述目标起始时刻是所述目标资源子集的起始时刻;所述第一信令指示第一优先级,所述第一阈值与所述第一优先级或者从所述第一资源池中确定所述备选资源集合的方式二者中的至少之一有关。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述目标参数值等于所述K1;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
  7. 根据权利要求5所述的第一节点设备,其特征在于,所述目标参数值等于所述第一传输次数减去K1+1的差;当所述目标参数值大于所述第一阈值时,所述目标起始时刻是第一起始时刻;当所述目标参数值不大于所述第一阈值时,所述目标起始时刻是第二起始时刻;所述第二起始时刻晚于所述第一起始时刻。
  8. 根据权利要求1至7中任一权利要求所述的第一节点设备,其特征在于,所述第一传输次数,剩余数据包的延迟预算和所述目标参数值共同被用于确定所述第一备选时频资源块。
  9. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二接收机,在第二备选时频资源块上接收第二信号,所述第二备选时频资源块是第一资源池中的一个时频资源块;
    第二发射机,在第一反馈资源块上发送第一应答信号;
    所述第二接收机,在第一备选时频资源块上接收第一信号,所述第一备选时频资源块是所述第一资源池中的一个时频资源块;
    其中,所述第二信号携带第一比特块,所述第一信号携带携带所述第一比特块的第K1次重传,所述 第一比特块包括至少一个比特,K1是正整数;所述第二信号携带所述第一比特块的第K2次传输,K2是不大于所述K1的正整数;所述第一应答信号被用于指示所述第一比特块未被正确译码,所述第一应答信号早于所述第一信号,所述第一应答信号晚于所述第二信号;所述第二备选时频资源块被用于确定所述第一反馈资源块;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述目标参数值被用于确定所述第一备选时频资源块和所述第二备选时频资源块之间的关系。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令指示第一资源池;
    从所述第一资源池中确定备选资源集合,所述备选资源集合包括多个备选时频资源块;
    在第一备选时频资源块上发送第一信号,所述第一备选时频资源块是所述备选资源集合中的一个备选时频资源块;
    其中,第一比特块被用于生成所述第一信号,所述第一信号携带所述第一比特块的第K1次重传,所述第一比特块包括至少一个比特,K1是正整数;第一传输次数等于所述第一节点设备所选择的传输次数,所述第一传输次数是正整数,所述K1小于所述第一传输次数;所述K1被用于确定目标参数值,所述目标参数值是非负正整数,所述第一传输次数和所述目标参数值二者中的至少后者被用于从所述备选资源集合中确定所述第一备选时频资源块。
PCT/CN2022/116022 2021-09-04 2022-08-31 一种被用于无线通信的节点中的方法和装置 WO2023030351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007338.2A CN116584069A (zh) 2021-09-04 2022-08-31 一种被用于无线通信的节点中的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111034777 2021-09-04
CN202111034777.6 2021-09-04

Publications (1)

Publication Number Publication Date
WO2023030351A1 true WO2023030351A1 (zh) 2023-03-09

Family

ID=85410872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116022 WO2023030351A1 (zh) 2021-09-04 2022-08-31 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116584069A (zh)
WO (1) WO2023030351A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055328A (zh) * 2019-06-06 2020-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112702153A (zh) * 2019-10-23 2021-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210152312A1 (en) * 2017-08-10 2021-05-20 Apple Inc. Preemption indications for new radio
CN113347648A (zh) * 2020-03-02 2021-09-03 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210152312A1 (en) * 2017-08-10 2021-05-20 Apple Inc. Preemption indications for new radio
CN112055328A (zh) * 2019-06-06 2020-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112702153A (zh) * 2019-10-23 2021-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113347648A (zh) * 2020-03-02 2021-09-03 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Also Published As

Publication number Publication date
CN116584069A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
US11575388B2 (en) Method and device in UE and base station for channel coding
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022063146A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018127161A1 (zh) 一种被用于信道编码的用户设备、基站中的方法和设备
US11108494B2 (en) Encoding information bits using pilar code generated matrices
WO2020103742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019137328A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041811A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022073432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030351A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022257865A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237707A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040809A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030424A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023000976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027609A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007338.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863486

Country of ref document: EP

Kind code of ref document: A1