WO2018127161A1 - 一种被用于信道编码的用户设备、基站中的方法和设备 - Google Patents

一种被用于信道编码的用户设备、基站中的方法和设备 Download PDF

Info

Publication number
WO2018127161A1
WO2018127161A1 PCT/CN2018/071701 CN2018071701W WO2018127161A1 WO 2018127161 A1 WO2018127161 A1 WO 2018127161A1 CN 2018071701 W CN2018071701 W CN 2018071701W WO 2018127161 A1 WO2018127161 A1 WO 2018127161A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
bit
block
type
bit block
Prior art date
Application number
PCT/CN2018/071701
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to JP2019537266A priority Critical patent/JP7012292B2/ja
Priority to KR1020217008487A priority patent/KR102373298B1/ko
Priority to KR1020197023539A priority patent/KR102233954B1/ko
Priority to EP18736493.0A priority patent/EP3567765A4/en
Publication of WO2018127161A1 publication Critical patent/WO2018127161A1/zh
Priority to US16/505,735 priority patent/US11283546B2/en
Priority to JP2022001127A priority patent/JP7165954B2/ja
Priority to US17/586,816 priority patent/US11711164B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • H04L1/0063Single parity check
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes

Definitions

  • the present application relates to transmission schemes for wireless signals in wireless communication systems, and more particularly to methods and apparatus for transmissions used for channel coding.
  • Polar Codes is a coding scheme first proposed by Professor Erdal Arikan of the University of Birken in Turkey in 2008. It is a Binary input Discrete Memoryless Channel (B-DMC). Code construction method for capacity.
  • B-DMC Binary input Discrete Memoryless Channel
  • 3GPP 3rd Generation Partner Project
  • 3GPP determined a control channel coding scheme using a Polar code scheme as a 5G eMBB (Enhanced Mobile Broadband) scenario.
  • the CRC Cyclic Redundancy Check
  • the CRC plays a specific function such as error check and target receiver identification.
  • some 3GPP documents (such as R1-1611254) design special parity bits for the polarization code so that it can be used for pruning during channel decoding.
  • the inventors have found through research that since different subchannels of a polarization code correspond to different channel capacities, information bits mapped to different subchannels may experience different BER (Bit Error Rate). How to effectively use redundant bits to improve decoding performance is a problem that needs to be solved.
  • the present application provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the first node of the present application may be applied to a second node, and vice versa.
  • the present application discloses a method in a first node used for wireless communication, including:
  • the bits in the first bit block are used to generate bits in the second bit block; the bits in the first bit block and the bits in the second bit block are used for the channel coding Input, the channel coded output is used to generate the first wireless signal; the channel coding is based on a polarization code; for the channel coding, a target first type of bit occupied subchannel and ⁇ the second ???the number of bits in the bit block associated with the target first type of bits, at least one of the number of bits in the K first type of bit sets ⁇ ; the target first type of bits belonging to the first a bit block, the K first class bit sets and the K second class bits are in one-to-one correspondence, the K second class bits being all of the second bit blocks being related to the target first class bit a bit, a second type of bit is given for any one of the K second type of bits, and all of the bits in the first bit block used to generate the given second type of bits constitute the K bits a first type of bit set corresponding to the given second type of bit A type bit set
  • the above method has the advantage that the redundancy of the check bits associated with the target first type of bits can be determined according to the transmission reliability of the subchannel occupied by the target first type of bits.
  • Unequal error protection is implemented for bits on different subchannels, and bits transmitted on subchannels with poor reliability can improve their transmission reliability by using stronger error protection.
  • the subchannel is: a location in an input bit sequence of an Arikan polar encoder.
  • the input bit sequence is multiplied by a polar coding matrix, and the resulting output is an output of the channel coding.
  • the polar coding matrix is obtained by a product of a bit reversal permutation matrix and a first matrix, the first matrix being an nth-order Kronecker power of the kernel matrix, the n being the length of the input bit sequence
  • the base 2 logarithm the kernel matrix is a matrix of two rows and two columns, the two elements of the first row are 1 and 0, respectively, and the two elements of the second row are all 1.
  • the subchannel occupied by the target first type of bits and the number of bits in the second bit block related to the target first type of bits, and the bits in the K first type of bit set At least one of the associated numbers refers to: the channel capacity of the subchannel occupied by the target first type of bits and the number of bits associated with the target bit in the second bit block, K first At least one of the number of bits in a class of bit sets is associated.
  • the channel capacity of the subchannel is an upper limit of the information rate that can be reliably transmitted on the subchannel.
  • a portion of the bits in the first block of bits are independent of bits in the second block of bits.
  • the first block of bits is generated on a physical layer of the first node.
  • the first node is a base station, and the first node generates the first bit block according to a scheduling result.
  • the first node is a User Equipment (UE), and the first node generates the first bit block according to a scheduling of the base station.
  • UE User Equipment
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • the second block of bits is independent of bits outside the first block of bits.
  • the input of the channel coding comprises ⁇ all bits in the first bit block, all bits in the second bit block, all bits in the third bit block ⁇ .
  • the values of all the bits in the third bit block are preset.
  • all bits in the third bit block are 0.
  • the bits in the third bit block are related to the identity of the first node.
  • the identity of the first node is used to generate bits in the third bit block.
  • the bits in the third bit block are related to the identity of the target recipient of the first wireless signal.
  • the identity of the target recipient of the first wireless signal is used to generate bits in the third bit block.
  • the first wireless signal is transmitted on a physical layer control channel (ie, a physical layer channel that cannot be used to transmit physical layer data).
  • a physical layer control channel ie, a physical layer channel that cannot be used to transmit physical layer data.
  • the first wireless signal is transmitted on a physical layer data channel (ie, a physical layer channel that can be used to carry physical layer data).
  • a physical layer data channel ie, a physical layer channel that can be used to carry physical layer data.
  • the first node is a UE.
  • the first wireless signal is transmitted on a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the first wireless signal is transmitted on a PUSCH (Physical Uplink Shared CHannel).
  • PUSCH Physical Uplink Shared CHannel
  • the first node is a base station.
  • the first radio signal is transmitted on a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the first wireless signal is transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first wireless signal is an output of the channel coding, which is sequentially subjected to channel coding, scrambling, modulation mapper, and layer mapper. Precoding, Resource Element Mapper, output after wideband symbol generation.
  • the first wireless signal is an output of the channel coding, which is subjected to a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex-valued signal). Encoding, resource particle mapper, output after the occurrence of a wideband symbol.
  • the wideband signal is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the wideband signal is a FBMC (Filter Bank Multi Carrier) symbol.
  • FBMC Filter Bank Multi Carrier
  • the more the number of bits in the second bit block related to the target first type of bits, the occupied by the target first type of bits The lower the channel capacity corresponding to the subchannel.
  • the more the number of bits in the second bit block related to the target first type of bits the lower the BER (Bit Error Rate) of the target first type of bits The more.
  • the target first type of bits should be mapped onto subchannels corresponding to lower channel capacity to average the BER corresponding to the bits in the first block of bits.
  • the channel capacity of the subchannel occupied by the first given bit is smaller than the channel capacity of the subchannel occupied by the second given bit, and the first given bit and the second given bit belong to the a first block of bits, the number of bits in the second block of bits associated with the first given bit being greater than the number of bits in the second block of bits associated with the second given bit.
  • the K is equal to one.
  • the K is greater than one.
  • the K remains unchanged.
  • the target first type of bits should be mapped onto subchannels corresponding to lower channel capacity to average the BER corresponding to the bits in the first block of bits.
  • the sum of the number of bits in the K1 first class of bit sets is less than the sum of the number of bits in the K2 first class bit sets.
  • the K1 first type of bit set and the K1 second type of bit are in one-to-one correspondence, and the K1 second type of bits are all bits associated with the first given bit in the second bit block.
  • the K2 first type of bit set and the K2 second type of bits are in one-to-one correspondence, and the K2 second type of bits are all bits associated with the second given bit in the second bit block.
  • the K1 and the K2 are positive integers, respectively.
  • the channel capacity of the subchannel occupied by the first given bit is smaller than the channel capacity of the subchannel occupied by the second given bit.
  • the first given bit and the second given bit both belong to the first block of bits.
  • the K1 is equal to the K2.
  • the K rational numbers and the K first class bit sets are in one-to-one correspondence, and any one of the K rational numbers is a reciprocal of the number of bits in the corresponding first type of bit set.
  • the target first type of bits should be mapped onto subchannels corresponding to lower channel capacity to average the BER corresponding to the bits in the first block of bits.
  • the K remains unchanged.
  • the reciprocal of the number of bits in the K1 first class of bit sets and the reciprocal sum of the number of bits in the K2 first class of bit sets are in one-to-one correspondence, and the K1 second type of bits are all bits associated with the first given bit in the second bit block.
  • the K2 first type of bit set and the K2 second type of bits are in one-to-one correspondence, and the K2 second type of bits are all bits associated with the second given bit in the second bit block.
  • the K1 and the K2 are positive integers, respectively.
  • the channel capacity of the subchannel occupied by the first given bit is smaller than the channel capacity of the subchannel occupied by the second given bit.
  • the first given bit and the second given bit both belong to the first block of bits.
  • the K1 is equal to the K2.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the The second bit sub-block.
  • the first bit sub-block and the second bit sub-block constitute the first bit block.
  • the second bit sub-block is a CRC bit block of the first bit sub-block.
  • the second bit sub-block is a bit block after the CRC bit block of the first bit sub-block is scrambled.
  • the scrambling code sequence adopted by the scrambling code is related to the identifier of the first node.
  • the first node is a UE, and the identifier of the first node is an RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the first node is a base station, and the identifier of the first node is a PCI (Physical Cell Identifier).
  • PCI Physical Cell Identifier
  • the scrambling code sequence employed by the scrambling code is related to the identity of the target recipient of the first wireless signal.
  • the first node is a base station
  • the identifier of the target receiver of the first wireless signal is an RNTI
  • the CRC bit block of the first bit sub-block is an output of a cyclic generator polynomial generated by the first bit sub-block.
  • the polynomial formed by the first bit sub-block and the CRC bit block of the first bit sub-block can be divisible by the CRC cyclic generation polynomial on GF(2), that is, the first bit sub-block
  • the remainder obtained by dividing the polynomial of the CRC bit block of the first bit sub-block by the CRC loop-generating polynomial is zero.
  • the length of the second bit sub-block is one of ⁇ 24, 16, 8 ⁇ .
  • the length of the second bit sub-block is less than 8.
  • the bits in the second bit sub-block are independent of the bits in the second bit block.
  • a part of the bits in the first bit sub-block are used to generate bits in the second bit block, another part of the first bit sub-block and the second bit block The bits are irrelevant.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets;
  • the bits in the first bit block belong to the first bit set, the bits in the second bit block belong to the second bit set; or a part of the bits in the first bit block belong to the first bit set A set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the foregoing method has the advantages that unequal error protection for the first bit set and the second bit set can be implemented, so that important bits are transmitted on a subchannel with high reliability, and the The transmission quality of the first wireless signal.
  • any one of the first bit blocks belongs to one of ⁇ the first bit set, the second bit set ⁇ , and any one of the second bit blocks belongs to ⁇ One of the first set of bits, the second set of bits ⁇ .
  • the input of the channel coding comprises ⁇ all bits in the first bit block, all bits in the second bit block, all bits in the third bit block ⁇ .
  • the values of all the bits in the third bit block are preset.
  • the channel capacity of the subchannel mapped by any one of the third bit blocks is smaller than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the bits in the portion of the first bit block and the bits in the other portion of the first bit block constitute the first block of bits.
  • the other part of the first bit block is used to generate a bit in the second bit block, the bit in the second bit block and the part of the first bit The bits in the block are irrelevant.
  • a channel capacity of a subchannel occupied by any one of the bits in the first bit block is greater than a channel capacity of a subchannel occupied by any one of the second bit blocks.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the second block of bits is a CRC block of bits of the first block of bits.
  • the second bit block is a bit block after the CRC bit block of the first bit block is scrambled.
  • the scrambling code sequence adopted by the scrambling code is related to the identifier of the first node.
  • the first node is a UE, and the identifier of the first node is an RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the first node is a base station, and the identifier of the first node is a PCI (Physical Cell Identifier).
  • PCI Physical Cell Identifier
  • the scrambling code sequence employed by the scrambling code is related to the identity of the target recipient of the first wireless signal.
  • the first node is a base station
  • the identifier of the target receiver of the first wireless signal is an RNTI
  • the CRC bit block of the first bit block is an output of a cyclic generator polynomial generated by the first bit block.
  • a polynomial formed by the first bit block and the CRC bit block of the first bit block can be divisible by the CRC cyclic generation polynomial on GF(2), ie, the first bit block and the The remainder of the polynomial of the CRC bit block of the first bit block divided by the CRC cycle generator polynomial is zero.
  • the other portion of the first bit block is used to generate the second bit block.
  • the second block of bits is a CRC block of bits of the other portion of the first block of bits.
  • the second block of bits is a block of bits after the CRC block of bits in the other portion of the first block of bits is scrambled.
  • the bits in the other portion of the first bit block are a subset of the first bit sub-block.
  • a bit of the first bit sub-block that does not belong to the bit in the first bit block of the another part is independent of a bit in the second bit block.
  • the first node is a base station
  • the first bit block includes downlink control information
  • the first node is a UE
  • the first bit block includes an uplink. Control information.
  • the downlink control information indicates the corresponding data ⁇ the occupied time domain resource, the occupied frequency domain resource, the MCS (Modulation and Coding Scheme), the RV (Redundancy Version), At least one of NDI (New Data Indicator), HARQ (Hybrid Automatic Repeat reQuest) process number ⁇ .
  • the uplink control information indicates ⁇ HARQ-ACK (Acknowledgement), CSI (Channel State Information), SR (Scheduling Request), CRI (CSI-RS resource indication) At least one.
  • the present application discloses a method for use in a second node for wireless communication, including:
  • the channel coding corresponding to the channel decoding is based on a polarization code; the bits in the first bit block are used to generate bits in the second bit block; the bits in the first bit block and the bit The bits in the second bit block are used for the input of the channel coding, the output of the channel coding is used to generate the first wireless signal; for the channel coding, the subchannel occupied by the target first type of bits Correlating with at least one of ⁇ the number of bits associated with the target first type of bits in the second bit block, the number of bits in the K first class of bit sets ⁇ ; the target first class Bits belonging to the first bit block, the K first class bit sets and the K second class bits are in one-to-one correspondence, the K second class bits being all and in the second bit block a first type of bit-related bit of the target, a second type of bit is given for any one of the K second type of bits, all of the first bit block being used to generate the given second type of bit Bits constituting the K first class bit sets and the given Two types
  • the second node is a base station
  • the first node is a UE
  • the second node is a UE, and the first node is a base station.
  • the output of the channel decoding is used to recover the first block of bits.
  • the more the number of bits in the second bit block related to the target first type of bits, the occupied by the target first type of bits The lower the channel capacity corresponding to the subchannel.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the The second bit sub-block.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets;
  • the bits in the first bit block belong to the first bit set, the bits in the second bit block belong to the second bit set; or a part of the bits in the first bit block belong to the first bit set A set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the channel decoding is used to determine P reference values, and the P reference values are in one-to-one correspondence with bits in a target bit group, the target bit group Composed of a bit in the first bit block and a bit in the second bit block, a sum of a number of bits in the first bit block and a number of bits in the second bit block is P; a reference value corresponding to a bit in the P reference value and the bit in the second bit block is used for pruning in the channel decoding; and the P reference values neutralize the second bit A reference value corresponding to a bit in the sub-block is used to determine whether the first bit block is correctly received; the P is a positive integer greater than one.
  • the above method is advantageous in that bits in the second bit block can be used to improve decoding accuracy and reduce decoding complexity in the channel decoding; the second bit sub-block
  • the bits in the CRC may be used to implement the function of the conventional CRC, that is, to determine whether the first bit block is correctly received, and to transmit the identity of the first node, or to transmit the first wireless signal receiver Logo. In this way, the functions of pruning and traditional CRC are realized at the same time.
  • the P reference values are respectively (received) bits for the corresponding (transmit) bits.
  • the P reference values are respectively (received) soft bits for corresponding (transmit) bits.
  • the P reference values are respectively LLR (Log Likelihood Ratio) estimated for corresponding (transmitted) bits.
  • the pruning is used to reduce surviving search paths in the channel coding based on Viterbi criteria.
  • the given reference value is a reference value used for pruning among the P reference values.
  • a bit corresponding to the pruned search path is associated with a given second type of bit, the given second type of bit being in the second bit block and the given reference The bit corresponding to the value.
  • the bit corresponding to the pruned search path is used to generate the given second type of bit.
  • the sum of the bits corresponding to the pruned search path is modulo to obtain the given second type of bits.
  • the sum of the bits corresponding to the pruned search path and the modulo 2 modulo and the corresponding bits in the scrambling code sequence are XORed. Given a second type of bit.
  • a reference value corresponding to a bit in the second bit sub-block among the P reference values is used to indicate an identifier of a target receiver of the first wireless signal.
  • a reference value corresponding to a bit in the second bit sub-block among the P reference values is used to indicate an identifier of the first node.
  • a reference value corresponding to a bit in the second bit sub-block and a reference value corresponding to a bit in the first bit sub-block and the P reference value in the P reference values Cooperating through the CRC check, if the check result is correct, it is judged that the first bit block is correctly restored; otherwise, it is judged that the first bit block is not correctly restored.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the second node is a UE
  • the first bit block includes downlink control information
  • the second node is a base station
  • the first bit block includes an uplink. Control information.
  • the present application discloses a device in a first node that is used for wireless communication, including:
  • a first processing module generating a first bit block
  • a second processing module that performs channel coding
  • a first transmitter module that transmits a first wireless signal
  • the bits in the first bit block are used to generate bits in the second bit block; the bits in the first bit block and the bits in the second bit block are used for the channel coding Input, the channel coded output is used to generate the first wireless signal; the channel coding is based on a polarization code; for the channel coding, a target first type of bit occupied subchannel and ⁇ the second ???the number of bits in the bit block associated with the target first type of bits, at least one of the number of bits in the K first type of bit sets ⁇ ; the target first type of bits belonging to the first a bit block, the K first class bit sets and the K second class bits are in one-to-one correspondence, the K second class bits being all of the second bit blocks being related to the target first class bit a bit, a second type of bit is given for any one of the K second type of bits, and all of the bits in the first bit block used to generate the given second type of bits constitute the K bits a first type of bit set corresponding to the given second type of bit A type bit set
  • the device in the foregoing first node is characterized in that the more the number of bits in the second bit block related to the target first type of bits, the target first type of bits The lower the channel capacity corresponding to the occupied subchannel.
  • the device in the foregoing first node is characterized in that the smaller the sum of the number of bits in the K first type of bit sets, the channel corresponding to the subchannel occupied by the target first type of bits The lower the capacity.
  • the device in the foregoing first node is characterized in that the reciprocal sum of the number of bits in the K first type of bit sets is larger, and the subchannel occupied by the target first type of bits corresponds to The lower the channel capacity.
  • the device in the foregoing first node is characterized in that the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate The second bit sub-block.
  • the device in the foregoing first node is characterized in that a channel capacity of a subchannel mapped by any one of the first bit sets is greater than a channel of a subchannel mapped by any one of the second bit sets.
  • a bit in the first bit block belonging to the first bit set, a bit in the second bit block belonging to the second bit set; or a part of the bits in the first bit block belonging to the The first set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the device in the first node is characterized in that a CRC bit block of the first bit block is used to generate the second bit block.
  • the device in the foregoing first node is characterized in that: the first node is a base station, the first bit block includes downlink control information; or the first node is a UE, the first bit block Includes upstream control information.
  • the present application discloses a device in a second node that is used for wireless communication, including:
  • the first receiver module receives the first wireless signal
  • a third processing module performing channel decoding
  • the channel coding corresponding to the channel decoding is based on a polarization code; the bits in the first bit block are used to generate bits in the second bit block; the bits in the first bit block and the bit The bits in the second block of bits are all used for the input of the channel coding, the output of the channel coding being used to generate the first wireless signal;
  • the number of bits occupied by the target first type of bits and the number of bits associated with the target first type of bits in the second bit block bits of the K first type of bit set At least one of the quantity ⁇ is associated; the target first type of bits belongs to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, the K second The class bits are all bits associated with the target first class of bits in the second bit block, and a second type of bit is given for any of the K second class bits, the first bit block All of the bits used to generate the given second type of bits constitute a first type of bit set in the K first class of bit sets
  • the device in the second node is characterized in that the output of the channel decoding is used to recover the first block of bits.
  • the device in the foregoing second node is characterized in that the more the number of bits in the second bit block related to the target first type of bits, the target first type of bit The lower the channel capacity corresponding to the occupied subchannel.
  • the device in the foregoing second node is characterized in that the smaller the sum of the numbers of the bits in the K first type of bit sets, the channel corresponding to the subchannel occupied by the target first type of bits The lower the capacity.
  • the device in the second node is characterized in that the reciprocal sum of the number of bits in the K first class bit sets is larger, and the subchannel occupied by the target first class bit corresponds to The lower the channel capacity.
  • the device in the foregoing second node is characterized in that the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate The second bit sub-block.
  • the device in the second node is characterized in that the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel of the subchannel mapped by any one of the second bit sets.
  • a bit in the first bit block belonging to the first bit set, a bit in the second bit block belonging to the second bit set; or a part of the bits in the first bit block belonging to the The first set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the device in the foregoing second node is characterized in that the channel decoding is used to determine P reference values, and the P reference values are in one-to-one correspondence with bits in a target bit group, the target The bit group is composed of a bit in the first bit block and a bit in the second bit block, a sum of a number of bits in the first bit block and a number of bits in the second bit block is And the P reference value corresponding to the bit in the second bit block is used for pruning in the channel decoding; the P reference values are neutralized A reference value corresponding to a bit in the two-bit sub-block is used to determine whether the first bit block is correctly received; the P is a positive integer greater than one.
  • the device in the second node is characterized in that the CRC bit block of the first bit block is used to generate the second bit block.
  • the device in the foregoing second node is characterized in that: the second node is a UE, the first bit block includes downlink control information; or the second node is a base station, the first bit block Includes upstream control information.
  • the present application has the following advantages compared with the conventional solution:
  • FIG. 1 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 2 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 3 is a schematic diagram showing a mapping relationship between a first bit block and a second bit block on a subchannel according to an embodiment of the present application
  • FIG. 4 is a schematic diagram showing a mapping relationship between a first bit block and a second bit block on a subchannel according to another embodiment of the present application
  • FIG. 5 is a schematic diagram showing a mapping relationship between a first bit block and a second bit block on a subchannel according to another embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a relationship between a ⁇ first bit block, a second bit block ⁇ and a first wireless signal according to an embodiment of the present application
  • FIG. 7 is a block diagram showing the structure of a processing device in a first node for wireless communication according to an embodiment of the present application.
  • FIG. 8 is a block diagram showing the structure of a processing device in a second node for wireless communication according to an embodiment of the present application.
  • FIG. 9 shows a flow chart of a first bit block, channel coding and a first wireless signal in accordance with an embodiment of the present application
  • Figure 10 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application.
  • FIG. 11 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 12 shows a schematic diagram of an evolved node and a UE in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of UE U2.
  • the first wireless signal is transmitted in step S11.
  • the first wireless signal is received in step S21.
  • the bits in the first bit block are used by the N1 to generate bits in the second bit block.
  • the bits in the first bit block and the bits in the second bit block are both used by the N1 for channel coding input, and the output of the channel coding is used by the N1 to generate the first wireless signal .
  • the channel coding is based on a polarization code. For the channel coding, the number of bits occupied by the target first type of bits and the number of bits associated with the target first type of bits in the second bit block, bits of the K first type of bit set At least one of the quantities ⁇ is associated.
  • the target first type of bits belong to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, and the K second type of bits are the second bit block All of the bits associated with the first type of bits of the target, a second type of bits are given for any of the K second types of bits, all of the first block of bits being used to generate the
  • the bits of the second type of bits constitute a first set of bits corresponding to the given second type of bits in the K first class of bit sets.
  • the K is a positive integer.
  • the first wireless signal is used by the U2 to generate an input for channel decoding, and the channel coding corresponding to the channel decoding is based on a polarization code.
  • the output of the channel decoding is used by the U2 to recover the first block of bits.
  • the subchannel is: a location in an input bit sequence of an Arikan polar encoder.
  • the input bit sequence is multiplied by a polar coding matrix, and the resulting output is an output of the channel coding.
  • the polar coding matrix is obtained by a product of a bit reversal permutation matrix and a first matrix, the first matrix being an nth-order Kronecker power of the kernel matrix, the n being the length of the input bit sequence
  • the base 2 logarithm the kernel matrix is a matrix of two rows and two columns, the two elements of the first row are 1 and 0, respectively, and the two elements of the second row are all 1.
  • the subchannel occupied by the target first type of bits and the number of bits in the second bit block related to the target first type of bits, and the bits in the K first type of bit set At least one of the number of ports is associated with: a channel capacity of a subchannel occupied by the target bit and ⁇ a number of bits associated with the target bit in the second bit block, K first class bits At least one of the number of bits in the set ⁇ is associated.
  • the channel capacity of one subchannel is an upper limit of the information rate that can be reliably transmitted on the one subchannel.
  • a portion of the bits in the first block of bits are independent of bits in the second block of bits.
  • the first block of bits is generated on a physical layer of the N1.
  • the N1 generates the first bit block according to a scheduling result.
  • the input of the channel coding comprises ⁇ all bits in the first bit block, all bits in the second bit block, all bits in the third bit block ⁇ .
  • the values of all the bits in the third bit block are preset.
  • all bits in the third bit block are 0.
  • the bits in the third bit block are related to the identity of the U2.
  • the identity of U2 is used to generate bits in the third bit block.
  • the identifier of the U2 is an RNTI (Radio Network Temporary Identifier).
  • the first wireless signal is an output of the channel coding, which is sequentially subjected to channel coding, scrambling, modulation mapper, and layer mapper. Precoding, Resource Element Mapper, output after wideband symbol generation.
  • the wideband signal is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the wideband signal is a FBMC (Filter Bank Multi Carrier) symbol.
  • FBMC Filter Bank Multi Carrier
  • the second block of bits is independent of bits outside the first block of bits.
  • the more the number of bits in the second bit block related to the target first type of bits the lower the channel capacity corresponding to the subchannel occupied by the target first type of bits.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the bits in the first bit block belong to the first bit set, the bits in the second bit block belong to the second bit set; or a part of the bits in the first bit block belong to the first bit set A set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the first bit block includes downlink control information.
  • the downlink control information indicates corresponding data ⁇ time domain resources occupied, frequency domain resources occupied, MCS (Modulation and Coding Scheme), RV (Redundancy Version, Redundant version), at least one of NDI (New Data Indicator), HARQ (Hybrid Automatic Repeat reQuest) process number ⁇ .
  • MCS Modulation and Coding Scheme
  • RV Redundancy Version, Redundant version
  • NDI New Data Indicator
  • HARQ Hybrid Automatic Repeat reQuest
  • the channel coding is used by the U2 to determine P reference values
  • the P reference values are in one-to-one correspondence with bits in a target bit group, the target bit group being the first bit A bit in the block and a bit in the second bit block, the sum of the number of bits in the first bit block and the number of bits in the second bit block is the P.
  • a reference value corresponding to a bit in the P reference value and the bit in the second bit block is used for pruning in the channel decoding.
  • the P reference values and reference values corresponding to the bits in the second bit sub-block are used to determine whether the first bit block is correctly received.
  • the P is a positive integer greater than one.
  • Embodiment 2 illustrates a flow chart of wireless transmission, as shown in FIG.
  • the base station N3 is a serving cell maintenance base station of the UE U4.
  • the first wireless signal is received in step S31.
  • the first wireless signal is transmitted in step S41.
  • the bits in the first bit block are used by the U4 to generate bits in the second bit block.
  • the bits in the first bit block and the bits in the second bit block are both used by the U4 for channel coding input, and the output of the channel coding is used by the U4 to generate the first wireless signal .
  • the channel coding is based on a polarization code. For the channel coding, the number of bits occupied by the target first type of bits and the number of bits associated with the target first type of bits in the second bit block, bits of the K first type of bit set At least one of the quantities ⁇ is associated.
  • the target first type of bits belong to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, and the K second type of bits are the second bit block All of the bits associated with the first type of bits of the target, a second type of bits are given for any of the K second types of bits, all of the first block of bits being used to generate the
  • the bits of the second type of bits constitute a first set of bits corresponding to the given second type of bits in the K first class of bit sets.
  • the K is a positive integer.
  • the first wireless signal is used by the N3 to generate an input for channel decoding, and the channel coding corresponding to the channel decoding is based on a polarization code.
  • the output of the channel decoding is used by the N3 to recover the first block of bits.
  • the first block of bits is generated on a physical layer of the U4.
  • the U4 generates the first bit block according to the scheduling result of the N3.
  • the first wireless signal is an output of the channel coding, which is subjected to a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex-valued signal). Encoding, resource particle mapper, output after the occurrence of a wideband symbol.
  • the first bit block includes uplink control information.
  • the uplink control information indicates ⁇ HARQ-ACK (Acknowledgement), CSI (Channel State Information, Channel State Information), SR (Scheduling Request), CRI (CSI-RS resource) At least one of indication) ⁇ .
  • Embodiment 3 exemplifies a mapping relationship between a first bit block and a second bit block on a subchannel, as shown in FIG.
  • bits in the first bit block are used to generate bits in the second bit block.
  • the bits in the first block of bits and the bits in the second block of bits are used for input of channel coding, the output of the channel coding being used to generate a first wireless signal.
  • the channel coding is based on a polarization code. For the channel coding, the more the number of bits in the second bit block related to the target first type of bits, the lower the channel capacity corresponding to the subchannel occupied by the target first type of bits.
  • the target first type of bits belong to the first bit block.
  • the first bit block has 10 bits, the bits in the first bit block are represented by d(i), and the i is an integer greater than or equal to 0 and less than 10;
  • the two-bit block has 3 bits, and the bits in the second bit block are represented by p(j), which is an integer greater than or equal to 0 and less than 3.
  • the target first type of bits and the bits of the second bit block associated with the target first type of bits are connected by a solid line.
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • p(0) in FIG. 3 is equal to the sum of d(0) and d(1) modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • p(0) in FIG. 3 is obtained by modulo 2 of the sum of d(0) and d(1) and then performing an exclusive OR operation with the corresponding bit in the scrambling code sequence.
  • the second block of bits is independent of bits outside the first block of bits.
  • the channel capacity of the subchannel occupied by the first given bit is smaller than the channel capacity of the subchannel occupied by the second given bit, and the first given bit and the second given bit belong to the a first block of bits, the number of bits in the second block of bits associated with the first given bit being greater than the number of bits in the second block of bits associated with the second given bit.
  • d(0) in FIG. 3 is related to ⁇ p(0), p(1), p(2) ⁇ , d(2) and ⁇ p(1), p(2) in FIG. ⁇ Related, d(4) and p(2) in FIG.
  • the channel capacity of the subchannel occupied by d(0) is smaller than the channel capacity of the subchannel occupied by d(2)
  • the subcarrier occupied by d(2) The channel capacity of the channel is smaller than the channel capacity of the subchannel occupied by d(4).
  • a portion of the bits in the first block of bits are independent of bits in the second block of bits.
  • ⁇ d(6), d(7), d(8), d(9) ⁇ ie, a square filled with a right oblique line and a square filled with a cross line
  • the bits in the two-bit block are independent.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • a square filled with a left oblique line and a square filled with a right oblique line indicate the first bit sub-block
  • a square filled with a cross line indicates the second bit sub-block.
  • the bits in the second bit sub-block are independent of the bits in the second bit block.
  • ⁇ d(8), d(9) ⁇ i.e., the square filled with cross lines
  • d(9) ⁇ is independent of the bits in the second bit block.
  • a part of the bits in the first bit sub-block are used to generate bits in the second bit block, another part of the first bit sub-block and the second bit block
  • the bits are irrelevant.
  • a left-hatched filled square indicates a bit used in the first bit sub-block to generate the second bit block
  • a right-slash filled square indicates the first bit sub-block. Neutating bit-independent bits in the second block of bits.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • a portion of the bits in the first block of bits belong to the first set of bits, ⁇ the other portion of the bits in the first block of bits, and bits in the second block of bits ⁇ belong to the second set of bits.
  • the bit in any one of the first bit blocks belongs to one of ⁇ the first bit set, the second bit set ⁇ , and any one of the second bit blocks
  • the bits belong to one of ⁇ the first set of bits, the second set of bits ⁇ .
  • the part of the first bit block and the bit of the other part of the first bit block constitute the first bit block.
  • the other part of the first bit block is used to generate a bit in the second bit block, and a part of the bit bit in the first bit block
  • the bits in the second block of bits are independent.
  • ⁇ d(0), d(1), d(2), d(3), d(4), d(5) ⁇ (ie, the square filled with the left slash) is Used to generate bits in the second block of bits
  • ⁇ d(6), d(7), d(8), d(9) ⁇ ie, squares filled with right slashes and squares filled with cross lines)
  • d(9) ⁇ ie, squares filled with right slashes and squares filled with cross lines
  • Embodiment 4 exemplifies a mapping relationship between a first bit block and a second bit block on a subchannel, as shown in FIG.
  • the bits in the first bit block are used to generate bits in the second bit block.
  • the bits in the first bit block and the bits in the second bit block are both used for input of channel coding, the output of the channel coding being used to generate a first wireless signal.
  • the channel coding is based on a polarization code. For the channel coding, the smaller the sum of the number of bits in the K first type of bit sets, the lower the channel capacity corresponding to the subchannel occupied by the target first type of bits.
  • the target first type of bits belong to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, and the K second type of bits are the second bit block All of the bits associated with the first type of bits of the target, a second type of bits are given for any of the K second types of bits, all of the first block of bits being used to generate the
  • the bits of the second type of bits constitute a first set of bits corresponding to the given second type of bits in the K first class of bit sets.
  • the K is a positive integer.
  • the first bit block has 10 bits, the bits in the first bit block are represented by d(i), and the i is an integer greater than or equal to 0 and less than 10;
  • the two-bit block has 3 bits, and the bits in the second bit block are represented by p(j), which is an integer greater than or equal to 0 and less than 3.
  • the target first type of bits and the bits of the second bit block associated with the target first type of bits are connected by a solid line.
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • p(0) in FIG. 4 is equal to d(0) versus 2 modulo
  • p(1) in FIG. 4 is equal to the sum of d(1) and d(2) and modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • p(0) in FIG. 4 is modulo d(0) versus 2, and then XORed with the corresponding bit in the scrambling code sequence
  • p(1) in FIG. 4 is d(1) And d(2) and modulo 2, and then XOR operation with the corresponding bits in the scrambling sequence.
  • the second block of bits is independent of bits outside the first block of bits.
  • the K is equal to one.
  • the K is greater than one.
  • the K remains unchanged.
  • the sum of the number of bits in the K1 first class of bit sets is less than the sum of the number of bits in the K2 first class bit sets.
  • the K1 first type of bit set and the K1 second type of bit are in one-to-one correspondence, and the K1 second type of bits are all bits associated with the first given bit in the second bit block.
  • the K2 first type of bit set and the K2 second type of bits are in one-to-one correspondence, and the K2 second type of bits are all bits associated with the second given bit in the second bit block.
  • the K1 and the K2 are positive integers, respectively.
  • the channel capacity of the subchannel occupied by the first given bit is smaller than the channel capacity of the subchannel occupied by the second given bit.
  • the first given bit and the second given bit both belong to the first block of bits.
  • the first given bit is d(0)
  • the second given bit is d(1)
  • the K1 first type of bit set is d(0)
  • K1 is 1
  • the K2 first class bit sets are ⁇ d(1), d(2) ⁇
  • K2 is 1.
  • the sum of the number of bits in the K1 first type of bit set is 1, the sum of the number of bits in the K2 first type of bit set is 2, and the channel capacity of the subchannel occupied by d(0) is less than d(1) The channel capacity of the subchannel occupied.
  • the K1 is equal to the K2.
  • a portion of the bits in the first block of bits are independent of bits in the second block of bits.
  • ⁇ d(4), d(5), d(6), d(7) ⁇ ie, the square filled by the right oblique line
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • a square filled with a left oblique line and a square filled with a right oblique line indicate the first bit sub-block
  • a square filled with a cross line indicates the second bit sub-block.
  • a part of the bits in the first bit sub-block are used to generate bits in the second bit block, another part of the first bit sub-block and the second bit block
  • the bits are irrelevant.
  • a left diagonal filled square and a cross line filled square sum are used to generate bits in the second bit block, a right diagonal filled square and the second bit block Bit-independent bits.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • a portion of the bits in the first block of bits belong to the first set of bits, ⁇ the other portion of the bits in the first block of bits, and bits in the second block of bits ⁇ belong to the second set of bits.
  • the bit in any one of the first bit blocks belongs to one of ⁇ the first bit set, the second bit set ⁇ , and any one of the second bit blocks
  • the bits belong to one of ⁇ the first set of bits, the second set of bits ⁇ .
  • the part of the first bit block and the bit of the other part of the first bit block constitute the first bit block.
  • the other part of the first bit block is used to generate a bit in the second bit block, and a part of the bit bit in the first bit block
  • the bits in the second block of bits are independent.
  • ⁇ d(0), d(1), d(2), d(3), d(8), d(9) ⁇ ie, the left slash filled squares and intersections
  • a line-filled square is used to generate the bits in the second bit block
  • ⁇ d(4), d(5), d(6), d(7) ⁇ ie, the square filled with the right slash
  • Embodiment 5 exemplifies a mapping relationship between a first bit block and a second bit block on a subchannel, as shown in FIG.
  • the bits in the first block of bits are used to generate bits in the second block of bits.
  • the bits in the first bit block and the bits in the second bit block are both used for input of channel coding, the output of the channel coding being used to generate a first wireless signal.
  • the channel coding is based on a polarization code. For the channel coding, the larger the reciprocal sum of the number of bits in the K first type of bit sets, the lower the channel capacity corresponding to the subchannel occupied by the target first type of bits.
  • the target first type of bits belong to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, and the K second type of bits are the second bit block All of the bits associated with the first type of bits of the target, a second type of bits are given for any of the K second types of bits, all of the first block of bits being used to generate the
  • the bits of the second type of bits constitute a first set of bits corresponding to the given second type of bits in the K first class of bit sets.
  • the K is a positive integer.
  • the first bit block has 10 bits, the bits in the first bit block are represented by d(i), and the i is an integer greater than or equal to 0 and less than 10;
  • a two-bit block has 4 bits, and bits in the second bit block are represented by p(j), which is an integer greater than or equal to 0 and less than 4.
  • the target first type of bits and the bits of the second bit block associated with the target first type of bits are connected by a solid line.
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • p(0) in FIG. 5 is equal to the sum of d(0) and d(2) and modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • p(0) in Fig. 5 is obtained by modulo the sum of d(0) and d(2) and 2, and then XORing the corresponding bit in the scrambling code sequence.
  • the second block of bits is independent of bits outside the first block of bits.
  • the K is equal to one.
  • the K is greater than one.
  • the K remains unchanged.
  • the reciprocal of the number of bits in the K1 first class of bit sets and the reciprocal sum of the number of bits in the K2 first class of bit sets are in one-to-one correspondence, and the K1 second type of bits are all bits associated with the first given bit in the second bit block.
  • the K2 first type of bit set and the K2 second type of bits are in one-to-one correspondence, and the K2 second type of bits are all bits associated with the second given bit in the second bit block.
  • the K1 and the K2 are positive integers, respectively.
  • the channel capacity of the subchannel occupied by the first given bit is smaller than the channel capacity of the subchannel occupied by the second given bit.
  • the first given bit and the second given bit both belong to the first block of bits.
  • the first given bit d(0), the second given bit is d(1)
  • the K1 first type of bit set is ⁇ d(0), d(2) ⁇ and ⁇ d(0), d(4) ⁇
  • said K1 is 2
  • said K2 first type of bit sets are ⁇ d(1) ⁇ and ⁇ d(1), d(2 ), d(3), d(5) ⁇
  • the K2 is 2.
  • the reciprocal sum of the number of bits in the K1 first type of bit set is 1, the sum of the number of bits in the K2 first type of bit set is 1.25, and the channel capacity of the subchannel occupied by d(0) The channel capacity of the subchannel occupied by d(1).
  • the K1 is equal to the K2.
  • a portion of the bits in the first block of bits are independent of bits in the second block of bits.
  • ⁇ d(6), d(7), d(8), d(9) ⁇ ie, a square filled with a right slash and a square filled with a cross line
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • a square filled with a left oblique line and a square filled with a right oblique line indicate the first bit sub-block
  • a square filled with a cross line indicates the second bit sub-block.
  • the bits in the second bit sub-block are independent of the bits in the second bit block.
  • ⁇ d(8), d(9) ⁇ i.e., the square filled by the cross lines
  • d(9) ⁇ is independent of the bits in the second bit block.
  • a part of the bits in the first bit sub-block are used to generate bits in the second bit block, another part of the first bit sub-block and the second bit block
  • the bits are irrelevant.
  • a left-hatched filled square represents a bit used in the first bit sub-block to generate the second bit block
  • a right-slash filled square represents the first bit sub-block. Neutating bit-independent bits in the second block of bits.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • a portion of the bits in the first block of bits belong to the first set of bits, ⁇ the other portion of the bits in the first block of bits, and bits in the second block of bits ⁇ belong to the second set of bits.
  • the bit in any one of the first bit blocks belongs to one of ⁇ the first bit set, the second bit set ⁇ , and any one of the second bit blocks
  • the bits belong to one of ⁇ the first set of bits, the second set of bits ⁇ .
  • the part of the first bit block and the bit of the other part of the first bit block constitute the first bit block.
  • the other part of the first bit block is used to generate a bit in the second bit block, and a part of the bit bit in the first bit block
  • the bits in the second block of bits are independent.
  • ⁇ d(0), d(1), d(2), d(3), d(4), d(5) ⁇ (ie, the square filled with the left slash) is Used to generate bits in the second block of bits
  • ⁇ d(6), d(7), d(8), d(9) ⁇ ie, squares filled with right slashes and squares filled with cross lines)
  • d(9) ⁇ ie, squares filled with right slashes and squares filled with cross lines
  • the bits in the first bit block belong to the first bit set
  • the bits in the second bit block belong to the second bit set.
  • ⁇ d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7), d (8), d(9) ⁇ belongs to the first set of bits
  • ⁇ p(0), p(1), p(2), p(3) ⁇ belong to the first set of bits.
  • Embodiment 6 exemplifies a relationship between ⁇ first bit block, second bit block ⁇ and the first wireless signal, as shown in FIG.
  • bits in the first bit block are used to generate bits in the second bit block.
  • the bits in the first block of bits and the bits in the second block of bits are all used for input of channel coding, the output of the channel coding being used to generate the first wireless signal.
  • the channel coding is based on a polarization code.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • the first wireless signal is used to generate an input for channel coding, and the channel coding corresponding to the channel coding is based on a polarization code.
  • the channel decoding is used to determine P reference values, the P reference values being in one-to-one correspondence with bits in a target bit group, the target bit group being the bit in the first bit block and the first bit
  • the bits in the two-bit block are composed, and the sum of the number of bits in the first bit block and the number of bits in the second bit block is the P.
  • a reference value corresponding to a bit in the P reference value and the bit in the second bit block is used for pruning in the channel decoding.
  • a reference value corresponding to a bit in the P reference block and the bit in the second bit sub-block is used to determine whether the first bit block is correctly received.
  • the P is a positive integer greater than one.
  • the first bit block has 8 bits, the bits in the first bit block are represented by d(i), and the i is an integer greater than or equal to 0 and less than 8;
  • a two-bit block has 4 bits, and bits in the second bit block are represented by p(j), which is an integer greater than or equal to 0 and less than 4.
  • One bit in the first block of bits and its associated bit in the second block of bits are connected by a solid line.
  • the tree diagram in the decoder represents a portion of the path associated with the bits ⁇ d(0), d(2), p(0) ⁇ in the channel decoding.
  • the left slash filled square represents the first bit sub-block
  • the cross-line filled square represents the second bit sub-block.
  • the P reference values are respectively (received) bits for the corresponding (transmit) bits.
  • the P reference values are respectively (received) soft bits for corresponding (transmit) bits.
  • the P reference values are respectively LLR (Log Likelihood Ratio) estimated for corresponding (transmitted) bits.
  • the pruning is used to reduce a surviving search path in the channel coding based on Viterbi criteria.
  • the path indicated by the thick solid line is the surviving search path, and the other paths are the search paths that are deleted.
  • the given reference value is a reference value used for pruning among the P reference values.
  • a bit corresponding to the pruned search path is associated with a given second type of bit, the given second type of bit being in the second bit block and the given reference The bit corresponding to the value.
  • the reference value corresponding to p(0) denoted by p'(0) in Fig. 6, is used for pruning in the channel decoding.
  • the bit corresponding to the pruned search path is ⁇ d(0), d(2) ⁇ . ⁇ d(0), d(2) ⁇ is associated with p(0).
  • the bit corresponding to the pruned search path is used to generate the given second type of bit.
  • ⁇ d(0), d(2) ⁇ is used to generate p(0).
  • the sum of the bits corresponding to the pruned search path is modulo 2 to obtain the given second type of bits.
  • the sum of ⁇ d(0), d(2) ⁇ is modulo 2 to obtain p(0).
  • the sum of the bits corresponding to the pruned search path and the modulo 2 modulo and the corresponding bits in the scrambling code sequence are XORed to obtain the Given the second type of bits.
  • the sum of ⁇ d(0), d(2) ⁇ is modulo 2
  • the corresponding bit in the scrambling sequence is XORed to obtain p(0).
  • a reference value corresponding to a bit in the second bit sub-block among the P reference values is used to indicate an identifier of a target receiver of the first wireless signal.
  • a reference value corresponding to a bit in the second bit sub-block among the P reference values is used to indicate an identifier of the first node.
  • a reference value corresponding to a bit in the second bit sub-block and a reference value corresponding to a bit in the first bit sub-block and the P reference value in the P reference values Cooperating through the CRC check, if the check result is correct, it is judged that the first bit block is correctly restored; otherwise, it is judged that the first bit block is not correctly restored.
  • the input of the channel coding comprises ⁇ all bits in the first bit block, all bits in the second bit block, all bits in the third bit block ⁇ .
  • the values of all the bits in the third bit block are preset.
  • all bits in the third bit block are 0.
  • the bits in the third bit block are related to the identity of the target recipient of the first wireless signal.
  • the identity of the target recipient of the first wireless signal is used to generate bits in the third bit block.
  • Embodiment 7 exemplifies a structural block diagram of a processing device in a first node for wireless communication, as shown in FIG.
  • the first node device 200 is mainly composed of a first processing module 201, a second processing module 202, and a first transmitter module 203.
  • the first processing module 201 generates a first bit block; the second processing module 202 performs channel coding; and the first transmitter module 203 transmits the first wireless signal.
  • the bits in the first block of bits are used by the first processing module 201 to generate bits in the second block of bits.
  • the bits in the first block of bits and the bits in the second block of bits are used by the second processing module 202 for input of the channel coding, the output of the channel coding being used by the first transmitter
  • the module 203 is configured to generate the first wireless signal.
  • the channel coding is based on a polarization code. For the channel coding, the number of bits occupied by the target first type of bits and the number of bits associated with the target first type of bits in the second bit block, bits of the K first type of bit set At least one of the quantities ⁇ is associated.
  • the target first type of bits belong to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, and the K second type of bits are the second bit block All of the bits associated with the first type of bits of the target, a second type of bits are given for any of the K second types of bits, all of the first block of bits being used to generate the
  • the bits of the second type of bits constitute a first set of bits corresponding to the given second type of bits in the K first class of bit sets.
  • the K is a positive integer.
  • the more the number of bits in the second bit block related to the target first type of bits the lower the channel capacity corresponding to the subchannel occupied by the target first type of bits.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the bits in the first bit block belong to the first bit set, the bits in the second bit block belong to the second bit set; or a part of the bits in the first bit block belong to the first bit set A set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the first node is a base station, the first bit block includes downlink control information; or the first node is a UE, and the first bit block includes uplink control information.
  • Embodiment 8 exemplifies a structural block diagram of a processing device in a second node for wireless communication, as shown in FIG.
  • the second node device 300 is mainly composed of a first receiver module 301, a third processing module 302, and a fourth processing module 303.
  • the first receiver module 301 receives the first wireless signal; the third processing module 302 performs channel decoding; and the fourth processing module 303 recovers the first bit block.
  • the channel coding corresponding to the channel decoding is based on a polarization code.
  • the bits in the first block of bits are used to generate bits in the second block of bits.
  • the bits in the first block of bits and the bits in the second block of bits are all used for input of the channel coding, the output of the channel coding being used to generate the first wireless signal.
  • the number of bits occupied by the target first type of bits and the number of bits associated with the target first type of bits in the second bit block, bits of the K first type of bit set At least one of the quantities ⁇ is associated.
  • the target first type of bits belong to the first bit block, the K first type of bit sets and the K second type of bits are in one-to-one correspondence, and the K second type of bits are the second bit block All of the bits associated with the first type of bits of the target, a second type of bits are given for any of the K second types of bits, all of the first block of bits being used to generate the
  • the bits of the second type of bits constitute a first set of bits corresponding to the given second type of bits in the K first class of bit sets.
  • the K is a positive integer.
  • the output of the channel decoding is used by the fourth processing module 303 to recover the first block of bits.
  • the more the number of bits in the second bit block related to the target first type of bits the lower the channel capacity corresponding to the subchannel occupied by the target first type of bits.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and a CRC bit block of the first bit sub-block is used to generate the second bit sub-block.
  • the channel capacity of the subchannel mapped by any one of the first bit sets is greater than the channel capacity of the subchannel mapped by any one of the second bit sets.
  • the bits in the first bit block belong to the first bit set, the bits in the second bit block belong to the second bit set; or a part of the bits in the first bit block belong to the first bit set A set of bits, ⁇ the other part of the bits in the first block of bits, the bits in the second block of bits ⁇ belong to the second set of bits.
  • the channel coding is used to determine P reference values
  • the P reference values are in one-to-one correspondence with bits in a target bit group, the target bit group being in the first bit block
  • the bit and the bits in the second bit block are composed, and the sum of the number of bits in the first bit block and the number of bits in the second bit block is the P.
  • the reference value corresponding to the bit in the second bit block among the P reference values is used for pruning in the channel decoding.
  • a reference value corresponding to a bit in the P reference block and the bit in the second bit sub-block is used to determine whether the first bit block is correctly received.
  • the P is a positive integer greater than one.
  • the CRC bit block of the first bit block is used to generate the second bit block.
  • the second node is a UE, the first bit block includes downlink control information; or the second node is a base station, and the first bit block includes uplink control information.
  • Embodiment 9 exemplifies a flow chart of a first bit block, channel coding and a first wireless signal, as shown in FIG.
  • the first node in the present application determines a first bit block; performs channel coding; and then transmits the first wireless signal.
  • the bits in the first bit block are used to generate bits in the second bit block; the bits in the first bit block and the bits in the second bit block are used for the channel coding Input, the channel coded output is used to generate the first wireless signal; the channel coding is based on a polarization code; for the channel coding, a target first type of bit occupied subchannel and ⁇ the second ???the number of bits in the bit block associated with the target first type of bits, at least one of the number of bits in the K first type of bit sets ⁇ ; the target first type of bits belonging to the first a bit block, the K first class bit sets and the K second class bits are in one-to-one correspondence, the K second class bits being all of the second bit blocks being related to the target first class bit a bit, a second type of bit is given for any one of the K second type of bits, and all of the bits in
  • the subchannel is: a location in an input bit sequence of an Arikan polar encoder.
  • the input bit sequence is multiplied by a polar coding matrix, and the resulting output is an output of the channel coding.
  • the polar coding matrix is obtained by a product of a bit reversal permutation matrix and a first matrix, the first matrix being an nth-order Kronecker power of the kernel matrix, the n being the length of the input bit sequence
  • the base 2 logarithm the kernel matrix is a matrix of two rows and two columns, the two elements of the first row are 1 and 0, respectively, and the two elements of the second row are all 1.
  • the subchannel occupied by the target first type of bits and the number of bits in the second bit block related to the target first type of bits, and the bits in the K first type of bit set At least one of the associated numbers refers to: the channel capacity of the subchannel occupied by the target first type of bits and the number of bits associated with the target bit in the second bit block, K first At least one of the number of bits in a class of bit sets is associated.
  • the channel capacity of the subchannel is an upper limit of the information rate that can be reliably transmitted on the subchannel.
  • a portion of the bits in the first block of bits are independent of bits in the second block of bits.
  • the first block of bits is generated on a physical layer of the first node.
  • the first node is a base station, and the first node generates the first bit block according to a scheduling result.
  • the first node is a User Equipment (UE), and the first node generates the first bit block according to a scheduling of the base station.
  • UE User Equipment
  • the arbitrary bit is equal to the sum of the positive integer bits in the first block of bits modulo 2 .
  • the arbitrary bit is modulo the sum of the positive integer bits in the first bit block, and the corresponding bit in the scrambling code sequence Obtained after the XOR operation.
  • the second block of bits is independent of bits outside the first block of bits.
  • the input of the channel coding comprises ⁇ all bits in the first bit block, all bits in the second bit block, all bits in the third bit block ⁇ .
  • the values of all the bits in the third bit block are preset.
  • all bits in the third bit block are 0.
  • the bits in the third bit block are related to the identity of the first node.
  • the identity of the first node is used to generate bits in the third bit block.
  • the bits in the third bit block are related to the identity of the target recipient of the first wireless signal.
  • the identity of the target recipient of the first wireless signal is used to generate bits in the third bit block.
  • the first wireless signal is transmitted on a physical layer control channel (ie, a physical layer channel that cannot be used to transmit physical layer data).
  • a physical layer control channel ie, a physical layer channel that cannot be used to transmit physical layer data.
  • the first wireless signal is transmitted on a physical layer data channel (ie, a physical layer channel that can be used to carry physical layer data).
  • a physical layer data channel ie, a physical layer channel that can be used to carry physical layer data.
  • the first node is a UE.
  • the first wireless signal is transmitted on the PUCCH.
  • the first wireless signal is transmitted on the PUSCH.
  • the first node is a base station.
  • the first wireless signal is transmitted on the PDSCH.
  • the first wireless signal is transmitted on a PDCCH.
  • the first wireless signal is an output of the channel coding, which is sequentially subjected to channel coding, scrambling, modulation mapper, and layer mapper. Precoding, Resource Element Mapper, output after wideband symbol generation.
  • the first wireless signal is an output of the channel coding, which is subjected to a scrambling code, a modulation mapper, a layer mapper, and a transform precoder (for generating a complex-valued signal). Encoding, resource particle mapper, output after the occurrence of a wideband symbol.
  • the wideband signal is an OFDM symbol.
  • the wideband signal is an FBMC symbol.
  • Embodiment 10 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • FIG. 10 illustrates a network architecture 1000 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced), and a future 5G system.
  • the LTE network architecture 1000 may be referred to as an EPS (Evolved Packet System) 1000.
  • the EPS 1000 may include one or more UEs (User Equipment) 1001, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 1002, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 1010, HSS (Home Subscriber Server) 1020 and Internet Service 1030.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 10, EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR includes an NR Node B (gNB) 1003 and other gNBs 1004.
  • the gNB 1003 provides user and control plane protocol termination towards the UE 1001.
  • the gNB 1003 can be connected to other gNBs 1004 via an X2 interface (eg, a backhaul).
  • the gNB 1003 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 1003 provides the UE 1001 with an access point to the 5G-CN/EPC 1010.
  • Examples of UE 1001 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • a person skilled in the art may also refer to the UE 1001 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB1003 is connected to the 5G-CN/EPC1010 through the S1 interface.
  • the 5G-CN/EPC1010 includes an MME 1011, other MMEs 1014, an S-GW (Service Gateway) 1012, and a P-GW (Packet Date Network Gateway). 1013.
  • the MME 1011 is a control node that handles signaling between the UE 1001 and the 5G-CN/EPC 1010. In general, the MME 1011 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 1012, and the S-GW 1012 itself is connected to the P-GW 1013. The P-GW 1013 provides UE IP address allocation as well as other functions. The P-GW 1013 is connected to the Internet service 1030.
  • the Internet service 1030 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 1001 corresponds to the first node in the application
  • the gNB 1003 corresponds to the second node in this application.
  • the UE 1001 corresponds to the second node in the application
  • the gNB 1003 corresponds to the first node in this application.
  • Embodiment 11 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 11 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 11 shows the radio protocol architecture for the UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 1101.
  • Layer 2 (L2 layer) 1105 is above PHY 1101 and is responsible for the link between the UE and the gNB through PHY 1101.
  • the L2 layer 1105 includes a MAC (Medium Access Control) sublayer 1102, an RLC (Radio Link Control) sublayer 1103, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 1104 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 1105, including a network layer (eg, an IP layer) terminated at the P-GW 1013 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 1104 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 1104 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 1103 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 1102 provides multiplexing between logical and transport channels.
  • the MAC sublayer 1102 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 1102 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 1101 and the L2 layer 1105, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 1106 in Layer 3 (L3 layer).
  • the RRC sublayer 1106 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 11 is applicable to the first node in this application.
  • the wireless protocol architecture of Figure 11 is applicable to the second node in this application.
  • the first bit block in the present application is generated in the RRC sublayer 1106.
  • the first bit block in the present application is generated in the MAC sublayer 1102.
  • the first bit block in the present application is generated by the PHY 1101.
  • the second bit block in the present application is generated by the PHY 1101.
  • the first wireless signal in the present application is generated by the PHY 1101.
  • Embodiment 12 illustrates a schematic diagram of an evolved node and a UE, as shown in FIG.
  • the gNB 1210 includes a controller/processor 1275, a memory 1276, a receiving processor 1270, a transmitting processor 1216, a channel encoder 1277, a channel decoder 1278, a transmitter/receiver 1218, and an antenna 1220.
  • the UE 1250 includes a controller/processor 1259, a memory 1260, a data source 1267, a transmit processor 1268, a receive processor 1256, a channel encoder 1257, a channel decoder 1258, a transmitter/receiver 1254, and an antenna 1252.
  • DL Downlink
  • the controller/processor 1275 implements the functionality of the L2 layer.
  • the controller/processor 1275 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources of the UE 1250 based on various priority metrics.
  • the controller/processor 1275 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 1250.
  • Transmit processor 1216 and channel encoder 1277 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Channel encoder 1277 implements encoding and interleaving to facilitate forward error correction (FEC) at UE 1250.
  • Transmit processor 1216 is implemented based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation ( M-QAM)) mapping of signal clusters and spatial precoding/beamforming processing of the encoded and modulated symbols to generate one or more spatial streams.
  • Transmit processor 1216 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then generates the payload using inverse fast Fourier transform (IFFT). The physical channel of the time domain multicarrier symbol stream.
  • Each transmitter 1218 converts the baseband multi-carrier symbol stream provided by the transmit processor 1216 into a radio frequency stream, which is then provided to a different antenna 1220.
  • each receiver 1254 receives a signal through its respective antenna 1252. Each receiver 1254 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 1256.
  • Receive processor 1256 and channel decoder 1258 implement various signal processing functions of the L1 layer.
  • Receive processor 1256 converts the baseband multicarrier symbol stream from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 1256, wherein the reference signal will be used for channel estimation, and the physical layer data is recovered in the receive processor 1256 by multi-antenna detection for the purpose of the UE 1250.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 1256 and a soft decision is generated.
  • Channel decoder 1258 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by gNB 1210 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 1259.
  • the controller/processor 1259 implements the functions of the L2 layer.
  • the controller/processor can be associated with a memory 1260 that stores program codes and data. Memory 1260 can be referred to as a computer readable medium.
  • the controller/processor 1259 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 1259 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 1267 is used to provide upper layer data packets to controller/processor 1259.
  • Data source 1267 represents all protocol layers above the L2 layer.
  • the controller/processor 1259 implements header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the gNB 1210. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 1259 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 1210.
  • the channel coder 1257 performs channel coding, and the encoded data is modulated into a multi-carrier/single-carrier symbol stream by modulation performed by the transmitting processor 1268 and multi-antenna spatial pre-coding/beamforming processing, and then provided to the transmitter 1254 via the transmitter 1254.
  • Each transmitter 1254 first converts the baseband symbol stream provided by the transmit processor 1268 into a stream of radio frequency symbols and provides it to the antenna 1252.
  • the function at gNB 1210 is similar to the receiving function at UE 1250 described in the DL.
  • Each receiver 1218 receives a radio frequency signal through its respective antenna 1220, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a receive processor 1270.
  • the receiving processor 1270 and the channel decoder 1278 collectively implement the functions of the L1 layer.
  • the controller/processor 1275 implements the L2 layer function. Controller/processor 1275 can be associated with memory 1276 that stores program codes and data. Memory 1276 can be referred to as a computer readable medium.
  • the controller/processor 1275 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer data packets from the UE 1250.
  • Upper layer data packets from controller/processor 1275 can be provided to the core network.
  • the controller/processor 1275 is also responsible for error detection using the ACK and/or NACK protocols to support HARQ operations.
  • the UE 1250 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 1250 apparatus at least: determining the first bit block in the present application; performing the channel coding in the present application; and transmitting the first wireless signal in the present application.
  • the UE 1250 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: determining a location in the present application Decoding a first bit block; performing the channel coding in the present application; transmitting the first wireless signal in the present application.
  • the UE 1250 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 1250 apparatus at least: receives the first wireless signal in the present application; performs the channel decoding in the present application; and restores the first bit block in the present application.
  • the UE 1250 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving the present application Deriving the first wireless signal; performing the channel decoding in the present application; restoring the first bit block in the present application.
  • the gNB 1210 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB 1210 device at least: receives the first wireless signal in the present application; performs the channel decoding in the present application; and restores the first bit block in the present application.
  • the gNB 1210 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving the Deriving the first wireless signal; performing the channel decoding in the present application; restoring the first bit block in the present application.
  • the gNB 1210 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB1210 device at least: determining the first bit block in the present application; performing the channel coding in the present application; and transmitting the first wireless signal in the present application.
  • the gNB 1210 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: determining a location in the present application Decoding a first bit block; performing the channel coding in the present application; transmitting the first wireless signal in the present application.
  • the UE 1250 corresponds to the first node in the application
  • the gNB 1210 corresponds to the second node in this application.
  • the UE 1250 corresponds to the second node in the application
  • the gNB 1210 corresponds to the first node in this application.
  • At least one of the controller/processor 1259, memory 1260, and data source 1267 is used to determine the first block of bits; the transmit processor 1268, the channel encoder 1257, and the At least one of the controller/processor 1259 is used to generate the second bit block in the present application; the receiving processor 1270, the channel decoder 1278, the controller/processor 1275 At least one of the sum memory 1276 is used to recover the first block of bits.
  • At least one of the transmit processor 1268, the channel encoder 1257, the controller/processor 1259, the transmitter 1254, and the antenna 1252 is used to transmit the first wireless signal; At least one of the receive processor 1270, the channel decoder 1278, the controller/processor 1275, the receiver 1218, and the antenna 1220 is configured to receive the first wireless signal.
  • the channel coder 1257 is used to perform the channel coding in this application; the channel coder 1278 is used to perform the channel coding in this application.
  • At least one of the controller/processor 1275 and the memory 1276 is used to determine the first block of bits; the transmit processor 1216, the channel encoder 1277, and the controller/ At least one of the processors 1275 is used to generate the second block of bits in the present application; the receive processor 1256, the channel decoder 1258, the controller/processor 1259, the memory 1260, and At least one of the data sources 1267 is used to recover the first block of bits.
  • At least one of the transmit processor 1216, the channel encoder 1277, the controller/processor 1275, the transmitter 1218, and the antenna 1220 is configured to transmit the first wireless signal; At least one of the receive processor 1256, the channel decoder 1258, the controller/processor 1259, the receiver 1254, and the antenna 1252 is configured to receive the first wireless signal.
  • the channel coder 1277 is used to perform the channel coding in this application; the channel coder 1258 is used to perform the channel coding in this application.
  • the first processing module 201 in Embodiment 7 includes at least one of a ⁇ transmit processor 1268, a channel encoder 1257, a controller/processor 1259, a memory 1260, and a data source 1267 ⁇ .
  • the second processing module 202 in Embodiment 7 includes a channel encoder 1257.
  • the first transmitter module 203 in Embodiment 7 includes ⁇ Antenna 1252, Transmitter 1254, Transmit Processor 1268, Channel Encoder 1257, Controller/Processor 1259, Memory 1260, Data Source 1267. At least one of ⁇ .
  • the first processing module 201 in Embodiment 7 includes at least one of ⁇ Transmission Processor 1216, Channel Encoder 1277, Controller/Processor 1275, Memory 1276 ⁇ .
  • the second processing module 202 in Embodiment 7 includes a channel coder 1277.
  • the first transmitter module 203 in Embodiment 7 includes at least one of ⁇ antenna 1220, transmitter 1218, transmit processor 1216, channel encoder 1277, controller/processor 1275, memory 1276 ⁇ . one.
  • the first receiver module 301 in Embodiment 8 includes ⁇ antenna 1220, receiver 1218, receiving processor 1270, channel decoder 1278, controller/processor 1275, memory 1276 ⁇ At least one.
  • the third processing module 302 in Embodiment 8 includes a channel decoder 1278.
  • the fourth processing module 303 in Embodiment 8 includes at least one of ⁇ receiver processor 1270, channel decoder 1278, controller/processor 1275, memory 1276 ⁇ .
  • the first receiver module 301 in Embodiment 8 includes ⁇ Antenna 1252, Receiver 1254, Receive Processor 1256, Channel Decoder 1258, Controller/Processor 1259, Memory 1260, Data Source. At least one of 1267 ⁇ .
  • the third processing module 302 in Embodiment 8 includes a channel decoder 1258.
  • the fourth processing module 303 in Embodiment 8 includes at least one of a ⁇ receiver processor 1256, a channel decoder 1258, a controller/processor 1259, a memory 1260, and a data source 1267 ⁇ .
  • the user equipment, UE or terminal in the present application includes but is not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明公开了一种用于信道编码的用户设备、基站中的方法和设备。第一节点确定第一比特块;执行信道编码;发送第一无线信号。其中,第一比特块中的比特用于生成第二比特块中的比特。第一比特块中的比特和第二比特块中的比特用于信道编码的输入,信道编码的输出用于生成第一无线信号。信道编码基于极化码。目标第一类比特占用的子信道和第二比特块中的和目标第一类比特相关的比特的数量相关。目标第一类比特属于第一比特块。本发明能够提高了polar码的译码性能,降低译码复杂度。

Description

一种被用于信道编码的用户设备、基站中的方法和设备 技术领域
本申请涉及无线通信系统中的无线信号的传输方案,特别是涉及被用于信道编码的传输的方法和装置。
背景技术
极化码(Polar Codes)是一种于2008年由土耳其毕尔肯大学Erdal Arikan教授首次提出的编码方案,是可以实现对称二进制输入离散无记忆信道(B-DMC,Binary input Discrete Memoryless Channel)的容量的代码构造方法。在3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)RAN1#87会议上,3GPP确定了采用Polar码方案作为5G eMBB(增强移动宽带)场景的控制信道编码方案。
传统的LTE(Long Term Evolution,长期演进)系统中,CRC(Cyclic Redundancy Check,循环冗余校验)扮演着差错校验和目标接收机身份识别等特定功能。而对于极化码,一些3GPP文稿(如R1-1611254)为极化码设计了特殊的校验比特,使之在信道译码时能被用于剪枝。
发明内容
发明人通过研究发现,由于极化码的不同子信道(sub-channel)对应不同的信道容量,映射到不同子信道上的信息比特可能经历不同的BER(Bit Error Rate,误比特率),因此,如何有效的利用冗余比特提高译码性能是一个需要解决的问题。
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
确定第一比特块;
执行信道编码;
发送第一无线信号;
其中,所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;所述信道编码基于极化码;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
作为一个实施例,上述方法的好处在于,可以根据所述目标第一类比特占用的子信道的传输可靠性来决定和所述目标第一类比特相关联的校验比特的冗余度。对处于不同子信道上的比特实现不等差错保护,在具有较差可靠性的子信道上传输的比特可以通过使用更强的差错保护来提高其传输可靠性。
作为一个实施例,所述子信道是:Arikan polar编码器的输入比特序列中的位置。
作为上述实施例的一个子实施例,所述输入比特序列和polar编码矩阵相乘,得到的输出是所述所述信道编码的输出。所述polar编码矩阵由比特翻转置换矩阵(bit reversal permutation matrix)和第一矩阵的乘积得到,所述第一矩阵是核矩阵的n阶 Kronecker幂,所述n是所述输入比特序列的长度的以2为底的对数,所述核矩阵是两行两列的矩阵,第一行的两个元素分别是1和0,第二行的两个元素都是1。
作为一个实施例,所述目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联是指:所述目标第一类比特占用的子信道的信道容量和{所述第二比特块中的和所述目标比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。
作为一个实施例,所述子信道的信道容量是:子信道上能可靠传输的信息速率的上限。
作为一个实施例,所述第一比特块中的部分比特和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块在所述第一节点的物理层上被生成。
作为一个实施例,所述第一节点是基站,所述第一节点根据调度结果生成所述第一比特块。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备),所述第一节点根据基站的调度生成所述第一比特块。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,所述信道编码的输入包括{所述第一比特块中的所有比特,所述第二比特块中的所有比特,第三比特块中的所有比特}。所述第三比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第三比特块中的所有比特都是0。
作为上述实施例的一个子实施例,所述第三比特块中的比特和所述第一节点的标识有关。
作为上述实施例的一个子实施例,所述第一节点的标识被用于生成所述第三比特块中的比特。
作为上述实施例的一个子实施例,所述第三比特块中的比特和所述第一无线信号的目标接收者的标识有关。
作为上述实施例的一个子实施例,所述所述第一无线信号的目标接收者的标识被用于生成所述第三比特块中的比特。
作为一个实施例,所述第一无线信号在物理层控制信道(即不能被用于传输物理层数据的物理层信道)上传输。
作为一个实施例,所述第一无线信号在物理层数据信道(即能被用于承载物理层数据的物理层信道)上传输。
作为一个实施例,所述第一节点是UE。
作为上述实施例的一个子实施例,所述第一无线信号在PUCCH(Physical UplinkControl Channel,物理上行控制信道)上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上传输。
作为一个实施例,所述第一节点是基站。
作为上述实施例的一个子实施例,所述第一无线信号在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PDCCH(Physical DownlinkControl Channel,物理下行控制信道)上传输。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过信道编码(ChannelCoding),扰码(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为一个实施例,所述宽带信号是OFDM(OrthogonalFrequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述宽带信号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
具体的,根据本申请的一个方面,其特征在于,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特的BER(Bit Error Rate,误比特率)降低的越多。因此所述目标第一类比特应当被映射到对应更低信道容量的子信道上,以平均化所述第一比特块中的比特对应的BER。
作为一个实施例,第一给定比特占用的子信道的信道容量小于第二给定比特占用的子信道的信道容量,所述第一给定比特和所述第二给定比特都属于所述第一比特块,所述第二比特块中的和所述第一给定比特相关的比特的数量大于所述第二比特块中和所述第二给定比特相关的比特的数量。
具体的,根据本申请的一个方面,其特征在于,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K等于1。
作为一个实施例,所述K大于1。
作为一个实施例,在上述方面中,所述K保持不变。
作为一个实施例,在其他条件相同的情况下,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特的BER降低的越多。因此所述目标第一类比特应当被映射到对应更低信道容量的子信道上,以平均化所述第一比特块中的比特对应的BER。
作为一个实施例,K1个第一类比特集合中的比特的数量的和小于K2个第一类比特集合中的比特的数量的和。所述K1个第一类比特集合和K1个第二类比特一一对应,所述K1个第二类比特是所述第二比特块中的所有和第一给定比特相关的比特。所述K2个第一类比特集合和K2个第二类比特一一对应,所述K2个第二类比特是所述第二比特块中的所有和第二给定比特相关的比特。所述K1和所述K2分别是正整数。所述第一给定比特占用的子信道的信道容量小于所述第二给定比特占用的子信道的信道容量。所述第一给定比特和所述第二给定比特都属于所述第一比特块。
作为一个实施例,所述K1等于所述K2。
具体的,根据本申请的一个方面,其特征在于,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,K个有理数的和越大,所述所述目标第一类比特所占用的子信道对应的信道容量越低。所述K个有理数和所述K个第一类比特集合一一对应,所述K个有理数中的任意一个有理数是对应的第一类比特集合中的比特的数量的倒数。
作为一个实施例,在其他条件相同的情况下,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特的BER降低的越多。因此所述目标第一类比特应当被映射到对应更低信道容量的子信道上,以平均化所述第一比特块中的比特对应的BER。
作为一个实施例,在上述方面中,所述K保持不变。
作为一个实施例,K1个第一类比特集合中的比特的数量的倒数和大于K2个第一类比特集合中的比特的数量的倒数和。所述K1个第一类比特集合和K1个第二类比特一一对应,所述K1个第二类比特是所述第二比特块中的所有和第一给定比特相关的比特。所述K2个第一类比特集合和K2个第二类比特一一对应,所述K2个第二类比特是所述第二比特块中的所有和第二给定比特相关的比特。所述K1和所述K2分别是正整数。所述第一给定比特占用的子信道的信道容量小于所述第二给定比特占用的子信道的信道容量。所述第一给定比特和所述第二给定比特都属于所述第一比特块。
作为一个实施例,所述K1等于所述K2。
具体的,根据本申请的一个方面,其特征在于,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
作为一个实施例,所述第一比特子块和所述第二比特子块组成所述第一比特块。
作为一个实施例,所述第二比特子块是所述第一比特子块的CRC比特块。
作为一个实施例,所述第二比特子块是所述第一比特子块的CRC比特块经过扰码之后的比特块。
作为一个实施例,所述扰码采用的扰码序列和所述第一节点的标识有关。
作为一个实施例,所述第一节点是UE,所述第一节点的标识是RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述第一节点是基站,所述第一节点的标识是PCI(Physical Cell Identifier,物理小区标识)。
作为一个实施例,所述扰码采用的扰码序列和所述第一无线信号的目标接收者的标识有关。
作为一个实施例,所述第一节点是基站,所述第一无线信号的目标接收者的标识是RNTI。
作为一个实施例,所述所述第一比特子块的CRC比特块是由所述第一比特子块经过CRC循环生成多项式(cyclic generator polynomial)的输出。所述第一比特子块和所述所述第一比特子块的CRC比特块构成的多项式在GF(2)上能被所述CRC循环生成多项式整除,即所述所述第一比特子块和所述所述第一比特子块的CRC比特块构成的多项式除以所述CRC循环生成多项式得到的余数是零。
作为一个实施例,所述第二比特子块的长度是{24,16,8}中之一。
作为一个实施例,所述第二比特子块的长度小于8。
作为一个实施例,所述第二比特子块中的比特和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特子块中的一部分比特被用于生成所述第二比特块中的比特,所述第一比特子块中的另一部分比特和所述第二比特块中的比特无关。
具体的,根据本申请的一个方面,其特征在于,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
作为一个实施例,上述方法的好处在于,可以实现对所述第一比特集合和所述第二比特集合的不等差错保护,使重要的比特在具有高可靠性的子信道上传输,提高所述第一无线信号的传输质量。
作为一个实施例,所述第一比特集合和所述第二比特集合中不存在公共比特。
作为一个实施例,任意一个所述第一比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个,任意一个所述第二比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个。
作为一个实施例,所述信道编码的输入包括{所述第一比特块中的所有比特,所述第 二比特块中的所有比特,第三比特块中的所有比特}。所述第三比特块中的所有比特的值是预先设定的。所述第三比特块中的任意一个比特所映射的子信道的信道容量小于所述第二比特集合中的任意一个比特所映射的子信道的信道容量。
作为一个实施例,所述一部分所述第一比特块中的比特和所述另一部分所述第一比特块中的比特组成所述第一比特块。
作为一个实施例,所述另一部分所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述第二比特块中的比特和所述一部分所述第一比特块中的比特无关。
作为一个实施例,所述另一部分所述第一比特块中的比特中的任意一个比特占用的子信道的信道容量大于所述第二比特块中的任意一个比特占用的子信道的信道容量。
具体的,根据本申请的一个方面,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,所述第二比特块是所述第一比特块的CRC比特块。
作为一个实施例,所述第二比特块是所述第一比特块的CRC比特块经过扰码之后的比特块。
作为一个实施例,所述扰码采用的扰码序列和所述第一节点的标识有关。
作为一个实施例,所述第一节点是UE,所述第一节点的标识是RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述第一节点是基站,所述第一节点的标识是PCI(Physical Cell Identifier,物理小区标识)。
作为一个实施例,所述扰码采用的扰码序列和所述第一无线信号的目标接收者的标识有关。
作为一个实施例,所述第一节点是基站,所述第一无线信号的目标接收者的标识是RNTI。
作为一个实施例,所述所述第一比特块的CRC比特块是由所述第一比特块经过CRC循环生成多项式(cyclic generator polynomial)的输出。所述第一比特块和所述所述第一比特块的CRC比特块构成的多项式在GF(2)上能被所述CRC循环生成多项式整除,即所述所述第一比特块和所述所述第一比特块的CRC比特块构成的多项式除以所述CRC循环生成多项式得到的余数是零。
作为一个实施例,所述另一部分所述第一比特块中的比特被用于生成所述第二比特块。
作为一个实施例,所述第二比特块是所述另一部分所述第一比特块中的比特的CRC比特块。
作为一个实施例,所述第二比特块是所述另一部分所述第一比特块中的比特的CRC比特块经过扰码之后的比特块。
作为一个实施例,所述另一部分所述第一比特块中的比特是所述第一比特子块的子集。
作为上述实施例一个子实施例,所述第一比特子块中不属于所述另一部分所述第一比特块中的比特的比特和所述第二比特块中的比特无关。
具体的,根据本申请的一个方面,其特征在于,所述第一节点是基站,所述第一比特块包括下行控制信息;或者所述第一节点是UE,所述第一比特块包括上行控制信息。
作为一个实施例,所述下行控制信息指示相应数据{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号}中的至少之一。
作为一个实施例,所述上行控制信息指示{HARQ-ACK(Acknowledgement,确认),CSI(ChannelStateInformation,信道状态信息),SR(Scheduling Request,调度请求),CRI(CSI-RS resource indication)}中的至少之一。
本申请公开了被用于无线通信的第二节点中的方法,其中,包括:
接收第一无线信号;
执行信道译码;
恢复第一比特块;
其中,所述信道译码对应的信道编码是基于极化码;所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
作为一个实施例,所述第二节点是基站,所述第一节点是UE。
作为一个实施例,所述第二节点是UE,所述第一节点是基站。
作为一个实施例,所述信道译码的输出被用于恢复所述第一比特块。
具体的,根据本申请的一个方面,其特征在于,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
具体的,根据本申请的一个方面,其特征在于,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
具体的,根据本申请的一个方面,其特征在于,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
具体的,根据本申请的一个方面,其特征在于,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
具体的,根据本申请的一个方面,其特征在于,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
具体的,根据本申请的一个方面,其特征在于,所述信道译码被用于确定P个参考值,所述P个参考值和目标比特组中的比特一一对应,所述目标比特组由所述第一比特块中的比特和所述第二比特块中的比特组成,所述第一比特块中的比特的数量和所述第二比特块中的比特的数量的和是所述P;所述P个参考值中和所述第二比特块中的比特所对应的参考值在所述信道译码中被用于剪枝;所述P个参考值中和所述第二比特子块中的比特所对应的参考值被用于确定所述第一比特块是否被正确接收;所述P是大于1的正整数。
作为一个实施例,上述方法的好处在于,所述第二比特块中的比特可以用于在所述信道译码中提高译码准确性,并降低译码复杂度;所述第二比特子块中的比特可以用于实现传统CRC的功能,即确定所述第一比特块是否被正确接收,同时用于传递所述第一节点的标识,或者用于传递所述第一无线信号接收者的标识。这样,同时实现了剪枝和传统CRC的功能。
作为一个实施例,所述P个参考值分别是针对对应的(发送)比特而恢复的(接收)比特。
作为一个实施例,所述P个参考值分别是针对对应的(发送)比特而恢复的(接收)软比特。
作为一个实施例,所述P个参考值分别是针对对应的(发送)比特而估计的LLR(Log Likelihood Ratio,对数似然比)。
作为一个实施例,所述剪枝被用于在基于Viterbi准则的所述信道译码中减少幸存的搜 索路径。
作为一个实施例,给定参考值是所述P个参考值中被用于剪枝的参考值。对于所述给定参考值,被剪枝的搜索路径所对应的比特和给定第二类比特相关联,所述给定第二类比特是所述第二比特块中和所述给定参考值对应的比特。
作为上述实施例的一个子实施例,对于所述给定参考值,被剪枝的搜索路径所对应的比特被用于生成所述给定第二类比特。
作为上述实施例的一个子实施例,对于所述给定参考值,被剪枝的搜索路径所对应的比特的和对2取模得到所述给定第二类比特。
作为上述实施例的一个子实施例,对于所述给定参考值,被剪枝的搜索路径所对应的比特的和对2取模再和扰码序列中的相应比特进行异或操作之后得到所述给定第二类比特。
作为一个实施例,所述P个参考值中和所述第二比特子块中的比特对应的参考值被用于指示所述第一无线信号的目标接收者的标识。
作为一个实施例,所述P个参考值中和所述第二比特子块中的比特对应的参考值被用于指示所述第一节点的标识。
作为一个实施例,所述P个参考值中和所述第二比特子块中的比特对应的参考值以及所述P个参考值中和所述第一比特子块中的比特对应的参考值共同通过CRC校验,如果校验结果正确则判断所述第一比特块被正确恢复;否则判断所述第一比特块没有被正确恢复。
具体的,根据本申请的一个方面,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
具体的,根据本申请的一个方面,其特征在于,所述第二节点是UE,所述第一比特块包括下行控制信息;或者所述第二节点是基站,所述第一比特块包括上行控制信息。
本申请公开了被用于无线通信的第一节点中的设备,其中,包括:
第一处理模块,生成第一比特块;
第二处理模块,执行信道编码;
第一发送机模块,发送第一无线信号;
其中,所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;所述信道编码基于极化码;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
作为一个实施例,上述第一节点中的设备的特征在于,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,上述第一节点中的设备的特征在于,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,上述第一节点中的设备的特征在于,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
作为一个实施例,上述第一节点中的设备的特征在于,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信 道容量;所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一节点是基站,所述第一比特块包括下行控制信息;或者所述第一节点是UE,所述第一比特块包括上行控制信息。
本申请公开了被用于无线通信的第二节点中的设备,其中,包括:
第一接收机模块,接收第一无线信号;
第三处理模块,执行信道译码;
第四处理模块,恢复第一比特块;
其中,所述信道译码对应的信道编码是基于极化码;所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;。对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
作为一个实施例,上述第二节点中的设备的特征在于,所述信道译码的输出被用于恢复所述第一比特块。
作为一个实施例,上述第二节点中的设备的特征在于,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,上述第二节点中的设备的特征在于,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,上述第二节点中的设备的特征在于,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,上述第二节点中的设备的特征在于,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
作为一个实施例,上述第二节点中的设备的特征在于,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
作为一个实施例,上述第二节点中的设备的特征在于,所述信道译码被用于确定P个参考值,所述P个参考值和目标比特组中的比特一一对应,所述目标比特组由所述第一比特块中的比特和所述第二比特块中的比特组成,所述第一比特块中的比特的数量和所述第二比特块中的比特的数量的和是所述P;所述P个参考值中和所述第二比特块中的比特所对应的参考值在所述信道译码中被用于剪枝;所述P个参考值中和所述第二比特子块中的比特所对应的参考值被用于确定所述第一比特块是否被正确接收;所述P是大于1的正整数。
作为一个实施例,上述第二节点中的设备的特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,上述第二节点中的设备的特征在于,所述第二节点是UE,所述第一 比特块包括下行控制信息;或者所述第二节点是基站,所述第一比特块包括上行控制信息。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.利用CRC或其他分组码作为polar码的外码,提高了polar码的译码性能;
-.根据信息比特所映射的子信道的传输可靠性来决定信息比特在外码中对应的冗余度,对处于不同子信道上的信息比特实现不等差错保护,在具有较差可靠性的子信道上传输的信息比特在外码中使用更强的差错保护来提高其传输性能;
-.利用外码的校验比特在polar的译码过程中实现剪枝,降低译码复杂度;
-.保留了传统CRC的功能,即差错校验和目标接收机身份识别。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的无线传输的流程图;
图2示出了根据本申请的另一个实施例的无线传输的流程图;
图3示出了根据本申请的一个实施例的第一比特块和第二比特块在子信道上的映射关系的示意图;
图4示出了根据本申请的另一个实施例的第一比特块和第二比特块在子信道上的映射关系的示意图;
图5示出了根据本申请的另一个实施例的第一比特块和第二比特块在子信道上的映射关系的示意图;
图6示出了根据本申请的一个实施例的{第一比特块,第二比特块}和第一无线信号之间的关系的示意图;
图7示出了根据本申请的一个实施例的用于无线通信的第一节点中的处理装置的结构框图;
图8示出了根据本申请的一个实施例的用于无线通信的第二节点中的处理装置的结构框图;
图9示出了根据本申请的一个实施例的第一比特块,信道编码和第一无线信号的流程图;
图10示出了根据本申请的一个实施例的网络架构的示意图;
图11示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图12示出了根据本申请的一个实施例的演进节点和UE的示意图。
实施例1
实施例1示例了无线传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区维持基站。
对于N1,在步骤S11中发送第一无线信号。
对于U2,在步骤S21中接收第一无线信号。
在实施例1中,第一比特块中的比特被所述N1用于生成第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被所述N1用于信道编码的输入,所述信道编码的输出被所述N1用于生成所述第一无线信号。所述信道编码基于极化码。对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类 比特对应的第一类比特集合。所述K是正整数。所述第一无线信号被所述U2用于生成信道译码的输入,所述信道译码对应的信道编码是基于极化码。所述信道译码的输出被所述U2用于恢复所述第一比特块。
作为一个实施例,所述子信道是:Arikan polar编码器的输入比特序列中的位置。
作为上述实施例的一个子实施例,所述输入比特序列和polar编码矩阵相乘,得到的输出是所述所述信道编码的输出。所述polar编码矩阵由比特翻转置换矩阵(bit reversal permutation matrix)和第一矩阵的乘积得到,所述第一矩阵是核矩阵的n阶Kronecker幂,所述n是所述输入比特序列的长度的以2为底的对数,所述核矩阵是两行两列的矩阵,第一行的两个元素分别是1和0,第二行的两个元素都是1。
作为一个实施例,所述目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联是指:所述目标比特占用的子信道的信道容量和{所述第二比特块中的和所述目标比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。
作为一个实施例,一个子信道的信道容量是:所述一个子信道上能可靠传输的信息速率的上限。
作为一个实施例,所述第一比特块中的部分比特和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块在所述N1的物理层上被生成。所述N1根据调度结果生成所述第一比特块。
作为一个实施例,所述信道编码的输入包括{所述第一比特块中的所有比特,所述第二比特块中的所有比特,第三比特块中的所有比特}。所述第三比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第三比特块中的所有比特都是0。
作为上述实施例的一个子实施例,所述第三比特块中的比特和所述U2的标识有关。
作为上述实施例的一个子实施例,所述U2的标识被用于生成所述第三比特块中的比特。
作为上述实施例的一个子实施例,所述U2的标识是RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过信道编码(ChannelCoding),扰码(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为一个实施例,所述宽带信号是OFDM(OrthogonalFrequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述宽带信号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
作为一个实施例,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。所述第一比特块中的比特 属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
作为一个实施例,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,所述第一比特块包括下行控制信息。
作为上述实施例的一个子实施例,所述下行控制信息指示相应数据{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号}中的至少之一。
作为一个实施例,所述信道译码被所述U2用于确定P个参考值,所述P个参考值和目标比特组中的比特一一对应,所述目标比特组由所述第一比特块中的比特和所述第二比特块中的比特组成,所述第一比特块中的比特的数量和所述第二比特块中的比特的数量的和是所述P。所述P个参考值中和所述第二比特块中的比特所对应的参考值在所述信道译码中被用于剪枝。所述P个参考值和所述第二比特子块中的比特所对应的参考值被用于确定所述第一比特块是否被正确接收。所述P是大于1的正整数。
实施例2
实施例2示例了无线传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务小区维持基站。
对于N3,在步骤S31中接收第一无线信号。
对于U4,在步骤S41中发送第一无线信号。
在实施例2中,第一比特块中的比特被所述U4用于生成第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被所述U4用于信道编码的输入,所述信道编码的输出被所述U4用于生成所述第一无线信号。所述信道编码基于极化码。对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合。所述K是正整数。所述第一无线信号被所述N3用于生成信道译码的输入,所述信道译码对应的信道编码是基于极化码。所述信道译码的输出被所述N3用于恢复所述第一比特块。
作为一个实施例,所述第一比特块在所述U4的物理层上被生成。
作为一个实施例,所述U4根据所述N3的调度结果生成所述第一比特块。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为一个实施例,所述第一比特块包括上行控制信息。
作为上述实施例的一个子实施例,所述上行控制信息指示{HARQ-ACK(Acknowledgement,确认),CSI(ChannelStateInformation,信道状态信息),SR(Scheduling Request,调度请求),CRI(CSI-RS resource indication)}中的至少之一。
实施例3
实施例3示例了第一比特块和第二比特块在子信道上的映射关系的示意图,如附图3所示。
在实施例3中,所述第一比特块中的比特被用于生成所述第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被用于信道编码的输入,所述信道 编码的输出被用于生成第一无线信号。所述信道编码基于极化码。对于所述信道编码,所述第二比特块中的和目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。所述目标第一类比特属于所述第一比特块。
在附图3中,所述第一比特块有10个比特,所述第一比特块中的比特用d(i)来表示,所述i是大于等于0并小于10的整数;所述第二比特块有3个比特,所述第二比特块中的比特用p(j)来表示,所述j是大于等于0并小于3的整数。所述目标第一类比特和所述第二比特块中与所述目标第一类比特相关联的比特之间用实线连接。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。例如,附图3中的p(0)等于d(0)和d(1)之和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。例如,附图3中的p(0)由d(0)和d(1)之和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,第一给定比特占用的子信道的信道容量小于第二给定比特占用的子信道的信道容量,所述第一给定比特和所述第二给定比特都属于所述第一比特块,所述第二比特块中的和所述第一给定比特相关的比特的数量大于所述第二比特块中和所述第二给定比特相关的比特的数量。例如,附图3中的d(0)和{p(0),p(1),p(2)}相关,附图3中的d(2)和{p(1),p(2)}相关,附图3中的d(4)和p(2)相关,d(0)占用的子信道的信道容量小于d(2)占用的子信道的信道容量,d(2)占用的子信道的信道容量小于d(4)占用的子信道的信道容量。
作为一个实施例,所述第一比特块中的部分比特和所述第二比特块中的比特无关。例如,在附图3中,{d(6),d(7),d(8),d(9)}(即右斜线填充的方格和交叉线填充的方格)和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。在附图3中,左斜线填充的方格和右斜线填充的方格表示所述第一比特子块,交叉线填充的方格表示所述第二比特子块。
作为一个实施例,所述第二比特子块中的比特和所述第二比特块中的比特无关。例如,在附图3中,{d(8),d(9)}(即交叉线填充的方格)和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特子块中的一部分比特被用于生成所述第二比特块中的比特,所述第一比特子块中的另一部分比特和所述第二比特块中的比特无关。在附图3中,左斜线填充的方格表示所述第一比特子块中被用于生成所述第二比特块的比特,右斜线填充的方格表示所述第一比特子块中和所述第二比特块中的比特无关的比特。
作为一个实施例,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。例如,在附图3中,{d(0),d(1),d(2),d(3),d(4),d(5),p(0),p(1),p(2)}(即左斜线填充的方格和所述第二比特块中的比特)属于所述第二比特集合,{d(6),d(7),d(8),d(9)}(即右斜线填充的方格和交叉线填充的方格)属于所述第一比特集合。
作为上述实施例的一个子实施例,所述第一比特集合和所述第二比特集合中不存在公共比特。
作为上述实施例的一个子实施例,任意一个所述第一比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个,任意一个所述第二比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个。
作为上述实施例的一个子实施例,所述一部分所述第一比特块中的比特和所述另一部分所述第一比特块中的比特组成所述第一比特块。
作为上述实施例的一个子实施例,所述另一部分所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述一部分所述第一比特块中的比特和所述第二比特块中的比特无关。例如,在附图3中,{d(0),d(1),d(2),d(3),d(4),d(5)}(即左斜线填充的方格)被用于生成所述第二比特块中的比特,{d(6),d(7),d(8),d(9)}(即右斜线填充的方格和交叉线填充的方格)和所述第二比特块中的比特无关。
实施例4
实施例4示例了第一比特块和第二比特块在子信道上的映射关系的示意图,如附图4所示。
在实施例4中,所述第一比特块中的比特被用于生成所述第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被用于信道编码的输入,所述信道编码的输出被用于生成第一无线信号。所述信道编码基于极化码。对于所述信道编码,所述K个第一类比特集合中的比特的数量的和越小,目标第一类比特所占用的子信道对应的信道容量越低。所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合。所述K是正整数。
在附图4中,所述第一比特块有10个比特,所述第一比特块中的比特用d(i)来表示,所述i是大于等于0并小于10的整数;所述第二比特块有3个比特,所述第二比特块中的比特用p(j)来表示,所述j是大于等于0并小于3的整数。所述目标第一类比特和所述第二比特块中与所述目标第一类比特相关联的比特之间用实线连接。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。例如,附图4中的p(0)等于d(0)对2取模;附图4中的p(1)等于d(1)和d(2)的和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。例如,附图4中的p(0)由d(0)对2取模,再和扰码序列中的相应比特进行异或操作之后得到;附图4中的p(1)由d(1)和d(2)的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,所述K等于1。
作为一个实施例,所述K大于1。
作为一个实施例,所述K保持不变。
作为一个实施例,K1个第一类比特集合中的比特的数量的和小于K2个第一类比特集合中的比特的数量的和。所述K1个第一类比特集合和K1个第二类比特一一对应,所述K1个第二类比特是所述第二比特块中的所有和第一给定比特相关的比特。所述K2个第一类比特集合和K2个第二类比特一一对应,所述K2个第二类比特是所述第二比特块中的所有和第二给定比特相关的比特。所述K1和所述K2分别是正整数。所述第一给定比特占用的子信道的信道容量小于所述第二给定比特占用的子信道的信道容量。所述第一给定比特和所述第二给定比特都属于所述第一比特块。例如,在附图4中,所述第一给定比特是d(0),所述第二给定比特是d(1),所述K1个第一类比特集合是d(0),所述K1是1;所述K2个第一类比特集合是{d(1),d(2)},所述K2是1。所述K1个第一类比特集合中的比特的数量的和是1,所述K2个第一类比特集合中的比特的数量的和是2,d(0)占用的子信道的信道容量小于d(1)占用的子信道的信道容量。
作为一个实施例,所述K1等于所述K2。
作为一个实施例,所述第一比特块中的部分比特和所述第二比特块中的比特无关。例如,在附图4中,{d(4),d(5),d(6),d(7)}(即右斜线填充的方格)和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。在附图4中,左斜线填充的方格和右斜线填充的方格表示所述第一比特子块,交叉线填充的方格表示所述第二比特子块。
作为一个实施例,所述第一比特子块中的一部分比特被用于生成所述第二比特块中的比特,所述第一比特子块中的另一部分比特和所述第二比特块中的比特无关。在附图4中,左斜线填充的方格和交叉线填充的方格和被用于生成所述第二比特块中的比特,右斜线填充的方格和所述第二比特块中的比特无关的比特。
作为一个实施例,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。例如,在附图4中,{d(0),d(1),d(2),d(3),d(8),d(9),p(0),p(1),p(2)}(即左斜线填充的方格和交叉线填充的方格,以及所述第二比特块中的比特)属于所述第二比特集合,{d(4),d(5),d(6),d(7)}(即右斜线填充的方格)属于所述第一比特集合。
作为上述实施例的一个子实施例,所述第一比特集合和所述第二比特集合中不存在公共比特。
作为上述实施例的一个子实施例,任意一个所述第一比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个,任意一个所述第二比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个。
作为上述实施例的一个子实施例,所述一部分所述第一比特块中的比特和所述另一部分所述第一比特块中的比特组成所述第一比特块。
作为上述实施例的一个子实施例,所述另一部分所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述一部分所述第一比特块中的比特和所述第二比特块中的比特无关。例如,在附图4中,{d(0),d(1),d(2),d(3),d(8),d(9)}(即左斜线填充的方格和交叉线填充的方格)被用于生成所述第二比特块中的比特,{d(4),d(5),d(6),d(7)}(即右斜线填充的方格)和所述第二比特块中的比特无关。
实施例5
实施例5示例了第一比特块和第二比特块在子信道上的映射关系的示意图,如附图5所示。
在实施例5中,所述第一比特块中的比特被用于生成所述第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被用于信道编码的输入,所述信道编码的输出被用于生成第一无线信号。所述信道编码基于极化码。对于所述信道编码,所述K个第一类比特集合中的比特的数量的倒数和越大,目标第一类比特所占用的子信道对应的信道容量越低。所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合。所述K是正整数。
在附图5中,所述第一比特块有10个比特,所述第一比特块中的比特用d(i)来表示,所述i是大于等于0并小于10的整数;所述第二比特块有4个比特,所述第二比特块中的比特用p(j)来表示,所述j是大于等于0并小于4的整数。所述目标第一类比特和所述第二比特块中与所述目标第一类比特相关联的比特之间用实线连接。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。例如,附图5中的p(0)等于d(0)和d(2)的和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。例如,附图5中的p(0)由d(0)和d(2)的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,所述K等于1。
作为一个实施例,所述K大于1。
作为一个实施例,所述K保持不变。
作为一个实施例,K1个第一类比特集合中的比特的数量的倒数和大于K2个第一类比特集合中的比特的数量的倒数和。所述K1个第一类比特集合和K1个第二类比特一一对应,所述K1个第二类比特是所述第二比特块中的所有和第一给定比特相关的比特。所述K2个第一类比特集合和K2个第二类比特一一对应,所述K2个第二类比特是所述第二比特块中的所有和第二给定比特相关的比特。所述K1和所述K2分别是正整数。所述第一给定比特占用的子信道的信道容量小于所述第二给定比特占用的子信道的信道容量。所述第一给定比特和所述第二给定比特都属于所述第一比特块。例如,在附图5中,所述第一给定比特d(0),所述第二给定比特是d(1),所述K1个第一类比特集合是是{d(0),d(2)}和{d(0),d(4)},所述K1是2;所述K2个第一类比特集合是{d(1)}和{d(1),d(2),d(3),d(5)},所述K2是2。所述K1个第一类比特集合中的比特的数量的倒数和是1,所述K2个第一类比特集合中的比特的数量的和是1.25,d(0)占用的子信道的信道容量大于d(1)占用的子信道的信道容量。
作为一个实施例,所述K1等于所述K2。
作为一个实施例,所述第一比特块中的部分比特和所述第二比特块中的比特无关。例如,在附图5中,{d(6),d(7),d(8),d(9)}(即右斜线填充的方格和交叉线填充的方格)和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。在附图5中,左斜线填充的方格和右斜线填充的方格表示所述第一比特子块,交叉线填充的方格表示所述第二比特子块。
作为一个实施例,所述第二比特子块中的比特和所述第二比特块中的比特无关。例如,在附图5中,{d(8),d(9)}(即交叉线填充的方格)和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特子块中的一部分比特被用于生成所述第二比特块中的比特,所述第一比特子块中的另一部分比特和所述第二比特块中的比特无关。在附图5中,左斜线填充的方格表示所述第一比特子块中被用于生成所述第二比特块的比特,右斜线填充的方格表示所述第一比特子块中和所述第二比特块中的比特无关的比特。
作为一个实施例,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。例如,在附图5中,{d(0),d(1),d(2),d(3),d(4),d(5),p(0),p(1),p(2),p(3)}(即左斜线填充的方格和所述第二比特块中的比特)属于所述第二比特集合,{d(6),d(7),d(8),d(9)}(右斜线填充的方格和交叉线填充的方格)属于所述第一比特集合。
作为上述实施例的一个子实施例,所述第一比特集合和所述第二比特集合中不存在公共比特。
作为上述实施例的一个子实施例,任意一个所述第一比特块中的比特属于{所述第一 比特集合,所述第二比特集合}中的一个,任意一个所述第二比特块中的比特属于{所述第一比特集合,所述第二比特集合}中的一个。
作为上述实施例的一个子实施例,所述一部分所述第一比特块中的比特和所述另一部分所述第一比特块中的比特组成所述第一比特块。
作为上述实施例的一个子实施例,所述另一部分所述第一比特块中的比特被用于生成所述第二比特块中的比特,所述一部分所述第一比特块中的比特和所述第二比特块中的比特无关。例如,在附图5中,{d(0),d(1),d(2),d(3),d(4),d(5)}(即左斜线填充的方格)被用于生成所述第二比特块中的比特,{d(6),d(7),d(8),d(9)}(即右斜线填充的方格和交叉线填充的方格)和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合。例如,在附图5中,{d(0),d(1),d(2),d(3),d(4),d(5),d(6),d(7),d(8),d(9)}属于所述第一比特集合,{p(0),p(1),p(2),p(3)}属于所述第一比特集合。
实施例6
实施例6示例了{第一比特块,第二比特块}和第一无线信号之间的关系的示意图,如附图6所示。
在实施例6中,在第一节点中,所述第一比特块中的比特被用于生成所述第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被用于信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号。所述信道编码基于极化码。所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。在第二节点中,所述第一无线信号被用于生成信道译码的输入,所述信道译码对应的信道编码是基于极化码。所述信道译码被用于确定P个参考值,所述P个参考值和目标比特组中的比特一一对应,所述目标比特组由所述第一比特块中的比特和所述第二比特块中的比特组成,所述第一比特块中的比特的数量和所述第二比特块中的比特的数量的和是所述P。所述P个参考值中和所述第二比特块中的比特所对应的参考值在所述信道译码中被用于剪枝。所述P个参考值中和所述第二比特子块中的比特所对应的参考值被用于确定所述第一比特块是否被正确接收。所述P是大于1的正整数。
在附图6中,所述第一比特块有8个比特,所述第一比特块中的比特用d(i)来表示,所述i是大于等于0并小于8的整数;所述第二比特块有4个比特,所述第二比特块中的比特用p(j)来表示,所述j是大于等于0并小于4的整数。所述第一比特块中的一个比特和其在所述第二比特块中相关联的比特之间用实线连接。译码器中的树状图表示了所述信道译码中和比特{d(0),d(2),p(0)}相关联的一部分路径。左斜线填充的方格表示所述第一比特子块,交叉线填充的方格表示所述第二比特子块。
作为一个实施例,所述P个参考值分别是针对对应的(发送)比特而恢复的(接收)比特。
作为一个实施例,所述P个参考值分别是针对对应的(发送)比特而恢复的(接收)软比特。
作为一个实施例,所述P个参考值分别是针对对应的(发送)比特而估计的LLR(Log Likelihood Ratio,对数似然比)。
作为一个实施例,所述剪枝被用于在基于Viterbi准则的所述信道译码中减少幸存的搜索路径。例如,附图6的树状图中,粗实线表示的路径是幸存的搜索路径,其他路径是被删减的搜索路径。
作为一个实施例,给定参考值是所述P个参考值中被用于剪枝的参考值。对于所述给定参考值,被剪枝的搜索路径所对应的比特和给定第二类比特相关联,所述给定第二类比特是所述第二比特块中和所述给定参考值对应的比特。例如,在附图6中,p(0)对应的参考值,在附图6中用p’(0)表示,被用于在所述信道译码中剪枝。被剪枝的搜索路径所对应的比特 是{d(0),d(2)}。{d(0),d(2)}和p(0)相关联。
作为上述实施例一个子实施例,对于所述给定参考值,被剪枝的搜索路径所对应的比特被用于生成所述给定第二类比特。例如,在附图6中,{d(0),d(2)}被用于生成p(0)。
作为上述实施例一个子实施例,对于所述给定参考值,被剪枝的搜索路径所对应的比特的和对2取模得到所述给定第二类比特。例如,在附图6中,{d(0),d(2)}的和对2取模得到p(0)。
作为上述实施例一个子实施例,对于所述给定参考值,被剪枝的搜索路径所对应的比特的和对2取模再和扰码序列中的相应比特进行异或操作之后得到所述给定第二类比特。例如,在附图6中,{d(0),d(2)}的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到p(0)。
作为一个实施例,所述P个参考值中和所述第二比特子块中的比特对应的参考值被用于指示所述第一无线信号的目标接收者的标识。
作为一个实施例,所述P个参考值中和所述第二比特子块中的比特对应的参考值被用于指示所述第一节点的标识。
作为一个实施例,所述P个参考值中和所述第二比特子块中的比特对应的参考值以及所述P个参考值中和所述第一比特子块中的比特对应的参考值共同通过CRC校验,如果校验结果正确则判断所述第一比特块被正确恢复;否则判断所述第一比特块没有被正确恢复。
作为一个实施例,所述信道编码的输入包括{所述第一比特块中的所有比特,所述第二比特块中的所有比特,第三比特块中的所有比特}。所述第三比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第三比特块中的所有比特都是0。
作为上述实施例的一个子实施例,所述第三比特块中的比特和所述第一无线信号的目标接收者的标识有关。
作为上述实施例的一个子实施例,所述所述第一无线信号的目标接收者的标识被用于生成所述第三比特块中的比特。
实施例7
实施例7示例了用于无线通信的第一节点中的处理装置的结构框图,如附图7所示。
在附图7中,第一节点装置200主要由第一处理模块201,第二处理模块202和第一发送机模块203组成。
第一处理模块201生成第一比特块;第二处理模块202执行信道编码;第一发送机模块203发送第一无线信号。
在实施例7中,所述第一比特块中的比特被所述第一处理模块201用于生成第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被所述第二处理模块202用于所述信道编码的输入,所述信道编码的输出被所述第一发送机模块203用于生成所述第一无线信号。所述信道编码基于极化码。对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合。所述K是正整数。
作为一个实施例,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
作为一个实施例,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
作为一个实施例,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,所述第一节点是基站,所述第一比特块包括下行控制信息;或者所述第一节点是UE,所述第一比特块包括上行控制信息。
实施例8
实施例8示例了用于无线通信的第二节点中的处理装置的结构框图,如附图8所示。
在附图8中,第二节点装置300主要由第一接收机模块301,第三处理模块302和第四处理模块303组成。
第一接收机模块301接收第一无线信号;第三处理模块302执行信道译码;第四处理模块303恢复第一比特块。
在实施例8中,所述信道译码对应的信道编码是基于极化码。所述第一比特块中的比特被用于生成第二比特块中的比特。所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号。对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合。所述K是正整数。
作为一个实施例,所述信道译码的输出被所述第四处理模块303用于恢复所述第一比特块。
作为一个实施例,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
作为一个实施例,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
作为一个实施例,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量。所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
作为一个实施例,所述信道译码被用于确定P个参考值,所述P个参考值和目标比特组中的比特一一对应,所述目标比特组由所述第一比特块中的比特和所述第二比特块中的比特组成,所述第一比特块中的比特的数量和所述第二比特块中的比特的数量的和是所述P。所 述P个参考值中和所述第二比特块中的比特所对应的参考值在所述信道译码中被用于剪枝。所述P个参考值中和所述第二比特子块中的比特所对应的参考值被用于确定所述第一比特块是否被正确接收。所述P是大于1的正整数。
作为一个实施例,所述第一比特块的CRC比特块被用于生成所述第二比特块。
作为一个实施例,所述第二节点是UE,所述第一比特块包括下行控制信息;或者所述第二节点是基站,所述第一比特块包括上行控制信息。
实施例9
实施例9示例了第一比特块,信道编码和第一无线信号的流程图,如附图9所示。
在实施例9中,本申请中的所述第一节点确定第一比特块;执行信道编码;然后发送第一无线信号。其中,所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;所述信道编码基于极化码;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
作为一个实施例,所述子信道是:Arikan polar编码器的输入比特序列中的位置。
作为上述实施例的一个子实施例,所述输入比特序列和polar编码矩阵相乘,得到的输出是所述所述信道编码的输出。所述polar编码矩阵由比特翻转置换矩阵(bit reversal permutation matrix)和第一矩阵的乘积得到,所述第一矩阵是核矩阵的n阶Kronecker幂,所述n是所述输入比特序列的长度的以2为底的对数,所述核矩阵是两行两列的矩阵,第一行的两个元素分别是1和0,第二行的两个元素都是1。
作为一个实施例,所述目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联是指:所述目标第一类比特占用的子信道的信道容量和{所述第二比特块中的和所述目标比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联。
作为一个实施例,所述子信道的信道容量是:子信道上能可靠传输的信息速率的上限。
作为一个实施例,所述第一比特块中的部分比特和所述第二比特块中的比特无关。
作为一个实施例,所述第一比特块在所述第一节点的物理层上被生成。
作为一个实施例,所述第一节点是基站,所述第一节点根据调度结果生成所述第一比特块。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备),所述第一节点根据基站的调度生成所述第一比特块。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特等于所述第一比特块中的正整数个比特的和对2取模。
作为一个实施例,对于所述第二比特块中的任意比特,所述任意比特由所述第一比特块中的正整数个比特的和对2取模,再和扰码序列中的相应比特进行异或操作之后得到。
作为一个实施例,所述第二比特块和所述第一比特块之外的比特无关。
作为一个实施例,所述信道编码的输入包括{所述第一比特块中的所有比特,所述第二比特块中的所有比特,第三比特块中的所有比特}。所述第三比特块中的所有比特的值是预先设定的。
作为上述实施例的一个子实施例,所述第三比特块中的所有比特都是0。
作为上述实施例的一个子实施例,所述第三比特块中的比特和所述第一节点的标识有关。
作为上述实施例的一个子实施例,所述第一节点的标识被用于生成所述第三比特块中的比特。
作为上述实施例的一个子实施例,所述第三比特块中的比特和所述第一无线信号的目标接收者的标识有关。
作为上述实施例的一个子实施例,所述所述第一无线信号的目标接收者的标识被用于生成所述第三比特块中的比特。
作为一个实施例,所述第一无线信号在物理层控制信道(即不能被用于传输物理层数据的物理层信道)上传输。
作为一个实施例,所述第一无线信号在物理层数据信道(即能被用于承载物理层数据的物理层信道)上传输。
作为一个实施例,所述第一节点是UE。
作为上述实施例的一个子实施例,所述第一无线信号在PUCCH上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PUSCH上传输。
作为一个实施例,所述第一节点是基站。
作为上述实施例的一个子实施例,所述第一无线信号在PDSCH上传输。
作为上述实施例的一个子实施例,所述第一无线信号在PDCCH上传输。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过信道编码(ChannelCoding),扰码(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),宽带符号发生(Generation)之后的输出。
作为一个实施例,所述第一无线信号是所述所述信道编码的输出依次经过扰码,调制映射器,层映射器,转换预编码器(transform precoder,用于生成复数值信号),预编码,资源粒子映射器,宽带符号发生之后的输出。
作为一个实施例,所述宽带信号是OFDM符号。
作为一个实施例,所述宽带信号是FBMC符号。
实施例10
实施例10示例了网络架构的示意图,如附图10所示。
附图10说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构1000。LTE网络架构1000可称为EPS(Evolved Packet System,演进分组系统)1000。EPS 1000可包括一个或一个以上UE(User Equipment,用户设备)1001,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)1002,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)1010,HSS(Home Subscriber Server,归属签约用户服务器)1020和因特网服务1030。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图10所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR包括NR节点B(gNB)1003和其它gNB1004。gNB1003提供朝向UE1001的用户和控制平面协议终止。gNB1003可经由X2接口(例如,回程)连接到其它gNB1004。gNB1003也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB1003为UE1001提供对5G-CN/EPC1010的接入点。UE1001的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器 (例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE1001称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB1003通过S1接口连接到5G-CN/EPC1010。5G-CN/EPC1010包括MME 1011、其它MME1014、S-GW(Service Gateway,服务网关)1012以及P-GW(Packet Date Network Gateway,分组数据网络网关)1013。MME1011是处理UE1001与5G-CN/EPC1010之间的信令的控制节点。大体上,MME1011提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW1012传送,S-GW1012自身连接到P-GW1013。P-GW1013提供UE IP地址分配以及其它功能。P-GW1013连接到因特网服务1030。因特网服务1030包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE1001对应本申请中的所述第一节点,所述gNB1003对应本申请中的所述第二节点。
作为一个实施例,所述UE1001对应本申请中的所述第二节点,所述gNB1003对应本申请中的所述第一节点。
实施例11
实施例11示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图11所示。
附图11是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图11用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY1101。层2(L2层)1105在PHY1101之上,且负责通过PHY1101在UE与gNB之间的链路。在用户平面中,L2层1105包括MAC(Medium Access Control,媒体接入控制)子层1102、RLC(Radio Link Control,无线链路层控制协议)子层1103和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层1104,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层1105之上的若干协议层,包括终止于网络侧上的P-GW1013处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层1104提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层1104还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层1103提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层1102提供逻辑与输送信道之间的多路复用。MAC子层1102还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层1102还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层1101和L2层1105来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层1106。RRC子层1106负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图11中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图11中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一比特块生成于所述RRC子层1106。
作为一个实施例,本申请中的所述第一比特块生成于所述MAC子层1102。
作为一个实施例,本申请中的所述第一比特块生成于所述PHY1101。
作为一个实施例,本申请中的所述第二比特块生成于所述PHY1101。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY1101。
实施例12
实施例12示例了演进节点和UE的示意图,如附图12所示。
gNB1210包括控制器/处理器1275,存储器1276,接收处理器1270,发射处理器1216,信道编码器1277,信道译码器1278,发射器/接收器1218和天线1220。
UE1250包括控制器/处理器1259,存储器1260,数据源1267,发射处理器1268,接收处理器1256,信道编码器1257,信道译码器1258,发射器/接收器1254和天线1252。
在DL(Downlink,下行)中,在gNB处,来自核心网络的上层数据包被提供到控制器/处理器1275。控制器/处理器1275实施L2层的功能性。在DL中,控制器/处理器1275提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE1250的无线电资源进行分配。控制器/处理器1275还负责HARQ操作、丢失包的重新发射,和到UE1250的信令。发射处理器1216和信道编码器1277实施用于L1层(即,物理层)的各种信号处理功能。信道编码器1277实施编码和交错以促进UE1250处的前向错误校正(FEC)。发射处理器1216实施基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射,并对经编码和经调制后的符号进行空间预编码/波束赋型处理,生成一个或多个空间流。发射处理器1216随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)产生载运时域多载波符号流的物理信道。每一发射器1218把发射处理器1216提供的基带多载波符号流转化成射频流,随后提供到不同天线1220。
在DL(Downlink,下行)中,在UE1250处,每一接收器1254通过其相应天线1252接收信号。每一接收器1254恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器1256。接收处理器1256和信道译码器1258实施L1层的各种信号处理功能。接收处理器1256使用快速傅立叶变换(FFT)将基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器1256解复用,其中参考信号将被用于信道估计,物理层数据在接收处理器1256中经过多天线检测被恢复出以UE1250为目的地的空间流。每一空间流上的符号在接收处理器1256中被解调和恢复,并生成软决策。随后信道译码器1258解码和解交错所述软决策以恢复在物理信道上由gNB1210发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器1259。控制器/处理器1259实施L2层的功能。控制器/处理器可与存储程序代码和数据的存储器1260相关联。存储器1260可称为计算机可读媒体。在DL中,控制器/处理器1259提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器1259还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE1250处,使用数据源1267来将上层数据包提供到控制器/处理器1259。数据源1267表示L2层之上的所有协议层。类似于在DL中所描述gNB1210处的发送功能,控制器/处理器1259基于gNB1210的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器1259还负责HARQ操作、丢失包的重新发射,和到gNB1210的信令。信道编码器1257实施信道编码,编码后的数据经过发射处理器1268实施的调制以及多天线空间预编码/波束赋型处理,被调制成多载波/单载波符号流,再经由发射器1254提供到不同天线1252。每一发射器1254首先把发射处理器1268提供的基带符号流转化成射频符号流,再提供到天线1252。
在UL(Uplink,上行)中,gNB1210处的功能类似于在DL中所描述的UE1250处的接收功能。每一接收器1218通过其相应天线1220接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器1270。接收处理器1270和信道译码器1278共同实施 L1层的功能。控制器/处理器1275实施L2层功能。控制器/处理器1275可与存储程序代码和数据的存储器1276相关联。存储器1276可称为计算机可读媒体。在UL中,控制器/处理器1275提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE1250的上层数据包。来自控制器/处理器1275的上层数据包可提供到核心网络。控制器/处理器1275还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE1250包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE1250装置至少:确定本申请中的所述第一比特块;执行本申请中的所述信道编码;发送本申请中的所述第一无线信号。
作为一个实施例,所述UE1250包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定本申请中的所述第一比特块;执行本申请中的所述信道编码;发送本申请中的所述第一无线信号。
作为一个实施例,所述UE1250包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE1250装置至少:接收本申请中的所述第一无线信号;执行本申请中的所述信道译码;恢复本申请中的所述第一比特块。
作为一个实施例,所述UE1250包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一无线信号;执行本申请中的所述信道译码;恢复本申请中的所述第一比特块。
作为一个实施例,所述gNB1210包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB1210装置至少:接收本申请中的所述第一无线信号;执行本申请中的所述信道译码;恢复本申请中的所述第一比特块。
作为一个实施例,所述gNB1210包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一无线信号;执行本申请中的所述信道译码;恢复本申请中的所述第一比特块。
作为一个实施例,所述gNB1210包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB1210装置至少:确定本申请中的所述第一比特块;执行本申请中的所述信道编码;发送本申请中的所述第一无线信号。
作为一个实施例,所述gNB1210包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定本申请中的所述第一比特块;执行本申请中的所述信道编码;发送本申请中的所述第一无线信号。
作为一个实施例,所述UE1250对应本申请中的所述第一节点,所述gNB1210对应本申请中的所述第二节点。
作为一个实施例,所述UE1250对应本申请中的所述第二节点,所述gNB1210对应本申请中的所述第一节点。
作为一个实施例,所述控制器/处理器1259、存储器1260和数据源1267中至少之一被用于确定所述第一比特块;所述发射处理器1268、所述信道编码器1257和所述控制器/处理器1259中的至少之一被用于生成本申请中的所述第二比特块;所述接收处理器1270、所述信道译码器1278、所述控制器/处理器1275和存储器1276中的至少之一被用于恢复所述第一比特块。
作为一个实施例,所述发射处理器1268、所述信道编码器1257、所述控制器/处理器1259、发射器1254和天线1252中的至少之一被用于发送所述第一无线信号;所述接收处理 器1270、所述信道译码器1278、所述控制器/处理器1275、接收器1218和天线1220中的至少之一被用于接收所述第一无线信号。
作为一个实施例,所述信道编码器1257被用于执行本申请中的所述信道编码;所述信道译码器1278被用于执行本申请中的所述信道译码。
作为一个实施例,所述控制器/处理器1275和存储器1276中至少之一被用于确定所述第一比特块;所述发射处理器1216、所述信道编码器1277和所述控制器/处理器1275中的至少之一被用于生成本申请中的所述第二比特块;所述接收处理器1256、所述信道译码器1258、所述控制器/处理器1259、存储器1260和数据源1267中的至少之一被用于恢复所述第一比特块。
作为一个实施例,所述发射处理器1216、所述信道编码器1277、所述控制器/处理器1275、发射器1218和天线1220中的至少之一被用于发送所述第一无线信号;所述接收处理器1256、所述信道译码器1258、所述控制器/处理器1259、接收器1254和天线1252中的至少之一被用于接收所述第一无线信号。
作为一个实施例,所述信道编码器1277被用于执行本申请中的所述信道编码;所述信道译码器1258被用于执行本申请中的所述信道译码。
作为一个实施例,实施例7中的所述第一处理模块201包括{发射处理器1268,信道编码器1257,控制器/处理器1259,存储器1260,数据源1267}中的至少之一。
作为一个实施例,实施例7中的所述第二处理模块202包括信道编码器1257。
作为一个实施例,实施例7中的所述第一发送机模块203包括{天线1252,发射器1254,发射处理器1268,信道编码器1257,控制器/处理器1259,存储器1260,数据源1267}中的至少之一。
作为一个实施例,实施例7中的所述第一处理模块201包括{发射处理器1216,信道编码器1277,控制器/处理器1275,存储器1276}中的至少之一。
作为一个实施例,实施例7中的所述第二处理模块202包括信道编码器1277。
作为一个实施例,实施例7中的所述第一发送机模块203包括{天线1220,发射器1218,发射处理器1216,信道编码器1277,控制器/处理器1275,存储器1276}中的至少之一。
作为一个实施例,实施例8中的所述第一接收机模块301包括{天线1220,接收器1218,接收处理器1270,信道译码器1278,控制器/处理器1275,存储器1276}中的至少之一。
作为一个实施例,实施例8中的所述第三处理模块302包括信道译码器1278。
作为一个实施例,实施例8中的所述第四处理模块303包括{接收处理器1270,信道译码器1278,控制器/处理器1275,存储器1276}中的至少之一。
作为一个实施例,实施例8中的所述第一接收机模块301包括{天线1252,接收器1254,接收处理器1256,信道译码器1258,控制器/处理器1259,存储器1260,数据源1267}中的至少之一。
作为一个实施例,实施例8中的所述第三处理模块302包括信道译码器1258。
作为一个实施例,实施例8中的所述第四处理模块303包括{接收处理器1256,信道译码器1258,控制器/处理器1259,存储器1260,数据源1267}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、UE或者终端包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终 端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 被用于无线通信的第一节点中的方法,其中,包括:
    确定第一比特块;
    执行信道编码;
    发送第一无线信号;
    其中,所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;所述信道编码基于极化码;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
  3. 根据权利要求1或2所述的方法,其特征在于,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
  4. 根据权利要求1或2所述的方法,其特征在于,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,所述第一节点是基站,所述第一比特块包括下行控制信息;或者所述第一节点是UE,所述第一比特块包括上行控制信息。
  9. 被用于无线通信的第二节点中的方法,其中,包括:
    接收第一无线信号;
    执行信道译码;
    恢复第一比特块;
    其中,所述信道译码对应的信道编码是基于极化码;所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特, 对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述所述第二比特块中的和所述目标第一类比特相关的比特的数量越多,所述目标第一类比特所占用的子信道对应的信道容量越低。
  11. 根据权利要求9或10所述的方法,其特征在于,所述K个第一类比特集合中的比特的数量的和越小,所述目标第一类比特所占用的子信道对应的信道容量越低。
  12. 根据权利要求9或10所述的方法,其特征在于,所述K个第一类比特集合中的比特的数量的倒数和越大,所述目标第一类比特所占用的子信道对应的信道容量越低。
  13. 根据权利要求9至12中任一权利要求所述的方法,其特征在于,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块的CRC比特块被用于生成所述第二比特子块。
  14. 根据权利要求9至13中任一权利要求所述的方法,其特征在于,第一比特集合中的任意一个比特所映射的子信道的信道容量大于第二比特集合中的任意一个比特所映射的子信道的信道容量;所述第一比特块中的比特属于所述第一比特集合,所述第二比特块中的比特属于所述第二比特集合;或者一部分所述第一比特块中的比特属于所述第一比特集合,{另一部分所述第一比特块中的比特,所述第二比特块中的比特}属于所述第二比特集合。
  15. 根据权利要求13或14所述的方法,其特征在于,所述信道译码被用于确定P个参考值,所述P个参考值和目标比特组中的比特一一对应,所述目标比特组由所述第一比特块中的比特和所述第二比特块中的比特组成,所述第一比特块中的比特的数量和所述第二比特块中的比特的数量的和是所述P;所述P个参考值中和所述第二比特块中的比特所对应的参考值在所述信道译码中被用于剪枝;所述P个参考值中和所述第二比特子块中的比特所对应的参考值被用于确定所述第一比特块是否被正确接收;所述P是大于1的正整数。
  16. 根据权利要求9至15中任一权利要求所述的方法,其特征在于,所述第一比特块的CRC比特块被用于生成所述第二比特块。
  17. 根据权利要求9至16中任一权利要求所述的方法,其特征在于,所述第二节点是UE,所述第一比特块包括下行控制信息;或者所述第二节点是基站,所述第一比特块包括上行控制信息。
  18. 被用于无线通信的第一节点中的设备,其中,包括:
    第一处理模块,生成第一比特块;
    第二处理模块,执行信道编码;
    第一发送机模块,发送第一无线信号;
    其中,所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;所述信道编码基于极化码;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
  19. 被用于无线通信的第二节点中的设备,其中,包括:
    第一接收机模块,接收第一无线信号;
    第三处理模块,执行信道译码;
    第四处理模块,恢复第一比特块;
    其中,所述信道译码对应的信道编码是基于极化码;所述第一比特块中的比特被用于生成第二比特块中的比特;所述第一比特块中的比特和所述第二比特块中的比特都被用于所述信道编码的输入,所述信道编码的输出被用于生成所述第一无线信号;对于所述信道编码,目标第一类比特占用的子信道和{所述第二比特块中的和所述目标第一类比特相关的比特的数量,K个第一类比特集合中的比特的数量}中至少之一相关联;所述目标第一类比特属于所述第一比特块,所述K个第一类比特集合和K个第二类比特一一对应,所述K个第二类比特是所述第二比特块中的所有和所述目标第一类比特相关的比特,对于所述K个第二类比特中的任意一个给定第二类比特,所述第一比特块中所有被用于生成所述给定第二类比特的比特组成所述K个第一类比特集合中和所述给定第二类比特对应的第一类比特集合;所述K是正整数。
PCT/CN2018/071701 2017-01-09 2018-01-08 一种被用于信道编码的用户设备、基站中的方法和设备 WO2018127161A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019537266A JP7012292B2 (ja) 2017-01-09 2018-01-08 チャネル符号化に用いるユーザー装置、基地局における方法及び装置
KR1020217008487A KR102373298B1 (ko) 2017-01-09 2018-01-08 채널 코딩을 위해 사용된 ue와 기지국에서의 방법 및 디바이스
KR1020197023539A KR102233954B1 (ko) 2017-01-09 2018-01-08 채널 코딩을 위해 사용된 ue와 기지국에서의 방법 및 디바이스
EP18736493.0A EP3567765A4 (en) 2017-01-09 2018-01-08 METHOD AND DEVICE FOR USE IN A USER DEVICE AND BASE STATION FOR CHANNEL CODING
US16/505,735 US11283546B2 (en) 2017-01-09 2019-07-09 Method and device in UE and base station used for channel coding
JP2022001127A JP7165954B2 (ja) 2017-01-09 2022-01-06 チャネル符号化に用いるユーザー装置、基地局における方法及び装置
US17/586,816 US11711164B2 (en) 2017-01-09 2022-01-28 Method and device in UE and base station used for channel coding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710012223 2017-01-09
CN201710012223.3 2017-01-09
CN201710045440.2A CN108289009B (zh) 2017-01-09 2017-01-22 一种被用于信道编码的ue、基站中的方法和设备
CN201710045440.2 2017-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/505,735 Continuation US11283546B2 (en) 2017-01-09 2019-07-09 Method and device in UE and base station used for channel coding

Publications (1)

Publication Number Publication Date
WO2018127161A1 true WO2018127161A1 (zh) 2018-07-12

Family

ID=62831323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071701 WO2018127161A1 (zh) 2017-01-09 2018-01-08 一种被用于信道编码的用户设备、基站中的方法和设备

Country Status (6)

Country Link
US (2) US11283546B2 (zh)
EP (1) EP3567765A4 (zh)
JP (2) JP7012292B2 (zh)
KR (2) KR102373298B1 (zh)
CN (2) CN110519018B (zh)
WO (1) WO2018127161A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039546B (zh) * 2016-12-28 2020-12-29 上海朗帛通信技术有限公司 一种用于信道编码的ue、基站中的方法和设备
CN110611546B (zh) * 2018-06-14 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11888674B2 (en) * 2020-02-14 2024-01-30 Qualcomm Incorporated 16-quadrature amplitude modulation (16-QAM) downlink configuration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868482A (zh) * 2011-07-08 2013-01-09 中兴通讯股份有限公司 多级编码调制方法及装置
CN103427943A (zh) * 2012-05-25 2013-12-04 华为技术有限公司 用于高阶调制的编码调制及解调方法以及装置
WO2014000532A1 (zh) * 2012-06-29 2014-01-03 华为技术有限公司 编码方法和设备
WO2014075419A1 (zh) * 2012-11-16 2014-05-22 华为技术有限公司 数据处理的方法和装置
CN104079370A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 信道编译码方法及装置
US20150194987A1 (en) * 2012-09-24 2015-07-09 Huawei Technologies Co.,Ltd. Method and apparatus for generating hybrid polar code
CN104980251A (zh) * 2014-04-14 2015-10-14 上海数字电视国家工程研究中心有限公司 编码调制方法及解码解调方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290073B2 (en) * 2009-10-08 2012-10-16 Intel Corporation Device, system and method of communicating data over wireless communication symbols with check code
CN102404072B (zh) * 2010-09-08 2013-03-20 华为技术有限公司 一种信息比特发送方法、装置和系统
US9503126B2 (en) * 2012-07-11 2016-11-22 The Regents Of The University Of California ECC polar coding and list decoding methods and codecs
US9577673B2 (en) * 2012-11-08 2017-02-21 Micron Technology, Inc. Error correction methods and apparatuses using first and second decoders
CN109361402B (zh) * 2013-05-31 2019-09-20 华为技术有限公司 编码方法及编码设备
CN105075163B (zh) * 2013-11-20 2019-02-05 华为技术有限公司 极化码的处理方法和设备
EP3113398B1 (en) * 2014-03-19 2020-04-22 Huawei Technologies Co., Ltd. Polar code rate-matching method and rate-matching device
CN106160937B (zh) * 2015-04-15 2019-01-04 中兴通讯股份有限公司 一种实现码块分割的方法及装置
CN106230555B (zh) * 2016-07-29 2019-02-19 西安电子科技大学 极化码的分段循环冗余校验方法
CN106209113A (zh) * 2016-07-29 2016-12-07 中国石油大学(华东) 一种极化码的编解码方法
CN109039546B (zh) * 2016-12-28 2020-12-29 上海朗帛通信技术有限公司 一种用于信道编码的ue、基站中的方法和设备
CN111050399B (zh) * 2018-10-12 2023-08-18 迪朵无线创新有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11665648B2 (en) * 2019-02-25 2023-05-30 Shanghai Langbo Communication Technology Company Limiied Method and device in a node used for wireless communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868482A (zh) * 2011-07-08 2013-01-09 中兴通讯股份有限公司 多级编码调制方法及装置
CN103427943A (zh) * 2012-05-25 2013-12-04 华为技术有限公司 用于高阶调制的编码调制及解调方法以及装置
WO2014000532A1 (zh) * 2012-06-29 2014-01-03 华为技术有限公司 编码方法和设备
US20150194987A1 (en) * 2012-09-24 2015-07-09 Huawei Technologies Co.,Ltd. Method and apparatus for generating hybrid polar code
WO2014075419A1 (zh) * 2012-11-16 2014-05-22 华为技术有限公司 数据处理的方法和装置
CN104079370A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 信道编译码方法及装置
CN104980251A (zh) * 2014-04-14 2015-10-14 上海数字电视国家工程研究中心有限公司 编码调制方法及解码解调方法

Also Published As

Publication number Publication date
JP7012292B2 (ja) 2022-01-28
KR102233954B1 (ko) 2021-03-29
EP3567765A1 (en) 2019-11-13
JP2020504567A (ja) 2020-02-06
JP7165954B2 (ja) 2022-11-07
CN108289009B (zh) 2019-12-24
EP3567765A4 (en) 2019-12-25
CN108289009A (zh) 2018-07-17
CN110519018B (zh) 2022-03-01
KR20210034128A (ko) 2021-03-29
JP2022046754A (ja) 2022-03-23
CN110519018A (zh) 2019-11-29
US20190334655A1 (en) 2019-10-31
KR102373298B1 (ko) 2022-03-10
US11711164B2 (en) 2023-07-25
US20220158761A1 (en) 2022-05-19
US11283546B2 (en) 2022-03-22
KR20190101471A (ko) 2019-08-30

Similar Documents

Publication Publication Date Title
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2018072615A1 (zh) 一种用于可变的校验比特数的ue、基站中的方法和装置
US11750215B2 (en) Method and device in UE and base station for channel coding
CN109495205B (zh) 一种被用于无线通信的用户、基站中的方法和设备
US11736120B2 (en) Method and device in UE and base station for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023539

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018736493

Country of ref document: EP