WO2023040920A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023040920A1
WO2023040920A1 PCT/CN2022/118878 CN2022118878W WO2023040920A1 WO 2023040920 A1 WO2023040920 A1 WO 2023040920A1 CN 2022118878 W CN2022118878 W CN 2022118878W WO 2023040920 A1 WO2023040920 A1 WO 2023040920A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time
candidate
frequency
subpool
Prior art date
Application number
PCT/CN2022/118878
Other languages
English (en)
French (fr)
Inventor
刘瑾
张浩翔
张晓博
Original Assignee
上海推络通信科技合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海推络通信科技合伙企业(有限合伙) filed Critical 上海推络通信科技合伙企业(有限合伙)
Priority to CN202280006913.7A priority Critical patent/CN116391435A/zh
Publication of WO2023040920A1 publication Critical patent/WO2023040920A1/zh

Links

Images

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a sidelink-related transmission scheme and device in wireless communication.
  • SL Segment, secondary link
  • Rel-16 Release-16, version 16
  • NR SL New Radio Sidelink, new air interface secondary link
  • V2X Vehicle-To-Everything, Internet of Vehicles
  • NR SL Rel-16 cannot fully support the business requirements and working scenarios identified by 3GPP for 5G V2X. Therefore 3GPP will study enhanced NR SL in Rel-17.
  • the present application discloses a resource allocation method, so as to effectively avoid resource conflicts between UEs sharing a resource pool. It should be noted that, if there is no conflict, the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily. Further, although the original intention of this application is for SL, this application can also be used for UL (Uplink, uplink). Further, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for V2X scenarios
  • this application is also applicable to communication scenarios between terminals and base stations, terminals and relays, and relays and base stations, achieving similar technical effects in V2X scenarios.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling indicates a first resource pool, the first resource pool includes a plurality of time-frequency resource blocks, and the first resource pool includes a first resource subpool and a second resource subpool ;
  • the first resource subpool is orthogonal to the second resource subpool;
  • the candidate resource set includes a first candidate resource subset;
  • the first candidate resource subset includes the first resource At least one time-frequency resource block in the subpool, the number of time-frequency resource blocks in the first resource subpool included in the first candidate resource subset is equal to Q1, and Q1 is a positive integer; the Q1 is used for It is determined whether the set of candidate resources overlaps with the second resource subpool.
  • the problem to be solved in this application is: when UEs using different resource allocation schemes share a resource pool, non-aware UEs cannot avoid interference to adjacent UEs, and sensing UEs have to take the time-frequency resources to actively avoid interference, As a result, the transmission performance of the high-end perception UE is affected.
  • the method of this application is: for the sensing UE, in different resource areas of the shared resource pool, preferentially select the resource area that only allows the implementation of the perception-based resource determination method, and when the number of alternative resources is not enough, select from The resource sensing in the resource area based on partial sensing or random resource selection reduces the resource conflict of the sensing UE in the shared resource pool while ensuring a certain amount of available resources.
  • the advantage of the above method is that the aware UE has enough available resources, and it can also avoid resource conflict with the non-aware UE as much as possible.
  • the above method is characterized in that it includes:
  • the candidate resource set includes a second candidate resource subset
  • the second candidate resource subset includes at least one time-frequency resource block in the second resource subpool
  • the second candidate resource The number of time-frequency resource blocks in the second resource subpool included in the subset is equal to Q2, where Q2 is a positive integer.
  • the above method is characterized in that it includes:
  • any time-frequency resource block in the candidate resource set does not belong to the second resource subpool.
  • the above method is characterized in that the first resource pool includes K resource sub-pools, and the K resource sub-pools are orthogonal to each other, and K is a positive integer greater than 2;
  • the first resource subpool and the second resource subpool are respectively two resource subpools in the K resource subpools;
  • the third resource subpool is the K resource subpool different from the first resource subpool.
  • a subpool and a resource subpool of the second resource subpool; the Q1 and the Q2 are used to determine whether the candidate resource set overlaps with the third resource subpool.
  • the above method is characterized in that it includes:
  • the candidate resource set includes the third candidate resource subset
  • the third candidate resource subset includes at least one time-frequency resource block in the third resource subpool
  • the third candidate resource The number of time-frequency resource blocks in the third resource subpool included in the selected resource subset is equal to Q3, where Q3 is a positive integer.
  • the above-mentioned method is characterized in that the relationship between the number of time-frequency resource blocks included in the candidate resource set and the third value is used to determine whether to execute again in the first resource subpool The first resource determination method.
  • the above method is characterized in that it includes:
  • the above method is characterized in that the first node is a user equipment.
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a base station.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first resource pool includes multiple time-frequency resource blocks
  • the target time-frequency resource block is a time-frequency resource block in the first resource pool.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a base station.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives first signaling, where the first signaling indicates a first resource pool, where the first resource pool includes multiple time-frequency resource blocks, and where the first resource pool includes a first resource subpool and The second resource sub-pool;
  • a first processor performing a first resource determination method in at least the former of the first resource subpool and the second resource subpool to determine a set of candidate resources
  • the first transmitter sends a first signal on a target time-frequency resource block, where the target time-frequency resource block is a time-frequency resource block in the candidate resource set;
  • the first resource subpool is orthogonal to the second resource subpool;
  • the candidate resource set includes a first candidate resource subset;
  • the first candidate resource subset includes the first resource At least one time-frequency resource block in the subpool, the number of time-frequency resource blocks in the first resource subpool included in the first candidate resource subset is equal to Q1, and Q1 is a positive integer; the Q1 is used for It is determined whether the set of candidate resources overlaps with the second resource subpool.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second receiver receiving second signaling, where the second signaling indicates the first resource pool
  • a third receiver receiving the first signal on the target time-frequency resource block
  • the first resource pool includes multiple time-frequency resource blocks
  • the target time-frequency resource block is a time-frequency resource block in the first resource pool.
  • this application has the following advantages:
  • the problem to be solved in this application is: when UEs using different resource allocation schemes share resource pools, non-aware UEs cannot avoid interference to adjacent UEs, and sensing UEs have to take the time-frequency resources to actively avoid interference, resulting in high-end perception The transmission performance of the UE is affected;
  • the aware UE not only has enough available resources, but also can avoid resource conflict with the non-aware UE as much as possible.
  • a cycle-based partial perception resource allocation method will be introduced in the NRSL enhanced system.
  • 3GPP has agreed that the sensing cycle of cycle-based partial sensing is selected from the cycle set configured by high-layer signaling.
  • the periods in the period set may be configured with a larger period value, causing period-based partial sensing to monitor on very sparse resources to save power overhead.
  • the time interval between resources occupied by periodically sent SL data packets may be small, and sparse resource perception cannot provide reliable available resources for intensively sent SL data packets, resulting in a high probability of resource collision .
  • the present application discloses a resource allocation method based on periodical partial sensing, so as to achieve a balance between reliable resource sensing and power overhead. It should be noted that, if there is no conflict, the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily. Further, although the original intention of this application is for SL, this application can also be used for UL (Uplink, uplink). Further, although the original intention of this application is for single-carrier communication, this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for V2X scenarios
  • this application is also applicable to communication scenarios between terminals and base stations, terminals and relays, and relays and base stations, achieving similar technical effects in V2X scenarios.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first resource pool includes the X time-domain resource blocks in the time domain, and any two adjacent time-domain resource blocks in the X time-domain resource blocks Interval of the first monitoring cycle, X is a positive integer greater than 1;
  • the first resource pool includes a plurality of time-frequency resource blocks, the candidate resource set includes a plurality of time-frequency resource blocks, and the first resource pool includes the candidate resource set;
  • the candidate time-frequency resource block is a time-frequency resource block in the first resource pool, and the candidate time-frequency resource block is associated with at least one time-domain resource block in the X time-domain resource blocks; for the X time-domain resource blocks
  • the measurement result of the resource block is used to determine whether the candidate time-frequency resource block belongs to the candidate resource set;
  • the Y first-type signals correspond to a first priority, and the first priority is used to determine
  • a first coefficient, the first coefficient and the first resource reservation interval are jointly used to determine the first monitoring period.
  • the problem to be solved in this application is: according to SL business requirements, the time interval between the resources occupied by periodically sent SL data packets may be small, and sparse resource perception cannot be used for densely sent SL data packets. Packages provide reliable available resources, resulting in a higher probability of resource collisions. However, directly introducing the sending period of SL data packets into the period-based partial sensing process will increase the power consumption, and if the sending periods of SL data packets of different users are inconsistent, it is easy to increase the probability of collision.
  • the method of the present application is: according to the priority of the SL data packet, flexibly adjust the sensing cycle of the cycle-based partial sensing resource allocation method; when the priority of the SL data packet is higher, the sensing cycle is adjusted to be denser ; When the priority of the SL data packet is low, the perception period is adjusted to be more sparse;
  • the above method has the advantage of effectively balancing reliable resource awareness and power overhead.
  • the above method is characterized in that it includes:
  • the first parameter group includes the first resource pool, the first priority and the first resource reservation interval;
  • obtaining the first parameter group on the reference time domain resource block is used to trigger the execution of the monitoring on the X time domain resource blocks respectively;
  • the reference time domain resource block belongs to the first A time-domain resource occupied by a time-frequency resource block in the resource pool;
  • the reference time-domain resource block is later than any time-domain resource block in the X time-domain resource blocks.
  • the above method is characterized in that it includes:
  • the first parameter group including the first resource pool, the first priority and the first resource reservation interval;
  • providing the first parameter group on the reference time domain resource block is used to trigger the first receiver to perform the monitoring on the X time domain resource blocks respectively;
  • the reference time domain resource The block belongs to a time-domain resource occupied by a time-frequency resource block in the first resource pool; the reference time-domain resource block is later than any time-domain resource block in the X time-domain resource blocks.
  • the above method is characterized in that the product of the first coefficient and the first resource reservation interval is equal to the first monitoring period.
  • the above method is characterized in that the first priority is equal to a first integer, and the first coefficient is proportional to the first integer.
  • the above method is characterized in that the first resource pool includes Y1 time-frequency resource blocks, and the candidate time-frequency resource block is a time-frequency resource in the Y1 time-frequency resource blocks block, the interval in the time domain between any two adjacent time-frequency resource blocks in the Y1 time-frequency resource blocks is equal to the first resource reservation interval, and any of the Y1 time-frequency resource blocks
  • a time-frequency resource block is associated with at least one time-frequency resource block in the X time-domain resource blocks, Y1 is a positive integer greater than 1; the measurement results for the X time-domain resource blocks are used to determine the Whether any time-frequency resource block among the Y1 time-frequency resource blocks belongs to the candidate resource set.
  • the above method is characterized in that it includes:
  • M time-domain resource blocks respectively, where the M time-domain resource blocks belong to the time-domain resources occupied by the first resource pool, and any two of the M time-domain resource blocks are adjacent
  • the second monitoring period is spaced between the time-domain resource blocks, and M is a positive integer greater than 1;
  • the second monitoring period is a period in the resource reservation period list, the resource reservation period list is configured by higher layer signaling, and the first monitoring period and any period in the resource reservation period list all different.
  • the above method is characterized in that it includes:
  • the set of candidate resources is reported to higher layers.
  • the above method is characterized in that it includes:
  • the above method is characterized in that the first node is a user equipment.
  • the above method is characterized in that the first node is a relay node.
  • the above method is characterized in that the first node is a base station.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first resource pool includes the Y time-frequency resource blocks in the time domain; the Y first-type signals carry a first resource reservation interval; any two adjacent time-frequency resource blocks in the Y time-frequency resource blocks The interval between the time-frequency resource blocks in the time domain is not less than the first resource reservation interval.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • the above method is characterized in that the second node is a base station.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver performs monitoring on X time-domain resource blocks, the first resource pool includes the X time-domain resource blocks in the time domain, and any two adjacent time-domain resource blocks in the X time-domain resource blocks
  • the first monitoring period is spaced between domain resource blocks, and X is a positive integer greater than 1;
  • the first transmitter transmits Y first-type signals on Y time-frequency resource blocks respectively, and the Y time-frequency resource blocks all belong to the candidate resource set, and any two of the Y time-frequency resource blocks
  • the interval between adjacent time-frequency resource blocks in the time domain is not less than the first resource reservation interval, and Y is a positive integer greater than 1;
  • the first resource pool includes a plurality of time-frequency resource blocks, the candidate resource set includes a plurality of time-frequency resource blocks, and the first resource pool includes the candidate resource set;
  • the candidate time-frequency resource block is a time-frequency resource block in the first resource pool, and the candidate time-frequency resource block is associated with at least one time-domain resource block in the X time-domain resource blocks; for the X time-domain resource blocks
  • the measurement result of the resource block is used to determine whether the candidate time-frequency resource block belongs to the candidate resource set;
  • the Y first-type signals correspond to a first priority, and the first priority is used to determine
  • a first coefficient, the first coefficient and the first resource reservation interval are jointly used to determine the first monitoring period.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second receiver receives Y first-type signals on Y time-frequency resource blocks respectively, where Y is a positive integer greater than 1;
  • the first resource pool includes the Y time-frequency resource blocks in the time domain; the Y first-type signals carry a first resource reservation interval; any two adjacent time-frequency resource blocks in the Y time-frequency resource blocks The interval between the time-frequency resource blocks in the time domain is not less than the first resource reservation interval.
  • this application has the following advantages:
  • the problem to be solved in this application is: according to SL business requirements, the time interval between the resources occupied by periodically sent SL data packets may be small, and sparse resource perception cannot provide reliable information for intensively sent SL data packets available resources, leading to a higher probability of resource collision.
  • directly introducing the transmission period of SL data packets into the period-based partial sensing process will increase the power consumption, and if the transmission periods of SL data packets of different users are inconsistent, it is easy to increase the probability of collision;
  • the sensing period of the period-based partial sensing resource allocation method is flexibly adjusted; when the priority of the SL data packet is higher, the sensing period is adjusted to be denser; when the SL data packet If the priority is lower, the perception cycle is adjusted to be more sparse;
  • FIG. 1A shows a processing flowchart of a first node according to an embodiment of the present application
  • FIG. 1B shows a processing flowchart of a first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5A shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 5B shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • Figure 6A shows a first resource pool, a first resource subpool and a second resource subpool and a set of candidate resources, a first candidate resource subset and a second candidate resource subset according to an embodiment of the present application
  • FIG. 6B shows a schematic diagram of the relationship between the first monitoring period and the first resource reservation interval according to an embodiment of the present application
  • FIG. 7A shows a flow chart of determining whether to perform the first resource determination method in the second resource subpool according to an embodiment of the present application
  • FIG. 7B shows a schematic diagram of the relationship between the first monitoring period and the first resource reservation interval according to another embodiment of the present application.
  • FIG. 8A shows a flow chart of determining whether to perform the first resource determination method in the third resource subpool according to an embodiment of the present application
  • Fig. 8B shows a schematic diagram of the relationship between the second monitoring period and the first monitoring period according to an embodiment of the present application
  • FIG. 9A shows a flow chart of determining whether to perform the first resource determination method again in the first resource subpool according to an embodiment of the present application
  • FIG. 9B shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application.
  • FIG. 10A shows a schematic diagram of performing a first resource determination method according to an embodiment of the present application
  • FIG. 10B shows a structural block diagram of a processing device used in a first node according to another embodiment of the present application.
  • FIG. 11A shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG. 11B shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Fig. 12 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1A illustrates a processing flowchart of a first node in an embodiment of the present application, as shown in FIG. 1A .
  • each box represents a step.
  • the first node in this application first executes step 101A, receives the first signaling, and the first signaling indicates the first resource pool; then executes step 102A. Execute the first resource determination method in at least the former of the resource subpools to determine the candidate resource set; finally perform step 103A, and send the first signal on the target time-frequency resource block, the target time-frequency resource block is the candidate resource block A time-frequency resource block in a resource set; the first resource pool includes multiple time-frequency resource blocks; the first resource pool includes the first resource subpool and the second resource subpool; the second resource pool A resource subpool is orthogonal to the second resource subpool; the candidate resource set includes at least one time-frequency resource block in the first resource pool; the candidate resource set includes a first candidate resource subset; the first candidate resource subset includes at least one time-frequency resource block in the first resource subpool, and the time-frequency resource block in the first resource subpool included in the first candidate resource subset
  • the number of frequency resource blocks is equal to Q1, and Q1
  • the first resource pool includes all or part of resources of a Sidelink Resource Pool (Sidelink Resource Pool).
  • Sidelink Resource Pool Sidelink Resource Pool
  • the first resource pool includes multiple time-frequency resource blocks.
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Control Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSFCH (Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSCCH and a PSSCH.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies multiple REs (Resource Elements, resource units).
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols (Symbol(s)) in the time domain
  • the first resource Any time-frequency resource block in the plurality of time-frequency resource blocks included in the pool occupies a positive integer number of subcarriers (Subcarrier(s)) in the frequency domain.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any one of the time-frequency resource blocks occupies a positive integer number of physical resource blocks (Physical Resource Block(s), PRB(s)) in the frequency domain.
  • Physical Resource Block(s), PRB(s) Physical Resource Block
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any time-frequency resource block in the time-frequency resource blocks occupies a positive integer number of subchannels (Subchannel(s)) in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool occupies a positive integer number of time slots (Slot(s)) in the time domain, and the first resource pool Any one of the multiple time-frequency resource blocks included in the frequency domain occupies a positive integer number of Subcarrier(s).
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of Slot(s) in the time domain, and the time-frequency resource blocks included in the first resource pool Any one of the multiple time-frequency resource blocks occupies a positive integer number of PRB(s) in the frequency domain.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies a positive integer number of Slot(s) in the time domain, and the time-frequency resource blocks included in the first resource pool Any one of the multiple time-frequency resource blocks occupies a positive integer number of Subchannel(s) in the frequency domain.
  • the time-domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Slot(s).
  • the time-domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Symbol(s).
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Subchannel(s).
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of PRB(s).
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is a positive integer number of Subcarrier(s).
  • the first resource pool includes multiple time-domain resource blocks.
  • the first resource pool includes multiple time-domain resource blocks, and the multiple time-frequency resource blocks included in the first resource pool belong to all time-domain resource blocks included in the first resource pool.
  • the plurality of time-domain resource blocks are examples of time-domain resource blocks.
  • the first resource pool includes multiple time-domain resource blocks, and any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool is the first time-frequency resource block in the time domain.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies a positive integer number of Slot(s).
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool occupies a positive integer number of Symbol(s).
  • the first resource pool includes multiple frequency domain resource blocks.
  • the first resource pool includes multiple frequency-domain resource blocks, and the multiple time-frequency resource blocks included in the first resource pool belong to all the resource blocks included in the first resource pool in the frequency domain.
  • the plurality of frequency domain resource blocks are configured to be used to generate the first resource pool.
  • the first resource pool includes a plurality of frequency domain resource blocks, and any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool is the first resource block in the frequency domain.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of Subcarrier(s).
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of PRB(s).
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool occupies a positive integer number of Subchannel(s).
  • the first resource pool includes the first resource subpool and the second resource subpool.
  • the first resource pool includes K resource subpools, and the first resource subpool and the second resource subpool are respectively two resource subpools in the K resource subpools.
  • the first resource subpool includes multiple time-frequency resource blocks.
  • the second resource subpool includes multiple time-frequency resource blocks.
  • the multiple time-frequency resource blocks included in the first resource subpool belong to the first resource pool.
  • the multiple time-frequency resource blocks included in the second resource subpool belong to the first resource pool.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource subpool is one of the multiple time-frequency resource blocks included in the first resource pool. frequency resource block.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the second resource subpool is one of the plurality of time-frequency resource blocks included in the first resource pool. frequency resource block.
  • the first resource subpool includes at least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool.
  • the second resource subpool includes at least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool.
  • the first resource subpool and the second resource subpool are orthogonal.
  • the first resource subpool and the second resource subpool are orthogonal in the frequency domain.
  • the first resource subpool and the second resource subpool are orthogonal in the time domain.
  • the first resource subpool and the second resource subpool are orthogonal in the frequency domain, and the first resource subpool and the second resource subpool overlap in the time domain.
  • the first resource subpool and the second resource subpool are orthogonal in the time domain, and the first resource subpool and the second resource subpool overlap in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource subpool does not belong to the second resource subpool.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource subpool is different from the multiple time-frequency resource blocks included in the second resource subpool.
  • the time domain resources occupied by the first resource subpool are the same as the time domain resources occupied by the second resource subpool, and the frequency domain resources occupied by the first resource subpool are the same as the time domain resources occupied by the second resource subpool. Frequency domain resources occupied by the second resource subpools are different.
  • the time-domain resources occupied by one time-frequency resource block in the first resource subpool are different from the time-domain resources occupied by one time-frequency resource block in the second resource subpool, the A frequency domain resource occupied by a time-frequency resource block in the first resource subpool is the same as a frequency domain resource occupied by a time-frequency resource block in the second resource subpool.
  • the multi-carrier symbols in this application are SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • the multi-carrier symbols in this application are FDMA (Frequency Division Multiple Access, Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is an FBMC (Filter Bank Multi-Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an IFDMA (Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access
  • the first signaling includes all or part of higher layer signaling (Higher Layer Signaling).
  • the first signaling includes all or part of one RRC (Radio Resource Control, radio resource control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling includes all or part of a MAC (Multimedia Access Control, multimedia access control) layer signaling.
  • MAC Multimedia Access Control, multimedia access control
  • the first signaling includes one or more fields in a PHY (Physical Layer, physical layer) layer signaling.
  • PHY Physical Layer, physical layer
  • the first signaling includes one or more fields in an SCI (Sidelink Control Information, sidelink control information).
  • SCI Servicelink Control Information, sidelink control information
  • SCI refers to Section 8.3 and Section 8.4 of 3GPP TS38.212.
  • the first signaling includes one or more fields in a DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the channels occupied by the first signaling include at least one of PSCCH and PSSCH.
  • the first signaling directly indicates the first resource pool.
  • the first signaling indirectly indicates the first resource pool.
  • the first signaling indicates the first resource pool and the first priority.
  • the first signaling indicates the first resource pool and a remaining packet delay budget (the remaining Packet Delay Budget, the remaining PDB).
  • the first signaling indicates the first resource pool, the first priority and the remaining data packet delay budget.
  • the first signaling indicates time domain resources occupied by the first resource pool.
  • the first signaling indicates frequency domain resources occupied by the first resource pool.
  • the first signaling includes multiple domains, and the first resource pool is at least one domain in the multiple domains included in the first signaling.
  • the first signaling includes multiple fields, the time domain resources occupied by the first resource pool, the frequency domain resources occupied by the first resource pool, the first priority and the The remaining packet delay budgets are respectively at least four fields in the plurality of fields included in the first signaling.
  • the first priority is the priority of the first signal in this application.
  • the first priority is the L1 (Layer 1, layer 1) priority of the first signal in this application.
  • the delay budget of the remaining data packets is the delay budget of the remaining data packets of the first signal in this application.
  • the first resource pool includes the candidate resource set.
  • the candidate resource set belongs to the first resource pool.
  • the candidate resource set includes at least one time-frequency resource block in the first resource pool.
  • the candidate resource set includes multiple time-frequency resource blocks.
  • the plurality of time-frequency resource blocks included in the candidate resource set all belong to the first resource pool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is a time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool resource blocks.
  • the candidate resource set includes at least one time-domain resource block in the first resource pool.
  • the candidate resource set includes multiple time-domain resource blocks.
  • the plurality of time-domain resource blocks included in the candidate resource set all belong to the first resource pool.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the candidate resource set is a time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool resource blocks.
  • the candidate resource set includes at least one frequency domain resource block in the first resource pool.
  • the candidate resource set includes multiple frequency domain resource blocks.
  • the plurality of frequency domain resource blocks included in the candidate resource set all belong to the first resource pool.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the candidate resource set is one frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool. Domain resource block.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is an available resource for transmitting data.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is an available resource for transmitting SL.
  • the set of candidate resources includes the first subset of candidate resources.
  • the first candidate resource subset belongs to the candidate resource set.
  • the candidate resource set includes at least one candidate resource subset
  • the first candidate resource subset is one of the at least one candidate resource subset included in the candidate resource set .
  • the first candidate resource subset includes at least one time-frequency resource block.
  • the first candidate resource subset includes multiple time-frequency resource blocks.
  • one time-frequency resource block in the at least one time-frequency resource block included in the first candidate resource subset is a time-frequency resource block in the candidate resource set.
  • the first candidate resource subset includes multiple time-frequency resource blocks, and any time-frequency resource block in the first candidate resource subset belongs to the candidate resource set.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first candidate resource subset is one of the plurality of time-frequency resource blocks included in the candidate resource set A time-frequency resource block.
  • the set of candidate resources only includes the first subset of candidate resources.
  • the first subset of candidate resources is the same as the set of candidate resources.
  • any time-frequency resource block in the candidate resource set is a time-frequency resource block in the first candidate resource subset.
  • the first resource subpool includes the first candidate resource subset.
  • the first candidate resource subset belongs to the first resource subpool.
  • one time-frequency resource block in the at least one time-frequency resource block included in the first candidate resource subset is a time-frequency resource block in the first resource subpool.
  • the first candidate resource subset includes multiple time-frequency resource blocks, and any time-frequency resource block in the first candidate resource subset belongs to the first resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first candidate resource subset is one of the plurality of time-frequency resource blocks included in the first resource subpool A time-frequency resource block of .
  • the first candidate resource subset includes at least one time-frequency resource block in the first resource subpool.
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource subpool belongs to the first candidate resource subset.
  • At least one time-frequency resource block of the plurality of time-frequency resource blocks included in the first resource subpool is the at least one time-frequency resource block included in the first candidate resource subset A time-frequency resource block in .
  • the number of time-frequency resource blocks in the first resource subpool included in the first candidate resource subset is equal to Q1, where Q1 is a positive integer.
  • the number of all time-frequency resource blocks included in the first candidate resource subset is equal to Q1, where Q1 is a positive integer.
  • the number of all time-frequency resource blocks included in the first candidate resource subset is equal to Q1, and all the time-frequency resource blocks included in the first candidate resource subset belong to the first resource sub-set Pool, Q1 is a positive integer.
  • the first candidate resource subset includes Q1 time-frequency resource blocks, and the Q1 time-frequency resource blocks included in the first candidate resource subset all belong to the first resource subpool , Q1 is a positive integer.
  • the first candidate resource subset includes Q1 time-frequency resource blocks, and any time-frequency resource block in the Q1 time-frequency resource blocks included in the first candidate resource subset is the One time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource subpool, Q1 is a positive integer.
  • the first candidate resource subset is determined by the first node performing the first resource determination manner in the first resource subpool.
  • the first node executes the first resource determination manner in the first resource subpool to determine the first candidate resource subset.
  • the first node executes the first resource determination method in the first resource subpool to determine the candidate resource set, and the candidate resource set includes the first candidate resource A subset, the first candidate resource subset includes at least one time-frequency resource block in the first resource subpool.
  • the candidate resource set includes the target time-frequency resource block.
  • the target time-frequency resource block is a time-frequency resource block in the multiple time-frequency resource blocks included in the candidate resource set.
  • the target time-frequency resource block is randomly selected from the multiple time-frequency resource blocks included in the candidate resource set.
  • the target time-frequency resource block is randomly selected from the plurality of time-frequency resource blocks included in the candidate resource set with a medium probability.
  • the first signal includes a baseband signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a wireless signal.
  • the first signal is transmitted on the PSCCH.
  • the first signal is transmitted on the PSSCH.
  • the first signal is transmitted on the PSCCH and the PSSCH.
  • the first signal includes all or part of a higher layer signaling.
  • the first signal includes the first bit block, and the first bit block includes at least one bit.
  • the first signal carries the first bit block, and the first bit block includes at least one bit.
  • the first bit block is used to generate the first signal, and the first bit block includes at least one bit.
  • the first bit block in the first signal is transmitted on a PSSCH.
  • the first bit block in the first signal comes from SL-SCH (Sidelink Shared Channel, sidelink shared channel).
  • the first bit block includes a positive integer number of bits, and all or some of the positive integer number of bits included in the first bit block are used to generate the first signal.
  • the first bit block includes 1 CW (Codeword, codeword).
  • the first bit block includes 1 CB (Code Block, coding block).
  • the first bit block includes 1 CBG (Code Block Group, coding block group).
  • the first bit block includes 1 TB (Transport Block, transport block).
  • all or part of the bits of the first bit block undergo transmission block-level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) attachment (Attachment), code block segmentation (Code Block Segmentation), code block Level CRC attachment, channel coding (Channel Coding), rate matching (Rate Matching), code block concatenation (Code Block Concatenation), scrambling (scrambling), modulation (Modulation), layer mapping (Layer Mapping), antenna port mapping (Antenna Port Mapping), mapped to physical resource blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first signal.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the first signal is that the first bit block sequentially passes through a modulation mapper (Modulation Mapper), a layer mapper (Layer Mapper), a precoding (Precoding), and a resource element mapper (Resource Element Mapper) , the output after multi-carrier symbol generation (Generation).
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding Precoding
  • Resource Element Mapper resource element mapper
  • the channel coding is based on polar codes.
  • the channel coding is based on an LDPC (Low-density Parity-Check, low-density parity check) code.
  • LDPC Low-density Parity-Check, low-density parity check
  • the first signal includes first sub-signaling and the first bit block.
  • the first sub-signaling in the first signal is used to schedule the first bit block in the first signal.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first signal.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first signal, and the time-frequency resource occupied by the first signal belongs to the target time-frequency resource piece.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first signal, and the time-frequency resource occupied by the first signal is the target time-frequency resource piece.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first bit block in the first signal, and the first sub-signaling in the first signal
  • the time-frequency resource occupied by a bit block belongs to the target time-frequency resource block.
  • the first sub-signaling in the first signal indicates the target time-frequency resource block.
  • the first sub-signaling in the first signal indicates a modulation and coding scheme (Modulation and Coding Scheme, MCS) experienced by the first bit block.
  • MCS Modulation and Coding Scheme
  • the first sub-signaling in the first signal indicates a demodulation reference signal (Demodulation Reference Signal, DMRS) used by the first signal.
  • DMRS Demodulation Reference Signal
  • the first signal includes one or more fields.
  • the first signal includes one or more fields in one SCI.
  • the first signal includes a DCI.
  • the time-frequency resource occupied by the first signal belongs to the target time-frequency resource block.
  • the time-frequency resource occupied by the first signal is the target time-frequency resource block.
  • Embodiment 1B illustrates a processing flowchart of a first node in an embodiment of the present application, as shown in FIG. 1B .
  • each box represents a step.
  • the first node in this application first executes step 101B, and respectively performs monitoring on X time-domain resource blocks, the first resource pool includes the X time-domain resource blocks in the time domain, and the X The interval between any two adjacent time domain resource blocks in the time domain resource blocks is the first monitoring cycle, and X is a positive integer greater than 1; then execute step 102B, and send Yth time-frequency resource blocks on Y time-frequency resource blocks respectively A class of signals, the Y time-frequency resource blocks all belong to the candidate resource set, and the interval between any two adjacent time-frequency resource blocks in the Y time-frequency resource blocks in the time domain is not less than the first resource Reservation interval, Y is a positive integer greater than 1; the first resource pool includes multiple time-frequency resource blocks, the candidate resource set includes multiple time-frequency resource blocks, and the first resource pool includes the spare The selected resource set; the candidate time-frequency resource block is a time-frequency resource block in the first resource pool, and the candidate time-frequency resource block is associated with at
  • the first resource pool includes all or part of resources of a Sidelink Resource Pool (Sidelink Resource Pool).
  • Sidelink Resource Pool Sidelink Resource Pool
  • the first resource pool includes multiple time-frequency resource blocks.
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Control Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSFCH (Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a PSCCH and a PSSCH.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool occupies multiple REs (Resource Elements, resource units).
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a positive integer number of multi-carrier symbols (Symbol(s)) in the time domain
  • Any time-frequency resource block in the plurality of time-frequency resource blocks included in the pool includes a positive integer number of subcarriers (Subcarrier(s)) in the frequency domain.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool includes a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool Any one of the time-frequency resource blocks includes a positive integer number of physical resource blocks (Physical Resource Block(s), PRB(s)) in the frequency domain.
  • Physical Resource Block(s), PRB(s) Physical Resource Block
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the first resource pool includes a positive integer number of multi-carrier symbols in the time domain, and the multiple carrier symbols included in the first resource pool
  • Any time-frequency resource block in the time-frequency resource blocks includes a positive integer number of subchannels (Subchannel(s)) in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a positive integer number of time slots (Slot(s)) in the time domain, and the first resource pool Any one of the multiple time-frequency resource blocks included includes a positive integer number of Subcarrier(s) in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a positive integer number of Slot(s) in the time domain
  • the Any time-frequency resource block in the multiple time-frequency resource blocks includes a positive integer number of PRB(s) in the frequency domain.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool includes a positive integer number of Slot(s) in the time domain, and the Any one of the multiple time-frequency resource blocks includes a positive integer number of Subchannel(s) in the frequency domain.
  • the first resource pool includes multiple resource blocks in the time domain in the time domain.
  • the time-domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is the multiple time-frequency resource blocks included in the first resource pool in the time domain.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool in the time domain includes a positive integer number of Symbol(s).
  • any time-domain resource block of the plurality of time-domain resource blocks included in the first resource pool in the time domain includes a positive integer number of Slot(s).
  • the first resource pool includes multiple frequency domain resource blocks in the frequency domain.
  • the frequency domain resource occupied by any one of the multiple time-frequency resource blocks included in the first resource pool is the multiple time-frequency resource blocks included in the first resource pool in the frequency domain.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool includes a positive integer number of Subcarrier(s).
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool includes a positive integer number of PRB(s).
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool includes a positive integer number of Subchannel(s).
  • the multi-carrier symbols in this application are SC-FDMA (Single-Carrier Frequency Division Multiple Access, Single-Carrier Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • the multi-carrier symbols in this application are FDMA (Frequency Division Multiple Access, Frequency Division Multiple Access) symbols.
  • the multi-carrier symbol in this application is an FBMC (Filter Bank Multi-Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • the multi-carrier symbol in this application is an IFDMA (Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access
  • the first resource pool includes the multiple time-domain resource blocks in the time domain including the X time-domain resource blocks, where X is a positive integer greater than 1.
  • the X time-domain resource blocks belong to the multiple time-domain resource blocks included in the first resource pool in the time domain, and X is a positive integer greater than 1.
  • any time-domain resource block in the X time-domain resource blocks is a time-domain resource block in the multiple time-domain resource blocks included in the first resource pool in the time domain, and X is A positive integer greater than 1.
  • the first resource pool includes the multiple time-domain resource blocks in the time domain, and any time-domain resource block in the X time-domain resource blocks is the first resource pool in the time domain includes One time-domain resource block in the plurality of time-domain resource blocks, X is a positive integer greater than 1.
  • the first monitoring period is spaced between any two adjacent time-domain resource blocks among the X time-domain resource blocks, and X is a positive integer greater than 1.
  • the first time-domain resource block and the second time-domain resource block are two time-domain resource blocks in the X time-domain resource blocks, and the first time-domain resource block and the second time-domain resource block The resource blocks in the time domain are adjacent, and X is a positive integer greater than 1.
  • the time-domain interval between the first time-domain resource block and the second time-domain resource block is the first monitoring period.
  • the second time-domain resource block minus the first time-domain resource block is equal to the first monitoring period.
  • the index of the second time-domain resource block in the first resource pool minus the index of the first time-domain resource block in the first resource pool is equal to the Describe the first monitoring cycle.
  • the interval between the time slot occupied by the first time-domain resource block and the time slot occupied by the second time-domain resource block is equal to the first monitoring period.
  • the time slot occupied by the second time-domain resource block minus the time slot occupied by the first time-domain resource block is equal to the first monitoring period.
  • the index of the time slot occupied by the second time domain resource block minus the index of the time slot occupied by the first time domain resource block is equal to the first monitoring period .
  • the X time domain resource blocks are respectively X time slots.
  • the X time-domain resource blocks are respectively X time slots in the first resource pool.
  • any time domain resource block in the X time domain resource blocks is a time slot.
  • any time-domain resource block in the X time-domain resource blocks includes a positive integer number of multi-carrier symbols.
  • said X is equal to 2.
  • said X is equal to 10.
  • the X is related to the first monitoring period.
  • the first monitoring period includes a positive integer number of time slots.
  • the first monitoring period includes multiple multi-carrier symbols.
  • the unit of the first monitoring period is milliseconds (ms).
  • the first resource pool includes the candidate resource set.
  • the candidate resource set belongs to the first resource pool.
  • the candidate resource set includes at least one time-frequency resource block in the first resource pool.
  • the candidate resource set includes multiple time-frequency resource blocks.
  • the plurality of time-frequency resource blocks included in the candidate resource set all belong to the first resource pool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is a time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool resource blocks.
  • the candidate resource set includes at least one time-domain resource block in the first resource pool.
  • the candidate resource set includes multiple time-domain resource blocks.
  • the plurality of time-domain resource blocks included in the candidate resource set all belong to the first resource pool.
  • any time-domain resource block in the plurality of time-domain resource blocks included in the candidate resource set is a time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool resource blocks.
  • the candidate resource set includes at least one frequency domain resource block in the first resource pool.
  • the candidate resource set includes multiple frequency domain resource blocks.
  • the plurality of frequency domain resource blocks included in the candidate resource set all belong to the first resource pool.
  • any frequency domain resource block in the plurality of frequency domain resource blocks included in the candidate resource set is one frequency domain resource block in the plurality of frequency domain resource blocks included in the first resource pool. Domain resource block.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is an available resource for data transmission.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is an available resource for secondary link (Sidelink, SL) transmission.
  • SAlink Secondary link
  • the candidate resource set includes the Y time-frequency resource blocks, where Y is a positive integer greater than 1.
  • the multiple time-frequency resource blocks included in the candidate resource set include the Y time-frequency resource blocks, where Y is a positive integer greater than 1.
  • the Y time-frequency resource blocks belong to the multiple time-frequency resource blocks included in the candidate resource set, and Y is a positive integer greater than 1.
  • any time-frequency resource block in the Y time-frequency resource blocks is one of the multiple time-frequency resource blocks included in the candidate resource set, and Y is greater than 1 positive integer.
  • the set of candidate resources includes the multiple time-frequency resource blocks, and any time-frequency resource block in the Y time-frequency resource blocks is one of the multiple time-frequency resource blocks included in the set of candidate resources.
  • a time-frequency resource block in the frequency resource block, Y is a positive integer greater than 1.
  • the interval between any two adjacent time-frequency resource blocks in the time domain among the Y time-frequency resource blocks is not less than the first resource reservation interval, and Y is a positive integer greater than 1.
  • the interval between any two adjacent time-frequency resource blocks in the time domain among the Y time-frequency resource blocks is greater than the first resource reservation interval, and Y is a positive integer greater than 1.
  • the interval between any two adjacent time-frequency resource blocks in the time domain among the Y time-frequency resource blocks is equal to the first resource reservation interval, and Y is a positive integer greater than 1.
  • the interval between any two adjacent time-frequency resource blocks in the time domain among the Y time-frequency resource blocks is equal to a positive integer multiple of the first resource reservation interval, and Y is greater than 1 positive integer.
  • the first time-frequency resource block and the second time-frequency resource block are two time-frequency resource blocks in the Y time-frequency resource blocks, and the first time-frequency resource block and the second time-frequency resource block The time-frequency resource blocks are adjacent in the time domain, and Y is a positive integer greater than 1.
  • an interval in the time domain between the first time-frequency resource block and the second time-frequency resource block is not smaller than the first resource reservation interval.
  • an interval in the time domain between the first time-frequency resource block and the second time-frequency resource block is greater than the first resource reservation interval.
  • an interval in the time domain between the first time-frequency resource block and the second time-frequency resource block is equal to the first resource reservation interval.
  • an interval in the time domain between the first time-frequency resource block and the second time-frequency resource block is equal to a positive integer multiple of the first resource reservation interval.
  • the time-domain resource occupied by the second time-frequency resource block minus the time-domain resource occupied by the first time-frequency resource block is not less than the first resource reservation interval .
  • the index of the time-domain resource occupied by the second time-frequency resource block in the plurality of time-domain resource blocks included in the first resource pool minus the first An index of the time-frequency resource block in the plurality of time-domain resource blocks included in the first resource pool is not smaller than the first resource reservation interval.
  • the interval between the time slot occupied by the first time-frequency resource block and the time slot occupied by the second time-frequency resource block is not less than the first resource reserved interval.
  • the time slot occupied by the second time-frequency resource block minus the time slot occupied by the first time-frequency resource block is not less than the first resource reservation interval.
  • the index of the time slot occupied by the second time-frequency resource block minus the index of the time slot occupied by the first time-frequency resource block is not less than the first resource Reserve interval.
  • any time-frequency resource block in the Y time-frequency resource blocks is used to send one of the Y first-type signals, where Y is a positive integer greater than 1.
  • any time-frequency resource block in the Y time-frequency resource blocks includes a PSCCH.
  • any time-frequency resource block in the Y time-frequency resource blocks includes a PSSCH.
  • any one of the Y time-frequency resource blocks includes a PSCCH and a PSSCH.
  • At least one time-frequency resource block in the Y time-frequency resource blocks includes PSFCH.
  • the Y is equal to 2.
  • the Y is equal to 10.
  • the Y is related to the first resource reservation interval.
  • the first resource reservation interval is a time-domain interval between any two adjacent time-frequency resource blocks in the time-domain among the Y time-frequency resource blocks.
  • the first resource reservation interval is a time domain interval between the time domain resources occupied by the second time-frequency resource block and the time domain resources occupied by the first time-frequency resource block.
  • the first node transmits one of the Y first-type signals on the first time-frequency resource block, waits for the first resource reservation interval, and then Send another first-type signal among the Y first-type signals on the second time-frequency resource block.
  • the first resource reservation interval is related to services carried by the Y first-type signals.
  • the first resource reservation interval is provided by a higher layer of the first node.
  • the first resource reservation interval is indicated by a higher layer signaling.
  • the first resource reservation interval includes a positive integer number of time slots.
  • the first resource reservation interval includes multiple multi-carrier symbols.
  • a unit of the first resource reservation interval is milliseconds (ms).
  • the first resource pool includes the candidate time-frequency resource block.
  • the candidate time-frequency resource block is one time-frequency resource block in the plurality of time-frequency resource blocks included in the first resource pool.
  • the candidate resource set includes the candidate time-frequency resource block.
  • the candidate resource set does not include the candidate time-frequency resource block.
  • the candidate time-frequency resource block is one time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set.
  • the candidate time-frequency resource block is different from any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set.
  • the first parameter group is indicated through higher layer signaling (Higher Layer Signaling).
  • the first parameter group is indicated by RRC (Radio Resource Control, radio resource control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • the first parameter group is indicated by MAC (Multimedia Access Control, multimedia access control) layer signaling.
  • MAC Multimedia Access Control, multimedia access control
  • the first parameter group is indicated by PHY (Physical Layer, physical layer) layer signaling.
  • PHY Physical Layer, physical layer
  • the first parameter group includes the first resource pool.
  • the first parameter group includes the first priority.
  • the first parameter group includes the first resource reservation interval (Resource Reservation Interval).
  • the first parameter group includes a remaining packet delay budget (the remaining Packet Delay Budget, the remaining PDB).
  • the first parameter group includes the first resource pool, the first priority, and the first resource reservation interval.
  • the first parameter group includes the first resource pool, the first priority, the first resource reservation interval and the remaining data packet delay budget.
  • the Y first-type signals correspond to the first priority.
  • the first priority is the priority of the Y first-type signals.
  • the first priority is the L1 (Layer 1, layer 1) priority of the Y first-type signals.
  • the first priority is an L1 priority of any first-type signal among the Y first-type signals.
  • the delay budget of the remaining data packets is the delay budget of remaining data packets of the Y first type signals.
  • the delay budget of the remaining data packets is a delay budget of remaining data packets of any first-type signal among the Y first-type signals.
  • the Y first-type signals respectively include baseband signals.
  • the Y first-type signals respectively include radio frequency signals.
  • the Y first-type signals respectively include wireless signals.
  • the Y first-type signals are respectively transmitted on the PSCCH.
  • the Y first-type signals are respectively transmitted on the PSSCH.
  • the Y first-type signals are respectively transmitted on the PSCCH and the PSSCH.
  • any first-type signal among the Y first-type signals includes all or part of one higher-layer signaling.
  • the Y first-type signals respectively include Y first-type bit blocks, and any first-type bit block in the Y first-type bit blocks includes at least one bit.
  • At least two first-type bit-blocks in the Y first-type bit-blocks are different.
  • At least two first-type bit-blocks in the Y first-type bit-blocks are the same.
  • any two first-type bit-blocks in the Y first-type bit-blocks are different.
  • the Y first-type signals respectively carry Y first-type bit blocks, and any first-type bit block in the Y first-type bit blocks includes at least one bit.
  • the Y first-type bit blocks are respectively used to generate the Y first-type signals.
  • any first-type bit-block among the Y first-type bit-blocks is transmitted on the PSSCH.
  • any first-type bit block in the Y first-type bit blocks is from an SL-SCH (Sidelink Shared Channel, sidelink shared channel).
  • SL-SCH Segmentlink Shared Channel, sidelink shared channel
  • any first-type bit block in the Y first-type bit blocks includes a positive integer number of bits.
  • At least one first-type bit block among the Y first-type bit blocks includes one CW (Codeword, codeword).
  • At least one first-type bit block among the Y first-type bit blocks includes one CB (Code Block, coding block).
  • At least one first-type bit block among the Y first-type bit blocks includes one CBG (Code Block Group, coding block group).
  • At least one first-type bit block among the Y first-type bit blocks includes one TB (Transport Block, transmission block).
  • all or part of the bits in any first-type bit block in the Y first-type bit blocks are sequentially subjected to transmission block-level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) attachment (Attachment) , Code Block Segmentation, Code Block Level CRC Attachment, Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation , Layer Mapping (Layer Mapping), Antenna Port Mapping (Antenna Port Mapping), Mapping to Physical Resource Blocks (Mapping to Physical Resource Blocks), Baseband Signal Generation (Baseband Signal Generation), Modulation and Upconversion (Modulation and Upconversion) A first-type signal among the Y first-type signals.
  • any first-type signal in the Y first-type signals is a first-type bit block in the Y first-type bit blocks sequentially passed through a modulation mapper (Modulation Mapper), and the layer Mapper (Layer Mapper), Precoding (Precoding), Resource Element Mapper (Resource Element Mapper), the output after multi-carrier symbol generation (Generation).
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding Precoding
  • Resource Element Mapper Resource Element Mapper
  • Generation multi-carrier symbol generation
  • the channel coding is based on polar codes.
  • the channel coding is based on an LDPC (Low-density Parity-Check, low-density parity check) code.
  • LDPC Low-density Parity-Check, low-density parity check
  • the first signal is one of the Y first-type signals
  • the first signal includes the first sub-signaling and the first bit block
  • the first bit block is a first-type bit-block in the Y first-type bit-blocks.
  • the first sub-signaling in the first signal is used to schedule the first bit block in the first signal.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first signal.
  • the first sub-signaling in the first signal indicates the time-frequency resources occupied by the first signal, and the time-frequency resources occupied by the first signal are the Y time-frequency resources A time-frequency resource block in the resource block.
  • the first sub-signaling in the first signal indicates the time-frequency resource occupied by the first bit block in the first signal
  • the first sub-signaling in the first signal The time-frequency resource occupied by one bit block belongs to one time-frequency resource block in the Y time-frequency resource blocks.
  • the first sub-signaling in the first signal indicates one time-frequency resource block in the Y time-frequency resource blocks.
  • the first sub-signaling in the first signal indicates a modulation and coding scheme (Modulation and Coding Scheme, MCS) experienced by the first bit block.
  • MCS Modulation and Coding Scheme
  • the first sub-signaling in the first signal indicates a demodulation reference signal (Demodulation Reference Signal, DMRS) used by the first signal.
  • DMRS Demodulation Reference Signal
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • Accompanying drawing 2 illustrates 5G NR, the figure of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UEs (User Equipment, User Equipment) 201, a UE241 performing Sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/ The EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmitting Receiver Node
  • examples of gNB 203 include satellites, aircraft or ground base stations relayed through satellites.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the UE241.
  • the user equipment in this application includes the UE201.
  • the user equipment in this application includes the UE241.
  • the base station equipment in this application includes the gNB203.
  • the sender of the first signaling in this application includes the gNB203.
  • the sender of the first signaling in this application includes the UE201.
  • the receiver of the first signaling in this application includes the UE201.
  • the sender of the second signaling in this application includes the gNB203.
  • the sender of the second signaling in this application includes the UE241.
  • the receiver of the second signaling in this application includes the UE241.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the UE241.
  • the sender of the first parameter group in this application includes the UE201.
  • the recipients of the first parameter group in this application include the UE201.
  • the sender of the candidate resource set in this application includes the UE201.
  • the recipients of the candidate resource set in this application include the UE201.
  • the senders of the Y first-type signals in this application include the UE201.
  • the recipients of the Y first-type signals in this application include the UE241.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows three layers for a first node device (UE or RSU in V2X, vehicle equipment or vehicle communication module) ) and the second node device (gNB, UE or RSU in V2X, vehicle device or vehicle communication module), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301, through which the PHY 301 is responsible for the link between the first node device and the second node device and the two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second node device.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides handoff support for the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and implements retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the communication between the second node device and the first node device RRC signaling to configure the lower layers.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides Header compression of upper layer data packets to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and a network layer terminating at the other end of the connection.
  • Application layer at eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • the first signal in this application is generated in the MAC sublayer 302 .
  • the first signal in this application is generated in the RRC sublayer 306 .
  • the first signal in this application is transmitted to the PHY 301 through the MAC sublayer 302 .
  • the first parameter set in this application is generated in the RRC sublayer 306 .
  • the first parameter group in this application is transmitted to the PHY 301 via the MAC sublayer 302 .
  • the set of candidate resources in this application is generated in the PHY301.
  • the candidate resource set in this application is transmitted to the MAC sublayer 302 via the PHY 301 .
  • one first-type signal among the Y first-type signals in this application is generated in the MAC sublayer 302 .
  • one first-type signal among the Y first-type signals in this application is generated in the RRC sublayer 306 .
  • any first-type signal in the Y first-type signals in this application is transmitted to the PHY 301 through the MAC sublayer 302 .
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a user equipment
  • the second node is a base station
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is a relay node
  • the second node is a relay node
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 device at least: receives first signaling, the first signaling indicates a first resource pool, the first resource pool includes a plurality of time-frequency resource blocks, and the first resource pool includes the first resource pool A resource subpool and a second resource subpool;
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A signaling, the first signaling indicates a first resource pool, the first resource pool includes a plurality of time-frequency resource blocks, and the first resource pool includes a first resource subpool and a second resource subpool;
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: receiving second signaling, the second signaling indicating a first resource pool; receiving a first signal on a target time-frequency resource block; the first resource pool includes a plurality of time-frequency resource blocks; A frequency resource block, where the target time-frequency resource block is a time-frequency resource block in the first resource pool.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first Two signaling, the second signaling indicates the first resource pool; the first signal is received on the target time-frequency resource block; the first resource pool includes a plurality of time-frequency resource blocks, and the target time-frequency resource block is A time-frequency resource block in the first resource pool.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first signaling in this application.
  • At least one of the sources 467 ⁇ is used in the present application to perform the first resource determining manner in at least the former of the first resource sub-pool and the second resource sub-pool to determine the candidate resource set.
  • At least one of the sources 467 ⁇ is used in the method of performing a first resource determination in the first resource subpool in this application to determine a first candidate resource subset.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in the present application to perform the first resource determination method in the second resource sub-pool to determine the second candidate resource subset.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used in the present application to perform the first resource determination manner in the third resource sub-pool to determine the third candidate resource subset.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for performing the first resource determination method again in the first resource sub-pool in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for reporting the candidate resource set to a higher layer in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for sending the first signal on the target time-frequency resource block in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One of them is used for receiving the second signaling in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used for receiving the first signal on the target time-frequency resource block in this application.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: perform monitoring on X time-domain resource blocks respectively, the first resource pool includes the X time-domain resource blocks in the time domain, and any two of the X time-domain resource blocks There is a first monitoring period between adjacent time-domain resource blocks, and X is a positive integer greater than 1; Y first-type signals are sent on Y time-frequency resource blocks, and the Y time-frequency resource blocks are all Belonging to the candidate resource set, the interval between any two adjacent time-frequency resource blocks in the Y time-frequency resource blocks in the time domain is not less than the first resource reservation interval, and Y is a positive integer greater than 1;
  • the first resource pool includes a plurality of time-frequency resource blocks, the candidate resource set includes a plurality of time-frequency resource blocks, the first resource pool includes
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: Monitoring is performed on X time-domain resource blocks, the first resource pool includes the X time-domain resource blocks in the time domain, and the distance between any two adjacent time-domain resource blocks in the X time-domain resource blocks is the th One monitoring period, X is a positive integer greater than 1; Y first-type signals are sent on Y time-frequency resource blocks respectively, and the Y time-frequency resource blocks all belong to the candidate resource set, and the Y time-frequency The interval between any two adjacent time-frequency resource blocks in the resource block in the time domain is not less than the first resource reservation interval, Y is a positive integer greater than 1; the first resource pool includes multiple time-frequency resource blocks , the candidate resource set includes a plurality of time-frequency resource blocks, the first resource pool includes the candidate resource set; the candidate time-frequency resource block is a time-frequency resource block in
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: receiving Y first-type signals on Y time-frequency resource blocks, Y is a positive integer greater than 1; the first resource pool includes the Y time-frequency resources in the time domain blocks; the Y first-type signals carry a first resource reservation interval; the interval in the time domain between any two adjacent time-frequency resource blocks in the Y time-frequency resource blocks is not less than the first Resource reservation interval.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: Y first-type signals are received on Y time-frequency resource blocks, Y is a positive integer greater than 1; the first resource pool includes the Y time-frequency resource blocks in the time domain; the Y first-type signals carry the first A resource reservation interval; the interval in the time domain between any two adjacent time-frequency resource blocks in the Y time-frequency resource blocks is not less than the first resource reservation interval.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to perform monitoring on X time-domain resource blocks respectively in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit Y first-type signals on Y time-frequency resource blocks respectively in this application.
  • At least one of ⁇ the receiving processor 456, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for the reference time domain resource in this application
  • the first parameter set is obtained on the block.
  • At least one of ⁇ the transmit processor 468, the controller/processor 459, the memory 460, the data source 467 ⁇ is used for the alternative of reporting in this application Collection of resources.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to perform monitoring on M time-domain resource blocks respectively in this application.
  • At least one of ⁇ the transmit processor 468, the controller/processor 459, the memory 460, the data source 467 ⁇ is used for the reference time domain resource in this application
  • a first parameter set is provided on the block.
  • At least one of ⁇ the receiving processor 456, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for receiving the alternative in this application Collection of resources.
  • At least one of ⁇ the receiving processor 456, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used in this application from the alternative
  • the Y time-frequency resource blocks are selected from the resource set.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ is used in this application to receive Y first-type signals on Y time-frequency resource blocks respectively.
  • Embodiment 5A illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5A .
  • the communication between the first node U1A and the second node U2A is carried out through the air interface, the steps in the block F0A in the accompanying drawing 5A, the steps in the block F1A, the steps in the block F2A, The steps in box F3A and the steps in box F4A are respectively optional.
  • the first signaling is received in step S11A; in step S12A, the first resource determination method is performed in the first resource subpool to determine the first candidate resource subset; Execute the first resource determination method in the second resource subpool to determine the second candidate resource subset; in step S14A, execute the first resource determination method in the third resource subpool to determine the third candidate resource subset; In S15A, the first resource determination method is executed again in the first resource subpool; in step S16A, the candidate resource set is reported to a higher layer; in step S17A, the first signal is sent on the target time-frequency resource block.
  • the second signaling is received in step S21A; and the first signal is received on the target time-frequency resource block in step S22A.
  • the first signaling indicates a first resource pool
  • the first resource pool includes a plurality of time-frequency resource blocks
  • the first resource pool includes K resource sub-pools
  • the K resource The subpools are orthogonal to each other, and K is a positive integer greater than 2
  • the first resource subpool and the second resource subpool are respectively two resource subpools in the K resource subpools
  • the The candidate resource set includes at least one time-frequency resource block in the first resource pool
  • the target time-frequency resource block is a time-frequency resource block in the candidate resource set
  • the candidate resource set includes the first A subset of candidate resources
  • the first subset of candidate resources includes at least one time-frequency resource block in the first resource subpool, and the first resource subset included in the first subset of candidate resources
  • the number of time-frequency resource blocks in the pool is equal to Q1, and Q1 is a positive integer; the Q1 is not greater than the first value, and the candidate resource set includes a second candidate resource subset, and the second candidate resource subset includes At least
  • the first node U1A and the second node U2A communicate through the PC5 interface.
  • the steps of block F0A in FIG. 5A exist.
  • the step of block F1A in FIG. 5A does not exist.
  • the steps of block F2A in FIG. 5A exist.
  • the step of block F2A in FIG. 5A does not exist.
  • the steps of block F3A in FIG. 5A exist.
  • the step of block F3A in FIG. 5A does not exist.
  • the step of block F4A in FIG. 5A does not exist.
  • the step of the box F1A in the accompanying drawing 5A exists; when the Q1 is greater than the first numerical value, the step of the square box F1A in the accompanying drawing 5A does not exist .
  • the step of block F2A in FIG. 5A exists; when the sum of Q1 and Q2 is greater than a second value, The step of block F2A in Figure 5A is absent.
  • the step of block F3A in FIG. 5A exists; when the time-frequency resource blocks included in the candidate resource set When the number of resource blocks is greater than the third value, the step of block F3A in FIG. 5A does not exist.
  • the step of box F3A in Fig. 5A exists; when Q1, Q2 and Q3 When the sum of the three of Q3 is greater than the third value, the step of block F3A in the accompanying drawing 5A does not exist.
  • the step of block F0A in FIG. 5A does not exist; when the When the first signaling is sent by a communication node other than the first node U1A, the steps of block F0A in FIG. 5A exist.
  • the step of block F4A in FIG. 5A does not exist; when the When the second signaling is sent by a communication node other than the second node U2A, the steps of block F4A in FIG. 5A exist.
  • the first signaling is sent by a higher layer of the first node U1A to a physical layer of the first node U1A.
  • the higher layer of the first node U1A includes at least one of the RRC layer of the first node U1A or the MAC layer of the first node U1A.
  • the first signaling is sent by a higher layer of the first node U1A.
  • the first signaling is received by a physical layer of the first node U1A.
  • the second signaling is sent by a higher layer of the second node U2A to a physical layer of the second node U2A.
  • the higher layer of the second node U2A includes at least one of the RRC layer of the second node U2A or the MAC layer of the second node U2A.
  • the second signaling is sent by a higher layer of the second node U2A.
  • the second signaling is received by the physical layer of the second node U2A.
  • Embodiment 5B illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5B .
  • the communication between the first node U1B and the second node U2B is performed through an air interface.
  • step S11B For the first node U1 B, in step S11B, obtain the first parameter group on the reference time domain resource block; in step S12B, perform monitoring on M time domain resource blocks respectively; Execute monitoring on resource blocks; report candidate resource sets in step S14B; send Y first-type signals on Y time-frequency resource blocks respectively in step S15B.
  • step S21B Y first-type signals are respectively received on Y time-frequency resource blocks.
  • the first parameter group includes a first resource pool, a first priority and a first resource reservation interval; the first resource pool includes a plurality of time-frequency resource blocks, and the candidate resource set Including a plurality of time-frequency resource blocks, the first resource pool includes the candidate resource set; the first resource pool includes the X time-domain resource blocks in the time domain, and the X time-domain resource blocks include There is a first monitoring period between any two adjacent time-domain resource blocks, and X is a positive integer greater than 1; the first resource pool includes the M time-domain resource blocks in the time domain, and the M time-domain resource blocks The interval between any two adjacent time-domain resource blocks in the domain resource block is the second monitoring period, and M is a positive integer greater than 1; the candidate time-frequency resource block is a time-frequency resource block in the first resource pool , the candidate time-frequency resource block is associated with at least one time-domain resource block in the X time-domain resource blocks; the measurement results for the M time-domain resource blocks and for the
  • the first parameter group is provided on the reference time domain resource block, and the first parameter group provided on the reference time domain resource block is used to trigger the first node U1B to The monitoring is performed on the X time-domain resource blocks.
  • the product of the first coefficient and the first resource reservation interval is equal to the first monitoring period.
  • the first priority is equal to a first integer
  • the first coefficient is proportional to the first integer
  • the first resource pool includes Y1 time-frequency resource blocks
  • the candidate time-frequency resource block is a time-frequency resource block in the Y1 time-frequency resource blocks
  • the Y1 time-frequency resource blocks The interval between any two adjacent time-frequency resource blocks in the resource block in the time domain is equal to the first resource reservation interval, and any time-frequency resource block in the Y1 time-frequency resource blocks is associated with all At least one time-frequency resource block in the X time-domain resource blocks, Y1 is a positive integer greater than 1; the measurement results for the X time-domain resource blocks are used to determine the time-frequency resource blocks in the Y1 time-frequency resource blocks Whether any time-frequency resource block belongs to the candidate resource set.
  • the communication between the first node U1B and the second node U2B is performed through the PC5 interface.
  • the first parameter group is sent by a higher layer of the first node U1B to the physical layer of the first node U1B.
  • the higher layer of the first node U1B includes at least one of the RRC layer of the first node U1B or the MAC layer of the first node U1B.
  • the first parameter group is sent by a higher layer of the first node U1B.
  • the first parameter group is received by the physical layer of the first node U1B.
  • the candidate resource set is sent by the physical layer of the first node U1B to a higher layer of the first node U1B.
  • the candidate resource set is sent by the physical layer of the first node U1B.
  • the candidate resource set is received by a higher layer of the first node U1B.
  • the higher layer of the first node U1B selects the Y time-frequency resource blocks from the candidate resource set.
  • the Y time-frequency resource blocks are randomly selected by a higher layer of the first node U1B from the candidate resource set.
  • Embodiment 6A illustrates the first resource pool, the first resource subpool and the second resource subpool and the candidate resource set, the first candidate resource subset and the second candidate resource subset according to an embodiment of the present application
  • a schematic diagram of the relationship is shown in Figure 6A.
  • the dotted big box represents the first resource pool in this application; the rectangle represents the time-frequency resource block in this application; the solid line box represents the first resource subpool or the second resource subpool in this application ;
  • the block with thick dotted line represents the set of candidate resources in this application; the block with solid line represents the first subset of candidate resources in this application; the rectangle filled with oblique lines represents the target time-frequency resource block in this application.
  • the first resource pool includes multiple time-frequency resource blocks
  • the first resource pool includes a first resource subpool and a second resource subpool
  • the first resource subpool includes multiple time-frequency resources block
  • the second resource subpool includes multiple time-frequency resource blocks
  • the first resource subpool is orthogonal to the second resource subpool
  • the candidate resource set includes multiple time-frequency resource blocks, so The plurality of time-frequency resource blocks included in the candidate resource set all belong to the first resource pool
  • the candidate resource set includes a first candidate resource subset, and the first candidate resource subset includes multiple time-frequency resource blocks, the multiple time-frequency resource blocks included in the first candidate resource subset all belong to the first resource subpool
  • the multiple time-frequency resource blocks included in the first candidate resource subset
  • the number of time-frequency resource blocks is equal to Q1, and Q1 is a positive integer; the Q1 is used to determine whether the candidate resource set overlaps with the second resource subpool.
  • the set of candidate resources includes the first subset of candidate resources and the second subset of candidate resources.
  • the second candidate resource subset belongs to the candidate resource set.
  • the candidate resource set includes multiple candidate resource subsets, and the first candidate resource subset and the second candidate resource subset are all the candidate resource subsets included in the candidate resource set. Two candidate resource subsets among the plurality of candidate resource subsets.
  • the second candidate resource subset includes at least one time-frequency resource block.
  • the second candidate resource subset includes multiple time-frequency resource blocks.
  • one time-frequency resource block in the at least one time-frequency resource block included in the second candidate resource subset is a time-frequency resource block in the candidate resource set.
  • the second candidate resource subset includes multiple time-frequency resource blocks, and any time-frequency resource block in the second candidate resource subset belongs to the candidate resource set.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the second candidate resource subset is one of the plurality of time-frequency resource blocks included in the candidate resource set A time-frequency resource block.
  • the candidate resource set only includes the first candidate resource subset and the second candidate resource subset.
  • the set of candidate resources is equal to a collection of the first subset of candidate resources and the second subset of candidate resources.
  • any time-frequency resource block in the candidate resource set belongs to one of the first candidate resource subset or the second candidate resource subset.
  • the second resource subpool includes the second candidate resource subset.
  • the second candidate resource subset belongs to the second resource subpool.
  • one time-frequency resource block in the at least one time-frequency resource block included in the second candidate resource subset is a time-frequency resource block in the second resource subpool.
  • the second candidate resource subset includes multiple time-frequency resource blocks, and any time-frequency resource block in the second candidate resource subset belongs to the second resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the second candidate resource subset is one of the plurality of time-frequency resource blocks included in the second resource subpool A time-frequency resource block of .
  • the second candidate resource subset includes at least one time-frequency resource block in the second resource subpool.
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the second resource subpool belongs to the second candidate resource subset.
  • At least one time-frequency resource block of the plurality of time-frequency resource blocks included in the second resource subpool is the at least one time-frequency resource block included in the second candidate resource subset A time-frequency resource block in .
  • the number of time-frequency resource blocks in the second resource subpool included in the second candidate resource subset is equal to Q2, where Q2 is a positive integer.
  • the number of all time-frequency resource blocks included in the second candidate resource subset is equal to Q2, where Q2 is a positive integer.
  • the number of all time-frequency resource blocks included in the second candidate resource subset is equal to Q2, and all the time-frequency resource blocks included in the second candidate resource subset belong to the second resource sub-set Pool, Q2 is a positive integer.
  • the second candidate resource subset includes Q2 time-frequency resource blocks, and the Q2 time-frequency resource blocks included in the second candidate resource subset all belong to the second resource subpool , Q2 is a positive integer.
  • the second candidate resource subset includes Q2 time-frequency resource blocks, and any time-frequency resource block in the Q2 time-frequency resource blocks included in the second candidate resource subset is the One time-frequency resource block in the plurality of time-frequency resource blocks included in the second resource subpool, Q2 is a positive integer.
  • the second candidate resource subset is determined by the first node performing the first resource determination manner in the second resource subpool.
  • the first node executes the first resource determination manner in the second resource subpool to determine the second candidate resource subset.
  • the first node executes the first resource determination method in the second resource subpool to determine the second candidate resource subset, and the second candidate resource subset includes the at least one time-frequency resource block in the second resource subpool.
  • the first node executes the first resource determination method in the second resource subpool to determine the candidate resource set, and the candidate resource set includes the first candidate resource subset and the second candidate resource subset, the first candidate resource subset includes at least one time-frequency resource block in the first resource subpool, and the second candidate resource subset includes the at least one time-frequency resource block in the second resource subpool.
  • the candidate resource set overlaps with the second resource subpool.
  • At least one time-frequency resource block in the candidate resource set belongs to the second resource subpool.
  • At least one time-frequency resource block in the candidate resource set is the same as at least one time-frequency resource block in the second resource subpool.
  • the set of candidate resources includes a second subset of candidate resources, and the second subset of candidate resources includes at least one time-frequency resource block in the second resource subpool.
  • the candidate resource set includes a second candidate resource subset, the second candidate resource subset includes a plurality of time-frequency resource blocks, and the second candidate resource subset includes the Multiple time-frequency resource blocks all belong to the second resource subpool.
  • the non-overlap between the candidate resource set and the second resource subpool means that the candidate resource set is orthogonal to the second resource subpool.
  • the candidate resource set is orthogonal to the second resource subpool.
  • the candidate resource set and the second resource subpool are orthogonal in the frequency domain.
  • the candidate resource set and the second resource subpool are orthogonal in the time domain.
  • the non-overlap between the candidate resource set and the second resource subpool means that any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set does not belong to the Describe the second resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set does not belong to the second resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set is different from the plurality of time-frequency resource blocks included in the second resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set and any time-frequency resource block in the plurality of time-frequency resource blocks included in the second resource subpool are all different.
  • Embodiment 6B illustrates a schematic diagram of the relationship between the first monitoring period and the first resource reservation interval according to an embodiment of the present application, as shown in FIG. 6B .
  • the large dotted box represents the first resource pool in this application;
  • the long rectangle represents the time-domain resource blocks in the first resource pool in this application;
  • the long rectangle with thick solid line represents the reference time domain in this application Resource blocks;
  • short rectangles represent the time-frequency resource blocks in the first resource pool in this application; squares with thick dotted lines represent candidate resource sets in this application; rectangles filled with oblique squares represent candidate time-frequency resources in this application
  • a dotted rectangle filled with slashes represents the target signaling in this application;
  • a blank dotted rectangle represents a target time-frequency resource block in this application.
  • the first resource pool includes the X time domain resource blocks in the time domain; the The reference time-domain resource block is later than any time-domain resource block in the X time-domain resource blocks; the candidate time-frequency resource block is one of the plurality of time-frequency resource blocks included in the first resource pool A time-frequency resource block, the candidate time-frequency resource block is associated to at least one time-domain resource block in the X time-domain resource blocks; the measurement results for the X time-domain resource blocks are used to determine Whether the candidate time-frequency resource block belongs to the candidate resource set.
  • the reference time-domain resource block is a time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool in the time domain.
  • the reference time-domain resource block is different from any time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool in the time domain.
  • the reference time-domain resource block is later than at least one time-domain resource block in the plurality of time-domain resource blocks included in the first resource pool in the time domain, and the reference time-domain resource block is earlier At least one time domain resource block in the plurality of time domain resource blocks included in the time domain in the first resource pool.
  • any time domain resource block in the X time domain resource blocks is earlier than the reference time domain resource block.
  • the reference time domain resource block is later than any time domain resource block in the X time domain resource blocks.
  • the reference time domain resource block is earlier than any time domain resource block in the plurality of time domain resource blocks included in the candidate resource set.
  • any time domain resource block in the plurality of time domain resource blocks included in the candidate resource set is later than the reference time domain resource block.
  • the reference time domain resource block includes one time slot.
  • the reference time-domain resource block includes a positive integer number of multi-carrier symbols.
  • the first parameter group is provided on the reference time domain resource block.
  • the first parameter group is obtained on the reference time-domain resource block.
  • the execution of monitoring on the X time-domain resource blocks is triggered on the reference time-domain resource block.
  • resource selection in the candidate resource set is triggered on the reference time domain resource block.
  • the selection of the Y time-frequency resource blocks in the candidate resource set is triggered on the reference time-domain resource block.
  • the reporting of the candidate resource set is triggered on the reference time domain resource block.
  • partial sensing is triggered on the reference time domain resource block.
  • Periodic-based Partial Sensing (PBPS, Periodic-based Partial Sensing) is triggered on the reference time-domain resource block.
  • the higher layer of the first node provides the first parameter group to the physical layer of the first node on the reference time domain resource block.
  • the physical layer of the first node obtains the first parameter group on the reference time domain resource block.
  • the higher layer of the first node provides the first parameter group on the reference time-domain resource block to trigger monitoring on the X time-domain resource blocks.
  • the higher layer of the first node triggers on the reference time domain resource block to perform monitoring on the X time domain resource blocks.
  • the higher layer of the first node triggers resource selection in the candidate resource set on the reference time domain resource block.
  • the higher layer of the first node triggers the selection of the Y time-frequency resource blocks in the candidate resource set on the reference time-domain resource block.
  • a higher layer of the first node triggers the first node to report the candidate resource set on the reference time domain resource block.
  • the higher layer of the first node triggers the physical layer of the first node to report the candidate resource set on the reference time domain resource block.
  • the first node triggers partial sensing on the reference time domain resource block.
  • the first node triggers PBPS on the reference time domain resource block.
  • a higher layer of the first node triggers the first node to perform partial sensing on the reference time domain resource block.
  • a higher layer of the first node triggers the first node to execute PBPS on the reference time domain resource block.
  • performing monitoring on the X time-domain resource blocks respectively belongs to partial sensing.
  • performing monitoring on the X time-domain resource blocks respectively belongs to PBPS.
  • performing monitoring on the X time-domain resource blocks respectively is one of the steps involved in the partial sensing.
  • performing monitoring on the X time-domain resource blocks respectively is one of the steps included in the PBPS.
  • the measurement for the X time-domain resource blocks belongs to partial sensing.
  • the measurement for the X time-domain resource blocks belongs to PBPS.
  • the measurement for the X time-domain resource blocks is one of the steps involved in partial sensing.
  • the measurement of the X time-domain resource blocks is one of the steps included in the PBPS.
  • determining whether the candidate time-frequency resource block belongs to a candidate resource set belongs to partial sensing determining whether the candidate time-frequency resource block belongs to a candidate resource set belongs to partial sensing.
  • determining whether the candidate time-frequency resource block belongs to a candidate resource set is one of the steps involved in partial sensing.
  • determining whether the candidate time-frequency resource block belongs to the candidate resource set is one of the steps included in the PBPS.
  • performing monitoring on the X time-domain resource blocks and measuring the X time-domain resource blocks respectively are two steps among the multiple steps included in the PBPS.
  • monitoring is performed on the X time-domain resource blocks respectively, and the measurement of the X time-domain resource blocks and determining whether the candidate time-frequency resource blocks belong to the candidate resource set are respectively PBPS includes Three of the many steps of .
  • the phrase "perform monitoring on X time-domain resource blocks respectively” refers to reception based on blind detection in the X time-domain resource blocks included in the time domain of the first resource pool, That is, the first node respectively receives signals on the X time-frequency resource blocks included in the first resource pool in the time domain and performs a decoding operation.
  • the phrase "perform monitoring on X time-domain resource blocks respectively” refers to using the first type of signaling in the X time-domain resource blocks included in the first resource pool in the time domain
  • the format is based on blind detection reception, that is, the first node uses all the first type of signaling on any time domain resource block in the X time domain resource blocks included in the first resource pool Receive the signal in the above format and perform a decoding operation. If it is determined that the decoding is correct according to the CRC bit, it is judged that the first type of signaling is detected; otherwise, it is judged that the first type of signaling is not detected.
  • the first type of signaling is SCI (Sidelink Control Information, sidelink control information).
  • the first type of signaling is a first-stage SCI ( 1st -stage SCI).
  • the first type of signaling is a second-stage SCI (2 nd -stage SCI).
  • the format of the first type of signaling is SCI format (SCI format).
  • the format of the first type of signaling is SCI format 1-A.
  • the format of the first type of signaling is SCI format 1-B.
  • the format of the first type of signaling is SCI format 2-A.
  • the format of the first type of signaling is SCI format 2-B.
  • the phrase "perform monitoring on X time-domain resource blocks respectively” refers to receiving based on coherent detection in the X time-domain resource blocks included in the first resource pool in the time domain, That is, the first node respectively uses the RS ( Reference Signal (reference signal) sequence performs coherent reception on the wireless signal, and measures the energy of the signal obtained after the coherent reception; if the energy of the signal obtained after the coherent reception is greater than a first given threshold, then judge the first A type of signaling is detected; otherwise, it is determined that the first type of signaling is not detected.
  • RS Reference Signal
  • the phrase "perform monitoring on X time-domain resource blocks respectively” refers to reception based on energy detection in the X time-domain resource blocks included in the first resource pool in the time domain, That is, the first node senses (Senses) the energy of the wireless signal on the X time-frequency resource blocks included in the first resource pool in the time domain, and averages them in time to obtain received energy; if If the received energy is greater than a second given threshold, it is determined that the first type of signaling is detected; otherwise, it is determined that the first type of signaling is not detected.
  • the detection of the first type of signaling refers to determining that the decoding is correct according to CRC bits after the first type of signaling is received based on blind detection.
  • the fact that the first type of signaling is not detected means that after the first type of signaling is received based on blind detection, it is determined that the decoding is incorrect according to CRC bits.
  • the candidate time-frequency resource blocks are associated with the X time-domain resource blocks.
  • the candidate time-frequency resource block is associated with at least one time-domain resource block among the X time-domain resource blocks.
  • the candidate time-frequency resource block is associated with one time-domain resource block among the X time-domain resource blocks.
  • the candidate time-frequency resource block is associated with multiple time-domain resource blocks in the X time-domain resource blocks.
  • the candidate time-frequency resource block is associated with X1 time-domain resource blocks among the X time-domain resource blocks, X1 is a positive integer, and X1 is not greater than X.
  • the X1 is equal to 1, and the X is greater than 1.
  • the X1 is greater than 1, and the X1 is smaller than X.
  • the X1 is equal to the X, and the X is greater than 1.
  • the X1 is equal to 1, and the X is equal to 10.
  • the X1 is equal to 2, and the X is equal to 10.
  • the candidate time-frequency resource block being associated with at least one time-domain resource block in the X time-domain resource blocks refers to at least one time-domain resource in the X time-domain resource blocks
  • At least one first-type target signaling is respectively detected on the block, and the at least one first-type target signaling respectively indicates at least one first-type target time-frequency resource block, and in the at least one first-type target time-frequency resource block Any target time-frequency resource block of the first type overlaps with the candidate time-frequency resource block.
  • the target signaling is a first-type target signaling in the at least one first-type target signaling
  • the target time-frequency resource block is one of the at least one first-type target time-frequency resource block A target time-frequency resource block, where the target signaling indicates the target time-frequency resource block.
  • the candidate time-frequency resource block being associated with one of the X time-domain resource blocks refers to being on one of the X time-domain resource blocks
  • Target signaling is detected, the target signaling indicates a target time-frequency resource block, and the target time-frequency resource block overlaps with the candidate time-frequency resource block.
  • the candidate time-frequency resource block is associated with multiple time-domain resource blocks in the X time-domain resource blocks refers to multiple time-domain resources in the X time-domain resource blocks
  • a plurality of first-type target signalings are respectively detected on the block, and the plurality of first-type target signalings respectively indicate a plurality of first-type target time-frequency resource blocks, and among the plurality of first-type target time-frequency resource blocks Any target time-frequency resource block of the first type overlaps with the candidate time-frequency resource block.
  • the target signaling is a first-type target signaling in the multiple first-type target signaling
  • the target time-frequency resource block is one of the multiple first-type target time-frequency resource blocks A target time-frequency resource block, where the target signaling indicates the target time-frequency resource block.
  • the candidate time-frequency resource block is associated with the X1 time-domain resource blocks in the X time-domain resource blocks refers to the X1 time-domain resources in the X time-domain resource blocks X1 first-type target signalings are respectively detected on the block, and the X1 first-type target signalings respectively indicate X1 first-type target time-frequency resource blocks, and among the X1 first-type target time-frequency resource blocks Any target time-frequency resource block of the first type overlaps with the candidate time-frequency resource block, X1 is a positive integer greater than 1, and the X1 is not greater than the X.
  • the target signaling is a first-type target signaling in the X1 first-type target signaling
  • the target time-frequency resource block is one of the X1 first-type target time-frequency resource blocks A target time-frequency resource block, where the target signaling indicates the target time-frequency resource block.
  • the X1 target time-frequency resource blocks of the first type are orthogonal in the time domain.
  • frequency domain resources occupied by at least two first-type target time-frequency resource blocks among the X1 first-type target time-frequency resource blocks are different.
  • frequency domain resources occupied by at least two first-type target time-frequency resource blocks among the X1 first-type target time-frequency resource blocks are the same.
  • the X1 first-type target signalings respectively occupy the X1 time-domain resource blocks among the X time-domain resource blocks.
  • the time-domain resource occupied by any one of the X1 first-type target signalings belongs to one time-domain resource block among the X1 time-domain resource blocks.
  • the target signaling occupies one time-domain resource block among the X time-domain resource blocks.
  • the time domain resource occupied by the target signaling belongs to one time domain resource block in the X time domain resource blocks.
  • the phrase "measurement for the X time-domain resource blocks" means that when the at least one first-type signaling is performed on at least one time-domain resource block among the X time-domain resource blocks When detected, measure the DMRS corresponding to any one of the first-type signaling in the at least one first-type signaling.
  • the DMRS corresponding to any first-type signaling in the at least one first-type signaling includes a DMRS used by any first-type signaling in the at least one first-type signaling .
  • the DMRS used by any first-type signaling in the at least one first-type signaling includes a PSCCH DMRS.
  • the DMRS corresponding to any first-type signaling in the at least one first-type signaling includes a DMRS indicated by any first-type signaling in the at least one first-type signaling .
  • the DMRS indicated by any first-type signaling in the at least one first-type signaling includes a PSSCH DMRS.
  • the phrase "measurement for the X time-domain resource blocks" refers to when the X1 first-type signaling is in the X1 time-domain resource blocks among the X time-domain resource blocks When detected, measure the DMRS corresponding to any one of the X1 first-type signalings.
  • the DMRS corresponding to any one of the X1 first-type signalings includes a DMRS used by any one of the X1 first-type signalings .
  • the DMRS used by any one of the X1 first-type signaling includes PSCCH DMRS.
  • the DMRS corresponding to any one of the X1 first-type signalings includes the DMRS indicated by any one of the X1 first-type signalings .
  • the DMRS indicated by any one of the X1 first-type signalings includes a PSSCH DMRS.
  • the phrase "measurement for the X time-domain resource blocks" refers to when the X1 first-type signaling is in the X1 time-domain resource blocks among the X time-domain resource blocks When detected, perform coherent detection-based reception on the X1 time-domain resource blocks for the DMRS corresponding to any one of the first-type signaling in the X1 first-type signaling, and measure the coherent reception The resulting signal energy.
  • the phrase "measurement for the X time-domain resource blocks" refers to when the X1 first-type signaling is in the X1 time-domain resource blocks among the X time-domain resource blocks When detected, perform coherent detection-based reception on the X1 time-domain resource blocks for the DMRS corresponding to the X1 first-type signaling, and then receive any of the X1 first-type signaling The signal power received on the time-frequency resource occupied by the DMRS corresponding to the first type of signaling is linearly averaged to obtain the received power.
  • the phrase "measurement for the X time-domain resource blocks” refers to when the X1 first-type signaling is in the X1 time-domain resource blocks in the X time-domain resource blocks When detected, perform coherent detection-based reception on the X1 time-domain resource blocks for the DMRS corresponding to any one of the first-type signaling in the X1 first-type signaling, and receive the received signal The energy is averaged in the time domain and in the frequency domain to obtain the received power.
  • the phrase "measurement for the X time-domain resource blocks" refers to when the X1 first-type signaling is in the X1 time-domain resource blocks in the X time-domain resource blocks When detected, perform energy detection-based reception on the X1 time-domain resource blocks for the DMRS corresponding to any one of the first-type signaling in the X1 first-type signaling, that is, the first node Perceive the energy of the wireless signal on the time-frequency resources occupied by the DMRS corresponding to any one of the X1 first-type signalings, and sense the energy of the wireless signal on the time-frequency resources used by the X1 first-type signalings. Time-frequency resources occupied by the DMRS are averaged to obtain received power.
  • the phrase "measurement for the X time-domain resource blocks” refers to when the X1 first-type signaling is in the X1 time-domain resource blocks in the X time-domain resource blocks When detected, perform energy detection-based reception on the X1 time-domain resource blocks, that is, the first node receives the power of the wireless signal on the X1 time-domain resource blocks, and converts the received signal Power is linearly averaged to obtain an indication of signal strength.
  • the phrase "measurement for the X time-domain resource blocks” refers to when the X1 first-type signaling is in the X1 time-domain resource blocks in the X time-domain resource blocks When detected, perform energy detection-based reception on the X1 time-domain resource blocks, that is, the first node senses the energy of the wireless signal on the X1 time-domain resource blocks and averages it over time, for a signal strength indicator.
  • the phrase "measurement for the X time-domain resource blocks” refers to when the X1 first-type signaling is in the X1 time-domain resource blocks in the X time-domain resource blocks
  • the first node receives signals on the X1 time-domain resource blocks and performs a decoding operation, and determines whether to The decoding is correct, so as to obtain the channel quality on the time-frequency resource occupied by the DMRS corresponding to any one of the X1 first-type signalings.
  • the measurement results for the X time-domain resource blocks include RSRP (Reference Signal Receiving Power, reference signal receiving power).
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • the measurement results for the X time-domain resource blocks include SL RSRP (Sidelink Reference Signal Receiving Power, sidelink reference signal receiving power).
  • the measurement results for the X time-domain resource blocks include PSCCH RSRP.
  • the measurement results for the X time-domain resource blocks include PSSCH RSRP.
  • the measurement results for the X time-domain resource blocks include L1 RSRP (Layer 1 Reference Signal Receiving Power, Layer 1 Reference Signal Received Power).
  • the measurement results for the X time-domain resource blocks include L3 RSRP (Layer 3 Reference Signal Receiving Power, layer 3 reference signal receiving power).
  • L3 RSRP Layer 3 Reference Signal Receiving Power, layer 3 reference signal receiving power
  • the measurement results for the X time-domain resource blocks include SINR (Signal-to-Interference plus Noise Ratio, signal-to-interference plus noise ratio).
  • the measurement results for the X time-domain resource blocks include L1 SINR (Layer 1 Signal-to-Interference plus Noise Ratio, Layer 1 Signal-to-Interference plus Noise Ratio).
  • the measurement results for the X time-domain resource blocks include RSSI (Received Signal Strength Indication, received signal strength indication).
  • the measurement results for the X time-domain resource blocks include SL RSSI (Sidelink Received Signal Strength Indication, sidelink received signal strength indication).
  • the measurement results for the X time-domain resource blocks include RSRQ (Reference Signal Receiving Quality, reference signal receiving quality).
  • RSRQ Reference Signal Receiving Quality, reference signal receiving quality
  • the unit of the measurement results for the X time-domain resource blocks is milli-decibel (dBm).
  • the unit of the measurement results for the X time-domain resource blocks is decibel (dB).
  • the unit of the measurement results for the X time-domain resource blocks is milliwatt (mW).
  • the unit of the measurement results for the X time domain resource blocks is Watt (W).
  • the measurement results for the X time-domain resource blocks are used to determine whether the candidate time-frequency resource block belongs to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used to determine that the candidate time-frequency resource block belongs to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used to determine that the candidate time-frequency resource block does not belong to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used to determine that the candidate time-frequency resource block is different from any time-frequency resource block in the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used together with the first threshold to determine whether the candidate time-frequency resource block belongs to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used together with a first threshold to determine whether the candidate time-frequency resource block belongs to the candidate resource set, and the first threshold related to the first priority.
  • the Y first-type signals correspond to the first priority
  • the first priority is used to determine a first threshold
  • the measurement results for the X time-domain resource blocks are related to
  • the first threshold is commonly used to determine whether the candidate time-frequency resource block belongs to the candidate resource set.
  • the first parameter group includes the first priority
  • the first priority is used to determine a first threshold
  • the measurement results for the X time-domain resource blocks are related to the
  • the first threshold is commonly used to determine whether the candidate time-frequency resource block belongs to the candidate resource set.
  • the threshold list includes a plurality of first-type thresholds
  • the first threshold is a first-type threshold among the plurality of first-type thresholds included in the threshold list
  • the first priority is selected by The method is configured to determine the first threshold from the plurality of thresholds of the first type included in the threshold list.
  • the threshold list includes a plurality of first-type thresholds
  • the first threshold is a first-type threshold among the plurality of first-type thresholds included in the threshold list
  • the first priority is selected by and used for determining an index of the first threshold in the plurality of thresholds of the first type included in the threshold list.
  • the plurality of thresholds of the first type included in the threshold list are respectively a plurality of RSRP thresholds (value of RSRP threshold).
  • the plurality of first-type thresholds included in the threshold list are respectively a plurality of SINR thresholds (value of SNR threshold).
  • units of the plurality of thresholds of the first type included in the threshold list are respectively dBm.
  • units of the plurality of thresholds of the first type included in the threshold list are respectively dB.
  • units of the plurality of thresholds of the first type included in the threshold list are respectively mW.
  • units of the plurality of thresholds of the first type included in the threshold list are W respectively.
  • the threshold list includes 67 thresholds of the first type.
  • the threshold list includes negative infinity (minus infinity) dBm, (-128+(n-1)*2) dBm, the n is any positive integer from 1 to 65, and positive infinity ( infinity) dBm.
  • the plurality of first-type thresholds included in the threshold list are respectively a plurality of negative integers.
  • the threshold list is sl-Thres-RSRP-List in 3GPP TS38.214.
  • the first threshold is an RSRP threshold.
  • the first threshold is a SINR threshold.
  • the first threshold is negative infinity.
  • the first threshold is positive infinity.
  • the first threshold is a negative integer.
  • the first threshold is equal to (-128+(n-1)*2)dBm, and the n is any positive integer from 1 to 65.
  • the unit of the first threshold is dBm.
  • the unit of the first threshold is dB.
  • the unit of the first threshold is mW.
  • the unit of the first threshold is W.
  • the size relationship between the measurement results of the X time-domain resource blocks and the first threshold is used to determine whether the candidate time-frequency resource block belongs to the candidate resource set.
  • the size relationship between the measurement results of the X time-domain resource blocks and the first threshold is used to determine whether the candidate resource set includes the candidate time-frequency resource block.
  • the size relationship between the measurement results of the X time-domain resource blocks and the first threshold is used to determine whether the candidate time-frequency resource block is included in the candidate resource set One time-frequency resource block in the at least one time-frequency resource block.
  • the measurement results for the X time-domain resource blocks are not greater than the first threshold, and the candidate time-frequency resource blocks belong to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are smaller than the first threshold, and the candidate time-frequency resource blocks belong to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are equal to the first threshold, and the candidate time-frequency resource blocks belong to the candidate resource set.
  • the measurement results for the X time-domain-frequency resource blocks are greater than the first threshold, and the candidate time-frequency resource blocks do not belong to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are not greater than the first threshold, and the candidate time-frequency resource blocks are the multiple time-frequency resource blocks included in the candidate resource set A time-frequency resource block in the resource block.
  • the measurement results for the X time-domain resource blocks are smaller than the first threshold, and the candidate time-frequency resource blocks are the multiple time-frequency resources included in the candidate resource set A time-frequency resource block in the block.
  • the measurement results for the X time-domain resource blocks are equal to the first threshold, and the candidate time-frequency resource blocks are the multiple time-frequency resources included in the candidate resource set A time-frequency resource block in the block.
  • the measurement results for the X time-domain resource blocks are greater than the first threshold, and the candidate time-frequency resource block and the multiple time-frequency resources included in the candidate resource set Any time-frequency resource block in the block is different.
  • the candidate time-frequency resource block belongs to the candidate resource set;
  • the candidate time-frequency resource block does not belong to the candidate resource set.
  • the candidate time-frequency resource block when the measurement results for the X time-domain resource blocks are not greater than the first threshold, the candidate time-frequency resource block is the multiple One time-frequency resource block in the time-frequency resource block; when the measurement results for the X time-domain resource blocks are greater than the first threshold, the candidate time-frequency resource block and the candidate resource set Any time-frequency resource block in the multiple time-frequency resource blocks included is different.
  • the candidate time-frequency resource block belongs to the candidate resource set; when the X time-domain resource blocks When the measurement result of the time-domain resource block is equal to the first threshold, the candidate time-frequency resource block belongs to the candidate resource set; when the measurement result for the X time-domain resource blocks is greater than the When the first threshold is set, the candidate time-frequency resource block does not belong to the candidate resource set.
  • the candidate time-frequency resource block is the plurality of time-frequency resource blocks included in the candidate resource set.
  • the first resource pool includes Y1 time-frequency resource blocks
  • the candidate time-frequency resource block is a time-frequency resource block in the Y1 time-frequency resource blocks
  • the Y1 time-frequency resource blocks The interval between any two adjacent time-frequency resource blocks in the time domain in the resource blocks is equal to the first resource reservation interval, and any time-frequency resource block in the Y1 time-frequency resource blocks is associated with all At least one time-frequency resource block in the X time-domain resource blocks, Y1 is a positive integer greater than 1; the measurement results for the X time-domain resource blocks are used to determine the time-frequency resource blocks in the Y1 time-frequency resource blocks Whether any time-frequency resource block belongs to the candidate resource set.
  • the Y1 is not greater than the Y.
  • the Y1 is equal to the Y.
  • the Y1 is smaller than the Y.
  • the Y1 is not smaller than the Y.
  • the Y1 is greater than the Y.
  • any time-frequency resource block in the Y1 time-frequency resource blocks is a time-frequency resource block in a plurality of time-frequency resource blocks included in the first resource pool.
  • one time-frequency resource block in the Y1 time-frequency resource blocks belongs to the candidate resource set.
  • one time-frequency resource block in the Y1 time-frequency resource blocks is different from any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set.
  • the candidate time-frequency resource block is any time-frequency resource block in the Y1 time-frequency resource blocks.
  • the candidate time-frequency resource block is the earliest time-frequency resource block in the time domain among the Y1 time-frequency resource blocks.
  • the measurement results for the X time-domain resource blocks are used to determine whether any time-frequency resource block in the Y1 time-frequency resource blocks belongs to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used to determine whether all the Y1 time-frequency resource blocks belong to the candidate resource set.
  • the measurement results for the X time-domain resource blocks are used to determine whether none of the Y1 time-frequency resource blocks belong to the candidate resource set.
  • Embodiment 7A illustrates a flow chart of determining whether to execute the first resource determination manner in the second resource subpool according to an embodiment of the present application, as shown in FIG. 7A .
  • step S701A the first resource determination method is executed in the first resource subpool to determine a first candidate resource subset, and the first resource included in the first candidate resource subset
  • the number of time-frequency resource blocks in the subpool is equal to Q1, and Q1 is a positive integer
  • step S702A it is judged whether Q1 is not greater than the first value; when the Q1 is not greater than the first value, step S703A is executed, and the Execute the first resource determination method in the second resource subpool to determine the second candidate resource subset; when the Q1 is greater than the first value, perform step S704A, and give up performing the first resource determination in the second resource subpool Way.
  • the Q1 is used to determine whether to execute the first resource determination manner in the second resource subpool.
  • the Q1 is used to determine whether to perform the first resource determination manner in the second resource subpool to determine the second candidate resource subset.
  • the Q1 is used to determine whether to perform the first resource determination method in the second resource subpool to determine the candidate resource set, and the candidate resource set includes the first A subset of candidate resources and the second subset of candidate resources.
  • the Q1 is used to determine whether the candidate resource set overlaps with the second resource subpool.
  • the Q1 is used to determine whether the set of candidate resources includes a second subset of candidate resources, and the second subset of candidate resources includes at least one resource in the second resource subpool. frequency resource block.
  • the Q1 is used to determine whether the candidate resource set includes a second candidate resource subset, the second candidate resource subset includes multiple time-frequency resource blocks, and the second candidate resource The multiple time-frequency resource blocks included in the selected resource subset all belong to the second resource subpool.
  • the magnitude relationship between the Q1 and the first value is used to determine whether to execute the first resource determination manner in the second resource subpool.
  • the magnitude relationship between the Q1 and the first value is used to determine whether to perform the first resource determination method in the second resource subpool to determine the second candidate resource subset .
  • the magnitude relationship between the Q1 and the first value is used to determine whether to perform the first resource determination method in the second resource subpool to determine the candidate resource set, the The candidate resource set includes the first candidate resource subset and the second candidate resource subset.
  • the size relationship between the Q1 and the first value is used to determine whether the candidate resource set overlaps with the second resource subpool.
  • the magnitude relationship between the Q1 and the first value is used to determine whether the candidate resource set includes a second candidate resource subset, and the second candidate resource subset includes the first At least one time-frequency resource block in the two resource subpools.
  • the magnitude relationship between the Q1 and the first value is used to determine whether the set of candidate resources includes a second subset of candidate resources, and the second subset of candidate resources includes a plurality of Frequency resource blocks, the multiple time-frequency resource blocks included in the second candidate resource subset all belong to the second resource subpool.
  • the Q1 is not greater than the first value.
  • the Q1 is greater than the first value.
  • the Q1 is equal to the first value.
  • the Q1 is smaller than the first value.
  • the first value is a positive integer.
  • the first value is configured by higher layer signaling.
  • the time domain resources occupied by the candidate resource set are within the first resource selection window.
  • the unit of the first resource selection window is milliseconds.
  • the first resource selection window includes multiple time-domain resource blocks in the first resource pool.
  • the first value is not greater than the number of time-frequency resource blocks in the first resource subpool within the first resource selection window.
  • the first value is equal to the product of the first coefficient and the number of time-frequency resource blocks in the first resource subpool within the first resource selection window.
  • the first coefficient is a positive decimal not greater than 1.
  • the first coefficient is a true fraction greater than 0 and not greater than 1.
  • the Q1 when the Q1 is not greater than the first value, execute the first resource determination method in the second resource subpool; when the Q1 is greater than the first value, give up the The first resource determination manner is executed in the second resource subpool.
  • the first resource determination method is executed in the second resource subpool; when the Q1 is equal to the first value, the Executing the first resource determination manner in the second resource subpool; when the Q1 is greater than the first value, abandoning the execution of the first resource determination manner in the second resource subpool.
  • the Q1 when the Q1 is less than the first value, execute the first resource determination method in the second resource subpool; when the Q1 is not less than the first value, give up The first resource determination manner is executed in the second resource subpool.
  • the Q1 when the Q1 is smaller than the first value, execute the first resource determination method in the second resource subpool; when the Q1 is equal to the first value, give up the Executing the first resource determination manner in the second resource subpool; when the Q1 is greater than the first value, abandoning the execution of the first resource determination manner in the second resource subpool.
  • the first resource determination method is executed in the second resource subpool to determine the second candidate resource subset; when the When Q1 is greater than the first value, giving up performing the first resource determination manner in the second resource subpool.
  • the first resource determination method is executed in the second resource subpool to determine the second candidate resource subset; when the Q1 When it is not less than the first value, give up performing the first resource determination manner in the second resource subpool.
  • the first resource determination method is executed in the second resource subpool to determine the candidate resource set, and the candidate resource set Including the first candidate resource subset and the second candidate resource subset; when the Q1 is greater than the first value, giving up performing the first resource determination in the second resource subpool Way.
  • the first resource determination method is executed in the second resource subpool to determine the candidate resource set, and the candidate resource set includes The first candidate resource subset and the second candidate resource subset; when the Q1 is not less than the first value, give up performing the first resource determination in the second resource subpool Way.
  • the candidate resource set overlaps with the second resource subpool; when the Q1 is greater than the first value, the The candidate resource set is orthogonal to the second resource subpool.
  • the candidate resource set when the Q1 is smaller than the first value, the candidate resource set overlaps with the second resource subpool; when the Q1 is equal to the first value, the candidate resource set overlaps with the second resource subpool; The selected resource set overlaps with the second resource subpool; when the Q1 is greater than the first value, the candidate resource set is orthogonal to the second resource subpool.
  • the candidate resource set overlaps with the second resource subpool; when the Q1 is not less than the first value, the The candidate resource set is orthogonal to the second resource subpool.
  • the candidate resource set when the Q1 is smaller than the first value, the candidate resource set overlaps with the second resource subpool; when the Q1 is equal to the first value, the candidate resource set overlaps with the second resource subpool; The selected resource set is orthogonal to the second resource subpool; when the Q1 is greater than the first value, the candidate resource set is orthogonal to the second resource subpool.
  • the candidate resource set when the Q1 is not greater than the first value, includes a second candidate resource subset, and the second candidate resource subset includes the second resource subpool At least one time-frequency resource block in the resource subpool; when the Q1 is greater than the first value, any time-frequency resource block in the second resource subpool does not belong to the candidate resource set.
  • the candidate resource set when the Q1 is smaller than the first value, includes a second candidate resource subset; when the Q1 is equal to the first value, the candidate resource set Including a second candidate resource subset; when the Q1 is greater than the first value, any time-frequency resource block in the second resource subpool does not belong to the candidate resource set; the second candidate The resource subset includes at least one time-frequency resource block in the second resource subpool.
  • the candidate resource set when the Q1 is smaller than the first value, includes a second candidate resource subset, and the second candidate resource subset includes the resources in the second resource subpool at least one time-frequency resource block; when the Q1 is not less than the first value, any time-frequency resource block in the second resource subpool does not belong to the candidate resource set.
  • the candidate resource set when the Q1 is smaller than the first value, the candidate resource set includes a second candidate resource subset, and the second candidate resource subset includes the resources in the second resource subpool at least one time-frequency resource block; when the Q1 is equal to the first value, any time-frequency resource block in the second resource subpool does not belong to the candidate resource set; when the Q1 is greater than the When the value is the first value, any time-frequency resource block in the second resource subpool does not belong to the candidate resource set.
  • the ratio between the Q1 and the first value is used to determine whether to perform the first resource determination manner in the second resource subpool.
  • the ratio between the Q1 and the first value is used to determine whether to perform the first resource determination method in the second resource subpool to determine the second candidate resource subpool set.
  • the ratio between the Q1 and the first value is used to determine whether to perform the first resource determination method in the second resource subpool to determine the candidate resource set, so
  • the set of candidate resources includes the first subset of candidate resources and the second subset of candidate resources.
  • the ratio between the Q1 and the first value is used to determine whether the candidate resource set overlaps with the second resource subpool.
  • the ratio between the Q1 and the first value is used to determine whether the candidate resource set includes a second candidate resource subset, and the second candidate resource subset includes the At least one time-frequency resource block in the second resource subpool.
  • the first resource determination method is executed in the second resource subpool;
  • the candidate resource set includes a second candidate resource subset , the second candidate resource subset includes at least one time-frequency resource block in the second resource subpool, and the second candidate resource subset includes time-frequency resources in the second resource subpool
  • the number of blocks is equal to Q2, and Q2 is a positive integer; when the Q1 is greater than the first numerical value, the execution of the first resource determination method in the second resource subpool is abandoned; any of the candidate resource sets A time-frequency resource block does not belong to the second resource subpool.
  • the candidate resource set includes a second candidate resource subset
  • the second candidate resource subset includes at least one time-frequency resource block in the second resource subpool
  • the second candidate resource subset includes time-frequency resource blocks in the second resource subpool
  • the number is equal to Q2, and Q2 is a positive integer; when the Q1 is not less than the first value, abandon the implementation of the first resource determination method in the second resource subpool; any of the candidate resource sets A time-frequency resource block does not belong to the second resource subpool.
  • Embodiment 7B illustrates a schematic diagram of the relationship between the first monitoring period and the first resource reservation interval according to another embodiment of the present application, as shown in FIG. 7B .
  • the dotted big box represents the first resource pool in this application;
  • the long solid line rectangle represents a monitored time-domain resource block in the first resource pool in this application;
  • the long dotted line rectangle represents this application
  • the long rectangle with thick solid line represents the reference time-domain resource block in this application;
  • the short rectangle represents the time-frequency in the first resource pool in this application Resource blocks;
  • thick dashed squares represent candidate resource sets in this application; rectangles filled with oblique squares represent candidate time-frequency resource blocks in this application.
  • the first priority in this application is used to determine a first coefficient
  • the first coefficient and the first resource reservation interval in this application are jointly used to determine the first A monitoring period.
  • the first priority is equal to a non-negative integer.
  • the first priority is equal to a positive integer.
  • the first priority is a non-negative integer among P non-negative integers, where P is a positive integer.
  • the first priority is a positive integer among P positive integers, where P is a positive integer.
  • the first priority is a positive integer from 1 to P, where P is a positive integer.
  • the first priority is one of the P priorities, where P is a positive integer; the P priorities are respectively equal to the P non-negative integers; the P priorities are the same as the The size relationship between the above P non-negative integers is monotonously decreasing.
  • the first priority is one of P priorities, and P is a positive integer; the P priorities are respectively equal to the P positive integers; the P priorities are the same as the The size relationship between the P positive integers is monotonously decreasing.
  • the first priority is equal to a first integer, and the first integer is a positive integer among the P positive integers; the larger the first integer, the smaller the first priority ; The smaller the first integer, the greater the first priority.
  • the P is equal to 8.
  • said P is equal to 9.
  • the first priority is configured by higher layer signaling.
  • the first coefficient is a positive integer.
  • the first coefficient is a positive decimal number.
  • the first coefficient is a positive fraction.
  • the first priority is equal to the first integer, a linear function of the first coefficient and the first integer.
  • the first priority is equal to the first integer
  • the first coefficient is proportional to the first integer
  • the first priority is equal to the first integer
  • the first coefficient is a multiple of the first integer
  • the first priority is equal to the first integer
  • the first coefficient is a divisor of the first integer
  • the first coefficient is equal to the first integer.
  • the first coefficient is greater than the first integer.
  • the first coefficient is smaller than the first integer.
  • the first monitoring period is related to the first resource reservation interval.
  • the first resource reservation interval is used to determine the first monitoring period.
  • the first monitoring period is related to both the first coefficient and the first resource reservation interval.
  • the first coefficient and the first resource reservation interval are jointly used to determine the first monitoring period.
  • the first monitoring period is a linear function of the first coefficient and the first resource reservation interval.
  • the first monitoring period is equal to the product of the first coefficient and the first resource reservation interval.
  • the first monitoring period is equal to a linear product of the first coefficient and the first resource reservation interval.
  • the first monitoring period is equal to a sum of linear additions of the first coefficient and the first resource reservation interval.
  • the first monitoring period is equal to a sum of the first coefficient and the first resource reservation interval.
  • Embodiment 8A illustrates a flow chart of determining whether to execute the first resource determination manner in the third resource subpool according to an embodiment of the present application, as shown in FIG. 8A .
  • step S801A the first resource determination method is performed in the first resource subpool and the second resource subpool respectively to determine the first candidate resource subset and the second candidate resource subset, so
  • the number of time-frequency resource blocks in the first resource subpool included in the first candidate resource subset is equal to Q1, where Q1 is a positive integer, and the second resource subpool included in the second candidate resource subset
  • the number of time-frequency resource blocks in is equal to Q2, and Q2 is a positive integer
  • step S802A it is judged whether the sum of Q1 and Q2 is not greater than the second value; when the sum of Q1 and Q2 is not greater than the second value
  • execute step S804 give up performing the first resource determination manner in the third resource subpool.
  • the first resource pool includes K resource sub-pools, the K resource sub-pools are orthogonal to each other, and K is a positive integer greater than 2.
  • the first resource subpool and the second resource subpool are two resource subpools in the K resource subpools; the third resource subpool is the K resource subpools A resource subpool different from the first resource subpool and the second resource subpool.
  • the first resource pool includes the first resource subpool, the second resource subpool, and the third resource subpool.
  • the first resource pool includes K resource sub-pools
  • the first resource sub-pool, the second resource sub-pool and the third resource sub-pool are the K resource sub-pools respectively The three resource subpools in .
  • the third resource subpool includes multiple time-frequency resource blocks.
  • the multiple time-frequency resource blocks included in the third resource subpool belong to the first resource pool.
  • any one of the multiple time-frequency resource blocks included in the third resource subpool is one of the multiple time-frequency resource blocks included in the first resource pool. frequency resource block.
  • the third resource subpool is orthogonal to the first resource subpool, and the third resource subpool is also orthogonal to the second resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the third resource subpool does not belong to the first resource subpool
  • the third resource subpool includes the Any time-frequency resource block in the multiple time-frequency resource blocks does not belong to the second resource subpool.
  • any time-frequency resource block in the multiple time-frequency resource blocks included in the third resource subpool is different from the multiple time-frequency resource blocks included in the first resource subpool, Any time-frequency resource block in the multiple time-frequency resource blocks included in the third resource subpool is different from the multiple time-frequency resource blocks included in the second resource subpool.
  • the time domain resources occupied by the third resource subpool are the same as the time domain resources occupied by the first resource subpool, and the time domain resources occupied by the third resource subpool are the same as the time domain resources occupied by the first resource subpool.
  • the time domain resources occupied by the second resource subpool are the same, the frequency domain resources occupied by the third resource subpool are different from the frequency domain resources occupied by the first resource subpool, and the frequency domain resources occupied by the third resource subpool are The occupied frequency domain resources are different from the frequency domain resources occupied by the second resource subpool.
  • the set of candidate resources includes the first subset of candidate resources, the second subset of candidate resources, and the third subset of candidate resources.
  • the third candidate resource subset belongs to the candidate resource set.
  • the set of candidate resources includes multiple subsets of candidate resources, the first subset of candidate resources, the second subset of candidate resources and the third subset of candidate resources are respectively are three candidate resource subsets among the plurality of candidate resource subsets included in the candidate resource set.
  • the third candidate resource subset includes at least one time-frequency resource block.
  • the third candidate resource subset includes multiple time-frequency resource blocks.
  • one time-frequency resource block in the at least one time-frequency resource block included in the third candidate resource subset is a time-frequency resource block in the candidate resource set.
  • the third candidate resource subset includes multiple time-frequency resource blocks, and any time-frequency resource block in the third candidate resource subset belongs to the candidate resource set.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the third candidate resource subset is one of the plurality of time-frequency resource blocks included in the candidate resource set A time-frequency resource block.
  • the third resource subpool includes the third candidate resource subset.
  • the third candidate resource subset belongs to the third resource subpool.
  • one time-frequency resource block in the at least one time-frequency resource block included in the third candidate resource subset is a time-frequency resource block in the third resource subpool.
  • the third candidate resource subset includes multiple time-frequency resource blocks, and any time-frequency resource block in the third candidate resource subset belongs to the second resource subpool.
  • the third candidate resource subset includes at least one time-frequency resource block in the third resource subpool.
  • At least one time-frequency resource block in the plurality of time-frequency resource blocks included in the third resource subpool is the at least one time-frequency resource block included in the third candidate resource subset A time-frequency resource block in .
  • the number of time-frequency resource blocks in the third resource subpool included in the third candidate resource subset is equal to Q3, where Q3 is a positive integer.
  • the number of all time-frequency resource blocks included in the third candidate resource subset is equal to Q3, where Q3 is a positive integer.
  • the number of all time-frequency resource blocks included in the third candidate resource subset is equal to Q3, and all the time-frequency resource blocks included in the third candidate resource subset belong to the third resource sub-set Pool, Q3 is a positive integer.
  • the third candidate resource subset includes Q3 time-frequency resource blocks, and the Q3 time-frequency resource blocks included in the third candidate resource subset all belong to the third resource subpool , Q3 is a positive integer.
  • the third candidate resource subset includes Q3 time-frequency resource blocks, and any time-frequency resource block in the Q3 time-frequency resource blocks included in the third candidate resource subset is the One time-frequency resource block in the plurality of time-frequency resource blocks included in the third resource subpool, Q3 is a positive integer.
  • the third candidate resource subset is determined by the first node performing the first resource determination manner in the third resource subpool.
  • the first node executes the first resource determination manner in the third resource subpool to determine the third candidate resource subset.
  • the first node executes the first resource determination method in the third resource subpool to determine the third candidate resource subset, and the third candidate resource subset includes the at least one time-frequency resource block in the third resource subpool.
  • the first node executes the first resource determination method in the third resource subpool to determine the candidate resource set, and the candidate resource set includes the first candidate resource Subsets, the second candidate resource subset and the third candidate resource subset, the first candidate resource subset includes at least one time-frequency resource block in the first resource subpool, the The second candidate resource subset includes at least one time-frequency resource block in the second resource subpool, and the third candidate resource subset includes at least one time-frequency resource block in the third resource subpool .
  • the candidate resource set overlaps with the third resource subpool.
  • At least one time-frequency resource block in the candidate resource set belongs to the third resource subpool.
  • At least one time-frequency resource block in the candidate resource set is the same as at least one time-frequency resource block in the third resource subpool.
  • the set of candidate resources includes a third subset of candidate resources, and the third subset of candidate resources includes at least one time-frequency resource block in the third resource subpool.
  • the candidate resource set includes a third candidate resource subset
  • the third candidate resource subset includes a plurality of time-frequency resource blocks
  • the third candidate resource subset includes the The multiple time-frequency resource blocks all belong to the third resource subpool.
  • the non-overlap between the candidate resource set and the third resource subpool means that the candidate resource set is orthogonal to the third resource subpool.
  • the candidate resource set is orthogonal to the third resource subpool.
  • the non-overlap between the candidate resource set and the third resource subpool means that any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set does not belong to the Describe the third resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set does not belong to the third resource subpool.
  • any time-frequency resource block in the plurality of time-frequency resource blocks included in the candidate resource set and any time-frequency resource block in the plurality of time-frequency resource blocks included in the third resource subpool are all different.
  • the Q1 and the Q2 are used to determine whether to execute the first resource determination manner in the third resource subpool.
  • the Q1 and the Q2 are used to determine whether to perform the first resource determination manner in the third resource subpool to determine the third candidate resource subset.
  • the Q1 and the Q2 are used to determine whether to perform the first resource determination method in the third resource subpool to determine the candidate resource set, and the candidate resource set includes The first subset of candidate resources, the second subset of candidate resources and the third subset of candidate resources.
  • the Q1 and the Q2 are used to determine whether the candidate resource set overlaps with the third resource subpool.
  • the Q1 and the Q2 are used to determine whether the candidate resource set includes a third candidate resource subset, and the third candidate resource subset is included in the third resource subpool At least one time-frequency resource block of .
  • the Q1 and the Q2 are used to determine whether the candidate resource set includes a third candidate resource subset, and the third candidate resource subset includes multiple time-frequency resource blocks, so The multiple time-frequency resource blocks included in the third candidate resource subset all belong to the third resource subpool.
  • the size relationship between the sum of Q1 and Q2 and the second value is used to determine whether to execute the first resource determination manner in the third resource subpool.
  • the magnitude relationship between the sum of Q1 and Q2 and the second value is used to determine whether to perform the first resource determination method in the third resource subpool to determine the second Three alternative resource subsets.
  • the magnitude relationship between the sum of Q1 and Q2 and the second value is used to determine whether to perform the first resource determination method in the third resource subpool to determine the standby A set of selected resources, where the set of candidate resources includes the first subset of candidate resources, the second subset of candidate resources and the third subset of candidate resources.
  • the size relationship between the sum of Q1 and Q2 and the second value is used to determine whether the candidate resource set overlaps with the third resource subpool.
  • the size relationship between the sum of Q1 and Q2 and the second value is used to determine whether the candidate resource set includes a third candidate resource subset, the third candidate resource
  • the subset includes at least one time-frequency resource block in the third resource subpool.
  • the size relationship between the sum of Q1 and Q2 and the first value is used to determine whether the candidate resource set includes a third candidate resource subset, the third candidate resource
  • the subset includes multiple time-frequency resource blocks, and the multiple time-frequency resource blocks included in the third candidate resource subset all belong to the third resource subpool.
  • the sum of the Q1 and the Q2 is not greater than the second value.
  • the sum of the Q1 and the Q2 is greater than the second value.
  • the sum of the Q1 and the Q2 is equal to the second value.
  • the sum of the Q1 and the Q2 is smaller than the second value.
  • the second value is a positive integer.
  • the second value is configured by higher layer signaling.
  • the second value is equal to the first value.
  • the second value is not equal to the first value.
  • the second value is greater than the first value.
  • the second value is not greater than the number of time-frequency resource blocks in the first resource subpool within the first resource selection window.
  • the second value is equal to the product of the second coefficient and the number of time-frequency resource blocks in the first resource subpool within the first resource selection window.
  • the second coefficient is a positive decimal not greater than 1.
  • the second coefficient is a true fraction greater than 0 and not greater than 1.
  • the second coefficient is equal to the first coefficient.
  • the second coefficient is not equal to the first coefficient.
  • the second coefficient is greater than the first coefficient.
  • the first resource determination method is executed in the third resource subpool; when the Q1 and the Q2 When the sum of is greater than the second value, give up performing the first resource determination manner in the third resource subpool.
  • the first resource determination method is executed in the third resource subpool; when the sum of the Q1 and the Q2 When the sum is equal to the second value, execute the first resource determination method in the third resource subpool; when the sum of the Q1 and Q2 is greater than the second value, give up in the third resource subpool The first resource determination manner is executed in the three resource subpools.
  • the first resource determination method is executed in the third resource subpool; when the sum of the Q1 and the Q2 When the sum is not less than the second value, abandon performing the first resource determination manner in the third resource subpool.
  • the first resource determination method is executed in the third resource subpool; when the sum of the Q1 and the Q2 When the sum is equal to the second value, give up performing the first resource determination method in the third resource subpool; when the sum of the Q1 and Q2 is greater than the second value, give up in the The first resource determination manner is executed in the third resource subpool.
  • the first resource determination method is executed in the third resource subpool to determine the third candidate resource A subset; when the sum of the Q1 and the Q2 is greater than the second value, giving up performing the first resource determination manner in the third resource subpool.
  • the first resource determination method is executed in the third resource subpool to determine the third candidate resource subpool set; when the sum of the Q1 and the Q2 is not less than the second value, give up performing the first resource determination manner in the third resource subpool.
  • the first resource determination method is executed in the third resource subpool to determine the candidate resource set,
  • the candidate resource set includes the first candidate resource subset, the second candidate resource subset and the third candidate resource subset; when the sum of the Q1 and the Q2 is greater than the When the value is the second value, the execution of the first resource determination manner in the third resource subpool is abandoned.
  • the first resource determination method is executed in the third resource subpool to determine the candidate resource set, so The candidate resource set includes the first candidate resource subset, the second candidate resource subset and the third candidate resource subset; when the sum of the Q1 and the Q2 is not less than the When the value is the second value, the execution of the first resource determination manner in the third resource subpool is abandoned.
  • the candidate resource set overlaps with the third resource subpool; when the Q1 and the Q2 When the sum of is greater than the second value, the candidate resource set is orthogonal to the third resource subpool.
  • the candidate resource set when the sum of the Q1 and the Q2 is less than the second value, the candidate resource set overlaps with the third resource subpool; when the sum of the Q1 and the Q2 When the sum is equal to the second value, the set of candidate resources overlaps with the third resource subpool; when the sum of the Q1 and Q2 is greater than the second value, the candidate resource set The set is orthogonal to said third resource subpool.
  • the candidate resource set when the sum of the Q1 and the Q2 is less than the second value, the candidate resource set overlaps with the third resource subpool; when the sum of the Q1 and the Q2 When the sum is not less than the second value, the candidate resource set is orthogonal to the third resource subpool.
  • the candidate resource set when the sum of the Q1 and the Q2 is less than the second value, the candidate resource set overlaps with the third resource subpool; when the sum of the Q1 and the Q2 When the sum is equal to the second value, the candidate resource set is orthogonal to the third resource subpool; when the sum of the Q1 and Q2 is greater than the second value, the candidate resource set Orthogonal to the third resource subpool.
  • the candidate resource set when the sum of Q1 and Q2 is not greater than the second value, the candidate resource set includes a third candidate resource subset, and the third candidate resource subset includes the At least one time-frequency resource block in the third resource subpool; when the sum of Q1 and Q2 is greater than the second value, any time-frequency resource block in the third resource subpool does not belong to the The set of alternative resources described above.
  • the candidate resource set when the sum of the Q1 and the Q2 is less than the second value, the candidate resource set includes a third candidate resource subset; when the sum of the Q1 and the Q2 is equal to the When the second value is greater than the second value, the candidate resource set includes a third candidate resource subset; when the sum of the Q1 and Q2 is greater than the second value, any of the third resource subpools The frequency resource block does not belong to the candidate resource set; the third candidate resource subset includes at least one time-frequency resource block in the third resource subpool.
  • the candidate resource set when the sum of Q1 and Q2 is less than the second value, the candidate resource set includes a third candidate resource subset, and the third candidate resource subset includes the At least one time-frequency resource block in the second resource subpool; when the sum of the Q1 and Q2 is not less than the second value, any time-frequency resource block in the third resource subpool does not belong to the The set of alternative resources described above.
  • the candidate resource set when the sum of Q1 and Q2 is less than the second value, the candidate resource set includes a third candidate resource subset, and the third candidate resource subset includes the At least one time-frequency resource block in the third resource subpool; when the sum of the Q1 and the Q2 is equal to the second value, any time-frequency resource block in the third resource subpool does not belong to the A set of candidate resources; when the sum of Q1 and Q2 is greater than the second value, any time-frequency resource block in the third resource subpool does not belong to the set of candidate resources.
  • a ratio between the sum of Q1 and Q2 and the second value is used to determine whether to perform the first resource determination manner in the third resource subpool.
  • the ratio between the sum of Q1 and Q2 and the second value is used to determine whether to perform the first resource determination method in the third resource subpool to determine the A third candidate subset of resources.
  • the ratio between the sum of Q1 and Q2 and the second value is used to determine whether to perform the first resource determination method in the third resource subpool to determine the A set of candidate resources, where the set of candidate resources includes the first subset of candidate resources, the second subset of candidate resources and the third subset of candidate resources.
  • a ratio between the sum of Q1 and Q2 and the second value is used to determine whether the candidate resource set overlaps with the third resource subpool.
  • the ratio between the sum of Q1 and Q2 and the second value is used to determine whether the candidate resource set includes a third candidate resource subset, the third candidate
  • the resource subset includes at least one time-frequency resource block in the third resource subpool.
  • the first resource determination method is executed in the third resource subpool;
  • the candidate resource set includes the first Three candidate resource subsets, the third candidate resource subset includes at least one time-frequency resource block in the third resource subpool, and the third resource subset included in the third candidate resource subset
  • the number of time-frequency resource blocks in the pool is equal to Q3, and Q3 is a positive integer; when the sum of the Q1 and the Q2 is greater than the second value, give up executing the first resource in the third resource subpool Determination method: any time-frequency resource block in the candidate resource set does not belong to the third resource subpool.
  • the first resource determination method is executed in the third resource subpool;
  • the candidate resource set includes the third A candidate resource subset, the third candidate resource subset includes at least one time-frequency resource block in the third resource subpool, and the third resource subpool included in the third candidate resource subpool
  • the number of time-frequency resource blocks in is equal to Q3, and Q3 is a positive integer; when the sum of the Q1 and the Q2 is not less than the second value, give up executing the first resource in the third resource subpool Determination method: any time-frequency resource block in the candidate resource set does not belong to the third resource subpool.
  • Embodiment 8B illustrates a schematic diagram of the relationship between the second monitoring period and the first monitoring period according to an embodiment of the present application, as shown in FIG. 8B .
  • the dotted big box represents the first resource pool in this application;
  • the long solid line rectangle represents the time domain resource block among the M time domain resource blocks in this application;
  • the long dotted line rectangle represents X1 in this application
  • the long rectangle with thick solid line represents the reference time-domain resource block in this application;
  • the short rectangle represents the time-frequency resource block in the first resource pool in this application;
  • the square frame with thick dotted line Represents the candidate resource set in this application;
  • the rectangle filled with oblique squares represents the candidate time-frequency resource block in this application.
  • the first resource pool includes all The M time-domain resource blocks and the X time-domain resource blocks; the reference time-domain resource block is later than any time-domain resource block in the M time-domain resource blocks and the X time-domain resource blocks ;
  • the candidate time-frequency resource block is one of the multiple time-frequency resource blocks included in the first resource pool, and the candidate time-frequency resource block is associated with the M time-frequency resource blocks At least one time-domain resource block in the domain resource block, the candidate time-frequency resource block is associated to at least one time-domain resource block in the X time-domain resource blocks; for the M time-domain resource blocks
  • the measurement results and the measurement results for the X time-domain resource blocks are used to determine whether the candidate time-frequency resource blocks belong to the candidate resource set; any two of the M time-domain resource blocks are adjacent
  • the second monitoring period is spaced between the time domain resource blocks of the X time domain
  • the second monitoring period includes a positive integer number of time slots.
  • the second monitoring period includes multiple multi-carrier symbols.
  • the unit of the second monitoring period is milliseconds (ms).
  • the resource reservation period list includes multiple periods.
  • any period in the plurality of periods included in the resource reservation period list includes a positive integer number of time slots.
  • any period among the multiple periods included in the resource reservation period list includes multiple multi-carrier symbols.
  • the unit of any period in the plurality of periods included in the resource reservation period list is ms.
  • the resource reservation period list includes all or part of ⁇ 0ms, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1000ms ⁇ .
  • the resource reservation period list is a subset of ⁇ 0ms, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1000ms ⁇ .
  • any of the multiple periods included in the resource reservation period list is one of ⁇ 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1000ms ⁇ .
  • any period in the plurality of periods included in the resource reservation period list is a positive integer from 1 to 99.
  • the resource reservation period list is provided by a higher layer of the first node.
  • the resource reservation period list is indicated by a higher layer signaling.
  • the resource reservation period list is indicated by an RRC signaling.
  • the resource reservation period list is indicated by sl-ResourceReservePeriodList in 3GPP TS214.
  • the second monitoring period is one of the multiple periods included in the resource reservation period list.
  • the second monitoring period is one of ⁇ 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1000ms ⁇ .
  • the first resource pool includes the multiple time-domain resource blocks in the time domain including the M time-domain resource blocks, where M is a positive integer greater than 1.
  • any time-domain resource block among the M time-domain resource blocks is a time-domain resource block among the multiple time-domain resource blocks included in the first resource pool in the time domain, and M is A positive integer greater than 1.
  • the second monitoring period is spaced between any two adjacent time-domain resource blocks among the M time-domain resource blocks, and M is a positive integer greater than 1.
  • the time domain interval between any two adjacent time domain resource blocks among the M time domain resource blocks is equal to the second monitoring period, and M is a positive integer greater than 1.
  • the first time-domain resource block and the second time-domain resource block are two time-domain resource blocks in the X time-domain resource blocks, and the first time-domain resource block and the second time-domain resource block The resource blocks in the time domain are adjacent, and X is a positive integer greater than 1.
  • the M time domain resource blocks are respectively M time slots.
  • the M time-domain resource blocks are respectively M time slots in the first resource pool.
  • any one of the M time-domain resource blocks includes a positive integer number of multi-carrier symbols.
  • Embodiment 9A illustrates a flow chart of determining whether to perform the first resource determination method again in the first resource subpool according to an embodiment of the present application, as shown in FIG. 9A .

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括第一资源子池和第二资源子池;在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合;在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。本申请多种资源确定方式的用户设备共享资源池的冲突问题。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中副链路(Sidelink)相关的传输方案和装置。
背景技术
从LTE(Long Term Evolution,长期演进)开始,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)已经在发展SL(Sidelink,副链路)作为用户与用户之间的直连通信方式,并在Rel-16(Release-16,版本16)中完成了“5G V2X with NR Sidelink”的第一个NR SL(New Radio Sidelink,新空口副链路)标准。在Rel-16中,NR SL主要被设计用于V2X(Vehicle-To-Everything,车联网),但它也可以用于公共安全(Public Safety)。
但由于时间限制,NR SL Rel-16不能完全支持足3GPP为5G V2X识别的业务需求和工作场景。因此3GPP将在Rel-17中研究增强NR SL。
发明内容
在NR SL系统中,允许随机资源选择,部分感知以及完全感知的UE(User Equipment,用户设备)共享同一个资源池,当一个感知UE感知到临近的VRU(Vulnerable road user,弱势道路用户)或者PUE(Pedestrian user equipment,行人用户设备)所占用的时频资源,尽管感知UE的数据优先级高于临近的VRU或者PUE的数据优先级,但由于VRU或者PUE采用随机资源选择的方式而不执行信道感知导致无法避免对临近UE的干扰,感知UE不得不采取主动避让干扰的时频资源,导致高端的感知UE的传输性能受到影响。因此,有公司提出在一个资源池中划分多个资源区域,采用不同资源确定方式的UE可以在不同的资源区域中分配资源,从而在一定程度上避免资源冲突。但当感知UE选择随机资源选择区域的资源时仍会造成冲突。
针对上述问题,本申请公开了一种资源分配的方法,从而有效避免共享资源池的UE间资源冲突的问题。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;
在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合,所述备选资源集合包括所述第一资源池中的至少一个时频资源块;
在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;
其中,所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
作为一个实施例,本申请要解决的问题是:当采用不同资源分配方案的UEs共享资源池时,非感知UE无法避免对临近UE的干扰,感知UE不得不采取主动避让干扰的时频资源,导致高端的感知UE的传输性能受到影响。
作为一个实施例,本申请的方法是:对于感知UE,在共享资源池的不同资源区域内,优先选择只允许执行基于感知的资源确定方式的资源区域,当备选资源数量不够时,再从基于部分感知或者随机资源选择的资源区域内感知资源,从而使降低了感知UE在共享资源池中的资源冲突,同时又保证一定量的可用资源。
作为一个实施例,上述方法的好处在于,感知UE既有足够的可用资源,也可以尽可能避免与非感知UE的资源冲突。
根据本申请的一个方面,上述方法的特征在于,包括:
当所述Q1不大于第一数值时,在所述第二资源子池中执行所述第一资源确定方式;
其中,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
当所述Q1大于第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式;
其中,所述备选资源集合中的任一时频资源块不属于所述第二资源子池。
根据本申请的一个方面,上述方法的特征在于,所述第一资源池包括K个资源子池,所述K个资源子池两两相互正交,K是大于2的正整数;所述第一资源子池和所述第二资源子池分别是所述K个资源子池中的两个资源子池;第三资源子池是所述K个资源子池中不同于所述第一资源子池和所述第二资源子池的一个资源子池;所述Q1和所述Q2被用于确定所述备选资源集合是否与所述第三资源子池交叠。
根据本申请的一个方面,上述方法的特征在于,包括:
当所述Q1与所述Q2的和不大于第二数值时,在所述第三资源子池中执行所述第一资源确定方式以确定第三备选资源子集;
其中,所述备选资源集合包括所述第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数。
根据本申请的一个方面,上述方法的特征在于,所述备选资源集合包括的时频资源块的数量与第三数值的大小关系被用于确定是否在所述第一资源子池中再次执行所述第一资源确定方式。
根据本申请的一个方面,上述方法的特征在于,包括:
向更高层上班上报所述备选资源集合。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第二信令,所述第二信令指示第一资源池;
在目标时频资源块上接收第一信号;
其中,所述第一资源池包括多个时频资源块,所述目标时频资源块是所述第一资源池中的一个时频资源块。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;
第一处理机,在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以 确定备选资源集合;
第一发射机,在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;
其中,所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机,接收第二信令,所述第二信令指示第一资源池;
第三接收机,在目标时频资源块上接收第一信号;
其中,所述第一资源池包括多个时频资源块,所述目标时频资源块是所述第一资源池中的一个时频资源块。
作为一个实施例,本申请具备如下优势:
-本申请要解决的问题是:当采用不同资源分配方案的UEs共享资源池时,非感知UE无法避免对临近UE的干扰,感知UE不得不采取主动避让干扰的时频资源,导致高端的感知UE的传输性能受到影响;
-在本申请中,对于感知UE,在共享资源池的不同资源区域内,优先选择只允许执行基于感知的资源确定方式的资源区域,当备选资源数量不够时,再从基于部分感知或者随机资源选择的资源区域内感知资源,从而使降低了感知UE在共享资源池中的资源冲突,同时又保证一定量的可用资源;
-本申请中,感知UE既有足够的可用资源,也可以尽可能避免与非感知UE的资源冲突。
为了节省功率开销,在NR SL增强系统中将引入基于周期的部分感知的资源分配方法。3GPP已经同意基于周期的部分感知的感知周期从高层信令配置的周期集合中选出。该周期集合中的周期可能配置较大的周期值,导致基于周期的部分感知在非常稀疏的资源上监测以节省功率开销。根据SL业务需求,周期性发送的SL数据包所占用的资源之间的时间间隔可能较小,而稀疏的资源感知无法为密集发送的SL数据包提供可靠的可用资源,导致资源碰撞概率较大。因此,有公司提出将SL数据包的发送周期引入到基于周期的部分感知流程中,但这势必会加大功率开销,并且如果不同用户的SL数据包发送周期不一致,很容易导致碰撞概率加大。
针对上述问题,本申请公开了一种基于周期的部分感知的资源分配方法,从而获得了可靠的资源感知和功率开销的平衡。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;
分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一资源预留间隔,Y是大于1的正整数;
其中,所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源 池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,本申请要解决的问题是:根据SL业务需求,周期性发送的SL数据包所占用的资源之间的时间间隔可能较小,而稀疏的资源感知无法为密集发送的SL数据包提供可靠的可用资源,导致资源碰撞概率较大。但将SL数据包的发送周期直接引入到基于周期的部分感知流程中,又会加大功率开销,并且如果不同用户的SL数据包发送周期不一致,很容易导致碰撞概率加大。
作为一个实施例,本申请的方法是:根据SL数据包的优先级,灵活调整基于周期的部分感知资源分配方法的感知周期;当SL数据包的优先级较高,则感知周期调整为更密集;当SL数据包的优先级较低,则感知周期调整为更稀疏;
作为一个实施例,上述方法的好处在于,有效平衡了可靠的资源感知和功率开销。
根据本申请的一个方面,上述方法的特征在于,包括:
在参考时域资源块上获得第一参数组,所述第一参数组包括所述第一资源池,所述第一优先级和所述第一资源预留间隔;
其中,在所述参考时域资源块上获得所述第一参数组被用于触发分别在所述X个时域资源块上执行所述监测;所述参考时域资源块属于所述第一资源池中的一个时频资源块所占用的时域资源;所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块。
根据本申请的一个方面,上述方法的特征在于,包括:
在参考时域资源块上提供第一参数组,所述第一参数组包括所述第一资源池,所述第一优先级和所述第一资源预留间隔;
其中,在所述参考时域资源块上提供所述第一参数组被用于触发所述第一接收机分别在所述X个时域资源块上执行所述监测;所述参考时域资源块属于所述第一资源池中的一个时频资源块所占用的时域资源;所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块。
根据本申请的一个方面,上述方法的特征在于,所述第一系数与所述第一资源预留间隔的乘积等于所述第一监测周期。
根据本申请的一个方面,上述方法的特征在于,所述第一优先级等于第一整数,所述第一系数与所述第一整数成正比例。
根据本申请的一个方面,上述方法的特征在于,所述第一资源池包括Y1个时频资源块,所述备选时频资源块是所述Y1个时频资源块中的一个时频资源块,所述Y1个时频资源块中的任意两个相邻的时频资源块之间在时域的间隔等于所述第一资源预留间隔,所述Y1个时频资源块中的任一时频资源块被关联到所述X个时域资源块中的至少一个时频资源块,Y1是大于1的正整数;针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块中的任一时频资源块是否属于所述备选资源集合。
根据本申请的一个方面,上述方法的特征在于,包括:
分别在M个时域资源块上执行所述监测,所述M个时域资源块属于所述第一资源池所占用的时域资源,所述M个时域资源块中任意两个相邻的时域资源块之间间隔第二监测周期,M是大于1的正整数;
其中,针对所述M个时域资源块的测量结果和针对所述X个时域资源块的测量结果共同被用于确定所述备选时频资源块是否属于所述备选资源集合;所述第二监测周期是资源预留周期列表中的一个周期,所述资源预留周期列表是更高层信令配置的,所述第一监测周期与所述资源预留周期列表中的任一周期都不同。
根据本申请的一个方面,上述方法的特征在于,包括:
向更高层报告所述备选资源集合。
根据本申请的一个方面,上述方法的特征在于,包括:
接收所述备选资源集合,并从所述备选资源集合中选择所述Y个时频资源块。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
分别在Y个时频资源块上接收Y个第一类信号,Y是大于1的正整数;
其中,第一资源池在时域包括所述Y个时频资源块;所述Y个第一类信号携带第一资源预留间隔;所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于所述第一资源预留间隔。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;
第一发射机,分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一资源预留间隔,Y是大于1的正整数;
其中,所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机,分别在Y个时频资源块上接收Y个第一类信号,Y是大于1的正整数;
其中,第一资源池在时域包括所述Y个时频资源块;所述Y个第一类信号携带第一资源预留间隔;所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于所述第一资源预留间隔。
作为一个实施例,本申请具备如下优势:
-本申请要解决的问题是:根据SL业务需求,周期性发送的SL数据包所占用的资源之间的时间间隔可能较小,而稀疏的资源感知无法为密集发送的SL数据包提供可靠的可用资源,导致资源碰撞概率较大。但将SL数据包的发送周期直接引入到基于周期的部分感知流程中,又会加大功率开销,并且如果不同用户的SL数据包发送周期不一致,很容易导致碰撞概率加大;
-在本申请中,根据SL数据包的优先级,灵活调整基于周期的部分感知资源分配方法的感知周期;当SL数据包的优先级较高,则感知周期调整为更密集;当SL数据包的优先级较低,则感知周期调整为更稀疏;
-本申请有效平衡了可靠的资源感知和功率开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1A示出了根据本申请的一个实施例的第一节点的处理流程图;
图1B示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5A示出了根据本申请的一个实施例的无线信号传输流程图;
图5B示出了根据本申请的一个实施例的无线信号传输流程图;
图6A示出了根据本申请的一个实施例的第一资源池,第一资源子池和第二资源子池与备选资源集合,第一备选资源子集和第二备选资源子集之间关系的示意图;
图6B示出了根据本申请的一个实施例的第一监测周期与第一资源预留间隔之间关系的示意图;
图7A示出了根据本申请的一个实施例的确定是否在第二资源子池中执行第一资源确定方式的流程图;
图7B示出了根据本申请的另一个实施例的第一监测周期与第一资源预留间隔之间关系的示意图;
图8A示出了根据本申请的一个实施例的确定是否在第三资源子池中执行第一资源确定方式的流程图;
图8B示出了根据本申请的一个实施例的第二监测周期与第一监测周期之间关系的示意图;
图9A示出了根据本申请的一个实施例的确定是否在第一资源子池中再次执行第一资源确定方式的流程图;
图9B示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图10A示出了根据本申请的一个实施例的执行第一资源确定方式的示意图;
图10B示出了根据本申请的另一个实施例的用于第一节点中的处理装置的结构框图;
图11A示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图11B示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
[根据细则26改正28.09.2022] 
图12示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1A
实施例1A示例了本申请的一个实施例的第一节点的处理流程图,如附图1A所示。在附图1A中,每个方框代表一个步骤。
在实施例1A中,本申请中的第一节点首先执行步骤101A,接收第一信令,所述第一信令指示第一资源池;然后执行步骤102A,在第一资源子池和第二资源子池中的至少前者中执行第一资源确定方式以确定备选资源集合;最后执行步骤103A,在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;所述第一资源池包括多个时频资源块;所述第一资源池包括所述第一资源子池和所述第二资源子池;所述第一资源子池与所述第二资源子池正交;,所述备选资源集合包括所述第一资源池中的至少一个时频资源块;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
作为一个实施例,所述第一资源池包括一个副链路资源池(Sidelink Resource Pool)的全部或部分资源。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块占用多个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号(Symbol(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子载波(Subcarrier(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个物理资源块(Physical Resource Block(s),PRB(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个子信道(Subchannel(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个时隙(Slot(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个Slot(s),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域占用正整数个Slot(s),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域占用正整数个Subchannel(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的时域资源是正整数个Slot(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的时域资源是正整数个Symbol(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是正整数个Subchannel(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括多个时域资源块。
作为一个实施例,所述第一资源池包括多个时域资源块,所述第一资源池包括的所述多个时频资源块在时域上都属于所述第一资源池包括的所述多个时域资源块。
作为一个实施例,所述第一资源池包括多个时域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域上是所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个Slot(s)。
作为一个实施例,所述第一资源池包括的所述多个时域资源块中的任一时域资源块占用正整数个Symbol(s)。
作为一个实施例,所述第一资源池包括多个频域资源块。
作为一个实施例,所述第一资源池包括多个频域资源块,所述第一资源池包括的所述多个时频资源块在频域上都属于所述第一资源池包括的所述多个频域资源块。
作为一个实施例,所述第一资源池包括多个频域资源块,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域上是所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块占用正整数个Subchannel(s)。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池。
作为一个实施例,所述第一资源池包括K个资源子池,所述第一资源子池和所述第二资源子池分别是所述K个资源子池中的两个资源子池。
作为一个实施例,所述第一资源子池包括多个时频资源块。
作为一个实施例,所述第二资源子池包括多个时频资源块。
作为一个实施例,所述第一资源子池包括的所述多个时频资源块属于所述第一资源池。
作为一个实施例,所述第二资源子池包括的所述多个时频资源块属于所述第一资源池。
作为一个实施例,所述第一资源子池包括的所述多个时频资源块中的任一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第二资源子池包括的所述多个时频资源块中的任一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第一资源子池包括所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块。
作为一个实施例,所述第二资源子池包括所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块。
作为一个实施例,所述第一资源子池和所述第二资源子池是正交的。
作为一个实施例,所述第一资源子池和所述第二资源子池在频域是正交的。
作为一个实施例,所述第一资源子池和所述第二资源子池在时域是正交的。
作为一个实施例,所述第一资源子池和所述第二资源子池在频域是正交的,所述第一资源子池和所述第二资源子池在时域有交叠。
作为一个实施例,所述第一资源子池和所述第二资源子池在时域是正交的,所述第一资源子池和所述第二资源子池在频域有交叠。
作为一个实施例,所述第一资源子池包括的所述多个时频资源块中的任一时频资源块不属于所述第二资源子池。
作为一个实施例,所述第一资源子池包括的所述多个时频资源块中的任一时频资源块与所述第二资源子池包括的所述多个时频资源块都不同。
作为一个实施例,所述第一资源子池所占用的时域资源与所述第二资源子池所占用的时域资源相同,所述第一资源子池所占用的频域资源与所述第二资源子池所占用的频域资源不同。
作为一个实施例,所述第一资源子池中的一个时频资源块所占用的时域资源与所述第二资源子池中的一个时频资源块所占用的时域资源不同,所述第一资源子池中的一个时频资源块所占用的频域资源与所述第二资源子池中的一个时频资源块所占用的频域资源相同。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一信令包括一个更高层信令(Higher Layer Signaling)中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个MAC(Multimedia Access Control,多媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个PHY(Physical Layer,物理层)层信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个SCI(Sidelink Control Information,副链路控制信息)中的一个或多个域。
作为一个实施例,SCI的定义参考3GPP TS38.212的章节8.3和章节8.4。
作为一个实施例,所述第一信令包括一个DCI(Downlink Control Information,下行控制信息)中的一 个或多个域。
作为一个实施例,所述第一信令占用的信道包括PSCCH和PSSCH中的至少之一。
作为一个实施例,所述第一信令直接指示所述第一资源池。
作为一个实施例,所述第一信令间接指示所述第一资源池。
作为一个实施例,所述第一信令指示所述第一资源池和第一优先级。
作为一个实施例,所述第一信令指示所述第一资源池和剩余数据包延迟预算(the remaining Packet Delay Budget,the remaining PDB)。
作为一个实施例,所述第一信令指示所述第一资源池,所述第一优先级和所述剩余数据包延迟预算。
作为一个实施例,所述第一信令指示所述第一资源池所占用的时域资源。
作为一个实施例,所述第一信令指示所述第一资源池所占用的频域资源。
作为一个实施例,所述第一信令包括多个域,所述第一资源池是所述第一信令包括的所述多个域中的至少一个域。
作为一个实施例,所述第一信令包括多个域,所述第一资源池所占用的时域资源,所述第一资源池所占用的频域资源,所述第一优先级和所述剩余数据包延迟预算分别是所述第一信令包括的所述多个域中的至少四个域。
作为一个实施例,所述第一优先级是本申请中的所述第一信号的优先级。
作为一个实施例,所述第一优先级是本申请中的所述第一信号的L1(Layer 1,层1)优先级。
作为一个实施例,所述剩余数据包的延迟预算是本申请中的所述第一信号的剩余数据包延迟预算。
作为一个实施例,所述第一资源池包括所述备选资源集合。
作为一个实施例,所述备选资源集合属于所述第一资源池。
作为一个实施例,所述备选资源集合包括所述第一资源池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合包括多个时频资源块。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块都属于所述第一资源池。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选资源集合包括所述第一资源池中的至少一个时域资源块。
作为一个实施例,所述备选资源集合包括多个时域资源块。
作为一个实施例,所述备选资源集合包括的所述多个时域资源块都属于所述第一资源池。
作为一个实施例,所述备选资源集合包括的所述多个时域资源块中的任一时域资源块是所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述备选资源集合包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述备选资源集合包括多个频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个频域资源块都属于所述第一资源池。
作为一个实施例,所述备选资源集合包括的所述多个频域资源块中的任一频域资源块是所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块是传输数据的可用资源。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块是传输SL的可用资源。
作为一个实施例,所述备选资源集合包括所述第一备选资源子集。
作为一个实施例,所述第一备选资源子集属于所述备选资源集合。
作为一个实施例,所述备选资源集合包括至少一个备选资源子集,所述第一备选资源子集是所述备选资源集合包括的所述至少一个备选资源子集中的之一。
作为一个实施例,所述第一备选资源子集包括至少一个时频资源块。
作为一个实施例,所述第一备选资源子集包括多个时频资源块。
作为一个实施例,所述第一备选资源子集包括的所述至少一个时频资源块中的一个时频资源块是所述 备选资源集合中的一个时频资源块。
作为一个实施例,所述第一备选资源子集包括多个时频资源块,所述第一备选资源子集中的任一时频资源块属于所述备选资源集合。
作为一个实施例,所述第一备选资源子集包括的所述多个时频资源块中的任一时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选资源集合仅包括所述第一备选资源子集。
作为一个实施例,所述第一备选资源子集与所述备选资源集合相同。
作为一个实施例,所述备选资源集合中的任一时频资源块是所述第一备选资源子集中的一个时频资源块。
作为一个实施例,所述第一资源子池包括所述第一备选资源子集。
作为一个实施例,所述第一备选资源子集属于所述第一资源子池。
作为一个实施例,所述第一备选资源子集包括的所述至少一个时频资源块中的一个时频资源块是所述第一资源子池中的一个时频资源块。
作为一个实施例,所述第一备选资源子集包括多个时频资源块,所述第一备选资源子集中的任一时频资源块属于所述第一资源子池。
作为一个实施例,所述第一备选资源子集包括的所述多个时频资源块中的任一时频资源块是所述第一资源子池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块。
作为一个实施例,所述第一资源子池包括的所述多个时频资源块中的至少一个时频资源块属于所述第一备选资源子集。
作为一个实施例,所述第一资源子池包括的所述多个时频资源块中的至少一个时频资源块是所述第一备选资源子集包括的所述至少一个时频资源块中的一个时频资源块。
作为一个实施例,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数。
作为一个实施例,所述第一备选资源子集包括的所有时频资源块的数量等于Q1,Q1是正整数。
作为一个实施例,所述第一备选资源子集包括的所有时频资源块的数量等于Q1,所述第一备选资源子集包括的所有时频资源块都属于所述第一资源子池,Q1是正整数。
作为一个实施例,所述第一备选资源子集包括Q1个时频资源块,所述第一备选资源子集包括的所述Q1个时频资源块都属于所述第一资源子池,Q1是正整数。
作为一个实施例,所述第一备选资源子集包括Q1个时频资源块,所述第一备选资源子集包括的所述Q1个时频资源块中的任一时频资源块是所述第一资源子池包括的所述多个时频资源块中的一个时频资源块,Q1是正整数。
作为一个实施例,所述第一备选资源子集是所述第一节点在所述第一资源子池中执行所述第一资源确定方式所确定的。
作为一个实施例,所述第一节点在所述第一资源子池中执行所述第一资源确定方式以确定所述第一备选资源子集。
作为一个实施例,所述第一节点在所述第一资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合包括所述目标时频资源块。
作为一个实施例,所述目标时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述目标时频资源块是从所述备选资源集合包括的所述多个时频资源块中随机选出的。
作为一个实施例,所述目标时频资源块是从所述备选资源集合包括的所述多个时频资源块中等概率随机选出的。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号在PSCCH上传输。
作为一个实施例,所述第一信号在PSSCH上传输。
作为一个实施例,所述第一信号在PSCCH和PSSCH上传输。
作为一个实施例,所述第一信号包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信号包括所述第一比特块,所述第一比特块包括至少一个比特。
作为一个实施例,所述第一信号携带所述第一比特块,所述第一比特块包括至少一个比特。
作为一个实施例,所述第一比特块被用于生成所述第一信号,所述第一比特块包括至少一个比特。
作为一个实施例,所述第一信号中的所述第一比特块在PSSCH上传输。
作为一个实施例,所述第一信号中的所述第一比特块来自SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,所述第一比特块包括正整数个比特,所述第一比特块包括的所述正整数个比特中的所有或部分比特被用于生成所述第一信号。
作为一个实施例,所述第一比特块包括1个CW(Codeword,码字)。
作为一个实施例,所述第一比特块包括1个CB(Code Block,编码块)。
作为一个实施例,所述第一比特块包括1个CBG(Code Block Group,编码块组)。
作为一个实施例,所述第一比特块包括1个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块的所有或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到物理资源块(Mapping to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第一信号。
作为一个实施例,所述第一信号是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation)之后的输出。
作为一个实施例,所述信道编码基于极化(polar)码。
作为一个实施例,所述信道编码基于LDPC(Low-density Parity-Check,低密度奇偶校验)码。
作为一个实施例,所述第一信号包括第一子信令和所述第一比特块。
作为一个实施例,所述第一信号中的所述第一子信令被用于调度所述第一信号中的所述第一比特块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源,所述第一信号所占用的时频资源属于所述目标时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源,所述第一信号所占用的时频资源是所述目标时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号中的所述第一比特块所占用的时频资源,所述第一信号中的所述第一比特块所占用的所述时频资源属于所述目标时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述目标时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一比特块所经历的调制编码方式(Modulation and Coding Scheme,MCS)。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所采用的解调参考信号(Demodulation Reference Signal,DMRS)。
作为一个实施例,所述第一信号包括一个或多个域。
作为一个实施例,所述第一信号包括一个SCI中的一个或多个域。
作为一个实施例,所述第一信号包括一个DCI。
作为一个实施例,所述第一信号所占用的时频资源属于所述目标时频资源块。
作为一个实施例,所述第一信号所占用的时频资源是所述目标时频资源块。
实施例1B
实施例1B示例了本申请的一个实施例的第一节点的处理流程图,如附图1B所示。在附图1B中,每个方框代表一个步骤。
在实施例1B中,本申请中的第一节点首先执行步骤101B,分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;再执行步骤102B,分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一资源预留间隔,Y是大于1的正整数;所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,所述第一资源池包括一个副链路资源池(Sidelink Resource Pool)的全部或部分资源。
作为一个实施例,所述第一资源池包括多个时频资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的至少一个时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块占用多个REs(Resource Elements,资源单元)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括正整数个多载波符号(Symbol(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括正整数个子载波(Subcarrier(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括正整数个物理资源块(Physical Resource Block(s),PRB(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括正整数个多载波符号,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括正整数个子信道(Subchannel(s))。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括正整数个时隙(Slot(s)),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括正整数个Slot(s),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块在时域包括正整数个Slot(s),所述第一资源池包括的所述多个时频资源块中的任一时频资源块在频域包括正整数个Subchannel(s)。
作为一个实施例,所述第一资源池在时域包括多个时域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的时域资源是所述第一资源池在时域包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块包括正整数个Symbol(s)。
作为一个实施例,所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块包括正整数个Slot(s)。
作为一个实施例,所述第一资源池在频域包括多个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个时频资源块中的任一时频资源块所占用的频域资源是所述第一资源池在频域包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块包括正整数个Subcarrier(s)。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块包括正整数个PRB(s)。
作为一个实施例,所述第一资源池包括的所述多个频域资源块中的任一频域资源块包括正整数个Subchannel(s)。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一资源池在时域包括所述多个时域资源块包括所述X个时域资源块,X是大于1的正整数。
作为一个实施例,所述X个时域资源块属于所述第一资源池在时域包括的所述多个时域资源块,X是大于1的正整数。
作为一个实施例,所述X个时域资源块中的任一时域资源块是所述第一资源池在时域包括的所述多个时域资源块中的一个时域资源块,X是大于1的正整数。
作为一个实施例,所述第一资源池在时域包括所述多个时域资源块,所述X个时域资源块中的任一时域资源块是所述第一资源池在时域包括的所述多个时域资源块中的一个时域资源块,X是大于1的正整数。
作为一个实施例,所述X个时域资源块中任意两个相邻的时域资源块之间间隔所述第一监测周期,X是大于1的正整数。
作为一个实施例,第一时域资源块和第二时域资源块分别是所述X个时域资源块中的两个时域资源块,所述第一时域资源块与所述第二时域资源块相邻,X是大于1的正整数。
作为上述实施例的一个子实施例,所述第一时域资源块与所述第二时域资源块之间的时域间隔是所述第一监测周期。
作为上述实施例的一个子实施例,所述第二时域资源块减去所述第一时域资源块等于所述第一监测周期。
作为上述实施例的一个子实施例,所述第二时域资源块在所述第一资源池中的索引减去所述第一时域资源块在所述第一资源池中的索引等于所述第一监测周期。
作为上述实施例的一个子实施例,所述第一时域资源块所占用的时隙与所述第二时域资源块所占用的时隙之间的间隔等于所述第一监测周期。
作为上述实施例的一个子实施例,所述第二时域资源块所述占用的时隙减去所述第一时域资源块所占用的时隙等于所述第一监测周期。
作为上述实施例的一个子实施例,所述第二时域资源块所述占用的时隙的索引减去所述第一时域资源块所占用的时隙的索引等于所述第一监测周期。
作为一个实施例,所述X个时域资源块分别是X个时隙。
作为一个实施例,所述X个时域资源块分别是所述第一资源池中的X个时隙。
作为一个实施例,所述X个时域资源块中的任一时域资源块是一个时隙。
作为一个实施例,所述X个时域资源块中的任一时域资源块包括正整数个多载波符号。
作为一个实施例,所述X等于2。
作为一个实施例,所述X等于10。
作为一个实施例,所述X与所述第一监测周期有关。
作为一个实施例,所述第一监测周期越大,所述X越小。
作为一个实施例,所述第一监测周期越小,所述X越大。
作为一个实施例,所述第一监测周期包括正整数个时隙。
作为一个实施例,所述第一监测周期包括多个多载波符号。
作为一个实施例,所述第一监测周期的单位是毫秒(ms)。
作为一个实施例,所述第一资源池包括所述备选资源集合。
作为一个实施例,所述备选资源集合属于所述第一资源池。
作为一个实施例,所述备选资源集合包括所述第一资源池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合包括多个时频资源块。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块都属于所述第一资源池。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选资源集合包括所述第一资源池中的至少一个时域资源块。
作为一个实施例,所述备选资源集合包括多个时域资源块。
作为一个实施例,所述备选资源集合包括的所述多个时域资源块都属于所述第一资源池。
作为一个实施例,所述备选资源集合包括的所述多个时域资源块中的任一时域资源块是所述第一资源池包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述备选资源集合包括所述第一资源池中的至少一个频域资源块。
作为一个实施例,所述备选资源集合包括多个频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个频域资源块都属于所述第一资源池。
作为一个实施例,所述备选资源集合包括的所述多个频域资源块中的任一频域资源块是所述第一资源池包括的所述多个频域资源块中的一个频域资源块。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块是用于数据传输的可用资源。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块是用于副链路(Sidelink,SL)传输的可用资源。
作为一个实施例,所述备选资源集合包括所述Y个时频资源块,Y是大于1的正整数。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块包括所述Y个时频资源块,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块属于所述备选资源集合包括的所述多个时频资源块,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块中的任一时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块,Y是大于1的正整数。
作为一个实施例,所述备选资源集合包括所述多个时频资源块,所述Y个时频资源块中的任一时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块中任意两个在时域相邻的时频资源块之间的间隔不小于所述第一资源预留间隔,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块中任意两个在时域相邻的时频资源块之间的间隔大于所述第一资源预留间隔,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块中任意两个在时域相邻的时频资源块之间的间隔等于所述第一资源预留间隔,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块中任意两个在时域相邻的时频资源块之间的间隔等于所述第一资源预留间隔的正整数倍,Y是大于1的正整数。
作为一个实施例,第一时频资源块和第二时频资源块分别是所述Y个时频资源块中的两个时频资源块,所述第一时频资源块与所述第二时频资源块在时域相邻,Y是大于1的正整数。
作为上述实施例的一个子实施例,所述第一时频资源块与所述第二时频资源块之间在时域的间隔不小于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第一时频资源块与所述第二时频资源块之间在时域的间隔大于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第一时频资源块与所述第二时频资源块之间在时域的间隔等于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第一时频资源块与所述第二时频资源块之间在时域的间隔等于所述第一资源预留间隔的正整数倍。
作为上述实施例的一个子实施例,所述第二时频资源块所占用的时域资源减去所述第一时频资源块所占用的时域资源不小于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第二时频资源块所占用的时域资源在所述第一资源池包括的所述多个时域资源块中的索引减去所述第一时频资源块在所述第一资源池包括的所述多个时域资源块中的索引不小于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第一时频资源块所占用的时隙与所述第二时频资源块所占用的时隙之间的间隔不小于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第二时频资源块所述占用的时隙减去所述第一时频资源块所占用的时隙不小于所述第一资源预留间隔。
作为上述实施例的一个子实施例,所述第二时频资源块所述占用的时隙的索引减去所述第一时频资源块所占用的时隙的索引不小于所述第一资源预留间隔。
作为一个实施例,所述Y个时频资源块中的任一时频资源块被用于发送所述Y个第一类信号中的一个第一类信号,Y是大于1的正整数。
作为一个实施例,所述Y个时频资源块中的任一时频资源块包括PSCCH。
作为一个实施例,所述Y个时频资源块中的任一时频资源块包括PSSCH。
作为一个实施例,所述Y个时频资源块中的任一时频资源块包括PSCCH和PSSCH。
作为一个实施例,所述Y个时频资源块中的至少一个时频资源块包括PSFCH。
作为一个实施例,所述Y等于2。
作为一个实施例,所述Y等于10。
作为一个实施例,所述Y与所述第一资源预留间隔有关。
作为一个实施例,所述第一资源预留间隔越大,所述Y越小。
作为一个实施例,所述第一资源预留间隔越小,所述Y越大。
作为一个实施例,所述第一资源预留间隔是所述Y个时频资源块中任意两个在时域相邻的时频资源块之间的时域间隔。
作为一个实施例,所述第一资源预留间隔是所述第二时频资源块所占用的时域资源与所述第一时频资源块所占用的时域资源之间的时域间隔。
作为一个实施例,所述第一节点在所述第一时频资源块上执行发送所述Y个第一类信号中的一个第一类信号,等待所述第一资源预留间隔后,再在所述第二时频资源块上发送所述Y个第一类信号中的另一个 第一类信号。
作为一个实施例,所述第一资源预留间隔与所述Y个第一类信号所承载的业务有关。
作为一个实施例,所述第一资源预留间隔是所述第一节点的更高层提供的。
作为一个实施例,所述第一资源预留间隔是一个更高层信令指示的。
作为一个实施例,所述第一资源预留间隔包括正整数个时隙。
作为一个实施例,所述第一资源预留间隔包括多个多载波符号。
作为一个实施例,所述第一资源预留间隔的单位是毫秒(ms)。
作为一个实施例,所述第一资源池包括所述备选时频资源块。
作为一个实施例,所述备选时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选资源集合包括所述备选时频资源块。
作为一个实施例,所述备选资源集合不包括所述备选时频资源块。
作为一个实施例,所述备选时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选时频资源块与所述备选资源集合包括的所述多个时频资源块中的任一时频资源块都不同。
作为一个实施例,所述第一参数组是通过更高层信令(Higher Layer Signaling)指示的。
作为一个实施例,所述第一参数组是通过RRC(Radio Resource Control,无线资源控制)层信令指示的。
作为一个实施例,所述第一参数组是通过MAC(Multimedia Access Control,多媒体接入控制)层信令指示的。
作为一个实施例,所述第一参数组是通过PHY(Physical Layer,物理层)层信令指示的。
作为一个实施例,所述第一参数组包括所述第一资源池。
作为一个实施例,所述第一参数组包括所述第一优先级。
作为一个实施例,所述第一参数组包括所述第一资源预留间隔(Resource Reservation Interval)。
作为一个实施例,所述第一参数组包括剩余数据包延迟预算(the remaining Packet Delay Budget,the remaining PDB)。
作为一个实施例,所述第一参数组包括所述第一资源池,第一优先级,第一资源预留间隔。
作为一个实施例,所述第一参数组包括所述第一资源池,第一优先级,第一资源预留间隔和剩余数据包延迟预算。
作为一个实施例,所述Y个第一类信号对应所述第一优先级。
作为一个实施例,所述第一优先级是所述Y个第一类信号的优先级。
作为一个实施例,所述第一优先级是所述Y个第一类信号的L1(Layer 1,层1)优先级。
作为一个实施例,所述第一优先级是所述Y个第一类信号中任一第一类信号的L1优先级。
作为一个实施例,所述剩余数据包的延迟预算是所述Y个第一类信号的剩余数据包延迟预算。
作为一个实施例,所述剩余数据包的延迟预算是所述Y个第一类信号中任一第一类信号的剩余数据包延迟预算。
作为一个实施例,所述Y个第一类信号分别包括基带信号。
作为一个实施例,所述Y个第一类信号分别包括射频信号。
作为一个实施例,所述Y个第一类信号分别包括无线信号。
作为一个实施例,所述Y个第一类信号分别在PSCCH上传输。
作为一个实施例,所述Y个第一类信号分别在PSSCH上传输。
作为一个实施例,所述Y个第一类信号分别在PSCCH和PSSCH上传输。
作为一个实施例,所述Y个第一类信号中的任一第一类信号包括一个更高层信令中的全部或部分。
作为一个实施例,所述Y个第一类信号分别包括Y个第一类比特块,所述Y个第一类比特块中的任一第一类比特块包括至少一个比特。
作为一个实施例,所述Y个第一类比特块中的至少两个第一类比特块不同。
作为一个实施例,所述Y个第一类比特块中的至少两个第一类比特块相同。
作为一个实施例,所述Y个第一类比特块中的任意两个第一类比特块都不同。
作为一个实施例,所述Y个第一类信号分别携带Y个第一类比特块,所述Y个第一类比特块中的任一第一类比特块包括至少一个比特。
作为一个实施例,所述Y个第一类比特块分别被用于生成所述Y个第一类信号。
作为一个实施例,所述Y个第一类比特块中的任一第一类比特块在PSSCH上传输。
作为一个实施例,所述Y个第一类比特块中的任一第一类比特块来自SL-SCH(Sidelink Shared Channel,副链路共享信道)。
作为一个实施例,所述Y个第一类比特块中的任一第一类比特块包括正整数个比特。
作为一个实施例,所述Y个第一类比特块中的至少一个第一类比特块包括1个CW(Codeword,码字)。
作为一个实施例,所述Y个第一类比特块中的至少一个第一类比特块包括1个CB(Code Block,编码块)。
作为一个实施例,所述Y个第一类比特块中的至少一个第一类比特块包括1个CBG(Code Block Group,编码块组)。
作为一个实施例,所述Y个第一类比特块中的至少一个第一类比特块包括1个TB(Transport Block,传输块)。
作为一个实施例,所述Y个第一类比特块中的任一第一类比特块中的所有或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到物理资源块(Mapping to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述Y个第一类信号中的一个第一类信号。
作为一个实施例,所述Y个第一类信号中的任一第一类信号是所述Y个第一类比特块中的一个第一类比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation)之后的输出。
作为一个实施例,所述信道编码基于极化(polar)码。
作为一个实施例,所述信道编码基于LDPC(Low-density Parity-Check,低密度奇偶校验)码。
作为一个实施例,第一信号是所述Y个第一类信号中的一个第一类信号,所述第一信号包括第一子信令和所述第一比特块,所述第一比特块是所述Y个第一类比特块中的一个第一类比特块。
作为一个实施例,所述第一信号中的所述第一子信令被用于调度所述第一信号中的所述第一比特块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所占用的时频资源,所述第一信号所占用的时频资源是所述Y个时频资源块中的一个时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号中的所述第一比特块所占用的时频资源,所述第一信号中的所述第一比特块所占用的所述时频资源属于所述Y个时频资源块中的一个时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述Y个时频资源块中的一个时频资源块。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一比特块所经历的调制编码方式(Modulation and Coding Scheme,MCS)。
作为一个实施例,所述第一信号中的所述第一子信令指示所述第一信号所采用的解调参考信号(Demodulation Reference Signal,DMRS)。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR, LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。在NTN网络中,gNB203的实例包括卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点包括所述UE201。
作为一个实施例,本申请中的第二节点包括所述UE241。
作为一个实施例,本申请中的用户设备包括所述UE201。
作为一个实施例,本申请中的用户设备包括所述UE241。
作为一个实施例,本申请中的基站设备包括所述gNB203。
作为一个实施例,本申请中的第一信令的发送者包括所述gNB203。
作为一个实施例,本申请中的第一信令的发送者包括所述UE201。
作为一个实施例,本申请中的第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的第二信令的发送者包括所述gNB203。
作为一个实施例,本申请中的第二信令的发送者包括所述UE241。
作为一个实施例,本申请中的第二信令的接收者包括所述UE241。
作为一个实施例,本申请中的第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的第一信号的接收者包括所述UE241。
作为一个实施例,本申请中的第一参数组的发送者包括所述UE201。
作为一个实施例,本申请中的第一参数组的接收者包括所述UE201。
作为一个实施例,本申请中的备选资源集合的发送者包括所述UE201。
作为一个实施例,本申请中的备选资源集合的接收者包括所述UE201。
作为一个实施例,本申请中的Y个第一类信号的发送者包括所述UE201。
作为一个实施例,本申请中的Y个第一类信号的接收者包括所述UE241。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信号经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第一参数组生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一参数组经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述备选资源集合生成于所述PHY301。
作为一个实施例,本申请中的所述备选资源集合经由所述PHY301传输到所述MAC子层302。
作为一个实施例,本申请中的所述Y个第一类信号中的一个第一类信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述Y个第一类信号中的一个第一类信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述Y个第一类信号中的任一第一类信号经由所述MAC子层302传输到所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入 网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基 带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;
在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合,所述备选资源集合包括所述第一资源池中的至少一个时频资源块;在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;
在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合,所述备选资源集合包括所述第一资源池中的至少一个时频资源块;在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收第二信令,所述第二信令指示第一资源池;在目标时频资源块上接收第一信号;所述第一资源池包括多个时频资源块,所述目标时频资源块是所述第一资源池中的一个时频资源块。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第二信令,所述第二信令指示第一资源池;在目标时频资源块上接收第一信号;所述第一资源池包括多个时频资源块,所述目标时频资源 块是所述第一资源池中的一个时频资源块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一资源子池和第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一资源子池中执行第一资源确定方式以确定第一备选资源子集。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第二资源子池中执行第一资源确定方式以确定第二备选资源子集。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第三资源子池中执行第一资源确定方式以确定第三备选资源子集。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在第一资源子池中再次执行第一资源确定方式。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的向更高层上报备选资源集合。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在目标时频资源块上发送第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在目标时频资源块上接收第一信号。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一资源预留间隔,Y是大于1的正整数;所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一 资源预留间隔,Y是大于1的正整数;所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:分别在Y个时频资源块上接收Y个第一类信号,Y是大于1的正整数;第一资源池在时域包括所述Y个时频资源块;所述Y个第一类信号携带第一资源预留间隔;所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于所述第一资源预留间隔。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:分别在Y个时频资源块上接收Y个第一类信号,Y是大于1的正整数;第一资源池在时域包括所述Y个时频资源块;所述Y个第一类信号携带第一资源预留间隔;所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于所述第一资源预留间隔。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的分别在X个时域资源块上执行监测。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的分别在Y个时频资源块上发送Y个第一类信号。
作为一个实施例,{所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在参考时域资源块上获得第一参数组。
作为一个实施例,{所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的报告所述备选资源集合。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的分别在M个时域资源块上执行监测。
作为一个实施例,{所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在参考时域资源块上提供第一参数组。
作为一个实施例,{所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收所述备选资源集合。
作为一个实施例,{所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的从所述备选资源集合中选择所述Y个时频资源块。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的分别在Y个时频资源块上接收Y个第一类信号。
实施例5A
实施例5A示例了根据本申请的一个实施例的无线信号传输流程图,如附图5A所示。在附图5A中,第一节点U1A与第二节点U2A之间是通过空中接口进行通信,附图5A中的方框F0A中的步骤,方框F1A中的步骤,方框F2A中的步骤,方框F3A中的步骤和方框F4A中的步骤分别是可选的。
对于 第一节点U1A,在步骤S11A中接收第一信令;在步骤S12A中在第一资源子池中执行第一资源确定方式以确定第一备选资源子集;在步骤S13A中在第二资源子池中执行第一资源确定方式以确定第二备选资源子集;在步骤S14A中在第三资源子池中执行第一资源确定方式以确定第三备选资源子集;在步 骤S15A中在第一资源子池中再次执行第一资源确定方式;在步骤S16A中向更高层上报备选资源集合;在步骤S17A中在目标时频资源块上发送第一信号。
对于 第二节点U2A,在步骤S21A中接收第二信令;在步骤S22A中在目标时频资源块上接收第一信号。
在实施例5A中,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括K个资源子池,所述K个资源子池两两相互正交,K是大于2的正整数;所述第一资源子池和所述第二资源子池分别是所述K个资源子池中的两个资源子池;所述备选资源集合包括所述第一资源池中的至少一个时频资源块;所述目标时频资源块是所述备选资源集合中的一个时频资源块;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1不大于第一数值,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数;第三资源子池是所述K个资源子池中不同于所述第一资源子池和所述第二资源子池的一个资源子池;所述Q1与所述Q2的和不大于第二数值,所述备选资源集合包括所述第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数;所述备选资源集合包括的所有时频资源块的数量与第三数值的大小关系被用于确定是否在所述第一资源子池中再次执行所述第一资源确定方式。
作为一个实施例,所述第一节点U1A和所述第二节点U2A之间是通过PC5接口进行通信。
作为一个实施例,附图5A中的方框F0A的步骤存在。
作为一个实施例,附图5A中的方框F0A的步骤不存在。
作为一个实施例,附图5A中的方框F1A的步骤存在。
作为一个实施例,附图5A中的方框F1A的步骤不存在。
作为一个实施例,附图5A中的方框F2A的步骤存在。
作为一个实施例,附图5A中的方框F2A的步骤不存在。
作为一个实施例,附图5A中的方框F3A的步骤存在。
作为一个实施例,附图5A中的方框F3A的步骤不存在。
作为一个实施例,附图5A中的方框F4A的步骤存在。
作为一个实施例,附图5A中的方框F4A的步骤不存在。
作为一个实施例,当所述Q1不大于第一数值时,附图5A中的方框F1A的步骤存在;当所述Q1大于第一数值时,附图5A中的方框F1A的步骤不存在。
作为一个实施例,当所述Q1与所述Q2的和不大于第二数值时,附图5A中的方框F2A的步骤存在;当所述Q1与所述Q2的和大于第二数值时,附图5A中的方框F2A的步骤不存在。
作为一个实施例,当所述备选资源集合包括的时频资源块的数量不大于第三数值时,附图5A中的方框F3A的步骤存在;当所述备选资源集合包括的时频资源块的数量大于第三数值时,附图5A中的方框F3A的步骤不存在。
作为一个实施例,当所述Q1,所述Q2与所述Q3三者的和不大于第三数值时,附图5A中的方框F3A的步骤存在;当所述Q1,所述Q2与所述Q3三者的和大于第三数值时,附图5A中的方框F3A的步骤不存在。
作为一个实施例,当所述第一信令是所述第一节点U1A的更高层发送给所述第一节点U1A的物理层时,附图5A中的方框F0A的步骤不存在;当所述第一信令是除所述第一节点U1A之外的一个通信节点发送时,附图5A中的方框F0A的步骤存在。
作为一个实施例,当所述第二信令是所述第二节点U2A的更高层发送给所述第二节点U2A的物理层时,附图5A中的方框F4A的步骤不存在;当所述第二信令是除所述第二节点U2A之外的一个通信节点发送时,附图5A中的方框F4A的步骤存在。
作为一个实施例,所述第一信令是所述第一节点U1A的更高层发送给所述第一节点U1A的物理层。
作为一个实施例,所述第一节点U1A的更高层包括所述第一节点U1A的RRC层或者所述第一节点 U1A的MAC层中的至少之一。
作为一个实施例,所述第一信令是由所述第一节点U1A的更高层发送的。
作为一个实施例,所述第一信令是由所述第一节点U1A的物理层接收的。
作为一个实施例,所述第二信令是所述第二节点U2A的更高层发送给所述第二节点U2A的物理层。
作为一个实施例,所述第二节点U2A的更高层包括所述第二节点U2A的RRC层或者所述第二节点U2A的MAC层中的至少之一。
作为一个实施例,所述第二信令是由所述第二节点U2A的更高层发送的。
作为一个实施例,所述第二信令是由所述第二节点U2A的物理层接收的。
实施例5B
实施例5B示例了根据本申请的一个实施例的无线信号传输流程图,如附图5B所示。在附图5B中,第一节点U1B与第二节点U2B之间是通过空中接口进行通信。
对于 第一节点U1B,在步骤S11B中在参考时域资源块上获得第一参数组;在步骤S12B中分别在M个时域资源块上执行监测;在步骤S13B中分别在X个时域资源块上执行监测;在步骤S14B中报告备选资源集合;在步骤S15B中分别在Y个时频资源块上发送Y个第一类信号。
对于 第二节点U2B,在步骤S21B中分别在Y个时频资源块上接收Y个第一类信号。
在实施例5B中,所述第一参数组包括第一资源池,第一优先级和第一资源预留间隔;所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;所述第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;所述第一资源池在时域包括所述M个时域资源块,所述M个时域资源块中任意两个相邻的时域资源块之间间隔第二监测周期,M是大于1的正整数;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述M个时域资源块的测量结果和针对所述X个时域资源块的测量结果共同被用于确定所述备选时频资源块是否属于所述备选资源集合;所述第二监测周期是资源预留周期列表中的一个周期,所述资源预留周期列表是更高层信令配置的,所述第一监测周期与所述资源预留周期列表中的任一周期都不同;所述Y个时频资源块都属于所述备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于所述第一资源预留间隔,Y是大于1的正整数;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期;在所述参考时域资源块上获得所述第一参数组被用于触发分别在所述M个时域资源块上执行所述监测和分别在所述X个时域资源块上执行所述监测;所述参考时域资源块属于所述第一资源池中的一个时频资源块所占用的时域资源;所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块。
作为一个实施例,在所述参考时域资源块上提供所述第一参数组,在所述参考时域资源块上提供所述第一参数组被用于触发所述第一节点U1B分别在所述X个时域资源块上执行所述监测。
作为一个实施例,所述第一系数与所述第一资源预留间隔的乘积等于所述第一监测周期。
作为一个实施例,所述第一优先级等于第一整数,所述第一系数与所述第一整数成正比例。
作为一个实施例,所述第一资源池包括Y1个时频资源块,所述备选时频资源块是所述Y1个时频资源块中的一个时频资源块,所述Y1个时频资源块中的任意两个相邻的时频资源块之间在时域的间隔等于所述第一资源预留间隔,所述Y1个时频资源块中的任一时频资源块被关联到所述X个时域资源块中的至少一个时频资源块,Y1是大于1的正整数;针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块中的任一时频资源块是否属于所述备选资源集合。
作为一个实施例,所述第一节点U1B和所述第二节点U2B之间是通过PC5接口进行通信。
作为一个实施例,所述第一参数组是所述第一节点U1B的更高层发送给所述第一节点U1B的物理层。
作为一个实施例,所述第一节点U1B的更高层包括所述第一节点U1B的RRC层或者所述第一节点U1B的MAC层中的至少之一。
作为一个实施例,所述第一参数组是由所述第一节点U1B的更高层发送的。
作为一个实施例,所述第一参数组是由所述第一节点U1B的物理层接收的。
作为一个实施例,所述备选资源集合是所述第一节点U1B的物理层发送给所述第一节点U1B的更高层。
作为一个实施例,所述备选资源集合是由所述第一节点U1B的物理层发送的。
作为一个实施例,所述备选资源集合是由所述第一节点U1B的更高层接收的。
作为一个实施例,所述第一节点U1B的更高层从所述备选资源集合中选择所述Y个时频资源块。
作为一个实施例,所述Y个时频资源块是所述第一节点U1B的更高层从所述备选资源集合中随机选择的。
实施例6A
实施例6A示例了根据本申请的一个实施例的第一资源池,第一资源子池和第二资源子池与备选资源集合,第一备选资源子集和第二备选资源子集之间关系的示意图,如附图6A所示。在附图6A中,虚线大方框代表本申请中的第一资源池;矩形代表本申请中的时频资源块;实线方框代表本申请中的第一资源子池或者第二资源子池;粗虚线方框代表本申请中的备选资源集合;组实线方框代表本申请中的第一备选资源子集;斜纹填充的矩形代表本申请中的目标时频资源块。
在实施例6A中,第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池,所述第一资源子池包括多个时频资源块,所述第二资源子池包括多个时频资源块;所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括多个时频资源块,所述备选资源集合包括的所述多个时频资源块都属于所述第一资源池;所述备选资源集合包括第一备选资源子集,所述第一备选资源子集包括多个时频资源块,所述第一备选资源子集包括的所述多个时频资源块都属于所述第一资源子池;所述第一备选资源子集包括的所述多个时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池有交叠。
作为一个实施例,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,所述第二备选资源子集属于所述备选资源集合。
作为一个实施例,所述备选资源集合包括多个备选资源子集,所述第一备选资源子集和所述第二备选资源子集分别是所述备选资源集合包括的所述多个备选资源子集中的两个备选资源子集。
作为一个实施例,所述第二备选资源子集包括至少一个时频资源块。
作为一个实施例,所述第二备选资源子集包括多个时频资源块。
作为一个实施例,所述第二备选资源子集包括的所述至少一个时频资源块中的一个时频资源块是所述备选资源集合中的一个时频资源块。
作为一个实施例,所述第二备选资源子集包括多个时频资源块,所述第二备选资源子集中的任一时频资源块属于所述备选资源集合。
作为一个实施例,所述第二备选资源子集包括的所述多个时频资源块中的任一时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述备选资源集合仅包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,所述备选资源集合等于所述第一备选资源子集与所述第二备选资源子集的合集。
作为一个实施例,所述备选资源集合中的任一时频资源块属于所述第一备选资源子集或者所述第二备选资源子集二者中的之一。
作为一个实施例,所述第二资源子池包括所述第二备选资源子集。
作为一个实施例,所述第二备选资源子集属于所述第二资源子池。
作为一个实施例,所述第二备选资源子集包括的所述至少一个时频资源块中的一个时频资源块是所述第二资源子池中的一个时频资源块。
作为一个实施例,所述第二备选资源子集包括多个时频资源块,所述第二备选资源子集中的任一时频资源块属于所述第二资源子池。
作为一个实施例,所述第二备选资源子集包括的所述多个时频资源块中的任一时频资源块是所述第二资源子池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,所述第二资源子池包括的所述多个时频资源块中的至少一个时频资源块属于所述第二备选资源子集。
作为一个实施例,所述第二资源子池包括的所述多个时频资源块中的至少一个时频资源块是所述第二备选资源子集包括的所述至少一个时频资源块中的一个时频资源块。
作为一个实施例,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数。
作为一个实施例,所述第二备选资源子集包括的所有时频资源块的数量等于Q2,Q2是正整数。
作为一个实施例,所述第二备选资源子集包括的所有时频资源块的数量等于Q2,所述第二备选资源子集包括的所有时频资源块都属于所述第二资源子池,Q2是正整数。
作为一个实施例,所述第二备选资源子集包括Q2个时频资源块,所述第二备选资源子集包括的所述Q2个时频资源块都属于所述第二资源子池,Q2是正整数。
作为一个实施例,所述第二备选资源子集包括Q2个时频资源块,所述第二备选资源子集包括的所述Q2个时频资源块中的任一时频资源块是所述第二资源子池包括的所述多个时频资源块中的一个时频资源块,Q2是正整数。
作为一个实施例,所述第二备选资源子集是所述第一节点在所述第二资源子池中执行所述第一资源确定方式所确定的。
作为一个实施例,所述第一节点在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集。
作为一个实施例,所述第一节点在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,所述第一节点在所述第二资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集,所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合与所述第二资源子池有交叠。
作为一个实施例,所述备选资源集合中的至少一个时频资源块属于所述第二资源子池。
作为一个实施例,所述备选资源集合中的至少一个时频资源块与所述第二资源子池中的至少一个时频资源块相同。
作为一个实施例,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括多个时频资源块,所述第二备选资源子集包括的所述多个时频资源块都属于所述第二资源子池。
作为一个实施例,所述备选资源集合与所述第二资源子池无交叠是指所述备选资源集合与所述第二资源子池正交。
作为一个实施例,所述备选资源集合与所述第二资源子池正交。
作为一个实施例,所述备选资源集合和所述第二资源子池在频域是正交的。
作为一个实施例,所述备选资源集合和所述第二资源子池在时域是正交的。
作为一个实施例,所述备选资源集合与所述第二资源子池无交叠是指所述备选资源集合包括的所述多个时频资源块中的任一时频资源块不属于所述第二资源子池。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块不属于所述第二资源子池。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块与所述第二资源子池包括的所述多个时频资源块都不同。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块与所述第二资源子池包括的所述多个时频资源块中的任一时频资源块都不同。
实施例6B
实施例6B示例了根据本申请的一个实施例的第一监测周期与第一资源预留间隔之间关系的示意图,如附图6B所示。在附图6B中,虚线大方框代表本申请中的第一资源池;长矩形代表本申请中的第一资源 池中的时域资源块;粗实线长矩形代表本申请中的参考时域资源块;短矩形代表本申请中的第一资源池中的时频资源块;粗虚线方框代表本申请中的备选资源集合;斜方格填充的矩形代表本申请中的备选时频资源块;斜纹填充的虚线矩形代表本申请中的目标信令;空白虚线矩形代表本申请中的目标时频资源块。
在实施例6B中,在所述参考时域资源块上触发在所述X个时域资源块上执行监测;所述第一资源池在时域包括所述X个时域资源块;所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块;所述备选时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合。
作为一个实施例,所述参考时域资源块是所述第一资源池在时域包括的所述多个时域资源块中的一个时域资源块。
作为一个实施例,所述参考时域资源块与所述第一资源池在时域包括的所述多个时域资源块中的任一时域资源块都不同。
作为一个实施例,所述参考时域资源块晚于所述第一资源池在时域包括的所述多个时域资源块中的至少一个时域资源块,所述参考时域资源块早于所述第一资源池在时域包括的所述多个时域资源块中的至少一个时域资源块。
作为一个实施例,所述X个时域资源块中的任一时域资源块早于所述参考时域资源块。
作为一个实施例,所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块。
作为一个实施例,所述参考时域资源块早于所述备选资源集合包括的所述多个时域资源块中的任一时域资源块。
作为一个实施例,所述备选资源集合包括的所述多个时域资源块中的任一时域资源块晚于所述参考时域资源块。
作为一个实施例,所述参考时域资源块包括一个时隙。
作为一个实施例,所述参考时域资源块包括正整数个多载波符号。
作为一个实施例,在所述参考时域资源块上提供所述第一参数组。
作为一个实施例,在所述参考时域资源块上获得所述第一参数组。
作为一个实施例,在所述参考时域资源块上触发在所述X个时域资源块上执行监测。
作为一个实施例,在所述参考时域资源块上触发在所述备选资源集合中执行资源选择。
作为一个实施例,在所述参考时域资源块上触发在所述备选资源集合中选择所述Y个时频资源块。
作为一个实施例,在所述参考时域资源块上触发上报所述备选资源集合。
作为一个实施例,在所述参考时域资源块上触发部分感知(Partial Sensing)。
作为一个实施例,在所述参考时域资源块上触发基于周期的部分感知(PBPS,Periodic-based Partial Sensing)。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上提供所述第一参数组给所述第一节点的物理层。
作为一个实施例,所述第一节点的物理层在所述参考时域资源块上获得所述第一参数组。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上提供所述第一参数组被用于触发在所述X个时域资源块上执行监测。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发在所述X个时域资源块上执行监测。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发在所述备选资源集合中执行资源选择。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发在所述备选资源集合中选择所述Y个时频资源块。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发所述第一节点上报所述备选资源集合。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发所述第一节点的物理层上报所 述备选资源集合。
作为一个实施例,所述第一节点在所述参考时域资源块上触发部分感知。
作为一个实施例,所述第一节点在所述参考时域资源块上触发PBPS。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发所述第一节点执行部分感知。
作为一个实施例,所述第一节点的更高层在所述参考时域资源块上触发所述第一节点执行PBPS。
作为一个实施例,分别在所述X个时域资源块上执行监测属于部分感知。
作为一个实施例,分别在所述X个时域资源块上执行监测属于PBPS。
作为一个实施例,分别在所述X个时域资源块上执行监测是部分感知包括的多个步骤中的一个步骤。
作为一个实施例,分别在所述X个时域资源块上执行监测是PBPS包括的多个步骤中的一个步骤。
作为一个实施例,针对所述X个时域资源块的测量属于部分感知。
作为一个实施例,针对所述X个时域资源块的测量属于PBPS。
作为一个实施例,针对所述X个时域资源块的测量是部分感知包括的多个步骤中的一个步骤。
作为一个实施例,针对所述X个时域资源块的测量是PBPS包括的多个步骤中的一个步骤。
作为一个实施例,确定所述备选时频资源块是否属于备选资源集合属于部分感知。
作为一个实施例,确定所述备选时频资源块是否属于备选资源集合属于PBPS。
作为一个实施例,确定所述备选时频资源块是否属于备选资源集合是部分感知包括的多个步骤中的一个步骤。
作为一个实施例,确定所述备选时频资源块是否属于备选资源集合是PBPS包括的多个步骤中的一个步骤。
作为一个实施例,分别在所述X个时域资源块上执行监测和针对所述X个时域资源块的测量分别是PBPS包括的多个步骤中的两个步骤。
作为一个实施例,分别在所述X个时域资源块上执行监测,针对所述X个时域资源块的测量和确定所述备选时频资源块是否属于备选资源集合分别是PBPS包括的多个步骤中的三个步骤。
作为一个实施例,所述短语“分别在X个时域资源块上执行监测”是指在所述第一资源池在时域包括的所述X个时域资源块中基于盲检测的接收,即所述第一节点分别在所述第一资源池在时域包括的所述X个时频资源块上接收信号并执行译码操作。
作为一个实施例,所述短语“分别在X个时域资源块上执行监测”是指在所述第一资源池在时域包括的所述X个时域资源块中以第一类信令的格式基于盲检测的接收,即所述第一节点在所述第一资源池在时域包括的所述X个时域资源块中的任一时域资源块上以第一类信令的所述格式接收信号并执行译码操作,如果根据CRC比特确定译码正确,则判断所述第一类信令被检测到;否则判断所述第一类信令未被检测到。
作为一个实施例,所述第一类信令是SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一类信令是第一级SCI(1 st-stage SCI)。
作为一个实施例,所述第一类信令是第二级SCI(2 nd-stage SCI)。
作为一个实施例,所述第一类信令的所述格式是SCI format(SCI格式)。
作为一个实施例,所述第一类信令的所述格式是SCI format 1-A。
作为一个实施例,所述第一类信令的所述格式是SCI format 1-B。
作为一个实施例,所述第一类信令的所述格式是SCI format 2-A。
作为一个实施例,所述第一类信令的所述格式是SCI format 2-B。
作为一个实施例,所述短语“分别在X个时域资源块上执行监测”是指在所述第一资源池在时域包括的所述X个时域资源块中基于相干检测的接收,即所述第一节点分别在所述第一资源池在时域包括的所述X个时频资源块上用第一类信令的DMRS(Demodulation Reference Signal,解调参考信号)对应的RS(Reference Signal,参考信号)序列对无线信号进行相干接收,并测量所述相干接收后得到的信号的能量;如果所述相干接收后得到的信号的能量大于第一给定阈值,则判断所述第一类信令被检测到;否则判断所述第一类信令未被检测到。
作为一个实施例,所述短语“分别在X个时域资源块上执行监测”是指在所述第一资源池在时域包括的所述X个时域资源块中基于能量检测的接收,即所述第一节点分别在所述第一资源池在时域包括的所述 X个时频资源块上感知(Sense)无线信号的能量,并在时间上平均,以获得接收能量;如果所述接收能量大于第二给定阈值,则判断第一类信令被检测到;否则判断第一类信令未被检测到。
作为一个实施例,所述第一类信令被检测到是指所述第一类信令被基于盲检测接收后,根据CRC比特确定译码正确。
作为一个实施例,所述第一类信令未被检测到是指所述第一类信令被基于盲检测接收后,根据CRC比特确定译码不正确。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的一个时域资源块。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的多个时域资源块。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的X1个时域资源块,X1是正整数,所述X1不大于所述X。
作为一个实施例,所述X1等于1,所述X大于1。
作为一个实施例,所述X1大于1,所述X1小于所述X。
作为一个实施例,所述X1等于所述X,所述X大于1。
作为一个实施例,所述X1等于1,所述X等于10。
作为一个实施例,所述X1等于2,所述X等于10。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块是指在所述X个时域资源块中的至少一个时域资源块上分别检测到至少一个第一类目标信令,所述至少一个第一类目标信令分别指示至少一个第一类目标时频资源块,所述至少一个第一类目标时频资源块中的任一第一类目标时频资源块与所述备选时频资源块有交叠。
作为一个实施例,目标信令是所述至少一个第一类目标信令中的一个第一类目标信令,目标时频资源块是所述至少一个第一类目标时频资源块中的一个目标时频资源块,所述目标信令指示所述目标时频资源块。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的一个时域资源块是指在所述X个时域资源块中的一个时域资源块上检测到目标信令,所述目标信令指示目标时频资源块,所述目标时频资源块与所述备选时频资源块有交叠。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的多个时域资源块是指在所述X个时域资源块中的多个时域资源块上分别检测到多个第一类目标信令,所述多个第一类目标信令分别指示多个第一类目标时频资源块,所述多个第一类目标时频资源块中的任一第一类目标时频资源块与所述备选时频资源块有交叠。
作为一个实施例,目标信令是所述多个第一类目标信令中的一个第一类目标信令,目标时频资源块是所述多个第一类目标时频资源块中的一个目标时频资源块,所述目标信令指示所述目标时频资源块。
作为一个实施例,所述备选时频资源块被关联到所述X个时域资源块中的X1个时域资源块是指在所述X个时域资源块中的X1个时域资源块上分别检测到X1个第一类目标信令,所述X1个第一类目标信令分别指示X1个第一类目标时频资源块,所述X1个第一类目标时频资源块中的任一第一类目标时频资源块与所述备选时频资源块有交叠,X1是大于1的正整数,所述X1不大于所述X。
作为一个实施例,目标信令是所述X1个第一类目标信令中的一个第一类目标信令,目标时频资源块是所述X1个第一类目标时频资源块中的一个目标时频资源块,所述目标信令指示所述目标时频资源块。
作为一个实施例,所述X1个第一类目标时频资源块在时域正交。
作为一个实施例,所述X1个第一类目标时频资源块中的至少两个第一类目标时频资源块所占用的频域资源不同。
作为一个实施例,所述X1个第一类目标时频资源块中的至少两个第一类目标时频资源块所占用的频域资源相同。
作为一个实施例,所述X1个第一类目标信令分别占用所述X个时域资源块中的所述X1个时域资源块。
作为一个实施例,所述X1个第一类目标信令中的任一第一类目标信令所占用的时域资源属于所述X1 个时域资源块中的一个时域资源块。
作为一个实施例,所述目标信令占用所述X个时域资源块中的一个时域资源块。
作为一个实施例,所述目标信令所占用的时域资源属于所述X个时域资源块中的一个时域资源块。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”是指当所述至少一个第一类信令在所述X个时域资源块中的至少一个时域资源块被检测到时,测量所述至少一个第一类信令中的任一第一类信令所对应的DMRS。
作为一个实施例,所述至少一个第一类信令中的任一第一类信令所对应的DMRS包括所述至少一个第一类信令中的任一第一类信令所使用的DMRS。
作为一个实施例,所述至少一个第一类信令中的任一第一类信令所使用的DMRS包括PSCCH DMRS。
作为一个实施例,所述至少一个第一类信令中的任一第一类信令所对应的DMRS包括所述至少一个第一类信令中的任一第一类信令所指示的DMRS。
作为一个实施例,所述至少一个第一类信令中的任一第一类信令所指示的DMRS包括PSSCH DMRS。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”是指当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,测量所述X1个第一类信令中任一第一类信令所对应的DMRS。
作为一个实施例,所述X1个第一类信令中的任一第一类信令所对应的DMRS包括所述X1个第一类信令中的任一第一类信令所使用的DMRS。
作为一个实施例,所述X1个第一类信令中的任一第一类信令所使用的DMRS包括PSCCH DMRS。
作为一个实施例,所述X1个第一类信令中的任一第一类信令所对应的DMRS包括所述X1个第一类信令中的任一第一类信令所指示的DMRS。
作为一个实施例,所述X1个第一类信令中的任一第一类信令所指示的DMRS包括PSSCH DMRS。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”是指当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上对所述X1个第一类信令中任一第一类信令所对应的DMRS执行基于相干检测的接收,并测量所述相干接收后得到的信号能量。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”是指当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上对所述X1个第一类信令所对应的DMRS执行基于相干检测的接收,再对所述X1个第一类信令中任一第一类信令所对应的DMRS所占用的时频资源上接收到的信号功率做线性平均,以获得接收功率。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”指在当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上对所述X1个第一类信令中任一第一类信令所对应的DMRS执行基于相干检测的接收,并将接收到的信号能量在时域上和频域上平均,以获得接收功率。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”指在当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上对所述X1个第一类信令中任一第一类信令所对应的DMRS执行基于能量检测的接收,即所述第一节点在所述X1个第一类信令中任一第一类信令所对应的DMRS所占用的时频资源上分别感知无线信号的能量,并在所述X1个第一类信令所使用的DMRS所占用的时频资源上平均,以获得接收功率。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”指在当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上执行基于能量检测的接收,即所述第一节点在所述X1个时域资源块上接收无线信号的功率,并将接收到的信号功率做线性平均,以获得信号强度指示。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”指在当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上执行基于能量检测的接收,即所述第一节点在所述X1个时域资源块上感知无线信号的能量,并在时间上平均,以获得信号强度指示。
作为一个实施例,所述短语“针对所述X个时域资源块的测量”指在当所述X1个第一类信令在所述X个时域资源块中的X1个时域资源块被检测到时,在所述X1个时域资源块上基于盲检测的接收,即所述第 一节点在所述X1个时域资源块上接收信号并执行译码操作,根据CRC比特确定是否译码正确,以获得所述X1个第一类信令中任一第一类信令所对应的DMRS所占用的时频资源上的信道质量。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括SL RSRP(Sidelink Reference Signal Receiving Power,副链路参考信号接收功率)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括PSCCH RSRP。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括PSSCH RSRP。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括L1 RSRP(Layer 1 Reference Signal Receiving Power,层1参考信号接收功率)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括L3 RSRP(Layer 3 Reference Signal Receiving Power,层3参考信号接收功率)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括SINR(Signal-to-Interference plus Noise Ratio,信号与干扰加噪声比)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括L1 SINR(Layer 1 Signal-to-Interference plus Noise Ratio,层1信号与干扰加噪声比)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括RSSI(Received Signal Strength Indication,接收信号强度指示)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括SL RSSI(Sidelink Received Signal Strength Indication,副链路接收信号强度指示)。
作为一个实施例,针对所述X个时域资源块的所述测量结果包括RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,针对所述X个时域资源块的所述测量结果的单位是毫分贝(dBm)。
作为一个实施例,针对所述X个时域资源块的所述测量结果的单位是分贝(dB)。
作为一个实施例,针对所述X个时域资源块的所述测量结果的单位是毫瓦(mW)。
作为一个实施例,针对所述X个时域资源块的所述测量结果的单位是瓦(W)。
作为一个实施例,针对所述X个时域资源块的所述测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果被用于确定所述备选时频资源块属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果被用于确定所述备选时频资源块不属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果被用于确定所述备选时频资源块与所述备选资源集合中的任一时频资源块都不同。
作为一个实施例,针对所述X个时域资源块的所述测量结果与第一阈值共同被用于确定所述备选时频资源块是否属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果与第一阈值共同被用于确定所述备选时频资源块是否属于所述备选资源集合,所述第一阈值与所述第一优先级有关。
作为一个实施例,所述Y个第一类型信号对应所述第一优先级,所述第一优先级被用于确定第一阈值,针对所述X个时域资源块的所述测量结果与所述第一阈值共同被用于确定所述备选时频资源块是否属于所述备选资源集合。
作为一个实施例,所述第一参数组包括所述第一优先级,所述第一优先级被用于确定第一阈值,针对所述X个时域资源块的所述测量结果与所述第一阈值共同被用于确定所述备选时频资源块是否属于所述备选资源集合。
作为一个实施例,阈值列表包括多个第一类阈值,所述第一阈值是所述阈值列表包括的所述多个第一类阈值中的一个第一类阈值,所述第一优先级被用于从所述阈值列表包括的所述多个第一类阈值中确定所 述第一阈值。
作为一个实施例,阈值列表包括多个第一类阈值,所述第一阈值是所述阈值列表包括的所述多个第一类阈值中的一个第一类阈值,所述第一优先级被用于确定所述第一阈值在所述阈值列表包括的所述多个第一类阈值中的索引。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值分别是多个RSRP阈值(value of RSRP threshold)。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值分别是多个SINR阈值(value of SNR threshold)。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值的单位分别是dBm。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值的单位分别是dB。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值的单位分别是mW。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值的单位分别是W。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值的数目是67。
作为一个实施例,所述阈值列表包括负无穷(minus infinity)dBm,(-128+(n-1)*2)dBm,所述n是从1到65中的任一正整数,和正无穷(infinity)dBm。
作为一个实施例,所述阈值列表包括的所述多个第一类阈值分别是多个负整数。
作为一个实施例,所述阈值列表是3GPP TS38.214中的sl-Thres-RSRP-List。
作为一个实施例,所述第一阈值是一个RSRP阈值。
作为一个实施例,所述第一阈值是一个SINR阈值。
作为一个实施例,所述第一阈值是负无穷。
作为一个实施例,所述第一阈值是正无穷。
作为一个实施例,所述第一阈值是一个负整数。
作为一个实施例,所述第一阈值等于(-128+(n-1)*2)dBm,所述n是从1到65中的任一正整数。
作为一个实施例,所述第一阈值的单位是dBm。
作为一个实施例,所述第一阈值的单位是dB。
作为一个实施例,所述第一阈值的单位是mW。
作为一个实施例,所述第一阈值的单位是W。
作为一个实施例,针对所述X个时域资源块的所述测量结果与所述第一阈值的大小关系被用于确定所述备选时频资源块是否属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果与所述第一阈值的大小关系被用于确定所述备选资源集合是否包括所述备选时频资源块。
作为一个实施例,针对所述X个时域资源块的所述测量结果与所述第一阈值的大小关系被用于确定所述备选时频资源块是否是所述备选资源集合包括的所述至少一个时频资源块中的一个时频资源块。
作为一个实施例,针对所述X个时域资源块的所述测量结果不大于所述第一阈值,所述备选时频资源块属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果小于所述第一阈值,所述备选时频资源块属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果等于所述第一阈值,所述备选时频资源块属于所述备选资源集合。
作为一个实施例,针对所述X个时域频资源块的所述测量结果大于所述第一阈值,所述备选时频资源块不属于备选资源集合。
作为一个实施例,针对所述X个时域资源块的所述测量结果不大于所述第一阈值,所述备选时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,针对所述X个时域资源块的所述测量结果小于所述第一阈值,所述备选时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,针对所述X个时域资源块的所述测量结果等于所述第一阈值,所述备选时频资源块 是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,针对所述X个时域资源块的所述测量结果大于所述第一阈值,所述备选时频资源块与所述备选资源集合包括的所述多个时频资源块中的任一时频资源块都不同。
作为一个实施例,当针对所述X个时域资源块的所述测量结果不大于所述第一阈值时,所述备选时频资源块属于所述备选资源集合;当针对所述第一时频资源块的所述测量结果大于所述第一阈值时,所述备选时频资源块不属于备选资源集合。
作为一个实施例,当针对所述X个时域资源块的所述测量结果不大于所述第一阈值时,所述备选时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块;当针对所述X个时域资源块的所述测量结果大于所述第一阈值时,所述备选时频资源块与所述备选资源集合包括的所述多个时频资源块中的任一时频资源块都不同。
作为一个实施例,当针对所述X个时域资源块的所述测量结果小于所述第一阈值时,所述备选时频资源块属于所述备选资源集合;当针对所述X个时域资源块的所述测量结果等于所述第一阈值时,所述备选时频资源块属于所述备选资源集合;当针对所述X个时域资源块的所述测量结果大于所述第一阈值时,所述备选时频资源块不属于备选资源集合。
作为一个实施例,当针对所述X个时域资源块的所述测量结果小于所述第一阈值时,所述备选时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块;当针对所述X个时域资源块的所述测量结果等于所述第一阈值时,所述备选时频资源块是所述备选资源集合包括的所述至多个时频资源块中的一个时频资源块;当针对所述X个时域资源块的所述测量结果大于所述第一阈值时,所述备选时频资源块与所述备选资源集合包括的所述多个时频资源块中的任一时频资源块都不同。
作为一个实施例,所述第一资源池包括Y1个时频资源块,所述备选时频资源块是所述Y1个时频资源块中的一个时频资源块,所述Y1个时频资源块中的任意两个在时域相邻的时频资源块之间的间隔等于所述第一资源预留间隔,所述Y1个时频资源块中的任一时频资源块被关联到所述X个时域资源块中的至少一个时频资源块,Y1是大于1的正整数;针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块中的任一时频资源块是否属于所述备选资源集合。
作为一个实施例,所述Y1不大于所述Y。
作为一个实施例,所述Y1等于所述Y。
作为一个实施例,所述Y1小于所述Y。
作为一个实施例,所述Y1不小于所述Y。
作为一个实施例,所述Y1大于所述Y。
作为一个实施例,所述Y1个时频资源块中的任一时频资源块是所述第一资源池包括的多个时频资源块中的一个时频资源块。
作为一个实施例,所述Y1个时频资源块中的一个时频资源块属于所述备选资源集合。
作为一个实施例,所述Y1个时频资源块中的一个时频资源块与所述备选资源集合包括的多个时频资源块中的任一时频资源块都不同。
作为一个实施例,所述备选时频资源块是所述Y1个时频资源块中的任一时频资源块。
作为一个实施例,所述备选时频资源块是所述Y1个时频资源块中在时域最早的一个时频资源块。
作为一个实施例,针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块中的任一时频资源块是否属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块是否都属于所述备选资源集合。
作为一个实施例,针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块是否都不属于所述备选资源集合。
实施例7A
实施例7A示例了根据本申请的一个实施例的确定是否在第二资源子池中执行第一资源确定方式的流程图,如附图7A所示。
在实施例7A中,在步骤S701A中,在第一资源子池中执行第一资源确定方式以确定第一备选资源子集,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;在步骤S702A中,判断Q1是否不大于第一数值;当所述Q1不大于所述第一数值时,执行步骤S703A,在第二资源子池中执行第一资源确定方式以确定第二备选资源子集;当所述Q1大于所述第一数值时,执行步骤S704A,放弃在第二资源子池中执行第一资源确定方式。
作为一个实施例,所述Q1被用于确定是否在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,所述Q1被用于确定是否在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集。
作为一个实施例,所述Q1被用于确定是否在所述第二资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,所述Q1被用于确定所述备选资源集合是否与所述第二资源子池有交叠。
作为一个实施例,所述Q1被用于确定所述备选资源集合是否包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,所述Q1被用于确定所述备选资源集合是否包括第二备选资源子集,所述第二备选资源子集包括多个时频资源块,所述第二备选资源子集包括的所述多个时频资源块都属于所述第二资源子池。
作为一个实施例,所述Q1与第一数值之间的大小关系被用于确定是否在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,所述Q1与第一数值之间的大小关系被用于确定是否在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集。
作为一个实施例,所述Q1与第一数值之间的大小关系被用于确定是否在所述第二资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,所述Q1与第一数值之间的大小关系被用于确定所述备选资源集合是否与所述第二资源子池有交叠。
作为一个实施例,所述Q1与第一数值之间的大小关系被用于确定所述备选资源集合是否包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,所述Q1与第一数值之间的大小关系被用于确定所述备选资源集合是否包括第二备选资源子集,所述第二备选资源子集包括多个时频资源块,所述第二备选资源子集包括的所述多个时频资源块都属于所述第二资源子池。
作为一个实施例,所述Q1不大于所述第一数值。
作为一个实施例,所述Q1大于所述第一数值。
作为一个实施例,所述Q1等于所述第一数值。
作为一个实施例,所述Q1小于所述第一数值。
作为一个实施例,所述第一数值是一个正整数。
作为一个实施例,所述第一数值是更高层信令配置的。
作为一个实施例,所述备选资源集合所占用的时域资源在第一资源选择窗之内。
作为一个实施例,所述第一资源选择窗的单位是毫秒。
作为一个实施例,所述第一资源选择窗包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第一数值不大于所述第一资源子池中的在所述第一资源选择窗之内的时频资源块的数量。
作为一个实施例,所述第一数值等于第一系数与所述第一资源子池中的在所述第一资源选择窗之内的时频资源块的数量的乘积。
作为上述实施例的一个子实施例,所述第一系数是不大于1的正小数。
作为上述实施例的一个子实施例,所述第一系数是大于0且不大于1的真分数。
作为一个实施例,当所述Q1不大于所述第一数值时,在所述第二资源子池中执行所述第一资源确定 方式;当所述Q1大于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1小于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式;当所述Q1等于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式;当所述Q1大于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1小于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式;当所述Q1不小于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1小于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式;当所述Q1等于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式;当所述Q1大于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1不大于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集;当所述Q1大于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1小于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集;当所述Q1不小于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1不大于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集;当所述Q1大于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1小于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集;当所述Q1不小于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1不大于所述第一数值时,所述备选资源集合与所述第二资源子池有交叠;当所述Q1大于所述第一数值时,所述备选资源集合与所述第二资源子池正交。
作为一个实施例,当所述Q1小于所述第一数值时,所述备选资源集合与所述第二资源子池有交叠;当所述Q1等于所述第一数值时,所述备选资源集合与所述第二资源子池有交叠;当所述Q1大于所述第一数值时,所述备选资源集合与所述第二资源子池正交。
作为一个实施例,当所述Q1小于所述第一数值时,所述备选资源集合与所述第二资源子池有交叠;当所述Q1不小于所述第一数值时,所述备选资源集合与所述第二资源子池正交。
作为一个实施例,当所述Q1小于所述第一数值时,所述备选资源集合与所述第二资源子池有交叠;当所述Q1等于所述第一数值时,所述备选资源集合与所述第二资源子池正交;当所述Q1大于所述第一数值时,所述备选资源集合与所述第二资源子池正交。
作为一个实施例,当所述Q1不大于所述第一数值时,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块;当所述Q1大于所述第一数值时,所述第二资源子池中的任一时频资源块不属于所述备选资源集合。
作为一个实施例,当所述Q1小于所述第一数值时,所述备选资源集合包括第二备选资源子集;当所述Q1等于所述第一数值时,所述备选资源集合包括第二备选资源子集;当所述Q1大于所述第一数值时,所述第二资源子池中的任一时频资源块不属于所述备选资源集合;所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,当所述Q1小于所述第一数值时,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块;当所述Q1不小于所述第一数值时,所述第二资源子池中的任一时频资源块不属于所述备选资源集合。
作为一个实施例,当所述Q1小于所述第一数值时,所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块;当所述Q1等于所述第一数值时,所述第二资源子池中的任一时频资源块不属于所述备选资源集合;当所述Q1大于所述第一数值时,所述第二资源子池中的任一时频资源块不属于所述备选资源集合。
作为一个实施例,所述Q1与所述第一数值之间的比值被用于确定是否在所述第二资源子池中执行所 述第一资源确定方式。
作为一个实施例,所述Q1与所述第一数值之间的比值被用于确定是否在所述第二资源子池中执行所述第一资源确定方式以确定所述第二备选资源子集。
作为一个实施例,所述Q1与所述第一数值之间的比值被用于确定是否在所述第二资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,所述Q1与所述第一数值之间的比值被用于确定所述备选资源集合是否与所述第二资源子池有交叠。
作为一个实施例,所述Q1与所述第一数值之间的比值被用于确定所述备选资源集合是否包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块。
作为一个实施例,当所述Q1不大于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数;当所述Q1大于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合中的任一时频资源块不属于所述第二资源子池。
作为一个实施例,当所述Q1小于所述第一数值时,在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数;当所述Q1不小于所述第一数值时,放弃在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合中的任一时频资源块不属于所述第二资源子池。
实施例7B
实施例7B示例了根据本申请的另一个实施例的第一监测周期与第一资源预留间隔之间关系的示意图,如附图7B所示。在附图7B中,虚线大方框代表本申请中的第一资源池;长实线矩形代表本申请中的第一资源池中的一个被执行监测的时域资源块;长虚线矩形代表本申请中的第一资源池中的一个未被执行监测的时域资源块;粗实线长矩形代表本申请中的参考时域资源块;短矩形代表本申请中的第一资源池中的时频资源块;粗虚线方框代表本申请中的备选资源集合;斜方格填充的矩形代表本申请中的备选时频资源块。
在实施例7B中,本申请中的所述第一优先级被用于确定第一系数,所述第一系数和本申请中的所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,所述第一优先级等于一个非负整数。
作为一个实施例,所述第一优先级等于一个正整数。
作为一个实施例,所述第一优先级是P个非负整数中的一个非负整数,P是正整数。
作为一个实施例,所述第一优先级是P个正整数中的一个正整数,P是正整数。
作为一个实施例,所述第一优先级是从1到P中的一个正整数,P是正整数。
作为一个实施例,所述第一优先级是P个优先级中的一个优先级,P是正整数;所述P个优先级分别等于所述P个非负整数;所述P个优先级与所述P个非负整数之间相比较的大小关系是单调递减的。
作为一个实施例,所述第一优先级是P个优先级中的一个优先级,P是正整数;所述P个优先级分别等于所述P个正整数;所述P个优先级与所述P个正整数之间相比较的大小关系是单调递减的。
作为一个实施例,所述第一优先级等于第一整数,所述第一整数是所述P个正整数中的一个正整数;所述第一整数越大,所述第一优先级越小;所述第一整数越小,所述第一优先级越大。
作为一个实施例。所述P等于8。
作为一个实施例,所述P等于9。
作为一个实施例,所述第一优先级是更高层信令配置的。
作为一个实施例,所述第一系数是正整数。
作为一个实施例,所述第一系数是正小数。
作为一个实施例,所述第一系数是正分数。
作为一个实施例,所述第一优先级等于所述第一整数,所述第一系数与所述第一整数的线性函数。
作为一个实施例,所述第一优先级等于所述第一整数,所述第一系数与所述第一整数成正比例。
作为一个实施例,所述第一优先级等于所述第一整数,所述第一系数是所述第一整数的倍数。
作为一个实施例,所述第一优先级等于所述第一整数,所述第一系数是所述第一整数的约数。
作为一个实施例,所述第一系数等于所述第一整数。
作为一个实施例,所述第一系数大于所述第一整数。
作为一个实施例,所述第一系数小于所述第一整数。
作为一个实施例,所述第一监测周期与所述第一资源预留间隔有关。
作为一个实施例,所述第一资源预留间隔被用于确定所述第一监测周期。
作为一个实施例,所述第一监测周期与所述第一系数和所述第一资源预留间隔都有关。
作为一个实施例,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,所述第一监测周期是所述第一系数和所述第一资源预留间隔的线性函数。
作为一个实施例,所述第一监测周期等于所述第一系数与所述第一资源预留间隔的乘积。
作为一个实施例,所述第一监测周期等于所述第一系数与所述第一资源预留间隔的线性相乘的积。
作为一个实施例,所述第一监测周期等于所述第一系数与所述第一资源预留间隔的线性相加的和。
作为一个实施例,所述第一监测周期等于所述第一系数与所述第一资源预留间隔的和。
实施例8A
实施例8A示例了根据本申请的一个实施例的确定是否在第三资源子池中执行第一资源确定方式的流程图,如附图8A所示。
在实施例8A中,在步骤S801A中,分别在第一资源子池和第二资源子池中执行第一资源确定方式以确定第一备选资源子集和第二备选资源子集,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数;在步骤S802A中,判断Q1与Q2的和是否不大于第二数值;当所述Q1与所述Q2的和不大于所述第二数值时,执行步骤S803A,在第三资源子池中执行第一资源确定方式以确定第三备选资源子集;当所述Q1与所述Q2的和大于所述第二数值时,执行步骤S804,放弃在第三资源子池中执行第一资源确定方式。
作为一个实施例,所述第一资源池包括K个资源子池,所述K个资源子池两两相互正交,K是大于2的正整数。
作为一个实施例,所述第一资源子池和所述第二资源子池分别是所述K个资源子池中的两个资源子池;第三资源子池是所述K个资源子池中不同于所述第一资源子池和所述第二资源子池的一个资源子池。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和第三资源子池。
作为一个实施例,所述第一资源池包括K个资源子池,所述第一资源子池,所述第二资源子池和所述第三资源子池分别是所述K个资源子池中的三个资源子池。
作为一个实施例,所述第三资源子池包括多个时频资源块。
作为一个实施例,所述第三资源子池包括的所述多个时频资源块属于所述第一资源池。
作为一个实施例,所述第三资源子池包括的所述多个时频资源块中的任一时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第三资源子池与所述第一资源子池是正交的,所述第三资源子池与所述第二资源子池也是正交的。
作为一个实施例,所述第三资源子池包括的所述多个时频资源块中的任一时频资源块不属于所述第一资源子池,所述第三资源子池包括的所述多个时频资源块中的任一时频资源块不属于所述第二资源子池。
作为一个实施例,所述第三资源子池包括的所述多个时频资源块中的任一时频资源块与所述第一资源子池包括的所述多个时频资源块都不同,所述第三资源子池包括的所述多个时频资源块中的任一时频资源块与所述第二资源子池包括的所述多个时频资源块都不同。
作为一个实施例,所述第三资源子池所占用的时域资源与所述第一资源子池所占用的时域资源相同,所述第三资源子池所占用的时域资源与所述第二资源子池所占用的时域资源相同,所述第三资源子池所占 用的频域资源与所述第一资源子池所占用的频域资源不同,所述第三资源子池所占用的频域资源与所述第二资源子池所占用的频域资源不同。
作为一个实施例,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和第三备选资源子集。
作为一个实施例,所述第三备选资源子集属于所述备选资源集合。
作为一个实施例,所述备选资源集合包括多个备选资源子集,所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集分别是所述备选资源集合包括的所述多个备选资源子集中的三个备选资源子集。
作为一个实施例,所述第三备选资源子集包括至少一个时频资源块。
作为一个实施例,所述第三备选资源子集包括多个时频资源块。
作为一个实施例,所述第三备选资源子集包括的所述至少一个时频资源块中的一个时频资源块是所述备选资源集合中的一个时频资源块。
作为一个实施例,所述第三备选资源子集包括多个时频资源块,所述第三备选资源子集中的任一时频资源块属于所述备选资源集合。
作为一个实施例,所述第三备选资源子集包括的所述多个时频资源块中的任一时频资源块是所述备选资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述第三资源子池包括所述第三备选资源子集。
作为一个实施例,所述第三备选资源子集属于所述第三资源子池。
作为一个实施例,所述第三备选资源子集包括的所述至少一个时频资源块中的一个时频资源块是所述第三资源子池中的一个时频资源块。
作为一个实施例,所述第三备选资源子集包括多个时频资源块,所述第三备选资源子集中的任一时频资源块属于所述第二资源子池。
作为一个实施例,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,所述第三资源子池包括的所述多个时频资源块中的至少一个时频资源块是所述第三备选资源子集包括的所述至少一个时频资源块中的一个时频资源块。
作为一个实施例,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数。
作为一个实施例,所述第三备选资源子集包括的所有时频资源块的数量等于Q3,Q3是正整数。
作为一个实施例,所述第三备选资源子集包括的所有时频资源块的数量等于Q3,所述第三备选资源子集包括的所有时频资源块都属于所述第三资源子池,Q3是正整数。
作为一个实施例,所述第三备选资源子集包括Q3个时频资源块,所述第三备选资源子集包括的所述Q3个时频资源块都属于所述第三资源子池,Q3是正整数。
作为一个实施例,所述第三备选资源子集包括Q3个时频资源块,所述第三备选资源子集包括的所述Q3个时频资源块中的任一时频资源块是所述第三资源子池包括的所述多个时频资源块中的一个时频资源块,Q3是正整数。
作为一个实施例,所述第三备选资源子集是所述第一节点在所述第三资源子池中执行所述第一资源确定方式所确定的。
作为一个实施例,所述第一节点在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集。
作为一个实施例,所述第一节点在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,所述第一节点在所述第三资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集,所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合与所述第三资源子池有交叠。
作为一个实施例,所述备选资源集合中的至少一个时频资源块属于所述第三资源子池。
作为一个实施例,所述备选资源集合中的至少一个时频资源块与所述第三资源子池中的至少一个时频资源块相同。
作为一个实施例,所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括多个时频资源块,所述第三备选资源子集包括的所述多个时频资源块都属于所述第三资源子池。
作为一个实施例,所述备选资源集合与所述第三资源子池无交叠是指所述备选资源集合与所述第三资源子池正交。
作为一个实施例,所述备选资源集合与所述第三资源子池正交。
作为一个实施例,所述备选资源集合与所述第三资源子池无交叠是指所述备选资源集合包括的所述多个时频资源块中的任一时频资源块不属于所述第三资源子池。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块不属于所述第三资源子池。
作为一个实施例,所述备选资源集合包括的所述多个时频资源块中的任一时频资源块与所述第三资源子池包括的所述多个时频资源块中的任一时频资源块都不同。
作为一个实施例,所述Q1和所述Q2被用于确定是否在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,所述Q1和所述Q2被用于确定是否在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集。
作为一个实施例,所述Q1和所述Q2被用于确定是否在所述第三资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集。
作为一个实施例,所述Q1和所述Q2被用于确定所述备选资源集合是否与所述第三资源子池有交叠。
作为一个实施例,所述Q1和所述Q2被用于确定所述备选资源集合是否包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,所述Q1和所述Q2被用于确定所述备选资源集合是否包括第三备选资源子集,所述第三备选资源子集包括多个时频资源块,所述第三备选资源子集包括的所述多个时频资源块都属于所述第三资源子池。
作为一个实施例,所述Q1和所述Q2的和与第二数值之间的大小关系被用于确定是否在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,所述Q1和所述Q2的和与第二数值之间的大小关系被用于确定是否在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集。
作为一个实施例,所述Q1和所述Q2的和与第二数值之间的大小关系被用于确定是否在所述第三资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集。
作为一个实施例,所述Q1和所述Q2的和与第二数值之间的大小关系被用于确定所述备选资源集合是否与所述第三资源子池有交叠。
作为一个实施例,所述Q1和所述Q2的和与第二数值之间的大小关系被用于确定所述备选资源集合是否包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,所述Q1和所述Q2的和与第一数值之间的大小关系被用于确定所述备选资源集合是否包括第三备选资源子集,所述第三备选资源子集包括多个时频资源块,所述第三备选资源子集包括的所述多个时频资源块都属于所述第三资源子池。
作为一个实施例,所述Q1和所述Q2的和不大于所述第二数值。
作为一个实施例,所述Q1和所述Q2的和大于所述第二数值。
作为一个实施例,所述Q1和所述Q2的和等于所述第二数值。
作为一个实施例,所述Q1和所述Q2的和小于所述第二数值。
作为一个实施例,所述第二数值是一个正整数。
作为一个实施例,所述第二数值是更高层信令配置的。
作为一个实施例,所述第二数值等于所述第一数值。
作为一个实施例,所述第二数值不等于所述第一数值。
作为一个实施例,所述第二数值大于所述第一数值。
作为一个实施例,所述第二数值不大于所述第一资源子池中的在所述第一资源选择窗之内的时频资源块的数量。
作为一个实施例,所述第二数值等于第二系数与所述第一资源子池中的在所述第一资源选择窗之内的时频资源块的数量的乘积。
作为上述实施例的一个子实施例,所述第二系数是不大于1的正小数。
作为上述实施例的一个子实施例,所述第二系数是大于0且不大于1的真分数。
作为上述实施例的一个子实施例,所述第二系数等于所述第一系数。
作为上述实施例的一个子实施例,所述第二系数不等于所述第一系数。
作为上述实施例的一个子实施例,所述第二系数大于所述第一系数。
作为一个实施例,当所述Q1和所述Q2的和不大于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;当所述Q1和所述Q2的和大于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;当所述Q1和所述Q2的和等于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;当所述Q1和所述Q2的和大于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;当所述Q1和所述Q2的和不小于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;当所述Q1和所述Q2的和等于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式;当所述Q1和所述Q2的和大于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和不大于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集;当所述Q1和所述Q2的和大于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集;当所述Q1和所述Q2的和不小于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和不大于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集;当所述Q1和所述Q2的和大于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集;当所述Q1和所述Q2的和不小于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,当所述Q1和所述Q2的和不大于所述第二数值时,所述备选资源集合与所述第三资源子池有交叠;当所述Q1和所述Q2的和大于所述第二数值时,所述备选资源集合与所述第三资源子 池正交。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,所述备选资源集合与所述第三资源子池有交叠;当所述Q1和所述Q2的和等于所述第二数值时,所述备选资源集合与所述第三资源子池有交叠;当所述Q1和所述Q2的和大于所述第二数值时,所述备选资源集合与所述第三资源子池正交。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,所述备选资源集合与所述第三资源子池有交叠;当所述Q1和所述Q2的和不小于所述第二数值时,所述备选资源集合与所述第三资源子池正交。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,所述备选资源集合与所述第三资源子池有交叠;当所述Q1和所述Q2的和等于所述第二数值时,所述备选资源集合与所述第三资源子池正交;当所述Q1和所述Q2的和大于所述第二数值时,所述备选资源集合与所述第三资源子池正交。
作为一个实施例,当所述Q1和所述Q2的和不大于所述第二数值时,所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块;当所述Q1和所述Q2的和大于所述第二数值时,所述第三资源子池中的任一时频资源块不属于所述备选资源集合。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,所述备选资源集合包括第三备选资源子集;当所述Q1和所述Q2的和等于所述第二数值时,所述备选资源集合包括第三备选资源子集;当所述Q1和所述Q2的和大于所述第二数值时,所述第三资源子池中的任一时频资源块不属于所述备选资源集合;所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括所述第二资源子池中的至少一个时频资源块;当所述Q1和所述Q2的和不小于所述第二数值时,所述第三资源子池中的任一时频资源块不属于所述备选资源集合。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块;当所述Q1和所述Q2的和等于所述第二数值时,所述第三资源子池中的任一时频资源块不属于所述备选资源集合;当所述Q1和所述Q2的和大于所述第二数值时,所述第三资源子池中的任一时频资源块不属于所述备选资源集合。
作为一个实施例,所述Q1和所述Q2的和与所述第二数值之间的比值被用于确定是否在所述第三资源子池中执行所述第一资源确定方式。
作为一个实施例,所述Q1和所述Q2的和与所述第二数值之间的比值被用于确定是否在所述第三资源子池中执行所述第一资源确定方式以确定所述第三备选资源子集。
作为一个实施例,所述Q1和所述Q2的和与所述第二数值之间的比值被用于确定是否在所述第三资源子池中执行所述第一资源确定方式以确定所述备选资源集合,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集。
作为一个实施例,所述Q1和所述Q2的和与所述第二数值之间的比值被用于确定所述备选资源集合是否与所述第三资源子池有交叠。
作为一个实施例,所述Q1和所述Q2的和与所述第二数值之间的比值被用于确定所述备选资源集合是否包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块。
作为一个实施例,当所述Q1和所述Q2的和不大于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数;当所述Q1和所述Q2的和大于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式;所述备选资源集合中的任一时频资源块不属于所述第三资源子池。
作为一个实施例,当所述Q1和所述Q2的和小于所述第二数值时,在所述第三资源子池中执行所述第一资源确定方式;所述备选资源集合包括第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数;当所述Q1和所述Q2的和不小于所述第二数值时,放弃在所述第三资源子池中执行所述第一资源确定方式;所述备选资源集合中的任一时频资源块不属于所述第三资源子池。
实施例8B
实施例8B示例了根据本申请的一个实施例的第二监测周期与第一监测周期之间关系的示意图,如附图8B所示。在附图8B中,虚线大方框代表本申请中的第一资源池;长实线矩形代表本申请中的M个时域资源块中的时域资源块;长虚线矩形代表本申请中的X1个时域资源块中的时域资源块;粗实线长矩形代表本申请中的参考时域资源块;短矩形代表本申请中的第一资源池中的时频资源块;粗虚线方框代表本申请中的备选资源集合;斜方格填充的矩形代表本申请中的备选时频资源块。
在实施例8B中,在所述参考时域资源块上触发在所述M个时域资源块和在所述X个时域资源块上执行监测;所述第一资源池在时域包括所述M个时域资源块和所述X个时域资源块;所述参考时域资源块晚于所述M个时域资源块和所述X个时域资源块中的任一时域资源块;所述备选时频资源块是所述第一资源池包括的所述多个时频资源块中的一个时频资源块,所述备选时频资源块被关联到所述M个时域资源块中的至少一个时域资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述M个时域资源块的测量结果和针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述M个时域资源块中任意两个相邻的时域资源块之间间隔第二监测周期;所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期;M是大于1的正整数。
作为一个实施例,所述第二监测周期包括正整数个时隙。
作为一个实施例,所述第二监测周期包括多个多载波符号。
作为一个实施例,所述第二监测周期的单位是毫秒(ms)。
作为一个实施例,资源预留周期列表包括多个周期。
作为一个实施例,所述资源预留周期列表包括的所述多个周期中的任一周期包括正整数个时隙。
作为一个实施例,所述资源预留周期列表包括的所述多个周期中的任一周期包括多个多载波符号。
作为一个实施例,所述资源预留周期列表包括的所述多个周期中的任一周期的单位是ms。
作为一个实施例,所述资源预留周期列表包括{0ms,100ms,200ms,300ms,400ms,500ms,600ms,700ms,800ms,900ms,1000ms}中的全部或部分。
作为一个实施例,所述资源预留周期列表是{0ms,100ms,200ms,300ms,400ms,500ms,600ms,700ms,800ms,900ms,1000ms}中的一个子集。
作为一个实施例,所述资源预留周期列表包括的所述多个周期中的任一周期是{100ms,200ms,300ms,400ms,500ms,600ms,700ms,800ms,900ms,1000ms}中的之一。
作为一个实施例,所述资源预留周期列表包括的所述多个周期中的任一周期是从1到99中的一个正整数。
作为一个实施例,所述资源预留周期列表是所述第一节点的更高层提供的。
作为一个实施例,所述资源预留周期列表是一个更高层信令指示的。
作为一个实施例,所述资源预留周期列表是一个RRC信令指示的。
作为一个实施例,所述资源预留周期列表是3GPP TS214中的sl-ResourceReservePeriodList指示的。
作为一个实施例,所述第二监测周期是资源预留周期列表包括的所述多个周期中的一个周期。
作为一个实施例,所述第二监测周期是{100ms,200ms,300ms,400ms,500ms,600ms,700ms,800ms,900ms,1000ms}中的之一。
作为一个实施例,所述第一资源池在时域包括所述多个时域资源块包括所述M个时域资源块,M是大于1的正整数。
作为一个实施例,所述M个时域资源块中的任一时域资源块是所述第一资源池在时域包括的所述多个时域资源块中的一个时域资源块,M是大于1的正整数。
作为一个实施例,所述M个时域资源块中任意两个相邻的时域资源块之间间隔所述第二监测周期,M是大于1的正整数。
作为一个实施例,所述M个时域资源块中任意两个相邻的时域资源块之间的时域间隔等于所述第二监测周期,M是大于1的正整数。
作为一个实施例,第一时域资源块和第二时域资源块分别是所述X个时域资源块中的两个时域资源块,所述第一时域资源块与所述第二时域资源块相邻,X是大于1的正整数。
作为一个实施例,所述M个时域资源块分别是M个时隙。
作为一个实施例,所述M个时域资源块分别是所述第一资源池中的M个时隙。
作为一个实施例,所述M个时域资源块中的任一时域资源块包括正整数个多载波符号。
实施例9A
实施例9A示例了根据本申请的一个实施例的确定是否在第一资源子池中再次执行第一资源确定方式的流程图,如附图9A所示。
在实施例9A中,在步骤S901A中,在所述第一资源池的K个资源子池中分别执行第一资源确定方式以确定备选资源集合;在步骤S902A中,判断备选资源集合包括的时频资源块的数量是否不大于第三数值;当所述备选资源集合包括的时频资源块的所述数量不大于所述第三数值时,执行步骤S903A,在第一资源子池中再次执行第一资源确定方式;当所述备选资源集合包括的时频资源块的所述数量大于所述第三数值时,执行步骤S904A,向更高层上报备选资源集合。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量被用于确定是否在所述第一资源子池中再次执行所述第一资源确定方式。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量与第三数值之间的大小关系被用于确定是否在所述第一资源子池中再次执行所述第一资源确定方式。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量等于所述Q1,所述Q2和所述Q3三者的和。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量大于所述Q1,所述Q2和所述Q3三者的和。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量不大于所述第三数值。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量大于所述第三数值。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量等于所述第三数值。
作为一个实施例,所述备选资源集合包括的时频资源块的所述数量小于所述第三数值。
作为一个实施例,所述第三数值是一个正整数。
作为一个实施例,所述第三数值是更高层信令配置的。
作为一个实施例,所述第三数值等于所述第二数值。
作为一个实施例,所述第三数值不等于所述第二数值。
作为一个实施例,所述第三数值大于所述第二数值。
作为一个实施例,所述第三数值等于所述第一数值。
作为一个实施例,所述第三数值不等于所述第一数值。
作为一个实施例,所述第三数值大于所述第一数值。
作为一个实施例,所述第三数值不大于所述第一资源子池中的在所述第一资源选择窗之内的时频资源块的数量。
作为一个实施例,所述第三数值等于第三系数与所述第一资源子池中的在所述第一资源选择窗之内的时频资源块的数量的乘积。
作为上述实施例的一个子实施例,所述第三系数是不大于1的正小数。
作为上述实施例的一个子实施例,所述第三系数是大于0且不大于1的真分数。
作为上述实施例的一个子实施例,所述第三系数等于所述第二系数。
作为上述实施例的一个子实施例,所述第三系数不等于所述第二系数。
作为上述实施例的一个子实施例,所述第三系数大于所述第二系数。
作为上述实施例的一个子实施例,所述第三系数等于所述第一系数。
作为上述实施例的一个子实施例,所述第三系数不等于所述第一系数。
作为上述实施例的一个子实施例,所述第三系数大于所述第一系数。
作为一个实施例,当所述备选资源集合包括的时频资源块的所述数量不大于所述第三数值时,在所述第一资源子池中再次执行所述第一资源确定方式;当所述备选资源集合包括的时频资源块的所述数量大于 所述第二数值时,放弃在所述第一资源子池中再次执行所述第一资源确定方式。
作为一个实施例,当所述备选资源集合包括的时频资源块的所述数量不大于所述第三数值时,在所述第一资源子池中再次执行所述第一资源确定方式;当所述备选资源集合包括的时频资源块的所述数量大于所述第二数值时,向更高层上报所述备选资源集合。
作为一个实施例,当所述备选资源集合包括的时频资源块的所述数量小于所述第三数值时,在所述第一资源子池中再次执行所述第一资源确定方式;当所述备选资源集合包括的时频资源块的所述数量等于所述第三数值时,在所述第一资源子池中再次执行所述第一资源确定方式;当所所述备选资源集合包括的时频资源块的所述数量大于所述第三数值时,向更高层上报所述备选资源集合。
作为一个实施例,当所述备选资源集合包括的时频资源块的所述数量小于所述第三数值时,在所述第三资源子池中执行所述第一资源确定方式;当所述备选资源集合包括的时频资源块的所述数量不小于所述第三数值时,向更高层上报所述备选资源集合。
作为一个实施例,当所述备选资源集合包括的时频资源块的所述数量小于所述第三数值时,在所述第一资源子池中再次执行所述第一资源确定方式;当所述备选资源集合包括的时频资源块的所述数量等于所述第三数值时,向更高层上报所述备选资源集合;当所述备选资源集合包括的时频资源块的所述数量大于所述第三数值时,向更高层上报所述备选资源集合。
实施例9B
实施例9B示例了一个用于第一节点中的处理装置的结构框图,如附图9B所示。在实施例9B中,第一节点设备处理装置900B主要由第一接收机901B,第一发射机902B和第一处理机903B组成。
作为一个实施例,第一接收机901B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机902B包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一处理机903B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例9B中,所述第一接收机901B分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;所述第一发射机902B分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一资源预留间隔,Y是大于1的正整数;所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期。
作为一个实施例,所述第一处理器903B在参考时域资源块上从更高层获得第一参数组,所述第一参数组包括所述第一资源池,所述第一优先级和所述第一资源预留间隔;在所述参考时域资源块上获得所述第一参数组被用于触发分别在所述X个时域资源块上执行所述监测;所述参考时域资源块属于所述第一资源池中的一个时频资源块所占用的时域资源;所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块。
作为一个实施例,所述第一系数与所述第一资源预留间隔的乘积等于所述第一监测周期。
作为一个实施例,所述第一优先级等于第一整数,所述第一系数与所述第一整数成正比例。
作为一个实施例,所述第一资源池包括Y1个时频资源块,所述备选时频资源块是所述Y1个时频资源块中的一个时频资源块,所述Y1个时频资源块中的任意两个相邻的时频资源块之间在时域的间隔等于所述第一资源预留间隔,所述Y1个时频资源块中的任一时频资源块被关联到所述X个时域资源块中的至少一个时频资源块,Y1是大于1的正整数;针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块中的任一时频资源块是否属于所述备选资源集合。
作为一个实施例,所述第一接收机901B分别在M个时域资源块上执行所述监测,所述M个时域资源块属于所述第一资源池所占用的时域资源,所述M个时域资源块中任意两个相邻的时域资源块之间间隔第二监测周期,M是大于1的正整数;针对所述M个时域资源块的测量结果和针对所述X个时域资源块的测量结果共同被用于确定所述备选时频资源块是否属于所述备选资源集合;所述第二监测周期是资源预留周期列表中的一个周期,所述资源预留周期列表是更高层信令配置的,所述第一监测周期与所述资源预留周期列表中的任一周期都不同。
作为一个实施例,所述第一处理器903B向更高层报告所述备选资源集合。
作为一个实施例,所述第一节点设备900B是用户设备。
作为一个实施例,所述第一节点设备900B是中继节点。
作为一个实施例,所述第一节点设备900B是基站设备。
实施例10A
实施例10A示例了根据本申请的一个实施例的执行第一资源确定方式的示意图,如附图10A所示。在附图10A中,虚线大方框代表本申请中的第一资源池;实线矩形代表所述第一资源池中的时频资源块;实线大方框代表本申请中的目标资源子池;点虚线大方框代表本申请中的目标备选资源子集;斜方格填充的矩形代表本申请中的第一时频资源块;斜纹填充的矩形代表本申请中的第二时频资源块。
在实施例10A中,目标资源子池是所述第一资源池包括的所述K个资源子池中的一个资源子池,所述目标资源子池包括多个时频资源块;第一时频资源块和第二时频资源块分别是所述目标资源子池中的两个时频资源块,所述第二时频资源块被关联到所述第一时频资源块;所述第一时频资源块所占用的时域资源在第一感知窗内,所述第二时频资源块所占用的时域资源在所述第一资源选择窗内;针对所述第一时频资源块的测量结果被用于确定所述第二时频资源块是否属于目标备选资源子集,所述目标备选资源子集属于所述备选资源集合。
作为一个实施例,所述第一感知窗早于所述第一资源选择窗。
作为一个实施例,所述第一感知窗的单位是毫秒。
作为一个实施例,所述第一感知窗包括所述第一资源池中的多个时域资源块。
作为一个实施例,所述第二时频资源块在时域晚于所述第一时频资源块。
作为一个实施例,所述第一时频资源块是所述目标资源子池中的在时域位于所述第一感知窗内的一个时频资源块。
作为一个实施例,所述第二时频资源块是所述目标资源子池中的在时域位于所述第一资源选择窗内的一个时频资源块。
作为一个实施例,所述第二时频资源块与所述第一时频资源块在时域间隔第一时间偏移。
作为一个实施例,所述第一时间偏移是配置的。
作为一个实施例,所述第一时间偏移是预定义的。
作为一个实施例,所述第一时间偏移包括所述第一资源池中的正整数个时域资源块。
作为一个实施例,所述第一时频资源块与所述第二时频资源块是频分复用的(Frequency-Division Multiplexing,FDM)。
作为一个实施例,所述第一时频资源块所占用的频域资源与所述第二时频资源块所占用的频域资源有交叠。
作为一个实施例,所述第二时频资源块所占用的频域资源包括所述第一时频资源块所占用的频域资源。
作为一个实施例,所述第二时频资源块所占用的频域资源与所述第一时频资源块所占用的频域资源相同。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括SL RSRP(Sidelink Reference Signal Receiving Power,副链路参考信号接收功率)。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括L1 RSRP(Layer 1 Reference Signal Receiving Power,层1参考信号接收功率)。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括L3 RSRP(Layer 3 Reference Signal Receiving Power,层3参考信号接收功率)。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括RSSI(Received Signal Strength Indication,接收信号强度指示)。
作为一个实施例,针对所述第一时频资源块的所述测量结果包括RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,针对所述第一时频资源块的所述测量结果的单位是dBm。
作为一个实施例,针对所述第一时频资源块的所述测量结果的单位是dB。
作为一个实施例,针对所述第一时频资源块的所述测量结果的单位是mW。
作为一个实施例,针对所述第一时频资源块的所述测量结果的单位是W。
作为一个实施例,本申请中的所述目标资源子池包括所述K个资源子池中的任一资源子池。
作为一个实施例,本申请中的所述目标资源子池包括所述第一资源子池。
作为一个实施例,本申请中的所述目标资源子池包括所述第二资源子池。
作为一个实施例,本申请中的所述目标资源子池包括所述第三资源子池。
作为一个实施例,本申请中的所述目标备选资源子集包括所述备选资源集合中的一个备选资源子集。
作为一个实施例,本申请中的所述目标资源子池包括所述第一资源子池,本申请中的所述目标备选资源子集包括所述第一备选资源子集。
作为一个实施例,本申请中的所述目标资源子池包括所述第二资源子池,本申请中的所述目标备选资源子集包括所述第二备选资源子集。
作为一个实施例,本申请中的所述目标资源子池包括所述第三资源子池,本申请中的所述目标备选资源子集包括所述第三备选资源子集。
作为一个实施例,所述第一资源确定方式是基于感知(Sensing)的资源确定(resource determination)方式。
作为一个实施例,所述第一资源确定方式是基于完全感知(Full Sensing)的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于部分感知(Partial Sensing)的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于周期性部分感知(Periodic-based Partial Sensing)的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于连续性部分感知(Contiguous Partial Sensing)的资源确定方式。
作为一个实施例,所述第一资源确定方式在所述第一资源池中被允许执行。
作为一个实施例,所述第一资源确定方式在所述第一资源池中被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池,所述第一资源确定方式在所述第一资源子池和所述第二资源子池二者中的至少前者中被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池,所述第一资源确定方式仅在所述第一资源子池和所述第二资源子池二者中的所述第一资源子池中被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池,所述第一资源确定方式在所述第一资源子池和所述第二资源子池中分别被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池,所述第一资源确定方式在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的至少前一者中分别被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池,所述第一资源确定方式在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的至少前两者 中分别被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池,所述第一资源确定方式仅在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的所述第一资源子池中被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池,所述第一资源确定方式在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的所述第一资源子池和所述第二资源子池中分别被执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池,所述第一资源确定方式在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中分别被执行。
作为一个实施例,在所述第一资源池中执行所述第一资源确定方式。
作为一个实施例,在所述第一资源池包括的所述K个资源子池中的至少一个资源子池中执行所述第一资源确定方式。
作为一个实施例,所述第一资源池包括的所述K个资源子池中的任一资源子池被允许执行所述第一资源确定方式。
作为一个实施例,所述第一资源池被允许执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池和所述第二资源子池二者中的至少前者中执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池和所述第二资源子池二者中的前者中执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池和所述第二资源子池中分别执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池和所述第二资源子池二者中的前者中执行所述第一资源确定方式,所述备选资源集合仅包括所述第一备选资源子集。
作为一个实施例,在所述第一资源子池和所述第二资源子池中分别执行所述第一资源确定方式,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的至少前两者中执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的前两者中执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池,所述第二资源子池和所述第三资源子池中分别执行所述第一资源确定方式。
作为一个实施例,在所述第一资源子池,所述第二资源子池和所述第三资源子池三者中的前两者中执行所述第一资源确定方式,所述备选资源集合包括所述第一备选资源子集和所述第二备选资源子集。
作为一个实施例,在所述第一资源子池,所述第二资源子池和所述第三资源子池中分别执行所述第一资源确定方式,所述备选资源集合包括所述第一备选资源子集,所述第二备选资源子集和所述第三备选资源子集。
作为一个实施例,多个资源确定方式包括基于感知的资源确定方式和基于非感知(non-Sensing)的资源确定方式。
作为一个实施例,多个资源确定方式包括基于感知的资源确定方式和随机资源选择(Random Resource Selection)的资源确定方式。
作为一个实施例,多个资源确定方式包括基于完全感知的资源确定方式,基于部分感知的资源确定方式和随机资源确定方式中的至少之二。
作为一个实施例,多个资源确定方式包括基于完全感知的资源确定方式,基于周期性部分感知的资源确定方式,基于连续性部分感知的资源确定方式和随机资源选择的资源确定方式中的至少之二。
作为一个实施例,所述第一资源确定方式是所述多个资源确定方式中的一个资源确定方式。
作为一个实施例,所述第一资源确定方式和第二资源确定方式分别是所述多个资源确定方式中的两个不同的资源确定方式。
作为一个实施例,所述第一资源确定方式,第二资源确定方式和第三资源确定方式分别是所述多个资源确定方式中的三个不同的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于感知的资源确定方式,第二资源确定方式不同于所述第一资源确定方式。
作为一个实施例,所述第一资源确定方式是基于周期性感知的资源确定方式,第二资源确定方式不同于所述第一资源确定方式。
作为一个实施例,所述第一资源确定方式是基于感知的资源确定方式,第二资源确定方式是随机资源选择的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于完全感知的资源确定方式,第二资源确定方式是基于部分感知的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于完全感知的资源确定方式,第二资源确定方式是基于部分感知的资源确定方式,第三资源确定方式是随机资源选择的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于完全感知的资源确定方式,第二资源确定方式是基于周期性部分感知的资源确定方式,第三资源确定方式是连续性部分感知的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于完全感知的资源确定方式,第二资源确定方式是基于周期性部分感知的资源确定方式,第三资源确定方式是随机资源选择的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于完全感知的资源确定方式,第二资源确定方式是基于连续性部分感知的资源确定方式,第三资源确定方式是随机资源选择的资源确定方式。
作为一个实施例,所述第一资源确定方式是基于周期性部分感知的资源确定方式,第二资源确定方式是基于连续性部分感知的资源确定方式,第三资源确定方式是随机资源选择的资源确定方式。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池;所述第一资源确定方式在所述第一资源池中被允许执行;所述第二资源确定方式在所述第二资源子池中被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池;所述第一资源确定方式在所述第一资源子池和所述第二资源子池中都被允许执行;所述第二资源确定方式在所述第二资源子池中被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池;所述第一资源确定方式在所述第一资源池中被允许执行;所述第二资源确定方式在所述第二资源子池和所述第三资源子池中被允许执行;所述第三资源确定方式在所述第三资源子池中被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池;所述第一资源确定方式在所述第一资源子池,所述第二资源子池和所述第三资源子池中被允许执行;所述第二资源确定方式在所述第二资源子池和所述第三资源子池中被允许执行;所述第三资源确定方式在所述第三资源子池中被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池;所述第一资源确定方式在所述第一资源池被允许执行;所述第二资源确定方式在所述第一资源子池中未被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池和所述第二资源子池;所述第一资源确定方式在所述第一资源子池和所述第二资源子池被允许执行;所述第二资源确定方式在所述第一资源子池中未被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池;所述第一资源确定方式在所述第一资源池中被允许执行;所述第二资源确定方式在所述第一资源子池中未被允许执行;所述第三资源确定方式在所述第一资源子池和所述第二资源子池中被允许执行。
作为一个实施例,所述第一资源池包括所述第一资源子池,所述第二资源子池和所述第三资源子池;所述第一资源确定方式在所述第一资源子池,所述第二资源子池和所述第三资源子池中被允许执行;所述第二资源确定方式在所述第一资源子池中未被允许执行;所述第三资源确定方式在所述第一资源子池和所述第二资源子池中被允许执行。
作为一个实施例,所述短语“被允许执行”是指“被配置”。
实施例10B
实施例10B示例了一个用于第一节点中的处理装置的一个结构框图,如附图10B所示。在实施例10B中,第一节点设备处理装置1000B主要由第一接收机1001B,第一发射机1002B和第二处理机1003B组成。
作为一个实施例,第一接收机1001B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机1002B包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第二处理机1003B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例10B中,所述第一接收机1001B分别在X个时域资源块上执行监测,第一资源池在时域包括所述X个时域资源块,所述X个时域资源块中任意两个相邻的时域资源块之间间隔第一监测周期,X是大于1的正整数;所述第一发射机1002B分别在Y个时频资源块上发送Y个第一类信号,所述Y个时频资源块都属于备选资源集合,所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于第一资源预留间隔,Y是大于1的正整数;所述第一资源池包括多个时频资源块,所述备选资源集合包括多个时频资源块,所述第一资源池包括所述备选资源集合;备选时频资源块是所述第一资源池中的一个时频资源块,所述备选时频资源块被关联到所述X个时域资源块中的至少一个时域资源块;针对所述X个时域资源块的测量结果被用于确定所述备选时频资源块是否属于所述备选资源集合;所述Y个第一类信号对应第一优先级,所述第一优先级被用于确定第一系数,所述第一系数和所述第一资源预留间隔共同被用于确定所述第一监测周期;所述第二处理器1003B在参考时域资源块上提供第一参数组,所述第一参数组包括所述第一资源池,所述第一优先级和所述第一资源预留间隔;在所述参考时域资源块上提供所述第一参数组被用于触发所述第一接收机分别在所述X个时域资源块上执行所述监测;所述参考时域资源块属于所述第一资源池中的一个时频资源块所占用的时域资源;所述参考时域资源块晚于所述X个时域资源块中的任一时域资源块。
作为一个实施例,所述第一系数与所述第一资源预留间隔的乘积等于所述第一监测周期。
作为一个实施例,所述第一优先级等于第一整数,所述第一系数与所述第一整数成正比例。
作为一个实施例,所述第一资源池包括Y1个时频资源块,所述备选时频资源块是所述Y1个时频资源块中的一个时频资源块,所述Y1个时频资源块中的任意两个相邻的时频资源块之间在时域的间隔等于所述第一资源预留间隔,所述Y1个时频资源块中的任一时频资源块被关联到所述X个时域资源块中的至少一个时频资源块,Y1是大于1的正整数;针对所述X个时域资源块的测量结果被用于确定所述Y1个时频资源块中的任一时频资源块是否属于所述备选资源集合。
作为一个实施例,所述第一接收机1001B分别在M个时域资源块上执行所述监测,所述M个时域资源块属于所述第一资源池所占用的时域资源,所述M个时域资源块中任意两个相邻的时域资源块之间间隔第二监测周期,M是大于1的正整数;针对所述M个时域资源块的测量结果和针对所述X个时域资源块的测量结果共同被用于确定所述备选时频资源块是否属于所述备选资源集合;所述第二监测周期是资源预留周期列表中的一个周期,所述资源预留周期列表是更高层信令配置的,所述第一监测周期与所述资源预留周期列表中的任一周期都不同。
作为一个实施例,所述第二处理器1003B接收所述备选资源集合,并从所述备选资源集合中选择所述Y个时频资源块。
作为一个实施例,所述第一节点设备1000B是用户设备。
作为一个实施例,所述第一节点设备1000B是中继节点。
作为一个实施例,所述第一节点设备1000B是基站设备。
实施例11A
实施例11A示例了一个用于第一节点中的处理装置的结构框图,如附图11A所示。在实施例11A中,第一节点设备处理装置1100A主要由第一接收机1101A,第一处理机1102A和第一发射机1103A组成。
作为一个实施例,第一接收机1101A包括本申请附图4中的天线452,发射器/接收器454,多天线接 收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一处理机1102A包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机1103A包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例11A中,所述第一接收机1101A接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;所述第一处理机1102A在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合;所述第一发射机1102A在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
作为一个实施例,当所述Q1不大于第一数值时,所述第一处理机1102在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数。
作为一个实施例,当所述Q1大于第一数值时,所述第一处理机1102放弃在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合中的任一时频资源块不属于所述第二资源子池。
作为一个实施例,所述第一资源池包括K个资源子池,所述K个资源子池两两相互正交,K是大于2的正整数;所述第一资源子池和所述第二资源子池分别是所述K个资源子池中的两个资源子池;第三资源子池是所述K个资源子池中不同于所述第一资源子池和所述第二资源子池的一个资源子池;所述Q1和所述Q2被用于确定所述备选资源集合是否与所述第三资源子池交叠。
作为一个实施例,当所述Q1与所述Q2的和不大于第二数值时,所述第一处理机1102在所述第三资源子池中执行所述第一资源确定方式以确定第三备选资源子集;所述备选资源集合包括所述第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数。
作为一个实施例,所述备选资源集合包括的时频资源块的数量与第三数值的大小关系被用于确定是否在所述第一资源子池中再次执行所述第一资源确定方式。
作为一个实施例,所述第一处理机1102A向更高层上班上报所述备选资源集合。
作为一个实施例,所述第一节点设备1100A是用户设备。
作为一个实施例,所述第一节点设备1100A是中继节点。
作为一个实施例,所述第一节点设备1100A是基站设备。
实施例11B
实施例11B示例了一个用于第二节点中的处理装置的结构框图,如附图11B所示。在实施例11B中,第二节点设备处理装置1100B主要由第二接收机1101B组成。
作为一个实施例,第二接收机1101B包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
在实施例11B中,所述第二接收机1101B分别在Y个时频资源块上接收Y个第一类信号,Y是大于1的正整数;第一资源池在时域包括所述Y个时频资源块;所述Y个第一类信号携带第一资源预留间隔;所述Y个时频资源块中任意两个相邻的时频资源块之间在时域的间隔不小于所述第一资源预留间隔。
作为一个实施例,所述第二节点设备1100B是用户设备。
作为一个实施例,所述第二节点设备1100B是中继节点。
作为一个实施例,所述第二节点设备1100B是基站设备。
实施例12
实施例12示例了一个用于第二节点中的处理装置的结构框图,如附图12所示。在实施例12中,第二节点设备处理装置1200A主要由第二接收机1201A和第三接收机1202A组成。
作为一个实施例,第二接收机1201A包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,第三接收机1202A包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476中的至少之一。
在实施例12中,所述第二接收机1201A接收第二信令,所述第二信令指示第一资源池;所述第三接收机1202A在目标时频资源块上接收第一信号;所述第一资源池包括多个时频资源块,所述目标时频资源块是所述第一资源池中的一个时频资源块。
作为一个实施例,所述第二节点设备1200A是用户设备。
作为一个实施例,所述第二节点设备1200A是中继节点。
作为一个实施例,所述第二节点设备1200A是基站设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;
    第一处理机,在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合,所述备选资源集合包括所述第一资源池中的至少一个时频资源块;
    第一发射机,在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;
    其中,所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
  2. 根据权利要求1所述的第一节点,其特征在于,当所述Q1不大于第一数值时,所述第一处理机在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数。
  3. 根据权利要求1所述的第一节点,其特征在于,当所述Q1大于第一数值时,所述第一处理机放弃在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合中的任一时频资源块不属于所述第二资源子池。
  4. 根据权利要求2所述的第一节点,其特征在于,所述第一资源池包括K个资源子池,所述K个资源子池两两相互正交,K是大于2的正整数;所述第一资源子池和所述第二资源子池分别是所述K个资源子池中的两个资源子池;第三资源子池是所述K个资源子池中不同于所述第一资源子池和所述第二资源子池的一个资源子池;所述Q1和所述Q2被用于确定所述备选资源集合是否与所述第三资源子池交叠。
  5. 根据权利要求4所述的第一节点,其特征在于,包括:
    当所述Q1与所述Q2的和不大于第二数值时,所述第一处理机在所述第三资源子池中执行所述第一资源确定方式以确定第三备选资源子集;
    其中,所述备选资源集合包括所述第三备选资源子集,所述第三备选资源子集包括所述第三资源子池中的至少一个时频资源块,所述第三备选资源子集包括的所述第三资源子池中的时频资源块的数量等于Q3,Q3是正整数。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述备选资源集合包括的时频资源块的数量与第三数值的大小关系被用于确定是否在所述第一资源子池中再次执行所述第一资源确定方式。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,向更高层上班上报所述备选资源集合。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收第二信令,所述第二信令指示第一资源池;
    第三接收机,在目标时频资源块上接收第一信号;
    其中,所述第一资源池包括多个时频资源块,所述目标时频资源块是所述第一资源池中的一个时频资源块。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令指示第一资源池,所述第一资源池包括多个时频资源块,所述第一资源池包括第一资源子池和第二资源子池;
    在所述第一资源子池和所述第二资源子池二者中的至少前者中执行第一资源确定方式以确定备选资源集合,所述备选资源集合包括所述第一资源池中的至少一个时频资源块;
    在目标时频资源块上发送第一信号,所述目标时频资源块是所述备选资源集合中的一个时频资源块;
    其中,所述第一资源子池与所述第二资源子池正交;所述备选资源集合包括第一备选资源子集;所述第一备选资源子集包括所述第一资源子池中的至少一个时频资源块,所述第一备选资源子集包括的所述第 一资源子池中的时频资源块的数量等于Q1,Q1是正整数;所述Q1被用于确定所述备选资源集合是否与所述第二资源子池交叠。
  10. 根据权利要求9所述的方法,其特征在于,当所述Q1不大于第一数值时,所述第一处理机在所述第二资源子池中执行所述第一资源确定方式;所述备选资源集合包括第二备选资源子集,所述第二备选资源子集包括所述第二资源子池中的至少一个时频资源块,所述第二备选资源子集包括的所述第二资源子池中的时频资源块的数量等于Q2,Q2是正整数。
PCT/CN2022/118878 2021-09-17 2022-09-15 一种被用于无线通信的节点中的方法和装置 WO2023040920A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280006913.7A CN116391435A (zh) 2021-09-17 2022-09-15 一种被用于无线通信的节点中的方法和装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111090059.0 2021-09-17
CN202111090059 2021-09-17
CN202111157016.X 2021-09-30
CN202111157016 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023040920A1 true WO2023040920A1 (zh) 2023-03-23

Family

ID=85602453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118878 WO2023040920A1 (zh) 2021-09-17 2022-09-15 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116391435A (zh)
WO (1) WO2023040920A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992364A (zh) * 2015-03-02 2016-10-05 中兴通讯股份有限公司 资源处理方法及装置
US20190373647A1 (en) * 2016-11-03 2019-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and Apparatus for Sidelink Wireless Communications
CN110876128A (zh) * 2018-09-04 2020-03-10 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111726212A (zh) * 2019-03-22 2020-09-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210051629A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated Spatial resource pool techniques for multiple concurrent transmissions in sidelink wireless communications

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839764A (zh) * 2017-03-06 2021-12-24 上海朗桦通信技术有限公司 一种被用于动态调度的用户设备、基站中的方法和装置
WO2019028759A1 (zh) * 2017-08-10 2019-02-14 Oppo广东移动通信有限公司 设备对设备通信的方法和终端设备
CN110896322B (zh) * 2018-09-11 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112055411B (zh) * 2019-06-06 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112135349A (zh) * 2019-06-24 2020-12-25 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN112152762B (zh) * 2019-06-26 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141597B (zh) * 2020-01-20 2022-03-29 上海朗帛通信技术有限公司 一种用于不连续接收的无线通信的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992364A (zh) * 2015-03-02 2016-10-05 中兴通讯股份有限公司 资源处理方法及装置
US20190373647A1 (en) * 2016-11-03 2019-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and Apparatus for Sidelink Wireless Communications
CN110876128A (zh) * 2018-09-04 2020-03-10 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111726212A (zh) * 2019-03-22 2020-09-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210051629A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated Spatial resource pool techniques for multiple concurrent transmissions in sidelink wireless communications

Also Published As

Publication number Publication date
CN116391435A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2020244384A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021180052A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230111152A1 (en) Method and apparatus for node used for wireless communication
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022073432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040920A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021213251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021185229A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244383A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022257865A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113708901A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115150039B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230049210A1 (en) Method and device in nodes used for wireless communication
WO2022214048A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023236853A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027609A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020253530A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083236A1 (zh) 用于无线通信的方法和装置
WO2023030351A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE