WO2021180052A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021180052A1
WO2021180052A1 PCT/CN2021/079651 CN2021079651W WO2021180052A1 WO 2021180052 A1 WO2021180052 A1 WO 2021180052A1 CN 2021079651 W CN2021079651 W CN 2021079651W WO 2021180052 A1 WO2021180052 A1 WO 2021180052A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
time
resource group
reference signal
type
Prior art date
Application number
PCT/CN2021/079651
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010167010.XA external-priority patent/CN113395764B/zh
Priority claimed from CN202010289165.0A external-priority patent/CN113541889B/zh
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021180052A1 publication Critical patent/WO2021180052A1/zh
Priority to US17/901,878 priority Critical patent/US20220417992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to transmission methods and devices in wireless communication systems, and in particular to transmission schemes and devices related to unlicensed spectrum in wireless communication.
  • a key technology of NR is to support beam-based signal transmission, and its main application scenario is to enhance the coverage of NR devices working in millimeter wave frequency bands (for example, frequency bands greater than 6 GHz).
  • beam-based transmission technology is also required in low frequency bands (for example, frequency bands less than 6 GHz) to support large-scale antennas.
  • the radio frequency signal will form a stronger beam in a specific spatial direction, while the signal will be weaker in other directions.
  • the beams of the transmitter and receiver can be accurately aligned with each other, so that the signal can be transmitted and received with stronger power, thereby improving the coverage performance.
  • the beam measurement and feedback of the NR system working in the millimeter wave frequency band can be completed by multiple simultaneous broadcast signal blocks (SS/PBCH blocks, SSB) and channel state information reference signals (CSI-RS). Different SSB or CSI-RS can use different beams for transmission.
  • SS/PBCH blocks SSB
  • CSI-RS channel state information reference signals
  • UE User Equipment
  • gNB next generation Node B
  • LBT Listen Before Talk
  • Directional LBT Directional LBT
  • the transmitter base station or user equipment
  • the transmitter first performs energy detection during a delay period (Defer Duration). If the result is that the channel is idle, backoff must be performed and energy detection is performed during the backoff time.
  • the back-off time is counted by CCA (Clear Channel Assessment) time slot period as the unit, and the number of back-off time slot periods is randomly selected by the transmitter in CWS (Contention Window Size, contention window size) . Therefore, the duration of Cat 4 LBT is uncertain.
  • Cat 2 LBT (the second type of LBT, Category 2 LBT, see 3GPP TR36.889) is another type of LBT.
  • Cat 2 LBT judges whether the channel is idle by evaluating the amount of energy in a specific period of time. Therefore, the duration of Cat 2 LBT is determined.
  • Cat 4 LBT is also called Type 1 downlink channel access procedures or Type 1 uplink channel access procedures (Type 1 uplink channel access procedures);
  • Cat 2 LBT is also called Type 2 downlink channel access Procedures (Type 2 downlink channel access procedures) or Type 2 uplink channel access procedures (Type 2 uplink channel access procedures).
  • Cat 4 LBT in this application is also used to indicate type 1 downlink channel access process or type 1 uplink channel access process.
  • Cat 2 LBT in this application is also used to indicate type 2 Downlink channel access process or Type 2 uplink channel access process.
  • gNB or UE needs to use Cat 4 LBT when starting a new COT (Channel Occupancy Time). After the gNB completes a successful Cat 4 LBT, it can determine a COT and notify the UE of the duration of the COT. In the COT obtained by the gNB, the UE can use Cat 2 LBT to determine whether the channel is idle before transmitting the uplink signal; and the UE can switch the original Cat 4 LBT to Cat 2 LBT within the COT to reduce overhead.
  • signal transmission can only be performed in the beam direction where the LBT is successful, while signal transmission in the direction where the directional LBT is not performed or the direction where the directional LBT is unsuccessful will be restricted. Therefore, in the directional LBT scenario, what kind of relationship exists between the type of LBT used by the UE and the beam direction of uplink signal transmission is a problem that needs to be solved. Due to the uncertainty of the LBT result, the gNB and UE cannot predict which beams correspond to the directional LBT that will succeed before the end of the LBT.
  • CSI-RS or SSB is sent through a specific beam
  • gNB and UE cannot predict which CSI-RS or SSB can be sent and measured before the end of LBT. If there is no certain method to solve this problem, it will not be possible. Complete the measurement of CSI.
  • this application discloses a solution. It should be noted that although the above description uses the scenario of air interface transmission between the cellular network gNB and UE as an example, this application is also applicable to other communication scenarios (such as wireless local area network scenarios, secondary links between user equipment and user equipment). Transmission scenarios, etc.), and achieve similar technical effects. In addition, the use of a unified solution for different scenarios (including but not limited to scenarios such as cellular networks, wireless local area networks, and secondary link transmission) can also help reduce hardware complexity and cost. In the case of no conflict, the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the explanation of the term (Terminology) in this application refers to the definition of the TS36 series of 3GPP specifications.
  • the explanation of the terms in this application refers to the definition of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers) specification protocol.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to determine a first reference signal resource group, the first signaling is non-unicast; the second signaling indicates a second reference signal resource group; when the first time When the frequency resource group belongs to the first time window in the time domain, the first reference signal resource group and the second reference signal resource group are jointly used to determine the first channel sensing operation from the first candidate type set When the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group; the first candidate type The set includes the first type and the second type.
  • the above method is characterized in that the second signaling indicates the first time-frequency resource group, and the first wireless signal and the second reference signal resource group have a spatial association relationship.
  • the characteristics of the above method include: the first time window is the duration of the COT, and the COT is determined by the second node in the present application after the second channel sensing operation is successful.
  • the first signaling is sent after the COT starts, the first reference signal resource group is used to determine the beam direction of the successful LBT corresponding to the COT, and the second reference signal resource group is used to determine the The beam direction of the first wireless signal;
  • the first candidate type set includes Cat 2 LBT and Cat 4 LBT; when the first wireless signal is located in the COT, the type of the first channel sensing operation and the beam of the first wireless signal
  • the direction and the successful beam direction of the LBT corresponding to the COT are related; when the first wireless signal is outside the COT, the type of the first channel sensing operation is independent of the beam direction of the first wireless signal.
  • the advantages of the above method include: indicating a first reference signal resource group through non-unicast first signaling, and the first reference signal resource group is used to determine the LBT corresponding to the COT successful beam Direction, the signaling overhead is small; and the first node judges the type of LBT according to the first reference signal resource group and the second reference signal resource group, on the one hand, it can avoid the transmission opportunity caused by the wrong choice of the LBT type Loss, on the other hand, it can avoid the use of unqualified LBT types in the beam direction where LBT is unsuccessful.
  • the above method is characterized in that it further includes:
  • the third reference signal resource group is used to determine the spatial parameter of the first wireless signal
  • the first time-frequency resource group Three reference signal resource groups are used to determine the spatial parameters of the first wireless signal; when the time interval between the first time-frequency resource group and the fourth signaling is not less than a first threshold and the first When the time-frequency resource group does not belong to the first time window in the time domain, the second reference signal resource group is used to determine the spatial parameter of the first wireless signal.
  • the characteristics of the above method include: the first wireless signal is a periodic signal, and the third signaling is used to determine the beam of the periodic signal; due to reasons such as mobility, the periodicity The beam of the signal may need to be updated after a period of time; the second signaling is used to update the beam of the periodic signal; the first threshold is the signal processing delay.
  • the benefits of the above method include: when the time interval between the first time-frequency resource group and the fourth signaling is greater than the signal processing delay and the first time-frequency resource group is located inside the COT, If there is no spatial correlation between the new beam indicated by the second signaling and the beam direction of the successful LBT corresponding to the COT, the new beam indicated by the second signaling is not used, but still uses all the beams.
  • the old beam indicated in the third signaling is beneficial to increase the transmission opportunity of the first node inside the COT.
  • the above method is characterized in that, when the first time-frequency resource group belongs to a first time window in the time domain, and the first reference signal resource group and the second reference signal resource group have In the case of a spatial association relationship, the type of the first channel sensing operation is determined to be the second type.
  • the above method is characterized in that, before receiving the first signaling, the type of the first channel sensing operation is determined to be the first type; when the first time-frequency resource group When belonging to the first time window in the time domain and the first reference signal resource group and the second reference signal resource group have a spatial association relationship, the type of the first channel sensing operation is changed from the first type Switch to the second type.
  • the above method is characterized in that it further includes: receiving fifth signaling; wherein, the fifth signaling includes a sending instruction of the first wireless signal; when the first time-frequency resource group When belonging to the first time window in the time domain and there is no spatial association relationship between the first reference signal resource group and the second reference signal resource group, the sending instruction of the first wireless signal is used to determine Whether the first wireless signal is allowed to be sent.
  • the advantages of the above method include: when the first time-frequency resource group is within the COT, and the beam direction of the first wireless signal and the beam direction of the LBT corresponding to the COT have no space
  • the fifth signaling is used to determine whether the first wireless signal is allowed to be sent. For example, when the second node can receive the signal in the beam direction of the first wireless signal, the first wireless signal may be allowed to be sent; otherwise, the first wireless signal is not allowed to be sent. If the first wireless signal is allowed to be sent, Cat 4 LBT needs to be performed before sending.
  • this method when the beam direction of the first wireless signal is different from the successful beam direction of the LBT corresponding to the COT, it is possible to flexibly control whether the first wireless signal is sent, which is beneficial to improve scheduling flexibility and the system. performance.
  • the above method is characterized in that, when the first time-frequency resource group belongs to the first time window in the time domain, the channel access priority of the first wireless signal is used to determine the Describe the type of the first channel sensing operation.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to determine a first reference signal resource group, the first signaling is non-unicast; the second signaling indicates a second reference signal resource group; the second channel sensing The operation is used to determine the first time window; the first channel sensing operation is used to determine whether the first wireless signal is sent, and the performer of the first channel sensing operation is the receiver of the second signaling;
  • the first time-frequency resource group belongs to the first time window in the time domain
  • the first reference signal resource group and the second reference signal resource group are jointly used to determine all the resources from the first candidate type set.
  • the type of the first channel sensing operation when the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group;
  • the first candidate type set includes a first type and a second type.
  • the above method is characterized in that the second signaling indicates the first time-frequency resource group, and the first wireless signal and the second reference signal resource group have a spatial association relationship.
  • the above method is characterized in that it further includes:
  • the third reference signal resource group is used to determine the spatial parameter of the first wireless signal
  • the first time-frequency resource group Three reference signal resource groups are used to determine the spatial parameters of the first wireless signal; when the time interval between the first time-frequency resource group and the fourth signaling is not less than a first threshold and the first When the time-frequency resource group does not belong to the first time window in the time domain, the second reference signal resource group is used to determine the spatial parameter of the first wireless signal.
  • the above method is characterized in that, when the first time-frequency resource group belongs to a first time window in the time domain, and the first reference signal resource group and the second reference signal resource group have In the case of a spatial association relationship, the type of the first channel sensing operation is determined to be the second type.
  • the above method is characterized in that, before sending the first signaling, the type of the first channel sensing operation is determined to be the first type; when the first time-frequency resource group When belonging to the first time window in the time domain and the first reference signal resource group and the second reference signal resource group have a spatial association relationship, the type of the first channel sensing operation is changed from the first type Switch to the second type.
  • the above method is characterized by further comprising: sending fifth signaling; wherein, the fifth signaling includes a sending instruction of the first wireless signal; when the first time-frequency resource group When belonging to the first time window in the time domain and there is no spatial association relationship between the first reference signal resource group and the second reference signal resource group, the sending instruction of the first wireless signal is used to determine Whether the first wireless signal is allowed to be sent.
  • the above method is characterized in that, when the first time-frequency resource group belongs to the first time window in the time domain, the channel access priority of the first wireless signal is used to determine the Describe the type of the first channel sensing operation.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling and the second signaling
  • the second receiver performs the first channel sensing operation on the first sub-band
  • a first transmitter transmitting the first wireless signal in the first time-frequency resource group of the first sub-band, or giving up sending the first wireless signal in the first time-frequency resource group of the first sub-band;
  • the first signaling is used to determine a first reference signal resource group, the first signaling is non-unicast; the second signaling indicates a second reference signal resource group; when the first time When the frequency resource group belongs to the first time window in the time domain, the first reference signal resource group and the second reference signal resource group are jointly used to determine the first channel sensing operation from the first candidate type set When the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group; the first candidate type The set includes the first type and the second type.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling and the second signaling
  • the third receiver performs the second channel sensing operation on the first sub-band
  • the fourth receiver performs a first detection operation on the first time-frequency resource group of the first sub-band, and the first detection operation is used to determine whether the first time-frequency resource group is received on the first time-frequency resource group.
  • a wireless signal ;
  • the first signaling is used to determine a first reference signal resource group, the first signaling is non-unicast; the second signaling indicates a second reference signal resource group; the second channel sensing The operation is used to determine the first time window; the first channel sensing operation is used to determine whether the first wireless signal is sent, and the performer of the first channel sensing operation is the receiver of the second signaling;
  • the first time-frequency resource group belongs to the first time window in the time domain
  • the first reference signal resource group and the second reference signal resource group are jointly used to determine all the resources from the first candidate type set.
  • the type of the first channel sensing operation when the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group;
  • the first candidate type set includes a first type and a second type.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1, and the second The signaling includes first spatial configuration information, the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes the Q1 reference signals For part of the reference signals in the first reference signal subset, the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is Used to determine the first information block.
  • the characteristics of the above method include: the first spatial configuration information is sent after the LBT is successful, and the first spatial configuration information is used to determine the available beam.
  • the first spatial configuration information is sent after the LBT is successful, and the first spatial configuration information is used to determine the available beam.
  • the Q1 reference signals only when the beam direction associated with the reference signal is consistent with the available beam direction determined by the first spatial configuration information, will it be used for CSI measurement.
  • the advantages of the above method include: the first node can determine the reference signal that needs to be measured according to the first spatial configuration information and the first configuration information.
  • the above method is characterized in that the number of bits included in the first information block is related to the number of reference signals included in the first reference signal subset.
  • the advantages of the above method include: the information fed back by the first node only needs to reflect the measurement result of the first reference signal subset, and does not need to include the overall measurement result of Q1 reference signals, which saves feedback overhead.
  • the above method is characterized in that the first spatial configuration information is used to determine a plurality of candidate spatial parameters; the spatial parameter associated with any one of the reference signals in the first reference signal subset Is one of the multiple candidate space parameters.
  • the above method is characterized in that first time configuration information is received, and the first time configuration information is used to determine a first time window, and the first spatial configuration information is in the first time window. Valid within.
  • the above method is characterized in that the first spatial configuration information is related to the spatial parameter of the first channel sensing operation, and the first channel sensing operation is used to determine whether it can be used in the first sub-band.
  • the frequency domain resource occupied by the second signaling belongs to the first sub-band.
  • the above method is characterized in that the first node assumes that any reference signal that does not belong to the first reference signal subset among the Q1 reference signals is not within the first time window. Was sent.
  • the advantages of the above method include: the reference signals that do not belong to the first reference signal subset are not sent, and the time-frequency resources occupied by these reference signals can be used by other signals or channels, which improves the spectrum utilization rate. .
  • the above method is characterized in that the first spatial configuration information is used to determine the sending parameter of the first information block.
  • the essence of the above method includes: the first information block can only be transmitted using beams that have succeeded in LBT, and the transmission beam of the first information block is determined by the first spatial configuration information.
  • the benefits of the above method include: the first node and the second node determine the sending parameters of the first information block through the first spatial configuration information, so that the first information block can be correctly Transmission and reception.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1, and the second The signaling includes first spatial configuration information, the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes the Q1 reference signals For part of the reference signals in the first reference signal subset, the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is Used to determine the first information block.
  • the above method is characterized in that the number of bits included in the first information block is related to the number of reference signals included in the first reference signal subset.
  • the above method is characterized in that the first spatial configuration information is used to determine a plurality of candidate spatial parameters; the spatial parameter associated with any one of the reference signals in the first reference signal subset Is one of the multiple candidate space parameters.
  • the above method is characterized in that first time configuration information is sent, and the first time configuration information is used to determine a first time window, and the first space configuration information is in the first time window. Valid within.
  • the above method is characterized in that the first spatial configuration information is related to the spatial parameter of the first channel sensing operation, and the first channel sensing operation is used to determine whether it can be used in the first sub-band.
  • the frequency domain resource occupied by the second signaling belongs to the first sub-band.
  • the above method is characterized in that the second node does not transmit any reference signal that does not belong to the first reference signal subset among the Q1 reference signals within the first time window.
  • the above method is characterized in that the first spatial configuration information is used to determine the sending parameter of the first information block.
  • This application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling
  • the second receiver receives the second signaling
  • the first transmitter sends the first information block
  • the first signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1, and the second The signaling includes first spatial configuration information, the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes the Q1 reference signals For part of the reference signals in the first reference signal subset, the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is Used to determine the first information block.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling
  • the third transmitter sends the second signaling
  • the third receiver receives the first information block
  • the first signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1, and the second The signaling includes first spatial configuration information, the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes the Q1 reference signals For part of the reference signals in the first reference signal subset, the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is Used to determine the first information block.
  • this application has the following advantages:
  • the UE can determine the LBT type of uplink transmission according to the first reference signal resource group and the second reference signal resource group.
  • the UE can switch the first channel sensing operation from Cat 4 LBT to Cat 2 LBT, reducing the time overhead of LBT , Improve the transmission opportunity;
  • the new beam can be postponed until after the COT ends, which is conducive to adding in the COT Transmission opportunities;
  • this application has the following advantages:
  • the first node may determine the available beam within the channel occupation time according to the second signaling, and then select the reference signal that needs to be measured from the multiple reference signals notified by the first signaling according to the available beam, and make the reference Signal measurement and feedback can avoid the uncertainty caused by directional LBT;
  • the first node determines the transmission beam of the first information block through the first spatial configuration information, so that the first information block can be correctly transmitted and received, and avoids the uncertainty of the transmission beam caused by the directional LBT.
  • FIG. 1A shows a processing flowchart of a first node in an embodiment of the present application
  • Figure 1B shows a processing flowchart of the first node of an embodiment of the present application.
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Fig. 5A shows a wireless signal transmission flowchart according to an embodiment of the present application
  • FIG. 5B shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • Fig. 6A shows a schematic diagram of time domain resources respectively occupied by the first signaling and the second channel sensing operation in the first time window according to an embodiment of the present application
  • FIG. 6B shows a schematic diagram of the time-frequency resource group respectively associated with Q1 reference signals and the time-frequency resource group occupied by the first reference signal subset according to an embodiment of the present application;
  • FIG. 7A shows a schematic diagram of time domain resources occupied by a first wireless signal and time domain resources occupied by a first channel sensing operation according to an embodiment of the present application
  • FIG. 7B shows a schematic diagram of first spatial configuration information according to an embodiment of the present application.
  • FIG. 8A shows a schematic diagram of time domain resources occupied by a first wireless signal and time domain resources occupied by a first channel sensing operation according to an embodiment of the present application
  • FIG. 8B shows a schematic diagram of first spatial configuration information according to an embodiment of the present application.
  • FIG. 9A shows a schematic diagram of time resources occupied by the fourth signaling and time resources occupied by the first wireless signal according to an embodiment of the present application
  • FIG. 9B shows a schematic diagram of the relationship between the first channel sensing operation and the first time window according to an embodiment of the present application.
  • FIG. 10A shows a schematic diagram of a first candidate channel sensing operation according to an embodiment of the present application
  • FIG. 10B shows a schematic diagram of time domain resources respectively occupied by the first reference signal subset and the first information block in the second signaling according to an embodiment of the present application
  • FIG. 11A shows a structural block diagram of a processing device used in the first node
  • FIG. 11B shows a schematic diagram of the relationship between the spatial parameters of the first channel perception, the spatial parameters of the reference signal, and the transmission parameters of the first information block according to an embodiment of the present application;
  • Fig. 12A shows a structural block diagram of a processing device used in the second node
  • FIG. 12B shows a structural block diagram of a processing device used in the first node
  • Fig. 13 shows a structural block diagram of a processing device used in the second node.
  • Embodiment 1A illustrates a processing flowchart of the first node of an embodiment of the present application, as shown in FIG. 1A.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in this application receives the first signaling and the second signaling in step 101A, performs the first channel sensing operation on the first sub-band in step 102A, and performs the first channel sensing operation on the first sub-band in step 103A.
  • the first signaling is used to determine the first reference signal resource group, the first signaling is non-unicast; the second signaling indicates the second reference signal resource group;
  • the first reference signal resource group and the second reference signal resource group are jointly used to determine the first candidate type set from the first candidate type set.
  • a type of channel sensing operation when the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group;
  • the first candidate type set includes a first type and a second type.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling does not include a reference signal.
  • the first signaling includes a reference signal.
  • the first signaling is cell-specific.
  • the first signaling is specific to the user group.
  • the first signaling is Group Common.
  • the first signaling includes all or part of a higher layer signaling.
  • the first signaling includes all or part of one RRC layer signaling.
  • the first signaling includes one or more fields in an RRC IE.
  • the first signaling includes one or more domains in one SIB.
  • the first signaling includes all or part of one MAC layer signaling.
  • the first signaling includes one or more domains in a MAC CE.
  • the first signaling includes one or more fields in one PHY layer signaling.
  • the first signaling is semi-statically configured.
  • the first signaling is dynamically configured.
  • the first signaling is transmitted on the side link (SideLink).
  • the first signaling is transmitted on the uplink (UpLink).
  • the first signaling is transmitted on the downlink (UpLink).
  • UpLink downlink
  • the first signaling is transmitted on a backhaul link (Backhaul).
  • Backhaul backhaul link
  • the first signaling is transmitted through the Uu interface.
  • the first signaling is transmitted through the PC5 interface.
  • the first signaling is transmitted by multicast (Groupcast).
  • the first signaling is broadcast (Broadcast) transmission.
  • the first signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the first signaling includes one or more fields in an SCI.
  • the first signaling includes one or more fields in an SCI format.
  • the first signaling includes UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the first signaling includes one or more domains in a UCI.
  • the first signaling includes one or more fields in a UCI format.
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes one or more domains in one DCI.
  • the first signaling includes one or more fields in a DCI format.
  • the first signaling includes one or more fields in Group Common DCI, and the definition of the Group Common DCI refers to 3GPP TS38.212.
  • the first signaling includes one or more fields in the DCI format 2_0, and the definition of the DCI format 2_0 refers to 3GPP TS38.212.
  • the first signaling is sent on a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first signaling is sent on a Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the first signaling is sent on a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • a physical downlink shared channel Physical Downlink Shared Channel, PDSCH.
  • the first signaling is sent on a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the first signaling is sent on a physical downlink broadcast channel (Physical Broadcast Channel, PBCH).
  • PBCH Physical Broadcast Channel
  • the first signaling is sent on a Physical Sidelink Control Channel (PSCCH).
  • PSCCH Physical Sidelink Control Channel
  • the first signaling is sent on a Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • the first signaling is transmitted in a licensed spectrum.
  • the first signaling is transmitted in an unlicensed spectrum.
  • the second signaling is dynamic signaling.
  • the second signaling is layer 1 (L1) signaling.
  • the second signaling is layer 1 (L1) control signaling.
  • the second signaling does not include a reference signal.
  • the second signaling includes a reference signal.
  • the second signaling is cell-specific.
  • the second signaling is user group specific.
  • the second signaling is Group Common.
  • the second signaling includes all or part of a higher layer signaling.
  • the second signaling includes all or part of one RRC layer signaling.
  • the second signaling includes one or more fields in one RRC IE.
  • the second signaling includes one or more domains in one SIB.
  • the second signaling includes all or part of one MAC layer signaling.
  • the second signaling includes one or more domains in a MAC CE.
  • the second signaling includes one or more fields in one PHY layer signaling.
  • the second signaling is semi-statically configured.
  • the second signaling is dynamically configured.
  • the second signaling is transmitted on the side link (SideLink).
  • the second signaling is transmitted on the uplink (UpLink).
  • the second signaling is transmitted on the downlink (UpLink).
  • the second signaling is transmitted on a backhaul link (Backhaul).
  • Backhaul backhaul link
  • the second signaling is transmitted through the Uu interface.
  • the second signaling is transmitted through the PC5 interface.
  • the second signaling is transmitted by multicast (Groupcast).
  • the second signaling is broadcast (Broadcast) transmission.
  • the second signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the second signaling includes one or more fields in an SCI.
  • the second signaling includes one or more fields in an SCI format.
  • the second signaling includes UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the second signaling includes one or more domains in a UCI.
  • the second signaling includes one or more fields in a UCI format.
  • the second signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the second signaling includes one or more domains in one DCI.
  • the second signaling includes one or more fields in a DCI format.
  • the second signaling is sent on a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the second signaling is sent on a Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the second signaling is sent on a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • a physical downlink shared channel Physical Downlink Shared Channel, PDSCH.
  • the second signaling is sent on a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the second signaling is sent on a physical downlink broadcast channel (Physical Broadcast Channel, PBCH).
  • PBCH Physical Broadcast Channel
  • the second signaling is sent on a Physical Sidelink Control Channel (PSCCH).
  • PSCCH Physical Sidelink Control Channel
  • the second signaling is sent on a Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • the second signaling is transmitted in a licensed spectrum.
  • the second signaling is transmitted in an unlicensed spectrum.
  • the second signaling includes PUSCH resource indication information.
  • the second signaling includes PUCCH resource indication information.
  • the second signaling includes SRS (Sounding Reference Signal, Sounding Reference Signal) resource indication information.
  • SRS Sounding Reference Signal, Sounding Reference Signal
  • the second signaling includes dynamic scheduling information of PUSCH.
  • the second signaling includes semi-persistent scheduling information of PUSCH.
  • the second signaling includes PUSCH configured grant (Configured Grant) information.
  • the second signaling includes a period indication of PUCCH.
  • the second signaling includes a periodic indication of the SRS.
  • the second signaling indicates the first time-frequency resource group.
  • the first wireless signal includes a baseband signal.
  • the first wireless signal includes a wireless signal.
  • the first wireless signal is transmitted on a side link (SideLink).
  • SideLink side link
  • the first wireless signal is transmitted on an uplink (UpLink).
  • UpLink uplink
  • the first wireless signal is transmitted on the downlink (UpLink).
  • UpLink downlink
  • the first wireless signal is transmitted on a backhaul link (Backhaul).
  • Backhaul backhaul link
  • the first wireless signal is transmitted through the Uu interface.
  • the first wireless signal is transmitted through the PC5 interface.
  • the first wireless signal is unicast (Unicast) transmission.
  • the first wireless signal is multicast (Groupcast) transmission.
  • the first wireless signal is broadcast (Broadcast) transmission.
  • the first wireless signal carries a TB (Transport Block).
  • the first wireless signal carries a CB (Code Block, code block).
  • the first wireless signal carries a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the first wireless signal includes control information.
  • the first wireless signal includes SCI (Sidelink Control Information, secondary link control information).
  • the first wireless signal includes one or more domains in an SCI.
  • the first wireless signal includes one or more fields in a SCI format.
  • the first wireless signal includes UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the first wireless signal includes one or more domains in a UCI.
  • the first wireless signal includes one or more fields in a UCI format.
  • the first wireless signal includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first wireless signal includes one or more domains in one DCI.
  • the first wireless signal includes one or more fields in a DCI format.
  • the first wireless signal includes a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the first wireless signal includes a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the first wireless signal includes a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal includes a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the first wireless signal includes a physical downlink broadcast channel (Physical Broadcast Channel, PBCH).
  • PBCH Physical Broadcast Channel
  • the first wireless signal includes a Physical Sidelink Control Channel (PSCCH).
  • PSCCH Physical Sidelink Control Channel
  • the first wireless signal includes a Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • the first wireless signal includes a Physical Sidelink Feedback Channel (PSFCH).
  • PSFCH Physical Sidelink Feedback Channel
  • the first wireless signal includes a reference signal.
  • the first wireless signal is transmitted in a licensed spectrum.
  • the first wireless signal is transmitted in an unlicensed spectrum.
  • the first wireless signal includes a reference signal.
  • the first wireless signal includes an uplink reference signal.
  • the first wireless signal includes a secondary link reference signal.
  • the first wireless signal includes a downlink reference signal.
  • the first wireless signal includes SRS.
  • the first wireless signal includes a configured grant (Configured Grant) uplink signal.
  • the first wireless signal includes a dynamically scheduled uplink signal.
  • the first wireless signal includes a semi-persistently scheduled uplink signal.
  • the first wireless signal includes a configured grant (Configured Grant) PUSCH.
  • the first wireless signal includes a dynamically scheduled PUSCH.
  • the first wireless signal includes a semi-persistently scheduled PUSCH.
  • the first signaling indicates the first reference signal resource group.
  • the first signaling includes a first information field, and the first information field indicates the first reference signal resource group.
  • the spatial parameter used for transmitting the first signaling is used to determine the first reference signal resource group.
  • the TCI state used for transmitting the first signaling is used to determine the first reference signal resource group.
  • the QCL parameter used for transmitting the first signaling is used to determine the first reference signal resource group.
  • the first signaling and the first reference signal resource group have a spatial association relationship.
  • the first signaling is sent through a PDCCH
  • the first reference signal resource group is one or more reference signal resources associated with the TCI state of the PDCCH used to send the first signaling.
  • the first signaling is sent through a PDCCH
  • the first reference signal resource group is one or more reference signal resources associated with QCL parameters of the PDCCH used to send the first signaling.
  • the first reference signal resource group includes one reference signal resource.
  • the first reference signal resource group includes multiple reference signal resources.
  • any reference signal resource in the first reference signal resource group includes a downlink reference signal resource.
  • any reference signal resource in the first reference signal resource group includes an uplink reference signal resource.
  • any reference signal resource in the first reference signal resource group includes a secondary link reference signal resource.
  • any reference signal resource in the first reference signal resource group includes a CSI-RS (Channel State Information-Reference Signal) resource.
  • CSI-RS Channel State Information-Reference Signal
  • any reference signal resource in the first reference signal resource group includes SS (Synchronization Signal, synchronization signal).
  • any reference signal resource in the first reference signal resource group includes PSS (Primary Synchronization Signal, primary synchronization signal).
  • PSS Primary Synchronization Signal, primary synchronization signal
  • any reference signal resource in the first reference signal resource group includes SSS (Secondary Synchronization Signal, secondary synchronization signal).
  • any reference signal resource in the first reference signal resource group includes SSB (SS/PBCH block, synchronous broadcast signal block).
  • any reference signal resource in the first reference signal resource group includes an SRS resource.
  • any reference signal resource in the first reference signal resource group includes an SRS resource set (SRS resource set).
  • any reference signal resource in the first reference signal resource group includes DM-RS (DeModulation-Reference Signal, demodulation reference signal).
  • DM-RS Demodulation-Reference Signal, demodulation reference signal
  • the first reference signal resource group is used to determine a beam direction that is judged to be an idle channel in the second channel sensing operation.
  • the first reference signal resource group is used to determine the available spatial parameter set in the first time window.
  • the first reference signal resource group is used to determine a set of available space parameters for downlink transmission in the first time window.
  • the first reference signal resource group is used to determine an available space parameter set for uplink transmission in the first time window.
  • the available space parameter includes a spatial association relationship with a reference signal resource.
  • the available space parameter set includes at least one space parameter, and all downlink transmission space parameters in the first time window belong to the empty space parameter set.
  • the available spatial parameter set includes at least one spatial parameter, and if the second wireless signal is transmitted within the first time window, the spatial parameter of the second wireless signal belongs to all The set of space parameters for the space.
  • the second wireless signal includes a downlink signal.
  • the second wireless signal includes an uplink signal.
  • the spatial parameter includes a spatial association relationship with a reference signal resource.
  • the second reference signal resource group includes one reference signal resource.
  • the second reference signal resource group includes multiple reference signal resources.
  • any reference signal resource in the second reference signal resource group includes a downlink reference signal resource.
  • any reference signal resource in the second reference signal resource group includes an uplink reference signal resource.
  • any reference signal resource in the second reference signal resource group includes a secondary link reference signal resource.
  • any reference signal resource in the second reference signal resource group includes a CSI-RS (Channel State Information-Reference Signal) resource.
  • CSI-RS Channel State Information-Reference Signal
  • any reference signal resource in the second reference signal resource group includes SS (Synchronization Signal, synchronization signal).
  • any reference signal resource in the second reference signal resource group includes PSS (Primary Synchronization Signal, primary synchronization signal).
  • PSS Primary Synchronization Signal, primary synchronization signal
  • any reference signal resource in the second reference signal resource group includes SSS (Secondary Synchronization Signal, secondary synchronization signal).
  • any reference signal resource in the second reference signal resource group includes SSB (SS/PBCH block, synchronous broadcast signal block).
  • any reference signal resource in the second reference signal resource group includes an SRS resource.
  • any reference signal resource in the second reference signal resource group includes an SRS resource set (SRS resource set).
  • any reference signal resource in the second reference signal resource group includes DM-RS (DeModulation-Reference Signal, demodulation reference signal).
  • DM-RS Demodulation-Reference Signal, demodulation reference signal
  • the spatial parameter in this application includes a spatial association relationship with a reference signal resource.
  • the spatial parameters in this application include QCL parameters.
  • the spatial parameter in this application includes a spatial relationship (Spatial Relation).
  • the spatial parameter in this application includes a spatial transmission filter.
  • the spatial parameter in this application includes a spatial receive filter.
  • the first wireless signal and the second reference signal resource group have a spatial association relationship.
  • the first wireless signal has a spatial association relationship with any reference signal resource in the second reference signal resource group.
  • the spatial association relationship between the first wireless signal and any reference signal resource in the second reference signal resource group includes: Any reference signal resource has a QCL (Quasi-CoLocated) association relationship.
  • the first wireless signal and any reference signal resource in the second reference signal resource group have a spatial association relationship including: the first wireless signal and any reference signal resource in the second reference signal resource group Any reference signal resource has a spatial relationship, and the definition of the spatial relationship refers to 3gpp TS38.213.
  • one signal and another signal have a spatial relationship, including that the one signal and the other signal may be transmitted using the same spatial filter.
  • one signal and another signal have a spatial relationship, including that the one signal and the other signal may be received by the same spatial filter.
  • one signal and another signal have a spatial relationship, including that the spatial filter used to receive the one signal may also be used to transmit the other signal.
  • the first wireless signal and any reference signal resource in the second reference signal resource group have a spatial association relationship, including: the reference signal included in the first wireless signal and the second reference signal Any reference signal resource in the signal resource group has a QCL association relationship.
  • the first wireless signal has a spatial association relationship with any reference signal resource in the second reference signal resource group, including: the reference signal included in the first wireless signal and the second reference Any reference signal resource in the signal resource group has a spatial relationship.
  • the QCL association relationship between one signal and another signal refers to that it can be inferred from all or part of the large-scale properties of the wireless signal sent on the antenna port corresponding to the one signal All or part of the large-scale characteristics of the wireless signal sent on the antenna port corresponding to the other signal.
  • the large-scale characteristics of a wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain One or more of (average gain), average delay (average delay), and spatial reception parameters (Spatial Rx parameters) ⁇ .
  • the spatial reception parameters include ⁇ receive beam, receive analog beamforming matrix, receive analog beamforming vector, receive beamforming vector, receive spatial filter, spatial receive filter ( One or more of spatial domain reception filter) ⁇ .
  • the QCL association relationship between one signal and another signal refers to: the one signal and the other signal have at least one same QCL parameter (QCL parameter).
  • QCL parameters include: ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain , One or more of average delay (average delay), spatial reception parameters (Spatial Rx parameters) ⁇ .
  • the QCL association relationship between one signal and another signal refers to that at least one QCL parameter of the other signal can be inferred from at least one QCL parameter of the one signal.
  • the QCL type (QCL type) between one signal and the other signal is QCL-TypeD means that the spatial reception parameter (Spatial Rx) of the wireless signal sent from the antenna port corresponding to the one signal parameters) Infer the spatial reception parameters (Spatial Rx parameters) of the wireless signal sent on the corresponding antenna port on the other signal.
  • the QCL type (QCL type) between one signal and the other signal is QCL-TypeD, which means that the same spatial reception parameters (Spatial Rx parameters) can be used to receive the one signal and the other signal .
  • the performing the first channel sensing operation on the first sub-band includes performing energy detection on the first sub-band.
  • the first channel sensing operation is used to determine whether the first wireless signal is sent.
  • the first channel sensing operation is used to determine whether the first sub-band is idle.
  • the first channel sensing operation is used to determine whether the first sub-band is free, if the first sub-band is free, the first wireless signal is sent; if the first sub-band is free If the frequency band is not free, the first wireless signal is not sent.
  • the first candidate type set includes ⁇ first type LBT (Category 1 LBT), second type LBT (Category 2 LBT), third type LBT (Category 3 LBT), and fourth type At least one of the LBT (Category 4 LBT) ⁇ , the definitions of the Category 1 LBT, Category 2 LBT, Category 3 LBT, and Category 4 LBT refer to 3GPP TR38.889.
  • the first candidate type set includes ⁇ Type 1 uplink channel access procedure (Type 1 UL channel access procedure), Type 2 uplink channel access procedure (Type 2 UL channel access procedure), and Type 2A uplink channel access procedure. At least one of the access procedure (Type 2A UL channel access procedure), Type 2B uplink channel access procedure (Type 2B UL channel access procedure), and Type 2C uplink channel access procedure (Type 2C UL channel access procedure) ⁇ , the For definitions of Type 1 Uplink Channel Access Process, Type 2 Uplink Channel Access Process, Type 2A Uplink Channel Access Process, Type 2B Uplink Channel Access Process and Type 2C Uplink Channel Access Process, refer to 3GPP TS37.213.
  • the first candidate type set includes ⁇ Type 1 downlink channel access procedure (Type 1 DL channel access procedure), Type 2 downlink channel access procedure (Type 2 DL channel access procedure), and Type 2A downlink channel access procedure. At least one of the entry process (Type 2A DL channel access procedure), Type 2B downlink channel access procedure (Type 2B DL channel access procedure), and Type 2C downlink channel access procedure (Type 2C DL channel access procedure) ⁇ , the For definitions of Type 1 downlink channel access procedure, Type 2 downlink channel access procedure, Type 2A downlink channel access procedure, Type 2B downlink channel access procedure and Type 2C downlink channel access procedure, refer to 3GPP TS37.213.
  • the second type includes LBT with a fixed length of time.
  • the first type includes LBT of non-fixed time length.
  • the second type includes a second type of LBT (Cat 2 LBT).
  • the second type includes the first type of LBT (Cat 1 LBT).
  • the first type includes a fourth type of LBT (Cat 4 LBT).
  • the first time window includes a continuous time resource.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols.
  • the first time window includes a positive integer number of consecutive time slots.
  • the first time window includes a positive integer number of consecutive subframes.
  • the first time window includes a positive integer number of consecutive frames.
  • the first time window is determined by the second node in this application.
  • the first time window is determined by the second node in this application after the second channel sensing operation.
  • the performing the second channel sensing operation on the first sub-band includes performing energy detection on the first sub-band.
  • the type of the second channel sensing operation includes ⁇ the first type of LBT (Category 1 LBT), the second type of LBT (Category 2 LBT), the third type of LBT (Category 3 LBT), and the At least one of the four types of LBT (Category 4 LBT) ⁇ .
  • the time length of the first time window is related to the channel access priority.
  • the first time-frequency resource group includes a positive integer number of resource elements (Resource Elements, RE) in the frequency domain.
  • the first time-frequency resource group includes a positive integer number of resource blocks (Resource Block, RB) in the frequency domain.
  • Resource Block Resource Block
  • the first time-frequency resource group includes a positive integer number of resource block groups (Resource Block Group, RBG) in the frequency domain.
  • RBG Resource Block Group
  • the first time-frequency resource group includes a positive integer number of control channel elements (CCE) in the frequency domain.
  • CCE control channel elements
  • the first time-frequency resource group includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time-frequency resource group includes a positive integer number of time slots in the time domain.
  • the first time-frequency resource group includes a positive integer number of subframes in the time domain.
  • Embodiment 1B illustrates a processing flowchart of the first node of an embodiment of the present application, as shown in FIG. 1B.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in this application receives the first signaling in step 101B, receives the second signaling in step 102B, and sends the first information block in step 103B.
  • the first signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1.
  • the second signaling includes first spatial configuration information, and the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes the Part of the reference signals in Q1 reference signals, the spatial parameters associated with each reference signal in the first reference signal subset are related to the first spatial configuration information; for reference signals in the first reference signal subset The measurement result of is used to determine the first information block.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling is transmitted on the side link (SideLink).
  • the first signaling is transmitted through the PC5 interface.
  • the first signaling is transmitted on the downlink (DownLink).
  • the first signaling is transmitted through the Uu interface.
  • the first signaling is unicast (Unicast) transmission.
  • the first signaling is transmitted by multicast (Groupcast).
  • the first signaling is broadcast (Boradcast) transmission.
  • the first signaling is cell-specific.
  • the first signaling is user equipment specific.
  • the first signaling includes all or part of a higher layer signaling.
  • the first signaling includes all or part of an RRC (Radio Resource Control) layer signaling.
  • RRC Radio Resource Control
  • the first signaling includes one or more fields in an RRC IE (Information Element).
  • the first signaling includes one or more fields in a SIB (System Informant Block).
  • SIB System Informant Block
  • the first signaling includes all or part of one MAC layer signaling.
  • the first signaling includes one or more fields in a MAC CE (Control Element, control element).
  • the first signaling includes one or more fields in a PHY (Physical, physical layer) layer signaling.
  • PHY Physical, physical layer
  • the first signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the first signaling includes one or more fields in an SCI.
  • the first signaling includes one or more fields in an SCI format.
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first signaling includes one or more domains in one DCI.
  • the first signaling is semi-statically configured.
  • the first signaling is dynamically configured.
  • the first signaling is sent on PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first signaling is sent on a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the first signaling is sent on a PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the first signaling is sent on a PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • the second signaling is dynamic signaling.
  • the second signaling is layer 1 (L1) signaling.
  • the second signaling is layer 1 (L1) control signaling.
  • the second signaling is transmitted on the side link (SideLink).
  • the second signaling is transmitted through the PC5 interface.
  • the second signaling is transmitted on the downlink (DownLink).
  • the second signaling is transmitted through the Uu interface.
  • the second signaling is unicast (Unicast) transmission.
  • the second signaling is transmitted by multicast (Groupcast).
  • the second signaling is transmitted by broadcast (Boradcast).
  • the second signaling is cell-specific.
  • the second signaling is user equipment specific.
  • the second signaling includes all or part of a higher layer signaling.
  • the second signaling includes all or part of an RRC (Radio Resource Control) layer signaling.
  • RRC Radio Resource Control
  • the second signaling includes one or more fields in an RRC IE (Information Element).
  • the second signaling includes one or more fields in a SIB (System Informant Block, system information block).
  • SIB System Informant Block, system information block
  • the second signaling includes all or part of one MAC layer signaling.
  • the second signaling includes one or more fields in a MAC CE (Control Element, control element).
  • the second signaling includes one or more fields in a PHY (Physical, physical layer) layer signaling.
  • PHY Physical, physical layer
  • the second signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the second signaling includes one or more fields in an SCI.
  • the second signaling includes one or more fields in an SCI format.
  • the second signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the second signaling includes one or more domains in one DCI.
  • the second signaling is semi-statically configured.
  • the second signaling is dynamically configured.
  • the second signaling is sent on PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the second signaling is sent on a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the second signaling is sent on a PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the second signaling is sent on a PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • the second signaling is sent through a group common PDCCH (Group Common PDCCH).
  • group common PDCCH Group Common PDCCH
  • the second signaling is transmitted in NR DCI format 2_0.
  • the second signaling includes a CSI request (CSI request).
  • CSI request CSI request
  • the first information block is dynamic signaling.
  • the first information block is layer 1 (L1) signaling.
  • the first information block is layer 1 (L1) control signaling.
  • the first information block is transmitted on a side link (SideLink).
  • SideLink side link
  • the first information block is transmitted through the PC5 interface.
  • the first information block is transmitted on an uplink (DownLink).
  • DownLink uplink
  • the first information block is transmitted through a Uu interface.
  • the first information block includes all or part of a higher layer signaling.
  • the first information block includes all or part of one MAC layer signaling.
  • the first information block includes one or more fields in a MAC CE (Control Element).
  • the first information block includes one or more fields in a PHY (Physical, physical layer) layer signaling.
  • PHY Physical, physical layer
  • the first information block includes SCI (Sidelink Control Information, secondary link control information).
  • the first information block includes one or more fields in an SCI.
  • the first information block includes one or more fields in an SCI format.
  • the first information block includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first information block includes one or more fields in a UCI.
  • the time-frequency resource occupied by the first information block is semi-statically configured.
  • the time-frequency resource occupied by the first information block is dynamically configured.
  • the first information block is sent on PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the first information block is sent on a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the first information block is sent on a PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the first information block is sent on a PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • the first configuration information includes CSI resource configuration
  • the first configuration information includes CSI measurement configuration
  • the first configuration information includes CSI report configuration
  • the first configuration information is used to determine the time-frequency resource occupied by any one of the Q1 reference signals.
  • the first configuration information is used to determine the period and offset of any one of the Q1 reference signals.
  • the first configuration information is used to determine the frequency domain density of any one of the Q1 reference signals.
  • the first configuration information is used to determine the port number and port number of any reference signal in the Q1 reference signals.
  • the first configuration information is used to determine the number of CSI-RS resources.
  • the first configuration information is used to determine the number of the SSB.
  • the Q1 reference signals include downlink reference signals.
  • the Q1 reference signals include secondary link reference signals.
  • the Q1 reference signals include Q1 CSI-RS.
  • the Q1 reference signals include Q1 CSI-RS resources.
  • the Q1 reference signals include Q1 SSBs.
  • any one of the Q1 reference signals includes a positive integer number of antenna ports.
  • the spatial parameter includes a TCI (Transmission Configuration Indicator) state.
  • TCI Transmission Configuration Indicator
  • the TCI state is used to determine QCL parameters.
  • the spatial parameters include QCL (Quasi-CoLocation) parameters.
  • the spatial parameters include transmit beam parameters.
  • the spatial parameters include receive beam parameters.
  • the spatial parameter includes QCL type.
  • the QCL type included in the spatial parameter is QCL-typeD.
  • the spatial parameter includes a QCL association relationship with a reference signal.
  • the spatial parameter includes the QCL association relationship with the CSI-RS resource.
  • the spatial parameter includes a QCL association relationship with the SSB.
  • the Q1 spatial parameters respectively associated with the Q1 reference signals are used to determine the receive beams of the Q1 reference signals.
  • the Q1 spatial parameters respectively associated with the Q1 reference signals are used to determine the spatial reception parameters of the Q1 reference signals.
  • the Q1 spatial parameters respectively associated with the Q1 reference signals are used to determine the transmission beams of the Q1 reference signals.
  • the Q1 spatial parameters respectively associated with the Q1 reference signals are used to determine the spatial transmission parameters of the Q1 reference signals.
  • the Q1 spatial parameters respectively associated with the Q1 reference signals are used to determine the QCL association relationship between any one of the Q1 reference signals and another reference signal.
  • the Q1 reference signals are Q1 CSI-RS resources, and the Q1 spatial parameters respectively associated with the Q1 reference signals are used to determine any one of the Q1 CSI-RS resources.
  • the another reference signal is SSB.
  • the another reference signal is a CSI-RS resource.
  • the QCL association relationship between one reference signal and another reference signal refers to: all or part of the large-scale characteristics of the wireless signal that can be sent from the antenna port corresponding to the one reference signal ( properties) infer all or part of the large-scale characteristics of the wireless signal sent on the antenna port corresponding to the other reference signal.
  • the large-scale characteristics of a wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain One or more of (average gain), average delay (average delay), and spatial reception parameters (Spatial Rx parameters) ⁇ .
  • the spatial reception parameters include ⁇ receive beam, receive analog beamforming matrix, receive analog beamforming vector, receive beamforming vector, receive spatial filter, spatial receive filter ( One or more of spatial domain reception filter) ⁇ .
  • the QCL association relationship between one reference signal and another reference signal refers to: the one reference signal and the another reference signal have at least one same QCL parameter (QCL parameter).
  • QCL parameters include: ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain , One or more of average delay (average delay), spatial reception parameters (Spatial Rx parameters) ⁇ .
  • the QCL association relationship between one reference signal and another reference signal refers to: at least one QCL parameter of the other reference signal can be inferred from at least one QCL parameter of the one reference signal.
  • the QCL type (QCL type) between one reference signal and another reference signal is QCL-TypeD, which refers to: the spatial reception parameters of the wireless signal sent from the antenna port corresponding to the one reference signal (Spatial Rx parameters) Infer the spatial reception parameters (Spatial Rx parameters) of the wireless signal sent on the corresponding antenna port on the other reference signal.
  • the QCL type (QCL type) between one reference signal and another reference signal is QCL-TypeD, which means that the same spatial reception parameters (Spatial Rx parameters) can be used to receive the one reference signal and the QCL type. Another reference signal.
  • a measurement result of a reference signal in the first reference signal subset is used to determine a first measurement value, and the first measurement value is used to determine the first information block.
  • the first measurement value includes RI (Rank Indicator), CRI (Channel-state information reference signals Resource Indicator, channel state information reference signal resource indicator), RSRP (Reference Signal) Received Power, RSSI (Received Signal Strength Indication, received signal strength indication), SSB index, RSRQ (Reference Signal Receive Quality, Reference Signal Receive Quality), PMI (Precoding Matrix Indicator) and CQI (Channel Quality Indicator) ) One or more of.
  • the first reported information includes a quantized value of the first measured value.
  • At least one reference signal of the first type in the first reference signal subset is used for channel measurement.
  • At least one first-type reference signal in the first reference signal subset is used for interference measurement.
  • At least one reference signal of the first type in the first reference signal subset is used for beam measurement.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System, 5G system)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network, 5G Core Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • HSS Home Subscriber Server
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via the Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. The P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multi
  • the first node in this application includes the gNB203.
  • the second node in this application includes the gNB203.
  • the second node in this application includes the UE241.
  • the first node in this application includes the UE241.
  • the second node in this application includes the UE201.
  • the second node in this application includes the gNB204.
  • the user equipment in this application includes the UE201.
  • the user equipment in this application includes the UE241.
  • the base station equipment in this application includes the gNB203.
  • the base station equipment in this application includes the gNB204.
  • the UE 201 supports secondary link transmission.
  • the UE201 supports a PC5 interface.
  • the UE201 supports a Uu interface.
  • the UE 241 supports secondary link transmission.
  • the UE 241 supports a PC5 interface.
  • the gNB203 supports Uu interface.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node (UE or RSU in V2X, vehicle equipment or vehicle communication module) And the second node (gNB, UE or RSU in V2X, in-vehicle equipment or in-vehicle communication module), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301, and is responsible for the link between the first node and the second node and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides support for cross-zone movement of the first node to the second node.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes the retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first nodes.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the RRC information between the second node and the first node.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for the upper part
  • the header of the layer data packet is compressed to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • DRB Data Radio Bearer
  • the first node may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (for example, the application layer at the remote UE, server, etc.).
  • a network layer e.g., IP layer
  • the application layer at the remote UE, server, etc. For example, the application layer at the remote UE, server, etc.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the PHY351.
  • the first signaling in this application is generated in the MAC352.
  • the first signaling in this application is generated in the PHY301.
  • the first signaling in this application is generated in the MAC302.
  • the first signaling in this application is generated in the RRC306.
  • the second signaling in this application is generated in the PHY351.
  • the second signaling in this application is generated in the MAC352.
  • the second signaling in this application is generated in the PHY301.
  • the second signaling in this application is generated in the MAC302.
  • the second signaling in this application is generated in the RRC306.
  • the first wireless signal in this application is generated from the PHY351.
  • the first wireless signal in this application is generated in the MAC352.
  • the first wireless signal in this application is generated in the PHY301.
  • the first wireless signal in this application is generated in the MAC302.
  • the first wireless signal in this application is generated in the RRC306.
  • the first information block in this application is generated in the PHY351.
  • the first information block in this application is generated in the MAC352.
  • the first information block in this application is generated in the PHY301.
  • the first information block in this application is generated in the MAC302.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the second communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), and M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458
  • the second communication device 450 is any spatial flow of the destination.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, as well as multiplexing between logic and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450, and the second node in this application includes the first communication device 410.
  • the first node in this application includes the first communication device 410
  • the second node in this application includes the second communication device 450.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the second communication device 450.
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgement (ACK) and/or negative acknowledgement (NACK) )
  • the protocol performs error detection to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving the first signaling and the second signaling; performing the first channel sensing operation on the first sub-band; sending in the first time-frequency resource group of the first sub-band The first wireless signal, or give up sending the first wireless signal in the first time-frequency resource group of the first sub-band; wherein, the first signaling is used to determine the first reference signal resource group, and The first signaling is non-unicast; the second signaling indicates a second reference signal resource group; when the first time-frequency resource group belongs to a first time window in the time domain, the first reference signal resource The group and the second reference signal resource group are jointly used to determine the type of the first channel sensing operation from the first candidate type set, when the first time-frequency resource group does not belong to the first time in the time domain In the window, the
  • the second communication device 450 includes: a memory storing a computer-readable program of instructions, the computer-readable program of instructions generates actions when executed by at least one processor, and the actions include: receiving the first First signaling and second signaling; perform the first channel sensing operation on the first sub-band; send the first wireless signal in the first time-frequency resource group of the first sub-band, or give up on the first sub-band A first wireless signal is sent in a first time-frequency resource group of a sub-band; wherein, the first signaling is used to determine a first reference signal resource group, and the first signaling is non-unicast;
  • the second signaling indicates the second reference signal resource group; when the first time-frequency resource group belongs to the first time window in the time domain, the first reference signal resource group and the second reference signal resource group are shared Used to determine the type of the first channel sensing operation from the first candidate type set, when the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation It has nothing to
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending first signaling and second signaling; performing a second channel sensing operation on a first sub-band; performing a first time-frequency resource group in the first sub-band A first detection operation, where the first detection operation is used to determine whether a first wireless signal is received on the first time-frequency resource group; wherein, the first signaling is used to determine a first reference signal resource Group, the first signaling is non-unicast; the second signaling indicates a second reference signal resource group; the second channel sensing operation is used to determine the first time window; the first channel sensing operation is used To determine whether the first wireless signal is sent, the performer of the first channel sensing operation is the receiver of the second signaling; when the first time-frequency resource group belongs to the first time in the time domain Window, the first reference signal resource
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending the first One signaling and second signaling; the second channel sensing operation is performed on the first sub-band; the first detection operation is performed on the first time-frequency resource group of the first sub-band, and the first detection operation is Used to determine whether a first wireless signal is received on the first time-frequency resource group; wherein, the first signaling is used to determine a first reference signal resource group, and the first signaling is non-unicast
  • the second signaling indicates a second reference signal resource group; the second channel sensing operation is used to determine the first time window; the first channel sensing operation is used to determine whether the first wireless signal is sent,
  • the performer of the first channel sensing operation is the receiver of the second signaling; when the first time-frequency resource group belongs to the first time window in the time domain, the first reference signal resource group is The second reference signal resource group is jointly used to determine the type
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the second signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first wireless signal in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signaling in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One of them is used to send the second signaling in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One of them is used to transmit the first wireless signal in this application.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving first signaling; receiving second signaling; sending a first information block; wherein, the first signaling includes first configuration information, and the first configuration information is used When determining the Q1 spatial parameters respectively associated with the Q1 reference signals, the Q1 is an integer greater than 1; the second signaling includes the first spatial configuration information, and the first spatial configuration information is used to download from the A first reference signal subset is determined among the Q1 reference signals, the first reference signal subset includes a part of the reference signals in the Q1 reference signals, and each reference signal in the first reference signal subset is associated The spatial parameter is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is used to determine the first information block.
  • the second communication device 450 includes: a memory storing a computer-readable program of instructions, the computer-readable program of instructions generates actions when executed by at least one processor, and the actions include: receiving the first A signaling; receiving a second signaling; sending a first information block; wherein the first signaling includes first configuration information, and the first configuration information is used to determine the Q1 reference signals respectively associated with the Q1 reference signals A spatial parameter, the Q1 is an integer greater than 1; the second signaling includes first spatial configuration information, and the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals The first reference signal subset includes a part of the reference signals in the Q1 reference signals, and the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; The measurement result for the reference signal in the first reference signal subset is used to determine the first information block.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the apparatus of the first communication device 410 at least: sends first signaling; sends second signaling; receives a first information block; wherein, the first signaling includes first configuration information, and the first configuration information is used When determining the Q1 spatial parameters respectively associated with the Q1 reference signals, the Q1 is an integer greater than 1; the second signaling includes the first spatial configuration information, and the first spatial configuration information is used to download from the A first reference signal subset is determined from the Q1 reference signals, the first reference signal subset includes part of the reference signals in the Q1 reference signals, and each reference signal in the first reference signal subset is associated The spatial parameter is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is used to determine the first information block.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending the first A signaling; sending a second signaling; receiving a first information block; wherein the first signaling includes first configuration information, and the first configuration information is used to determine the Q1 reference signals respectively associated with the Q1 reference signals A spatial parameter, the Q1 is an integer greater than 1; the second signaling includes first spatial configuration information, and the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals
  • the first reference signal subset includes a part of the reference signals in the Q1 reference signals, and the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information;
  • the measurement result for the reference signal in the first reference signal subset is used to determine the first information block.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first signaling in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the second signaling in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first signaling in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One of them is used to send the second signaling in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used to send the first information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information block in this application.
  • Embodiment 5A illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5A.
  • the first node U1A and the second node U2A communicate through an air interface.
  • the order of the steps in the boxes does not represent a specific time sequence relationship between the various steps.
  • the third signaling is received in step S11A
  • the second signaling is received in step S12A
  • the fourth signaling is sent in step S13A
  • the first signaling is received in step S14A
  • the first channel sensing operation is performed in the first sub-band in step S16A
  • the first wireless signal is sent in step S17A.
  • the third signaling is sent in step S21A
  • the second signaling is sent in step S22A
  • the fourth signaling is received in step S23A
  • the second channel sensing is performed in the first sub-band in step S24A.
  • the first signaling is sent in step S25A
  • the fifth signaling is sent in step S26A
  • the first detection operation is performed on the first time-frequency resource group of the first sub-band in step S27A.
  • steps S11A and S21A in block F51A are optional
  • steps S13A and S23A in block F52A are optional
  • steps S15A and S26A in block F53A are optional
  • steps S15A and S26A in block F53A are optional.
  • Step S17A is optional.
  • the first signaling is used to determine a first reference signal resource group, the first signaling is non-unicast; the second signaling indicates a second reference signal resource group; the The second channel sensing operation is used to determine the first time window; the first channel sensing operation is used to determine whether the first wireless signal is sent, and the executor of the first channel sensing operation is the second signaling
  • the first time-frequency resource group belongs to the first time window in the time domain
  • the first reference signal resource group and the second reference signal resource group are jointly used to select the first candidate type
  • the type of the first channel sensing operation is determined in the set, and when the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is the same as the second reference signal
  • the resource group is irrelevant; the first candidate type set includes a first type and a second type.
  • the third signaling indicates a third reference signal resource group.
  • the fourth signaling is used to determine whether the second signaling is received correctly.
  • the fifth signaling includes
  • the air interface between the second node U2A and the first node U1A includes a PC5 interface.
  • the air interface between the second node U2A and the first node U1A includes a secondary link.
  • the air interface between the second node U2A and the first node U1A includes a Uu interface.
  • the air interface between the second node U2A and the first node U1A includes a cellular link.
  • the air interface between the second node U2A and the first node U1A includes a wireless interface between user equipment and user equipment.
  • the air interface between the second node U2A and the first node U1A includes a wireless interface between a base station device and a user equipment.
  • Embodiment 5B illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5B.
  • the first node U1B and the second node U2B communicate through an air interface.
  • the order of the steps in the boxes does not represent a specific time sequence between the steps.
  • the first signal is received in step S11B; the second signaling is received in step S12B; the first time configuration information is received in step S13B; the first information block is sent in step S14B.
  • the first signaling is sent in step S21B; the second signaling is sent in step S22B; the first time configuration information is sent in step S23B; the first information block is received in step S24B.
  • the steps S23B and S13B contained in the dashed frame F51B are optional.
  • the first signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1.
  • the second signaling includes first spatial configuration information, and the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes the Part of the reference signals in Q1 reference signals, the spatial parameters associated with each reference signal in the first reference signal subset are related to the first spatial configuration information; for reference signals in the first reference signal subset
  • the measurement result of is used to determine the first information block.
  • the first time configuration information is used to determine a first time window, and the first space configuration information is valid within the first time window.
  • the air interface between the second node U2B and the first node U1B includes a PC5 interface.
  • the air interface between the second node U2B and the first node U1B includes a secondary link.
  • the air interface between the second node U2B and the first node U1B includes a Uu interface.
  • the air interface between the second node U2B and the first node U1B includes a cellular link.
  • the air interface between the second node U2B and the first node U1B includes a wireless interface between user equipment and user equipment.
  • the air interface between the second node U2B and the first node U1B includes a wireless interface between a base station device and a user equipment.
  • the first node in this application is a terminal.
  • the first node in this application is a car.
  • the first node in this application is a vehicle.
  • the first node in this application is an RSU (Road Side Unit).
  • the first node in this application is a base station.
  • the second node in this application is a terminal.
  • the second node in this application is a car.
  • the second node in this application is a vehicle.
  • the second node in this application is an RSU.
  • the second node in this application is a base station.
  • Embodiment 6A illustrates a schematic diagram of time domain resources respectively occupied by the first signaling and the second channel sensing operation in the first time window according to an embodiment of the present application, as shown in FIG. 6A.
  • the time domain resource of the first signaling is located within the first time window.
  • the start time of the first time window is after the end of the second channel sensing operation.
  • the first time window is a COT.
  • the first time window is a COT acquired by a base station.
  • the first time window includes the entire time of one COT.
  • the first time window includes a part of the time of a COT.
  • the time resource occupied by the first signaling belongs to the first time window.
  • the time resource occupied by the first signaling is located before the first time window.
  • the first time window includes a continuous period of time after the time domain resource occupied by the first signaling.
  • the time resource occupied by the first signaling belongs to one COT, and the first time window includes the remaining time of the COT after the time domain resource occupied by the first signaling.
  • the first signaling indicates the time length of the first time window.
  • the first signaling indicates the end time of the first time window.
  • the first signaling indicates frequency domain resources in the COT.
  • the performing the second channel sensing operation on the first sub-band includes performing energy detection on the first sub-band.
  • the second channel sensing operation is used to determine whether the second node sends a wireless signal in the first sub-band.
  • the second channel sensing operation is used to determine whether the first sub-band is idle.
  • the second channel sensing operation is used to determine the length of the first time window.
  • the second channel sensing operation is used to determine the start time of the first time window.
  • the second channel sensing operation is used to determine whether the first sub-band is idle, and if the first sub-band is idle, the second node sends a wireless signal in the first sub-band ; If the first sub-band is not free, the second node gives up sending wireless signals in the first sub-band.
  • the type of the second channel sensing operation is Cat 4 LBT.
  • Embodiment 6B illustrates a schematic diagram of the time-frequency resource group respectively associated with Q1 reference signals and the time-frequency resource group occupied by the first reference signal subset according to an embodiment of the present application, as shown in FIG. 6B.
  • each dashed frame represents a time-frequency resource group associated with a reference signal
  • the dashed frame filled in a grid represents a time-frequency resource group occupied by reference signals included in the first reference signal subset.
  • the size and position of the dashed box in FIG. 6B are only for illustration, and the time and frequency resources occupied by the reference signal are not limited by the size and position of the dashed box.
  • the time-frequency resource group associated with any one of the Q1 reference signals is determined by the first configuration information.
  • the time-frequency resource group associated with any one of the Q1 reference signals includes a positive integer number of REs (Resource Elements) in the frequency domain.
  • the time-frequency resource group associated with any one of the Q1 reference signals includes a positive integer number of RBs (Resource Block, resource block) in the frequency domain.
  • the time-frequency resource group associated with any one of the Q1 reference signals includes a positive integer number of multi-carrier symbols in the time domain.
  • the time-frequency resource group associated with any one of the Q1 reference signals is used to transmit any one of the Q1 reference signals.
  • the time-frequency resource group associated with any one of the Q1 reference signals periodically appears in the time domain.
  • any one of the Q1 reference signals occupies any reference signal associated with any one of the Q1 reference signals.
  • Time-frequency resource group when any one of the Q1 reference signals is transmitted, any one of the Q1 reference signals occupies any reference signal associated with any one of the Q1 reference signals.
  • any one of the Q1 reference signals is activated semi-statically.
  • any one of the Q1 reference signals is semi-statically deactivated.
  • any one of the Q1 reference signals is dynamically triggered by physical layer signaling.
  • the first signaling is physical layer signaling
  • the first signaling includes a CSI request
  • the measurement behavior of any one of the Q1 reference signals is requested by the CSI trigger.
  • the first signaling is MAC layer signaling
  • the first signaling includes CSI-RS activation information
  • the measurement behavior for any one of the Q1 reference signals is determined by The CSI-RS activation information is triggered.
  • the first signaling is RRC layer signaling
  • the first signaling includes CSI-RS configuration information
  • the measurement behavior for any one of the Q1 reference signals is determined by The CSI-RS configuration information indication.
  • the Q1 reference signals are respectively associated with Q1 time-frequency resource groups.
  • the first reference signal subset includes N3 reference signals, and the N3 is a positive integer smaller than Q1.
  • the N3 reference signals included in the first reference signal subset respectively occupy N3 time-frequency resource groups that are continuous in the time domain among the Q1 time-frequency resource groups.
  • the N3 reference signals included in the first reference signal subset respectively occupy N3 time-frequency resource groups that are not continuous in the time domain among the Q1 time-frequency resource groups.
  • the Q1 time-frequency resource groups are numbered in chronological order, and the N3 reference signals included in the first reference signal subset respectively occupy the first N3 time-frequency resources in the Q1 time-frequency resource groups. Resource group.
  • the Q1 time-frequency resource groups are numbered in chronological order, and the N3 reference signals included in the first reference signal subset respectively occupy the last N3 time-frequency resources in the Q1 time-frequency resource groups. Resource group.
  • the N3 reference signals included in the first reference signal subset are placed in In the time domain, it is transmitted at a compact time interval, which can alleviate the constraints on the transmission beam in the above multiplexing scenario.
  • the first node assumes that any reference signal that does not belong to the first reference signal subset among the Q1 reference signals is not sent within the first time window.
  • the sentence "the first node assumes that any reference signal in the Q1 reference signals that does not belong to the first reference signal subset will not be transmitted within the first time window” includes , When there are overlapping time-frequency resources between the time-frequency resources occupied by other wireless signals and the time-frequency resource group associated with any reference signal that does not belong to the first reference signal subset among the Q1 reference signals , The first node assumes that the overlapping time-frequency resources are used to transmit the other wireless signals.
  • the other wireless signal includes PDSCH.
  • the other wireless signal includes PUCCH.
  • the other wireless signal includes PUSCH.
  • the other wireless signal includes DMRS.
  • Embodiment 7A illustrates a schematic diagram of time domain resources occupied by the first wireless signal and time domain resources occupied by the first channel sensing operation according to an embodiment of the present application, as shown in FIG. 7A.
  • the time domain resource occupied by the first wireless signal is within the first time window, and the first channel sensing operation is performed before the time domain resource occupied by the first wireless signal.
  • whether the first wireless signal is sent is optional.
  • the result of the first channel sensing operation is that the first sub-band is idle, the first wireless signal is sent; when the result of the first channel sensing operation is that the first sub-band is not idle , The first wireless signal is not sent.
  • FIG. 7A the time domain resource occupied by the first wireless signal is within the first time window, and the first channel sensing operation is performed before the time domain resource occupied by the first wireless signal.
  • the type of the first channel sensing operation is determined to be the second type; and, If before receiving the first signaling, the type of the first channel sensing operation is determined to be the first type; the type of the first channel sensing operation is switched from the first type to the The second type.
  • the first reference signal resource group and the second reference signal resource group are jointly used to determine the type of the first channel sensing operation from the first candidate type set.
  • the second signaling indicates multiple time-frequency resource groups
  • the first time-frequency resource group is one of the multiple time-frequency resource groups.
  • the second signaling indicates multiple time-frequency resource groups occupied by multiple first-type signals
  • the first wireless signal is one of the multiple first-type signals
  • the first wireless signal is one of the multiple first-type signals.
  • the one-time-frequency resource group is one of the multiple time-frequency resource groups.
  • the first type of signal includes unlicensed scheduling PUSCH.
  • the first type of signal includes semi-persistent scheduling PUSCH.
  • the first type of signal includes a configured grant (configured grant) PUSCH.
  • the first type of signal includes periodic PUCCH.
  • the first type of signal includes periodic SRS.
  • the first type of signal includes a semi-static SRS.
  • the first type of signal includes a semi-static PUCCH.
  • the default channel sensing type of the first type of signal is the first type.
  • the default channel awareness type is a predefined channel awareness type for the first type of signal.
  • the default channel awareness type is the channel awareness type of the first type of signal indicated by the second signaling.
  • the phrase "before receiving the first signaling, the type of the first channel sensing operation is determined to be the first type" includes, before receiving the first signaling, The default channel sensing type of the first type of signal is determined to be the first type.
  • the fifth signaling in this application includes a sending instruction of the first wireless signal; when the first time-frequency resource group belongs to a first time window in the time domain and the first reference When there is no spatial association relationship between the signal resource group and the second reference signal resource group, the sending instruction of the first wireless signal is used to determine whether the first wireless signal is allowed to be sent.
  • the fifth signaling is a physical layer signaling.
  • the fifth signaling is a higher layer signaling.
  • the fifth signaling is an RRC layer signaling.
  • the fifth signaling includes one or more domains in DCI.
  • the fifth signaling is non-unicast.
  • the fifth signaling is unicast.
  • the fifth signaling is sent through a physical layer control channel common to the group.
  • the fifth signaling is sent through DCI format 2_0.
  • the fifth signaling and the first signaling are sent through the same DCI.
  • the channel access priority of the first wireless signal is used to determine the type of the first channel sensing operation .
  • the channel access priority of the first wireless signal is used to determine whether the first wireless signal is allowed to be sent.
  • the sentence "the channel access priority of the first wireless signal is used to determine whether the first wireless signal is allowed to be transmitted" includes, when the first wireless signal is When the channel access priority of the first wireless signal belongs to the first priority subset, the first wireless signal is allowed to be sent; when the channel access priority of the first wireless signal belongs to the second priority subset , The first wireless signal is not allowed to be sent.
  • the sentence "the channel access priority of the first wireless signal is used to determine whether the first wireless signal is allowed to be transmitted" includes, when the first wireless signal is When the channel access priority of the first wireless signal is greater than the first designated priority, the first wireless signal is allowed to be sent; when the channel access priority of the first wireless signal is not greater than the first designated priority When, the first wireless signal is not allowed to be sent.
  • the sentence "the channel access priority of the first wireless signal is used to determine whether the first wireless signal is allowed to be transmitted" includes, when the first wireless signal is When the channel access priority of the first wireless signal is less than the first designated priority, the first wireless signal is allowed to be sent; when the channel access priority of the first wireless signal is not less than the first designated priority, The first wireless signal is not allowed to be sent.
  • the channel access priority set includes K1 channel access priorities, K1 is an integer greater than 1, and the first priority subset includes the K1 channel access priorities K2 channel access priorities in the K1; the second priority subset includes K3 channel access priorities that do not belong to the first priority subset among the K1 channel access priorities; so Both K2 and K3 are positive integers smaller than K1.
  • the channel access priority set includes K1 channel access priorities, K1 is an integer greater than 1, and the first designated priority is one of the K1 channel access priorities. one.
  • the type of the first channel sensing operation is the first type.
  • the type of the first channel sensing operation is Cat 4LBT.
  • the first channel sensing operation is not performed.
  • Embodiment 7B illustrates a schematic diagram of the first spatial configuration information according to an embodiment of the present application, as shown in FIG. 7B.
  • the first spatial configuration information is used to determine N4 candidate spatial parameters.
  • the suffix # and numbers are used to distinguish the N4 candidate spatial parameters, where N4 is an integer greater than 1.
  • the spatial parameter associated with any one of the reference signals in the first reference signal subset is one of the N4 candidate spatial parameters.
  • the candidate spatial parameters include TCI status.
  • the candidate spatial parameters include QCL parameters.
  • the candidate spatial parameters include transmission beam parameters.
  • the candidate spatial parameters include received beam parameters.
  • the candidate space parameter includes a QCL type.
  • the QCL type included in the candidate space parameter is QCL-typeD.
  • the candidate spatial parameter includes a QCL association relationship with a reference signal.
  • the candidate space parameter includes a QCL association relationship with a CSI-RS resource.
  • the candidate space parameter includes a QCL association relationship with the SSB.
  • the candidate spatial parameter #i is used to determine the QCL association relationship between the one reference signal and the other reference signal, where i Being an integer not greater than N4, the another reference signal is a CSI-RS resource or SSB, and the candidate spatial parameter #i is used to determine the another reference signal.
  • the first spatial configuration information includes a TCI state.
  • the first spatial configuration information includes a CSI-RS resource index.
  • the CSI-RS resource indicated by the CSI-RS resource index included in the first spatial configuration information and the multiple reference signals have a QCL association relationship.
  • the CSI-RS resource indicated by the CSI-RS resource index included in the first spatial configuration information is transmitted using a wide beam.
  • the CSI-RS resource indicated by the CSI-RS resource index included in the first spatial configuration information is transmitted using multiple beams.
  • the first spatial configuration information includes an SSB index.
  • the SSB indicated by the SSB index included in the first spatial configuration information and the multiple reference signals have a QCL association relationship.
  • the SSB indicated by the SSB index included in the first spatial configuration information is transmitted using a wide beam.
  • the SSB indicated by the SSB index included in the first spatial configuration information is transmitted using multiple beams.
  • the first spatial configuration information includes a target index
  • the first index set includes a plurality of first indexes
  • the target index is one of the plurality of first indexes
  • the plurality of first indexes Any one of the first indexes in the indexes is used to determine a plurality of the candidate spatial parameters.
  • the first index includes a TCI state group indicator
  • the candidate space parameter includes a TCI state
  • the TCI state group indicator is used to determine multiple TCI states.
  • Embodiment 8A illustrates a schematic diagram of time domain resources occupied by the first wireless signal and time domain resources occupied by the first channel sensing operation according to an embodiment of the present application, as shown in FIG. 8A.
  • the time domain resource occupied by the first wireless signal is after the first time window, and the first channel sensing operation is performed before the time domain resource occupied by the first wireless signal.
  • whether the first wireless signal is sent is optional.
  • the result of the first channel sensing operation is that the first sub-band is idle, the first wireless signal is sent; when the result of the first channel sensing operation is that the first sub-band is not idle , The first wireless signal is not sent.
  • the type of the first channel sensing operation is independent of the second reference signal resource group.
  • the type of the first channel sensing operation is the default channel sensing type.
  • the type of the first channel sensing operation is determined by the scheduling information of the first wireless signal.
  • Embodiment 8B illustrates a schematic diagram of the first spatial configuration information according to an embodiment of the present application, as shown in FIG. 8B.
  • the first spatial configuration information includes multiple spatial configuration information units, and any one of the multiple spatial configuration information units is used to determine multiple candidate spatial parameters.
  • the spatial configuration information unit includes a TCI state.
  • the spatial configuration information unit includes a CSI-RS resource index.
  • the CSI-RS resource indicated by the CSI-RS resource index included in the spatial configuration information unit and multiple reference signals have a QCL association relationship.
  • the CSI-RS resource indicated by the CSI-RS resource index included in the spatial configuration information unit is transmitted using a wide beam.
  • the CSI-RS resource indicated by the CSI-RS resource index included in the spatial configuration information unit is transmitted using multiple beams.
  • the spatial configuration information unit includes an SSB index.
  • the SSB indicated by the SSB index included in the spatial configuration information unit and multiple reference signals have a QCL association relationship.
  • the SSB indicated by the SSB index included in the spatial configuration information unit is transmitted using a wide beam.
  • the SSB indicated by the SSB index included in the spatial configuration information unit is transmitted using multiple beams.
  • the spatial configuration information unit includes a target index
  • the first index set includes a plurality of first indexes
  • the target index is one of the plurality of first indexes
  • the plurality of first indexes Any one of the first indexes in is used to determine a plurality of the candidate spatial parameters.
  • the first index includes a TCI state group indicator
  • the candidate space parameter includes a TCI state
  • the TCI state group indicator is used to determine multiple TCI states.
  • Embodiment 9A illustrates a schematic diagram of time resources occupied by the fourth signaling and time resources occupied by the first wireless signal according to an embodiment of the present application, as shown in FIG. 9A.
  • the time domain resources occupied by the fourth signaling and the time domain resources occupied by the first wireless signal are both located within the first time window.
  • the time domain resources occupied by the fourth signaling are located within the first time window, and the time domain resources occupied by the first wireless signal are located after the first time window.
  • the time interval between the time resource occupied by the fourth signaling and the time domain resource occupied by the first wireless signal is represented by T.
  • FIG. 9A_a the time interval between the time resource occupied by the fourth signaling and the time domain resource occupied by the first wireless signal is represented by T.
  • the third reference signal resource group when T is less than the first threshold, the third reference signal resource group is used to determine the spatial parameter of the first wireless signal, and the third reference signal resource group is indicated by the third signaling
  • the third reference signal resource group is used to determine the spatial parameter of the first wireless signal
  • the second reference signal resource group is used to determine the spatial parameter of the first wireless signal.
  • the spatial parameter of the first wireless signal includes the QCL parameter of the first wireless signal.
  • the spatial parameter of the first wireless signal includes a QCL type of the first wireless signal.
  • the spatial parameter of the first wireless signal includes a spatial relationship of the first wireless signal.
  • the spatial parameter of the first wireless signal includes the TCI state of the first wireless signal.
  • the spatial parameter of the first wireless signal includes a spatial transmission filter of the first wireless signal.
  • the spatial parameter of the first wireless signal includes a spatial receiving filter of the first wireless signal.
  • the time interval between the first time-frequency resource group and the fourth signaling includes the time slot in which the first time-frequency resource group is located and the time slot in which the fourth signaling is located. The time interval between.
  • the time interval between the first time-frequency resource group and the fourth signaling includes the time slot in which the first time-frequency resource group is located and the time slot in which the fourth signaling is located. The number of time slots between.
  • the time interval between the first time-frequency resource group and the fourth signaling includes the end time of the last multi-carrier symbol of the first time-frequency resource group and the fourth signaling The number of multi-carrier symbols between the start of the first multi-carrier symbol.
  • the fourth signaling includes HARQ-ACK (Hybrid Automatic Repeat Request ACK nolegment, hybrid automatic retransmission request-acknowledgement) information of the second signaling.
  • HARQ-ACK Hybrid Automatic Repeat Request ACK nolegment, hybrid automatic retransmission request-acknowledgement
  • the fourth signaling is physical layer signaling.
  • the fourth signaling is sent through PUSCH.
  • the fourth signaling is sent through PUCCH.
  • the fourth signaling is sent through PSFCH.
  • the second signaling is carried through a physical layer shared channel
  • the fourth signaling includes HARQ-ACK information of the physical layer shared channel that carries the second signaling.
  • the second signaling is carried by PDSCH
  • the fourth signaling includes HARQ-ACK information of the PDSCH that carries the second signaling.
  • the third signaling is higher-layer signaling, and the third signaling is used to indicate the spatial parameters of the first type of signal.
  • the third signaling is MAC layer signaling.
  • the third signaling is RRC layer signaling.
  • the second signaling is higher-layer signaling, and the second signaling is used to indicate the spatial parameters of the first type of signal.
  • the spatial parameter of the first wireless signal is the same as the spatial parameter of the first type of signal.
  • the third signaling is sent before the second signaling, and the second signaling is used to update the spatial parameters of the first-type signal indicated by the third signaling.
  • the first threshold includes a time length of a positive integer number of multi-carrier symbols.
  • the first threshold includes a time length of a positive integer number of time slots.
  • the first threshold includes a time length of a positive integer number of subframes.
  • the first threshold includes the time length of all subframes within 3 milliseconds.
  • the first threshold includes the time length of all time slots within 3 milliseconds.
  • the first threshold includes the time length of all multi-carrier symbols within 3 milliseconds.
  • Embodiment 9B illustrates a schematic diagram of the relationship between the first channel sensing operation and the first time window according to an embodiment of the present application, as shown in FIG. 9B.
  • the gray-filled boxes represent the time resources occupied by the first channel sensing operation
  • the white filled boxes represent the time resources occupied by the first time window.
  • the first time configuration information in this application is used to determine a first time window, and the first space configuration information is valid within the first time window.
  • the length of the first time window is determined by first time configuration information, and the first space configuration information is valid within the first time window.
  • the first time window is located after the first channel sensing operation is completed.
  • the first time configuration information is sent in the second signaling.
  • the first time configuration information is used to determine COT (Channel Occupancy Time).
  • the first time configuration information is used to determine the end time of COT.
  • the first time configuration information is used to determine the start time and end time of the COT.
  • the first time configuration information is used to determine the time length of COT.
  • the first time window is within the duration of the COT.
  • the end time of the first time window is the same as the end time of the COT.
  • the end time of the first time window is the same as the end time of the last downlink symbol in the COT.
  • the start time of the first time window is the start time of the first multi-carrier symbol after receiving the physical channel for sending the first time configuration information.
  • the start time of the first time window is the start time of COT.
  • the first channel sensing operation includes performing energy detection on a first sub-band, and the energy detection is used to determine whether the first sub-band is free, and the frequency occupied by the second signaling The resource belongs to the first sub-band.
  • the implementer of the first channel sensing operation is the second node.
  • the first channel sensing operation includes performing N5 energy detections respectively in N5 time subpools on the first sub-band to obtain N5 detection values, and N5 is a positive integer.
  • the multi-antenna related receptions respectively used for the N5 times of energy detection are all the same.
  • the N5 times of energy detection is used to determine whether the first sub-band is idle (Idle).
  • the N5 energy detections are used to determine whether the first sub-band can be used by the first node to transmit wireless signals.
  • the N5 times of energy detection is used to determine whether the first sub-band can be used by the first node to transmit wireless signals related to the N5 times of energy detection space.
  • the first sub-band includes a frequency range occupied by a positive integer number of RBs.
  • the first sub-band includes a BWP (bandwidth part, partial bandwidth).
  • the first sub-band includes a carrier component CC (Carrier Component).
  • CC Carrier Component
  • the N5 energy detection is the energy detection in LBT (Listen Before Talk).
  • LBT Listen Before Talk
  • 3GPP TR37.213 3GPP TR37.213.
  • the N5 times of energy detection is the energy detection in CCA (Clear Channel Assessment).
  • CCA Carrier Channel Assessment
  • any one of the N5 energy detections is implemented by measuring RSSI (Received Signal Strength Indication).
  • the time domain resources occupied by any time subpool in the N5 time subpools are continuous.
  • the N5 time subpools are orthogonal to each other (not overlapping) in the time domain.
  • the duration of any one of the N5 time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • the duration of at least two time subpools in the N5 time subpools is not equal.
  • the duration of any two time subpools in the N5 time subpools are equal.
  • the time domain resources occupied by the N5 time subpools are continuous.
  • the time domain resources occupied by at least two time subpools in the N5 time subpools are discontinuous.
  • the time domain resources occupied by any two time subpools in the N5 time subpools are discontinuous.
  • any time sub-pool of the N5 time sub-pools is a time slot period (slotduration).
  • any time subpool except the earliest time subpool in the N5 time subpools is a time slot period (slotduration).
  • the earliest time subpool in the N5 time subpools has a duration of 16 microseconds.
  • the duration of the latest time subpool among the N5 time subpools is 9 microseconds.
  • the N5 time sub-pools include listening time in Cat 4 (type 4) LBT.
  • the N5 time subpools include a time slot period in a delay period (Defer Duration) and a time slot period in a backoff time (Backoff Time) in the Cat 4 (type 4) LBT.
  • the N5 time subpools include the time slot period and the backoff time (Backoff Time) in the delay period (DeferDuration) in the Type 1 UL channel access procedure (the first type of uplink channel access procedure)
  • the first node is the user equipment.
  • the N5 time sub-pools include the initial CCA and the time slot period in eCCA (Enhanced Clear Channel Assessment).
  • the N5 energy detections respectively obtain the N5 detection values.
  • the N5 detection values are respectively the power of all wireless signals sensed by the second node on the first sub-band in N5 time units, and averaged over time to obtain The received power; the N5 time units are respectively a duration in the N5 time sub-pools.
  • the duration of any time unit in the N5 time units is not shorter than 4 microseconds.
  • the N5 detection values are respectively that the second node senses the energy of all wireless signals on the first sub-band in N5 time units, and averages them over time to obtain The received energy; the N5 time units are respectively a duration period in the N5 time sub-pools.
  • the duration of any time unit in the N5 time units is not shorter than 4 microseconds.
  • any one of the N5 energy detections for a given energy detection refers to: the first node monitors the received power in a given time unit, and the given time unit is the N5 time units.
  • any one of the N5 energy detections for a given energy detection refers to: the first node monitors the received energy in a given time unit, and the given time unit is the N5 time units.
  • Embodiment 10A illustrates a schematic diagram of a first candidate channel sensing operation according to an embodiment of the present application, as shown in FIG. 10A.
  • the first candidate channel sensing operation includes performing Q2 energy detections respectively in the Q2 time subpools on the first sub-band to obtain Q2 detection values, and Q2 is a positive integer; And only when Q3 of the Q2 detection values are all lower than the first perception threshold, the wireless signal is transmitted in the first sub-band, and the initial transmission time of the wireless signal is not earlier than At the end time of the first time window, Q3 is a positive integer not greater than Q2.
  • the process of the Q2 secondary energy detection can be described by the flowchart in FIG. 10A.
  • the first node or the second node is in an idle state in step S1001, and it is determined in step S1002 whether it needs to be sent; in step 1003, energy detection is performed within a defer duration; In step S1004, it is judged whether all sensing slot durations in this delay period are free, if yes, proceed to step S1005 to set the first counter equal to Q2; otherwise, return to step S1004; judge in step S1006 Whether the first counter is 0, if so, proceed to step S1007 to send wireless signals on the first sub-band in this application; otherwise, proceed to step S1008 during an additional sensing slot period (additional sensing slot).
  • step S1009 it is judged whether this additional sensing time slot period is free, if so, proceed to step S1010 to decrement the first counter by 1, and then return to step 1006; otherwise, proceed to step S1011
  • Energy detection is performed in an additional delay period (additional defer duration); in step S1012, it is determined whether all the sensing time slot periods in this additional delay period are free, if yes, proceed to step S1010; otherwise, return to step S1011.
  • any one perception time slot period within a given time period includes one of the Q2 time sub-pools; the given time period is the ⁇ all delay periods included in FIG. 10A , Any time period in all additional sensing time slot periods, all additional delay time periods ⁇ .
  • performing energy detection in a given time period refers to: performing energy detection in all sensing time slot periods within the given time period; the given time period is included in Figure 10A ⁇ All delay periods, all additional sensing time slot periods, and all additional delay periods ⁇ .
  • being judged to be idle by energy detection in a given time period means that: all sensing time slot periods included in the given time period are judged to be idle by energy detection; the given time period is an additional time period. Any one of the ⁇ all delay periods, all additional sensing time slot periods, all additional delay periods ⁇ included in FIG. 10A.
  • a given sensing time slot period is judged to be idle through energy detection, it means that the first node senses the power of all wireless signals on the first sub-band in a given time unit. , And averaged over time, the obtained received power is lower than the first perception threshold; the given time unit is a duration in the given perception time slot period.
  • the duration of the given time unit is not less than 4 microseconds.
  • a given sensing time slot period is judged to be idle through energy detection, it means that the first node senses the energy of all wireless signals on the first sub-band in a given time unit. , And averaged over time, the received received energy is lower than the first perception threshold; the given time unit is a duration in the given perception time slot period.
  • the duration of the given time unit is not less than 4 microseconds.
  • a given sensing time slot period is judged to be idle through energy detection means: the first node performs energy detection on the time sub-pool included in the given sensing time slot period, and the detected value obtained is low At the first perception threshold; the time subpool belongs to the Q2 time subpools, and the detection value belongs to the Q2 detection value.
  • performing energy detection in a given time period refers to: performing energy detection in all time subpools within the given time period; the given time period is the ⁇ all delays included in FIG. 10A Time period, all additional sensing time slot periods, all additional delay periods ⁇ any one of the time periods, the all time sub-pools belong to the Q2 time sub-pools.
  • being judged to be idle by energy detection in a given time period means that all the time subpools included in the given time period have detected values obtained through energy detection and are lower than the first perception threshold; therefore,
  • the given time period is any one of the ⁇ all delay periods, all additional sensing time slot periods, all additional delay periods ⁇ included in Figure 10A, and the all time subpools belong to the Q2 time subpools. Pool, the detection value belongs to the Q2 detection values.
  • the duration of a defer duration is 16 microseconds plus M2 9 microseconds, where M2 is a positive integer.
  • one delay period includes M1+1 time sub-pools of the Q2 time sub-pools.
  • the priority corresponding to the first signal in this application is used to determine the M1.
  • the priority is a channel access priority (Channel Access Priority Class), and the definition of the channel access priority can be found in 3GPP TS37.213.
  • the M2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the receiving parameters related to multiple antennas respectively used in the Q2 energy detection are the same.
  • the Q2 energy detection is used to determine whether the first sub-band is idle (Idle).
  • the Q2 secondary energy detection is used to determine whether the first sub-band can be used by the first node to transmit wireless signals.
  • the Q2 sub-energy detection is used to determine whether the first sub-band can be used by the first node to transmit a wireless signal related to the Q2 sub-energy detection space.
  • the Q2 energy detection is the energy detection in LBT (Listen Before Talk).
  • LBT Listen Before Talk
  • the Q2 energy detection is the energy detection in CCA (Clear Channel Assessment).
  • CCA Carrier Channel Assessment
  • any one of the Q2 energy detections is implemented in a manner defined by 3GPP TS37.213.
  • any one of the energy detections in the Q2 energy detection is implemented through the energy detection method in WiFi.
  • any one of the Q2 energy detections is implemented by measuring RSSI (Received Signal Strength Indication).
  • any one of the energy detections in the Q2 energy detection is implemented through the energy detection method in the LTE LAA.
  • the Q2 detection value units are all dBm (millidecibels).
  • the units of the Q2 detection values are all milliwatts (mW).
  • the units of the Q2 detection values are all Joules.
  • the Q3 is smaller than the Q2.
  • the Q2 is greater than 1.
  • the unit of the first perception threshold is dBm (millidecibels).
  • the unit of the first perception threshold is milliwatt (mW).
  • the unit of the first perception threshold is Joule.
  • the first perception threshold is equal to or less than -72dBm.
  • the first perception threshold is any value equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by high-layer signaling, and the first node is user equipment.
  • the first type included in the first candidate type set in the present application includes the first candidate channel sensing operation.
  • the second candidate channel sensing operation includes performing Q4 energy detections respectively in the second time window on the first sub-band to obtain Q4 detection values, Q4 is a positive integer; if and only if the When Q5 of the Q4 detection values are all lower than the first perception threshold, the first sub-band is used to transmit wireless signals, and Q5 is a positive integer not greater than Q4.
  • the length of the second time window is predefined.
  • the length of the second time window includes one of ⁇ 9 microseconds, 16 microseconds, 25 microseconds ⁇ .
  • the second type included in the first candidate type set in the present application includes the second candidate channel sensing operation.
  • the second channel sensing operation in this application is the first candidate channel sensing operation.
  • Embodiment 10B illustrates a schematic diagram of time domain resources respectively occupied by the first reference signal subset and the first information block in the second signaling according to an embodiment of the present application, as shown in FIG. 10B.
  • the first reference signal subset is transmitted after the second signaling
  • the first information block is transmitted after the first reference signal subset.
  • the time resources occupied by the first reference signal subset and the first information block are both located within a first time window, and T1 is used to represent the duration of the first time window in FIG. 10B.
  • the start time of the first time window is the end time of the last multi-carrier symbol used to send the second signaling.
  • the number of bits included in the first information block is related to the number of reference signals included in the first reference signal subset.
  • the first reference signal subset includes N3 reference signals, where N3 is a positive integer, and the number of bits included in the first information block changes in the same direction as the value of N3.
  • the first reference signal subset includes N3 CSI-RS resources, where N3 is a positive integer, and the number of bits included in the first information block and ceil(log2(N3 )) is related to the value, where log2 represents the logarithm operation with base 2 and ceil represents the round-up operation.
  • the first reference signal subset includes N3 CSI-RS resources, where N3 is a positive integer, and the first information block includes a CSI-RS resource indicator, and the CSI-RS
  • the number of bits included in the RS resource indicator is equal to ceil(log2(N3)), where log2 represents a logarithmic operation based on base 2, and ceil represents a round-up operation.
  • the time resource occupied by the first information block is within the first time window.
  • Embodiment 11A illustrates a structural block diagram of a processing device used in the first node, as shown in FIG. 11A.
  • the first node 1100A includes a first receiver 1101A, a second receiver 1102A, and a first transmitter 1103A.
  • the first receiver 1101A includes the antenna 452 shown in FIG. 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the second receiver 1102A includes the antenna 452 in Figure 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the first transmitter 1103A includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476. At least one of.
  • the first receiver 1101A receives the first signaling and the second signaling; the second receiver 1102A performs the first channel sensing operation on the first sub-band; the first transmitter 1103A sends the first wireless signal in the first time-frequency resource group of the first sub-band, or gives up sending the first wireless signal in the first time-frequency resource group of the first sub-band; wherein, the The first signaling is used to determine the first reference signal resource group, the first signaling is non-unicast; the second signaling indicates the second reference signal resource group; when the first time-frequency resource group is in When belonging to the first time window in the time domain, the first reference signal resource group and the second reference signal resource group are jointly used to determine the type of the first channel sensing operation from the first candidate type set, when When the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group; the first candidate type set includes the first Type and second type
  • the first node 1100A is user equipment.
  • the first node 1100A is a relay node.
  • the first node 1100A is a base station.
  • the first node 1100A is a vehicle-mounted communication device.
  • the first node 1100A is a user equipment supporting V2X communication.
  • the first node 1100A is a relay node supporting V2X communication.
  • the first node 1100A is a base station device supporting IAB.
  • Embodiment 11B illustrates a schematic diagram of the relationship between the spatial parameters of the first channel perception, the spatial parameters of the reference signal, and the transmission parameters of the first information block according to an embodiment of the present application, as shown in FIG. 11B.
  • an elliptical pattern is used to indicate the width of the beam.
  • the spatial parameter of the first channel sensing operation is related to the width of the receiving beam of the first channel sensing operation
  • the spatial parameter of the reference signal is related to the width of the transmitting beam of the reference signal
  • the first information block The sending parameter of is related to the sending beam of the first information block.
  • the receiving beam of the first channel sensing operation is a wide beam
  • the wide beam includes the width of a plurality of transmission beams of the reference signal.
  • the first channel sensing operation adopts a wide beam for reception.
  • the first spatial configuration information is related to a spatial parameter of the first channel sensing operation.
  • the spatial parameter indicated by the first spatial configuration information is the same as the spatial parameter of the first channel sensing operation.
  • the beam coverage corresponding to the spatial parameter indicated by the first spatial configuration information overlaps with the beam coverage corresponding to the spatial parameter of the first channel sensing operation.
  • the spatial parameter of the first channel sensing operation includes the receive beam configuration of the first channel sensing operation.
  • the spatial parameter of the first channel sensing operation includes a spatial receiving parameter configuration of the first channel sensing operation.
  • the spatial parameter of the first channel sensing operation includes the QCL association relationship between the receiving behavior of the first channel sensing operation and a reference signal
  • the reference signal is a CSI-RS resource or an SSB.
  • the first spatial configuration information is used to determine the sending parameter of the first information block.
  • the first spatial configuration information is used to determine candidate spatial parameters associated with the uplink channel.
  • the first spatial configuration information is used to determine the candidate spatial parameters associated with the PUCCH.
  • the first spatial configuration information is used to determine the candidate spatial parameters associated with the PUSCH.
  • the candidate spatial parameters associated with the uplink channel include SRI (Sounding Reference Signal Resource Indicator).
  • the candidate spatial parameter associated with the uplink channel includes TCI.
  • the candidate space parameter associated with the uplink channel includes a QCL association relationship with the CSI-RS resource.
  • the candidate spatial parameter associated with the uplink channel includes a QCL association relationship with the SSB.
  • the sending parameter of the first information block includes a spatial parameter associated with the first information block.
  • the sending parameter of the first information block includes time-frequency resources occupied by the first information block.
  • the sending parameter of the first information block includes the PUCCH resource number associated with the first information block.
  • the sentence "the first spatial configuration information is used to determine the transmission parameters of the first information block" includes that the first spatial configuration information includes the transmission parameters of the first information block Instructions.
  • the sentence "the first spatial configuration information is used to determine the transmission parameters of the first information block” includes: the first spatial configuration information includes multiple associated uplink channels A candidate space parameter, the first node selects one of the candidate space parameters associated with the plurality of uplink channels as the sending parameter of the first information block.
  • the first node receives a selection rule indication, and the first node selects one of the candidate spatial parameters associated with the plurality of uplink channels according to the selection rule indication.
  • One is used as the sending parameter of the first information block.
  • the first node selects one of the candidate space parameters associated with the plurality of uplink channels as the transmission of the first information block according to a predefined selection rule. parameter.
  • the first spatial configuration information is related to a spatial parameter of a first channel sensing operation, and the first channel sensing operation is used to determine whether a wireless signal can be sent on the first sub-band, and the second The frequency domain resources occupied by the signaling belong to the first sub-band.
  • the frequency domain resource occupied by the first information block belongs to the first sub-band.
  • Embodiment 12A illustrates a structural block diagram of a processing device used in the second node, as shown in FIG. 12A.
  • the second node 1200A includes a second transmitter 1201A, a third receiver 1202A, and a fourth receiver 1203A.
  • the second transmitter 1201A includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476. At least one of.
  • the third receiver 1202A includes the antenna 452 in Figure 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the fourth receiver 1203A includes the antenna 452 in Figure 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the second transmitter 1201A sends the first signaling and the second signaling; the third receiver 1202A performs the second channel sensing operation on the first sub-band; the fourth receiver 1203A performs a first detection operation on a first time-frequency resource group of the first sub-band, where the first detection operation is used to determine whether a first wireless signal is received on the first time-frequency resource group;
  • the first signaling is used to determine a first reference signal resource group, the first signaling is non-unicast;
  • the second signaling indicates a second reference signal resource group;
  • the second channel sensing The operation is used to determine the first time window; the first channel sensing operation is used to determine whether the first wireless signal is sent, and the performer of the first channel sensing operation is the receiver of the second signaling;
  • the first time-frequency resource group belongs to the first time window in the time domain, the first reference signal resource group and the second reference signal resource group are jointly used to determine all the resources from the first candidate type set.
  • the type of the first channel sensing operation when the first time-frequency resource group does not belong to the first time window in the time domain, the type of the first channel sensing operation is independent of the second reference signal resource group;
  • the first candidate type set includes a first type and a second type.
  • the second signaling indicates the first time-frequency resource group, and the first wireless signal and the second reference signal resource group have a spatial association relationship.
  • the second transmitter 1201A further sends third signaling before sending the second signaling, where the third signaling indicates a third reference signal resource group; the fourth receiving The machine 1203A receives fourth signaling, and the fourth signaling is used to determine whether the second signaling is received correctly; wherein, when the first time-frequency resource group is between the first time-frequency resource group and the fourth signaling When the time interval is less than the first threshold, the third reference signal resource group is used to determine the spatial parameter of the first wireless signal; when the time between the first time-frequency resource group and the fourth signaling When the interval is not less than the first threshold and the first time-frequency resource group belongs to the first time window in the time domain, the third reference signal resource group is used to determine the spatial parameter of the first wireless signal; When the time interval between the first time-frequency resource group and the fourth signaling is not less than a first threshold and the first time-frequency resource group does not belong to the first time window in the time domain, the second reference The signal resource group is used to determine the spatial parameter of the first
  • the first reference signal resource group when the first time-frequency resource group belongs to a first time window in the time domain and the first reference signal resource group has a spatial association relationship with the second reference signal resource group, the first reference signal resource group The type of a channel sensing operation is determined as the second type.
  • the type of the first channel sensing operation is determined to be the first type; when the first time-frequency resource group is When belonging to the first time window in the time domain and the first reference signal resource group and the second reference signal resource group have a spatial association relationship, the type of the first channel sensing operation is switched from the first type For the second type.
  • the method further includes: the second transmitter 1201A sends fifth signaling; wherein, the fifth signaling includes a sending instruction of the first wireless signal; when the first time-frequency resource group is in When belonging to the first time window in the time domain and there is no spatial association relationship between the first reference signal resource group and the second reference signal resource group, the sending instruction of the first wireless signal is used to determine the Whether the first wireless signal is allowed to be sent.
  • the channel access priority of the first wireless signal is used to determine the type of the first channel sensing operation .
  • the second node 1200A is user equipment.
  • the second node 1200A is a relay node.
  • the second node 1200A is a base station.
  • the second node 1200A is a vehicle-mounted communication device.
  • the second node 1200A is a user equipment supporting V2X communication.
  • the second node 1200A is a relay node supporting V2X communication.
  • the second node 1200A is a base station device supporting IAB.
  • Embodiment 12B illustrates a structural block diagram of a processing device used in the first node, as shown in FIG. 12B.
  • the first node 1100B includes a first receiver 1101B, a second receiver 1102B, and a first transmitter 1103B.
  • the first receiver 1101B includes the antenna 452 in Figure 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the second receiver 1102B includes the antenna 452 in Figure 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the first transmitter 1103B includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least one of.
  • the first receiver 1101B receives the first signaling; the second receiver 1102B receives the second signaling; the first transmitter 1103B transmits the first information block;
  • One signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1, and the second signaling includes first Spatial configuration information, where the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes part of the reference signals in the Q1 reference signals ,
  • the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is used to determine the The first information block.
  • the first node 1100B is user equipment.
  • the first node 1100B is a relay node.
  • the first node 1100B is a base station.
  • the first node 1100B is a vehicle-mounted communication device.
  • the first node 1100B is a user equipment supporting V2X communication.
  • the first node 1100B is a relay node supporting V2X communication.
  • the first node 1100B is a base station device supporting IAB.
  • the number of bits included in the first information block is related to the number of reference signals included in the first reference signal subset.
  • the first spatial configuration information is used to determine multiple candidate spatial parameters; the spatial parameter associated with any one of the reference signals in the first reference signal subset is the multiple candidate spatial parameters One of them.
  • the second receiver 1102B receives first time configuration information, the first time configuration information is used to determine a first time window, and the first space configuration information is in the first time window. Valid within a time window.
  • the first spatial configuration information is related to a spatial parameter of a first channel sensing operation, and the first channel sensing operation is used to determine whether a wireless signal can be sent on the first sub-band,
  • the frequency domain resources occupied by the second signaling belong to the first sub-band.
  • the first node assumes that any reference signal that does not belong to the first reference signal subset among the Q1 reference signals is not sent within the first time window.
  • the first spatial configuration information is used to determine the sending parameter of the first information block.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in the second node, as shown in FIG. 13.
  • the second node 1200B includes a second transmitter 1201B, a third transmitter 1202B, and a third receiver 1203B.
  • the second transmitter 1201B includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least one of.
  • the third transmitter 1202B includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least one of.
  • the third receiver 1203B includes the antenna 452 in Figure 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the second transmitter 1201B sends the first signaling; the third transmitter 1202B sends the second signaling; the third receiver 1203B receives the first information block;
  • One signaling includes first configuration information, and the first configuration information is used to determine Q1 spatial parameters respectively associated with Q1 reference signals, where Q1 is an integer greater than 1, and the second signaling includes first Spatial configuration information, where the first spatial configuration information is used to determine a first reference signal subset from the Q1 reference signals, and the first reference signal subset includes part of the reference signals in the Q1 reference signals ,
  • the spatial parameter associated with each reference signal in the first reference signal subset is related to the first spatial configuration information; the measurement result of the reference signal in the first reference signal subset is used to determine the The first information block.
  • the number of bits included in the first information block is related to the number of reference signals included in the first reference signal subset.
  • the first spatial configuration information is used to determine multiple candidate spatial parameters; the spatial parameter associated with any one of the reference signals in the first reference signal subset is the multiple candidate spatial parameters One of them.
  • the third transmitter 1202B sends first time configuration information, the first time configuration information is used to determine a first time window, and the first space configuration information is within the first time window. Effective within.
  • the first spatial configuration information is related to a spatial parameter of a first channel sensing operation, and the first channel sensing operation is used to determine whether a wireless signal can be sent on the first sub-band, and the second The frequency domain resources occupied by the signaling belong to the first sub-band.
  • the second node does not send any reference signal that does not belong to the first reference signal subset among the Q1 reference signals within the first time window.
  • the first spatial configuration information is used to determine the sending parameter of the first information block.
  • the second node 1200B is user equipment.
  • the second node 1200B is a base station.
  • the second node 1200B is a relay node.
  • the second node 1200B is a user equipment supporting V2X communication.
  • the second node 1200B is a base station device supporting V2X communication.
  • the second node 1200B is a relay node supporting V2X communication.
  • the second node 1200B is a base station device supporting IAB.
  • the first node in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. communication device.
  • the second node in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. communication device.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, airplanes, drones, and remote controls Airplanes and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, air Wireless communication equipment such as base stations.

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令和第二信令;在第一子频带上执行第一信道感知操作;在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号。其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型。通过本申请中的方法,可以根据无线信号的空间参数确定信道感知操作的类型,有利于增加传输机会并减小开销。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中非授权频谱有关的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN #75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
NR的一个关键技术是支持基于波束的信号传输,它的主要应用场景是增强工作在毫米波频段(例如大于6GHz的频段)的NR设备的覆盖。此外,在低频段(例如小于6GHz的频段)也需要基于波束的传输技术来支持大规模天线。通过对天线阵列的加权处理,射频信号会在特定的空间方向上形成较强的波束,而在其他的方向上则信号较弱。经过波束测量和波束反馈等操作之后,发射机和接收机的波束可以准确的对准对方,使信号以较强的功率进行发送和接收,从而提高了覆盖性能。工作在毫米波频段的NR系统的波束测量和反馈可通过多个同步广播信号块(SS/PBCH block,SSB)和信道状态信息参考信号(CSI-RS)来完成。不同的SSB或CSI-RS可以采用不同的波束进行传输,用户设备(UE,User Equipment)通过测量gNB(下一代节点B,next generation Node B)发送的SSB或CSI-RS,并反馈SSB索引或CSI-RS资源编号,完成波束的对准。
传统的蜂窝系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。3GPP Release 17将考虑将NR的应用扩展到52.6GHz以上的非授权频谱。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被用于避免因多个发射机同时占用相同的频率资源而带来的干扰。对于52.6GHz以上的非授权频谱,由于基于波束的信号传输具有明显的方向性,因此较适合采用定向LBT(Directional LBT)技术来避免干扰。
在LTE的Cat 4 LBT(第四类型的LBT,Category 4 LBT,参见3GPP TR36.889)过程中,发射机(基站或者用户设备)首先在一个延时时段(Defer Duration)进行能量检测,如果检测的结果为信道空闲,则还要进行回退(backoff)并在回退的时间内进行能量检测。回退的时间以CCA(Clear Channel Assessment,空闲信道评估)时隙时段为单位进行计数,回退的时隙时段数量是发射机在CWS(Contention Window Size,竞争窗口大小)内进行随机选择得到的。因此,Cat 4 LBT的持续时间是不确定的。Cat 2 LBT(第二类型的LBT,Category 2 LBT,参见3GPP TR36.889)是另外一种LBT的类型。Cat 2 LBT通过评估一段特定的时间段内的能量大小来判断信道是否空闲。因此,Cat 2 LBT的持续时间是确定的。NR中采用了类似的机制。Cat 4 LBT也被叫做类型1下行信道接入过程(Type 1 downlink channel access procedures)或类型1上行信道接入过程(Type 1 uplink channel access procedures);Cat 2 LBT也被叫做类型2下行信道接入过程(Type 2 downlink channel access procedures)或类型2上行信道接入过程(Type 2 uplink channel access procedures)。具体定义可参考3gpp TS37.213,本申请中的Cat 4 LBT也被用于表示类型1下行信道接入过程或类型1上行信道接入过程,本申请中的Cat 2 LBT也被用于表示类型2下行信道接入过程或类型2上行信道接入过程。
在NR非授权频谱中,gNB或UE在开始一个新的COT(Channel Occupancy Time,信道占用时间)时需要使用Cat 4 LBT。gNB在完成一次成功的Cat 4 LBT之后,可以确定一个COT并将COT的持续时间通知给UE。在gNB获取的COT内,UE在传输上行信号之前,可以使用Cat 2 LBT来确定信道是否空闲;并且UE可以在COT内部将原定的Cat 4 LBT切换为Cat 2 LBT来减小开销。
发明内容
发明人通过研究发现,定向LBT技术有利于提高工作在非授权频谱上的NR系统的频谱复用效率和传输性能。和全向LBT不同,定向LBT成功之后只能在LBT成功的波束方向上进行信号的传输,而未进行定向LBT的方向或定向LBT未成功的方向上的信号传输将受到限制。因此,在定向LBT场景下,UE采用的LBT的类型和上行信号传输的波束方向之间具有什么样的关系是一个需要解决的问题。由于LBT的结果具有不确定性,gNB和UE无法在LBT结束之前预判哪些波束对应的定向LBT会成功。对于CSI测量来说,由于CSI-RS或SSB通过特定的波束发送,因此gNB和UE则无法在LBT结束之前预知哪些CSI-RS或SSB可以被发送和测量,如果没有一定的方法解决,将无法完成对CSI的测量。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用蜂窝网络gNB和UE之间的空口传输的场景作为一个例子,本申请也适用于其他通信场景(例如无线局域网场景,用户设备与用户设备之间的副链路传输场景等),并取得类似的技术效果。此外,不同场景(包括但不限于蜂窝网络,无线局域网,副链路传输等场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令和第二信令;
在第一子频带上执行第一信道感知操作;
在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号;
其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
根据本申请的一个方面,上述方法的特征在于,所述第二信令指示所述第一时频资源组,所述第一无线信号与所述第二参考信号资源组具有空间关联关系。
作为一个实施例,上述方法的特质包括:所述第一时间窗是COT的持续时间,所述COT由本申请中的第二节点在所述第二信道感知操作成功之后确定。所述第一信令在COT开始之后发送,所述第一参考信号资源组被用于确定所述COT所对应的LBT成功的波束方向,所述第二参考信号资源组被用于确定所述第一无线信号的波束方向;所述第一候选类型集合包括Cat 2 LBT和Cat 4 LBT;当第一无线信号位于COT内时,所述第一信道感知操作的类型和第一无线信号的波束方向以及所述COT所对应的LBT成功的波束方向都有关;当第一无线信号位于COT之外时,所述第一信道感知操作的类型和所述第一无线信号的波束方向无关。
作为一个实施例,上述方法的好处包括:通过非单播的第一信令指示第一参考信号资源组,所述第一参考信号资源组被用于确定所述COT所对应的LBT成功的波束方向,信令开销较小;并且,所述第一节点根据第一参考信号资源组和所述第二参考信号资源组判断LBT的类型,一方面可以避免由于LBT类型选择的错误造成的传输机会丧失,另一方面可以避免在LBT未成功的波束方向上使用不符合要求的LBT类型。
根据本申请的一个方面,上述方法的特征在于,还包括:
在接收所述第二信令之前接收第三信令,所述第三信令指示第三参考信号资源组;
发送第四信令,所述第四信令被用于确定所述第二信令是否被正确接收;
其中,当所述第一时频资源组与所述第四信令之间的时间间隔小于第一阈值时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上属于第一时间窗时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上不属于第一时间窗时,所述第二参考信号资源组被用于确定所述第一无线信号的空间参数。
作为一个实施例,上述方法的特质包括:所述第一无线信号是周期性信号,所述第三信令被用于确定所述周期性信号的波束;由于移动性等原因,所述周期性信号的波束在一段时间后可能需要更新;所述第二信令被用于更新所述周期性信号的波束;所述第一阈值是信号处理延迟。
作为一个实施例,上述方法的好处包括:当所述第一时频资源组与所述第四信令之间的时间间隔大于信号处理延迟并且所述第一时频资源组位于COT内部时,如果所述第二信令所指示的新波束与所述COT所对应的LBT成功的波束方向不存在空间关联关系时,所述第二信令所指示的新波束不被使用,而仍然使用所述第三信令中所指示的旧波束,有利于增加第一节点在COT内部的传输机会。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型被确定为第二类型。
根据本申请的一个方面,上述方法的特征在于,在接收所述第一信令之前,所述第一信道感知操作的所述类型被确定为第一类型;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型从所述第一类型切换为所述第二类型。
根据本申请的一个方面,上述方法的特征在于,还包括:接收第五信令;其中,所述第五信令包括所述第一无线信号的发送指示;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组不存在空间关联关系时,所述第一无线信号的所述发送指示被用于确定所述第一无线信号是否被允许发送。
作为一个实施例,上述方法的好处包括:当所述第一时频资源组在COT之内,并且所述第一无线信号的波束方向和所述COT所对应的LBT成功的波束方向不具有空间关联关系时,所述第五信令被用于确定所述第一无线信号是否允许被发送。例如,当第二节点可以在第一无线信号的波束方向上接收信号时,可以允许所述第一无线信号被发送;反之则不允许所述第一无线信号被发送。如果第一无线信号被允许发送,则在发送之前需要进行Cat 4 LBT。通过该方法,在所述第一无线信号的波束方向与所述COT所对应的LBT成功的波束方向不同的情况下,可以灵活控制第一无线信号是否被发送,有利于提高调度灵活性以及系统性能。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源组在时域上属于第一时间窗时,所述第一无线信号的信道接入优先级被用于确定所述第一信道感知操作的类型。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令和第二信令;
在第一子频带上执行第二信道感知操作;
在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;
其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
根据本申请的一个方面,上述方法的特征在于,所述第二信令指示所述第一时频资源组,所述第一无线信号与所述第二参考信号资源组具有空间关联关系。
根据本申请的一个方面,上述方法的特征在于,还包括:
在发送所述第二信令之前发送第三信令,所述第三信令指示第三参考信号资源组;
接收第四信令,所述第四信令被用于确定所述第二信令是否被正确接收;
其中,当所述第一时频资源组与所述第四信令之间的时间间隔小于第一阈值时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上属于第一时间窗时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上不属于第一时间窗时,所述第二参考信号资源组被用于确定所述第一无线信号的空间参数。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型被确定为第二类型。
根据本申请的一个方面,上述方法的特征在于,在发送所述第一信令之前,所述第一信道感知操作的所述类型被确定为第一类型;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型从所述第一类型切换为所述第二类型。
根据本申请的一个方面,上述方法的特征在于,还包括:发送第五信令;其中,所述第五信令包括所述第一无线信号的发送指示;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组不存在空间关联关系时,所述第一无线信号的所述发送指示被用于确定所述第一无线信号是否被允许发送。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源组在时域上属于第一时间窗时,所述第一无线信号的信道接入优先级被用于确定所述第一信道感知操作的类型。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信令和第二信令;
第二接收机,在第一子频带上执行第一信道感知操作;
第一发射机,在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号;
其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信令和第二信令;
第三接收机,在第一子频带上执行第二信道感知操作;
第四接收机,在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;
其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令;
接收第二信令;
发送第一信息块;
其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,上述方法的特质包括:所述第一空间配置信息在LBT成功之后被发送,所述第一空间配置信息被用于确定可用的波束。所述Q1个参考信号中,只有当参考信号所关联的波束方向和所述第一空间配置信息所确定的可用波束方向一致时,才会被用于CSI测量。
作为一个实施例,上述方法的好处包括:所述第一节点可以根据所述第一空间配置信息和所述第一配置信息确定需要进行测量的参考信号。
根据本申请的一个方面,上述方法的特征在于,所述第一信息块包括的比特数和所述第一参考信号子集包括的参考信号的数量有关。
作为一个实施例,上述方法的好处包括:第一节点所反馈的信息只需反映第一参考信号子集的测量结果即可,无需包含Q1个参考信号的整体测量结果,节省了反馈开销。
根据本申请的一个方面,上述方法的特征在于,所述第一空间配置信息被用于确定多个候选空间参数;所述第一参考信号子集中的任一所述参考信号所关联的空间参数是所述多个候选空间参数中的之一。
根据本申请的一个方面,上述方法的特征在于,接收第一时间配置信息,所述第一时间配置信息被用于确定第一时间窗口,所述第一空间配置信息在所述第一时间窗口之内有效。
根据本申请的一个方面,上述方法的特征在于,所述第一空间配置信息和第一信道感知操作的空间参数有关,所述第一信道感知操作被用于确定是否能在第一子频带上发送无线信号,所述第二信令所占用的频域资源属于所述第一子频带。
根据本申请的一个方面,上述方法的特征在于,所述第一节点假设所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号在所述第一时间窗口内不被发送。
作为一个实施例,上述方法的好处包括:不属于所述第一参考信号子集的参考信号不进行发送,这些参考信号所占用的时频资源可以给其它信号或信道使用,提高了频谱利用率。
根据本申请的一个方面,上述方法的特征在于,所述第一空间配置信息被用于确定所述第一信息块的发送参数。
作为一个实施例,上述方法的实质包括:所述第一信息块只能使用LBT成功的波束进行发送,所述第一信息块的发送波束由所述第一空间配置信息确定。
作为一个实施例,上述方法的好处包括:所述第一节点和所述第二节点通过所述第一空间配置信息确定所述第一信息块的发送参数,使第一信息块可以被正确的传输和接收。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令;
发送第二信令;
接收第一信息块;
其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
根据本申请的一个方面,上述方法的特征在于,所述第一信息块包括的比特数和所述第一参考信号子集包括的参考信号的数量有关。
根据本申请的一个方面,上述方法的特征在于,所述第一空间配置信息被用于确定多个候选空间参数;所述第一参考信号子集中的任一所述参考信号所关联的空间参数是所述多个候选空间参数中的之一。
根据本申请的一个方面,上述方法的特征在于,发送第一时间配置信息,所述第一时间配置信息被用于确定第一时间窗口,所述第一空间配置信息在所述第一时间窗口之内有效。
根据本申请的一个方面,上述方法的特征在于,所述第一空间配置信息和第一信道感知操作的空间参数有关,所述第一信道感知操作被用于确定是否能在第一子频带上发送无线信号,所述第二信令所占用的频域资源属于所述第一子频带。
根据本申请的一个方面,上述方法的特征在于,所述第二节点不在所述第一时间窗口内发送所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号。
根据本申请的一个方面,上述方法的特征在于,所述第一空间配置信息被用于确定所述第一信息块的发送参数。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信令;
第二接收机,接收第二信令;
第一发射机,发送第一信息块;
其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信令;
第三发射机,发送第二信令;
第三接收机,接收第一信息块;
其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,本申请具备如下优势:
-在一个COT内部,UE可根据第一参考信号资源组和第二参考信号资源组判断上行传输的LBT类型。当第一无线信号的波束方向和所述COT所对应的LBT成功的波束方向具有关联关系时,UE可以将第一信道感知操作从Cat 4 LBT切换为Cat 2 LBT,减小了LBT的时间开销,提高了传输机会;
-在一个COT内部,如果上行传输被指示的新波束和所述COT所对应的LBT成功的波束方向不具有关联关系,则新波束可以被推迟到COT结束之后再启用,有利于增加在COT内部的传输机会;
-在第一无线信号的波束方向与所述COT所对应的LBT成功的波束方向不同的情况下,通过所述第一无线信号的发送指示确定第一无线信号是否可以在Cat 4 LBT成功之后被发送,有利于提高调度灵活性以及系统性能。
作为一个实施例,本申请具备如下优势:
-所述第一节点可以根据所述第二信令确定信道占用时间内的可用波束,进而根据可用波束从第一信令所通知的多个参考信号中选择需要进行测量的参考信号,使参考信号的测量和反馈能够避免定向LBT导致的不确定性;
-CSI反馈只需反映第一参考信号子集的测量结果,和反馈Q1个参考信号的测量结果的技术相比,节省了反馈开销;
-不属于所述第一参考信号子集的参考信号不进行发送,这些参考信号的时频资源可以给其它信号传输使用,提高了频谱利用率;
-所述第一节点通过所述第一空间配置信息确定所述第一信息块的发送波束,使第一信息块可以被正确的传输和接收,避免了定向LBT导致的发送波束不确定性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1A示出了本申请的一个实施例的第一节点的处理流程图;
图1B示出了本申请的一个实施例的第一节点的处理流程图;.
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5A示出了根据本申请的一个实施例的无线信号传输流程图;
图5B示出了根据本申请的一个实施例的无线信号传输流程图;
图6A示出了根据本申请的一个实施例的第一时间窗,第一信令和第二信道感知操作所分别占用的时域资源的示意图;
图6B示出了根据本申请的一个实施例的Q1个参考信号所分别关联的时频资源组和第一参考信号子集所占用的时频资源组的示意图;
图7A示出了根据本申请的一个实施例的第一无线信号占用的时域资源和第一信道感知操作占用的时域资源的示意图;
图7B示出了根据本申请的一个实施例的第一空间配置信息的示意图;
图8A示出了根据本申请的一个实施例的第一无线信号占用的时域资源和第一信道感知操作占用的时域资源的示意图;
图8B示出了根据本申请的一个实施例的第一空间配置信息的示意图;
图9A示出了根据本申请的一个实施例的第四信令占用的时间资源和第一无线信号占用的时间资源的示意图;
图9B示出了根据本申请的一个实施例的第一信道感知操作和第一时间窗口的关系的示意图;
图10A示出了根据本申请的一个实施例的一个第一候选信道感知操作的示意图;
图10B示出了根据本申请的一个实施例的第二信令,第一参考信号子集和第一信息块所分别占用的时域资源的示意图;
图11A示出了一个用于第一节点中的处理装置的结构框图;
图11B示出了根据本申请的一个实施例的第一信道感知的空间参数,参考信号的空间参数和第一信息块的发送参数之间的关系的示意图;
图12A示出了一个用于第二节点中的处理装置的结构框图;
图12B示出了一个用于第一节点中的处理装置的结构框图;
图13示出了一个用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1A
实施例1A示例了本申请的一个实施例的第一节点的处理流程图,如附图1A所示。在附图1A中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。在实施例1A中,本申请中的第一节点在步骤101A中接收第一信令和第二信令,在步骤102A中在第一子频带上执行第一信道感知操作,在步骤103A中在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号。在本实施例中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述 第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)的信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令不包括参考信号。
作为一个实施例,所述第一信令包括参考信号。
作为一个实施例,所述第一信令是小区特定的。
作为一个实施例,所述第一信令是用户组特定的。
作为一个实施例,所述第一信令是组公共(Group Common)的。
作为一个实施例,所述第一信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC IE中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括一个SIB中的一个或多个域。
作为一个实施例,所述第一信令包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第一信令包括一个PHY层信令中的一个或多个域。
作为一个实施例,所述第一信令是半静态配置的。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令在副链路(SideLink)上被传输。
作为一个实施例,所述第一信令在上行链路(UpLink)上被传输。
作为一个实施例,所述第一信令在下行链路(UpLink)上被传输。
作为一个实施例,所述第一信令在回传链路(Backhaul)上被传输。
作为一个实施例,所述第一信令通过Uu接口被传输。
作为一个实施例,所述第一信令通过PC5接口被传输。
作为一个实施例,所述第一信令是组播(Groupcast)传输的。
作为一个实施例,所述第一信令是广播(Broadcast)传输的。
作为一个实施例,所述第一信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一信令包括一个SCI中的一个或多个域。
作为一个实施例,所述第一信令包括一个SCI format中的一个或多个域。
作为一个实施例,所述第一信令包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一信令包括一个UCI中的一个或多个域。
作为一个实施例,所述第一信令包括一个UCI format中的一个或多个域。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信令包括一个DCI format中的一个或多个域。
作为一个实施例,所述第一信令包括组公共(Group Common)DCI中的一个或多个域,所述组公共DCI的定义参考3GPP TS38.212。
作为一个实施例,所述第一信令包括DCI format 2_0中的一个或多个域,所述DCI format 2_0的定义参考3GPP TS38.212。
作为一个实施例,所述第一信令在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上被发送。
作为一个实施例,所述第一信令在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上被发送。
作为一个实施例,所述第一信令在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上被发送。
作为一个实施例,所述第一信令在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上被发送。
作为一个实施例,所述第一信令在物理下行广播信道(Physical Broadcast Channel,PBCH)上被发送。
作为一个实施例,所述第一信令在物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)上被发送。
作为一个实施例,所述第一信令在物理副链路共享信道(Physical Sidelink Shared Channel,PSSCH)上被发送。
作为一个实施例,所述第一信令在授权频谱传输。
作为一个实施例,所述第一信令在非授权频谱传输。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是层1(L1)的信令。
作为一个实施例,所述第二信令是层1(L1)的控制信令。
作为一个实施例,所述第二信令不包括参考信号。
作为一个实施例,所述第二信令包括参考信号。
作为一个实施例,所述第二信令是小区特定的。
作为一个实施例,所述第二信令是用户组特定的。
作为一个实施例,所述第二信令是组公共(Group Common)的。
作为一个实施例,所述第二信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个RRC层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个RRC IE中的一个或多个域(Field)。
作为一个实施例,所述第二信令包括一个SIB中的一个或多个域。
作为一个实施例,所述第二信令包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第二信令包括一个PHY层信令中的一个或多个域。
作为一个实施例,所述第二信令是半静态配置的。
作为一个实施例,所述第二信令是动态配置的。
作为一个实施例,所述第二信令在副链路(SideLink)上被传输。
作为一个实施例,所述第二信令在上行链路(UpLink)上被传输。
作为一个实施例,所述第二信令在下行链路(UpLink)上被传输。
作为一个实施例,所述第二信令在回传链路(Backhaul)上被传输。
作为一个实施例,所述第二信令通过Uu接口被传输。
作为一个实施例,所述第二信令通过PC5接口被传输。
作为一个实施例,所述第二信令是组播(Groupcast)传输的。
作为一个实施例,所述第二信令是广播(Broadcast)传输的。
作为一个实施例,所述第二信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第二信令包括一个SCI中的一个或多个域。
作为一个实施例,所述第二信令包括一个SCI format中的一个或多个域。
作为一个实施例,所述第二信令包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第二信令包括一个UCI中的一个或多个域。
作为一个实施例,所述第二信令包括一个UCI format中的一个或多个域。
作为一个实施例,所述第二信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第二信令包括一个DCI format中的一个或多个域。
作为一个实施例,所述第二信令在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上被 发送。
作为一个实施例,所述第二信令在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上被发送。
作为一个实施例,所述第二信令在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上被发送。
作为一个实施例,所述第二信令在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上被发送。
作为一个实施例,所述第二信令在物理下行广播信道(Physical Broadcast Channel,PBCH)上被发送。
作为一个实施例,所述第二信令在物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)上被发送。
作为一个实施例,所述第二信令在物理副链路共享信道(Physical Sidelink Shared Channel,PSSCH)上被发送。
作为一个实施例,所述第二信令在授权频谱传输。
作为一个实施例,所述第二信令在非授权频谱传输。
作为一个实施例,所述第二信令包括PUSCH资源指示信息。
作为一个实施例,所述第二信令包括PUCCH资源指示信息。
作为一个实施例,所述第二信令包括SRS(探测参考信号,Sounding Reference Signal)资源指示信息。
作为一个实施例,所述第二信令包括PUSCH的动态调度信息。
作为一个实施例,所述第二信令包括PUSCH的半静态调度信息。
作为一个实施例,所述第二信令包括PUSCH的被配置许可(Configured Grant)信息。
作为一个实施例,所述第二信令包括PUCCH的周期指示。
作为一个实施例,所述第二信令包括SRS的周期指示。
作为一个实施例,所述第二信令指示所述第一时频资源组。
作为一个实施例,所述第一无线信号包括基带信号。
作为一个实施例,所述第一无线信号包括无线信号。
作为一个实施例,所述第一无线信号在副链路(SideLink)上被传输。
作为一个实施例,所述第一无线信号在上行链路(UpLink)上被传输。
作为一个实施例,所述第一无线信号在下行链路(UpLink)上被传输。
作为一个实施例,所述第一无线信号在回传链路(Backhaul)上被传输。
作为一个实施例,所述第一无线信号通过Uu接口被传输。
作为一个实施例,所述第一无线信号通过PC5接口被传输。
作为一个实施例,所述第一无线信号是单播(Unicast)传输的。
作为一个实施例,所述第一无线信号是组播(Groupcast)传输的。
作为一个实施例,所述第一无线信号是广播(Broadcast)传输的。
作为一个实施例,所述第一无线信号携带一个TB(Transport Block,传输块)。
作为一个实施例,所述第一无线信号携带一个CB(Code Block,码块)。
作为一个实施例,所述第一无线信号携带一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一无线信号包括控制信息。
作为一个实施例,所述第一无线信号包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一无线信号包括一个SCI中的一个或多个域。
作为一个实施例,所述第一无线信号包括一个SCI format中的一个或多个域。
作为一个实施例,所述第一无线信号包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一无线信号包括一个UCI中的一个或多个域。
作为一个实施例,所述第一无线信号包括一个UCI format中的一个或多个域。
作为一个实施例,所述第一无线信号包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一无线信号包括一个DCI中的一个或多个域。
作为一个实施例,所述第一无线信号包括一个DCI format中的一个或多个域。
作为一个实施例,所述第一无线信号包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
作为一个实施例,所述第一无线信号包括物理上行控制信道(Physical Uplink Control Channel,PUCCH)。
作为一个实施例,所述第一无线信号包括物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
作为一个实施例,所述第一无线信号包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
作为一个实施例,所述第一无线信号包括物理下行广播信道(Physical Broadcast Channel,PBCH)。
作为一个实施例,所述第一无线信号包括物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)。
作为一个实施例,所述第一无线信号包括物理副链路共享信道(Physical Sidelink Shared Channel,PSSCH)。
作为一个实施例,所述第一无线信号包括物理副链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)。
作为一个实施例,所述第一无线信号包括参考信号。
作为一个实施例,所述第一无线信号在授权频谱传输。
作为一个实施例,所述第一无线信号在非授权频谱传输。
作为一个实施例,所述第一无线信号包括参考信号。
作为一个实施例,所述第一无线信号包括上行参考信号。
作为一个实施例,所述第一无线信号包括副链路参考信号。
作为一个实施例,所述第一无线信号包括下行参考信号。
作为一个实施例,所述第一无线信号包括SRS。
作为一个实施例,所述第一无线信号包括被配置许可(Configured Grant)的上行信号。
作为一个实施例,所述第一无线信号包括动态调度的上行信号。
作为一个实施例,所述第一无线信号包括半静态调度的上行信号。
作为一个实施例,所述第一无线信号包括被配置许可(Configured Grant)的PUSCH。
作为一个实施例,所述第一无线信号包括动态调度PUSCH。
作为一个实施例,所述第一无线信号包括半静态调度的PUSCH。
作为一个实施例,所述第一信令指示所述第一参考信号资源组。
作为一个实施例,所述第一信令包括第一信息域,所述第一信息域指示所述第一参考信号资源组。
作为一个实施例,传输所述第一信令所使用的空间参数被用于确定所述第一参考信号资源组。
作为一个实施例,传输所述第一信令所使用的TCI状态被用于确定所述第一参考信号资源组。
作为一个实施例,传输所述第一信令所使用的QCL参数被用于确定所述第一参考信号资源组。
作为一个实施例,所述第一信令和所述第一参考信号资源组具有空间关联关系。
作为一个实施例,所述第一信令通过PDCCH发送,所述第一参考信号资源组是被用于发送所述第一信令的PDCCH的TCI状态所关联的一个或多个参考信号资源。
作为一个实施例,所述第一信令通过PDCCH发送,所述第一参考信号资源组是被用于发送所述第一信令的PDCCH的QCL参数所关联的一个或多个参考信号资源。
作为一个实施例,所述第一参考信号资源组包括一个参考信号资源。
作为一个实施例,所述第一参考信号资源组包括多个参考信号资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括下行参考信号资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括上行参考信号资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括副链路参考信号资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括SS(Synchronization Signal, 同步信号)。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括SRS资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括SRS资源组(SRS resource set)。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源包括DM-RS(DeModulation-Reference Signal,解调参考信号)。
作为一个实施例,所述第一参考信号资源组被用于确定所述第二信道感知操作中被判断为信道空闲的波束方向。
作为一个实施例,所述第一参考信号资源组被用于确定所述第一时间窗内的可用空间参数集合。
作为一个实施例,所述第一参考信号资源组被用于确定所述第一时间窗内的下行传输的可用空间参数集合。
作为一个实施例,所述第一参考信号资源组被用于确定所述第一时间窗内的上行传输的可用空间参数集合。
作为上述实施例的一个子实施例,所述可用空间参数包括和一个参考信号资源的空间关联关系。
作为上述实施例的一个子实施例,所述可用空间参数集合包括至少一个空间参数,所述第一时间窗内的所有下行传输的空间参数均属于所述空用空间参数集合。
作为上述实施例的一个子实施例,所述可用空间参数集合包括至少一个空间参数,如果第二无线信号在所述第一时间窗内被传输,则所述第二无线信号的空间参数属于所述空用空间参数集合。
作为上述实施例的一个子实施例,所述第二无线信号包括下行信号。
作为上述实施例的一个子实施例,所述第二无线信号包括上行信号。
作为上述实施例的一个子实施例,所述空间参数包括和一个参考信号资源的空间关联关系。
作为一个实施例,所述第二参考信号资源组包括一个参考信号资源。
作为一个实施例,所述第二参考信号资源组包括多个参考信号资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括下行参考信号资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括上行参考信号资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括副链路参考信号资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括SRS资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括SRS资源组(SRS resource set)。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源包括DM-RS(DeModulation-Reference Signal,解调参考信号)。
作为一个实施例,本申请中的所述空间参数包括和一个参考信号资源的空间关联关系。
作为一个实施例,本申请中的所述空间参数包括QCL参数。
作为一个实施例,本申请中的所述空间参数包括空间关系(Spatial Relation)。
作为一个实施例,本申请中的所述空间参数包括空间发送滤波器。
作为一个实施例,本申请中的所述空间参数包括空间接收滤波器。
作为一个实施例,所述第一无线信号与所述第二参考信号资源组具有空间关联关系。
作为一个实施例,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有空间关联关系。
作为一个实施例,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有空间关联关系包括,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有QCL(Quasi-CoLocated,准共址)关联关系。
作为一个实施例,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有空间关联关系包括,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有空间关系(spatial relation),所述空间关系的定义参考3gpp TS38.213。
作为一个实施例,一个信号和另一个信号具有空间关系,包括,所述一个信号和另一个信号可以用同一个空间滤波器进行发送。
作为一个实施例,一个信号和另一个信号具有空间关系,包括,所述一个信号和另一个信号可以用同一个空间滤波器进行接收。
作为一个实施例,一个信号和另一个信号具有空间关系,包括,用于接收所述一个信号的空间滤波器也可以用来进行所述另一个信号的发送。
作为一个实施例,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有空间关联关系包括,所述第一无线信号所包括的参考信号与所述第二参考信号资源组中的任一参考信号资源具有QCL关联关系。
作为一个实施例,所述第一无线信号与所述第二参考信号资源组中的任一参考信号资源具有空间关联关系包括,所述第一无线信号所包括的参考信号与所述第二参考信号资源组中的任一参考信号资源具有空间关系。
作为一个实施例,QCL的具体定义参见3GPP TS38.214中的5.1.5章节。
作为一个实施例,一个信号和另一个信号的QCL关联关系是指:能够从所述一个信号所对应的天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述另一个信号所对应的天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,一个无线信号的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filter),空域接收滤波(spatial domain reception filter)}中的一种或多种。
作为一个实施例,一个信号和另一个信号的QCL关联关系是指:所述一个信号和所述另一个信号至少有一个相同的QCL参数(QCL parameter)。
作为一个实施例,QCL参数包括:{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或多种。
作为一个实施例,一个信号和另一个信号的QCL关联关系是指:能够从所述一个信号的至少一个QCL参数推断出所述另一个信号的至少一个QCL参数。
作为一个实施例,一个信号和另一个信号之间的QCL类型(QCL type)是QCL-TypeD是指:能够从所述一个信号所对应的天线端口上发送的无线信号的空间接收参数(Spatial Rx parameters)推断出所述另一个信号上所对应的天线端口上发送的无线信号的空间接收参数(Spatial Rx parameters)。
作为一个实施例,一个信号和另一个信号之间的QCL类型(QCL type)是QCL-TypeD是指:能用 相同的空间接收参数(Spatial Rx parameters)接收所述一个信号和所述另一个信号。
作为一个实施例,所述在第一子频带上执行第一信道感知操作包括在所述第一子频带上执行能量检测。
作为一个实施例,所述第一信道感知操作被用于确定所述第一无线信号是否被发送。
作为一个实施例,所述第一信道感知操作被用于确定所述第一子频带是否空闲。
作为一个实施例,所述第一信道感知操作被用于确定所述第一子频带是否空闲,如果所述第一子频带空闲,则所述第一无线信号被发送;如果所述第一子频带非空闲,则所述第一无线信号不被发送。
作为一个实施例,所述第一候选类型集合包括{第一类型的LBT(Category 1 LBT),第二类型的LBT(Category 2 LBT),第三类型的LBT(Category 3 LBT),第四类型的LBT(Category 4 LBT)}中的至少一个,所述Category 1 LBT、Category 2 LBT、Category 3 LBT和Category 4 LBT的定义参考3GPP TR38.889。
作为一个实施例,所述第一候选类型集合包括{类型1上行信道接入过程(Type 1 UL channel access procedure),类型2上行信道接入过程(Type2 UL channel access procedure),类型2A上行信道接入过程(Type 2A UL channel access procedure),类型2B上行信道接入过程(Type 2B UL channel access procedure),类型2C上行信道接入过程(Type 2C UL channel access procedure)}中的至少一个,所述类型1上行信道接入过程,类型2上行信道接入过程,类型2A上行信道接入过程,类型2B上行信道接入过程和类型2C上行信道接入过程的定义参考3GPP TS37.213。
作为一个实施例,所述第一候选类型集合包括{类型1下行信道接入过程(Type 1 DL channel access procedure),类型2下行信道接入过程(Type2 DL channel access procedure),类型2A下行信道接入过程(Type 2A DL channel access procedure),类型2B下行信道接入过程(Type 2B DL channel access procedure),类型2C下行信道接入过程(Type 2C DL channel access procedure)}中的至少一个,所述类型1下行信道接入过程,类型2下行信道接入过程,类型2A下行信道接入过程,类型2B下行信道接入过程和类型2C下行信道接入过程的定义参考3GPP TS37.213。
作为一个实施例,所述第二类型包括固定时间长度的LBT。
作为一个实施例,所述第一类型包括非固定时间长度的LBT。
作为一个实施例,所述第二类型包括第二类型的LBT(Cat 2 LBT)。
作为一个实施例,所述第二类型包括第一类型的LBT(Cat 1 LBT)。
作为一个实施例,所述第一类型包括第四类型的LBT(Cat 4 LBT)。
作为一个实施例,所述第一时间窗包括一段连续的时间资源。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述第一时间窗包括正整数个连续的时隙。
作为一个实施例,所述第一时间窗包括正整数个连续的子帧。
作为一个实施例,所述第一时间窗包括正整数个连续的帧。
作为一个实施例,所述第一时间窗由本申请中的第二节点确定。
作为一个实施例,所述第一时间窗由本申请中的第二节点在所述第二信道感知操作之后确定。
作为一个实施例,所述在第一子频带上执行第二信道感知操作包括在第一子频带上执行能量检测。
作为一个实施例,所述第二信道感知操作的类型包括{第一类型的LBT(Category 1 LBT),第二类型的LBT(Category 2 LBT),第三类型的LBT(Category 3 LBT),第四类型的LBT(Category 4 LBT)}中的至少一个。
作为一个实施例,所述第一时间窗的时间长度和信道接入优先级有关。
作为一个实施例,所述第一时频资源组在频域上包括正整数个资源单元(Resource Element,RE)。
作为一个实施例,所述第一时频资源组在频域上包括正整数个资源块(Resource Block,RB)。
作为一个实施例,所述第一时频资源组在频域上包括正整数个资源块集合(Resource Block Group,RBG)。
作为一个实施例,所述第一时频资源组在频域上包括正整数个控制信道单元(Control Channel Element,CCE)。
作为一个实施例,所述第一时频资源组在时域上包括正整数个多载波符号。
作为一个实施例,所述第一时频资源组在时域上包括正整数个时隙。
作为一个实施例,所述第一时频资源组在时域上包括正整数个子帧。
实施例1B
实施例1B示例了本申请的一个实施例的第一节点的处理流程图,如附图1B所示。在附图1B中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。在实施例1B中,本申请中的第一节点在步骤101B中接收第一信令,在步骤102B中接收第二信令,在步骤103B中发送第一信息块。在本实施例中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)的信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令在副链路(SideLink)上被传输。
作为一个实施例,所述第一信令通过PC5接口被传输。
作为一个实施例,所述第一信令在下行链路(DownLink)上被传输。
作为一个实施例,所述第一信令通过Uu接口被传输。
作为一个实施例,所述第一信令是单播(Unicast)传输的。
作为一个实施例,所述第一信令是组播(Groupcast)传输的。
作为一个实施例,所述第一信令是广播(Boradcast)传输的。
作为一个实施例,所述第一信令是小区特定的。
作为一个实施例,所述第一信令是用户设备特定的。
作为一个实施例,所述第一信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC(Radio Resource Contorl,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC IE(Information Element,信息单元)中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括一个SIB(System Informant Block,系统信息块)中的一个或多个域。
作为一个实施例,所述第一信令包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个MAC CE(Control Element,控制单元)中的一个或多个域。
作为一个实施例,所述第一信令包括一个PHY(Physical,物理层)层信令中的一个或多个域。
作为一个实施例,所述第一信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一信令包括一个SCI中的一个或多个域。
作为一个实施例,所述第一信令包括一个SCI format中的一个或多个域。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第一信令是半静态配置的。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上被发送。
作为一个实施例,所述第一信令在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上被发送。
作为一个实施例,所述第一信令在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被发送。
作为一个实施例,所述第一信令在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被发送。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是层1(L1)的信令。
作为一个实施例,所述第二信令是层1(L1)的控制信令。
作为一个实施例,所述第二信令在副链路(SideLink)上被传输。
作为一个实施例,所述第二信令通过PC5接口被传输。
作为一个实施例,所述第二信令在下行链路(DownLink)上被传输。
作为一个实施例,所述第二信令通过Uu接口被传输。
作为一个实施例,所述第二信令是单播(Unicast)传输的。
作为一个实施例,所述第二信令是组播(Groupcast)传输的。
作为一个实施例,所述第二信令是广播(Boradcast)传输的。
作为一个实施例,所述第二信令是小区特定的。
作为一个实施例,所述第二信令是用户设备特定的。
作为一个实施例,所述第二信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个RRC(Radio Resource Contorl,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个RRC IE(Information Element,信息单元)中的一个或多个域(Field)。
作为一个实施例,所述第二信令包括一个SIB(System Informant Block,系统信息块)中的一个或多个域。
作为一个实施例,所述第二信令包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个MAC CE(Control Element,控制单元)中的一个或多个域。
作为一个实施例,所述第二信令包括一个PHY(Physical,物理层)层信令中的一个或多个域。
作为一个实施例,所述第二信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第二信令包括一个SCI中的一个或多个域。
作为一个实施例,所述第二信令包括一个SCI format中的一个或多个域。
作为一个实施例,所述第二信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二信令包括一个DCI中的一个或多个域。
作为一个实施例,所述第二信令是半静态配置的。
作为一个实施例,所述第二信令是动态配置的。
作为一个实施例,所述第二信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上被发送。
作为一个实施例,所述第二信令在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上被发送。
作为一个实施例,所述第二信令在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被发送。
作为一个实施例,所述第二信令在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被发送。
作为一个实施例,所述第二信令通过组公共PDCCH(Group Common PDCCH)被发送。
作为一个实施例,所述第二信令通过NR DCI格式2_0传输。
作为一个实施例,所述第二信令包括CSI请求(CSI request)。
作为一个实施例,所述第一信息块是动态信令。
作为一个实施例,所述第一信息块是层1(L1)的信令。
作为一个实施例,所述第一信息块是层1(L1)的控制信令。
作为一个实施例,所述第一信息块在副链路(SideLink)上被传输。
作为一个实施例,所述第一信息块通过PC5接口被传输。
作为一个实施例,所述第一信息块在上行链路(DownLink)上被传输。
作为一个实施例,所述第一信息块通过Uu接口被传输。
作为一个实施例,所述第一信息块包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信息块包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第一信息块包括一个MAC CE(Control Element,控制单元)中的一个或多个域。
作为一个实施例,所述第一信息块包括一个PHY(Physical,物理层)层信令中的一个或多个域。
作为一个实施例,所述第一信息块包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一信息块包括一个SCI中的一个或多个域。
作为一个实施例,所述第一信息块包括一个SCI format中的一个或多个域。
作为一个实施例,所述第一信息块包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一信息块包括一个UCI中的一个或多个域。
作为一个实施例,所述第一信息块所占用的时频资源是半静态配置的。
作为一个实施例,所述第一信息块所占用的时频资源是动态配置的。
作为一个实施例,所述第一信息块在PUCCH(Physical Uplink Control Channel,物理上行控制信道)上被发送。
作为一个实施例,所述第一信息块在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上被发送。
作为一个实施例,所述第一信息块在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被发送。
作为一个实施例,所述第一信息块在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被发送。
作为一个实施例,所述第一配置信息包括CSI资源配置;
作为一个实施例,所述第一配置信息包括CSI测量配置;
作为一个实施例,所述第一配置信息包括CSI报告配置;
作为一个实施例,所述第一配置信息被用于确定所述Q1个参考信号中的任一参考信号所占用的时频资源。
作为一个实施例,所述第一配置信息被用于确定所述Q1个参考信号中的任一参考信号的周期和偏移。
作为一个实施例,所述第一配置信息被用于确定所述Q1个参考信号中的任一参考信号的频域密度。
作为一个实施例,所述第一配置信息被用于确定所述Q1个参考信号中的任一参考信号的端口数量和端口编号。
作为一个实施例,所述第一配置信息被用于确定CSI-RS资源的编号。
作为一个实施例,所述第一配置信息被用于确定SSB的编号。
作为一个实施例,所述Q1个参考信号包括下行参考信号。
作为一个实施例,所述Q1个参考信号包括副链路参考信号。
作为一个实施例,所述Q1个参考信号包括Q1个CSI-RS。
作为一个实施例,所述Q1个参考信号包括Q1个CSI-RS资源。
作为一个实施例,所述Q1个参考信号包括Q1个SSB。
作为一个实施例,所述Q1个参考信号包括N1个CSI-RS资源和N2个SSB,其中N1和N2为正整数,且N1+N2=Q1。
作为一个实施例,所述Q1个参考信号中的任一参考信号包括正整数个天线端口。
作为一个实施例,所述空间参数包括TCI(Transmission Configuration Indicator,传输配置指示)状态。
作为一个实施例,所述TCI状态被用于确定QCL参数。
作为一个实施例,所述空间参数包括QCL(Quasi-CoLocation,准共址)参数。
作为一个实施例,所述空间参数包括发送波束参数。
作为一个实施例,所述空间参数包括接收波束参数。
作为一个实施例,所述空间参数包括QCL类型。
作为一个实施例,所述空间参数包括的QCL类型为QCL-typeD。
作为一个实施例,所述空间参数包括与参考信号的QCL关联关系。
作为一个实施例,所述空间参数包括与CSI-RS资源的QCL关联关系。
作为一个实施例,所述空间参数包括与SSB的QCL关联关系。
作为一个实施例,所述Q1个参考信号所分别关联的Q1个空间参数被用于确定所述Q1个参考信号的接收波束。
作为一个实施例,所述Q1个参考信号所分别关联的Q1个空间参数被用于确定所述Q1个参考信号的空间接收参数。
作为一个实施例,所述Q1个参考信号所分别关联的Q1个空间参数被用于确定所述Q1个参考信号的发送波束。
作为一个实施例,所述Q1个参考信号所分别关联的Q1个空间参数被用于确定所述Q1个参考信号的空间发送参数。
作为一个实施例,所述Q1个参考信号所分别关联的Q1个空间参数被用于确定所述Q1个参考信号中的任一所述参考信号和另一个参考信号的QCL关联关系。
作为一个实施例,所述Q1个参考信号是Q1个CSI-RS资源,所述Q1个参考信号所分别关联的Q1个空间参数被用于确定所述Q1个CSI-RS资源中的任一所述CSI-RS资源和另一个参考信号的QCL关联关系。
作为上述实施例的一个子实施例,所述另一个参考信号是SSB。
作为上述实施例的一个子实施例,所述另一个参考信号是CSI-RS资源。
作为一个实施例,QCL的具体定义参见3GPP TS38.214中的5.1.5章节。
作为一个实施例,一个参考信号和另一个参考信号的QCL关联关系是指:能够从所述一个参考信号所对应的天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述另一个参考信号所对应的天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,一个无线信号的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filter),空域接收滤波(spatial domain reception filter)}中的一种或多种。
作为一个实施例,一个参考信号和另一个参考信号的QCL关联关系是指:所述一个参考信号和所述另一个参考信号至少有一个相同的QCL参数(QCL parameter)。
作为一个实施例,QCL参数包括:{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或多种。
作为一个实施例,一个参考信号和另一个参考信号的QCL关联关系是指:能够从所述一个参考信号的至少一个QCL参数推断出所述另一个参考信号的至少一个QCL参数。
作为一个实施例,一个参考信号和另一个参考信号之间的QCL类型(QCL type)是QCL-TypeD是指:能够从所述一个参考信号所对应的天线端口上发送的无线信号的空间接收参数(Spatial Rx parameters)推断出所述另一个参考信号上所对应的天线端口上发送的无线信号的空间接收参数(Spatial Rx parameters)。
作为一个实施例,一个参考信号和另一个参考信号之间的QCL类型(QCL type)是QCL-TypeD是指:能用相同的空间接收参数(Spatial Rx parameters)接收所述一个参考信号和所述另一个参考信号。
作为一个实施例,针对所述第一参考信号子集中的参考信号的测量结果被用于确定第一测量值,所述第一测量值被用于确定所述第一信息块。
作为上述实施例的一个子实施例,所述第一测量值包括RI(Rank Indicator,秩指示),CRI(Channel-state information reference signals Resource Indicator,信道状态信息参考信号资源指示),RSRP(Reference Signal Received Power,参考信号接收功率),RSSI(Received Signal Strength Indication,接收信号强度指示),SSB索引,RSRQ(Reference Signal Recei Quality,参考信号接收质量),PMI(Precoding Matrix Indicator)和CQI(Channel Quality Indicator)中的一种或多种。
作为上述实施例的一个子实施例,所述第一上报信息包括所述第一测量值的量化值。
作为一个实施例,所述第一参考信号子集中的至少一个第一类参考信号被用于信道测量(channel measurement)。
作为一个实施例,所述第一参考信号子集中的至少一个第一类参考信号被用于干扰测量(interference measurement)。
作为一个实施例,所述第一参考信号子集中的至少一个第一类参考信号被用于波束测量。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System,5G系统)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回传)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的所述第一节点包括所述gNB203。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB204。
作为一个实施例,本申请中的所述用户设备包括所述UE201。
作为一个实施例,本申请中的所述用户设备包括所述UE241。
作为一个实施例,本申请中的所述基站设备包括所述gNB203。
作为一个实施例,本申请中的所述基站设备包括所述gNB204。
作为一个实施例,所述UE201支持副链路传输。
作为一个实施例,所述UE201支持PC5接口。
作为一个实施例,所述UE201支持Uu接口。
作为一个实施例,所述UE241支持副链路传输。
作为一个实施例,所述UE241支持PC5接口。
作为一个实施例,所述gNB203支持Uu接口。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点对第二节点的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY351。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC352。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息块生成于所述PHY351。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC352。
作为一个实施例,本申请中的所述第一信息块生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC302。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从 所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第一节点包括所述第一通信设备410,本申请中的所述第二节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第二通信设备450。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令和第二信令;在第一子频带上执行第一信道感知操作;在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号;其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令和第二信令;在第一子频带上执行第一信道感知操作;在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在 所述第一子频带的第一时频资源组中发送第一无线信号;其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令和第二信令;在第一子频带上执行第二信道感知操作;在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令和第二信令;在第一子频带上执行第二信道感知操作;在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中接收所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中接收所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中接收所述第一无线信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中发送所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中发送所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中发送所述第一无线信号。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令;接收第二信令;发送第一信息块;其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所 述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;接收第二信令;发送第一信息块;其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令;发送第二信令;接收第一信息块;其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;发送第二信令;接收第一信息块;其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中接收所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中接收所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中发送所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中发送所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中发送所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中接收所述第一信息块。
实施例5A
实施例5A示例了根据本申请的一个实施例的无线信号传输流程图,如附图5A所示。在附图5A中,第一节点U1A和第二节点U2A之间是通过空中接口进行通信。在附图5A中,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。
对于第一节点U1A,在步骤S11A中接收第三信令,在步骤S12A中接收第二信令,在步骤S13A中 发送第四信令,在步骤S14A中接收第一信令,在步骤S15A接收第五信令,在步骤S16A中在第一子频带执行第一信道感知操作,在步骤S17A中发送第一无线信号。对于第二节点U2A,在步骤S21A中发送第三信令,在步骤S22A中发送第二信令,在步骤S23A中接收第四信令,在步骤S24A中在第一子频带执行第二信道感知操作,在步骤S25A中发送第一信令,在步骤S26A中发送第五信令,在步骤S27A中在所述第一子频带的第一时频资源组上执行第一检测操作。其中,方框F51A内的步骤S11A和S21A是可选的,方框F52A内的步骤S13A和步骤S23A是可选的,方框F53A内的步骤S15A和S26A是可选的,方框F54A内的步骤S17A是可选的。
在实施例5A中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。所述第三信令指示第三参考信号资源组。所述第四信令被用于确定所述第二信令是否被正确接收。所述第五信令包括所述第一无线信号的发送指示。
作为一个实施例,所述第二节点U2A和所述第一节点U1A之间的空中接口包括PC5接口。
作为一个实施例,所述第二节点U2A和所述第一节点U1A之间的空中接口包括副链路。
作为一个实施例,所述第二节点U2A和所述第一节点U1A之间的空中接口包括Uu接口。
作为一个实施例,所述第二节点U2A和所述第一节点U1A之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2A和所述第一节点U1A之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2A和所述第一节点U1A之间的空中接口包括基站设备与用户设备之间的无线接口。
实施例5B
实施例5B示例了根据本申请的一个实施例的无线信号传输流程图,如附图5B所示。在附图5B中,第一节点U1B和第二节点U2B之间是通过空中接口进行通信。在附图5B中,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。
对于第一节点U1B,在步骤S11B中接收第一信号;在步骤S12B中接收第二信令;在步骤S13B中接收第一时间配置信息;在步骤S14B中发送第一信息块。对于第二节点U2B,在步骤S21B中发送第一信令;在步骤S22B中发送第二信令;在步骤S23B中发送第一时间配置信息;在步骤S24B中接收第一信息块。其中,虚线框F51B内所包含的步骤S23B和步骤S13B是可选的。
在实施例5B中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。所述第一时间配置信息被用于确定第一时间窗口,所述第一空间配置信息在所述第一时间窗口之内有效。
作为一个实施例,所述第二节点U2B和所述第一节点U1B之间的空中接口包括PC5接口。
作为一个实施例,所述第二节点U2B和所述第一节点U1B之间的空中接口包括副链路。
作为一个实施例,所述第二节点U2B和所述第一节点U1B之间的空中接口包括Uu接口。
作为一个实施例,所述第二节点U2B和所述第一节点U1B之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2B和所述第一节点U1B之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2B和所述第一节点U1B之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,本申请中的所述第一节点是一个终端。
作为一个实施例,本申请中的所述第一节点是一辆汽车。
作为一个实施例,本申请中的所述第一节点是一个交通工具。
作为一个实施例,本申请中的所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,本申请中的所述第一节点是一个基站。
作为一个实施例,本申请中的所述第二节点是一个终端。
作为一个实施例,本申请中的所述第二节点是一辆汽车。
作为一个实施例,本申请中的所述第二节点是一个交通工具。
作为一个实施例,本申请中的所述第二节点是一个RSU。
作为一个实施例,本申请中的所述第二节点是一个基站。
实施例6A
实施例6A示例了根据本申请的一个实施例的第一时间窗,第一信令和第二信道感知操作所分别占用的时域资源的示意图,如附图6A所示。在附图6A中,所述第一信令的时域资源位于所述第一时间窗之内。所述第一时间窗的开始时间位于所述第二信道感知操作结束之后。
作为一个实施例,所述第一时间窗是一个COT。
作为一个实施例,所述第一时间窗是一个基站获取的COT。
作为一个实施例,所述第一时间窗包括一个COT的全部时间。
作为一个实施例,所述第一时间窗包括是一个COT的部分时间。
作为一个实施例,所述第一信令所占用的时间资源属于第一时间窗。
作为一个实施例,所述第一信令所占用的时间资源位于所述第一时间窗之前。
作为一个实施例,所述第一时间窗包括所述第一信令所占用的时域资源之后的一段连续的时间。
作为一个实施例,所述第一信令所占用的时间资源属于一个COT,所述第一时间窗包括所述第一信令所占用的时域资源之后的COT的剩余时间。
作为一个实施例,所述第一信令指示所述第一时间窗的时间长度。
作为一个实施例,所述第一信令指示所述第一时间窗的结束时间。
作为一个实施例,所述第一信令指示所述COT内的频域资源。
作为一个实施例,所述在第一子频带上执行第二信道感知操作包括在所述第一子频带上执行能量检测。
作为一个实施例,所述第二信道感知操作被用于确定所述第二节点是否在所述第一子频带发送无线信号。
作为一个实施例,所述第二信道感知操作被用于确定所述第一子频带是否空闲。
作为一个实施例,所述第二信道感知操作被用于确定所述第一时间窗的长度。
作为一个实施例,所述第二信道感知操作被用于确定所述第一时间窗的起始时间。
作为一个实施例,所述第二信道感知操作被用于确定所述第一子频带是否空闲,如果所述第一子频带空闲,则所述第二节点在所述第一子频带发送无线信号;如果所述第一子频带非空闲,则所述第二节点放弃在所述第一子频带发送无线信号。
作为一个实施例,所述第二信道感知操作的类型是Cat 4 LBT。
实施例6B
实施例6B示例了根据本申请的一个实施例的Q1个参考信号所分别关联的时频资源组和第一参考信号子集所占用的时频资源组的示意图,如附图6B所述。在附图6B中,每一个虚线框表示一个参考信号所关联的时频资源组,网格填充的虚线框表示第一参考信号子集所包含的参考信号所占用的时频资源组。附图6B中虚线框的大小和位置仅作为示意,参考信号所占用的时间和频率资源不受虚线框的大小和位置的限制。
作为一个实施例,所述Q1个参考信号中的任一参考信号所关联的时频资源组由所述第一配置信息确定。
作为一个实施例,所述Q1个参考信号中的任一参考信号所关联的时频资源组在频域上包括正整数个RE(Resource Element,资源单元)。
作为一个实施例,所述Q1个参考信号中的任一参考信号所关联的时频资源组在频域上包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述Q1个参考信号中的任一参考信号所关联的时频资源组在时域上包括正整数个多载波符号。
作为一个实施例,所述Q1个参考信号中的任一参考信号所关联的时频资源组被用于发送所述Q1个参考信号中的任一所述参考信号。
作为一个实施例,所述Q1个参考信号中的任一参考信号所关联的时频资源组在时域上周期出现。
作为一个实施例,当所述Q1个参考信号中的任一参考信号被发送时,所述Q1个参考信号中的任一参考信号占用所述Q1个参考信号中的任一参考信号所关联的时频资源组。
作为一个实施例,所述Q1个参考信号中的任一所述参考信号被半静态激活。
作为一个实施例,所述Q1个参考信号中的任一所述参考信号被半静态去激活。
作为一个实施例,所述Q1个参考信号中的任一所述参考信号由物理层信令动态触发。
作为一个实施例,所述第一信令是物理层信令,所述第一信令包括CSI请求,针对所述Q1个参考信号中的任一所述参考信号的测量行为由所述CSI请求触发。
作为一个实施例,所述第一信令是MAC层信令,所述第一信令包括CSI-RS激活信息,针对所述Q1个参考信号中的任一所述参考信号的测量行为由所述CSI-RS激活信息触发。
作为一个实施例,所述第一信令是RRC层信令,所述第一信令包括CSI-RS配置信息,针对所述Q1个参考信号中的任一所述参考信号的测量行为由所述CSI-RS配置信息指示。
作为一个实施例,所述Q1个参考信号分别关联Q1个时频资源组。
作为一个实施例,所述第一参考信号子集包括N3个参考信号,所述N3为小于Q1的正整数。
作为一个实施例,所述第一参考信号子集包括的N3个参考信号分别占用所述Q1个时频资源组中时域连续的N3个时频资源组。
作为一个实施例,所述第一参考信号子集包括的N3个参考信号分别占用所述Q1个时频资源组中时域不连续的N3个时频资源组。
作为一个实施例,所述Q1个时频资源组按时间顺序进行编号,所述第一参考信号子集包括的N3个参考信号分别占用所述Q1个时频资源组中的前N3个时频资源组。
作为一个实施例,所述Q1个时频资源组按时间顺序进行编号,所述第一参考信号子集包括的N3个参考信号分别占用所述Q1个时频资源组中的后N3个时频资源组。
作为一个实施例,当参考信号和其它物理信道复用时,由于参考信号和其它物理信道需要能够被用同一个波束发送,上述方法中将第一参考信号子集中所包括的N3个参考信号在时域上以紧凑的时间间隔发送,可以减轻对上述复用场景下的发送波束的约束。
作为一个实施例,所述第一节点假设所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号在所述第一时间窗口内不被发送。
作为一个实施例,所述句子“所述第一节点假设所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号在所述第一时间窗口内不被发送”包括,当其它无线信号所占用的时频资源和所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号所关联的时频资源组之间存在重叠的时频资源时,所述第一节点假设所述重叠的时频资源被用于传输所述其它无线信号。
作为上述实施例的一个子实施例,所述其它无线信号包括PDSCH。
作为上述实施例的一个子实施例,所述其它无线信号包括PUCCH。
作为上述实施例的一个子实施例,所述其它无线信号包括PUSCH。
作为上述实施例的一个子实施例,所述其它无线信号包括DMRS。
实施例7A
实施例7A示例了根据本申请的一个实施例的第一无线信号占用的时域资源和第一信道感知操作占用 的时域资源的示意图,如附图7A所示。在附图7A中,第一无线信号占用的时域资源在所述第一时间窗之内,第一信道感知操作在所述第一无线信号占用的时域资源之前进行。其中,所述第一无线信号是否被发送是可选的。当所述第一信道感知操作的结果是所述第一子频带是空闲的时,所述第一无线信号被发送;当所述第一信道感知操作的结果是所述第一子频带是非空闲的时,所述第一无线信号不被发送。在附图7A中,当所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型被确定为第二类型;并且,如果在接收所述第一信令之前,所述第一信道感知操作的所述类型被确定为第一类型;所述第一信道感知操作的所述类型从所述第一类型切换为所述第二类型。在附图7A中,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型。
作为一个实施例,所述第二信令指示多个时频资源组,所述第一时频资源组是所述多个时频资源组中的之一。
作为一个实施例,所述第二信令指示多个第一类信号分别占用的多个时频资源组,所述第一无线信号是所述多个第一类信号的之一,所述第一时频资源组是所述多个时频资源组中的之一。
作为一个实施例,所述第一类信号包括免授权调度PUSCH。
作为一个实施例,所述第一类信号包括半静态调度PUSCH。
作为一个实施例,所述第一类信号包括被配置许可(configured grant)PUSCH。
作为一个实施例,所述第一类信号包括周期性PUCCH。
作为一个实施例,所述第一类信号包括周期性SRS。
作为一个实施例,所述第一类信号包括半静态SRS。
作为一个实施例,所述第一类信号包括半静态PUCCH。
作为上述实施例的一个子实施例,所述第一类信号的默认信道感知类型为所述第一类型。
作为上述实施例的一个子实施例,所述默认信道感知类型是所述第一类信号被预定义的信道感知类型。
作为上述实施例的一个子实施例,所述默认信道感知类型是所述第二信令指示的第一类信号的信道感知类型。
作为一个实施例,所述短语“在接收所述第一信令之前,所述第一信道感知操作的所述类型被确定为第一类型”包括,在接收所述第一信令之前,所述第一类信号的默认信道感知类型被确定为第一类型。
作为一个实施例,本申请中的所述第五信令包括所述第一无线信号的发送指示;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组不存在空间关联关系时,所述第一无线信号的所述发送指示被用于确定所述第一无线信号是否被允许发送。
作为一个实施例,所述第五信令是一个物理层信令。
作为一个实施例,所述第五信令是一个更高层信令。
作为一个实施例,所述第五信令是一个RRC层信令。
作为一个实施例,所述第五信令包括DCI中的一个或多个域。
作为一个实施例,所述第五信令是非单播的。
作为一个实施例,所述第五信令是单播的。
作为一个实施例,所述第五信令通过组公共的物理层控制信道发送。
作为一个实施例,所述第五信令通过DCI format 2_0发送。
作为一个实施例,所述第五信令和所述第一信令通过同一个DCI发送。
作为一个实施例,当所述第一时频资源组在时域上属于第一时间窗时,所述第一无线信号的信道接入优先级被用于确定所述第一信道感知操作的类型。
作为上述实施例的一个子实施例,当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组不存在空间关联关系时,所述第一无线信号的信道接入优先级被用于确定所述第一无线信号是否被允许发送。
作为上述实施例的一个子实施例,所述句子“所述第一无线信号的信道接入优先级被用于确定所述第一无线信号是否被允许发送”包括,当所述第一无线信号的所述信道接入优先级属于第一优先级子集时,所述第一无线信号被允许发送;当所述第一无线信号的所述信道接入优先级属于第二优先级子集时,所述 第一无线信号不被允许发送。
作为上述实施例的一个子实施例,所述句子“所述第一无线信号的信道接入优先级被用于确定所述第一无线信号是否被允许发送”包括,当所述第一无线信号的所述信道接入优先级大于第一指定优先级时,所述第一无线信号被允许发送;当所述第一无线信号的所述信道接入优先级不大于所述第一指定优先级时,所述第一无线信号不被允许发送。
作为上述实施例的一个子实施例,所述句子“所述第一无线信号的信道接入优先级被用于确定所述第一无线信号是否被允许发送”包括,当所述第一无线信号的所述信道接入优先级小于第一指定优先级时,所述第一无线信号被允许发送;当所述第一无线信号的所述信道接入优先级不小于第一指定优先级时,所述第一无线信号不被允许发送。
作为上述实施例的一个子实施例,信道接入优先级集合包括K1个信道接入优先级,K1为大于1的整数,所述第一优先级子集包括所述K1个信道接入优先级中的K2个信道接入优先级;所述第二优先级子集包括所述K1个信道接入优先级中的不属于所述第一优先级子集的K3个信道接入优先级;所述K2和K3均为小于K1的正整数。
作为上述实施例的一个子实施例,信道接入优先级集合包括K1个信道接入优先级,K1为大于1的整数,所述第一指定优先级是所述K1个信道接入优先级之一。
作为一个实施例,如果所述第一无线信号被允许发送,则所述第一信道感知操作的所述类型为第一类型。
作为一个实施例,如果所述第一无线信号被允许发送,则所述第一信道感知操作的所述类型为Cat 4LBT。
作为一个实施例,如果所述第一无线信号不被允许发送,则所述第一信道感知操作不被执行。
实施例7B
实施例7B示例了根据本申请的一个实施例的第一空间配置信息的示意图,如附图7B所示。在附图7B中,第一空间配置信息被用于确定N4个候选空间参数,图中用后缀#和数字来区分N4个候选空间参数,其中N4为大于1的整数。
作为一个实施例,所述第一参考信号子集中的任一所述参考信号所关联的空间参数是所述N4个候选空间参数中的之一。
作为一个实施例,所述候选空间参数包括TCI状态。
作为一个实施例,所述候选空间参数包括QCL参数。
作为一个实施例,所述候选空间参数包括发送波束参数。
作为一个实施例,所述候选空间参数包括接收波束参数。
作为一个实施例,所述候选空间参数包括QCL类型。
作为一个实施例,所述候选空间参数包括的QCL类型为QCL-typeD。
作为一个实施例,所述候选空间参数包括与参考信号的QCL关联关系。
作为一个实施例,所述候选空间参数包括与CSI-RS资源的QCL关联关系。
作为一个实施例,所述候选空间参数包括与SSB的QCL关联关系。
作为一个实施例,如果一个参考信号所关联的空间参数是候选空间参数#i,则所述候选空间参数#i被用于确定所述一个参考信号和另一个参考信号的QCL关联关系,其中i为不大于N4的整数,所述另一个参考信号是一个CSI-RS资源或SSB,所述候选空间参数#i被用于确定所述另一个参考信号。
作为一个实施例,所述第一空间配置信息包括TCI状态。
作为一个实施例,所述第一空间配置信息包括CSI-RS资源索引。
作为上述实施例的一个子实施例,所述第一空间配置信息所包括的CSI-RS资源索引所指示的CSI-RS资源和多个参考信号具有QCL关联关系。
作为上述实施例的一个子实施例,所述第一空间配置信息所包括的CSI-RS资源索引所指示的CSI-RS资源使用宽波束发送。
作为上述实施例的一个子实施例,所述第一空间配置信息所包括的CSI-RS资源索引所指示的CSI-RS 资源使用多个波束发送。
作为一个实施例,所述第一空间配置信息包括SSB索引。
作为上述实施例的一个子实施例,所述第一空间配置信息所包括的SSB索引所指示的SSB和多个参考信号具有QCL关联关系。
作为上述实施例的一个子实施例,所述第一空间配置信息所包括的SSB索引所指示的SSB使用宽波束发送。
作为上述实施例的一个子实施例,所述第一空间配置信息所包括的SSB索引所指示的SSB使用多个波束发送。
作为一个实施例,所述第一空间配置信息包括目标索引,第一索引集合包括多个第一索引,所述目标索引是所述多个第一索引中的之一,所述多个第一索引中的任一所述第一索引被用于确定多个所述候选空间参数。
作为上述实施例的一个子实施例,所述第一索引包括TCI状态组指示,所述候选空间参数包括TCI状态,所述TCI状态组指示被用于确定多个TCI状态。
实施例8A
实施例8A示例了根据本申请的一个实施例的第一无线信号占用的时域资源和第一信道感知操作占用的时域资源的示意图,如附图8A所示。在附图8A中,第一无线信号占用的时域资源在所述第一时间窗之后,第一信道感知操作在所述第一无线信号占用的时域资源之前进行。其中,所述第一无线信号是否被发送是可选的。当所述第一信道感知操作的结果是所述第一子频带是空闲的时,所述第一无线信号被发送;当所述第一信道感知操作的结果是所述第一子频带是非空闲的时,所述第一无线信号不被发送。在附图8A中,所述第一信道感知操作的类型与所述第二参考信号资源组无关。
作为一个实施例,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型是所述默认信道感知类型。
作为一个实施例,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型由所述第一无线信号的调度信息确定。
实施例8B
实施例8B示例了根据本申请的一个实施例的第一空间配置信息的示意图,如附图8B所示。在附图8B中,所述第一空间配置信息包括多个空间配置信息单元,所述多个空间配置信息单元中的任一所述空间配置信息单元被用于确定多个候选空间参数。
作为一个实施例,所述空间配置信息单元包括TCI状态。
作为一个实施例,所述空间配置信息单元包括CSI-RS资源索引。
作为上述实施例的一个子实施例,所述空间配置信息单元所包括的CSI-RS资源索引所指示的CSI-RS资源和多个参考信号具有QCL关联关系。
作为上述实施例的一个子实施例,所述空间配置信息单元所包括的CSI-RS资源索引所指示的CSI-RS资源使用宽波束发送。
作为上述实施例的一个子实施例,所述空间配置信息单元所包括的CSI-RS资源索引所指示的CSI-RS资源使用多个波束发送。
作为一个实施例,所述空间配置信息单元包括SSB索引。
作为上述实施例的一个子实施例,所述空间配置信息单元所包括的SSB索引所指示的SSB和多个参考信号具有QCL关联关系。
作为上述实施例的一个子实施例,所述空间配置信息单元所包括的SSB索引所指示的SSB使用宽波束发送。
作为上述实施例的一个子实施例,所述空间配置信息单元所包括的SSB索引所指示的SSB使用多个波束发送。
作为一个实施例,所述空间配置信息单元包括目标索引,第一索引集合包括多个第一索引,所述目标 索引是所述多个第一索引中的之一,所述多个第一索引中的任一所述第一索引被用于确定多个所述候选空间参数。
作为上述实施例的一个子实施例,所述第一索引包括TCI状态组指示,所述候选空间参数包括TCI状态,所述TCI状态组指示被用于确定多个TCI状态。
实施例9A
实施例9A示例了根据本申请的一个实施例的第四信令占用的时间资源和第一无线信号占用的时间资源的示意图,如附图9A所示。其中,在附图9A_a中,所述第四信令占用的时域资源和所述第一无线信号所占用的时域资源均位于第一时间窗之内。在附图9A_b中,所述第四信令占用的时域资源位于第一时间窗之内,所述第一无线信号所占用的时域资源位于所述第一时间窗之后。在附图9A_a和附图9A_b中,所述第四信令占用的时间资源和所述第一无线信号所占用的时域资源之间的时间间隔均用T表示。在附图9A中,当T小于第一阈值时,第三参考信号资源组被用于确定所述第一无线信号的空间参数,所述第三参考信号资源组由所述第三信令指示;当T不小于第一阈值并且所述第一时频资源组在时域上属于第一时间窗时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当T不小于第一阈值并且所述第一时频资源组在时域上不属于第一时间窗时,所述第二参考信号资源组被用于确定所述第一无线信号的空间参数。
作为一个实施例,所述第一无线信号的空间参数包括所述第一无线信号的QCL参数。
作为一个实施例,所述第一无线信号的空间参数包括所述第一无线信号的QCL类型。
作为一个实施例,所述第一无线信号的空间参数包括所述第一无线信号的空间关系(spatial relation)。
作为一个实施例,所述第一无线信号的空间参数包括所述第一无线信号的TCI状态。
作为一个实施例,所述第一无线信号的空间参数包括所述第一无线信号的空间发送滤波器。
作为一个实施例,所述第一无线信号的空间参数包括所述第一无线信号的空间接收滤波器。
作为一个实施例,所述第一时频资源组与所述第四信令之间的时间间隔包括所述第一时频资源组所在的时隙和所述第四信令所在的时隙之间的时间间隔。
作为一个实施例,所述第一时频资源组与所述第四信令之间的时间间隔包括所述第一时频资源组所在的时隙和所述第四信令所在的时隙之间的时隙数量。
作为一个实施例,所述第一时频资源组与所述第四信令之间的时间间隔包括所述第一时频资源组的最后一个多载波符号的结束时刻和所述第四信令的第一个多载波符号的开始时刻之间的多载波符号数量。
作为一个实施例,所述第四信令包括所述第二信令的HARQ-ACK(Hybrid Automatic Repeat Request ACKnolegment,混合自动请求重传-确认)信息。
作为一个实施例,所述第四信令是物理层信令。
作为一个实施例,所述第四信令通过PUSCH发送。
作为一个实施例,所述第四信令通过PUCCH发送。
作为一个实施例,所述第四信令通过PSFCH发送。
作为一个实施例,所述第二信令通过物理层共享信道携带,所述第四信令包括携带所述第二信令的所述物理层共享信道的HARQ-ACK信息。
作为一个实施例,所述第二信令通过PDSCH携带,所述第四信令包括携带所述第二信令的所述PDSCH的HARQ-ACK信息。
作为一个实施例,所述第三信令是更高层信令,所述第三信令被用于指示所述第一类信号的空间参数。
作为一个实施例,所述第三信令是MAC层信令。
作为一个实施例,所述第三信令是RRC层信令。
作为一个实施例,所述第二信令是更高层信令,所述第二信令被用于指示所述第一类信号的空间参数。
作为一个实施例,所述第一无线信号的空间参数和所述第一类信号的空间参数相同。
作为一个实施例,所述第三信令在所述第二信令之前发送,所述第二信令被用于更新所述第三信令所指示的所述第一类信号的空间参数。
作为一个实施例,所述第一阈值包括正整数个多载波符号的时间长度。
作为一个实施例,所述第一阈值包括正整数个时隙的时间长度。
作为一个实施例,所述第一阈值包括正整数个子帧的时间长度。
作为一个实施例,所述第一阈值包括3毫秒之内的所有子帧的时间长度。
作为一个实施例,所述第一阈值包括3毫秒之内的所有时隙的时间长度。
作为一个实施例,所述第一阈值包括3毫秒之内的所有多载波符号的时间长度。
实施例9B
实施例9B示例了根据本申请的一个实施例的第一信道感知操作和第一时间窗口的关系的示意图,如附图9B所示。在附图9B中,灰色填充的方框表示第一信道感知操作所占用的时间资源,白色填充方框表示第一时间窗口所占用的时间资源。本申请中的第一时间配置信息被用于确定第一时间窗口,所述第一空间配置信息在所述第一时间窗口之内有效。
作为一个实施例,所述第一时间窗口的长度由第一时间配置信息确定,所述第一空间配置信息在所述第一时间窗口之内有效。
作为一个实施例,所述第一时间窗口位于所述第一信道感知操作完成之后。
作为一个实施例,所述第一时间配置信息在所述第二信令中发送。
作为一个实施例,所述第一时间配置信息被用于确定COT(Channel Occupancy Time)。
作为一个实施例,所述第一时间配置信息被用于确定COT的结束时间。
作为一个实施例,所述第一时间配置信息被用于确定COT的开始时间和结束时间。
作为一个实施例,所述第一时间配置信息被用于确定COT的时间长度。
作为一个实施例,所述第一时间窗口位于COT的持续时间之内。
作为一个实施例,所述第一时间窗口的结束时间和所述COT的结束时间相同。
作为一个实施例,所述第一时间窗口的结束时间和所述COT内的最后一个下行符号的结束时间相同。
作为一个实施例,所述第一时间窗口的开始时间为接收到用于发送所述第一时间配置信息的物理信道之后的第一个多载波符号的开始时间。
作为一个实施例,所述第一时间窗口的开始时间为COT的开始时间。
作为一个实施例,所述第一信道感知操作包括在第一子频带上进行能量检测,所述能量检测被用于确定所述第一子频带是否空闲,所述第二信令所占用的频率资源属于第一子频带。
作为一个实施例,所述第一信道感知操作的实施者是所述第二节点。
作为一个实施例,所述第一信道感知操作包括在所述第一子频带上的N5个时间子池中分别执行N5次能量检测,得到N5个检测值,N5为正整数。
作为一个实施例,所述N5次能量检测所分别使用的多天线相关的接收都相同。
作为一个实施例,所述N5次能量检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述N5次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输无线信号。
作为一个实施例,所述N5次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输与所述N5次能量检测空间相关的无线信号。
作为一个实施例,所述第一子频带包括正整数个RB所占用的频率范围。
作为一个实施例,所述第一子频带包括一个BWP(bandwidth part,部分带宽)。
作为一个实施例,所述第一子频带包括一个载波成分CC(Carrier Component)。
作为一个实施例,所述N5次能量检测是LBT(Listen Before Talk,先听后发)中的能量检测,所述LBT的具体定义和实现方式参见3GPP TR37.213。
作为一个实施例,所述N5次能量检测是CCA(ClearChannelAssessment,空闲信道评估)中的能量检测,所述CCA的具体定义和实现方式参见3GPPTR 36.889。
作为一个实施例,所述N5次能量检测中的任意一次能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述N5个时间子池中的任一时间子池在占用的时域资源是连续的。
作为一个实施例,所述N5个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述N5个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,所述N5个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述N5个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述N5个时间子池占用的时域资源是连续的。
作为一个实施例,所述N5个时间子池中至少存在两个时间子池占用的时域资源是不连续。
作为一个实施例,所述N5个时间子池中任意两个时间子池占用的时域资源是不连续。
作为一个实施例,所述N5个时间子池中任一时间子池是一个时隙时段(slotduration)。
作为一个实施例,所述N5个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙时段(slotduration)。
作为一个实施例,所述N5个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述N5个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述N5个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述N5个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述N5个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述N5个时间子池包括Cat 4(第四类)LBT中的延时时段(Defer Duration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述N5个时间子池包括Type 1 UL channel access procedure(第一类上行信道接入过程)中的延时时段(DeferDuration)中的时隙时段和回退时间(Backoff Time)中的时隙时段,所述第一节点是用户设备。
作为一个实施例,所述N5个时间子池包括了初始CCA和eCCA(EnhancedClearChannelAssessment,增强的空闲信道评估)中的时隙时段。
作为一个实施例,所述N5次能量检测分别得到所述N5个检测值。
作为一个实施例,所述N5个检测值分别是所述第二节点在N5个时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,以获得的接收功率;所述N5个时间单元分别是所述N5个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述N5个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述N5个检测值分别是所述第二节点在N5个时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,以获得的接收能量;所述N5个时间单元分别是所述N5个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述N5个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述N5次能量检测中的任意一次给定能量检测是指:所述第一节点在给定时间单元中监测接收功率,所述给定时间单元是所述N5个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述N5次能量检测中的任意一次给定能量检测是指:所述第一节点在给定时间单元中监测接收能量,所述给定时间单元是所述N5个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
实施例10A
实施例10A示例了根据本申请的一个实施例的一个第一候选信道感知操作的示意图,如附图10A所示。
在实施例10A中,所述第一候选信道感知操作包括在所述第一子频带上的所述Q2个时间子池中分别执行Q2次能量检测,得到Q2个检测值,Q2是正整数;当且仅当所述Q2个检测值中的Q3个检测值都低于第一感知阈值时,无线信号在所述第一子频带中被发送,并且所述无线信号的起始发送时刻不早于所述 第一时间窗的结束时刻,Q3是不大于所述Q2的正整数。所述Q2次能量检测的过程可以由附图10A中的流程图来描述。
在附图10A中,所述第一节点或第二节点在步骤S1001中处于闲置状态,在步骤S1002中判断是否需要发送;在步骤1003中在一个延时时段(defer duration)内执行能量检测;在步骤S1004中判断这个延时时段内的所有感知时隙时段(sensing slot duration)是否都空闲,如果是,进行到步骤S1005中设置第一计数器等于Q2;否则返回步骤S1004;在步骤S1006中判断所述第一计数器是否为0,如果是,进行到步骤S1007中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1008中在一个附加感知时隙时段(additional sensing slot duration)内执行能量检测;在步骤S1009中判断这个附加感知时隙时段是否空闲,如果是,进行到步骤S1010中把所述第一计数器减1,然后返回步骤1006;否则进行到步骤S1011中在一个附加延时时段(additional defer duration)内执行能量检测;在步骤S1012中判断这个附加延时时段内的所有感知时隙时段是否都空闲,如果是,进行到步骤S1010;否则返回步骤S1011。
作为一个实施例,给定时间时段内的任意一个感知时隙时段包括所述Q2个时间子池中的一个时间子池;所述给定时间时段是附图10A中包括的{所有延时时段,所有附加感知时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有感知时隙时段内执行能量检测;所述给定时间时段是附图10A中包括的{所有延时时段,所有附加感知时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有感知时隙时段通过能量检测都被判断为空闲;所述给定时间时段是附图10A中包括的{所有延时时段,所有附加感知时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定感知时隙时段通过能量检测都被判断为空闲是指:所述第一节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一感知阈值;所述给定时间单元是所述给定感知时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定感知时隙时段通过能量检测都被判断为空闲是指:所述第一节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一感知阈值;所述给定时间单元是所述给定感知时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定感知时隙时段通过能量检测都被判断为空闲是指:所述第一节点在所述给定感知时隙时段包括的时间子池上进行能量检测,得到的检测值低于所述第一感知阈值;所述时间子池属于所述Q2个时间子池,所述检测值属于所述Q2个检测值。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时间子池内执行能量检测;所述给定时间时段是附图10A中包括的{所有延时时段,所有附加感知时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q2个时间子池。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述第一感知阈值;所述给定时间时段是附图10A中包括的{所有延时时段,所有附加感知时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q2个时间子池,所述检测值属于所述Q2个检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上M2个9微秒,所述M2是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述Q2个时间子池中的M1+1个时间子池。
作为上述实施例的一个子实施例,本申请中的所述第一信号所对应的优先级被用于确定所述M1。
作为上述子实施例的一个参考实施例,所述优先级是信道接入优先级(Channel Access Priority Class),所述信道接入优先级的定义参见3GPP TS37.213。
作为上述实施例的一个子实施例,所述M2属于{1,2,3,7}。
作为一个实施例,所述Q2次能量检测所分别使用的多天线相关的接收参数都相同。
作为一个实施例,所述Q2次能量检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述Q2次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输无线信号。
作为一个实施例,所述Q2次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输与所述Q2次能量检测空间相关的无线信号。
作为一个实施例,所述Q2次能量检测是LBT(Listen Before Talk,先听后发)中的能量检测,所述LBT的具体定义和实现方式参见3GPP TS37.213。
作为一个实施例,所述Q2次能量检测是CCA(ClearChannelAssessment,空闲信道评估)中的能量检测,所述CCA的具体定义和实现方式参见3GPPTR36.889。
作为一个实施例,所述Q2次能量检测中的任意一次能量检测是通过3GPP TS37.213所定义的方式实现的。
作为一个实施例,所述Q2次能量检测中的任意一次能量检测是通过WiFi中的能量检测方式实现的。
作为一个实施例,所述Q2次能量检测中的任意一次能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述Q2次能量检测中的任意一次能量检测是通过LTE LAA中的能量检测方式实现的。
作为一个实施例,所述Q2个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述Q2个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述Q2个检测值的单位都是焦耳。
作为一个实施例,所述Q3小于所述Q2。
作为一个实施例,所述Q2大于1。
作为一个实施例,所述第一感知阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一感知阈值的单位是毫瓦(mW)。
作为一个实施例,所述第一感知阈值的单位是焦耳。
作为一个实施例,所述第一感知阈值等于或小于-72dBm。
作为一个实施例,所述第一感知阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,本申请中的所述第一候选类型集合中包括的所述第一类型包括所述第一候选信道感知操作。
作为一个实施例,第二候选信道感知操作包括,在所述第一子频带上的第二时间窗中分别执行Q4次能量检测,得到Q4个检测值,Q4是正整数;当且仅当所述Q4个检测值中的Q5个检测值都低于第一感知阈值时,所述第一子频带被用于发送无线信号,Q5是不大于Q4的正整数。
作为上述实施例的一个子实施例,所述第二时间窗的长度是预定义的。
作为上述实施例的一个子实施例,所述第二时间窗的长度包括{9微秒,16微秒,25微秒}中的其中一个。
作为一个实施例,本申请中的所述第一候选类型集合中包括的所述第二类型包括所述第二候选信道感知操作。
作为一个实施例,本申请中的所述第二信道感知操作是所述第一候选信道感知操作。
实施例10B
实施例10B示例了根据本申请的一个实施例的第二信令,第一参考信号子集和第一信息块所分别占用的时域资源的示意图,如附图10B所示。在附图10B中,所述第一参考信号子集在所述第二信令之后进行传输,所述第一信息块在所述第一参考信号子集之后进行传输。所述第一参考信号子集和所述第一信息块所占用的时间资源均位于第一时间窗口之内,在附图10B中用T1表示所述第一时间窗口的持续时间。
作为一个实施例,所述第一时间窗口的开始时间为用于发送所述第二信令的最后一个多载波符号的结束时间。
作为一个实施例,所述第一信息块包括的比特数和所述第一参考信号子集包括的参考信号的数量有关。
作为上述实施例的一个子实施例,所述第一参考信号子集包括N3个参考信号,所述N3为正整数,所述第一信息块所包括的比特数和N3的值同方向变化。
作为上述实施例的一个子实施例,所述第一参考信号子集包括N3个CSI-RS资源,所述N3为正整数,所述第一信息块所包括的比特数和ceil(log2(N3))的值有关,其中log2表示以2为底的求对数操作,ceil表示向上取整操作。
作为上述实施例的一个子实施例,所述第一参考信号子集包括N3个CSI-RS资源,所述N3为正整数,所述第一信息块包括CSI-RS资源指示,所述CSI-RS资源指示所包括的比特数等于ceil(log2(N3)),其中log2表示以2为底的求对数操作,ceil表示向上取整操作。
作为一个实施例,所述第一信息块所占用的时间资源位于第一时间窗口之内。
实施例11A
实施例11A示例了一个用于第一节点中的处理装置的结构框图,如附图11A所示。在实施例11A中,第一节点1100A包括第一接收机1101A,第二接收机1102A和第一发射机1103A。
作为一个实施例,第一接收机1101A包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第二接收机1102A包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机1103A包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
在实施例11A中,所述第一接收机1101A接收第一信令和第二信令;所述第二接收机1102A在第一子频带上执行第一信道感知操作;所述第一发射机1103A在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号;其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型
作为一个实施例,所述第一节点1100A是用户设备。
作为一个实施例,所述第一节点1100A是中继节点。
作为一个实施例,所述第一节点1100A是基站。
作为一个实施例,所述第一节点1100A是车载通信设备。
作为一个实施例,所述第一节点1100A是支持V2X通信的用户设备。
作为一个实施例,所述第一节点1100A是支持V2X通信的中继节点。
作为一个实施例,所述第一节点1100A是支持IAB的基站设备。
实施例11B
实施例11B示例了根据本申请的一个实施例的第一信道感知的空间参数,参考信号的空间参数和第一信息块的发送参数之间的关系的示意图,如附图11B所示。在附图11B中,椭圆形图案被用于表示波束的宽度。在附图11B中,第一信道感知操作的空间参数和所述第一信道感知操作的接收波束的宽度有关,参考信号的空间参数和所述参考信号的发送波束的宽度有关,第一信息块的发送参数和所述第一信息块的发送波束有关。在附图11B中,所述第一信道感知操作的接收波束为宽波束,在所述宽波束内包含了多个所述参考信号的发送波束的宽度。采用宽波束进行LBT可以减少总的LBT次数,从而减小开销。
作为一个实施例,所述第一信道感知操作采用宽波束进行接收。
作为一个实施例,所述第一空间配置信息和第一信道感知操作的空间参数有关。
作为一个实施例,所述第一空间配置信息所指示的空间参数和所述第一信道感知操作的空间参数相同。
作为一个实施例,所述第一空间配置信息所指示的空间参数所对应的波束覆盖范围和所述第一信道感知操作的空间参数所对应的波束覆盖范围有重叠。
作为一个实施例,所述第一信道感知操作的空间参数包括所述第一信道感知操作的接收波束配置。
作为一个实施例,所述第一信道感知操作的空间参数包括所述第一信道感知操作的空间接收参数配置。
作为一个实施例,所述第一信道感知操作的空间参数包括所述第一信道感知操作的接收行为和一个参考信号的QCL关联关系,所述一个参考信号是CSI-RS资源或SSB。
作为一个实施例,所述第一空间配置信息被用于确定所述第一信息块的发送参数。
作为一个实施例,所述第一空间配置信息被用于确定上行信道所关联的候选空间参数。
作为一个实施例,所述第一空间配置信息被用于确定PUCCH所关联的候选空间参数。
作为一个实施例,所述第一空间配置信息被用于确定PUSCH所关联的候选空间参数。
作为一个实施例,所述上行信道所关联的候选空间参数包括SRI(Sounding Reference Signal Resource Indicator,探测参考信号资源指示)。
作为一个实施例,所述上行信道所关联的候选空间参数包括TCI。
作为一个实施例,所述上行信道所关联的候选空间参数包括与CSI-RS资源的QCL关联关系。
作为一个实施例,所述上行信道所关联的候选空间参数包括与SSB的QCL关联关系。
作为一个实施例,所述第一信息块的发送参数包括所述第一信息块所关联的空间参数。
作为一个实施例,所述第一信息块的发送参数包括所述第一信息块所占用的时频资源。
作为一个实施例,所述第一信息块的发送参数包括所述第一信息块所关联的PUCCH资源编号。
作为一个实施例,所述句子“所述第一空间配置信息被用于确定所述第一信息块的发送参数”包括,所述第一空间配置信息中包括所述第一信息块的发送参数的指示信息。
作为一个实施例,所述句子“所述第一空间配置信息被用于确定所述第一信息块的发送参数”包括,所述第一空间配置信息中包括多个所述上行信道所关联的候选空间参数,所述第一节点从所述多个所述上行信道所关联的候选空间参数选择其中之一作为所述第一信息块的发送参数。
作为上述实施例的一个子实施例,所述第一节点接收选择规则指示,所述第一节点根据所述选择规则指示从所述多个所述上行信道所关联的候选空间参数中选择其中之一作为所述第一信息块的发送参数。
作为上述实施例的一个子实施例,所述第一节点根据预定义的选择规则从所述多个所述上行信道所关联的候选空间参数中选择其中之一作为所述第一信息块的发送参数。
作为一个实施例,所述第一空间配置信息和第一信道感知操作的空间参数有关,所述第一信道感知操作被用于确定是否能在第一子频带上发送无线信号,所述第二信令所占用的频域资源属于所述第一子频带。
作为一个实施例,所述第一信息块所占用的频域资源属于第一子频带。
实施例12A
实施例12A示例了一个用于第二节点中的处理装置的结构框图,如附图12A所示。在实施例12A中,第二节点1200A包括第二发射机1201A,第三接收机1202A和第四接收机1203A。
作为一个实施例,第二发射机1201A包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,第三接收机1202A包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第四接收机1203A包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例12A中,所述第二发射机1201A发送第一信令和第二信令;所述第三接收机1202A在第一子频带上执行第二信道感知操作;所述第四接收机1203A在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资 源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
作为一个实施例,所述第二信令指示所述第一时频资源组,所述第一无线信号与所述第二参考信号资源组具有空间关联关系。
作为一个实施例,还包括:所述第二发射机1201A在发送所述第二信令之前还发送第三信令,所述第三信令指示第三参考信号资源组;所述第四接收机1203A接收第四信令,所述第四信令被用于确定所述第二信令是否被正确接收;其中,当所述第一时频资源组与所述第四信令之间的时间间隔小于第一阈值时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上属于第一时间窗时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上不属于第一时间窗时,所述第二参考信号资源组被用于确定所述第一无线信号的空间参数。
作为一个实施例,当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型被确定为第二类型。
作为一个实施例,在所述第二发射机1201A发送所述第一信令之前,所述第一信道感知操作的所述类型被确定为第一类型;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型从所述第一类型切换为所述第二类型。
作为一个实施例,还包括:所述第二发射机1201A发送第五信令;其中,所述第五信令包括所述第一无线信号的发送指示;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组不存在空间关联关系时,所述第一无线信号的所述发送指示被用于确定所述第一无线信号是否被允许发送。
作为一个实施例,当所述第一时频资源组在时域上属于第一时间窗时,所述第一无线信号的信道接入优先级被用于确定所述第一信道感知操作的类型。
作为一个实施例,所述第二节点1200A是用户设备。
作为一个实施例,所述第二节点1200A是中继节点。
作为一个实施例,所述第二节点1200A是基站。
作为一个实施例,所述第二节点1200A是车载通信设备。
作为一个实施例,所述第二节点1200A是支持V2X通信的用户设备。
作为一个实施例,所述第二节点1200A是支持V2X通信的中继节点。
作为一个实施例,所述第二节点1200A是支持IAB的基站设备。
实施例12B
实施例12B示例了一个用于第一节点中的处理装置的结构框图,如附图12B所示。在实施例12B中,第一节点1100B包括第一接收机1101B,第二接收机1102B和第一发射机1103B。
作为一个实施例,第一接收机1101B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第二接收机1102B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机1103B包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
在实施例12B中,所述第一接收机1101B接收第一信令;所述第二接收机1102B接收第二信令;所述第一发射机1103B发送第一信息块;其中,所述第一信令包括第一配置信息,所述第一配置信息被用于 确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,所述第一节点1100B是用户设备。
作为一个实施例,所述第一节点1100B是中继节点。
作为一个实施例,所述第一节点1100B是基站。
作为一个实施例,所述第一节点1100B是车载通信设备。
作为一个实施例,所述第一节点1100B是支持V2X通信的用户设备。
作为一个实施例,所述第一节点1100B是支持V2X通信的中继节点。
作为一个实施例,所述第一节点1100B是支持IAB的基站设备。
作为一个实施例,所述第一信息块包括的比特数和所述第一参考信号子集包括的参考信号的数量有关。
作为一个实施例,所述第一空间配置信息被用于确定多个候选空间参数;所述第一参考信号子集中的任一所述参考信号所关联的空间参数是所述多个候选空间参数中的之一。
作为一个实施例,其特征在于,所述第二接收机1102B接收第一时间配置信息,所述第一时间配置信息被用于确定第一时间窗口,所述第一空间配置信息在所述第一时间窗口之内有效。
作为一个实施例,其特征在于,所述第一空间配置信息和第一信道感知操作的空间参数有关,所述第一信道感知操作被用于确定是否能在第一子频带上发送无线信号,所述第二信令所占用的频域资源属于所述第一子频带。
作为一个实施例,所述第一节点假设所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号在所述第一时间窗口内不被发送。
作为一个实施例,所述第一空间配置信息被用于确定所述第一信息块的发送参数。
实施例13
实施例13示例了一个用于第二节点中的处理装置的结构框图,如附图13所示。在附图13中,第二节点1200B包括第二发射机1201B,第三发射机1202B和第三接收机1203B。
作为一个实施例,第二发射机1201B包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,第三发射机1202B包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,第三接收机1203B包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例13中,所述第二发射机1201B发送第一信令;所述第三发射机1202B发送第二信令;所述第三接收机1203B接收第一信息块;其中,所述第一信令包括第一配置信息,所述第一配置信息被用于确定Q1个参考信号所分别关联的Q1个空间参数,所述Q1为大于1的整数;所述第二信令包括第一空间配置信息,所述第一空间配置信息被用于从所述Q1个参考信号中确定第一参考信号子集,所述第一参考信号子集包括所述Q1个参考信号中的部分参考信号,所述第一参考信号子集中的每个参考信号所关联的空间参数和所述第一空间配置信息有关;针对所述第一参考信号子集中的参考信号的测量结果被用于确定所述第一信息块。
作为一个实施例,所述第一信息块包括的比特数和所述第一参考信号子集包括的参考信号的数量有关。
作为一个实施例,所述第一空间配置信息被用于确定多个候选空间参数;所述第一参考信号子集中的任一所述参考信号所关联的空间参数是所述多个候选空间参数中的之一。
作为一个实施例,所述第三发射机1202B发送第一时间配置信息,所述第一时间配置信息被用于确定 第一时间窗口,所述第一空间配置信息在所述第一时间窗口之内有效。
作为一个实施例,所述第一空间配置信息和第一信道感知操作的空间参数有关,所述第一信道感知操作被用于确定是否能在第一子频带上发送无线信号,所述第二信令所占用的频域资源属于所述第一子频带。
作为一个实施例,所述第二节点不在所述第一时间窗口内发送所述Q1个参考信号中不属于所述第一参考信号子集的任一参考信号。
作为一个实施例,所述第一空间配置信息被用于确定所述第一信息块的发送参数。
作为一个实施例,所述第二节点1200B是用户设备。
作为一个实施例,所述第二节点1200B是基站。
作为一个实施例,所述第二节点1200B是中继节点。
作为一个实施例,所述第二节点1200B是支持V2X通信的用户设备。
作为一个实施例,所述第二节点1200B是支持V2X通信的基站设备。
作为一个实施例,所述第二节点1200B是支持V2X通信的中继节点。
作为一个实施例,所述第二节点1200B是支持IAB的基站设备。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令和第二信令;
    第二接收机,在第一子频带上执行第一信道感知操作;
    第一发射机,在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号;
    其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
  2. 根据权利要求1中所述的第一节点,其特征在于,所述第二信令指示所述第一时频资源组,所述第一无线信号与所述第二参考信号资源组具有空间关联关系。
  3. 根据权利要求1中所述的第一节点,其特征在于,包括:
    所述第一接收机,在接收所述第二信令之前接收第三信令,所述第三信令指示第三参考信号资源组;
    所述第一发射机,发送第四信令,所述第四信令被用于确定所述第二信令是否被正确接收;
    其中,当所述第一时频资源组与所述第四信令之间的时间间隔小于第一阈值时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上属于第一时间窗时,所述第三参考信号资源组被用于确定所述第一无线信号的空间参数;当所述第一时频资源组与所述第四信令之间的时间间隔不小于第一阈值并且所述第一时频资源组在时域上不属于第一时间窗时,所述第二参考信号资源组被用于确定所述第一无线信号的空间参数。
  4. 根据权利要求1到3中任一权利要求所述的第一节点,其特征在于,当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型被确定为第二类型。
  5. 根据权利要求1到4中任一权利要求所述的第一节点,其特征在于,在所述第一接收机接收所述第一信令之前,所述第一信道感知操作的所述类型被确定为第一类型;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组具有空间关联关系时,所述第一信道感知操作的所述类型从所述第一类型切换为所述第二类型。
  6. 根据权利要求1到5中任一权利要求所述的第一节点,其特征在于,还包括:所述第一接收机还接收第五信令;其中,所述第五信令包括所述第一无线信号的发送指示;当所述第一时频资源组在时域上属于第一时间窗并且所述第一参考信号资源组与所述第二参考信号资源组不存在空间关联关系时,所述第一 无线信号的所述发送指示被用于确定所述第一无线信号是否被允许发送。
  7. 根据权利要求1到6中所述的第一节点,其特征在于,当所述第一时频资源组在时域上属于第一时间窗时,所述第一无线信号的信道接入优先级被用于确定所述第一信道感知操作的类型。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信令和第二信令;
    第三接收机,在第一子频带上执行第二信道感知操作;
    第四接收机,在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;
    其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
  9. 一种被用于无线通信的第一节点的方法,其特征在于,包括:
    接收第一信令和第二信令;
    在第一子频带上执行第一信道感知操作;
    在所述第一子频带的第一时频资源组中发送第一无线信号,或者,放弃在所述第一子频带的第一时频资源组中发送第一无线信号;
    其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示第二参考信号资源组;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
  10. 一种被用于无线通信的第二节点的方法,其特征在于,包括:
    发送第一信令和第二信令;
    在第一子频带上执行第二信道感知操作;
    在所述第一子频带的第一时频资源组上执行第一检测操作,所述第一检测操作被用于确定是否在所述第一时频资源组上接收到第一无线信号;
    其中,所述第一信令被用于确定第一参考信号资源组,所述第一信令是非单播的;所述第二信令指示 第二参考信号资源组;所述第二信道感知操作被用于确定第一时间窗;第一信道感知操作被用于确定所述第一无线信号是否被发送,所述第一信道感知操作的执行者是所述第二信令的接收者;当所述第一时频资源组在时域上属于第一时间窗时,所述第一参考信号资源组与所述第二参考信号资源组共同被用于从第一候选类型集合中确定所述第一信道感知操作的类型,当所述第一时频资源组在时域上不属于第一时间窗时,所述第一信道感知操作的类型与所述第二参考信号资源组无关;所述第一候选类型集合包括第一类型和第二类型。
PCT/CN2021/079651 2020-03-11 2021-03-09 一种被用于无线通信的节点中的方法和装置 WO2021180052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/901,878 US20220417992A1 (en) 2020-03-11 2022-09-02 Method and device in nodes used for wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010167010.X 2020-03-11
CN202010167010.XA CN113395764B (zh) 2020-03-11 2020-03-11 一种被用于无线通信的节点中的方法和装置
CN202010289165.0 2020-04-14
CN202010289165.0A CN113541889B (zh) 2020-04-14 2020-04-14 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/901,878 Continuation US20220417992A1 (en) 2020-03-11 2022-09-02 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021180052A1 true WO2021180052A1 (zh) 2021-09-16

Family

ID=77670455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079651 WO2021180052A1 (zh) 2020-03-11 2021-03-09 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
US (1) US20220417992A1 (zh)
WO (1) WO2021180052A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352725A1 (en) * 2020-02-04 2021-11-11 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
WO2023223158A1 (en) * 2022-05-19 2023-11-23 Lenovo (Singapore) Pte. Ltd. Channel access by network-controlled repeaters
WO2023223159A1 (en) * 2022-05-19 2023-11-23 Lenovo (Singapore) Pte. Ltd. Repeater-assisted channel access with network-controlled repeaters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019909A1 (en) * 2015-07-16 2017-01-19 Samsung Electronics Co., Ltd Method and apparatus for adaptive control of contention window in laa
CN110138429A (zh) * 2018-02-09 2019-08-16 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110234170A (zh) * 2018-03-06 2019-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019909A1 (en) * 2015-07-16 2017-01-19 Samsung Electronics Co., Ltd Method and apparatus for adaptive control of contention window in laa
CN110138429A (zh) * 2018-02-09 2019-08-16 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110234170A (zh) * 2018-03-06 2019-09-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "On Two-Stage Ul scheduling for eLAA", 3GPP DRAFT; R1-167074, vol. RAN WG1, 12 August 2016 (2016-08-12), Gothenburg, Sweden, pages 1 - 7, XP051132301 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352725A1 (en) * 2020-02-04 2021-11-11 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
WO2023223158A1 (en) * 2022-05-19 2023-11-23 Lenovo (Singapore) Pte. Ltd. Channel access by network-controlled repeaters
WO2023223159A1 (en) * 2022-05-19 2023-11-23 Lenovo (Singapore) Pte. Ltd. Repeater-assisted channel access with network-controlled repeaters

Also Published As

Publication number Publication date
US20220417992A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021180052A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021093594A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244384A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11751173B2 (en) Method and device used in node for wireless communication
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230111152A1 (en) Method and apparatus for node used for wireless communication
CN111615213B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113541889B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022073432A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021185229A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244383A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019137328A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113708901A (zh) 一种被用于无线通信的节点中的方法和装置
CN113905450A (zh) 一种被用于无线通信的节点中的方法和装置
CN113395764B (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
CN113473598B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766864

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21766864

Country of ref document: EP

Kind code of ref document: A1