WO2019109345A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019109345A1
WO2019109345A1 PCT/CN2017/115263 CN2017115263W WO2019109345A1 WO 2019109345 A1 WO2019109345 A1 WO 2019109345A1 CN 2017115263 W CN2017115263 W CN 2017115263W WO 2019109345 A1 WO2019109345 A1 WO 2019109345A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
information
sub
type
wireless signal
Prior art date
Application number
PCT/CN2017/115263
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN202210650702.9A priority Critical patent/CN115225238A/zh
Priority to PCT/CN2017/115263 priority patent/WO2019109345A1/zh
Priority to CN201780094878.8A priority patent/CN111279779B/zh
Publication of WO2019109345A1 publication Critical patent/WO2019109345A1/zh
Priority to US16/885,294 priority patent/US11206666B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a communication method and apparatus for supporting data transmission on an Unlicensed Spectrum.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • 3rd Generation Partner Project 3rd Generation Partner Project
  • RAN Radio Access Network
  • #75 plenary meeting also passed NR (New Radio, The research project for access to unlicensed spectrum under the new radio, which is expected to be completed in the R15 version, and then the WI is launched in the R16 version to standardize the relevant technology.
  • Massive MIMO Multi-Input Multi-Output
  • massive MIMO multiple antennas are beamformed to form a narrower beam pointing in a particular direction to improve communication quality.
  • massive MIMO is applied to the unlicensed spectrum of the millimeter wave band.
  • LAA Long Term Evolution Assisted Access
  • the base station and the user equipment (UE) need to perform LBT before sending data on the unlicensed spectrum (Listen Before). Talk, pre-session listening) to ensure no interference with other ongoing wireless transmissions on the unlicensed spectrum.
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment used for wireless communication, which includes:
  • the first signaling being used to determine M information sets, any one of the M information sets comprising a positive integer number of information elements, any one of the positive integer information elements
  • the information element includes a first type index and a second type index set, the second type index set includes one or more second type indexes, and the M is a positive integer greater than one;
  • the second signaling being used to determine a first set of information from the set of M information
  • the third signaling being associated with the second signaling, the third signaling being used to determine a first information element from the first set of information;
  • the third signaling includes scheduling information of the first wireless signal, and one antenna port group includes a positive integer number of antenna ports.
  • the method is characterized in that: the beam used in each burst on the unlicensed spectrum is limited to one beam set, and any information set in the M information set is used in one beam set. Within the indicator beam related information, different sets of information are directed to different beam sets.
  • the second signaling indicates a beam set corresponding to the current burst, and the user equipment may determine, according to the second signaling, the information set corresponding to the current burst from the M information sets.
  • the beams within one beam set are limited to the coverage of the beam used by one downlink LBT.
  • the second signaling determines the first information set according to a downlink LBT beam corresponding to a current burst.
  • the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than that used in the first signaling. And indicating a number of bits of a second type index in the second type index set corresponding to the given first type index.
  • the above method has the advantage of further reducing the overhead of the third signaling.
  • the given first type of index belongs to a given information element
  • the given information element is any information element in a given information set
  • the given information set is the M information set Any of the information sets
  • the number of bits in the first signaling indicating that the given first type of index is equal to a base 2 pair of information elements included in the given information set The number is rounded up, that is, the number of bits in the first signaling used to indicate the given first type index is equal to A1
  • the A1 is a minimum positive integer not less than log 2 (B1)
  • B1 is the number of information elements included in the given set of information.
  • a given antenna port group is an antenna port group identified by a given second type index, and the given second type index is a second type of index set corresponding to the given first type index.
  • a second type of index the given antenna port group belongs to S candidate antenna port groups, and S is a positive integer greater than 1; the first signaling is used to indicate the given second type index
  • the number of bits is equal to the base 2 logarithm of the S, that is, the number of bits in the first signaling used to indicate the given second type index is equal to A2, the A2 Is the smallest positive integer not less than log 2 (S).
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol;
  • the time domain resource is within the first multicarrier symbol group.
  • the foregoing method has the advantages that a connection is established between the second signaling and the third signaling, and the user equipment is prevented from using the third signaling in the M information set. Which set of information corresponds to the confusion.
  • all the multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are occupied; or All multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied, and the user equipment receives the first in the first sub-band wireless signal.
  • the foregoing method has the advantages that a connection is established between the second signaling and the third signaling, or between the second signaling and the first wireless signal, to avoid The user equipment confuses the third signaling and the corresponding information set of the first wireless signal in the M information sets.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are occupied, and the user equipment is at the first
  • the first wireless signal is transmitted in a sub-band.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are occupied, and the user equipment is at the first
  • the first wireless signal is received in a sub-band.
  • the third signaling and the second signaling occupy the same time slice in a time domain, where the time slice includes a positive integer number of consecutive multi-carrier symbols; or
  • the third signaling and the second signaling belong to the same search space.
  • the foregoing method has the advantages that a connection is established between the second signaling and the third signaling, and the user equipment is prevented from using the third signaling in the M information set. Which set of information corresponds to the confusion.
  • the third signaling includes a first domain, and the first one of the third signaling is used to determine the first information from the first information set An element, the number of bits included in the first domain in the third signaling is related to the first information set.
  • the foregoing method has the following advantages: the number of bits included in the first domain in the third signaling may be determined according to the number of information elements included in the first information set, further reducing the number of The overhead of three signaling.
  • the method comprises:
  • the user equipment sends the first radio signal in the first sub-band;
  • the type of the first access detection is one of N candidate types;
  • the first access detection The type and the second signaling are jointly used to determine the first information set from the M information sets;
  • the first access detection includes:
  • the Q1 detection values of the Q detection values are all lower than the first threshold; the value of the Q1 is related to the type of the first access detection; the Q is a positive integer, and the Q1 is not greater than A positive integer of Q.
  • the method is characterized in that if the transmit beam of the first wireless signal is within the range of the corresponding downlink LBT beam, the UE only needs to perform a short uplink LBT to send the first wireless signal. If the transmit beam of the first wireless signal exceeds the range of the corresponding downlink LBT beam, the UE needs to perform a complete uplink LBT before transmitting the first wireless signal.
  • the above method has the advantage of allowing the UE to use a beam that exceeds the LBT beam range in the uplink transmission if the UE detects that the channel in the beam direction used is idle. This approach improves scheduling flexibility while avoiding interference with ongoing wireless transmissions in other directions than the range of downstream LBT beams.
  • the end time of the first access detection is before a starting point of the time domain resource occupied by the first wireless signal.
  • the first access detection is used to determine if the first sub-band is idle (Idle).
  • the first access detection is uplink access detection.
  • the first access detection is used to determine whether the first sub-band can be used by the user equipment for uplink transmission.
  • the Q1 is equal to the Q.
  • the Q1 is smaller than the Q.
  • the N is equal to two.
  • the N is greater than two.
  • the N candidate types include a Type 1 UL channel access procedure and a Type 2 UL channel access procedure.
  • the N candidate types are composed of a Type 1 UL channel access procedure and a Type 2 UL channel access procedure.
  • the units of the Q detection values and the first threshold are both dBm (millimeters).
  • the units of the Q detection values and the first threshold are both milliwatts (mW).
  • the unit of the Q detection values and the first threshold is Joule.
  • the first threshold is equal to or less than -72 dBm.
  • the first threshold is any value equal to or smaller than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the first threshold is freely selected by the user equipment under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the second signaling is used to determine N information sets from the M information sets, the type of the first access detection being used to determine from the N information sets.
  • the first set of information is described.
  • the number of information elements included in one of the N information sets is greater than the number of information elements included in any other one of the N information sets.
  • the N information sets and the N candidate types are in one-to-one correspondence.
  • the second signaling is used to determine N-1 information sets from the M information sets
  • the type of the first access detection is used to learn from the N-1 information.
  • the first information set is determined in the set and the reference information set
  • the reference information set is one information set of the M information sets that does not belong to the N-1 information sets.
  • the number of information elements included in the reference information set is greater than the number of information elements included in any one of the N-1 information sets.
  • the number of information elements included in the reference information set is greater than the number of information elements included in any other one of the M information sets.
  • the first information set is the reference information set; the first type of uplink access detection is a candidate type of the N candidate types; the N-1 information sets and the N candidate types other than the first type uplink access detection are in one-to-one correspondence .
  • the third signaling is used to determine the type of the first access detection.
  • the third signaling includes a third domain, and the third domain in the third signaling indicates a type of the first access detection.
  • the type of the first access detection is related to the duration of the time domain resource occupied by the first wireless signal.
  • the type of the first access detection is a first type of uplink access detection
  • the Q1 is a candidate integer of K1 candidate integers
  • the K1 is a positive integer
  • the first type of uplink access detection is a Type 1 UL channel access procedure, and the specific definition of the first type of uplink channel access procedure is described in 3GPP TS36.213. Section 15.2.
  • the type of the first access detection is the first type of uplink access detection.
  • the type of the first access detection is a second type of uplink access detection, and the Q1 is equal to 2.
  • the second type of uplink access detection is a Type 1 UL channel access procedure
  • the specific definition of the second type of uplink channel access procedure is as follows: 3GPP TS36.213 Section 15.2.
  • the fourth signaling is used to determine a second multi-carrier symbol group, the second multi-carrier symbol group includes a positive integer multi-carrier symbol, and the time domain resource occupied by the first wireless signal belongs to the The second multi-carrier symbol group, the type of the first access detection is the second type uplink access detection.
  • the fourth signaling is physical layer signaling.
  • the fourth signaling is dynamic signaling.
  • the signaling format of the fourth signaling is 1C.
  • the fourth signaling includes a fourth domain, where a fourth domain in the fourth signaling indicates the second multi-carrier symbol group;
  • the fourth field is the UL duration and offset field.
  • the fourth field in the fourth signaling includes 5 bits.
  • the type of the first access detection is the second type of uplink access detection.
  • the method comprises:
  • each multi-carrier symbol group in the L multi-carrier symbol groups includes a positive integer multi-carrier symbol, L is a positive integer greater than one;
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signaling, where the L1 downlink signaling is all the target information sets indicating the update from the M information sets in the L downlink signalings.
  • the measurement used to generate the first update signaling is restricted in the L1 multi-carrier symbol group.
  • the first update signaling is physical layer signaling.
  • the first update signaling includes UCI (Uplink Control Information).
  • the first update signaling includes a ⁇ CSI (Channel State Information), a CRI (Channel-State Information Reference Signal Resource Indicator), and a PMI (Precoding Matrix Indicator). , one or more of precoding matrix identifiers, RSRP, RSRP, CQI ⁇ .
  • ⁇ CSI Channel State Information
  • CRI Channel-State Information Reference Signal Resource Indicator
  • PMI Precoding Matrix Indicator
  • the using the first update signaling to update the target information set means that the first update signaling is used to update one or more information elements in the updated target information set The second type of index in the corresponding second type of index set.
  • the using the first update signaling to update the target information set means that the first update signaling indicates that one or more information elements in the updated target information set are updated The second type of index in the corresponding second type of index set.
  • the L1 is equal to one.
  • the L1 is greater than one.
  • the first update signaling is transmitted on the first sub-band.
  • the first update signaling is transmitted on a frequency band other than the first sub-band.
  • the first update signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the present application discloses a method in a base station used for wireless communication, which includes:
  • first signaling being used to determine M information sets, any one of the M information sets comprising a positive integer number of information elements, any one of the positive integer information elements
  • the information element includes a first type index and a second type index set, the second type index set includes one or more second type indexes, and the M is a positive integer greater than one;
  • Transmitting a third signaling the third signaling being associated with the second signaling, the third signaling being used to determine a first information element from the first set of information;
  • Transmitting a first wireless signal in a first sub-band the measurement of the set of antenna ports identified for the second type of index in the first information element is used for reception of the first wireless signal; or, in Receiving a first wireless signal in a sub-band, and an antenna port group identified by a second type of index in the first information element is used for sending the first wireless signal;
  • the third signaling includes scheduling information of the first wireless signal, and one antenna port group includes a positive integer number of antenna ports.
  • the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than that used in the first signaling. And indicating a number of bits of a second type index in the second type index set corresponding to the given first type index.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol;
  • the time domain resource is within the first multicarrier symbol group.
  • the second signaling indicates that the first multi-carrier symbol group is occupied by a downlink physical channel or a downlink physical signal sent by the base station.
  • all the multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are occupied; or All multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied, and the base station sends the first wireless in the first sub-band signal.
  • the third signaling and the second signaling occupy the same time slice in a time domain, where the time slice includes a positive integer number of consecutive multi-carrier symbols; or
  • the third signaling and the second signaling belong to the same search space.
  • the third signaling includes a first domain, and the first one of the third signaling is used to determine the first information from the first information set An element, the number of bits included in the first domain in the third signaling is related to the first information set.
  • the method comprises:
  • the base station receives the first wireless signal in the first sub-band; the sender of the first wireless signal performs the performing on the first sub-band before transmitting the first wireless signal First access detection; the type of the first access detection is one of N candidate types; the type of the first access detection and the second signaling are used together from the The first set of information is determined from the M sets of information.
  • the first access detection is used to determine if the first sub-band is idle (Idle).
  • the first access detection is uplink access detection.
  • the method comprises:
  • the first update signaling being used to update a target information set, the updated target information set being one of the M information sets;
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signaling, where the L1 downlink signaling is all the target information sets indicating the update from the M information sets in the L downlink signalings.
  • the measurement used to generate the first update signaling is restricted in the L1 multi-carrier symbol group.
  • the method comprises:
  • the second access detection includes:
  • the P1 detection values of the P detection values are all lower than the second threshold; the P is a positive integer, and the P1 is a positive integer not greater than the P.
  • the end time of the second access detection is before the start point of the time domain resource occupied by the second signaling.
  • the second access detection is used to determine if the first sub-band is idle (Idle).
  • the second access detection is downlink access detection.
  • the second access detection is used to determine whether the first sub-band can be used by the base station for downlink transmission.
  • the P1 is equal to the P.
  • the P1 is smaller than the P.
  • the units of the P detection values and the second threshold are both dBm (millimeters).
  • the units of the P detection values and the second threshold are both milliwatts (mW).
  • the unit of the P detected values and the second threshold is Joule.
  • the second threshold is equal to or less than -72 dBm.
  • the second threshold is any value equal to or smaller than the second given value.
  • the second given value is predefined.
  • the second threshold is freely selected by the base station under conditions equal to or less than a second given value.
  • the second given value is predefined.
  • the type of the second access detection is a first type of downlink access detection
  • the P1 is a candidate integer of K2 candidate integers
  • the K2 is a positive integer
  • the first type of downlink access detection is a Cat 4 LBT (a fourth type of LBT), and the specific definition of the Cat 4 LBT is referred to 3GPP TR36.889.
  • the type of the second access detection is a second type of downlink access detection, and the P1 is equal to 2.
  • the second type of downlink access detection is a Cat 2 LBT (a second type of LBT), and the specific definition of the Cat 2 LBT is referred to 3GPP TR36.889.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • a first receiver module receiving first signaling, second signaling and third signaling; said first signaling being used to determine M information sets, any one of said M information sets comprising a positive integer number of information elements, any one of the positive integer information elements including a first type index and a second type index set, the second type index set including one or more second type indexes;
  • the second signaling is used to determine a first information set from the M information sets;
  • the third signaling is associated with the second signaling, the third signaling is used to Determining a first information element in the first set of information;
  • a first processing module receiving a first wireless signal in a first sub-band, the measurement of the set of antenna ports identified for the second type of index in the first information element being used for reception of the first wireless signal Or transmitting a first wireless signal in a first sub-band, the antenna port group identified by the second type of index in the first information element being used for sending the first wireless signal;
  • the third signaling includes scheduling information of the first wireless signal, where M is a positive integer greater than 1, and one antenna port group includes a positive integer number of antenna ports.
  • the foregoing user equipment used for wireless communication is characterized in that the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than the The number of bits in the first signaling used to indicate a second type of index in the second type of index set corresponding to the given first type index.
  • the foregoing user equipment used for wireless communication is characterized in that the second signaling indicates that a first multi-carrier symbol group is occupied, and the first multi-carrier symbol group includes a positive integer multi-carrier symbol;
  • the time domain resource occupied by the third signaling is within the first multi-carrier symbol group.
  • the foregoing user equipment used for wireless communication is characterized in that all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are used. Are occupied.
  • the foregoing user equipment used for wireless communication is characterized in that all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are Occupied, the user equipment receives the first wireless signal in the first sub-band.
  • the foregoing user equipment used for wireless communication is characterized in that the third signaling and the second signaling occupy the same time slice in the time domain, and the time slice includes a positive integer consecutive Multi-carrier symbol.
  • the foregoing user equipment used for wireless communication is characterized in that the third signaling and the second signaling belong to the same search space.
  • the foregoing user equipment used for wireless communication is characterized in that the third signaling includes a first domain, and a first domain in the third signaling is used from the first information set Determining the first information element, the number of bits included in the first domain in the third signaling is related to the first information set.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver module further receives L downlink signaling, where the L downlink signaling respectively indicates that L multi-carrier symbol groups are occupied.
  • Each of the L multicarrier symbol groups includes a positive integer number of multicarrier symbols, and the L is a positive integer greater than one.
  • the first processing module further sends a first update signaling, where the first update signaling is used to update a target information set, and the updated target information set is one of the M information sets.
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signaling, where the L1 downlink signaling is all the target information sets indicating the update from the M information sets in the L downlink signalings.
  • Downlink signaling, the measurement used to generate the first update signaling is restricted in the L1 multi-carrier symbol group.
  • the foregoing user equipment used for wireless communication is characterized in that the first processing module further performs first access detection on the first sub-band; wherein the first processing module is in the Transmitting the first radio signal in the first sub-band; the type of the first access detection is one of N candidate types; the type of the first access detection and the second Determining jointly to determine the first information set from the M information sets; the first access detection includes:
  • the Q1 detection values of the Q detection values are all lower than the first threshold; the value of the Q1 is related to the type of the first access detection; the Q is a positive integer, and the Q1 is not greater than A positive integer of Q.
  • the foregoing user equipment used for wireless communication is characterized in that: the type of the first access detection is a first type of uplink access detection, and the Q1 is a K1 candidate integer. A candidate integer, the K1 being a positive integer.
  • the foregoing user equipment used for wireless communication is characterized in that the type of the first access detection is a second type of uplink access detection, and the Q1 is equal to 2.
  • the present application discloses a base station device used for wireless communication, which includes:
  • a first transmitter module transmitting first signaling, second signaling and third signaling; said first signaling being used to determine M information sets, any one of said M information sets comprising a positive integer number of information elements, any one of the positive integer information elements including a first type index and a second type index set, the second type index set including one or more second type indexes;
  • the second signaling is used to determine a first information set from the M information sets;
  • the third signaling is associated with the second signaling, the third signaling is used to Determining a first information element in the first set of information;
  • a second processing module transmitting a first wireless signal in a first sub-band, the measurement of the set of antenna ports identified for the second type of index in the first information element being used for reception of the first wireless signal Or receiving a first wireless signal in a first sub-band, and an antenna port group identified by a second type of index in the first information element is used for sending the first wireless signal;
  • the third signaling includes scheduling information of the first wireless signal, where M is a positive integer greater than 1, and one antenna port group includes a positive integer number of antenna ports.
  • the foregoing base station device used for wireless communication is characterized in that the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than the The number of bits in the first signaling used to indicate a second type of index in the second type of index set corresponding to the given first type index.
  • the foregoing base station device used for wireless communication is characterized in that the second signaling indicates that a first multi-carrier symbol group is occupied, and the first multi-carrier symbol group includes a positive integer multi-carrier symbol;
  • the time domain resource occupied by the third signaling is within the first multi-carrier symbol group.
  • the foregoing base station device used for wireless communication is characterized in that all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are used. Are occupied.
  • the foregoing base station device used for wireless communication is characterized in that all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are Occupied, the base station transmits the first wireless signal in the first sub-band.
  • the foregoing base station device used for wireless communication is characterized in that the third signaling and the second signaling occupy the same time slice in the time domain, and the time slice includes a positive integer number of consecutive Multi-carrier symbol.
  • the base station device used for wireless communication is characterized in that the third signaling and the second signaling belong to the same search space.
  • the foregoing base station device used for wireless communication is characterized in that the third signaling includes a first domain, and a first domain in the third signaling is used from the first information set Determining the first information element, the number of bits included in the first domain in the third signaling is related to the first information set.
  • the base station device used for wireless communication is characterized in that the first transmitter module further determines a type of first access detection; wherein the base station receives the location in the first sub-band Determining a first wireless signal; the sender of the first wireless signal performing the first access detection on the first sub-band before transmitting the first wireless signal; the type of the first access detection Is one of N candidate types; the type of the first access detection and the second signaling are jointly used to determine the first information set from the M information sets.
  • the base station device used for wireless communication is characterized in that the first transmitter module further sends L downlink signaling, where the L downlink signaling respectively indicates that L multi-carrier symbol groups are occupied.
  • Each of the L multicarrier symbol groups includes a positive integer number of multicarrier symbols, and the L is a positive integer greater than one.
  • the second processing module further receives first update signaling, the first update signaling is used to update a target information set, and the updated target information set is one of the M information sets.
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signaling, where the L1 downlink signaling is all the target information sets indicating the update from the M information sets in the L downlink signalings.
  • Downlink signaling, the measurement used to generate the first update signaling is restricted in the L1 multi-carrier symbol group.
  • the base station device used for wireless communication is characterized in that the second processing module further performs second access detection on the first sub-band; wherein the second access detection includes :
  • the P1 detection values of the P detection values are all lower than the second threshold; the P is a positive integer, and the P1 is a positive integer not greater than the P.
  • the present application has the following advantages compared with the conventional solution:
  • each beam indication table e.g. TCI tables
  • TCI tables are defined for different beam sets, and the beams in each beam indication table are all confined within the corresponding beam set.
  • the size of each table is reduced compared to a beam indication table covering all directions, reducing the signaling overhead required to indicate an element in a table.
  • the transmitting node (such as a base station or a UE) does LBT on the unlicensed spectrum and finds that the channel in a certain beam direction is idle, the channel in other directions cannot be considered idle, and the transmitting node is in the burst corresponding to the LBT (The set of beams used in bursts will be limited to the idle beam direction coverage, thereby avoiding interference to ongoing wireless transmissions in other directions on the unlicensed spectrum.
  • the uplink LBT is stricter than the uplink beam within the downlink LBT beam range. This approach improves scheduling flexibility while avoiding interference with ongoing wireless transmissions in other directions than the range of downstream LBT beams.
  • FIG. 1 shows a flow chart of first signaling according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • Figure 7 shows a schematic diagram of a first set of information in accordance with one embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a first set of information in accordance with another embodiment of the present application.
  • FIG. 9 is a schematic diagram showing resource mapping of a second signaling, a third signaling, and a first wireless signal in a time domain according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing resource mapping of a second signaling, a third signaling, and a first wireless signal in a time domain according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram showing resource mapping of a second signaling, a third signaling, and a first wireless signal in a time domain according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram showing the content of third signaling according to an embodiment of the present application.
  • Figure 13 shows a schematic diagram of an antenna port and an antenna port group in accordance with one embodiment of the present application
  • FIG. 14 shows a schematic diagram of a given access detection according to an embodiment of the present application, the given access detection being the first access detection in the present application or the second connection in the present application.
  • FIG. 16 shows a schematic diagram of a given access detection, which is the first access detection in the present application or the second in the present application, in accordance with another embodiment of the present application.
  • FIG. 17 shows a schematic diagram of L multicarrier symbol groups and L1 multicarrier symbol groups in accordance with an embodiment of the present application
  • FIG. 18 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • FIG. 19 shows a block diagram of a structure for a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signaling, as shown in FIG.
  • the user equipment in the present application receives the first signaling, the second signaling, and the third signaling, and then receives the first wireless signal in the first sub-band or transmits in the first sub-band.
  • the first signaling is used to determine M information sets, where any one of the M information sets includes a positive integer information element, and any one of the positive integer information elements includes a first A type of index and a second type of index set, the second type of index set including one or more second type indexes, the M being a positive integer greater than one.
  • the second signaling is used to determine a first set of information from the set of M information.
  • the third signaling is associated with the second signaling, the third signaling being used to determine a first information element from the first set of information. If the user equipment receives the first wireless signal in the first sub-band, a measurement for an antenna port group identified by a second type of index in the first information element is used for the first wireless Receiving a signal; if the user equipment transmits the first wireless signal in the first sub-band, an antenna port group identified by a second type of index in the first information element is used for the first The transmission of wireless signals.
  • the third signaling includes scheduling information of the first wireless signal, and one antenna port group includes a positive integer number of antenna ports.
  • the first signaling is high layer signaling.
  • the first signaling is RRC (Radio Resource Control) signaling.
  • the first signaling is a MAC CE (Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element
  • the first signaling is physical layer signaling.
  • At least two of the M information sets include an unequal number of information elements.
  • any two of the M information sets include the same number of information elements.
  • the first signaling is transmitted on the first sub-band.
  • the first signaling is transmitted on a frequency band other than the first sub-band.
  • the first signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • any of the M information sets is a non-negative integer.
  • any one of the M information sets is an index of a corresponding information element in an associated information set.
  • any of the M information sets is a non-negative integer.
  • any one of the M information sets identifies an antenna port group.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is common to the cell.
  • the second signaling is specific to the terminal group, and the user equipment is one of the terminal groups.
  • the second signaling includes DCI.
  • the second signaling is transmitted on the first sub-band.
  • the signaling identifier of the second signaling is a CC (Component Carrier)-RNTI (Radio Network Temporary Identifier).
  • the second signaling is a DCI identified by a CC-RNTI.
  • the CC-RNTI is used to generate an RS sequence of the DMRS corresponding to the second signaling.
  • the CRC bit sequence of the second signaling is scrambled by the CC-RNTI.
  • the signaling format of the second signaling is 1C.
  • the second signaling is repeatedly transmitted in a positive integer number of time units, the positive integer time units being mutually orthogonal (non-overlapping) in the time domain.
  • the user equipment receives the second signaling sent in different time units of the positive integer number of time units with different beamforming vectors.
  • the user equipment receives the second signaling sent in different time units in the positive integer number of time units by using different analog beam shaping matrices.
  • the user equipment receives the second signaling sent in different time units in the positive integer number of time units by using different receiving spatial filtering.
  • any one of the positive integer number of time units includes a positive integer number of multi-carrier symbols.
  • the positive integer number of time units are continuous in the time domain.
  • the positive integer number of time units are discontinuous in the time domain.
  • the second signaling is sent by the same antenna port group in the positive integer number of time units.
  • the first set of information is one of the M sets of information.
  • the second signaling indicates an index of the first information set in the M information sets.
  • the third signaling is physical layer signaling.
  • the third signaling is dynamic signaling.
  • the third signaling is UE-specific.
  • the third signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the third signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the third signaling includes DCI.
  • the third signaling includes a DownLink Grant DCI.
  • the third signaling includes an UpLink Grant DCI.
  • the third signaling is transmitted on the first sub-band.
  • the third signaling is transmitted on a frequency band other than the first sub-band.
  • the third signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the signaling identifier of the third signaling is C (Cell)-RNTI.
  • the third signaling is a DCI identified by a C-RNTI.
  • the C-RNTI is used to generate an RS sequence of the DMRS corresponding to the third signaling.
  • the CRC bit sequence of the third signaling is scrambled by the C-RNTI.
  • the first information element is one of the information elements in the first set of information.
  • the third signaling indicates an index of the first information element in the first information set.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band is a carrier.
  • the first sub-band is a BWP.
  • the first sub-band includes a positive integer number of PRBs (Physical Resource Blocks) in the frequency domain.
  • PRBs Physical Resource Blocks
  • the first sub-band includes a positive integer number of consecutive PRBs in the frequency domain.
  • the first sub-band includes a positive integer number of consecutive sub-carriers in the frequency domain.
  • the first wireless signal includes at least one of ⁇ uplink data, an uplink reference signal ⁇ , and the user equipment transmits the first wireless signal in the first sub-band.
  • the uplink reference signal includes one or more of ⁇ SRS, DMRS, PTRS ⁇ .
  • the first wireless signal includes at least one of ⁇ downlink data, a downlink reference signal ⁇ , and the user equipment receives the first wireless signal in the first subband.
  • the downlink reference signal includes one or more of ⁇ CSI-RS, DMRS, PTRS, TRS ⁇ .
  • the measurement for a given set of antenna ports is used for the reception of a given wireless signal to mean that all or part of the wireless signal transmitted by the user equipment from the given set of antenna ports is large scale ( Large-scale) properties infer all or part of the large-scale characteristics of the given wireless signal.
  • the large scale characteristics of a given wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, path loss, average One of gain, average delay, angle of arrival, angle of departure, spatial correlation, multi-antenna-related transmission, multi-antenna-related reception Or a variety.
  • the multi-antenna related reception is a Spatial Rx parameter.
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is to receive an analog beam shaping matrix.
  • the multi-antenna related reception is a receive beamforming vector.
  • multi-antenna related reception is receive spatial filtering.
  • the multi-antenna related transmission is a Spatial Tx parameter.
  • the multi-antenna related transmission is a transmit beam.
  • the multi-antenna related transmission is to transmit an analog beam shaping matrix.
  • the multi-antenna related transmission is a transmit beamforming vector.
  • multi-antenna related transmission is transmission spatial filtering.
  • the use of a given set of antenna ports for the transmission of a given wireless signal means that the large-scale characteristics of the wireless signals transmitted on the given set of antenna ports can be used to infer the given wireless signal.
  • Multiple antenna related transmissions are possible.
  • the use of a given set of antenna ports for the transmission of a given wireless signal means that the multiple antenna related transmission of the given set of antenna ports can be used to infer the multiple antennas of the given wireless signal. Related to send.
  • the sending of a given set of antenna ports for a given wireless signal means: any of the set of transmit antenna ports of the given wireless signal and any of the given set of antenna ports One antenna port is QCL.
  • the sending of a given antenna port group for a given wireless signal means: at least one of the antenna port groups of the given wireless signal and at least one of the given antenna port groups One antenna port is QCL.
  • the sending of a given set of antenna ports for a given wireless signal means: at least one of the set of transmit antenna ports of the given wireless signal and at least one of the set of given antenna ports One antenna port is QCL.
  • the sending of a given set of antenna ports for a given wireless signal means: any of the set of transmit antenna ports of the given wireless signal and any of the given set of antenna ports One antenna port is a spatial QCL.
  • the sending of a given antenna port group for a given wireless signal means: at least one of the antenna port groups of the given wireless signal and at least one of the given antenna port groups
  • One antenna port is a spatial QCL.
  • the sending of a given set of antenna ports for a given wireless signal means: at least one of the set of transmit antenna ports of the given wireless signal and at least one of the set of given antenna ports One antenna port is a spatial QCL.
  • two antenna ports QCL means that all or part of the large-scale characteristics of the wireless signal that can be transmitted from one of the two antenna ports can be inferred from two All or part of the large-scale characteristics of the wireless signal transmitted on the other of the antenna ports.
  • the two antenna ports QCL mean that the two antenna ports have at least one identical QCL parameter, and the QCL parameters include multi-antenna related QCL parameters and multi-antenna-independent QCL parameters.
  • the multi-antenna related QCL parameters include: ⁇ one of angle of arrival, angle of departure, spatial correlation, multi-antenna related transmission, multi-antenna related reception ⁇ Or a variety.
  • the multi-antenna-independent QCL parameters include: ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain One or more of (average gain) ⁇ .
  • two antenna ports QCL means that at least one QCL parameter of the other of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports.
  • any two of the antenna port groups are QCL.
  • the two antenna ports are spatial QCL refers to all or part of the multi-antenna related large-scale characteristics of the wireless signal that can be transmitted from one of the two antenna ports. (properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are spatial QCL, which means that the two antenna ports have at least one identical multi-antenna related QCL parameter.
  • the two antenna ports are spatial QCL, which means that the other of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of the antenna port.
  • any two antenna ports in an antenna port group are spatial QCL.
  • the scheduling information of the first radio signal includes ⁇ MCS (Modulation and Coding Scheme), DMRS configuration information, HARQ (Hybrid Automatic Repeat reQuest) process number, RV At least one of (Redundancy Version, Redundancy Version), NDI (New Data Indicator).
  • the configuration information of the DMRS includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC (Orthogonal) One or more of Cover Code, Orthogonal Mask).
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • the EPS 200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS 200 provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports wireless communication of massive MIMO.
  • the gNB 203 supports wireless communication for massive MIMO.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for the UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first signaling in the present application is generated by the RRC sublayer 306.
  • the first signaling in the present application is generated by the MAC sublayer 302.
  • the first signaling in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated by the PHY 301.
  • the third signaling in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the L downlink signalings in this application are respectively generated in the PHY 301.
  • the first update signaling in the present application is generated by the PHY 301.
  • Embodiment 4 illustrates a schematic diagram of an NR node and a UE, as shown in FIG. 4 is a block diagram of a UE 450 and a gNB 410 that communicate with each other in an access network.
  • the gNB 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the UE 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454, and an antenna 452.
  • DL Downlink
  • controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at UE 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding/beamforming processing on the encoded and modulated symbols to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then transmits an analog precoding/beamforming operation to the time domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multicarrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 456.
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer. Multi-antenna receive processor 458 performs a receive analog precoding/beamforming operation on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multicarrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna detection in the multi-antenna receive processor 458 with the UE 450 as Any spatial stream of destinations.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and a soft decision is generated.
  • the receive processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the gNB 410 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide upper layer data packets to controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the gNB 410. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the transmit processor 468 performs modulation mapping, channel coding processing, the multi-antenna transmit processor 457 performs digital multi-antenna spatial pre-coding/beamforming processing, and then the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream.
  • the analog precoding/beamforming operation is performed in the multi-antenna transmit processor 457 and then provided to the different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a stream of radio frequency symbols and provides it to the antenna 452.
  • the function at gNB 410 is similar to the receiving function at UE 450 described in the DL.
  • Each receiver 418 receives a radio frequency signal through its respective antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a multi-antenna receive processor 472 and a receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer function. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from the UE 450.
  • Upper layer data packets from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving a location in the present application Receiving the first signaling, receiving the second signaling in the application, and receiving the third signaling in the application, and receiving the first part in the application in the first sub-band in the present application A wireless signal, the first wireless signal in the present application is transmitted in the first sub-band of the present application.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB410 device transmits at least the first signaling in the application, the second signaling in the application, and the third signaling in the application, where the first The first wireless signal in the present application is transmitted in a sub-band, and the first wireless signal in the present application is received in the first sub-band of the present application.
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting the Transmitting the first signaling, sending the second signaling in the application, sending the third signaling in the application, and sending the first part in the application in the first sub-band in the application A wireless signal, the first wireless signal in the present application is received in the first sub-band of the present application.
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the first signaling; at least one of the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475 ⁇ Used to send the first signaling.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the second signaling; at least one of the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475 ⁇ Used to send the second signaling.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the third signaling; at least one of the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475 ⁇ Used to send the third signaling.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving at least one of the first wireless signal; the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475 ⁇ Used to transmit the first wireless signal.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used Receiving at least one of the first wireless signal; the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459 ⁇ Used to transmit the first wireless signal.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Performing the first access detection.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used Performing the second access detection.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the L downlink signaling; at least one of the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475 ⁇ One is used to send the L downlink signaling.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used Receiving the first update signaling; at least one of the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459 ⁇ One is used to send the first update signaling.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • the steps in block F1, block F2 and block F3 are optional, respectively.
  • L downlink signaling is transmitted in step S101; first update signaling is received in step S102; first signaling is transmitted in step S11; second access detection is performed in step S103; in step S12 Transmitting the second signaling; transmitting the third signaling in step S13; transmitting the first wireless signal in the first sub-band in step S14.
  • step S201 L downlink signaling is received in step S201; first update signaling is transmitted in step S202; first signaling is received in step S21; second signaling is received in step S22; and received in step S23 Third signaling; receiving the first wireless signal in the first sub-band in step S24.
  • the first signaling is used by the U2 to determine M information sets, and any one of the M information sets includes a positive integer information element, where the positive integer information elements are Any information element includes a first class index and a second class index set, the second class index set including one or more second class indexes, the M being a positive integer greater than one.
  • the second signaling is used by the U2 to determine a first set of information from the M sets of information.
  • the third signaling is associated with the second signaling, and the third signaling is used by the U2 to determine a first information element from the first information set.
  • a measurement of an antenna port group identified by a second type of index in the first information element is used by the U2 for reception of the first wireless signal.
  • the third signaling includes scheduling information of the first wireless signal, and one antenna port group includes a positive integer number of antenna ports.
  • the L downlink signaling respectively indicates that L multi-carrier symbol groups are occupied, and each multi-carrier symbol group in the L multi-carrier symbol groups includes a positive integer multi-carrier symbol, and the L is a positive integer greater than 1.
  • the first update signaling is used by the N1 to update a target information set, and the updated target information set is one of the M information sets.
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signalings, where the L1 downlink signalings are all downlink information indicating the updated target information set from the M information sets in the L downlink signalings.
  • the measurement for generating the first update signaling is limited to the L1 multi-carrier symbol groups.
  • the second access detection is used by the N1 to determine whether the first sub-band can be used by the N1 for downlink transmission.
  • the first signaling is high layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is transmitted on the first sub-band.
  • the first signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the second signaling is physical layer signaling.
  • the second signaling is common to the cell.
  • the second signaling is specific to the terminal group, and the user equipment is one of the terminal groups.
  • the second signaling is transmitted on the first sub-band.
  • the signaling identifier of the second signaling is a CC-RNTI.
  • the third signaling is physical layer signaling.
  • the third signaling includes a DownLink Grant DCI.
  • the third signaling is transmitted on the first sub-band.
  • the third signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than the first signaling used to indicate the given The number of bits of a second type of index in the second type of index set corresponding to a type of index.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol, and the time-domain resource occupied by the third signaling is in the Within the first multi-carrier symbol group.
  • the time domain resource occupied by the first wireless signal belongs to the first multi-carrier symbol group.
  • the time domain resource occupied by the first wireless signal does not belong to the first multi-carrier symbol group.
  • all multi-carrier symbols between the time domain resources occupied by the second signaling and the time domain resources occupied by the third signaling are occupied.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied.
  • the third signaling and the second signaling occupy the same time slice in the time domain, and the time slice includes a positive integer number of consecutive multi-carrier symbols.
  • the third signaling and the second signaling belong to the same search space.
  • the search space is a Search Space.
  • the search space is a CORESET.
  • the search space appears multiple times in the time domain.
  • the time interval between any two adjacent occurrences of the search space in the time domain is equal.
  • the search space appears only once in the time domain.
  • the third signaling includes a first domain
  • the first domain in the third signaling is used by the U2 to determine the first information element from the first information set.
  • the number of bits included in the first field in the third signaling is related to the first information set.
  • the number of bits included in the first domain in the third signaling is related to the number of information elements included in the first information set.
  • the L downlink signalings are all physical layer signaling.
  • the L downlink signalings are all dynamic signaling.
  • the L downlink signalings are all common to the cell.
  • the L downlink signalings are all terminal group specific, and the user equipment is one terminal in the terminal group.
  • any downlink signaling in the L downlink signaling includes DCI (Downlink Control Information).
  • the L downlink signalings are all transmitted on the first sub-band.
  • the signaling identifiers of the L downlink signalings are all CC-RNTIs.
  • the L downlink signalings are all DCIs identified by the CC-RNTI.
  • the CC-RNTI is used to generate an RS sequence of DMRS (DeModulation Reference Signals) corresponding to any downlink signaling in the L downlink signaling.
  • DMRS Demodulation Reference Signals
  • a CRC (Cyclic Redundancy Check) bit sequence of any one of the L downlink signalings is scrambled by the CC-RNTI.
  • the first update signaling is physical layer signaling.
  • the first update signaling includes one or more of ⁇ CSI, CRI, PMI, RSRP, RSRP, CQI ⁇ .
  • the end time of the second access detection is before the start point of the time domain resource occupied by the second signaling.
  • the second access detection is downlink access detection.
  • the second access detection includes performing P energy detections in P time sub-pools on the first sub-band, respectively, and obtaining P detection values respectively; wherein the P detection values are respectively The P1 detection values in all are lower than the second threshold; the P is a positive integer, and the P1 is a positive integer not greater than the P.
  • the first signaling is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data), and the user equipment receives the first wireless signal.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the third signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data), and the user equipment receives the first wireless signal.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the first wireless signal corresponding transport channel is a DL-SCH (DownLink Shared Channel), and the user equipment receives the first wireless signal.
  • DL-SCH DownLink Shared Channel
  • the L downlink signalings are respectively transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first update signaling is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH).
  • the uplink physical layer control channel is an NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is a NB-PUCCH (Narrow Band PUCCH).
  • the first update signaling is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH).
  • the uplink physical layer data channel is an NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (Narrow Band PUSCH).
  • Embodiment 6 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N3 is a serving cell maintenance base station of user equipment U4.
  • the steps in block F4, block F5, block F6 and block F7 are optional, respectively.
  • step S31 For N3, transmitting the first signaling in step S31; performing second access detection in step S301; transmitting second signaling in step S32; transmitting third signaling in step S33;
  • the first wireless signal is received in a sub-band; the L downlink signaling is transmitted in step S302; and the first update signaling is received in step S303.
  • the first signaling is received in step S41; the second signaling is received in step S42; the third signaling is received in step S43; the first access detection is performed in step S401; The first wireless signal is transmitted in a sub-band; the L downlink signaling is received in step S402; and the first update signaling is transmitted in step S403.
  • the first signaling is used by the U4 to determine M information sets, and any one of the M information sets includes a positive integer information element, where the positive integer information elements are Any information element includes a first class index and a second class index set, the second class index set including one or more second class indexes, the M being a positive integer greater than one.
  • the second signaling is used by the U4 to determine a first set of information from the M sets of information.
  • the third signaling is associated with the second signaling, and the third signaling is used by the U4 to determine a first information element from the first set of information.
  • An antenna port group identified by a second type of index in the first information element is used by the U4 for transmission of the first wireless signal.
  • the third signaling includes scheduling information of the first wireless signal, and one antenna port group includes a positive integer number of antenna ports.
  • the L downlink signaling respectively indicates that L multi-carrier symbol groups are occupied, and each multi-carrier symbol group in the L multi-carrier symbol groups includes a positive integer multi-carrier symbol, and the L is a positive integer greater than 1.
  • the first update signaling is used by the N3 to update a target information set, and the updated target information set is one of the M information sets.
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signalings, where the L1 downlink signalings are all downlink information indicating the updated target information set from the M information sets in the L downlink signalings.
  • the measurement for generating the first update signaling is limited to the L1 multi-carrier symbol groups.
  • the first access detection is used by the U4 to determine whether the first sub-band can be used by the U4 for uplink transmission.
  • the type of the first access detection is one of N candidate types; the type of the first access detection and the second signaling are jointly used by the U4 to use the M information.
  • the first set of information is determined in the set.
  • the second access detection is used by the N3 to determine whether the first sub-band can be used by the N3 for downlink transmission.
  • the first access detection includes performing Q energy detections in Q time sub-pools on the first sub-band, respectively, and obtaining Q detection values respectively; wherein the Q detection values are respectively The Q1 detection values are all lower than the first threshold; the value of Q1 is related to the type of the first access detection; the Q is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the type of the first access detection is a first type of uplink access detection
  • the Q1 is a candidate integer of K1 candidate integers
  • the K1 is a positive integer
  • the type of the first access detection is a second type of uplink access detection, and the Q1 is equal to 2.
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data), and the user equipment sends the first wireless signal.
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data
  • the uplink physical layer data channel is a PUSCH.
  • the uplink physical layer data channel is sPUSCH.
  • the uplink physical layer data channel is an NR-PUSCH.
  • the uplink physical layer data channel is an NB-PUSCH.
  • the first wireless signal corresponding transport channel is a UL-SCH (Uplink Shared Channel), and the user equipment sends the first wireless signal.
  • UL-SCH Uplink Shared Channel
  • Embodiment 7 illustrates a schematic diagram of a first set of information, as shown in FIG.
  • the first information set is one of M information sets, and the M is a positive integer greater than one.
  • Any one of the M information sets includes a positive integer number of information elements, and any one of the positive integer information elements includes a first type index and a second type index set, and the second type index A collection includes one or more second type indexes.
  • Any of the M information sets is an index of the corresponding information element in the associated information set.
  • Any of the M sets of information identifies an antenna port group.
  • the first information element is one of the information elements in the first set of information.
  • the first type of index in the first information element is x, the x is a non-negative integer, and the x is smaller than the number of information elements in the first information set.
  • the second type of index set in the first information element includes two second type indexes, and the two second type indexes respectively identify two antenna port groups.
  • the indexes of the positive integer information elements in the first information set are ⁇ #0, #1, . . . , #x, . . . Is #x;
  • the second type of index set in the information element #y includes an i-th antenna port group represented by an antenna port group #(y, i), wherein the y and the i are respectively non-negative integers, y is smaller than the number of information elements in the first information set, and the i is smaller than the number of second type indexes included in the second type index set in the information element #y.
  • the two antenna port groups identified by the two second type indexes in the second type index set in the first information element are antenna port group #(x, 0) and antenna port group #(x, 1), respectively.
  • At least two of the M information sets include an unequal number of information elements.
  • any two of the M information sets include the same number of information elements.
  • any of the M information sets is a non-negative integer.
  • any of the M information sets is a non-negative integer.
  • the antenna port group #(x, 0) is one of the S1 candidate antenna port groups, and the antenna port group #(x, 1) is in the S2 candidate antenna port groups.
  • An antenna port group; two of the second type index sets of the first information element are respectively indexed by the antenna port group #(x, 0) in the S1 candidate antenna port group And an index of the antenna port group #(x, 1) in the S2 candidate antenna port groups.
  • the S1 and the S2 are positive integers greater than 1, respectively.
  • At least one of the S1 and the S2 is greater than the number of information elements included in the first type of information set.
  • both S1 and S2 are greater than the number of information elements included in the first type information set.
  • the antenna port group #(x, 0) and the antenna port group #(x, 1) are respectively one of the S3 candidate antenna port groups; in the first information element
  • the two second type indexes in the second type of index set are respectively the antenna port group #(x, 0) and the antenna port group #(x, 1) in the S3 candidate antenna port groups.
  • the S3 sum is a positive integer greater than one.
  • the S3 is greater than the number of information elements included in the first type of information set.
  • the user equipment in this application receives the first wireless signal in the application in the first sub-band of the present application, for the antenna port group #(x, 0) Measurements are used for reception of the first wireless signal.
  • the user equipment in this application sends the first wireless signal in the application in the first sub-band of the present application, and the antenna port group #(x, 0) is used. And transmitting the first wireless signal.
  • the user equipment may infer from the full-scale multi-antenna related large-scale properties of the wireless signal transmitted on the antenna port group #(x, 0) All or part of the first wireless signal is multi-antenna-related large-scale characteristics.
  • the user equipment may infer all or part of multi-antenna-independent large-scale properties of the wireless signal transmitted on the antenna port group #(x, 1) All or part of the first wireless signal is multi-antenna-independent large-scale characteristics.
  • At least one of the transmit antenna port of the first wireless signal and any of the antenna port groups #(x, 1) is QCL.
  • any one of the transmit antenna port of the first wireless signal and the antenna port group #(x, 1) is not spatial QCL.
  • the number of bits in the first signaling used in the first signaling to indicate that any one of the M information sets is given a first type index is smaller than that used in the first signaling to indicate The number of bits of a second type of index in the second type of index set corresponding to the first type of index is given.
  • the number of bits in the first signaling used to indicate any first type index in the given information set is less than The number of bits in the first signaling used to indicate any of the second type of indexes in the given set of information.
  • the number of bits in the first signaling used to indicate any one of the M information sets is smaller than the first signaling used to indicate the M information sets.
  • the number of bits in any of the second type of indexes is smaller than the first signaling used to indicate the M information sets.
  • Embodiment 8 illustrates a schematic diagram of a first set of information, as shown in FIG.
  • the first information set is one of M information sets, and the M is a positive integer greater than one.
  • Any one of the M information sets includes a positive integer number of information elements, and any one of the positive integer information elements includes a first type index and a second type index set, and the second type index A collection includes one or more second type indexes.
  • Any of the M information sets is an index of the corresponding information element in the associated information set.
  • Any of the M sets of information identifies an antenna port group.
  • the first information element is one of the information elements in the first set of information.
  • the first type of index in the first information element is x, the x is a non-negative integer, and the x is smaller than the number of information elements in the first information set.
  • the second type of index set in the first information element includes one second type index, and the one second type index identifies one antenna port group.
  • the indexes of the positive integer information elements in the first information set are ⁇ #0, #1, . . . , #x, . . . Is #x;
  • the second type of index set in the information element #y includes an i-th antenna port group represented by an antenna port group #(y, i), wherein the y and the i are respectively non-negative integers, y is smaller than the number of information elements in the first information set, and the i is smaller than the number of second type indexes included in the second type index set in the information element #y.
  • One antenna port group identified by one second type index in the second type index set in the first information element is an antenna port group #(x, 0).
  • the user equipment in this application receives the first wireless signal in the application in the first sub-band of the present application, for the antenna port group #(x, 0) Measurements are used for reception of the first wireless signal.
  • the user equipment in this application sends the first wireless signal in the application in the first sub-band of the present application, and the antenna port group #(x, 0) is used. And transmitting the first wireless signal.
  • Embodiment 9 exemplifies a resource mapping of the second signaling, the third signaling, and the first wireless signal in the time domain, as shown in FIG.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol; and the time-domain resource occupied by the second signaling, The time domain resource occupied by the third signaling and the time domain resource occupied by the first wireless signal are all within the first multi-carrier symbol group.
  • the left slash filled box represents the first multicarrier symbol group.
  • the user equipment in the application receives the first wireless signal.
  • the multicarrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier) symbol.
  • the multi-carrier symbol includes a CP (Cyclic Prefix).
  • all of the multi-carrier symbols in the first set of multi-carrier symbols are contiguous.
  • the first multi-carrier symbol group is occupied by a downlink physical channel or a downlink physical signal.
  • the first multi-carrier symbol group is occupied by a downlink physical channel or a downlink physical signal sent by the base station in this application.
  • all multicarrier symbols in the first multicarrier symbol group belong to the same slot.
  • all the multi-carrier symbols in the first multi-carrier symbol group belong to the same subframe.
  • the first multi-carrier symbol group and the time domain resources occupied by the second signaling belong to the same slot.
  • the first multi-carrier symbol group and the time domain resource occupied by the second signaling belong to the same subframe.
  • the third signaling and the second signaling belong to the same search space.
  • the time domain resource occupied by the search space to which the second signaling belongs and the time domain resource occupied by the search space to which the third signaling belongs belong to the first multicarrier Symbol group.
  • the second signaling includes a second domain, where the second domain in the second signaling indicates that the first multi-carrier symbol group is occupied, and the second domain in the second signaling It is a Subframe configuration for LAA field.
  • the Subframe configuration for LAA field refer to section 13A in 3GPP TS36.213.
  • the second field in the second signaling includes 4 bits.
  • Embodiment 10 exemplifies a resource mapping diagram of the second signaling, the third signaling, and the first wireless signal in the time domain, as shown in FIG.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol; the third-signal occupied time domain resource and The time domain resources occupied by the first wireless signal are all within the first multi-carrier symbol group.
  • the left slash filled box represents the first multicarrier symbol group.
  • the user equipment in the application receives the first wireless signal.
  • the first multi-carrier symbol group and the time domain resources occupied by the second signaling belong to different slots.
  • the first multi-carrier symbol group and the time domain resource occupied by the second signaling belong to different subframes.
  • all multi-carrier symbols between the time domain resources occupied by the second signaling and the time domain resources occupied by the third signaling are occupied.
  • all the multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are occupied by the downlink physical channel or the downlink physical signal.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling belong to the first multi-carrier symbol group.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied by a downlink physical channel or a downlink physical signal.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal belong to the first multi-carrier symbol group.
  • the third signaling and the second signaling occupy the same time slice in the time domain.
  • the same time slice includes 14 consecutive multi-carrier symbols.
  • the same time slice belongs to a slot.
  • the same time slice belongs to a sub-frame.
  • the same time slice belongs to a downlink burst (Downlink Burst).
  • the same time slice belongs to the first multi-carrier symbol group.
  • all multi-carrier symbols between the time domain resource occupied by the search space to which the second signaling belongs and the time domain resource occupied by the search space to which the third signaling belongs belong to The first multi-carrier symbol group.
  • Embodiment 11 exemplifies a resource mapping of the second signaling, the third signaling, and the first wireless signal in the time domain, as shown in FIG.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol; and the time-domain resource occupied by the third signaling is Within the first multi-carrier symbol group, the time domain resource occupied by the first wireless signal is outside the first multi-carrier symbol group.
  • the left slash filled box represents the first multicarrier symbol group.
  • the user equipment in the application receives the first wireless signal.
  • the user equipment in the application sends the first wireless signal.
  • all multi-carrier symbols between the time domain resource occupied by the third signaling and the time domain resource occupied by the first wireless signal are occupied.
  • all multi-carrier symbols between the time domain resource occupied by the third signaling and the time domain resource occupied by the first wireless signal are occupied by a downlink physical channel or a downlink physical signal.
  • all multi-carrier symbols between the time domain resource occupied by the third signaling and the time domain resource occupied by the first wireless signal belong to the first multi-carrier symbol group.
  • Embodiment 12 illustrates a schematic diagram of the contents of the third signaling, as shown in FIG.
  • the third signaling includes a first domain, and the first domain in the third signaling is used to determine the foregoing in the application from the first information set in the present application.
  • the first information element is used to determine the foregoing in the application from the first information set in the present application.
  • the number of bits included in the first domain in the third signaling is related to the first information set.
  • the number of bits included in the first domain in the third signaling is related to the number of information elements included in the first information set.
  • the first field in the third signaling includes a number of bits equal to a base 2 logarithm of the number of information elements included in the first information set, that is, the The first field in the third signaling includes the number of bits equal to A3, the A3 is a positive integer not less than log 2 (B2), and the B2 is the number of information elements included in the first information set.
  • the first field in the third signaling includes 1 bit.
  • the first field in the third signaling includes 2 bits.
  • the first field in the third signaling includes 3 bits.
  • the first field in the third signaling includes 4 bits.
  • the first domain in the third signaling is a TCI.
  • the first field in the third signaling indicates an index of the first information element in the first information set.
  • the third signaling includes a third domain, and the third domain in the third signaling indicates the type of the first access detection in this application.
  • the third domain in the third signaling is a Channel Access type domain.
  • the third field in the third signaling includes 1 bit.
  • the signaling format of the third signaling belongs to ⁇ 0A, 0B, 4A, 4B ⁇ .
  • Embodiment 13 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by superposition of antennas in a positive integer number of antenna groups by antenna virtualization; one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to the positive integer antenna groups constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 13: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to the antenna port group #0 constitute an analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute a number Beamforming vector #0
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to the antenna port group #1 constitute an analog beamforming vector #1 and an analog beamforming vector #, respectively. 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute a digital beamforming vector #1.
  • a beamforming vector corresponding to any one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 Obtained from the product of the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in FIG. 13 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced into an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • the digital beamforming vector #0 in FIG. 13 is reduced to a scalar, and the beamforming vector corresponding to the antenna port in the antenna port group #0 is the analog beamforming vector #0.
  • one antenna port group includes a plurality of antenna ports.
  • the antenna port group #1 in FIG. 13 includes a plurality of antenna ports.
  • the plurality of antenna ports correspond to the same analog beam shaping matrix and different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beam shaping matrices.
  • any two of the antenna port groups are QCL.
  • any two antenna ports in an antenna port group are spatial QCL.
  • Embodiment 14 illustrates a schematic diagram of a given access detection, as shown in FIG. 14; the given access detection is the first access detection in the present application or the second access in the present application Detection.
  • the given node is in an idle state in step S1401, it is determined in step S1402 whether or not transmission is required; in step 1403, energy detection is performed in a defer duration; in step S1404, the delay is judged. Whether all the time slots in the time slot are idle, if yes, proceeding to step S1405 to set the first counter equal to T1; otherwise, returning to step S1404; determining in step S1406 whether the first counter is 0, and if yes, proceeding to step Transmitting a wireless signal on the first sub-band in the present application in S1407; otherwise proceeding to perform energy detection in an additional time slot in step S1408; determining whether the additional time slot is idle in step S1409, and if so, proceeding Go to step S1410 to decrement the first counter, and then return to step 1406; otherwise proceed to step S1411 to perform energy detection in an additional delay period; in step S1412, determine whether all time slots in the additional delay period are Idle, if yes, proceed to step S1410; otherwise
  • the given access detection is performed on the first sub-band in the present application.
  • the given node performs T energy detections in T time sub-pools on the first sub-band, respectively, to obtain T detection values respectively; wherein T1 detection values in the T detection values are low Given a threshold. If the given access detection is the first access detection, the given node is the user equipment in the application, the T is equal to the Q, and the T1 is equal to the Q1, The given threshold is the first threshold in the present application; if the given access detection is the second access detection, the given node is the base station in the application, and the T is equal to Referring to P, the T1 is equal to the P1, and the given threshold is the second threshold in the present application.
  • Embodiment 14 all or part of any one of the T time pools of the first given time sub-pool belongs to one time slot in the first given time period, and the first given time period is the given One of the ⁇ all delay periods, all additional time slots, all additional delay periods ⁇ included in the access detection process.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools, respectively.
  • All or part of any one of the T1 time sub-pools belongs to one of the second given time periods, and the second given time period is the given access detection process One of the ⁇ all additional time slots, all additional delay periods ⁇ that are judged to be idle by energy detection.
  • the given access detection is an LBT
  • the specific definition and implementation manner of the LBT is referred to 3GPP TR36.889.
  • the given access detection is CCA (Clear Channel Assessment), and the specific definition and implementation manner of the CCA is referred to 3GPP TR36.889.
  • the given access detection is implemented in a manner defined by section 15 of 3GPP TS 36.213.
  • the type of the given access detection is a first type of access detection
  • the T1 is one of K candidate integers
  • the K is a positive integer
  • the given access detection is the second access detection
  • the K is the K2 in the application
  • the first type of access detection is in the present application.
  • the first type of access detection is a Cat 4 LBT (a fourth type of LBT), and the specific definition of the Cat 4 LBT is referred to 3GPP TR 36.889.
  • the given access detection is the first access detection
  • the K is the K1 in the application
  • the first type of access detection is in the present application.
  • the first type of access detection is a Type 1 UL channel access procedure
  • the specific definition of the first type of uplink channel access procedure is See section 15.2 of 3GPP TS 36.213.
  • the given node randomly selects the value of the T1 among the K candidate integers.
  • the probability that the given node selects any candidate integer as the value of the T1 among the K candidate integers is equal.
  • the K candidate integers are 0, 1, 2, ..., K-1.
  • the K is CW p
  • the CW p is a contention window
  • the specific definition of the CW p is as described in section 15 of 3GPP TS 36.213.
  • any one of the K candidate integers is a non-negative integer.
  • the K candidate integers include 0.
  • any two of the K candidate integers are not equal.
  • the K is a positive integer greater than one.
  • the K belongs to ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the duration of a defer duration is 16 microseconds plus a positive integer of 9 microseconds.
  • one delay period includes a plurality of time slots.
  • the first one of the plurality of time slots and the second time slot are discontinuous.
  • the time interval between the first one of the plurality of time slots and the second time slot is 7 milliseconds.
  • the duration of an additional defer duration is 16 microseconds plus a positive integer of 9 microseconds.
  • an additional delay period includes a plurality of time slots.
  • the first one of the plurality of time slots and the second time slot are discontinuous.
  • the time interval between the first one of the plurality of time slots and the second time slot is 7 milliseconds.
  • the duration of one slot is 9 microseconds.
  • the duration of an additional slot is 9 microseconds.
  • time sub-pools there is no time sub-pool in the T time sub-pools distributed in the time domain, including ⁇ all delay periods, all additional time slots, all additional delays included in the given access detection process. Within any two time slots in the time period ⁇ .
  • the first reference period is any one of ⁇ all delay periods, all additional time slots, all additional delay periods ⁇ included in the given access detection process, in the first reference period
  • Any time slot includes all or part of one of the T time subpools.
  • the two time sub-pools in the T time sub-pools do not belong to the same time slot in the first reference period.
  • the second reference period is any one of ⁇ all additional time slots, all additional delay periods ⁇ that are determined to be idle by energy detection during the given access detection process, the second reference period There is and only one time slot includes all or part of one of the T1 time subpools.
  • the two time sub-pools in the T1 time sub-pools do not belong to the same time slot in the second reference period.
  • performing energy detection in a given time period means performing energy detection in all time sub-pools within the given time period, the given time period being ⁇ delay period, additional time slot, One of the additional delay periods ⁇ , the all time sub-pools belonging to the T time sub-pools.
  • the T1 is smaller than the T.
  • At least one of the detected values that do not belong to the T1 detection values among the T detection values is lower than the given threshold.
  • At least one of the detected values that do not belong to the T1 detection values of the T detection values is not lower than the given threshold.
  • the T detection values are respectively that the given node senses the power/or energy of all wireless signals on the first sub-band in T time units, and averages in time. Obtaining received power or receiving energy; the T time units are each one of the T time subpools.
  • the duration of any one of the T time units is not shorter than 4 microseconds.
  • any given energy detection in the T-th energy detection means that the given node monitors received power in a given time unit, and the given time unit is the T time sub- A duration of time in the pool and the time subpool corresponding to the given energy detection.
  • any given energy detection in the T-th energy detection means that the given node monitors received energy in a given time unit, and the given time unit is the T time sub- A duration of time in the pool and the time subpool corresponding to the given energy detection.
  • any one of the T-th energy measurements is implemented by means defined in section 15 of 3GPP TS 36.213.
  • any one of the T-th energy detections is implemented by an energy detection method in the LTE LAA.
  • any one of the T-th energy detections is energy detection during the LBT process.
  • any one of the T-th energy measurements is energy detection during the CCA process.
  • any one of the T-th energy detections is implemented by an energy detection method in WiFi.
  • any one of the T-th energy detections is performed by measuring RSSI (Received Signal Strength Indication).
  • any time sub-pool of the T time sub-pools is contiguous in the occupied time domain resources.
  • the T time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the duration of any of the T time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • At least two time sub-pools in the T time sub-pools have unequal durations.
  • the durations of any two of the T time subpools are equal.
  • the time domain resources occupied by the T time subpools are continuous.
  • the time domain resources occupied by at least two time sub-pools in the T time sub-pools are discontinuous.
  • the time domain resources occupied by any two time sub-pools in the T time sub-pools are discontinuous.
  • any one of the T time subpools is a slot.
  • any one of the T time subpools is T sl , and the T sl is a slot duration, and the specific definition of the T sl is as described in 3GPP TS 36.213. 15 chapters.
  • any time sub-pool other than the earliest time sub-pool in the T time sub-pools is a slot.
  • any one of the T time subpools except the earliest time subpool is T sl , and the T sl is a slot duration, and the T sl is specific. See Section 15 of 3GPP TS 36.213 for definitions.
  • At least one time sub-pool having a duration of 16 microseconds exists in the T time sub-pools.
  • At least one time sub-pool having a duration of 9 microseconds exists in the T time sub-pools.
  • the earliest time sub-pool of the T time sub-pools has a duration of 16 microseconds.
  • the last time subpool of the T time subpools has a duration of 9 microseconds.
  • the T time subpools include a listening time in a Cat 4 (fourth class) LBT.
  • the T time subpools include time slots in a Defer Duration in a Cat 4 (fourth class) LBT and time slots in a back-off time.
  • the T time sub-pools include a time slot and a back-off time (Back-off) in a Defer Duration in a Type 1 UL channel access procedure.
  • the time slot in Time), the given access detection is the first access detection.
  • the duration of the sensing time interval is 25 microseconds.
  • the T time subpools include time slots in the initial CCA and eCCA.
  • the duration of any two of the T1 time subpools is equal.
  • the duration of at least two time sub-pools in the T1 time sub-pools is not equal.
  • the T1 time subpools include the latest time subpool of the T time subpools.
  • the T1 time subpools only include time slots in the eCCA.
  • the T time sub-pools include the T1 time sub-pools and the T2 time sub-pools, and any one of the T2 time sub-pools does not belong to the T1 time sub-pools.
  • the T2 is a positive integer not greater than the T minus the T1.
  • the positions of the T2 time subpools in the T time subpools are continuous.
  • the T2 time subpools include time slots in the initial CCA.
  • the detection value corresponding to at least one time sub-pool in the T2 time sub-pools is lower than the given threshold.
  • the detection value corresponding to at least one time sub-pool in the T2 time sub-pools is not lower than the given threshold.
  • the T2 time sub-pools include all time slots in all delay periods.
  • the T2 time sub-pools include all time slots in at least one additional delay period.
  • the T2 time sub-pools include at least one additional time slot.
  • the T2 time sub-pools include all time slots within ⁇ all additional time slots, all additional delay periods ⁇ that are determined to be non-idle by energy detection.
  • the T1 time sub-pools belong to T1 sub-pool sets, and any one of the T1 sub-pool sets includes a positive integer time sub-pool in the T time sub-pools;
  • the detected value corresponding to any one of the T1 sub-pool sets is lower than the first threshold.
  • the number of time sub-pools included in the at least one sub-pool set of the T1 sub-pool sets is equal to one.
  • At least one sub-pool set in the T1 sub-pool set includes a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the T1 sub-pool set is unequal.
  • one time sub-pool does not exist in the T time sub-pools and belongs to two sub-pool sets in the T1 sub-pool set.
  • all time sub-pools in any one of the T1 sub-pool sets belong to the same additional delay period or additional time slot determined to be idle by energy detection.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the T1 sub-pool set in the T time sub-pools is lower than the given threshold.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the T1 sub-pool set in the T time sub-pools is not lower than the given threshold.
  • the first antenna port group correlation is used to determine multi-antenna related reception for the given node to perform the given access detection.
  • the given access detection is the first access detection
  • the first antenna port group is a transmit antenna port group of the first wireless signal in this application.
  • the given access detection is the second access detection
  • the first antenna port group is a second type in the first information set in the application.
  • the given node may infer that all or part of the large-scale characteristics of the wireless signal transmitted on the first antenna port group are used to perform the given access detection. Antenna related reception.
  • the multi-antenna related transmission of the first antenna port group is used to determine multi-antenna related reception for the given node to perform the given access detection.
  • Embodiment 15 illustrates a schematic diagram of a given access detection, as shown in FIG. 15; the given access detection is the first access detection in the present application or the second access in the present application Detection.
  • the given node is in an idle state in step S1501, it is determined in step S1502 whether or not transmission is required; in step 1503, energy detection is performed in a defer duration; in step S1504, the delay is judged. Whether all the time slots in the time slot are idle, if yes, proceeding to send the wireless signal on the first sub-band in the present application in step S1505; otherwise proceeding to step S1506 to perform energy detection in a delay period; In step S1507, it is determined whether all the time slots in the delay period are idle. If yes, proceed to step S1508 to set the first counter equal to T1; otherwise, return to step S1506; and in step S1509, determine whether the first counter is 0.
  • step S1505 If yes, proceeding to step S1505 to transmit a wireless signal on the first sub-band; otherwise proceeding to step S1510 to perform energy detection in an additional time slot; in step S1511, determining whether the additional time slot is idle, if Go to step S1512 to decrement the first counter by 1, and then return to step 1509; otherwise proceed to step S1513. Performed within a delay period, additional energy detection; is determined in step S1514 that all slots within the period if the additional delay are idle, if so, advances to step S1512; otherwise, returns to step S1513.
  • the given access detection is performed on the first sub-band in the present application.
  • the given node performs T energy detections in T time sub-pools on the first sub-band, respectively, to obtain T detection values respectively; wherein T1 detection values in the T detection values are low Given a threshold. If the given access detection is the first access detection, the given node is the user equipment in the application, the T is equal to the Q, and the T1 is equal to the Q1, The given threshold is the first threshold in the present application; if the given access detection is the second access detection, the given node is the base station in the application, and the T is equal to Referring to P, the T1 is equal to the P1, and the given threshold is the second threshold in the present application.
  • Embodiment 15 all or part of any one of the T time pools of the first given time sub-pool belongs to one time slot in the first given time period, and the first given time period is the given One of the ⁇ all delay periods, all additional time slots, all additional delay periods ⁇ included in the access detection process.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools, respectively.
  • All or part of any one of the T1 time sub-pools belongs to one of the second given time periods, and the second given time period is the given access detection process One of the ⁇ all additional time slots, all additional delay periods ⁇ that are judged to be idle by energy detection.
  • the type of the given access detection is a first type of access detection.
  • the given access detection is the second access detection
  • the first type of access detection is the first type of downlink access detection in this application.
  • the first type of access detection is a Cat 4 LBT (a fourth type of LBT), and the specific definition of the Cat 4 LBT is referred to 3GPP TR 36.889.
  • the given access detection is the first access detection
  • the first type of access detection is the first type of uplink access detection in this application.
  • the first type of access detection is a Type 1 UL channel access procedure
  • the specific definition of the first type of uplink channel access procedure is See section 15.2 of 3GPP TS 36.213.
  • the T1 is equal to 0, and the given node determines in step S1504 that all time slots within the delay period are idle.
  • the T1 is one of the K candidate integers, and the K is a positive integer, and the given node determines in step S1504 that not all time slots in the delay period are idle.
  • the given access detection is the second access detection
  • the K is the K2 in the present application.
  • the given access detection is the first access detection
  • the K is the K1 in the present application.
  • Embodiment 16 illustrates a schematic diagram of a given access detection, as shown in FIG. 16; the given access detection is the first access detection in the present application or the second access in the present application Detection.
  • the given node is in an idle state in step S1601, it is determined in step S1602 whether or not transmission is required; in step 1603, energy detection is performed in a sensing time; in step S1604, the sensing is determined. Whether all the time slots in the time are free, if yes, proceed to send the wireless signal on the first sub-band in the present application in step S1605; otherwise, return to step S1603.
  • the given access detection is performed on the first sub-band in the present application.
  • the given node performs T energy detections in T time sub-pools on the first sub-band, respectively, to obtain T detection values respectively; wherein T1 detection values in the T detection values are low Given a threshold. If the given access detection is the first access detection, the given node is the user equipment in the application, the T is equal to the Q, and the T1 is equal to the Q1, The given threshold is the first threshold in the present application; if the given access detection is the second access detection, the given node is the base station in the application, and the T is equal to Referring to P, the T1 is equal to the P1, and the given threshold is the second threshold in the present application.
  • Embodiment 16 all or part of any one of the T time pools of the first given time sub-pool belongs to one of the sensing times in the given access detection procedure.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools, respectively.
  • All or part of any one of the T1 time sub-pools of the second given time sub-pool belongs to one of the sensing times that are determined to be idle by energy detection in the given access detection process.
  • the Q1 is equal to 2
  • the Q1 is equal to the Q.
  • the Q1 is greater than the Q.
  • the duration of a sensing time is 25 microseconds.
  • one sensing time includes 2 time slots, and the 2 time slots are discontinuous in the time domain.
  • the time interval in the two time slots is 7 microseconds.
  • the T time subpools include a listening time in a Cat 2 (second class) LBT.
  • the T time subpools include time slots in a sensing interval in a Type 2 UL channel access procedure, the specific time interval of the sensing time interval See Section 15.2 of 3GPP TS 36.213 for definitions.
  • the T time subpools include T f and T sl in a sensing interval in a Type 2 UL channel access procedure, the T f And the T sl is two time intervals, and the specific definition of the T f and the T sl is referred to the section 15.2 in 3GPP TS 36.213.
  • the duration of the Tf is 16 microseconds.
  • the duration of the T sl is 9 microseconds.
  • the type of the given access detection is a second type of access detection.
  • the given access detection is the second access detection
  • the second type of access detection is the second type of downlink access detection in this application.
  • the second type of access detection is a Cat 2 LBT (LBT of the second type), and the specific definition of the Cat 2 LBT is referred to 3GPP TR 36.889.
  • the given access detection is the first access detection
  • the second type of access detection is the second type uplink access detection in the present application.
  • the second type of access detection is a Type 1 UL channel access procedure, and the second type of uplink channel access procedure is specifically defined. See section 15.2 of 3GPP TS 36.213.
  • the duration of the first time sub-pool in the T1 time sub-pool is 16 microseconds, and the duration of the second time sub-pool in the T1 time sub-pool is 9 microseconds. .
  • the duration of the T1 time sub-pools is 9 microseconds; the time interval between the first time sub-pool and the second time sub-pool of the T1 time sub-pools is 7 micro second.
  • Embodiment 17 illustrates a schematic diagram of L multicarrier symbol groups and L1 multicarrier symbol groups; as shown in FIG.
  • the L multi-carrier symbol groups are respectively indicated by the L downlink signalings in this application.
  • the L1 multi-carrier symbol group is a subset of the L multi-carrier symbol groups, and the L1 downlink signalings are downlink signaling indicating the L1 multi-carrier symbol groups in the L downlink signalings, respectively.
  • Measurements for generating the first update signaling in the present application are limited to the L1 multicarrier symbol groups.
  • the first update signaling is used to update a target information set, and the updated target information set is one of the M information sets in the present application.
  • Each of the L multi-carrier symbol groups includes a positive integer number of multi-carrier symbols. In FIG.
  • the indexes of the L multicarrier symbol groups are ⁇ #0, #1, . . . , #L-1 ⁇ , respectively, and the left oblique line filled boxes represent the L1 multicarrier symbols. group.
  • the sums 'x' and 'y' in Fig. 17 are respectively non-negative integers smaller than the L, and the x is smaller than the y.
  • all multicarrier symbols in any one of the L multicarrier symbol groups are consecutive.
  • any downlink signaling in the L downlink signaling indicates that the corresponding multi-carrier symbol group is occupied by a downlink physical channel or a downlink physical signal.
  • all multicarrier symbols in any one of the L multicarrier symbol groups belong to the same slot.
  • all multicarrier symbols in any one of the L multicarrier symbol groups belong to the same subframe.
  • the first update signaling includes one or more of ⁇ CSI, CRI, PMI, RSRP, RSRP, CQI ⁇ .
  • the measurement for the first reference signal is used to generate the first update signaling, and the time domain resource occupied by the first reference signal belongs to the L1 multi-carrier symbol group.
  • the first reference signal does not occupy time domain resources other than the L1 multi-carrier symbol group.
  • the first reference signal includes a ⁇ CSI-RS, a PSS (Primary Synchronization Signal), an SSS (Secondary Synchronization Signal), and an MIB (Master Information Block).
  • a ⁇ CSI-RS a PSS (Primary Synchronization Signal), an SSS (Secondary Synchronization Signal), and an MIB (Master Information Block).
  • SIB System Information Block
  • DMRS DMRS
  • TRS TRS
  • PTRS PTRS
  • At least one of the antenna port group and the first antenna port group in the transmit antenna port group of the first reference signal is QCL; the first antenna port group And an antenna port group identified by the second type index corresponding to the updated information element in the updated target information set.
  • At least one of the antenna port group and the first antenna port group of the first reference signal transmission group is a spatial QCL; the first antenna port The group is an antenna port group identified by the second type index corresponding to the updated information element in the updated target information set.
  • the first reference signal includes L1 sub-reference signals, and the time domain resources occupied by the L1 sub-reference signals belong to the L1 multi-carrier symbol groups respectively.
  • an average of the measurements for the L1 sub-reference signals is used to generate the first update signaling.
  • the L multi-carrier symbol groups are mutually orthogonal (non-overlapping), that is, there is no multi-carrier symbol and belong to two multi-carrier symbol groups in the L multi-carrier symbol groups. .
  • Embodiment 18 exemplifies a structural block diagram of a processing device for use in a user equipment, as shown in FIG.
  • the processing device 1800 in the user equipment is mainly composed of a first receiver module 1801 and a first processing module 1802.
  • the first receiver module 1801 receives the first signaling, the second signaling, and the third signaling; the first processing module 1802 receives the first wireless signal in the first sub-band, or in the first sub- The first wireless signal is transmitted in the frequency band.
  • the first signaling is used by the first receiver module 1801 to determine M information sets, and any one of the M information sets includes a positive integer information element, the positive Any one of the integer information elements includes a first type index and a second type index set, the second type index set includes one or more second type indexes;
  • the second signaling is by the a receiver module 1801 is configured to determine a first information set from the M information sets;
  • the third signaling is associated with the second signaling, the third signaling is used by the first receiver Module 1801 is configured to determine a first information element from the first set of information.
  • the first processing module 1802 receives the first wireless signal in the first sub-band, and the measurement of the antenna port group identified by the second type index in the first information element is performed by the first processing a module 1802 is configured to receive the first wireless signal; or the first processing module 1802 transmits the first wireless signal in the first sub-band, a second type of indexing in the first information element
  • the identified antenna port group is used by the first processing module 1802 for transmission of the first wireless signal.
  • the third signaling includes scheduling information of the first wireless signal, the M is a positive integer greater than 1, and one antenna port group includes a positive integer number of antenna ports.
  • the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than the first signaling used to indicate the given The number of bits of a second type of index in the second type of index set corresponding to a type of index.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol, and the time-domain resource occupied by the third signaling is in the Within the first multi-carrier symbol group.
  • all multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the third signaling are occupied;
  • all the multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied, and the first processing module 1802 is in the The first wireless signal is received in a first sub-band.
  • the third signaling and the second signaling occupy the same time slice in the time domain, and the time slice includes a positive integer number of consecutive multi-carrier symbols.
  • the third signaling and the second signaling belong to the same search space.
  • the third signaling includes a first domain, and a first one of the third signaling is used to determine the first information element from the first information set, the third The number of bits included in the first field in the signaling is related to the first set of information.
  • the first receiver module 1801 further receives L downlink signaling, where the L downlink signaling respectively indicates that L multi-carrier symbol groups are occupied, and each of the L multi-carrier symbol groups
  • the multicarrier symbol group includes a positive integer number of multicarrier symbols, and the L is a positive integer greater than one.
  • the first processing module 1802 further sends a first update signaling, where the first update signaling is used to update a target information set, and the updated target information set is one of the M information sets.
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signaling, where the L1 downlink signaling is all the target information sets indicating the update from the M information sets in the L downlink signalings.
  • the measurement used to generate the first update signaling is restricted in the L1 multi-carrier symbol group.
  • the first receiver module 1801 also performs a first access detection on the first sub-band; wherein the first processing module 1802 sends the first in the first sub-band a wireless signal; the type of the first access detection is one of N candidate types; the type of the first access detection and the second signaling are commonly used by the first receiver module 1801 is configured to determine the first information set from the M information sets; the first access detection includes:
  • the Q1 detection values of the Q detection values are all lower than the first threshold; the value of the Q1 is related to the type of the first access detection; the Q is a positive integer, and the Q1 is not greater than A positive integer of Q.
  • the type of the first access detection is a first type of uplink access detection
  • the Q1 is a candidate integer of K1 candidate integers
  • the K1 is a positive integer
  • the type of the first access detection is a second type of uplink access detection, and the Q1 is equal to 2.
  • the first receiver module 1801 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data in Embodiment 4. At least one of the sources 467 ⁇ .
  • the first processing module 1502 includes the ⁇ antenna 452, the transmitter/receiver 454, the transmitting processor 468, the receiving processor 456, the multi-antenna transmitting processor 457, and the multi-antenna receiving processing in Embodiment 4. At least one of a device 458, a controller/processor 459, a memory 460, and a data source 467 ⁇ .
  • Embodiment 19 exemplifies a structural block diagram of a processing device used in a base station, as shown in FIG.
  • the processing device 1900 in the base station is mainly composed of a first transmitter module 1901 and a second processing module 1902.
  • the first transmitter module 1901 transmits the first signaling, the second signaling, and the third signaling; the second processing module 1902 transmits the first wireless signal in the first sub-band, or in the first sub-band The first wireless signal is received in the frequency band.
  • the first signaling is used to determine M information sets, and any one of the M information sets includes a positive integer information element, and any one of the positive integer information elements
  • the element includes a first class index and a second class index set, the second class index set includes one or more second class indexes;
  • the second signaling is used to determine from the M information sets a first set of information;
  • the third signaling being associated with the second signaling, the third signaling being used to determine a first information element from the first set of information.
  • the second processing module 1902 transmits the first wireless signal in the first sub-band, and the measurement of the antenna port group identified by the second type index in the first information element is used for the Receiving a wireless signal; or the second processing module 1902 receives the first wireless signal in the first sub-band, and the antenna port group identified by the second type index in the first information element is Used for transmission of the first wireless signal.
  • the third signaling includes scheduling information of the first wireless signal, the M is a positive integer greater than 1, and one antenna port group includes a positive integer number of antenna ports.
  • the number of bits in the first signaling used to indicate that any one of the M information sets is given a first type index is smaller than the first signaling used to indicate the given The number of bits of a second type of index in the second type of index set corresponding to a type of index.
  • the second signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol, and the time-domain resource occupied by the third signaling is in the Within the first multi-carrier symbol group.
  • all multi-carrier symbols between the time domain resources occupied by the second signaling and the time domain resources occupied by the third signaling are occupied.
  • all the multi-carrier symbols between the time domain resource occupied by the second signaling and the time domain resource occupied by the first wireless signal are occupied, and the second processing module 1902 is in the The first wireless signal is transmitted in a first sub-band.
  • the third signaling and the second signaling occupy the same time slice in the time domain, and the time slice includes a positive integer number of consecutive multi-carrier symbols.
  • the third signaling and the second signaling belong to the same search space.
  • the third signaling includes a first domain, and a first one of the third signaling is used to determine the first information element from the first information set, the third The number of bits included in the first field in the signaling is related to the first set of information.
  • the first transmitter module 1901 further determines a type of first access detection; wherein the second processing module 1902 receives the first wireless signal in the first sub-band; The sender of the first wireless signal performs the first access detection on the first sub-band before transmitting the first radio signal; the type of the first access detection is one of N candidate types a candidate type; the type of the first access detection and the second signaling are jointly used to determine the first information set from the M information sets.
  • the first transmitter module 1901 further sends L downlink signaling, where the L downlink signaling respectively indicates that L multi-carrier symbol groups are occupied, and each of the L multi-carrier symbol groups
  • the multicarrier symbol group includes a positive integer number of multicarrier symbols, and the L is a positive integer greater than one.
  • the second processing module 1902 further receives first update signaling, where the first update signaling is used by the second processing module 1902 to update a target information set, where the updated target information set is in the M information sets. A collection of information.
  • the L1 downlink signaling groups respectively correspond to the L1 downlink signaling, where the L1 downlink signaling is all the target information sets indicating the update from the M information sets in the L downlink signalings.
  • Downlink signaling, the measurement used to generate the first update signaling is restricted in the L1 multi-carrier symbol group.
  • the second processing module 1902 further performs second access detection on the first sub-band; wherein the second access detection includes:
  • the P1 detection values of the P detection values are all lower than the second threshold; the P is a positive integer, and the P1 is a positive integer not greater than the P.
  • the first transmitter module 1901 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4. At least one of them.
  • the second processing module 1902 includes the ⁇ antenna 420, the transmitter/receiver 418, the transmitting processor 416, the receiving processor 470, the multi-antenna transmitting processor 471, and the multi-antenna receiving processing in Embodiment 4. At least one of the controller 472, the controller/processor 475, and the memory 476 ⁇ .
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户、基站中的方法和装置。用户设备接收第一信令,第二信令和第三信令,并在第一子频带中接收或发送第一无线信号。第一信令被用于确定M个信息集合,任一信息集合包括正整数个信息元素,任一信息元素包括一个第一类索引及一个第二类索引集合,一个第二类索引集合包括一个或多个第二类索引。第二信令被用于从所述M个信息集合中确定第一信息集合。第三信令和第二信令关联,被用于从第一信息集合中确定第一信息元素。第一信息元素中的第二类索引标识的天线端口组被用于第一无线信号的接收或发送。第三信令包括所述第一无线信号的调度信息。上述方法降低了非授权频谱上每次突发中波束管理和指示的信令开销。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#75次全会上还通过NR(New Radio,新无线电)下的非授权频谱(Unlicensed Spectrum)的接入的研究项目,该研究项目预期在R15版本完成,然后在R16版本中启动WI对相关技术进行标准化。
大规模(Massive)MIMO(Multi-Input Multi-Output)是NR系统的另一个研究热点。大规模MIMO中,多个天线通过波束赋型,形成较窄的波束指向一个特定方向来提高通信质量。在NR系统中,大规模MIMO会被应用于毫米波频段的非授权频谱。
发明内容
在LTE(Long Term Evolution,长期演进)的LAA(License Assisted Access,授权辅助接入)项目中,基站和UE(User Equipment,用户设备)在非授权频谱上发送数据之前需要先进行LBT(Listen Before Talk,会话前监听)以保证不对其他在非授权频谱上正在进行的无线传输造成干扰。
发明人通过研究发现,如果发送节点(比如基站或者UE)在做LBT时使用了某个波束,那只能假定这个波束方向上的信道是空闲的,而不能假定其他方向上的信道也空闲。基于这个现象,发送节点在这次LBT对应的burst(突发)中的传输将被限制在做LBT时使用的波束覆盖范围以内。这种限制可以被用来降低在每次burst中用于波束管理和指示的信令/反馈开销。
针对上述发现,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了被用于无线通信的用户设备中的方法,其特征在于,包括:
-接收第一信令,所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数;
-接收第二信令,所述第二信令被用于从所述M个信息集合中确定第一信息集合;
-接收第三信令,所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
-在第一子频带中接收第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中发送第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
其中,所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。
作为一个实施例,上述方法的特质在于:把非授权频谱上每次burst中使用到的波束限制在一个波束集合之内,所述M个信息集合中任一信息集合是用来在一个波束集合内指示波束相关的信息的,不同信息集合针对不同的波束集合。所述第二信令指示了当前burst对应 的波束集合,所述用户设备可以根据所述第二信令从所述M个信息集合中确定当前burst对应的信息集合。上述方法的好处在于,由于一个信息集合中的波束被限制在一个波束集合之内,而不是包括所有波束,用于指示一个信息集合中的某个信息元素所需要的比特的数量会被降低,从而降低了所述第三信令的开销。
作为上述实施例的一个子实施例,一个波束集合内的波束被限制在一次下行LBT使用的波束的覆盖范围之内。所述第二信令根据当前burst对应的下行LBT波束来确定所述第一信息集合。这种方法的好处在于,避免了对下行LBT波束以外的方向上正在进行的无线传输造成干扰。
根据本申请的一个方面,其特征在于,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,上述方法的好处在于进一步降低了所述第三信令的开销。
作为一个实施例,所述给定第一类索引属于给定信息元素,所述给定信息元素是给定信息集合中的任一信息元素,所述给定信息集合是所述M个信息集合中的任一信息集合;所述第一信令中用于指示所述给定第一类索引的比特的数量等于所述给定信息集合包括的信息元素的个数的以2为底的对数向上取整,即:所述第一信令中用于指示所述给定第一类索引的比特的数量等于A1,所述A1是不小于log 2(B1)的最小正整数,所述B1是所述给定信息集合包括的信息元素的个数。
作为一个实施例,给定天线端口组是给定第二类索引所标识的天线端口组,所述给定第二类索引是所述给定第一类索引所对应的第二类索引集合中的一个第二类索引;所述给定天线端口组属于S个候选天线端口组,所述S是大于1的正整数;所述第一信令中用于指示所述给定第二类索引的比特的数量等于所述S的以2为底的对数向上取整,即:所述第一信令中用于指示所述给定第二类索引的比特的数量等于A2,所述A2是不小于log 2(S)的最小正整数。
根据本申请的一个方面,其特征在于,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为一个实施例,上述方法的好处在于,在所述第二信令和所述第三信令之间建立了联系,避免所述用户设备对所述第三信令在所述M个信息集合中对应的哪个信息集合产生混淆。
根据本申请的一个方面,其特征在于,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用;或者所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述用户设备在所述第一子频带中接收所述第一无线信号。
作为一个实施例,上述方法的好处在于,在所述第二信令和所述第三信令之间,或者所述第二信令和所述第一无线信号之间建立了联系,避免所述用户设备对所述第三信令和所述第一无线信号在所述M个信息集合中对应的哪个信息集合产生混淆。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用,所述用户设备在所述第一子频带中发送所述第一无线信号。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用,所述用户设备在所述第一子频带中接收所述第一无线信号。
根据本申请的一个方面,其特征在于,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号;或者,所述第三信令与所述第二信令属于同一个搜索空间。
作为一个实施例,上述方法的好处在于,在所述第二信令和所述第三信令之间建立了联系,避免所述用户设备对所述第三信令在所述M个信息集合中对应的哪个信息集合产生混淆。
根据本申请的一个方面,其特征在于,所述第三信令包括第一域,所述第三信令中的第 一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为一个实施例,上述方法的好处在于,可以根据所述第一信息集合中包括的信息元素的数量决定所述第三信令中的第一域包括的比特的数量,进一步降低了所述第三信令的开销。
根据本申请的一个方面,其特征在于,包括:
-在所述第一子频带上执行第一接入检测;
其中,所述用户设备在所述第一子频带中发送所述第一无线信号;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合;所述第一接入检测包括:
-在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,分别得到Q个检测值;
其中,所述Q个检测值中的Q1个检测值都低于第一阈值;所述Q1的值和所述第一接入检测的类型有关;所述Q是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,上述方法的特质在于,如果所述第一无线信号的发送波束在对应的下行LBT波束的范围之内,UE只需要执行一个简短的上行LBT就可以发送所述第一无线信号了;如果所述第一无线信号的发送波束超出了对应的下行LBT波束的范围,UE在发送所述第一无线信号之前需要执行一个完整的上行LBT。上述方法的好处在于,允许UE在上行传输中使用超出LBT波束范围的波束,如果UE检测到使用的波束方向上的信道是空闲的。这种方法提高了调度的灵活性,同时避免了对下行LBT波束的范围之外的其他方向上正在进行的无线传输造成干扰。
作为一个实施例,所述第一接入检测的结束时间在所述第一无线信号占用的时域资源的起始点之前。
作为一个实施例,所述第一接入检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述第一接入检测是上行接入检测。
作为一个实施例,所述第一接入检测被用于确定所述第一子频带是否能被所述用户设备用于上行传输。
作为一个实施例,所述Q1等于所述Q。
作为一个实施例,所述Q1小于所述Q。
作为一个实施例,所述N等于2。
作为一个实施例,所述N大于2。
作为一个实施例,所述N个候选类型包括Type 1 UL channel access procedure(第一类上行信道接入过程)和Type 2 UL channel access procedure(第二类上行信道接入过程)。
作为一个实施例,所述N个候选类型由Type 1 UL channel access procedure(第一类上行信道接入过程)和Type 2 UL channel access procedure(第二类上行信道接入过程)组成。
作为一个实施例,所述Q个检测值和所述第一阈值的单位都是dBm(毫分贝)。
作为一个实施例,所述Q个检测值和所述第一阈值的单位都是毫瓦(mW)。
作为一个实施例,所述Q个检测值和所述第一阈值的单位是焦耳。
作为一个实施例,所述第一阈值等于或小于-72dBm。
作为一个实施例,所述第一阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述第一阈值是由所述用户设备在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述第二信令被用于从所述M个信息集合中确定N个信息集合,所述 第一接入检测的类型被用于从所述N个信息集合中确定所述第一信息集合。
作为上述实施例的一个子实施例,所述N个信息集合中存在一个信息集合包括的信息元素的数量大于所述N个信息集合中其他任意一个信息集合包括的信息元素的数量。
作为上述实施例的一个子实施例,所述N个信息集合和所述N个候选类型一一对应。
作为一个实施例,所述第二信令被用于从所述M个信息集合中确定N-1个信息集合,所述第一接入检测的类型被用于从所述N-1个信息集合和参考信息集合中确定所述第一信息集合,所述参考信息集合是所述M个信息集合中不属于所述N-1个信息集合的一个信息集合。
作为上述实施例的一个子实施例,所述参考信息集合中包括的信息元素的数量大于所述N-1个信息集合中任意一个信息集合包括的信息元素的数量。
作为上述实施例的一个子实施例,所述参考信息集合中包括的信息元素的数量大于所述M个信息集合中其他任意一个信息集合包括的信息元素的数量。
作为上述实施例的一个子实施例,如果第一接入检测的类型是第一类上行接入检测,所述第一信息集合是所述参考信息集合;所述第一类上行接入检测是所述N个候选类型中的一个候选类型;所述N-1个信息集合和所述N个候选类型中除所述第一类上行接入检测以外的其它N-1个候选类型一一对应。
作为一个实施例,所述第三信令被用于确定所述第一接入检测的类型。
作为一个实施例,所述第三信令包括第三域,所述第三信令中的第三域指示所述第一接入检测的类型。
作为一个实施例,所述第一接入检测的类型和所述第一无线信号占用的时域资源的持续时间有关。
根据本申请的一个方面,其特征在于,所述第一接入检测的类型是第一类上行接入检测,所述Q1是K1个候选整数中的一个候选整数,所述K1是正整数。
作为一个实施例,所述第一类上行接入检测是第一类上行信道接入过程(Type 1 UL channel access procedure),所述第一类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,如果所述第一无线信号只包括SRS(Sounding Reference Signal,探测参考信号),所述第一接入检测的类型是所述第一类上行接入检测。
根据本申请的一个方面,其特征在于,所述第一接入检测的类型是第二类上行接入检测,所述Q1等于2。
作为一个实施例,所述第二类上行接入检测是第二类上行信道接入过程(Type 1 UL channel access procedure),所述第二类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,第四信令被用于确定第二多载波符号组,所述第二多载波符号组包括正整数个多载波符号,所述第一无线信号占用的时域资源属于所述第二多载波符号组,所述第一接入检测的类型是所述第二类上行接入检测。
作为上述实施例的一个子实施例,所述第四信令是物理层信令。
作为上述实施例的一个子实施例,所述第四信令是动态信令。
作为上述实施例的一个子实施例,所述第四信令的信令格式(format)是1C。
作为上述实施例的一个子实施例,所述第四信令包括第四域,所述第四信令中的第四域指示所述第二多载波符号组;所述第四信令中的第四域是UL duration and offset(上行持续时间和偏移)域。
作为上述子实施例的一个参考实施例,所述第四信令中的第四域包括5个比特。
作为一个实施例,如果所述第二信令所占用的时域资源与所述第一无线信号所占用的时域资源之间的所有多载波符号都属于所述第一多载波符号组,并且所述第一无线信号占用的时域资源的持续时间不大于25微秒,所述第一接入检测的类型是所述第二类上行接入检测。
根据本申请的一个方面,其特征在于,包括:
-接收L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数;
-发送第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合;
其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
作为一个实施例,所述第一更新信令是物理层信令。
作为一个实施例,所述第一更新信令包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一更新信令包括{CSI(Channel State Information,信道状态信息),CRI(Channel-state information reference signals Resource Indicator,信道状态信息参考信号资源标识),PMI(Precoding Matrix Indicator,预编码矩阵标识),RSRP,RSRP,CQI}中的一种或多种。
作为一个实施例,所述所述第一更新信令被用于更新目标信息集合是指:所述第一更新信令被用于更新所述更新的目标信息集合中的一个或多个信息元素对应的第二类索引集合中的第二类索引。
作为一个实施例,所述所述第一更新信令被用于更新目标信息集合是指:所述第一更新信令指示所述更新的目标信息集合中的一个或多个信息元素在更新后对应的第二类索引集合中的第二类索引。
作为一个实施例,所述L1等于1。
作为一个实施例,所述L1大于1。
作为一个实施例,所述第一更新信令在所述第一子频带上传输。
作为一个实施例,所述第一更新信令在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一更新信令在部署于授权频谱的频带上传输。
本申请公开了被用于无线通信的基站中的方法,其特征在于,包括:
-发送第一信令,所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数;
-发送第二信令,所述第二信令被用于从所述M个信息集合中确定第一信息集合;
-发送第三信令,所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
-在第一子频带中发送第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中接收第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
其中,所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。
根据本申请的一个方面,其特征在于,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
根据本申请的一个方面,其特征在于,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为一个实施例,所述第二信令指示所述第一多载波符号组被所述基站发送的下行物理信道或者下行物理信号所占用。
根据本申请的一个方面,其特征在于,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用;或者所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述基站在所述第一子频带中发送所述第一无线信号。
根据本申请的一个方面,其特征在于,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号;或者,所述第三信令与所述第二信令属于同一个搜索空间。
根据本申请的一个方面,其特征在于,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
根据本申请的一个方面,其特征在于,包括:
-确定第一接入检测的类型;
其中,所述基站在所述第一子频带中接收所述第一无线信号;所述第一无线信号的发送者在发送所述第一无线信号之前在所述第一子频带上执行所述第一接入检测;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合。
作为一个实施例,所述第一接入检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述第一接入检测是上行接入检测。
根据本申请的一个方面,其特征在于,包括:
-发送L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数;
-接收第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合;
其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
根据本申请的一个方面,其特征在于,包括:
-在所述第一子频带上执行第二接入检测;
其中,所述第二接入检测包括:
-在所述第一子频带上的P个时间子池中分别执行P次能量检测,分别得到P个检测值;
其中,所述P个检测值中的P1个检测值都低于第二阈值;所述P是正整数,所述P1是不大于所述P的正整数。
作为一个实施例,所述第二接入检测的结束时间在所述第二信令占用的时域资源的起始点之前。
作为一个实施例,所述第二接入检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述第二接入检测是下行接入检测。
作为一个实施例,所述第二接入检测被用于确定所述第一子频带是否能被所述基站用于下行传输。
作为一个实施例,所述P1等于所述P。
作为一个实施例,所述P1小于所述P。
作为一个实施例,所述P个检测值和所述第二阈值的单位都是dBm(毫分贝)。
作为一个实施例,所述P个检测值和所述第二阈值的单位都是毫瓦(mW)。
作为一个实施例,所述P个检测值和所述第二阈值的单位是焦耳。
作为一个实施例,所述第二阈值等于或小于-72dBm。
作为一个实施例,所述第二阈值是等于或小于第二给定值的任意值。
作为上述实施例的一个子实施例,所述第二给定值是预定义的。
作为一个实施例,所述第二阈值是由所述基站在等于或小于第二给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第二给定值是预定义的。
作为一个实施例,所述第二接入检测的类型是第一类下行接入检测,所述P1是K2个候选整数中的一个候选整数,所述K2是正整数。
作为上述实施例的一个子实施例,所述第一类下行接入检测是Cat 4 LBT(第四类型的LBT),所述Cat 4 LBT的具体定义参见3GPP TR36.889。
作为一个实施例,所述第二接入检测的类型是第二类下行接入检测,所述P1等于2。
作为上述实施例的一个子实施例,所述第二类下行接入检测是Cat 2 LBT(第二类型的LBT),所述Cat 2 LBT的具体定义参见3GPP TR36.889。
本申请公开了被用于无线通信的用户设备,其特征在于,包括:
-第一接收机模块,接收第一信令,第二信令和第三信令;所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引;所述第二信令被用于从所述M个信息集合中确定第一信息集合;所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
-第一处理模块,在第一子频带中接收第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中发送第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
其中,所述第三信令包括所述第一无线信号的调度信息,所述M是大于1的正整数,一个天线端口组包括正整数个天线端口。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述用户设备在所述第一子频带中接收所述第一无线信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第三信令与所述第二信令属于同一个搜索空间。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还接收L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数。所述第一处理模块还发送第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合。其中,L1个多载波符号组分别对应L1个下 行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理模块还在所述第一子频带上执行第一接入检测;其中,所述第一处理模块在所述第一子频带中发送所述第一无线信号;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合;所述第一接入检测包括:
-在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,分别得到Q个检测值;
其中,所述Q个检测值中的Q1个检测值都低于第一阈值;所述Q1的值和所述第一接入检测的类型有关;所述Q是正整数,所述Q1是不大于所述Q的正整数。
作为上述实施例的一个子实施例,上述被用于无线通信的用户设备的特征在于,所述第一接入检测的类型是第一类上行接入检测,所述Q1是K1个候选整数中的一个候选整数,所述K1是正整数。
作为上述实施例的一个子实施例,上述被用于无线通信的用户设备的特征在于,所述第一接入检测的类型是第二类上行接入检测,所述Q1等于2。
本申请公开了被用于无线通信的基站设备,其特征在于,包括:
-第一发送机模块,发送第一信令,第二信令和第三信令;所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引;所述第二信令被用于从所述M个信息集合中确定第一信息集合;所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
-第二处理模块,在第一子频带中发送第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中接收第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
其中,所述第三信令包括所述第一无线信号的调度信息,所述M是大于1的正整数,一个天线端口组包括正整数个天线端口。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述基站在所述第一子频带中发送所述第一无线信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三信令与所述第二信令属于同一个搜索空间。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第 三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发送机模块还确定第一接入检测的类型;其中,所述基站在所述第一子频带中接收所述第一无线信号;所述第一无线信号的发送者在发送所述第一无线信号之前在所述第一子频带上执行所述第一接入检测;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发送机模块还发送L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数。所述第二处理模块还接收第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合。其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理模块还在所述第一子频带上执行第二接入检测;其中,所述第二接入检测包括:
-在所述第一子频带上的P个时间子池中分别执行P次能量检测,分别得到P个检测值;
其中,所述P个检测值中的P1个检测值都低于第二阈值;所述P是正整数,所述P1是不大于所述P的正整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-把所有方向上的波束分为若干个波束集合,在非授权频谱上的每次burst的传输限制在一个波束集合之内。针对不同的波束集合定义不同的波束指示表格(例如TCI表格),每个波束指示表格中的波束都限制在对应的波束集合之内。和一个覆盖所有方向的波束指示表格相比,每个表格的大小都被降低了,从而减少了指示某个表格中的一个元素所需的信令开销。
-如果发送节点(比如基站或者UE)在非授权频谱上做LBT时发现某个波束方向上的信道是空闲的,其他方向上的信道不能被认为空闲,发送节点在这次LBT对应的burst(突发)中使用的波束集合将被限制在空闲的波束方向覆盖范围以内,从而避免了对非授权频谱上其他方向上正在进行的无线传输造成干扰。
-通过CC-RNTI标识的信令传递LBT波束相关的信息,并在CC-RNTI标识的信令和其他物理层信令之间建立联系,使UE能准确判断该使用哪个波束指示表格。
-允许UE在上行传输中使用超出下行LBT波束范围的波束,如果UE检测到使用的波束方向上的信道是空闲的。对下行LBT波束范围以外的上行波束采用比下行LBT波束范围以内的上行波束更严格的上行LBT。这种方法提高了调度的灵活性,同时避免了对下行LBT波束的范围之外的其他方向上正在进行的无线传输造成干扰。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的第一信息集合的示意图;
图8示出了根据本申请的另一个实施例的第一信息集合的示意图;
图9示出了根据本申请的一个实施例的第二信令,第三信令和第一无线信号在时域的资源映射示意图;
图10示出了根据本申请的另一个实施例的第二信令,第三信令和第一无线信号在时域的资源映射示意图;
图11示出了根据本申请的另一个实施例的第二信令,第三信令和第一无线信号在时域的资源映射示意图;
图12示出了根据本申请的一个实施例的第三信令的内容的示意图;
图13示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图14示出了根据本申请的一个实施例的给定接入检测的示意图,所述给定接入检测是本申请中的所述第一接入检测或者本申请中的所述第二接入检测;
图15示出了根据本申请的另一个实施例的给定接入检测的示意图,所述给定接入检测是本申请中的所述第一接入检测或者本申请中的所述第二接入检测;
图16示出了根据本申请的另一个实施例的给定接入检测的示意图,所述给定接入检测是本申请中的所述第一接入检测或者本申请中的所述第二接入检测;
图17示出了根据本申请的一个实施例的L个多载波符号组和L1个多载波符号组的示意图;
图18示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
实施例1
实施例1示例了第一信令的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信令,第二信令和第三信令,然后在第一子频带中接收第一无线信号或者在第一子频带中发送第一无线信号。其中,所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数。所述第二信令被用于从所述M个信息集合中确定第一信息集合。所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素。如果所述用户设备在所述第一子频带中接收所述第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;如果所述用户设备在所述第一子频带中发送所述第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送。所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述M个信息集合中至少有两个信息集合包括的信息元素的数量是不相等的。
作为一个实施例,所述M个信息集合中任意两个信息集合包括的信息元素的数量是相等的。
作为一个实施例,所述第一信令在所述第一子频带上传输。
作为一个实施例,所述第一信令在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信令在部署于授权频谱的频带上传输。
作为一个实施例,所述M个信息集合中的任一第一类索引是非负整数。
作为一个实施例,所述M个信息集合中的任一第一类索引是对应的信息元素在所属的信息集合中的索引。
作为一个实施例,所述M个信息集合中的任一第二类索引是非负整数。
作为一个实施例,所述M个信息集合中的任一第二类索引标识一个天线端口组。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是小区公共的。
作为一个实施例,所述第二信令是终端组特定的,所述用户设备是所述终端组中的一个终端。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令在所述第一子频带上传输。
作为一个实施例,所述第二信令的信令标识是CC(Component Carrier,分量载波)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第二信令是被CC-RNTI所标识的DCI。
作为一个实施例,CC-RNTI被用于生成所述第二信令对应的DMRS的RS序列。
作为一个实施例,所述第二信令的CRC比特序列被CC-RNTI所加扰。
作为一个实施例,所述第二信令的信令格式(format)是1C。
作为一个实施例,所述第二信令在正整数个时间单位内被重复发送,所述正整数个时间单位在时域上是相互正交(不重叠)的。
作为上述实施例的一个子实施例,所述用户设备用不同的波束赋型向量接收所述正整数个时间单位中不同的时间单位中发送的所述第二信令。
作为上述实施例的一个子实施例,所述用户设备用不同的模拟波束赋型矩阵接收所述正整数个时间单位中不同的时间单位中发送的所述第二信令。
作为上述实施例的一个子实施例,所述用户设备用不同的接收空间滤波(spatial filtering)接收所述正整数个时间单位中不同的时间单位中发送的所述第二信令。
作为上述实施例的一个子实施例,所述正整数个时间单位中的任一时间单位包括正整数个多载波符号。
作为上述实施例的一个子实施例,所述正整数个时间单位在时域上是连续的。
作为上述实施例的一个子实施例,所述正整数个时间单位在时域上是不连续的。
作为上述实施例的一个子实施例,所述第二信令在所述正整数个时间单位内被相同的天线端口组发送。
作为一个实施例,所述第一信息集合是所述M个信息集合中的一个信息集合。
作为一个实施例,所述第二信令指示所述第一信息集合在所述M个信息集合中的索引。
作为一个实施例,所述第三信令是物理层信令。
作为一个实施例,所述第三信令是动态信令。
作为一个实施例,所述第三信令是UE特定(UE-specific)的。
作为一个实施例,所述第三信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第三信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第三信令包括DCI。
作为一个实施例,所述第三信令包括DownLink Grant DCI。
作为一个实施例,所述第三信令包括UpLink Grant DCI。
作为一个实施例,所述第三信令在所述第一子频带上传输。
作为一个实施例,所述第三信令在所述第一子频带以外的频带上传输。
作为一个实施例,所述第三信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第三信令的信令标识是C(Cell,小区)-RNTI。
作为一个实施例,所述第三信令是被C-RNTI所标识的DCI。
作为一个实施例,C-RNTI被用于生成所述第三信令对应的DMRS的RS序列。
作为一个实施例,所述第三信令的CRC比特序列被C-RNTI所加扰。
作为一个实施例,所述第一信息元素是所述第一信息集合中的一个信息元素。
作为一个实施例,所述第三信令指示所述第一信息元素在所述第一信息集合中的索引。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带是一个载波(Carrier)。
作为一个实施例,所述第一子频带是一个BWP。
作为一个实施例,所述第一子频带在频域上包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的PRB。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的子载波。
作为一个实施例,所述第一无线信号包括{上行数据,上行参考信号}中的至少之一,所述用户设备在所述第一子频带中发送所述第一无线信号。
作为上述实施例的一个子实施例,所述上行参考信号包括{SRS,DMRS,PTRS}中的一种或多种。
作为一个实施例,所述第一无线信号包括{下行数据,下行参考信号}中的至少之一,所述用户设备在所述第一子频带中接收所述第一无线信号。
作为上述实施例的一个子实施例,所述下行参考信号包括{CSI-RS,DMRS,PTRS,TRS}中的一种或多种。
作为一个实施例,针对给定天线端口组的测量被用于给定无线信号的接收是指:所述用户设备可以从所述给定天线端口组上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述给定无线信号的全部或者部分大尺度特性。
作为一个实施例,给定无线信号的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),到达角(angle of arrival),离开角(angle of departure),空间相关性,多天线相关的发送,多天线相关的接收}中的一种或者多种。
作为一个实施例,多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,多天线相关的接收是接收波束。
作为一个实施例,多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,多天线相关的接收是接收波束赋型向量。
作为一个实施例,多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,多天线相关的发送是发送波束。
作为一个实施例,多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,多天线相关的发送是发送波束赋型向量。
作为一个实施例,多天线相关的发送是发送空间滤波(spatial filtering)。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定天线端口组上发送的无线信号的大尺度特性可以被用于推断出所述给定无线信号的多天线相关的发送。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定天线端口组的多天线相关的发送可以被用于推断出所述给定无线信号的多天线相关的发送。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定无线信号的发送天线端口组中的任一天线端口和所述给定天线端口组中的任一天线端口是QCL的。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定无线信号的发送天线端口组中的任一天线端口和所述给定天线端口组中的至少一个天线端口是QCL的。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定无线信号的发送天线端口组中的至少一个天线端口和所述给定天线端口组中的至少一个天线端口是QCL的。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定无线信号的发送天线端口组中的任一天线端口和所述给定天线端口组中的任一天线端口是spatial QCL的。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定无线信号的发送天线端口组中的任一天线端口和所述给定天线端口组中的至少一个天线端口是spatial QCL的。
作为一个实施例,给定天线端口组被用于给定无线信号的发送是指:所述给定无线信号的发送天线端口组中的至少一个天线端口和所述给定天线端口组中的至少一个天线端口是spatial QCL的。
作为一个实施例,两个天线端口QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口QCL是指:所述两个天线端口至少有一个相同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,多天线相关的QCL参数包括:{到达角(angle of arrival),离开角(angle of departure),空间相关性,多天线相关的发送,多天线相关的接收}中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain)}中的一种或多种。
作为一个实施例,两个天线端口QCL是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL的。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口是spatial QCL的是指:所述两个天线端口至少有一个相同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
作为一个实施例,所述第一无线信号的调度信息包括{MCS(Modulation and Coding Scheme,调制编码方式),DMRS的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示)}中的至少之一。
作为上述实施例的一个子实施例,所述DMRS的配置信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)}中的一种或多种。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图 3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述L个下行信令分别生成于所述PHY301。
作为一个实施例,本申请中的所述第一更新信令生成于所述PHY301。
实施例4
实施例4示例了NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码/波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频) 多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码/波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:接收本申请中的所述第一信令,接收本申请中的所述第二信令,接收本申请中的所述第三信令,在本申请中的所述第一子频带中接收本申请中的所述第一无线信号,在本申请中的所述第一子频带中发送本申请中的所述第一无线信号。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述 计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令,接收本申请中的所述第二信令,接收本申请中的所述第三信令,在本申请中的所述第一子频带中接收本申请中的所述第一无线信号,在本申请中的所述第一子频带中发送本申请中的所述第一无线信号。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送本申请中的所述第一信令,发送本申请中的所述第二信令,发送本申请中的所述第三信令,在本申请中的所述第一子频带中发送本申请中的所述第一无线信号,在本申请中的所述第一子频带中接收本申请中的所述第一无线信号。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令,发送本申请中的所述第二信令,发送本申请中的所述第三信令,在本申请中的所述第一子频带中发送本申请中的所述第一无线信号,在本申请中的所述第一子频带中接收本申请中的所述第一无线信号。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收所述第三信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送所述第三信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收所述第一无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送所述第一无线信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于接收所述第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459}中的至少之一被用于发送所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于执行所述第一接入检测。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于执行所述第二接入检测。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收所述L个下行信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送所述L个下行信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线 接收处理器472,所述控制器/处理器475}中的至少之一被用于接收所述第一更新信令;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459}中的至少之一被用于发送所述第一更新信令。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1,方框F2和方框F3中的步骤分别是可选的。
对于N1,在步骤S101中发送L个下行信令;在步骤S102中接收第一更新信令;在步骤S11中发送第一信令;在步骤S103中执行第二接入检测;在步骤S12中发送第二信令;在步骤S13中发送第三信令;在步骤S14中在第一子频带中发送第一无线信号。
对于U2,在步骤S201中接收L个下行信令;在步骤S202中发送第一更新信令;在步骤S21中接收第一信令;在步骤S22中接收第二信令;在步骤S23中接收第三信令;在步骤S24中在第一子频带中接收第一无线信号。
在实施例5中,所述第一信令被所述U2用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数。所述第二信令被所述U2用于从所述M个信息集合中确定第一信息集合。所述第三信令和所述第二信令相关联,所述第三信令被所述U2用于从所述第一信息集合中确定第一信息元素。针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被所述U2用于所述第一无线信号的接收。所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数。所述第一更新信令被所述N1用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合。L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。所述第二接入检测被所述N1用于确定所述第一子频带是否能被所述N1用于下行传输。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令在所述第一子频带上传输。
作为一个实施例,所述第一信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是小区公共的。
作为一个实施例,所述第二信令是终端组特定的,所述用户设备是所述终端组中的一个终端。
作为一个实施例,所述第二信令在所述第一子频带上传输。
作为一个实施例,所述第二信令的信令标识是CC-RNTI。
作为一个实施例,所述第三信令是物理层信令。
作为一个实施例,所述第三信令包括DownLink Grant DCI。
作为一个实施例,所述第三信令在所述第一子频带上传输。
作为一个实施例,所述第三信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组 包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为上述实施例的一个子实施例,所述第一无线信号所占用的时域资源属于所述第一多载波符号组。
作为上述实施例的一个子实施例,所述第一无线信号所占用的时域资源不属于所述第一多载波符号组。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用。
作为一个实施例,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用。
作为一个实施例,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号。
作为一个实施例,所述第三信令与所述第二信令属于同一个搜索空间。
作为上述实施例的一个子实施例,所述搜索空间是Search Space。
作为上述实施例的一个子实施例,所述搜索空间是一个CORESET。
作为上述实施例的一个子实施例,所述搜索空间在时域上多次出现。
作为上述子实施例的一个参考实施例,所述搜索空间在时域上任意两次相邻出现之间的时间间隔是相等的。
作为上述实施例的一个子实施例,所述搜索空间在时域上只出现一次。
作为一个实施例,所述第三信令包括第一域,所述第三信令中的第一域被所述U2用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为上述实施例的一个子实施例,所述第三信令中的第一域包括的比特的数量和所述第一信息集合中包括的信息元素的数量有关。
作为一个实施例,所述L个下行信令都是物理层信令。
作为一个实施例,所述L个下行信令都是动态信令。
作为一个实施例,所述L个下行信令都是小区公共的。
作为一个实施例,所述L个下行信令都是终端组特定的,所述用户设备是所述终端组中的一个终端。
作为一个实施例,所述L个下行信令中的任一下行信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述L个下行信令都在所述第一子频带上传输。
作为一个实施例,所述L个下行信令的信令标识都是CC-RNTI。
作为一个实施例,所述L个下行信令都是被CC-RNTI所标识的DCI。
作为一个实施例,CC-RNTI被用于生成所述L个下行信令中任一下行信令对应的DMRS(DeModulation Reference Signals,解调参考信号)的RS序列。
作为一个实施例,所述L个下行信令中任一下行信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被CC-RNTI所加扰。
作为一个实施例,所述第一更新信令是物理层信令。
作为一个实施例,所述第一更新信令包括{CSI,CRI,PMI,RSRP,RSRP,CQI}中的一种或多种。
作为一个实施例,所述第二接入检测的结束时间在所述第二信令占用的时域资源的起始点之前。
作为一个实施例,所述第二接入检测是下行接入检测。
作为一个实施例,所述第二接入检测包括在所述第一子频带上的P个时间子池中分别执行P次能量检测,分别得到P个检测值;其中,所述P个检测值中的P1个检测值都低于第二阈值;所述P是正整数,所述P1是不大于所述P的正整数。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输,所述用户设备接收所述第一无线信号。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第三信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输,所述用户设备接收所述第一无线信号。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一无线信号对应传输信道是DL-SCH(DownLink Shared Channel,下行共享信道),所述用户设备接收所述第一无线信号。
作为一个实施例,所述L个下行信令分别在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一更新信令在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第一更新信令在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
实施例6
实施例6示例了无线传输的流程图,如附图6所示。在附图6中,基站N3是用户设备U4的服务小区维持基站。附图6中,方框F4,方框F5,方框F6和方框F7中的步骤分别是可选的。
对于N3,在步骤S31中发送第一信令;在步骤S301中执行第二接入检测;在步骤S32中发送第二信令;在步骤S33中发送第三信令;在步骤S34中在第一子频带中接收第一无线信号;在步骤S302中发送L个下行信令;在步骤S303中接收第一更新信令。
对于U4,在步骤S41中接收第一信令;在步骤S42中接收第二信令;在步骤S43中接收第三信令;在步骤S401中执行第一接入检测;在步骤S44中在第一子频带中发送第一无线信号;在步骤S402中接收L个下行信令;在步骤S403中发送第一更新信令。
在实施例6中,所述第一信令被所述U4用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数。所述第二信令被所述U4用于从所述M个信息集合中确定第一信息集合。所述第三信令和所述第二信令相关联,所述第三信令被所述U4用于从所述第一信息集合中确定第一信息元素。所述第一信息元素中的第二类索引所标识的天线端口组被所述U4用于所述第一无线信号的发送。所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数。所述第一更新信令被所述N3用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合。L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。所述第一接入检测被所述U4用于确定所述第一子频带是否能被所述U4用于上行传输。所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被所述 U4用于从所述M个信息集合中确定所述第一信息集合。所述第二接入检测被所述N3用于确定所述第一子频带是否能被所述N3用于下行传输。
作为一个实施例,所述第一接入检测包括在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,分别得到Q个检测值;其中,所述Q个检测值中的Q1个检测值都低于第一阈值;所述Q1的值和所述第一接入检测的类型有关;所述Q是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述第一接入检测的类型是第一类上行接入检测,所述Q1是K1个候选整数中的一个候选整数,所述K1是正整数。
作为一个实施例,所述第一接入检测的类型是第二类上行接入检测,所述Q1等于2。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输,所述用户设备发送所述第一无线信号。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。
作为一个实施例,所述第一无线信号对应传输信道是UL-SCH(Uplink Shared Channel,上行共享信道),所述用户设备发送所述第一无线信号。
实施例7
实施例7示例了第一信息集合的示意图,如附图7所示。
在实施例7中,所述第一信息集合是M个信息集合中的一个信息集合,所述M是大于1的正整数。所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引。所述M个信息集合中的任一第一类索引是对应的信息元素在所属的信息集合中的索引。所述M个信息集合中的任一第二类索引标识一个天线端口组。第一信息元素是所述第一信息集合中的一个信息元素。所述第一信息元素中的第一类索引是x,所述x是非负整数,所述x小于所述第一信息集合中的信息元素的个数。所述第一信息元素中的第二类索引集合包括两个第二类索引,所述两个第二类索引分别标识两个天线端口组。
在附图7中,所述第一信息集合中的正整数个信息元素的索引分别是{#0,#1,...,#x,...};所述第一信息元素的索引是#x;信息元素#y中的第二类索引集合包括的第i个天线端口组用天线端口组#(y,i)表示,其中所述y和所述i分别是非负整数,所述y小于所述第一信息集合中的信息元素的个数,所述i小于信息元素#y中的第二类索引集合包括的第二类索引的个数。所述第一信息元素中的第二类索引集合中的两个第二类索引所标识两个天线端口组分别是天线端口组#(x,0)和天线端口组#(x,1)。
作为一个实施例,所述M个信息集合中至少有两个信息集合包括的信息元素的数量是不相等的。
作为一个实施例,所述M个信息集合中任意两个信息集合包括的信息元素的数量是相等的。
作为一个实施例,所述M个信息集合中的任一第一类索引是非负整数。
作为一个实施例,所述M个信息集合中的任一第二类索引是非负整数。
作为一个实施例,所述天线端口组#(x,0)是S1个候选天线端口组中的一个天线端口组,所述天线端口组#(x,1)是S2个候选天线端口组中的一个天线端口组;所述第一信息元素中的第二类索引集合中的两个第二类索引分别是所述天线端口组#(x,0)在所述S1个候选天线端口组中索引和所述天线端口组#(x,1)在所述S2个候选天线端口组中的索引。所述S1和所述S2分别是大于1的正整数。
作为上述实施例的一个子实施例,所述S1和所述S2中至少有一个大于所述第一类信息 集合中包括的信息元素的个数。
作为上述实施例的一个子实施例,所述S1和所述S2中都大于所述第一类信息集合中包括的信息元素的个数。
作为一个实施例,所述天线端口组#(x,0)和所述天线端口组#(x,1)分别是S3个候选天线端口组中的一个天线端口组;所述第一信息元素中的第二类索引集合中的两个第二类索引分别是所述天线端口组#(x,0)和所述天线端口组#(x,1)在所述S3个候选天线端口组中的索引。所述S3和是大于1的正整数。
作为上述实施例的一个子实施例,所述S3大于所述第一类信息集合中包括的信息元素的个数。
作为一个实施例,本申请中的所述用户设备在本申请中的所述第一子频带中接收本申请中的所述第一无线信号,针对所述天线端口组#(x,0)的测量被用于所述第一无线信号的接收。
作为一个实施例,本申请中的所述用户设备在本申请中的所述第一子频带中发送本申请中的所述第一无线信号,所述天线端口组#(x,0)被用于所述第一无线信号的发送。
作为一个实施例,所述用户设备可以从所述天线端口组#(x,0)上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出所述第一无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,所述用户设备可以从所述天线端口组#(x,1)上发送的无线信号的全部或者部分多天线无关的大尺度(large-scale)特性(properties)推断出所述第一无线信号的全部或者部分多天线无关的大尺度特性。
作为一个实施例,所述第一无线信号的至少一个发送天线端口和所述天线端口组#(x,1)中的任一天线端口是QCL的。
作为一个实施例,所述第一无线信号的任意一个发送天线端口和所述天线端口组#(x,1)中的任一天线端口不是spatial QCL的。
作为一个实施例,本申请中的所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,对于所述M个信息集合中的任一给定信息集合,所述第一信令中用于指示所述给定信息集合中的任一第一类索引的比特的数量小于所述第一信令中用于指示所述给定信息集合中的任一第二类索引的比特的数量。
作为一个实施例,所述第一信令中用于指示所述M个信息集合中的任一第一类索引的比特的数量小于所述第一信令中用于指示所述M个信息集合中的任一第二类索引的比特的数量。
实施例8
实施例8示例了第一信息集合的示意图,如附图8所示。
在实施例8中,所述第一信息集合是M个信息集合中的一个信息集合,所述M是大于1的正整数。所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引。所述M个信息集合中的任一第一类索引是对应的信息元素在所属的信息集合中的索引。所述M个信息集合中的任一第二类索引标识一个天线端口组。第一信息元素是所述第一信息集合中的一个信息元素。所述第一信息元素中的第一类索引是x,所述x是非负整数,所述x小于所述第一信息集合中的信息元素的个数。所述第一信息元素中的第二类索引集合包括1个第二类索引,所述1个第二类索引标识1个天线端口组。
在附图8中,所述第一信息集合中的正整数个信息元素的索引分别是{#0,#1,...,#x,...};所述第一信息元素的索引是#x;信息元素#y中的第二类索引集合包括的第i个天线端口组用天线端口组#(y,i)表示,其中所述y和所述i分别是非负整数,所述y小于所述第一信息集合中的信息元素的个数,所述i小于信息元素#y中的第二类索引集合包括的第二类索 引的个数。所述第一信息元素中的第二类索引集合中的1个第二类索引所标识1个天线端口组是天线端口组#(x,0)。
作为一个实施例,本申请中的所述用户设备在本申请中的所述第一子频带中接收本申请中的所述第一无线信号,针对所述天线端口组#(x,0)的测量被用于所述第一无线信号的接收。
作为一个实施例,本申请中的所述用户设备在本申请中的所述第一子频带中发送本申请中的所述第一无线信号,所述天线端口组#(x,0)被用于所述第一无线信号的发送。
实施例9
实施例9示例了第二信令,第三信令和第一无线信号在时域的资源映射示意图,如附图9所示。
在实施例9中,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第二信令占用的时域资源,所述第三信令占用的时域资源和所述第一无线信号占用的时域资源都在所述第一多载波符号组之内。在附图9中,左斜线填充的方框表示所述第一多载波符号组。
作为一个实施例,本申请中的所述用户设备接收所述第一无线信号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一多载波符号组中的所有多载波符号是连续的。
作为一个实施例,所述第一多载波符号组被下行物理信道或者下行物理信号所占用。
作为一个实施例,所述第一多载波符号组被本申请中的所述基站发送的下行物理信道或者下行物理信号所占用。
作为一个实施例,所述第一多载波符号组中的所有多载波符号属于同一个时隙(slot)。
作为一个实施例,所述第一多载波符号组中的所有多载波符号属于同一个子帧(subframe)。
作为一个实施例,所述第一多载波符号组和所述第二信令占用的时域资源属于同一个时隙(slot)。
作为一个实施例,所述第一多载波符号组和所述第二信令占用的时域资源属于同一个子帧(subframe)。
作为一个实施例,所述第三信令与所述第二信令属于同一个搜索空间。
作为一个实施例,所述第二信令所属的搜索空间(Search Space)所占用的时域资源与所述第三信令所属的搜索空间所占用的时域资源都属于所述第一多载波符号组。
作为一个实施例,所述第二信令包括第二域,所述第二信令中的第二域指示所述第一多载波符号组被占用,所述第二信令中的第二域是Subframe configuration for LAA(LAA的子帧配置)域,所述Subframe configuration for LAA域的具体定义参见3GPP TS36.213中的13A章节。
作为上述实施例的一个子实施例,所述第二信令中的第二域包括4个比特。
实施例10
实施例10示例了第二信令,第三信令和第一无线信号在时域的资源映射示意图,如附 图10所示。
在实施例10中,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源和所述第一无线信号占用的时域资源都在所述第一多载波符号组之内。在附图10中,左斜线填充的方框表示所述第一多载波符号组。
作为一个实施例,本申请中的所述用户设备接收所述第一无线信号。
作为一个实施例,所述第一多载波符号组和所述第二信令占用的时域资源属于不同的时隙(slot)。
作为一个实施例,所述第一多载波符号组和所述第二信令占用的时域资源属于不同的子帧(subframe)。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被下行物理信道或者下行物理信号占用。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号属于所述第一多载波符号组。
作为一个实施例,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用。
作为一个实施例,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被下行物理信道或者下行物理信号占用。
作为一个实施例,所述第二信令所占用的时域资源与所述第一无线信号所占用的时域资源之间的所有多载波符号都属于所述第一多载波符号组。
作为一个实施例,所述第三信令与所述第二信令在时域占用同一个时间片。
作为上述实施例的一个子实施例,所述同一个时间片包括14个连续的多载波符号。
作为上述实施例的一个子实施例,所述同一个时间片属于一个时隙(slot)。
作为上述实施例的一个子实施例,所述同一个时间片属于一个子帧(sub-frame)。
作为上述实施例的一个子实施例,所述同一个时间片属于一个下行突发(Downlink Burst)。
作为上述实施例的一个子实施例,所述同一个时间片属于所述第一多载波符号组
作为一个实施例,所述第二信令所属的搜索空间(Search Space)所占用的时域资源与所述第三信令所属的搜索空间所占用的时域资源之间的所有多载波符号属于所述第一多载波符号组。
实施例11
实施例11示例了第二信令,第三信令和第一无线信号在时域的资源映射示意图,如附图11所示。
在实施例11中,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内,所述第一无线信号占用的时域资源在所述第一多载波符号组之外。在附图11中,左斜线填充的方框表示所述第一多载波符号组。
作为一个实施例,本申请中的所述用户设备接收所述第一无线信号。
作为一个实施例,本申请中的所述用户设备发送所述第一无线信号。
作为一个实施例,所述第三信令所占用的时域资源与所述第一无线信号所占用的时域资源之间的所有多载波符号都被占用。
作为一个实施例,所述第三信令所占用的时域资源与所述第一无线信号所占用的时域资源之间的所有多载波符号都被下行物理信道或者下行物理信号占用。
作为一个实施例,所述第三信令所占用的时域资源与所述第一无线信号所占用的时域资源之间的所有多载波符号都属于所述第一多载波符号组。
实施例12
实施例12示例了第三信令的内容的示意图,如附图12所示。
在实施例12中,所述第三信令包括第一域,所述第三信令中的第一域被用于从本申请中的所述第一信息集合中确定本申请中的所述第一信息元素。
作为一个实施例,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为一个实施例,所述第三信令中的第一域包括的比特的数量和所述第一信息集合中包括的信息元素的数量有关。
作为一个实施例,所述第三信令中的第一域包括的比特的数量等于所述第一信息集合中包括的信息元素的数量的以2为底的对数向上取整,即所述第三信令中的第一域包括的比特的数量等于A3,所述A3是不小于log 2(B2)的正整数,所述B2是所述第一信息集合中包括的信息元素的数量。
作为一个实施例,所述第三信令中的第一域包括1个比特。
作为一个实施例,所述第三信令中的第一域包括2个比特。
作为一个实施例,所述第三信令中的第一域包括3个比特。
作为一个实施例,所述第三信令中的第一域包括4个比特。
作为一个实施例,所述第三信令中的第一域是TCI。
作为一个实施例,所述第三信令中的第一域指示所述第一信息元素在所述第一信息集合中的索引。
作为一个实施例,所述第三信令包括第三域,所述第三信令中的第三域指示本申请中的所述第一接入检测的类型。
作为上述实施例的一个子实施例,所述第三信令中的第三域是Channel Access type(信道接入类型)域。
作为上述实施例的一个子实施例,所述第三信令中的第三域包括1个比特。
作为一个实施例,所述第三信令的信令格式(format)属于{0A,0B,4A,4B}。
实施例13
实施例13示例了天线端口和天线端口组的示意图,如附图13所示。
在实施例13中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图13中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述 天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组包括一个天线端口。例如,附图13中的所述天线端口组#0包括一个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。例如,附图13中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口组包括多个天线端口。例如,附图13中的所述天线端口组#1包括多个天线端口。
作为上述实施例的一个子实施例,所述多个天线端口对应相同的模拟波束赋型矩阵和不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL的。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
实施例14
实施例14示例了给定接入检测的示意图,如附图14所示;所述给定接入检测是本申请中的所述第一接入检测或者本申请中的所述第二接入检测。
在实施例14中,给定节点在步骤S1401中处于闲置状态,在步骤S1402中判断是否需要发送;在步骤1403中在一个延迟时段(defer duration)内执行能量检测;在步骤S1404中判断这个延迟时段内的所有时隙是否都空闲,如果是,进行到步骤S1405中设置第一计数器等于T1;否则返回步骤S1404;在步骤S1406中判断所述第一计数器是否为0,如果是,进行到步骤S1407中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1408中在一个附加时隙内执行能量检测;在步骤S1409中判断这个附加时隙是否空闲,如果是,进行到步骤S1410中把所述第一计数器减1,然后返回步骤1406;否则进行到步骤S1411中在一个附加延迟时段内执行能量检测;在步骤S1412中判断这个附加延迟时段内的所有时隙是否都空闲,如果是,进行到步骤S1410;否则返回步骤S1411。
在实施例14中,所述给定接入检测是在本申请中的所述第一子频带上执行的。所述给定节点在所述第一子频带上的T个时间子池中分别执行T次能量检测,分别得到T个检测值;其中,所述T个检测值中的T1个检测值都低于给定阈值。如果所述给定接入检测是所述第一接入检测,所述给定节点是本申请中的所述用户设备,所述T等于所述Q,所述T1等于所述Q1,所述给定阈值是本申请中的所述第一阈值;如果所述给定接入检测是所述第二接入检测,所述给定节点是本申请中的所述基站,所述T等于所述P,所述T1等于所述P1,所述给定阈值是本申请中的所述第二阈值。
在实施例14中,所述T个时间子池的任意一个第一给定时间子池的全部或者部分属于第一给定时段中的一个时隙,所述第一给定时段是所述给定接入检测过程中包括的{所有延时时段,所有附加时隙,所有附加延时时段}中之一。T1个时间子池分别是所述T个时间子池中和所述T1个检测值对应的时间子池。所述T1个时间子池中的任意一个第二给定时间子池的全部或者部分属于第二给定时段中的一个时隙,所述第二给定时段是所述给定接入检测过程中通过能量检测被判断为空闲的{所有附加时隙,所有附加延时时段}中之一。
作为一个实施例,所述给定接入检测是LBT,所述LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述给定接入检测是CCA(Clear Channel Assessment,空闲信道评估),所述CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述给定接入检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述给定接入检测的类型是第一类接入检测,所述T1是K个候选整数中的一个候选整数,所述K是正整数。
作为上述实施例的一个子实施例,所述给定接入检测是所述第二接入检测,所述K是本申请中的所述K2,所述第一类接入检测是本申请中的所述第一类下行接入检测。
作为上述子实施例的一个参考实施例,所述第一类接入检测是Cat 4 LBT(第四类型的LBT),所述Cat 4 LBT的具体定义参见3GPP TR36.889。
作为上述实施例的一个子实施例,所述给定接入检测是所述第一接入检测,所述K是本申请中的所述K1,所述第一类接入检测是本申请中的所述第一类上行接入检测。
作为上述子实施例的一个参考实施例,所述第一类接入检测是第一类上行信道接入过程(Type 1 UL channel access procedure),所述第一类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述给定节点在所述K个候选整数中随机选取了所述T1的值。
作为一个实施例,所述给定节点在所述K个候选整数中选取任一候选整数作为所述T1的值的概率都相等。
作为一个实施例,所述K个候选整数为0,1,2,…,K-1。
作为一个实施例,所述K是CW p,所述CW p是竞争窗口(contention window),所述CW p的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述K个候选整数中的任一候选整数为非负整数。
作为一个实施例,所述K个候选整数中包括0。
作为一个实施例,所述K个候选整数中的任意两个候选整数不等。
作为一个实施例,所述K为一个大于1的正整数。
作为一个实施例,所述K属于{3,7,15,31,63,127,255,511,1023}。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上正整数个9微秒。
作为一个实施例,一个延时时段包括多个时隙。
作为上述实施例的一个子实施例,所述多个时隙中的第一个时隙和第二个时隙之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙中的第一个时隙和第二个时隙之间的时间间隔是7毫秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上正整数个9微秒。
作为一个实施例,一个附加延时时段包括多个时隙。
作为上述实施例的一个子实施例,所述多个时隙中的第一个时隙和第二个时隙之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙中的第一个时隙和第二个时隙之间的时间间隔是7毫秒。
作为一个实施例,一个时隙(slot)的持续时间是9微秒。
作为一个实施例,一个附加时隙(additional slot)的持续时间是9微秒。
作为一个实施例,所述T个时间子池中不存在一个时间子池在时域分布在所述给定接入检测过程中包括的{所有延时时段,所有附加时隙,所有附加延时时段}中的任意两个时隙内。
作为一个实施例,第一参考时段是所述给定接入检测过程中包括的{所有延时时段,所有附加时隙,所有附加延时时段}中任意之一,所述第一参考时段中的任意时隙包括所述T个时间子池中的一个时间子池的全部或部分。
作为上述实施例的一个子实施例,所述T个时间子池中不存在两个时间子池属于所述第一参考时段中的同一个时隙。
作为一个实施例,第二参考时段是所述给定接入检测过程中通过能量检测被判断为空闲的{所有附加时隙,所有附加延时时段}中任意之一,所述第二参考时段中有并且只有一个时隙包括所述T1个时间子池中的一个时间子池的全部或部分。
作为上述实施例的一个子实施例,所述T1个时间子池中不存在两个时间子池属于所述第二参考时段中的同一个时隙。
作为一个实施例,在给定时间段内执行能量检测是指:在所述给定时间段内的所有时间子池内执行能量检测,所述给定时间段是{延时时段,附加时隙,附加延时时段}中之一,所述所有时间子池属于所述T个时间子池。
作为一个实施例,所述T1小于所述T。
作为一个实施例,所述T个检测值中不属于所述T1个检测值的检测值中至少有一个检测值低于所述给定阈值。
作为一个实施例,所述T个检测值中不属于所述T1个检测值的检测值中至少有一个检测值不低于所述给定阈值。
作为一个实施例,所述T个检测值分别是所述给定节点在T个时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率/或者能量,并在时间上平均,以获得的接收功率或者接收能量;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述给定节点在给定时间单元中监测接收功率,所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述给定节点在给定时间单元中监测接收能量,所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过LTE LAA中的能量检测方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是LBT过程中的能量检测。
作为一个实施例,所述T次能量检测中的任意一次能量检测是CCA过程中的能量检测。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过WiFi中的能量检测方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述T个时间子池中的任一时间子池在占用的时域资源是连续的。
作为一个实施例,所述T个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述T个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,所述T个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述T个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述T个时间子池占用的时域资源是连续的。
作为一个实施例,所述T个时间子池中至少存在两个时间子池占用的时域资源是不连续。
作为一个实施例,所述T个时间子池中任意两个时间子池占用的时域资源是不连续。
作为一个实施例,所述T个时间子池中任一时间子池是一个时隙(slot)。
作为一个实施例,所述T个时间子池中任一时间子池是T sl,所述T sl是一个时隙长度(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述T个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙(slot)。
作为一个实施例,所述T个时间子池中除了最早的时间子池以外的任一时间子池是T sl,所述T sl是一个时隙长度(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述T个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述T个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述T个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述T个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述T个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述T个时间子池包括Cat 4(第四类)LBT中的延时时段(Defer Duration)中的时隙和回退时间(Back-off Time)中的时隙。
作为一个实施例,所述T个时间子池包括Type 1 UL channel access procedure(第一类上行信道接入过程)中的延时时段(Defer Duration)中的时隙和回退时间(Back-off Time)中的时隙,所述给定接入检测是所述第一接入检测。
作为上述实施例的一个子实施例,所述感知时间间隔的持续时间是25微秒。
作为一个实施例,所述T个时间子池包括了初始CCA和eCCA中的时隙。
作为一个实施例,T1个时间子池中的任意两个时间子池的持续时间都相等。
作为一个实施例,T1个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,T1个时间子池中包括所述T个时间子池中的最晚的时间子池。
作为一个实施例,T1个时间子池只包括了eCCA中的时隙。
作为一个实施例,所述T个时间子池包括所述T1个时间子池和T2个时间子池,所述T2个时间子池中的任一时间子池不属于所述T1个时间子池;所述T2是不大于所述T减所述T1的正整数。
作为上述实施例的一个子实施例,所述T2个时间子池在所述T个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述T2个时间子池包括了初始CCA中的时隙。
作为上述实施例的一个子实施例,所述T2个时间子池中至少有一个时间子池对应的检测值低于所述给定阈值。
作为上述实施例的一个子实施例,所述T2个时间子池中至少有一个时间子池对应的检测值不低于所述给定阈值。
作为上述实施例的一个子实施例,所述T2个时间子池包括所有延时时段内的所有时隙。
作为上述实施例的一个子实施例,所述T2个时间子池包括至少一个附加延时时段内的所有时隙。
作为上述实施例的一个子实施例,所述T2个时间子池包括至少一个附加时隙。
作为上述实施例的一个子实施例,所述T2个时间子池包括通过能量检测被判断为非空闲的{所有附加时隙,所有附加延时时段}内的所有时隙。
作为一个实施例,所述T1个时间子池分别属于T1个子池集合,所述T1个子池集合中的任一子池集合包括所述T个时间子池中的正整数个时间子池;所述T1个子池集合中的任一时间子池对应的检测值低于所述第一阈值。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合包括的时 间子池的数量等于1。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述T个时间子池中不存在一个时间子池同时属于所述T1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述T1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙。
作为上述实施例的一个子实施例,所述T个时间子池中不属于所述T1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述给定阈值。
作为上述实施例的一个子实施例,所述T个时间子池中不属于所述T1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述给定阈值。
作为一个实施例,第一天线端口组相关被用于确定所述给定节点用于执行所述给定接入检测的多天线相关的接收。
作为上述实施例的一个子实施例,所述给定接入检测是所述第一接入检测,所述第一天线端口组是本申请中的所述第一无线信号的发送天线端口组。
作为上述实施例的一个子实施例,所述给定接入检测是所述第二接入检测,所述第一天线端口组是本申请中的所述第一信息集合中的一个第二类索引所表示的天线端口组。
作为上述实施例的一个子实施例,所述给定节点可以从所述第一天线端口组上发送的无线信号的全部或部分大尺度特性推断出用于执行所述给定接入检测的多天线相关的接收。
作为上述实施例的一个子实施例,所述第一天线端口组的多天线相关的发送用于确定所述给定节点用于执行所述给定接入检测的多天线相关的接收。
实施例15
实施例15示例了给定接入检测的示意图,如附图15所示;所述给定接入检测是本申请中的所述第一接入检测或者本申请中的所述第二接入检测。
在实施例15中,给定节点在步骤S1501中处于闲置状态,在步骤S1502中判断是否需要发送;在步骤1503中在一个延迟时段(defer duration)内执行能量检测;在步骤S1504中判断这个延迟时段内的所有时隙是否都空闲,如果是,进行到步骤S1505中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1506中在一个延迟时段内执行能量检测;在步骤S1507中判断这个延迟时段内的所有时隙是否都空闲,如果是,进行到步骤S1508中设置第一计数器等于T1;否则返回步骤S1506;在步骤S1509中判断所述第一计数器是否为0,如果是,进行到步骤S1505中在所述第一子频带上发送无线信号;否则进行到步骤S1510中在一个附加时隙内执行能量检测;在步骤S1511中判断这个附加时隙是否空闲,如果是,进行到步骤S1512中把所述第一计数器减1,然后返回步骤1509;否则进行到步骤S1513中在一个附加延迟时段内执行能量检测;在步骤S1514中判断这个附加延迟时段内的所有时隙是否都空闲,如果是,进行到步骤S1512;否则返回步骤S1513。
在实施例15中,所述给定接入检测是在本申请中的所述第一子频带上执行的。所述给定节点在所述第一子频带上的T个时间子池中分别执行T次能量检测,分别得到T个检测值;其中,所述T个检测值中的T1个检测值都低于给定阈值。如果所述给定接入检测是所述第一接入检测,所述给定节点是本申请中的所述用户设备,所述T等于所述Q,所述T1等于所述Q1,所述给定阈值是本申请中的所述第一阈值;如果所述给定接入检测是所述第二接入检测,所述给定节点是本申请中的所述基站,所述T等于所述P,所述T1等于所述P1,所述给定阈值是本申请中的所述第二阈值。
在实施例15中,所述T个时间子池的任意一个第一给定时间子池的全部或者部分属于第 一给定时段中的一个时隙,所述第一给定时段是所述给定接入检测过程中包括的{所有延时时段,所有附加时隙,所有附加延时时段}中之一。T1个时间子池分别是所述T个时间子池中和所述T1个检测值对应的时间子池。所述T1个时间子池中的任意一个第二给定时间子池的全部或者部分属于第二给定时段中的一个时隙,所述第二给定时段是所述给定接入检测过程中通过能量检测被判断为空闲的{所有附加时隙,所有附加延时时段}中之一。
作为一个实施例,所述给定接入检测的类型是第一类接入检测。
作为上述实施例的一个子实施例,所述给定接入检测是所述第二接入检测,所述第一类接入检测是本申请中的所述第一类下行接入检测。
作为上述子实施例的一个参考实施例,所述第一类接入检测是Cat 4 LBT(第四类型的LBT),所述Cat 4 LBT的具体定义参见3GPP TR36.889。
作为上述实施例的一个子实施例,所述给定接入检测是所述第一接入检测,所述第一类接入检测是本申请中的所述第一类上行接入检测。
作为上述子实施例的一个参考实施例,所述第一类接入检测是第一类上行信道接入过程(Type 1 UL channel access procedure),所述第一类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述T1等于0,所述给定节点在步骤S1504中判断这个延迟时段内的所有时隙都空闲。
作为一个实施例,所述T1是所述K个候选整数中的一个,所述K是正整数,所述给定节点在步骤S1504中判断这个延迟时段内的并非所有时隙都空闲。
作为上述实施例的一个子实施例,所述给定接入检测是所述第二接入检测,所述K是本申请中的所述K2。
作为上述实施例的一个子实施例,所述给定接入检测是所述第一接入检测,所述K是本申请中的所述K1。
实施例16
实施例16示例了给定接入检测的示意图,如附图16所示;所述给定接入检测是本申请中的所述第一接入检测或者本申请中的所述第二接入检测。
在实施例16中,给定节点在步骤S1601中处于闲置状态,在步骤S1602中判断是否需要发送;在步骤1603中在一个感知时间(Sensing interval)内执行能量检测;在步骤S1604中判断这个感知时间内的所有时隙是否都空闲,如果是,进行到步骤S1605中在本申请中的所述第一子频带上发送无线信号;否则返回步骤S1603。
在实施例16中,所述给定接入检测是在本申请中的所述第一子频带上执行的。所述给定节点在所述第一子频带上的T个时间子池中分别执行T次能量检测,分别得到T个检测值;其中,所述T个检测值中的T1个检测值都低于给定阈值。如果所述给定接入检测是所述第一接入检测,所述给定节点是本申请中的所述用户设备,所述T等于所述Q,所述T1等于所述Q1,所述给定阈值是本申请中的所述第一阈值;如果所述给定接入检测是所述第二接入检测,所述给定节点是本申请中的所述基站,所述T等于所述P,所述T1等于所述P1,所述给定阈值是本申请中的所述第二阈值。
在实施例16中,所述T个时间子池的任意一个第一给定时间子池的全部或者部分属于所述给定接入检测过程中的一个感知时间中的一个时隙。T1个时间子池分别是所述T个时间子池中和所述T1个检测值对应的时间子池。所述T1个时间子池中的任意一个第二给定时间子池的全部或者部分属于所述给定接入检测过程中通过能量检测被判断为空闲的感知时间中的一个时隙。
作为一个实施例,所述Q1等于2
作为一个实施例,所述Q1等于所述Q。
作为一个实施例,所述Q1大于所述Q。
作为一个实施例,一个感知时间(Sensing interval)的持续时间是25微秒。
作为一个实施例,一个感知时间包括2个时隙,所述2个时隙在时域是不连续的。
作为上述实施例的一个子实施例,所述2个时隙中的时间间隔是7微秒。
作为一个实施例,所述T个时间子池包括Cat 2(第二类)LBT中的监听时间。
作为一个实施例,所述T个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的时隙,所述感知时间间隔的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述T个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的T f和T sl,所述T f和所述T sl是两个时间间隔,所述T f和所述T sl的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述T f的持续时间是16微秒。
作为上述实施例的一个子实施例,所述T sl的持续时间是9微秒。
作为一个实施例,所述给定接入检测的类型是第二类接入检测。
作为上述实施例的一个子实施例,所述给定接入检测是所述第二接入检测,所述第二类接入检测是本申请中的所述第二类下行接入检测。
作为上述子实施例的一个参考实施例,所述第二类接入检测是Cat 2 LBT(第二类型的LBT),所述Cat 2 LBT的具体定义参见3GPP TR36.889。
作为上述实施例的一个子实施例,所述给定接入检测是所述第一接入检测,所述第二类接入检测是本申请中的所述第二类上行接入检测。
作为上述子实施例的一个参考实施例,所述第二类接入检测是第二类上行信道接入过程(Type 1 UL channel access procedure),所述第二类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述T1个时间子池中的第一个时间子池的持续时间是16微秒,所述T1个时间子池中的第二个时间子池的持续时间是9微秒。
作为一个实施例,所述T1个时间子池的持续时间都是9微秒;所述T1个时间子池中的第一个时间子池和第二个时间子池之间的时间间隔是7微秒。
实施例17
实施例17示例了L个多载波符号组和L1个多载波符号组的示意图;如附图17所示。
在实施例17中,所述L个多载波符号组分别被本申请中的所述L个下行信令所指示。所述L1个多载波符号组是所述L个多载波符号组的子集,L1个下行信令分别是所述L个下行信令中指示所述L1个多载波符号组的下行信令。用于生成本申请中的所述第一更新信令的测量被限制在所述L1个多载波符号组中。所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是本申请中的所述M个信息集合中的一个信息集合。所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号。在附图17中,所述L个多载波符号组的索引分别是{#0,#1,...,#L-1},左斜线填充的方框表示所述L1个多载波符号组。附图17中的和‘x’和‘y’分别是小于所述L的非负整数,所述x小于所述y。
作为一个实施例,所述L个多载波符号组中的任一多载波符号组中的所有多载波符号是连续的。
作为一个实施例,所述L个下行信令中任一下行信令指示对应的多载波符号组被下行物理信道或者下行物理信号所占用。
作为一个实施例,所述L个多载波符号组中的任一多载波符号组中的所有多载波符号属于同一个时隙(slot)。
作为一个实施例,所述L个多载波符号组中的任一多载波符号组中的所有多载波符号属于同一个子帧(subframe)。
作为一个实施例,所述第一更新信令包括{CSI,CRI,PMI,RSRP,RSRP,CQI}中的一种 或多种。
作为一个实施例,针对第一参考信号的测量被用于生成所述第一更新信令,所述第一参考信号占用的时域资源属于所述L1个多载波符号组。
作为上述实施例的一个子实施例,所述第一参考信号不占用所述L1个多载波符号组以外的时域资源。
作为上述实施例的一个子实施例,所述第一参考信号包括{CSI-RS,PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号),MIB(Master Information Block,主信息块)/SIB(System Information Block,系统信息块),DMRS,TRS,PTRS}中的一种或多种。
作为上述实施例的一个子实施例,所述第一参考信号的发送天线端口组中至少有一个天线端口和第一天线端口组中的任一天线端口是QCL的;所述第一天线端口组是所述更新的目标信息集合中被更新的信息元素在更新前对应的第二类索引所标识的天线端口组。
作为上述实施例的一个子实施例,所述第一参考信号的发送天线端口组中至少有一个天线端口和第一天线端口组中的任一天线端口是spatial QCL的;所述第一天线端口组是所述更新的目标信息集合中被更新的信息元素在更新前对应的第二类索引所标识的天线端口组。
作为上述实施例的一个子实施例,所述第一参考信号包括L1个子参考信号,所述L1个子参考信号所占用的时域资源分别属于所述L1个多载波符号组。
作为上述子实施例的一个参考实施例,针对所述L1个子参考信号的测量的平均值被用于生成所述第一更新信令。
作为一个实施例,所述L个多载波符号组是两两相互正交(不重叠)的,即不存在一个多载波符号同时属于所述L个多载波符号组中的两个多载波符号组。
实施例18
实施例18示例了用于用户设备中的处理装置的结构框图,如附图18所示。在附图18中,用户设备中的处理装置1800主要由第一接收机模块1801和第一处理模块1802组成。
在实施例18中,第一接收机模块1801接收第一信令,第二信令和第三信令;第一处理模块1802在第一子频带中接收第一无线信号,或者在第一子频带中发送第一无线信号。
在实施例18中,所述第一信令被所述第一接收机模块1801用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引;所述第二信令被所述第一接收机模块1801用于从所述M个信息集合中确定第一信息集合;所述第三信令和所述第二信令相关联,所述第三信令被所述第一接收机模块1801用于从所述第一信息集合中确定第一信息元素。所述第一处理模块1802在所述第一子频带中接收所述第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被所述第一处理模块1802用于所述第一无线信号的接收;或者所述第一处理模块1802在所述第一子频带中发送所述第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被所述第一处理模块1802用于所述第一无线信号的发送。所述第三信令包括所述第一无线信号的调度信息,所述M是大于1的正整数,一个天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用;
作为一个实施例,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源 之间所有的多载波符号都被占用,所述第一处理模块1802在所述第一子频带中接收所述第一无线信号。
作为一个实施例,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号。
作为一个实施例,所述第三信令与所述第二信令属于同一个搜索空间。
作为一个实施例,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为一个实施例,所述第一接收机模块1801还接收L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数。所述第一处理模块1802还发送第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合。其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
作为一个实施例,所述第一接收机模块1801还在所述第一子频带上执行第一接入检测;其中,所述第一处理模块1802在所述第一子频带中发送所述第一无线信号;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被所述第一接收机模块1801用于从所述M个信息集合中确定所述第一信息集合;所述第一接入检测包括:
-在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,分别得到Q个检测值;
其中,所述Q个检测值中的Q1个检测值都低于第一阈值;所述Q1的值和所述第一接入检测的类型有关;所述Q是正整数,所述Q1是不大于所述Q的正整数。
作为上述实施例的一个子实施例,所述第一接入检测的类型是第一类上行接入检测,所述Q1是K1个候选整数中的一个候选整数,所述K1是正整数。
作为上述实施例的一个子实施例,所述第一接入检测的类型是第二类上行接入检测,所述Q1等于2。
作为一个实施例,所述第一接收机模块1801包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理模块1502包括实施例4中的{天线452,发射器/接收器454,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例19
实施例19示例了用于基站中的处理装置的结构框图,如附图19所示。在附图19中,基站中的处理装置1900主要由第一发送机模块1901和第二处理模块1902组成。
在实施例19中,第一发送机模块1901发送第一信令,第二信令和第三信令;第二处理模块1902在第一子频带中发送第一无线信号,或者在第一子频带中接收第一无线信号。
在实施例19中,所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引;所述第二信令被用于从所述M个信息集合中确定第一信息集合;所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素。所述第二处理模块1902在所述第一子频带中发送所述第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,所述第二处理模块1902在所述第一 子频带中接收所述第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送。所述第三信令包括所述第一无线信号的调度信息,所述M是大于1的正整数,一个天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
作为一个实施例,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
作为一个实施例,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用。
作为一个实施例,所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述第二处理模块1902在所述第一子频带中发送所述第一无线信号。
作为一个实施例,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号。
作为一个实施例,所述第三信令与所述第二信令属于同一个搜索空间。
作为一个实施例,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
作为一个实施例,所述第一发送机模块1901还确定第一接入检测的类型;其中,所述第二处理模块1902在所述第一子频带中接收所述第一无线信号;所述第一无线信号的发送者在发送所述第一无线信号之前在所述第一子频带上执行所述第一接入检测;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合。
作为一个实施例,所述第一发送机模块1901还发送L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数。所述第二处理模块1902还接收第一更新信令,所述第一更新信令被所述第二处理模块1902用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合。其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
作为一个实施例,所述第二处理模块1902还在所述第一子频带上执行第二接入检测;其中,所述第二接入检测包括:
-在所述第一子频带上的P个时间子池中分别执行P次能量检测,分别得到P个检测值;
其中,所述P个检测值中的P1个检测值都低于第二阈值;所述P是正整数,所述P1是不大于所述P的正整数。
作为一个实施例,所述第一发送机模块1901包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二处理模块1902包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。 相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 被用于无线通信的用户设备中的方法,其特征在于,包括:
    -接收第一信令,所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数;
    -接收第二信令,所述第二信令被用于从所述M个信息集合中确定第一信息集合;
    -接收第三信令,所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
    -在第一子频带中接收第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中发送第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
    其中,所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用;或者所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述用户设备在所述第一子频带中接收所述第一无线信号。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号;或者,所述第三信令与所述第二信令属于同一个搜索空间。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,包括:
    -在所述第一子频带上执行第一接入检测;
    其中,所述用户设备在所述第一子频带中发送所述第一无线信号;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合;所述第一接入检测包括:
    -在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,分别得到Q个检测值;
    其中,所述Q个检测值中的Q1个检测值都低于第一阈值;所述Q1的值和所述第一接入检测的类型有关;所述Q是正整数,所述Q1是不大于所述Q的正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一接入检测的类型是第一类上行接入检测,所述Q1是K1个候选整数中的一个候选整数,所述K1是正整数。
  9. 根据权利要求7所述的方法,其特征在于,所述第一接入检测的类型是第二类上行接入检测,所述Q1等于2。
  10. 根据权利要求1至9中任一权利要求所述的方法,其特征在于,包括:
    -接收L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数;
    -发送第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合;
    其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
  11. 被用于无线通信的基站中的方法,其特征在于,包括:
    -发送第一信令,所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引,所述M是大于1的正整数;
    -发送第二信令,所述第二信令被用于从所述M个信息集合中确定第一信息集合;
    -发送第三信令,所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
    -在第一子频带中发送第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中接收第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
    其中,所述第三信令包括所述第一无线信号的调度信息,一个天线端口组包括正整数个天线端口。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信令中用于指示所述M个信息集合中任意一个给定第一类索引的比特的数量小于所述第一信令中用于指示所述给定第一类索引所对应的第二类索引集合中的一个第二类索引的比特的数量。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述第三信令占用的时域资源在所述第一多载波符号组之内。
  14. 根据权利要求11至13中任一权利要求所述的方法,其特征在于,所述第二信令所占用的时域资源与所述第三信令所占用的时域资源之间所有的多载波符号都被占用;或者所述第二信令所占用的时域资源与所述第一无线信号所占用时域资源之间所有的多载波符号都被占用,所述基站在所述第一子频带中发送所述第一无线信号。
  15. 根据权利要求11至14中任一权利要求所述的方法,其特征在于,所述第三信令与所述第二信令在时域占用同一个时间片,所述时间片包括正整数个连续的多载波符号;或者,所述第三信令与所述第二信令属于同一个搜索空间。
  16. 根据权利要求11至15中任一权利要求所述的方法,其特征在于,所述第三信令包括第一域,所述第三信令中的第一域被用于从所述第一信息集合中确定所述第一信息元素,所述第三信令中的第一域包括的比特的数量和所述第一信息集合有关。
  17. 根据权利要求11至16中任一权利要求所述的方法,其特征在于,包括:
    -确定第一接入检测的类型;
    其中,所述基站在所述第一子频带中接收所述第一无线信号;所述第一无线信号的发送者在发送所述第一无线信号之前在所述第一子频带上执行所述第一接入检测;所述第一接入检测的类型是N个候选类型中的一种候选类型;所述第一接入检测的类型和所述第二信令共同被用于从所述M个信息集合中确定所述第一信息集合。
  18. 根据权利要求11至17中任一权利要求所述的方法,其特征在于,包括:
    -发送L个下行信令,所述L个下行信令分别指示L个多载波符号组被占用,所述L个多载波符号组中每个多载波符号组包括正整数个多载波符号,所述L是大于1的正整数;
    -接收第一更新信令,所述第一更新信令被用于更新目标信息集合,更新的目标信息集合是所述M个信息集合中的一个信息集合;
    其中,L1个多载波符号组分别对应L1个下行信令,所述L1个下行信令是所述L个下行信令中所有从所述M个信息集合中指示所述更新的目标信息集合的下行信令,用于生成所述第一更新信令的测量被限制在所述L1个多载波符号组中。
  19. 根据权利要求11至18中任一权利要求所述的方法,其特征在于,包括:
    -在所述第一子频带上执行第二接入检测;
    其中,所述第二接入检测包括:
    -在所述第一子频带上的P个时间子池中分别执行P次能量检测,分别得到P个检测值;
    其中,所述P个检测值中的P1个检测值都低于第二阈值;所述P是正整数,所述P1是不大于所述P的正整数。
  20. 被用于无线通信的用户设备,其特征在于,包括:
    -第一接收机模块,接收第一信令,第二信令和第三信令;所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引;所述第二信令被用于从所述M个信息集合中确定第一信息集合;所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
    -第一处理模块,在第一子频带中接收第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中发送第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
    其中,所述第三信令包括所述第一无线信号的调度信息,所述M是大于1的正整数,一个天线端口组包括正整数个天线端口。
  21. 被用于无线通信的基站设备,其特征在于,包括:
    -第一发送机模块,发送第一信令,第二信令和第三信令;所述第一信令被用于确定M个信息集合,所述M个信息集合中任意一个信息集合包括正整数个信息元素,所述正整数个信息元素中任一信息元素包括一个第一类索引以及一个第二类索引集合,所述第二类索引集合包括一个或者多个第二类索引;所述第二信令被用于从所述M个信息集合中确定第一信息集合;所述第三信令和所述第二信令相关联,所述第三信令被用于从所述第一信息集合中确定第一信息元素;
    -第二处理模块,在第一子频带中发送第一无线信号,针对所述第一信息元素中的第二类索引所标识的天线端口组的测量被用于所述第一无线信号的接收;或者,在第一子频带中接收第一无线信号,所述第一信息元素中的第二类索引所标识的天线端口组被用于所述第一无线信号的发送;
    其中,所述第三信令包括所述第一无线信号的调度信息,所述M是大于1的正整数,一个天线端口组包括正整数个天线端口。
PCT/CN2017/115263 2017-12-08 2017-12-08 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019109345A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210650702.9A CN115225238A (zh) 2017-12-08 2017-12-08 一种被用于无线通信的用户设备、基站中的方法和装置
PCT/CN2017/115263 WO2019109345A1 (zh) 2017-12-08 2017-12-08 一种被用于无线通信的用户设备、基站中的方法和装置
CN201780094878.8A CN111279779B (zh) 2017-12-08 2017-12-08 一种被用于无线通信的用户设备、基站中的方法和装置
US16/885,294 US11206666B2 (en) 2017-12-08 2020-05-28 Method and device in UE and base station for wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/115263 WO2019109345A1 (zh) 2017-12-08 2017-12-08 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/885,294 Continuation US11206666B2 (en) 2017-12-08 2020-05-28 Method and device in UE and base station for wireless communication

Publications (1)

Publication Number Publication Date
WO2019109345A1 true WO2019109345A1 (zh) 2019-06-13

Family

ID=66750711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115263 WO2019109345A1 (zh) 2017-12-08 2017-12-08 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11206666B2 (zh)
CN (2) CN111279779B (zh)
WO (1) WO2019109345A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068257A (zh) * 2020-01-02 2021-07-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021169967A1 (en) * 2020-02-25 2021-09-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112088569A (zh) * 2018-05-09 2020-12-15 康维达无线有限责任公司 利用新的无线电未授权服务小区进行信道接入
WO2019227280A1 (zh) * 2018-05-28 2019-12-05 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110636538B (zh) * 2018-06-22 2021-07-20 维沃移动通信有限公司 波束测量方法、网络侧设备、终端设备及存储介质
CN109981156A (zh) * 2019-02-28 2019-07-05 展讯通信(上海)有限公司 多无线射频系统的数据传输方法及装置、存储介质、终端
US11405153B2 (en) * 2020-01-02 2022-08-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN113950105A (zh) * 2020-07-15 2022-01-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
KR102622888B1 (ko) * 2021-01-15 2024-01-10 엘지전자 주식회사 채널 접속 절차를 수행하는 방법 및 이를 위한 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130250882A1 (en) * 2012-03-25 2013-09-26 Esmael Hejazi Dinan Information Exchange between Base Stations
CN105992361A (zh) * 2015-02-23 2016-10-05 上海朗帛通信技术有限公司 一种增强的 ca 中的调度方法和装置
CN106034360A (zh) * 2015-03-17 2016-10-19 上海朗帛通信技术有限公司 一种多用户叠加的传输方法和装置
CN106612165A (zh) * 2015-10-23 2017-05-03 上海朗帛通信技术有限公司 一种窄带通信中的调度方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437300B2 (en) * 2009-10-12 2013-05-07 Samsung Electronics Co., Ltd Method and system of multi-layer beamforming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130250882A1 (en) * 2012-03-25 2013-09-26 Esmael Hejazi Dinan Information Exchange between Base Stations
CN105992361A (zh) * 2015-02-23 2016-10-05 上海朗帛通信技术有限公司 一种增强的 ca 中的调度方法和装置
CN106034360A (zh) * 2015-03-17 2016-10-19 上海朗帛通信技术有限公司 一种多用户叠加的传输方法和装置
CN106612165A (zh) * 2015-10-23 2017-05-03 上海朗帛通信技术有限公司 一种窄带通信中的调度方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068257A (zh) * 2020-01-02 2021-07-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021136081A1 (en) * 2020-01-02 2021-07-08 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN113068257B (zh) * 2020-01-02 2022-11-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11722272B2 (en) 2020-01-02 2023-08-08 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
WO2021169967A1 (en) * 2020-02-25 2021-09-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN113381845A (zh) * 2020-02-25 2021-09-10 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113381845B (zh) * 2020-02-25 2022-10-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114125694A (zh) * 2020-08-31 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
US20200296726A1 (en) 2020-09-17
CN111279779B (zh) 2022-07-29
US11206666B2 (en) 2021-12-21
CN115225238A (zh) 2022-10-21
CN111279779A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10945310B2 (en) Method and device for wireless communication in UE and base station
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220417992A1 (en) Method and device in nodes used for wireless communication
CN110972324B (zh) 一种被用于无线通信的基站中的方法和装置
US11283500B2 (en) Method and device in UE and base station for wireless communication
US20230111152A1 (en) Method and apparatus for node used for wireless communication
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN113114437A (zh) 一种被用于无线通信的节点中的方法和装置
CN113225814B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
WO2019109307A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019136681A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11051335B2 (en) Method and device for wireless communication in a first node and base station
US20230084780A1 (en) Method and device in node for wireless communication
CN115225236A (zh) 一种被用于无线通信的节点中的方法和装置
CN113133124B (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113765638B (zh) 一种被用于无线通信的节点中的方法和装置
CN113395764B (zh) 一种被用于无线通信的节点中的方法和装置
CN113556826B (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17933983

Country of ref document: EP

Kind code of ref document: A1