WO2023134592A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023134592A1
WO2023134592A1 PCT/CN2023/071131 CN2023071131W WO2023134592A1 WO 2023134592 A1 WO2023134592 A1 WO 2023134592A1 CN 2023071131 W CN2023071131 W CN 2023071131W WO 2023134592 A1 WO2023134592 A1 WO 2023134592A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal resource
parameter set
signaling
sub
Prior art date
Application number
PCT/CN2023/071131
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023134592A1 publication Critical patent/WO2023134592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for uplink power control in wireless communication.
  • the 5G wireless cellular communication network system enhances the uplink power control of the UE on the basis of the original LTE (Long-Term Evolution, long-term evolution).
  • LTE Long-Term Evolution, long-term evolution
  • the path loss (Pathloss) measurement required for uplink power control needs to use CSI-RS (Channel State Information Reference Signal, channel state information reference signal) Perform with SSB (SS/PBCH Block, synchronization signal/physical broadcast channel block).
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • SSB SS/PBCH Block, synchronization signal/physical broadcast channel block
  • the biggest feature of the NR system is the introduction of a beam management mechanism.
  • the terminal can use multiple different transmit and receive beams for communication, and then the terminal needs to be able to measure multiple path losses corresponding to multiple beams. Among them, determine One way of path loss is to indicate to a certain associated downlink RS resource through the SRI (Sounding Reference Signal Resource Indicator) in the DCI.
  • NR R17 the transmission of the terminal has been enhanced.
  • One of the important aspects is the introduction of two panels.
  • the terminal can use two panels to transmit on two transmission beams at the same time to obtain better space diversity gain.
  • an important indicator of uplink transmission is power control. Whether two panels use the same power control parameters as one panel when they are used at the same time, and whether power is dynamically allocated between the two panels will affect multiple panels. The practice of downlink power control will have an impact.
  • the present application discloses a solution.
  • multi-panel is only used as a typical application scenario or example; this application is also applicable to other scenarios facing similar problems, such as single-panel scenarios, or for different technical fields, For example, technical fields other than uplink power control, such as measurement reporting, uplink data transmission and other non-uplink power control fields, can achieve similar technical effects.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments in the first node device of the present application and the features in the embodiments can be applied to the second node device, and vice versa.
  • TS36 series for explanations of terms (Terminology), nouns, functions, and variables in this application (if not specified otherwise), reference may be made to definitions in 3GPP standard protocols TS36 series, TS38 series, and TS37 series.
  • the present application discloses a method in a first node for wireless communication, including:
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates that the first At least one reference signal resource in a reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used is used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used to obtain from the first parameter set and the second parameter set Determine the target parameter set; the second reference signal resource set is different from the first reference signal resource set.
  • the above method is characterized in that: two sets of power control parameter sets are configured, and the above two sets of parameter sets all correspond to the same given beam; when a given beam is used for single Panel transmission, a set of parameters is used; when given When a fixed beam is used for simultaneous transmission of multiple panels, another set of parameters is used.
  • the target parameter set when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the target parameter set is the second parameter set; when the When the first signaling is not used to indicate the reference signal resources in the second reference signal resource set, the target parameter set is the first parameter set.
  • the above method is characterized in that: the first signaling indicates whether single-Panel transmission or multi-Panel transmission is used.
  • the first signal when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes a first sub-signal and a second sub-signal,
  • the first reference signal resource set and the second reference signal resource set are respectively used to determine the spatial transmission parameters of the first sub-signal and the second sub-signal; when the first signaling is not used
  • only the first reference signal resource set in the first reference signal resource set and the second reference signal resource set is used to determine the Spatial sending parameters of the first signal.
  • each Panel is used to transmit a wireless signal generated by a TB (Transport Block, transmission block).
  • TB Transport Block, transmission block
  • the first parameter set includes a first value
  • the second parameter set includes a second value and a third value
  • both the first value and the second value are for the first A set of reference signal resources, the first value is different from the second value
  • the first signaling is used to indicate at least one reference signal resource in the second set of reference signal resources
  • the first The signal includes a first sub-signal and a second sub-signal
  • the second value and the third value are respectively used to determine a transmission power value of the first sub-signal and a transmission power value of the second sub-signal
  • the first value is used to determine the transmit power value of the first signal.
  • the first parameter set includes a first coefficient
  • the second parameter set includes a second coefficient and a third coefficient
  • the first signal when at least one reference signal resource in the resource set, the first signal includes a first sub-signal and a second sub-signal, and the product of the second coefficient and the first path loss is used to determine the first sub-signal transmit power value, the product of the third coefficient and the second path loss is used to determine the transmit power value of the second sub-signal; when the first signaling is not used to indicate the second reference signal resource
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal
  • the set of the first reference signal resources is used by the first signaling
  • the indicated reference signal resource is used to determine a third reference signal resource
  • the reference signal resource indicated by the first signaling in the second reference signal resource set is used to determine a fourth reference signal resource
  • the third The wireless signal received in the reference signal resource is used
  • the first signaling includes a first index group; when the first signaling is used to indicate at least one reference signal resource in the second set of reference signal resources, the first A signal includes a first sub-signal and a second sub-signal, and the first index group is used to determine the precoding matrix indicators respectively adopted by the first sub-signal and the second sub-signal; when the first sub-signal When signaling is not used to determine the second reference signal resource, the first index group is used to determine the precoding matrix indication adopted by the first signal.
  • the first signaling includes a first index group, and the first index group is used to determine a first reference signal resource subset from the first reference signal resource set, or the The first index group is used to simultaneously determine a first subset of reference signal resources from the first set of reference signal resources and determine a second subset of reference signal resources from the second set of reference signal resources.
  • the present application discloses a method in a second node for wireless communication, including:
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates that the first At least one reference signal resource in a reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used is used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used to obtain from the first parameter set and the second parameter set Determine the target parameter set; the second reference signal resource set is different from the first reference signal resource set.
  • the target parameter set when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the target parameter set is the second parameter set; when the When the first signaling is not used to indicate the reference signal resources in the second reference signal resource set, the target parameter set is the first parameter set.
  • the first signaling when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes a first sub-signal and a second sub-signal, The first reference signal resource set and the second reference signal resource set are respectively used to determine the spatial transmission parameters of the first sub-signal and the second sub-signal; when the first signaling is not used When indicating the reference signal resources in the second reference signal resource set, only the first reference signal resource set in the first reference signal resource set and the second reference signal resource set is used to determine the Spatial sending parameters of the first signal.
  • the first parameter set includes a first value
  • the second parameter set includes a second value and a third value
  • both the first value and the second value are for the first A set of reference signal resources, the first value is different from the second value
  • the first signaling is used to indicate at least one reference signal resource in the second set of reference signal resources
  • the first The signal includes a first sub-signal and a second sub-signal
  • the second value and the third value are respectively used to determine a transmission power value of the first sub-signal and a transmission power value of the second sub-signal
  • the first value is used to determine the transmit power value of the first signal.
  • the first parameter set includes a first coefficient
  • the second parameter set includes a second coefficient and a third coefficient
  • the first signal when at least one reference signal resource in the resource set, the first signal includes a first sub-signal and a second sub-signal, and the product of the second coefficient and the first path loss is used to determine the first sub-signal transmit power value, the product of the third coefficient and the second path loss is used to determine the transmit power value of the second sub-signal; when the first signaling is not used to indicate the second reference signal resource
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal
  • the set of the first reference signal resources is used by the first signaling
  • the indicated reference signal resource is used to determine a third reference signal resource
  • the reference signal resource indicated by the first signaling in the second reference signal resource set is used to determine a fourth reference signal resource
  • the third The wireless signal received in the reference signal resource is used
  • the first signaling includes a first index group; when the first signaling is used to indicate at least one reference signal resource in the second set of reference signal resources, the first A signal includes a first sub-signal and a second sub-signal, and the first index group is used to determine the precoding matrix indicators respectively adopted by the first sub-signal and the second sub-signal; when the first sub-signal When signaling is not used to determine the second reference signal resource, the first index group is used to determine the precoding matrix indication adopted by the first signal.
  • the first signaling includes a first index group, and the first index group is used to determine a first reference signal resource subset from the first reference signal resource set, or the The first index group is used to simultaneously determine a first subset of reference signal resources from the first set of reference signal resources and determine a second subset of reference signal resources from the second set of reference signal resources.
  • This application discloses a first node for wireless communication, including:
  • a first receiver receiving a first set of information used to indicate a first set of parameters and a second set of parameters; and receiving first signaling;
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates that the first At least one reference signal resource in a reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used is used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used to obtain from the first parameter set and the second parameter set Determine the target parameter set; the second reference signal resource set is different from the first reference signal resource set.
  • the present application discloses a second node for wireless communication, including:
  • a second transmitter sending a first set of information, the first set of information being used to indicate a first set of parameters and a second set of parameters; and sending first signaling;
  • the second receiver receives the first signal
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates that the first At least one reference signal resource in a reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used is used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used to obtain from the first parameter set and the second parameter set Determine the target parameter set; the second reference signal resource set is different from the first reference signal resource set.
  • the benefit of the solution in this application lies in: improving the flexibility of uplink power control under multiple Panels, thereby improving power control efficiency and transmission performance.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of a first signal according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a first information set according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a first reference signal resource set and a second reference signal resource set according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of first signaling according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a first node according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of antenna ports and antenna port groups according to an embodiment of the present application.
  • FIG. 11 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 12 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application receives the first information set in step 101, and the first information set is used to indicate the first parameter set and the second parameter set; Signaling; in step 103, the first signal is sent.
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates At least one reference signal resource in the first reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate included in the target parameter set parameters are used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used
  • the target parameter set is determined in two parameter sets; the second reference signal resource set is different from the first reference signal resource set.
  • the first information set is transmitted through RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information set is configured through RRC signaling.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields in the PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes PUSCH-P0-PUSCH-AlphaSet in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields in the SRI-PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes SRI-PUSCH-PowerControl in the Specification.
  • the name of the RRC signaling that transmits or configures the first information set includes Power.
  • the name of the RRC signaling that transmits or configures the first information set includes Control.
  • the name of the RRC signaling for transmitting or configuring the first information set includes PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • the name of the RRC signaling that transmits or configures the first information set includes SRS (Sounding Reference Signal, sounding reference signal).
  • the name of the RRC signaling that transmits or configures the first information set includes SRI.
  • the physical layer channel occupied by the first signaling includes a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the first signaling is DCI (Downlink Control Information, downlink control information).
  • the physical layer channel occupied by the first signal includes a PUSCH.
  • the first signal is SRS.
  • the unit of the first power value is dBm (millidb).
  • the first signaling is used to schedule sending of the first signal.
  • the first signaling is used to indicate at least one of time domain resources or frequency domain resources occupied by the first signal.
  • the first signaling is used to trigger sending of the first signal.
  • the first signaling is used to indicate an MCS (Modulation and Coding Scheme, modulation and coding scheme) of the first signal.
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • the first signaling is used to indicate a HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number of the first signal.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • the first reference signal resource set and the second reference signal resource set are respectively identified by different SRS-ResourceSetIds.
  • the first reference signal resource set corresponds to one SRS Resource Set.
  • the first reference signal resource set includes one reference signal resource.
  • the reference signal resource included in the first reference signal resource set is an SRS Resource.
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1.
  • any reference signal resource among the K1 reference signal resources included in the first reference signal resource set is an SRS Resource.
  • At least one reference signal resource among the K1 reference signal resources included in the first reference signal resource set is an SRS Resource.
  • the second reference signal resource set includes one reference signal resource.
  • the reference signal resource included in the second reference signal resource set is an SRS Resource.
  • the second reference signal resource set includes K2 reference signal resources, where K2 is a positive integer greater than 1.
  • any reference signal resource among the K2 reference signal resources included in the second reference signal resource set is an SRS Resource.
  • At least one reference signal resource among the K2 reference signal resources included in the second reference signal resource set is an SRS Resource.
  • the meaning of the above phrase that both the first parameter set and the second parameter set are associated with the first reference signal resource set includes: parameters in the first parameter set are used to determine the second The transmission power value of the wireless signal transmitted in at least one reference signal resource in a reference signal resource set, or the parameters in the second parameter set are used to determine at least one reference signal in the first reference signal resource set The transmission power value of the wireless signal transmitted in the resource.
  • the meaning of the above phrase that both the first parameter set and the second parameter set are associated with the first reference signal resource set includes: the parameters in the first parameter set are used to determine the target wireless signal
  • the transmission power value of the target wireless signal and the wireless signal transmitted in at least one reference signal resource in the first reference signal resource set are QCL (Quasi Co-located, quasi-co-located); or the second
  • the parameters in the parameter set are used to determine the transmission power value of the target wireless signal, and the target wireless signal and the wireless signal transmitted in at least one reference signal resource in the first reference signal resource set are QCL.
  • the meaning of the above phrase that both the first parameter set and the second parameter set are associated with the first reference signal resource set includes: the first parameter set is associated with the first reference signal resource The first reference signal resource in the set, and the second set of parameters is associated to the first reference signal resource in the first set of reference signal resources.
  • the first reference signal resource corresponds to one SRS Resource.
  • the first reference signal resource corresponds to one SRS-ResourceID.
  • the first signaling is used to indicate the first reference signal resource in the first reference signal resource set.
  • the first parameter set includes K1 first parameter groups
  • the second parameter set includes K1 second parameter groups
  • the first reference signal resource set includes K1 reference Signal resources: the K1 first parameter groups respectively correspond to the K1 reference signal resources included in the first reference signal resource set, and the K1 second parameter groups respectively correspond to the first reference signal resources Set the K1 reference signal resources included.
  • the given reference signal resource is any one of the K1 reference signal resources, and the given reference signal resource corresponds to any of the K1 first parameter groups.
  • the given reference signal resource is any one of the K1 reference signal resources, and the given reference signal resource corresponds to any of the K1 first parameter groups.
  • the A given first parameter group is used to determine the transmit power value of the first signal; when the first signal occupies one reference signal resource in the first reference signal resource set and the second reference signal resource set
  • the given second parameter group is used to determine the transmit power value of the first signal.
  • the given reference signal resource is any one of the K1 reference signal resources, and the given reference signal resource corresponds to any of the K1 first parameter groups.
  • the given first parameter group is used to determine the transmit power value of the first signal;
  • the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal
  • the signal and the wireless signal sent in one reference signal resource in the first reference signal resource set are QCL, and the second sub-signal and the wireless signal sent in one reference signal resource in the second reference signal resource set
  • the given second parameter set is used to determine the transmit power value of the first signal.
  • the number of parameters included in the first parameter set is not greater than the number of parameters included in the second parameter set.
  • the number of parameters included in the first parameter set is smaller than the number of parameters included in the second parameter set.
  • the number of parameters included in the second parameter set is twice the number of parameters included in the first parameter set.
  • the first signaling includes a target index; when the value of the target index is a value in the first candidate value set, the first signaling is used to indicate the first reference signal At least one reference signal resource in the resource set; when the value of the target index is a value in the second candidate value set, the first signaling is used to simultaneously indicate the At least one reference signal resource and at least one reference signal resource in the second set of reference signal resources.
  • the first set of candidate values includes a plurality of candidate values.
  • the second set of candidate values includes a plurality of candidate values.
  • any candidate value in the first set of candidate values is different from any candidate value in the second set of candidate values.
  • the first signaling includes a first index group.
  • the first index group included in the first signaling is used to indicate at least one reference signal resource in the first reference signal resource set.
  • the first index group included in the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set.
  • the first index group included in the first signaling is simultaneously used to indicate at least one reference signal resource in the first reference signal resource set and the second At least one reference signal resource in the set of reference signal resources.
  • the meaning of the above phrase that the second reference signal resource set is different from the first reference signal resource set includes: the second reference signal resource set adopts the first identifier, and the first reference signal resource set A second identifier is used, and the first identifier is different from the second identifier.
  • both the first identifier and the second identifier are SRSResourceSetID.
  • both the first identifier and the second identifier are Panel IDs.
  • the meaning of the above phrase that the second reference signal resource set is different from the first reference signal resource set includes: there is at least one target reference signal resource in the second reference signal resource set, and the first reference signal resource set There is at least one given reference signal resource in a set of reference signal resources, and the wireless signal sent in the target reference signal resource and the wireless signal sent in the given reference signal resource are non-QCL.
  • the meaning of the above phrase that the second reference signal resource set is different from the first reference signal resource set includes: the wireless signal transmitted in any reference signal resource in the second reference signal resource set is different from the first reference signal resource set.
  • the radio signal sent in any reference signal resource in the first reference signal resource set is non-QCL.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include a UE (User Equipment, user equipment) 201, NR-RAN (next generation radio access network) 202, EPC (Evolved Packet Core, evolved packet core)/5G-CN (5G-Core Network, 5G core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE201 supports simultaneous sending of multiple Panels.
  • the UE 201 supports power sharing based on multiple Panels.
  • the UE201 supports multiple uplink RFs (Radio Frequency, radio frequency).
  • RFs Radio Frequency, radio frequency
  • the UE 201 supports simultaneous transmission of multiple uplink RFs.
  • the UE 201 supports reporting multiple sets of UE capability values.
  • the NR Node B corresponds to the second node in this application.
  • the NR Node B supports simultaneous reception of signals from multiple Panels of a terminal.
  • the NR Node B supports receiving signals sent by multiple uplink RF (Radio Frequency, radio frequency) from the same terminal.
  • RF Radio Frequency, radio frequency
  • the NR Node B is a base station.
  • the NR Node B is a cell.
  • the NR Node B includes multiple cells.
  • the first node in this application corresponds to the UE201
  • the second node in this application corresponds to the NR Node B.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for a link between the first communication node device and the second communication node device through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first information set is generated by the MAC302 or the MAC352.
  • the first information set is generated in the RRC306.
  • the first signaling is generated by the MAC302 or the MAC352.
  • the first signaling is generated by the PHY301 or the PHY351.
  • the first signal is generated by the MAC302 or the MAC352.
  • the first signal is generated by the RRC306.
  • the first signal is generated by the PHY301 or the PHY351.
  • the first node is a terminal.
  • the first node is a relay.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point, sending and receiving point).
  • TRP Transmitter Receiver Point, sending and receiving point
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 device at least: firstly receives a first information set, said first information set is used to indicate a first parameter set and a second parameter set; then receives a first information set and transmit a first signal; the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first The signaling indicates at least one reference signal resource in the first reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and the target parameter set includes at least An alternative parameter is used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second reference signal resource set is used from the first parameter set and The target parameter set is determined in the second parameter set; the second reference signal resource set is different
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first receiving A first information set, the first information set is used to indicate a first parameter set and a second parameter set; then receive a first signaling; and send a first signal; the transmission power of the first signal is the first power value; both the first parameter set and the second parameter set are associated to a first reference signal resource set, and the first signaling indicates at least one reference signal resource in the first reference signal resource set; target The parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used to determine the first power value; the first signal Whether the command is used to indicate that at least one reference signal resource in the second reference signal resource set is used to determine the target parameter set from the first parameter set and the second parameter set; the second reference signal The set of resources is different from the first set of reference signal resources.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: first sending a first information set, the first information set being used to indicate a first parameter set and a second parameter set; then sending a first signaling; and receiving a first signal;
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates that the first reference At least one reference signal resource in the signal resource set;
  • the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used to determine The first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second reference signal resource set is used to determine from the first parameter set and the second parameter set
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first sending a first set of information, the first set of information being used to indicate a first set of parameters and a second set of parameters; then sending a first signaling; and receiving a first signal; the sending power of the first signal is the first a power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates at least one reference signal resource in the first reference signal resource set;
  • the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate parameter included in the target parameter set is used to determine the first power value; the first whether signaling is used to indicate that at least one reference signal resource in a second reference signal resource set is used to determine the target parameter set from the first parameter set and the second parameter set; the second reference The set of signal resources is different from the first set of reference signal resources.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First set of information; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit A first set of information.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First signaling; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first signaling.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the first A signal; at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive the first Signal.
  • Embodiment 5 illustrates a flowchart of a first signal, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node N2 is performed through a wireless link. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the first information set is received in step S10; the first signaling is received in step S11; and the first signal is sent in step S12.
  • the first information set is sent in step S20; the first signaling is sent in step S21; and the first signal is received in step S22.
  • the first information set is used to indicate a first parameter set and a second parameter set; the transmission power of the first signal is a first power value; the first parameter set and the second parameter set
  • the parameter sets are all associated to a first reference signal resource set, and the first signaling indicates at least one reference signal resource in the first reference signal resource set; the target parameter set is the first parameter set and the first reference signal resource set One of two parameter sets, at least one candidate parameter included in the target parameter set is used to determine the first power value; whether the first signaling is used to indicate the second reference signal resource set At least one reference signal resource of is used to determine the target parameter set from the first parameter set and the second parameter set; the second reference signal resource set is different from the first reference signal resource set.
  • the target parameter set is the second parameter set; when the first signaling When the command is not used to indicate the reference signal resource in the second reference signal resource set, the target parameter set is the first parameter set.
  • the first signaling includes a target index and a first index group, and the target index is used to indicate whether the first index group is used to indicate at least A reference signal resource.
  • the first signaling includes a target index and a first index group, and the target index is used to indicate whether the first index group is used to indicate at least A reference signal resource.
  • the first signaling includes a target index and a first index group, and the target index is used to indicate whether the first index group is used to indicate at least One reference signal resource, and indicate at least one reference signal resource from the second reference signal resource set.
  • the first signaling includes a target index and a first index group, and the target index is used to determine the first index group.
  • the target index is used to determine the interpretation of the first index group.
  • the target index is used to determine the meaning of the first index group.
  • the target index is used to determine the number of bits occupied by the first index group.
  • the value of the target index is used to determine that the first index group is used to indicate a reference signal resource from the first set of reference signal resources.
  • the value of the target index is one of a first set of candidate values
  • the first set of candidate values includes a plurality of candidate values
  • the first index group includes an SRI
  • the SRI included in the first index group is used to indicate a reference signal from the first reference signal resource set resource.
  • the first index group includes a PMI (Precoding Matrix Indicator, precoding matrix indicator), and the PMI included in the first index group is used to indicate the first The PMI used by the signal.
  • PMI Precoding Matrix Indicator, precoding matrix indicator
  • the value of the target index is used to determine that the first index group is used to simultaneously indicate a reference signal resource from the first reference signal resource set and from the second reference signal resource set One reference signal resource is indicated in the two reference signal resource sets.
  • the value of the target index is one of a second set of candidate values
  • the second set of candidate values includes a plurality of candidate values
  • the first index group includes two SRIs, and the two SRIs included in the first index group are used to select from the first reference signal resource set Indicating one reference signal resource and indicating one reference signal resource from the second set of reference signal resources.
  • the first index group includes two PMIs
  • the first signal includes a first sub-signal and a second sub-signal
  • the two PMIs included in the first index group The PMIs are respectively used to indicate the PMI adopted by the first sub-signal and the PMI adopted by the second sub-signal.
  • the first signaling when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes a first sub-signal and a second sub-signal, and the first The reference signal resource set and the second reference signal resource set are respectively used to determine the spatial transmission parameters of the first sub-signal and the second sub-signal; when the first signaling is not used to indicate the For reference signal resources in the second reference signal resource set, only the first reference signal resource set in the first reference signal resource set and the second reference signal resource set is used to determine the first signal Space to send parameters.
  • the physical layer channel occupied by the first sub-signal includes PUSCH.
  • the physical layer channel occupied by the second sub-signal includes PUSCH.
  • the first sub-signal is generated by one TB.
  • the second sub-signal is generated by one TB.
  • the TB that generates the first sub-signal is different from the TB that generates the second sub-signal.
  • the TB that generates the first sub-signal and the TB that generates the second sub-signal use different HARQ process numbers respectively.
  • the TB that generates the first sub-signal is the same as the TB that generates the second sub-signal.
  • the TB that generates the first sub-signal and the TB that generates the second sub-signal use the same HARQ process number.
  • the first sub-signal is SRS.
  • the second sub-signal is SRS.
  • the first signaling when the first signaling is used to indicate at least one reference signal resource in the second set of reference signal resources, the first signaling is used to indicates a first reference signal resource in the set, and the first signaling is used to indicate a second reference signal resource from the second reference signal resource set, and the first reference signal resource is used to determine the first The spatial transmission parameter of the sub-signal, the second reference signal resource is used to determine the spatial transmission parameter of the second sub-signal.
  • the meaning of the above phrase that the first reference signal resource is used to determine the spatial transmission parameters of the first sub-signal includes: the first sub-signal and the first reference signal
  • the wireless signal sent in the resource is QCL.
  • the meaning of the above phrase that the first reference signal resource is used to determine the spatial transmission parameters of the first sub-signal includes: the first sub-signal and the first reference signal
  • the wireless signals transmitted in the resources adopt the same spatial transmission parameters.
  • the meaning of the above phrase that the second reference signal resource is used to determine the spatial transmission parameters of the second sub-signal includes: the second sub-signal and the second reference signal
  • the wireless signal sent in the resource is QCL.
  • the meaning of the above phrase that the second reference signal resource is used to determine the spatial transmission parameters of the second sub-signal includes: the second sub-signal and the second reference signal
  • the wireless signals transmitted in the resources adopt the same spatial transmission parameters.
  • the first signaling when the first signaling is not used to indicate at least one reference signal resource in the second reference signal resource set, the first signaling is only used to The resource set indicates a first reference signal resource, and the first reference signal resource is used to determine the spatial transmission parameter of the first signal.
  • the meaning of the above phrase that the first reference signal resource is used to determine the spatial transmission parameters of the first sub-signal includes: the first sub-signal and the first reference signal
  • the wireless signal sent in the resource is QCL.
  • the meaning of the above phrase that the first reference signal resource is used to determine the spatial transmission parameters of the first sub-signal includes: the first sub-signal and the first reference signal
  • the wireless signals transmitted in the resources adopt the same spatial transmission parameters.
  • the QCL refers to: Quasi Co-Located (quasi-co-located).
  • the QCL refers to: Quasi Co-Location (quasi co-location).
  • the QCL includes QCL parameters.
  • the QCL includes a QCL assumption.
  • the QCL type includes QCL-TypeA.
  • the QCL type includes QCL-TypeB.
  • the QCL type includes QCL-TypeC.
  • the QCL type includes QCL-TypeD.
  • the QCL-TypeA includes Doppler shift, Doppler spread, average delay and delay spread.
  • the QCL-TypeB includes Doppler shift and Doppler spread.
  • the QCL-TypeC includes Doppler shift (Doppler shift) and average delay (average delay).
  • the QCL-TypeD includes a spatial reception parameter (Spatial Rx parameter).
  • the QCL parameters include delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average delay (average delay), space transmission parameters (Spatial Tx parameter) or at least one of the spatial receiving parameters (Spatial Rx parameter).
  • the spatial transmission parameters include transmitting antenna ports, transmitting antenna port groups, transmitting beams, transmitting analog beamforming matrices, transmitting analog beamforming vectors, transmitting beamforming matrices, transmitting beamforming at least one of a shaping vector or a spatial transmit filter.
  • the spatial reception parameter includes a receiving beam, a receiving analog beamforming matrix, a receiving analog beamforming vector, a receiving beamforming matrix, a receiving beamforming vector or a spatial domain receiving filter at least one of the .
  • the first parameter set includes a first value
  • the second parameter set includes a second value and a third value
  • both the first value and the second value are for the first reference signal resource set , the first value is different from the second value
  • the first signal includes the first A sub-signal and a second sub-signal
  • the second value and the third value are respectively used to determine the transmission power value of the first sub-signal and the transmission power value of the second sub-signal
  • the first value is used to determine the transmit power value of the first signal.
  • the candidate parameters include the first value.
  • the candidate parameters include the second value and the third value.
  • the unit of the first value is dBm.
  • the first value is a P0.
  • the unit of the second value is dBm.
  • the second value is a P0.
  • the unit of the third value is dBm.
  • the third value is a P0.
  • both the first value and the second value are associated with one reference signal resource in the first set of reference signal resources.
  • both the first value and the second value are associated with the first reference signal resource in the first reference signal resource set, and the first signaling is used to obtain The first reference signal resource is indicated in the reference signal resource set.
  • the first value when the first value is used to determine the transmit power value of the first signal, and the transmit power value of the first signal is not greater than a first threshold, the first value and the The transmit power values of the first signal are linearly related.
  • the linear coefficient between the first value and the transmission power value of the first signal is equal to 1.
  • the first threshold is P CMAX .
  • the first threshold is per SRS Resource Set.
  • the second value and the third value are respectively used to determine the transmit power value of the first sub-signal and the transmit power value of the second sub-signal, and the first sub-signal
  • the second value is linearly related to the transmission power value of the first sub-signal
  • the first The three values are linearly related to the transmit power value of the second sub-signal.
  • the linear coefficient between the second value and the transmit power value of the first sub-signal is equal to 1.
  • the linear coefficient between the third value and the transmit power value of the second sub-signal is equal to 1.
  • the second threshold is P CMAX .
  • the third threshold is P CMAX .
  • the second threshold is per SRS Resource Set.
  • the third threshold is per SRS Resource Set.
  • the first threshold in this application is equal to the second threshold.
  • the second threshold in this application is equal to the third threshold.
  • the first threshold in this application is equal to the sum of the second threshold and the third threshold.
  • the first parameter set includes a first coefficient
  • the second parameter set includes a second coefficient and a third coefficient
  • the first signal includes a first sub-signal and a second sub-signal
  • the product of the second coefficient and the first path loss is used to determine the transmit power value of the first sub-signal
  • the product of the third coefficient and the second path loss is used to determine the transmit power value of the second sub-signal
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal
  • the reference signal indicated by the first signaling in the first reference signal resource set The resource is used to determine a third reference signal resource
  • the reference signal resource indicated by the first signaling in the second reference signal resource set is used to determine a fourth reference signal resource; in the third reference signal resource
  • the received wireless signal is used to determine the first path loss
  • the candidate parameters include the first coefficient.
  • the candidate parameters include the second coefficient and the third coefficient.
  • the first coefficient is not greater than 1.
  • the first coefficient is a real number between 0 and 1.
  • the second coefficient is not greater than 1.
  • the second coefficient is a real number between 0 and 1.
  • the second coefficient is not greater than 1.
  • the second coefficient is a real number between 0 and 1.
  • the first coefficient is different from the second coefficient.
  • the first coefficient is the same as the second coefficient.
  • the first coefficient has nothing to do with the second coefficient.
  • the first coefficient is related to the second coefficient.
  • the first coefficient and the second coefficient are configured independently.
  • the first coefficient and the second coefficient are jointly configured.
  • the third coefficient is different from the second coefficient.
  • the third coefficient is the same as the second coefficient.
  • the third coefficient has nothing to do with the second coefficient.
  • the third coefficient is related to the second coefficient.
  • the third coefficient and the second coefficient are configured independently.
  • the third coefficient and the second coefficient are jointly configured.
  • the third reference signal resource is a CSI-RS resource.
  • the third reference signal resource is an SSB.
  • the fourth reference signal resource is a CSI-RS resource.
  • the fourth reference signal resource is an SSB.
  • the first reference signal resource in the first reference signal resource set is indicated by the first signaling, and the first reference signal resource is used to determine the third reference signal resource.
  • the wireless signal sent in the first reference signal resource and the wireless signal sent in the third reference signal resource are QCL.
  • the ssb-Index or csi-RS-Index corresponding to the third reference signal resource is associated with the pusch-PathlossReferenceRS-Id corresponding to the first reference signal resource.
  • the second reference signal resource in the second reference signal resource set is indicated by the first signaling, and the second reference signal resource is used to determine the fourth reference signal resource.
  • the radio signal sent in the second reference signal resource and the radio signal sent in the fourth reference signal resource are QCL.
  • the ssb-Index or csi-RS-Index corresponding to the fourth reference signal resource is associated with the pusch-PathlossReferenceRS-Id corresponding to the second reference signal resource.
  • the unit of the first path loss is dB.
  • the unit of the second path loss is dB.
  • the product of the second coefficient and the first path loss when used to determine the transmit power value of the first sub-signal, the product of the third coefficient and the second path loss is used by is used to determine the transmit power value of the second sub-signal, and when the transmit power value of the first sub-signal and the transmit power value of the second sub-signal are not greater than a second threshold and a third threshold respectively, the The product of the second coefficient and the first path loss is linearly related to the transmit power value of the first sub-signal, and the product of the third coefficient and the second path loss is linearly related to the transmit power of the second sub-signal The values are linearly related.
  • the linear coefficient of the product of the second coefficient and the first path loss and the transmit power value of the first sub-signal is equal to 1.
  • the linear coefficient of the product of the third coefficient and the second path loss and the transmit power value of the second sub-signal is equal to 1.
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal, and the transmit power value of the first signal is not greater than a first threshold , the product of the first coefficient and the first path loss is linearly related to the transmit power value of the first signal.
  • the linear coefficient of the product of the first coefficient and the first path loss and the transmit power value of the first signal is equal to 1.
  • the first signaling includes a first index group; when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes the first A sub-signal and a second sub-signal, the first index group is used to determine the precoding matrix indicators respectively adopted by the first sub-signal and the second sub-signal; when the first signaling is not used When used to determine the second reference signal resource, the first index group is used to determine the indication of the precoding matrix adopted by the first signal.
  • the first index group is used to indicate the first PMI and the second PMI
  • the first PMI and the second PMI respectively indicate the precoding matrix used by the first sub-signal and the precoding matrix used by the second sub-signal.
  • the first index group is used to indicate a first PMI
  • the first PMI indicates the first The precoding matrix used by the signal.
  • the first signaling includes a first index group
  • the first index group is used to determine a first reference signal resource subset from the first reference signal resource set, or the first index group It is used to simultaneously determine a first reference signal resource subset from the first reference signal resource set and determine a second reference signal resource subset from the second reference signal resource set.
  • the first reference signal resource subset includes K3 reference signal resources, where K3 is a positive integer greater than 1, and the K3 reference signal resources include the first reference signal resource.
  • the K3 reference signal resources are K3 SRS resources respectively.
  • the second reference signal resource subset includes K4 reference signal resources, where K4 is a positive integer greater than 1, and the K4 reference signal resources include the second reference signal resource.
  • the K4 reference signal resources are K4 SRS resources respectively.
  • Embodiment 6 illustrates a schematic diagram of a first information set, as shown in FIG. 6 .
  • the first information set includes a first parameter set and a second parameter set;
  • the first parameter set includes a first value and a first coefficient;
  • the second parameter set includes a second value, a second parameter set Three values, second and third coefficients.
  • the first value is P0 in TS 38.331, and the first coefficient is Alpha in TS 38.331.
  • both the second value and the third value are P0 in TS 38.331, and both the second coefficient and the third coefficient are Alpha in TS 38.331.
  • the first value and the first coefficient are associated with at least one reference signal resource in the first reference signal resource set.
  • the first value and the first coefficient are associated with all reference signal resources in the first reference signal resource set.
  • the first value and the first coefficient are associated with the first reference signal resource in the first reference signal resource set.
  • the first value and the first coefficient are used only when one SRS resource set of the first node is indicated.
  • the second value and the second coefficient are associated with at least one reference signal resource in the first reference signal resource set.
  • the second value and the second coefficient are associated with all reference signal resources in the first reference signal resource set.
  • the second value and the second coefficient are associated with the first reference signal resource in the first reference signal resource set.
  • the second value and the second coefficient are only in reference signal resources in the first reference signal resource set of the first node and reference signals in the second reference signal resource set resources are used when indicated.
  • the third value and the third coefficient are associated with at least one reference signal resource in the second reference signal resource set.
  • the third value and the third coefficient are associated with all reference signal resources in the second reference signal resource set.
  • the third value and the third coefficient are associated with the second reference signal resource in the second reference signal resource set.
  • the third value and the third coefficient are only in reference signal resources in the first reference signal resource set of the first node and reference signals in the second reference signal resource set resources are used when indicated.
  • Embodiment 7 illustrates a schematic diagram of a first reference signal resource set and a second reference signal resource set, as shown in FIG. 7 .
  • the first reference signal resource set includes K1 reference signal resources, corresponding to reference signal resource 1_1 to reference signal resource 1_K1 in the figure;
  • the second reference signal resource set includes K2 reference signal resources , respectively corresponding to the reference signal resource 2_1 to the reference signal resource 2_K2 in the figure;
  • the K1 is a positive integer
  • the K2 is a positive integer.
  • the K1 is equal to 1, and the first reference signal resource set only includes the first reference signal resources in this application.
  • the K2 is equal to 1, and the second reference signal resource set only includes the second reference signal resources in this application.
  • the K1 is greater than 1.
  • the K2 is greater than 1.
  • the parameters in the first parameter set in this application are only applicable to the first reference signal resource set.
  • the parameters in the first parameter set are applicable to all reference signal resources in the first reference signal resource set.
  • the parameters in the first parameter set are applicable to the first reference signal resource in the first reference signal resource set.
  • the parameters in the first parameter set are applicable to one reference signal resource in the first reference signal resource set.
  • the parameters in the second parameter set in this application are applied to both the first reference signal resource set and the second reference signal resource set.
  • the parameters in the second parameter set are applicable to all reference signal resources in the first reference signal resource set and all reference signals in the second reference signal resource set resource.
  • the parameters in the first parameter set are applicable to the first reference signal resource in the first reference signal resource set, and the second reference signal resource in the second reference signal resource set. Reference signal resources.
  • the parameters in the first parameter set are applicable to one reference signal resource in the first reference signal resource set and one reference signal in the second reference signal resource set resource.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two different Panel IDs.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two Panels included in the first node.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two RFs (Radio Frequency, radio frequency) included in the first node.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two radio frequency channels included in the first node.
  • Embodiment 8 illustrates a schematic diagram of the first signaling, as shown in FIG. 8 .
  • the first signaling includes a target index
  • the first signaling includes a first index group.
  • the target index included in the first signaling is used to determine an interpretation of the first index group included in the first signaling.
  • the target index included in the first signaling is used to determine the number of bits included in the first index group included in the first signaling.
  • the target index included in the first signaling is used to determine whether the first signal is sent through one Panel or two Panels.
  • the target index included in the first signaling is used to determine whether the first signal is associated with one SRS resource set or two SRS resource sets.
  • the target index included in the first signaling is used to determine that the first signal is associated with the first reference signal resource set, or the target index included in the first signaling
  • the index is used to determine that the first signal is associated with the second reference signal resource set, or the target index included in the first signaling is used to determine that the first signal is associated with the first Both the reference signal resource set and the second reference signal resource set are associated.
  • the first index group included in the first signaling is used to determine the SRI used by the first signal.
  • the first index group included in the first signaling is used to determine the PMI used by the first signal.
  • the first signaling includes a first field, and the first field of the first signaling is used to determine a power control process adopted by the first signal.
  • Embodiment 9 illustrates a schematic diagram of a first node, as shown in FIG. 9 .
  • the first node has two panels, namely a first panel and a second panel, and the first panel and the second panel are respectively associated with the first reference signal resource set and the second A set of reference signal resources; the two Panels can send two independent wireless signals in the same block of time-frequency resources.
  • the maximum transmit power value may be dynamically shared (Shared) between the first Panel and the second Panel.
  • the maximum transmit power value of the first Panel or the second Panel is not greater than the first threshold in this application.
  • the maximum transmit power value of the first Panel and the maximum transmit power value of the second Panel are not greater than the the second threshold and the third threshold.
  • Embodiment 10 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG. 10 .
  • an antenna port group includes a positive integer number of antenna ports; an antenna port is formed by stacking antennas in a positive integer number of antenna groups through antenna virtualization; and an antenna group includes a positive integer number of antennas.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency, radio frequency) chain (chain), and different antenna groups correspond to different RF chains.
  • the mapping coefficients of all the antennas in the positive integer number of antenna groups included in the given antenna port to the given antenna port form the beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of multiple antennas included in any given antenna group within the positive integer number of antenna groups included in the given antenna port to the given antenna port form an analog beamforming vector of the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer number of antenna groups are arranged diagonally to form an analog beamforming matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port form a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beamforming matrix and the digital beamforming vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • Figure 10 shows two antenna port groups: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of antenna group #0
  • the antenna port group #1 is composed of antenna group #1 and antenna group #2.
  • the mapping coefficients from multiple antennas in the antenna group #0 to the antenna port group #0 form an analog beamforming vector #0
  • the mapping coefficients from the antenna group #0 to the antenna port group #0 form a digital Beamforming vector #0
  • the mapping coefficients of the multiple antennas in the antenna group #1 and the multiple antennas in the antenna group #2 to the antenna port group #1 respectively form an analog beamforming vector #1 and an analog beamforming vector # 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 form a digital beamforming vector #1.
  • the beamforming vector corresponding to any antenna port in the antenna port group #0 is obtained by the product of the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beamforming matrix formed by a diagonal arrangement of the analog beamforming vector #1 and the analog beamforming vector #2 and the product of the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in FIG. 10 includes one antenna port.
  • the dimensionality of the analog beamforming matrix corresponding to the one antenna port is reduced into an analog beamforming vector, and the dimensionality of the digital beamforming vector corresponding to the one antenna port is reduced into a scalar,
  • the beamforming vector corresponding to the one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • one antenna port group includes multiple antenna ports.
  • the antenna port group #1 in FIG. 10 includes multiple antenna ports.
  • the multiple antenna ports correspond to the same analog beamforming matrix and different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beamforming matrices.
  • any two antenna ports in an antenna port group are QCL (Quasi-Colocated, quasi-colocated).
  • any two antenna ports in an antenna port group are of spatial QCL.
  • multiple antenna port groups in the figure correspond to one Panel in this application.
  • the first reference signal resource set corresponds to multiple antenna port groups.
  • the second reference signal resource set corresponds to multiple antenna port groups.
  • one reference signal resource in the first reference signal resource set corresponds to one antenna port group.
  • one reference signal resource in the second reference signal resource set corresponds to one antenna port group.
  • Embodiment 11 illustrates a structural block diagram of a first node, as shown in FIG. 11 .
  • a first node 1100 includes a first receiver 1101 and a first transmitter 1102 .
  • the first receiver 1101 receives a first information set, where the first information set is used to indicate a first parameter set and a second parameter set; and receives a first signaling;
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates At least one reference signal resource in the first reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate included in the target parameter set parameters are used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used
  • the target parameter set is determined in two parameter sets; the second reference signal resource set is different from the first reference signal resource set.
  • the target parameter set when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the target parameter set is the second parameter set; when the first When a signaling is not used to indicate the reference signal resources in the second reference signal resource set, the target parameter set is the first parameter set.
  • the first signaling when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes a first sub-signal and a second sub-signal, the The first reference signal resource set and the second reference signal resource set are respectively used to determine the spatial transmission parameters of the first sub-signal and the second sub-signal; when the first signaling is not used to indicate When the reference signal resources in the second reference signal resource set, only the first reference signal resource set in the first reference signal resource set and the second reference signal resource set is used to determine the first The signal's space send parameter.
  • the first parameter set includes a first value
  • the second parameter set includes a second value and a third value
  • both the first value and the second value are for the first reference signal A resource set, the first value is different from the second value
  • the first signal includes For the first sub-signal and the second sub-signal, the second value and the third value are respectively used to determine the transmission power value of the first sub-signal and the transmission power value of the second sub-signal; when the When the first signaling is not used to indicate the reference signal resource in the second reference signal resource set, the first value is used to determine the transmit power value of the first signal.
  • the first parameter set includes a first coefficient
  • the second parameter set includes a second coefficient and a third coefficient
  • the first signal when the first signaling is used to indicate the second reference signal resource set
  • the first signal when at least one of the reference signal resources, the first signal includes a first sub-signal and a second sub-signal, and the product of the second coefficient and the first path loss is used to determine the transmission power of the first sub-signal value, the product of the third coefficient and the second path loss is used to determine the transmit power value of the second sub-signal; when the first signaling is not used to indicate that in the second reference signal resource set
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal; in the set of first reference signal resources indicated by the first signaling
  • the reference signal resource is used to determine a third reference signal resource
  • the reference signal resource indicated by the first signaling in the second reference signal resource set is used to determine a fourth reference signal resource
  • the third reference signal The wireless signal received in the resource is used to
  • the first signaling includes a first index group; when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal Including a first sub-signal and a second sub-signal, the first index group is used to determine the precoding matrix indicators respectively adopted by the first sub-signal and the second sub-signal; when the first signaling When not being used to determine the second reference signal resource, the first index group is used to determine the precoding matrix indication adopted by the first signal.
  • the first signaling includes a first index group, and the first index group is used to determine a first reference signal resource subset from the first reference signal resource set, or the first The index group is used to simultaneously determine a first subset of reference signal resources from the first set of reference signal resources and determine a second subset of reference signal resources from the second set of reference signal resources.
  • the first receiver 1101 includes at least the first four of the antenna 452 , receiver 454 , multi-antenna receiving processor 458 , receiving processor 456 , and controller/processor 459 in Embodiment 4.
  • the first transmitter 1102 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in Embodiment 4.
  • the first information set is transmitted through RRC signaling, the first parameter set and the second parameter set are both used for uplink power control corresponding to the same SRS resource, and the first The signaling is DCI; the first signaling is used to indicate that one of the first parameter set and the second parameter set is used to determine the transmission power value of the first signal.
  • Embodiment 12 illustrates a structural block diagram of a second node, as shown in FIG. 12 .
  • the second node 1200 includes a second transmitter 1201 and a second receiver 1202 .
  • the second transmitter 1201 sends a first information set, where the first information set is used to indicate a first parameter set and a second parameter set; and sends a first signaling;
  • the second receiver 1202 receives the first signal
  • the transmission power of the first signal is a first power value; both the first parameter set and the second parameter set are associated with a first reference signal resource set, and the first signaling indicates At least one reference signal resource in the first reference signal resource set; the target parameter set is one of the first parameter set and the second parameter set, and at least one candidate included in the target parameter set parameters are used to determine the first power value; whether the first signaling is used to indicate that at least one reference signal resource in the second set of reference signal resources is used
  • the target parameter set is determined in two parameter sets; the second reference signal resource set is different from the first reference signal resource set.
  • the target parameter set when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the target parameter set is the second parameter set; when the first When a signaling is not used to indicate the reference signal resources in the second reference signal resource set, the target parameter set is the first parameter set.
  • the first signaling when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes a first sub-signal and a second sub-signal, the The first reference signal resource set and the second reference signal resource set are respectively used to determine the spatial transmission parameters of the first sub-signal and the second sub-signal; when the first signaling is not used to indicate When the reference signal resources in the second reference signal resource set, only the first reference signal resource set in the first reference signal resource set and the second reference signal resource set is used to determine the first The signal's space send parameter.
  • the first parameter set includes a first value
  • the second parameter set includes a second value and a third value
  • both the first value and the second value are for the first reference signal A resource set, the first value is different from the second value
  • the first signal includes For the first sub-signal and the second sub-signal, the second value and the third value are respectively used to determine the transmission power value of the first sub-signal and the transmission power value of the second sub-signal; when the When the first signaling is not used to indicate the reference signal resource in the second reference signal resource set, the first value is used to determine the transmit power value of the first signal.
  • the first parameter set includes a first coefficient
  • the second parameter set includes a second coefficient and a third coefficient
  • the first signal when the first signaling is used to indicate the second reference signal resource set
  • the first signal when at least one of the reference signal resources, the first signal includes a first sub-signal and a second sub-signal, and the product of the second coefficient and the first path loss is used to determine the transmission power of the first sub-signal value, the product of the third coefficient and the second path loss is used to determine the transmit power value of the second sub-signal; when the first signaling is not used to indicate that in the second reference signal resource set
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal; in the set of first reference signal resources indicated by the first signaling
  • the reference signal resource is used to determine a third reference signal resource
  • the reference signal resource indicated by the first signaling in the second reference signal resource set is used to determine a fourth reference signal resource
  • the third reference signal The wireless signal received in the resource is used to
  • the first signaling includes a first index group; when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal Including a first sub-signal and a second sub-signal, the first index group is used to determine the precoding matrix indicators respectively adopted by the first sub-signal and the second sub-signal; when the first signaling When not being used to determine the second reference signal resource, the first index group is used to determine the precoding matrix indication adopted by the first signal.
  • the first signaling includes a first index group, and the first index group is used to determine a first reference signal resource subset from the first reference signal resource set, or the first The index group is used to simultaneously determine a first subset of reference signal resources from the first set of reference signal resources and determine a second subset of reference signal resources from the second set of reference signal resources.
  • the second transmitter 1201 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1202 includes at least the first four of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , and the controller/processor 475 in Embodiment 4.
  • the first information set is transmitted through RRC signaling, the first parameter set and the second parameter set are both used for uplink power control corresponding to the same SRS resource, and the first The signaling is DCI; the first signaling is used to indicate that one of the first parameter set and the second parameter set is used to determine the transmission power value of the first signal.
  • the first node in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, vehicles, vehicles, RSUs, aircrafts, airplanes, wireless Man-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial base station , RSU, unmanned aerial vehicles, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并接收第一信令;随后发送第一信号;所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的一个参考信号资源;目标参数集合是所述第一参数集合或所述第二参数集合,所述目标参数集合被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的一个参考信号资源被用于确定所述目标参数集合。本申请改进多面板终端下的上行功控,以提高系统灵活性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中上行功控的传输方案和装置。
背景技术
5G无线蜂窝通信网络系统(5G-RAN)在原有LTE(Long-Term Evolution,长期演进)的基础上对UE的上行功率控制进行了增强。相较于LTE,因为NR系统没有CRS(Common Reference Signal,公共参考信号),上行功控所需要的路损(Pathloss)测量需要采用CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)和SSB(SS/PBCH Block,同步信号/物理广播信道块)进行。除此之外,NR系统最大的特点是引入了波束管理机制,终端可以用多个不同的发射和接收波束进行通信,进而终端需要能够测量多个波束所对应的多个路损,其中,确定路损的一种方式是通过DCI中的SRI(Sounding Reference Signal Resource Indicator,探测参考信道资源指示)指示到某个关联的下行RS资源以实现。
在NR R17的讨论中,终端侧配置多个Panel(面板)的场景已经被采纳,而引入多个Panel所带来的对功率控制的影响也相应的需要被考虑。
发明内容
在NR R17的讨论中,对终端的发送进行了增强,其中一个重要的方面就是引入了两个Panel,终端可以采用两个Panel同时在两个发送波束上进行发送以获得更好的空间分集增益。然而,上行发送的一个重要的指标是功率控制,两个Panel在同时采用时是否使用和一个Panel同样的功控参数,以及两个Panel之间是否会进行功率的动态分配,这些都会对多Panel下的上行功控的做法产生影响。
针对上述多面板场景下的上行功控的问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将多面板作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景,例如单面板的场景,或者针对不同的技术领域,比如除了上行功控之外的技术领域,例如测量上报领域,上行数据传输等其它非上行功控领域以取得类似的技术效果。此外,不同场景(包括但不限于多面板的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并接收第一信令;
发送第一信号;
其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,上述方法的特征在于:配置两套功控参数集合,上述两套参数集合均对应同一给定波束;当给定波束被用于单Panel传输时,采用一套参数;当给定波束被用于多Panel同时传输时,采用另一套参数。
根据本申请的一个方面,当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述目标参数集合是所述第二参数集合;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述目标参数集合是所述第一参数集合。
作为一个实施例,上述方法的特征在于:通过所述第一信令指示采用单Panel传输还是多Panel传输。
根据本申请的一个方面,当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信 号资源时,所述第一信号包括第一子信号和第二子信号,所述第一参考信号资源集合和所述第二参考信号资源集合分别被用于确定所述第一子信号和所述第二子信号的空间发送参数;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一参考信号资源集合和所述第二参考信号资源集合中仅所述第一参考信号资源集合被用于确定所述第一信号的空间发送参数。
作为一个实施例,上述方法的特征在于:多Panel传输时,每个Panel上都被用于传输一个TB(Transport Block,传输块)生成的无线信号。
根据本申请的一个方面,所述第一参数集合包括第一数值,所述第二参数集合包括第二数值和第三数值;所述第一数值和所述第二数值都针对所述第一参考信号资源集合,所述第一数值和所述第二数值不同;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一数值被用于确定所述第一信号的发送功率值。
根据本申请的一个方面,所述第一参数集合包括第一系数,所述第二参数集合包括第二系数和第三系数;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和第二路损的乘积被用于确定所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源,所述第二参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第四参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损,所述第四参考信号资源中接收的无线信号被用于确定所述第二路损。
根据本申请的一个方面,所述第一信令包括第一索引组;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一索引组被用于确定所述第一子信号和所述第二子信号所分别采用的预编码矩阵指示;当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于确定所述第一信号所采用的预编码矩阵指示。
根据本申请的一个方面,所述第一信令包括第一索引组,所述第一索引组被用于从所述第一参考信号资源集合中确定第一参考信号资源子集,或者所述第一索引组被用于同时从所述第一参考信号资源集合中确定第一参考信号资源子集以及从所述第二参考信号资源集合中确定第二参考信号资源子集。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并发送第一信令;
接收第一信号;
其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
根据本申请的一个方面;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述目标参数集合是所述第二参数集合;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述目标参数集合是所述第一参数集合。
根据本申请的一个方面;当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一参考信号资源集合和所述第二参考信号资源集合分别被用于确定所述第一子信号和所述第二子信号的空间发送参数;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一参考信号资源集合和所述第二参考信号资源集合中仅所述第一参考信号资源集合被用于确定所述第一信号的空间发送参数。
根据本申请的一个方面;所述第一参数集合包括第一数值,所述第二参数集合包括第二数值和第三 数值;所述第一数值和所述第二数值都针对所述第一参考信号资源集合,所述第一数值和所述第二数值不同;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一数值被用于确定所述第一信号的发送功率值。
根据本申请的一个方面;所述第一参数集合包括第一系数,所述第二参数集合包括第二系数和第三系数;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和第二路损的乘积被用于确定所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源,所述第二参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第四参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损,所述第四参考信号资源中接收的无线信号被用于确定所述第二路损。
根据本申请的一个方面;所述第一信令包括第一索引组;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一索引组被用于确定所述第一子信号和所述第二子信号所分别采用的预编码矩阵指示;当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于确定所述第一信号所采用的预编码矩阵指示。
根据本申请的一个方面;所述第一信令包括第一索引组,所述第一索引组被用于从所述第一参考信号资源集合中确定第一参考信号资源子集,或者所述第一索引组被用于同时从所述第一参考信号资源集合中确定第一参考信号资源子集以及从所述第二参考信号资源集合中确定第二参考信号资源子集。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并接收第一信令;
第一发射机,发送第一信号;
其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并发送第一信令;
第二接收机,接收第一信号;
其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,本申请中的方案的好处在于:改进多Panel下上行功控的灵活性,进而提高功控效率和传输性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将 会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信号的流程图;
图6示出了根据本申请的一个实施例的第一信息集合的示意图;
图7示出了根据本申请的一个实施例的第一参考信号资源集合和第二参考信号资源集合的示意图;
图8示出了根据本申请的一个实施例的第一信令的示意图;
图9示出了根据本申请的一个实施例的第一节点的示意图;
图10示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图11示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;在步骤102中接收第一信令;在步骤103中发送第一信号。
实施例1中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第一信息集合通过RRC(Radio Resource Control,无线资源控制)信令传输。
作为一个实施例,所述第一信息集合通过RRC信令配置。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的PUSCH-PowerControl中的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的PUSCH-PowerControl。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的PUSCH-P0-PUSCH-AlphaSet。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的SRI-PUSCH-PowerControl中的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的SRI-PUSCH-PowerControl。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括Power。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括Control。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括SRI。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一信令是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信号是SRS。
作为一个实施例,所述第一功率值的单位是dBm(毫分贝)。
作为一个实施例,所述第一信令被用于调度所述第一信号的发送。
作为一个实施例,所述第一信令被用于指示所述第一信号所占用的时域资源或频域资源中的至少之一。
作为一个实施例,所述第一信令被用于触发所述第一信号的发送。
作为一个实施例,所述第一信令被用于指示所述第一信号的MCS(Modulation and Coding Scheme,调制和编码方案)。
作为一个实施例,所述第一信令被用于指示所述第一信号的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别被不同的SRS-ResourceSetId所标识。
作为一个实施例,所述第一参考信号资源集合对应一个SRS Resource Set。
作为一个实施例,所述第一参考信号资源集合包括一个参考信号资源。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述参考信号资源是一个SRS Resource。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述K1个参考信号资源中的任一参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述K1个参考信号资源中的至少存在一个参考信号资源是一个SRS Resource。
作为一个实施例,所述第二参考信号资源集合包括一个参考信号资源。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述参考信号资源是一个SRS Resource。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2是大于1的正整数。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述K2个参考信号资源中的任一参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述K2个参考信号资源中的至少存在一个参考信号资源是一个SRS Resource。
作为一个实施例,上述短语所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合的意思包括:所述第一参数集合中的参数被用于确定所述第一参考信号资源集合中的至少一个参考信号资源中发送的无线信号的发送功率值,或者所述第二参数集合中的参数被用于确定所述第一参考信号资源集合中的至少一个参考信号资源中发送的无线信号的发送功率值。
作为一个实施例,上述短语所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合的意思包括:所述第一参数集合中的参数被用于确定目标无线信号的发送功率值,所述目标无线信号与所述第一参考信号资源集合中的至少一个参考信号资源中发送的无线信号是QCL(Quasi Co-located,准共址)的;或者所述第二参数集合中的参数被用于确定目标无线信号的发送功率值,所述目标无线信号与所述第一参考信号资源集合中的至少一个参考信号资源中发送的无线信号是QCL的。
作为一个实施例,上述短语所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合的意思包括:所述第一参数集合被关联到所述第一参考信号资源集合中的第一参考信号资源,且所述第二参数集合被关联到所述第一参考信号资源集合中的所述第一参考信号资源。
作为该实施例的一个子实施例,所述第一参考信号资源对应一个SRS Resource。
作为该实施例的一个子实施例,所述第一参考信号资源对应一个SRS-ResourceID。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一参考信号资源集合中的所述第一参考信号资源。
作为该实施例的一个子实施例,所述第一参数集合包括K1个第一参数组,所述第二参数集合包括K1个第二参数组;所述第一参考信号资源集合包括K1个参考信号资源;所述K1个第一参数组分别对应所述第一参考信号资源集合所包括的所述K1个参考信号资源,且所述K1个第二参数组分别对应所述第一参考信号资源集合所包括的所述K1个参考信号资源。
作为该子实施例的一个附属实施例,给定参考信号资源是所述K1个参考信号资源中的任一参考信号资源,所述给定参考信号资源对应所述K1个第一参数组中的给定第一参数组以及所述K1个第二参数组中的给定第二参数组;当所述第一信号仅由一个TB生成时,所述给定第一参数组被用于确定所述第一信号的发送功率值;当所述第一信号由两个TB生成时,所述给定第二参数组被用于确定所述第一信号的发送功率值。
作为该子实施例的一个附属实施例,给定参考信号资源是所述K1个参考信号资源中的任一参考信号资源,所述给定参考信号资源对应所述K1个第一参数组中的给定第一参数组以及所述K1个第二参数组中的给定第二参数组;当所述第一信号仅占用所述第一参考信号资源集合中的一个参考信号资源时,所述给定第一参数组被用于确定所述第一信号的发送功率值;当所述第一信号占用所述第一参考信号资源集合中的一个参考信号资源以及所述第二参考信号资源集合中的一个参考信号资源时,所述给定第二参数组被用于确定所述第一信号的发送功率值。
作为该子实施例的一个附属实施例,给定参考信号资源是所述K1个参考信号资源中的任一参考信号资源,所述给定参考信号资源对应所述K1个第一参数组中的给定第一参数组以及所述K1个第二参数组中的给定第二参数组;当所述第一信号仅与所述第一参考信号资源集合中的一个参考信号资源中发送的无线信号是QCL时,所述给定第一参数组被用于确定所述第一信号的发送功率值;当所述第一信号包括第一子信号和第二子信号,且所述第一子信号与所述第一参考信号资源集合中的一个参考信号资源中发送的无线信号是QCL,以及所述第二子信号与所述第二参考信号资源集合中的一个参考信号资源中发送的无线信号是QCL时,所述给定第二参数组被用于确定所述第一信号的发送功率值。
作为一个实施例,对于同一类参数,所述第一参数集合所包括的参数的数量不大于所述第二参数集合所包括的参数的数量。
作为一个实施例,对于同一类参数,所述第一参数集合所包括的参数的数量小于所述第二参数集合所包括的参数的数量。
作为一个实施例,对于同一类参数,所述第二参数集合所包括的参数的数量是所述第一参数集合所包括的参数的数量的两倍。
作为一个实施例,所述第一信令包括目标索引;当所述目标索引的值是第一候选值集合中的一个值时,所述第一信令被用于指示所述第一参考信号资源集合中的至少一个参考信号资源;当所述目标索引的值是第二候选值集合中的一个值时,所述第一信令被用于同时指示所述第一参考信号资源集合中的至少一个参考信号资源以及所述第二参考信号资源集合中的至少一个参考信号资源。
作为该实施例的一个子实施例,所述第一候选值集合包括多个候选值。
作为该实施例的一个子实施例,所述第二候选值集合包括多个候选值。
作为该实施例的一个子实施例,所述第一候选值集合中的任一候选值与所述第二候选值集合中的任一候选值不同。
作为一个实施例,所述第一信令包括第一索引组。
作为该实施例的一个子实施例,所述第一信令所包括的所述第一索引组被用于指示所述第一参考信号资源集合中的至少一个参考信号资源。
作为该实施例的一个子实施例,所述第一信令所包括的所述第一索引组被用于指示所述第二参考信号资源集合中的至少一个参考信号资源。
作为该实施例的一个子实施例,所述第一信令所包括的所述第一索引组被同时用于指示所述第一参考信号资源集合中的至少一个参考信号资源以及所述第二参考信号资源集合中的至少一个参考信号资源。
作为一个实施例,上述短语所述第二参考信号资源集合与所述第一参考信号资源集合不同的意思包括:所述第二参考信号资源集合采用第一标识,所述第一参考信号资源集合采用第二标识,所述第一标识和所述第二标识不同。
作为该实施例的一个子实施例,所述第一标识和所述第二标识都是SRSResourceSetID。
作为该实施例的一个子实施例,所述第一标识和所述第二标识都是Panel ID。
作为一个实施例,上述短语所述第二参考信号资源集合与所述第一参考信号资源集合不同的意思包括:所述第二参考信号资源集合中至少存在一个目标参考信号资源,且所述第一参考信号资源集合中至少存在一个给定参考信号资源,所述目标参考信号资源中发送的无线信号与所述给定参考信号资源中发送的无线信号是非QCL的。
作为一个实施例,上述短语所述第二参考信号资源集合与所述第一参考信号资源集合不同的意思包括:所述第二参考信号资源集合中任一参考信号资源中发送的无线信号与所述第一参考信号资源集合中任一参考信号资源中发送的无线信号是非QCL的。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持多个Panel同时发送。
作为一个实施例,所述UE201支持基于多Panel之间的功率分享。
作为一个实施例,所述UE201支持多个上行RF(Radio Frequency,射频)。
作为一个实施例,所述UE201支持多个上行RF同时发送。
作为一个实施例,所述UE201支持上报多个UE能力值集合。
作为一个实施例,所述NR节点B对应本申请中的所述第二节点。
作为一个实施例,所述NR节点B支持同时接收来自一个终端的多个Panel的信号。
作为一个实施例,所述NR节点B支持接收来自同一个终端的多个上行RF(Radio Frequency,射频)发送的信号。
作为一个实施例,所述NR节点B是一个基站。
作为一个实施例,所述NR节点B是一个小区。
作为一个实施例,所述NR节点B包括多个小区。
作为一个实施例,本申请中的所述第一节点对应所述UE201,本申请中的所述第二节点对应所述NR节点B。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信息集合生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信息集合生成于所述RRC306。
作为一个实施例,所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似 于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;随后接收第一信令;并发送第一信号;所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;随后接收第一信令;并发送第一信号;所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;随后发送第一信令;并接收第一信号;所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;随后发送第一信令;并接收第一信号;所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息集合。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第一信号。
实施例5
实施例5示例了一个第一信号的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U1,在步骤S10中接收第一信息集合;在步骤S11中接收第一信令;在步骤S12中发送第一信号。
对于 第二节点N2,在步骤S20中发送第一信息集合;在步骤S21中发送第一信令;在步骤S22中接收第一信号。
实施例5中,所述第一信息集合被用于指示第一参数集合和第二参数集合;所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
典型的;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述目标参数集合是所述第二参数集合;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述目标参数集合是所述第一参数集合。
作为一个实施例,所述第一信令包括目标索引和第一索引组,所述目标索引被用于指示所述第一索引组是否被用于从所述第一参考信号资源集合中指示至少一个参考信号资源。
作为一个实施例,所述第一信令包括目标索引和第一索引组,所述目标索引被用于指示所述第一索引组是否被用于从所述第二参考信号资源集合中指示至少一个参考信号资源。
作为一个实施例,所述第一信令包括目标索引和第一索引组,所述目标索引被用于指示所述第一索引组是否被用于从所述第一参考信号资源集合中指示至少一个参考信号资源,以及从所述第二参考信号资源集合中指示至少一个参考信号资源。
作为一个实施例,所述第一信令包括目标索引和第一索引组,所述目标索引被用于确定所述第一索引组。
作为该实施例的一个子实施例,所述目标索引被用于确定所述第一索引组的解读。
作为该实施例的一个子实施例,所述目标索引被用于确定所述第一索引组的含义。
作为该实施例的一个子实施例,所述目标索引被用于确定所述第一索引组所占用的比特数。
作为该实施例的一个子实施例,所述目标索引的值被用于确定所述第一索引组被用于从所述第一参考信号资源集合中指示一个参考信号资源。
作为该子实施例的一个附属实施例,所述目标索引的值是第一候选值集合中的之一,所述第一候选值集合包括多个候选值。
作为该子实施例的一个附属实施例,所述第一索引组包括一个SRI,所述第一索引组所包括的所述SRI被用于从所述第一参考信号资源集合中指示一个参考信号资源。
作为该子实施例的一个附属实施例,所述第一索引组包括一个PMI(Precoding Matrix Indicator,预编码矩阵指示),所述第一索引组所包括所述PMI被用于指示所述第一信号所采用的PMI。
作为该实施例的一个子实施例,所述目标索引的值被用于确定所述第一索引组被用于同时从所述第一参考信号资源集合中指示一个参考信号资源以及从所述第二参考信号资源集合中指示一个参考信号资源。
作为该子实施例的一个附属实施例,所述目标索引的值是第二候选值集合中的之一,所述第二候选值集合包括多个候选值。
作为该子实施例的一个附属实施例,所述第一索引组包括两个SRI,所述第一索引组所包括的所述两个SRI被用于分别从所述第一参考信号资源集合中指示一个参考信号资源以及从所述第二参考信号资源集合中指示一个参考信号资源。
作为该子实施例的一个附属实施例,所述第一索引组包括两个PMI,所述第一信号包括第一子信号和第二子信号,所述第一索引组所包括的所述两个PMI分别被用于指示所述第一子信号所采用的PMI以及所述第二子信号所采用的PMI。
典型的;当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一参考信号资源集合和所述第二参考信号资源集合分别被用于确定所述第一子信号和所述第二子信号的空间发送参数;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一参考信号资源集合和所述第二参考信号资源集合中仅所述第一参考信号资源集合被用于确定所述第一信号的空间发送参数。
作为一个实施例,所述第一子信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二子信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一子信号通过一个TB生成。
作为一个实施例,所述第二子信号通过一个TB生成。
作为上述两个实施例的一个子实施例,生成所述第一子信号的TB和生成所述第二子信号的TB不同。
作为上述两个实施例的一个子实施例,生成所述第一子信号的TB和生成所述第二子信号的TB分别采用不同的HARQ进程号。
作为上述两个实施例的一个子实施例,生成所述第一子信号的TB和生成所述第二子信号的TB相同。
作为上述两个实施例的一个子实施例,生成所述第一子信号的TB和生成所述第二子信号的TB采用相同的HARQ进程号。
作为一个实施例,所述第一子信号是SRS。
作为一个实施例,所述第二子信号是SRS。
作为一个实施例,当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信令被用于从所述第一参考信号资源集合中指示第一参考信号资源,且所述第一信令被用于从所述第二参考信号资源集合中指示第二参考信号资源,所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被用于确定所述第一子信号的空间发送参数的意思包括:所述第一子信号与所述第一参考信号资源中发送的无线信号是QCL的。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被用于确定所述第一子信号的空间发送参数的意思包括:所述第一子信号与所述第一参考信号资源中发送的无线信号采用相同的空间发送参数。
作为该实施例的一个子实施例,上述短语所述第二参考信号资源被用于确定所述第二子信号的空间发送参数的意思包括:所述第二子信号与所述第二参考信号资源中发送的无线信号是QCL的。
作为该实施例的一个子实施例,上述短语所述第二参考信号资源被用于确定所述第二子信号的空间发送参数的意思包括:所述第二子信号与所述第二参考信号资源中发送的无线信号采用相同的空间发送参数。
作为一个实施例,当所述第一信令不被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信令仅被用于从所述第一参考信号资源集合中指示第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被用于确定所述第一子信号的空间发送参数的意思包括:所述第一子信号与所述第一参考信号资源中发送的无线信号是QCL的。
作为该实施例的一个子实施例,上述短语所述第一参考信号资源被用于确定所述第一子信号的空间发送参数的意思包括:所述第一子信号与所述第一参考信号资源中发送的无线信号采用相同的空间发送参数。
作为一个实施例,所述QCL是指:Quasi Co-Located(准共址的)。
作为一个实施例,所述QCL是指:Quasi Co-Location(准共址)。
作为一个实施例,所述QCL包括QCL参数。
作为一个实施例,所述QCL包括QCL假设(assumption)。
作为一个实施例,所述QCL类型包括QCL-TypeA。
作为一个实施例,所述QCL类型包括QCL-TypeB。
作为一个实施例,所述QCL类型包括QCL-TypeC。
作为一个实施例,所述QCL类型包括QCL-TypeD。
作为一个实施例,所述QCL-TypeA包括多普勒位移(Doppler shift)、多普勒扩展(Doppler spread)、平均延时(average delay)和延时扩展(delay spread)。
作为一个实施例,所述QCL-TypeB包括多普勒位移(Doppler shift)和多普勒扩展(Doppler spread)。
作为一个实施例,所述QCL-TypeC包括多普勒位移(Doppler shift)和平均延时(average delay)。
作为一个实施例,所述QCL-TypeD包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述QCL参数包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),空间发送参数(Spatial Tx parameter)或空间接收参数(Spatial Rx parameter)中的至少之一。
作为一个实施例,所述空间发送参数(Spatial Tx parameter)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向 量或者空域发送滤波器中的至少之一。
作为一个实施例,所述空间接收参数(Spatial Rx parameter)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量或者空域接收滤波器中的至少之一。
典型的;所述第一参数集合包括第一数值,所述第二参数集合包括第二数值和第三数值;所述第一数值和所述第二数值都针对所述第一参考信号资源集合,所述第一数值和所述第二数值不同;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一数值被用于确定所述第一信号的发送功率值。
作为一个实施例,当所述目标参数集合是所述第一参数集合时,所述备选参数包括所述第一数值。
作为一个实施例,当所述目标参数集合是所述第二参数集合时,所述备选参数包括所述第二数值和所述第三数值。
作为一个实施例,所述第一数值的单位是dBm。
作为一个实施例,所述第一数值是一个P0。
作为一个实施例,所述第二数值的单位是dBm。
作为一个实施例,所述第二数值是一个P0。
作为一个实施例,所述第三数值的单位是dBm。
作为一个实施例,所述第三数值是一个P0。
作为一个实施例,所述第一数值和所述第二数值都被关联到所述第一参考信号资源集合中的一个参考信号资源。
作为一个实施例,所述第一数值和所述第二数值都被关联到所述第一参考信号资源集合中的第一参考信号资源,所述第一信令被用于从所述第一参考信号资源集合中指示所述第一参考信号资源。
作为一个实施例,当所述第一数值被用于确定所述第一信号的发送功率值,且所述第一信号的发送功率值不大于第一阈值时,所述第一数值与所述第一信号的发送功率值线性相关。
作为该实施例的一个子实施例,所述第一数值与所述第一信号的发送功率值线性系数等于1。
作为该实施例的一个子实施例,所述第一阈值是P CMAX
作为该实施例的一个子实施例,所述第一阈值是per SRS Resource Set的。
作为一个实施例,当所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值,且所述第一子信号的发送功率值和所述第二子信号的发送功率值分别不大于第二阈值和第三阈值时,所述第二数值与所述第一子信号的发送功率值线性相关,所述第三数值与所述第二子信号的发送功率值线性相关。
作为该实施例的一个子实施例,所述第二数值与所述第一子信号的发送功率值线性系数等于1。
作为该实施例的一个子实施例,所述第三数值与所述第二子信号的发送功率值线性系数等于1。
作为该实施例的一个子实施例,所述第二阈值是P CMAX
作为该实施例的一个子实施例,所述第三阈值是P CMAX
作为该实施例的一个子实施例,所述第二阈值是per SRS Resource Set的。
作为该实施例的一个子实施例,所述第三阈值是per SRS Resource Set的。
作为一个实施例,本申请中的所述第一阈值等于所述第二阈值。
作为一个实施例,本申请中的所述第二阈值等于所述第三阈值。
作为一个实施例,本申请中的所述第一阈值等于所述第二阈值与所述第三阈值的和。
典型的;所述第一参数集合包括第一系数,所述第二参数集合包括第二系数和第三系数;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和第二路损的乘积被用于确定所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号 的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源,所述第二参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第四参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损,所述第四参考信号资源中接收的无线信号被用于确定所述第二路损。
作为一个实施例,当所述目标参数集合是所述第一参数集合时,所述备选参数包括所述第一系数。
作为一个实施例,当所述目标参数集合是所述第二参数集合时,所述备选参数包括所述第二系数和所述第三系数。
作为一个实施例,所述第一系数不大于1。
作为一个实施例,所述第一系数是0到1之间的实数。
作为一个实施例,所述第二系数不大于1。
作为一个实施例,所述第二系数是0到1之间的实数。
作为一个实施例,所述第二系数不大于1。
作为一个实施例,所述第二系数是0到1之间的实数。
作为一个实施例,所述第一系数与所述第二系数不同。
作为一个实施例,所述第一系数与所述第二系数相同。
作为一个实施例,所述第一系数与所述第二系数无关。
作为一个实施例,所述第一系数与所述第二系数有关。
作为一个实施例,所述第一系数与所述第二系数是独立配置的。
作为一个实施例,所述第一系数与所述第二系数是联合配置的。
作为一个实施例,所述第三系数与所述第二系数不同。
作为一个实施例,所述第三系数与所述第二系数相同。
作为一个实施例,所述第三系数与所述第二系数无关。
作为一个实施例,所述第三系数与所述第二系数有关。
作为一个实施例,所述第三系数与所述第二系数是独立配置的。
作为一个实施例,所述第三系数与所述第二系数是联合配置的。
作为一个实施例,所述第三参考信号资源是CSI-RS资源。
作为一个实施例,所述第三参考信号资源是一个SSB。
作为一个实施例,所述第四参考信号资源是CSI-RS资源。
作为一个实施例,所述第四参考信号资源是一个SSB。
作为一个实施例,所述第一参考信号资源集合中的第一参考信号资源被所述第一信令指示,所述第一参考信号资源被用于确定所述第三参考信号资源。
作为该实施例的一个子实施例,所述第一参考信号资源中发送的无线信号和所述第三参考信号资源中发送的无线信号是QCL的。
作为该实施例的一个子实施例,所述第三参考信号资源所对应的ssb-Index或csi-RS-Index被关联到所述第一参考信号资源所对应的pusch-PathlossReferenceRS-Id。
作为一个实施例,所述第二参考信号资源集合中的第二参考信号资源被所述第一信令指示,所述第二参考信号资源被用于确定所述第四参考信号资源。
作为该实施例的一个子实施例,所述第二参考信号资源中发送的无线信号和所述第四参考信号资源中发送的无线信号是QCL的。
作为该实施例的一个子实施例,所述第四参考信号资源所对应的ssb-Index或csi-RS-Index被关联到所述第二参考信号资源所对应的pusch-PathlossReferenceRS-Id。
作为一个实施例,所述第一路损的单位是dB。
作为一个实施例,所述第二路损的单位是dB。
作为一个实施例,当所述第二系数和所述第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和所述第二路损的乘积被用于确定所述第二子信号的发送功率值,且所述第一子信号的发送功率值和所述第二子信号的发送功率值分别不大于第二阈值和第三阈值时,所述第二系数和所述第一 路损的乘积与所述第一子信号的发送功率值线性相关,所述第三系数和所述第二路损的乘积与所述第二子信号的发送功率值线性相关。
作为该实施例的一个子实施例,所述第二系数和所述第一路损的乘积与所述第一子信号的发送功率值线性系数等于1。
作为该实施例的一个子实施例,所述第三系数和所述第二路损的乘积与所述第二子信号的发送功率值线性系数等于1。
作为一个实施例,当所述第一系数和所述第一路损的乘积被用于确定所述第一信号的发送功率值,且所述第一信号的发送功率值不大于第一阈值时,所述第一系数和所述第一路损的乘积与所述第一信号的发送功率值线性相关。
作为该实施例的一个子实施例,所述第一系数和所述第一路损的乘积与所述第一信号的发送功率值线性系数等于1。
典型的;所述第一信令包括第一索引组;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一索引组被用于确定所述第一子信号和所述第二子信号所分别采用的预编码矩阵指示;当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于确定所述第一信号所采用的预编码矩阵指示。
作为一个实施例,当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一索引组被用于指示第一PMI和第二PMI,所述第一PMI和所述第二PMI分别指示所述第一子信号所采用的预编码矩阵以及所述第二子信号所采用的预编码矩阵。
作为一个实施例,当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于指示第一PMI,所述第一PMI指示所述第一信号所采用的预编码矩阵。
典型的;所述第一信令包括第一索引组,所述第一索引组被用于从所述第一参考信号资源集合中确定第一参考信号资源子集,或者所述第一索引组被用于同时从所述第一参考信号资源集合中确定第一参考信号资源子集以及从所述第二参考信号资源集合中确定第二参考信号资源子集。
作为一个实施例,所述第一参考信号资源子集包括K3个参考信号资源,所述K3是大于1的正整数,所述K3个参考信号资源包括所述第一参考信号资源。
作为该实施例的一个子实施例,所述K3个参考信号资源分别是K3个SRS资源。
作为一个实施例,所述第二参考信号资源子集包括K4个参考信号资源,所述K4是大于1的正整数,所述K4个参考信号资源包括所述第二参考信号资源。
作为该实施例的一个子实施例,所述K4个参考信号资源分别是K4个SRS资源。
实施例6
实施例6示例了一个第一信息集合的示意图,如附图6所示。在附图6中,所述第一信息集合包括第一参数集合和第二参数集合;所述第一参数集合包括第一数值和第一系数;所述第二参数集合包括第二数值、第三数值、第二系数和第三系数。
作为一个实施例,所述第一数值是TS 38.331中的P0,所述第一系数是TS 38.331中的Alpha。
作为一个实施例,所述第二数值和所述第三数值均是TS 38.331中的P0,所述第二系数和所述第三系数均是TS 38.331中的Alpha。
作为一个实施例,所述第一数值和所述第一系数被关联到所述第一参考信号资源集合中的至少一个参考信号资源。
作为一个实施例,所述第一数值和所述第一系数被关联到所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第一数值和所述第一系数被关联到所述第一参考信号资源集合中的所述第一参考信号资源。
作为一个实施例,所述第一数值和所述第一系数仅在所述第一节点的一个SRS资源集合被指示时被使用。
作为一个实施例,所述第二数值和所述第二系数被关联到所述第一参考信号资源集合中的至少一个参考信号资源。
作为一个实施例,所述第二数值和所述第二系数被关联到所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第二数值和所述第二系数被关联到所述第一参考信号资源集合中的所述第一参考信号资源。
作为一个实施例,所述第二数值和所述第二系数仅在所述第一节点的所述第一参考信号资源集合中的参考信号资源和所述第二参考信号资源集合中的参考信号资源都被指示时被使用。
作为一个实施例,所述第三数值和所述第三系数被关联到所述第二参考信号资源集合中的至少一个参考信号资源。
作为一个实施例,所述第三数值和所述第三系数被关联到所述第二参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第三数值和所述第三系数被关联到所述第二参考信号资源集合中的所述第二参考信号资源。
作为一个实施例,所述第三数值和所述第三系数仅在所述第一节点的所述第一参考信号资源集合中的参考信号资源和所述第二参考信号资源集合中的参考信号资源都被指示时被使用。
实施例7
实施例7示例了一个第一参考信号资源集合和第二参考信号资源集合的示意图,如附图7所示。在附图7中,所述第一参考信号资源集合包括K1个参考信号资源,分别对应图中的参考信号资源1_1至参考信号资源1_K1;所述第二参考信号资源集合包括K2个参考信号资源,分别对应图中的参考信号资源2_1至参考信号资源2_K2;所述K1是正整数,所述K2是正整数。
作为一个实施例,所述K1等于1,所述第一参考信号资源集合仅包括本申请中的所述第一参考信号资源。
作为一个实施例,所述K2等于1,所述第二参考信号资源集合仅包括本申请中的所述第二参考信号资源。
作为一个实施例,所述K1大于1。
作为一个实施例,所述K2大于1。
作为一个实施例,本申请中的所述第一参数集合中的参数仅被适用于所述第一参考信号资源集合。
作为该实施例的一个子实施例,所述第一参数集合中的参数适用于所述第一参考信号资源集合中的所有参考信号资源。
作为该实施例的一个子实施例,所述第一参数集合中的参数适用于所述第一参考信号资源集合中的第一参考信号资源。
作为该实施例的一个子实施例,所述第一参数集合中的参数适用于所述第一参考信号资源集合中的一个参考信号资源。
作为一个实施例,本申请中的所述第二参数集合中的参数被同时适用于所述第一参考信号资源集合和所述第二参考信号资源集合。
作为该实施例的一个子实施例,所述第二参数集合中的参数适用于所述第一参考信号资源集合中的所有参考信号资源,以及所述第二参考信号资源集合中的所有参考信号资源。
作为该实施例的一个子实施例,所述第一参数集合中的参数适用于所述第一参考信号资源集合中的第一参考信号资源,以及所述第二参考信号资源集合中的第二参考信号资源。
作为该实施例的一个子实施例,所述第一参数集合中的参数适用于所述第一参考信号资源集合中的一个参考信号资源,以及所述第二参考信号资源集合中的一个参考信号资源。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应两个不同的Panel ID。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个Panel。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个RF(Radio Frequency,射频)。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个射频通道。
实施例8
实施例8示例了一个第一信令的示意图,如附图8所示。在附图8中,所述第一信令包括目标索引,且所述第一信令包括第一索引组。
作为一个实施例,所述第一信令包括的所述目标索引被用于确定所述第一信令包括的所述第一索引组的解读。
作为一个实施例,所述第一信令包括的所述目标索引被用于确定所述第一信令包括的所述第一索引组所包括的比特数。
作为一个实施例,所述第一信令包括的所述目标索引被用于确定所述第一信号是通过一个Panel发送还是通过两个Panel发送。
作为一个实施例,所述第一信令包括的所述目标索引被用于确定所述第一信号与一个SRS资源集合相关联,还是和两个SRS资源集合相关联。
作为一个实施例,所述第一信令包括的所述目标索引被用于确定所述第一信号与所述第一参考信号资源集合相关联,或者所述第一信令包括的所述目标索引被用于确定所述第一信号与所述第二参考信号资源集合相关联,或者所述第一信令包括的所述目标索引被用于确定所述第一信号同时与所述第一参考信号资源集合和所述第二参考信号资源集合都相关联。
作为一个实施例,所述第一信令包括的所述第一索引组被用于确定所述第一信号所采用的SRI。
作为一个实施例,所述第一信令包括的所述第一索引组被用于确定所述第一信号所采用的PMI。
作为一个实施例,所述第一信令包括第一域,所述第一信令的所述第一域被用于确定所述第一信号所采用的功控进程。
实施例9
实施例9示例了一个第一节点的示意图,如附图9所示。在附图9中,所述第一节点具有两个Panel,分别是第一Panel和第二Panel,所述第一Panel和所述第二Panel分别被关联到第一参考信号资源集合和第二参考信号资源集合;所述两个Panel能够在同一块时频资源中发送两个独立的无线信号。
作为一个实施例,所述第一Panel和所述第二Panel之间可以动态分享(Share)最大发送功率值。
作为一个实施例,当所述第一Panel或所述第二Panel被单独使用时,所述第一Panel或所述第二Panel的最大发送功率值不大于本申请中的第一阈值。
作为一个实施例,当所述第一Panel和所述第二Panel被同时使用时,所述第一Panel的最大发送功率值和所述第二Panel的最大发送功率值分别不大于本申请中的第二阈值和第三阈值。
实施例10
实施例10示例了天线端口和天线端口组的示意图,如附图10所示。
在实施例10中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图10中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线 端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个子实施例,一个天线端口组包括一个天线端口。例如,附图10中的所述天线端口组#0包括一个天线端口。
作为上述子实施例的一个附属实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。
作为一个子实施例,一个天线端口组包括多个天线端口。例如,附图10中的所述天线端口组#1包括多个天线端口。
作为上述子实施例的一个附属实施例,所述多个天线端口对应相同的模拟波束赋型矩阵和不同的数字波束赋型向量。
作为一个子实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个子实施例,一个天线端口组中的任意两个天线端口是QCL(Quasi-Colocated,准共址)的。
作为一个子实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
作为一个实施例,图中的多个天线端口组对应本申请中的一个Panel。
作为一个实施例,所述第一参考信号资源集合对应多个天线端口组。
作为一个实施例,所述第二参考信号资源集合对应多个天线端口组。
作为一个实施例,所述第一参考信号资源集合中的一个参考信号资源对应一个天线端口组。
作为一个实施例,所述第二参考信号资源集合中的一个参考信号资源对应一个天线端口组。
实施例11
实施例11示例了一个第一节点中的结构框图,如附图11所示。附图11中,第一节点1100包括第一接收机1101和第一发射机1102。
第一接收机1101,接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并接收第一信令;
第一发射机1102,发送第一信号;
实施例11中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述目标参数集合是所述第二参数集合;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述目标参数集合是所述第一参数集合。
作为一个实施例,当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一参考信号资源集合和所述第二参考信号资源集合分别被用于确定所述第一子信号和所述第二子信号的空间发送参数;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一参考信号资源集合和所述第二参考信号资源集合中仅所述第一参考信号资源集合被用于确定所述第一信号的空间发送参数。
作为一个实施例,所述第一参数集合包括第一数值,所述第二参数集合包括第二数值和第三数值;所述第一数值和所述第二数值都针对所述第一参考信号资源集合,所述第一数值和所述第二数值不同; 当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一数值被用于确定所述第一信号的发送功率值。
作为一个实施例,所述第一参数集合包括第一系数,所述第二参数集合包括第二系数和第三系数;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和第二路损的乘积被用于确定所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源,所述第二参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第四参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损,所述第四参考信号资源中接收的无线信号被用于确定所述第二路损。
作为一个实施例,所述第一信令包括第一索引组;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一索引组被用于确定所述第一子信号和所述第二子信号所分别采用的预编码矩阵指示;当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于确定所述第一信号所采用的预编码矩阵指示。
作为一个实施例,所述第一信令包括第一索引组,所述第一索引组被用于从所述第一参考信号资源集合中确定第一参考信号资源子集,或者所述第一索引组被用于同时从所述第一参考信号资源集合中确定第一参考信号资源子集以及从所述第二参考信号资源集合中确定第二参考信号资源子集。
作为一个实施例,所述第一接收机1101包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1102包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一信息集合通过RRC信令传输,所述第一参数集合和所述第二参数集合均被用于有同一个SRS资源所对应的上行功率控制,所述第一信令是DCI;所述第一信令被用于指示所述第一参数集合和所述第二参数集合中的之一被用于确定所述第一信号的发送功率值。
实施例12
实施例12示例了一个第二节点中的结构框图,如附图12所示。附图12中,第二节点1200包括第二发射机1201和第二接收机1202。
第二发射机1201,发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并发送第一信令;
第二接收机1202,接收第一信号;
实施例12中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述目标参数集合是所述第二参数集合;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述目标参数集合是所述第一参数集合。
作为一个实施例,当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一参考信号资源集合和所述第二参考信号资源集合分别被用于确定所述第一子信号和所述第二子信号的空间发送参数;当所述第一信令不被用 于指示所述第二参考信号资源集合中的参考信号资源时,所述第一参考信号资源集合和所述第二参考信号资源集合中仅所述第一参考信号资源集合被用于确定所述第一信号的空间发送参数。
作为一个实施例,所述第一参数集合包括第一数值,所述第二参数集合包括第二数值和第三数值;所述第一数值和所述第二数值都针对所述第一参考信号资源集合,所述第一数值和所述第二数值不同;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一数值被用于确定所述第一信号的发送功率值。
作为一个实施例,所述第一参数集合包括第一系数,所述第二参数集合包括第二系数和第三系数;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和第二路损的乘积被用于确定所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源,所述第二参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第四参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损,所述第四参考信号资源中接收的无线信号被用于确定所述第二路损。
作为一个实施例,所述第一信令包括第一索引组;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一索引组被用于确定所述第一子信号和所述第二子信号所分别采用的预编码矩阵指示;当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于确定所述第一信号所采用的预编码矩阵指示。
作为一个实施例,所述第一信令包括第一索引组,所述第一索引组被用于从所述第一参考信号资源集合中确定第一参考信号资源子集,或者所述第一索引组被用于同时从所述第一参考信号资源集合中确定第一参考信号资源子集以及从所述第二参考信号资源集合中确定第二参考信号资源子集。
作为一个实施例,所述第二发射机1201包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1202包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第一信息集合通过RRC信令传输,所述第一参数集合和所述第二参数集合均被用于有同一个SRS资源所对应的上行功率控制,所述第一信令是DCI;所述第一信令被用于指示所述第一参数集合和所述第二参数集合中的之一被用于确定所述第一信号的发送功率值。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并接收第一信令;
    第一发射机,发送第一信号;
    其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  2. 根据权利要求1所述的第一节点,其特征在于;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述目标参数集合是所述第二参数集合;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述目标参数集合是所述第一参数集合。
  3. 根据权利要求1或2所述的第一节点,其特征在于,当所述第一信令被用指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一参考信号资源集合和所述第二参考信号资源集合分别被用于确定所述第一子信号和所述第二子信号的空间发送参数;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一参考信号资源集合和所述第二参考信号资源集合中仅所述第一参考信号资源集合被用于确定所述第一信号的空间发送参数。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于;所述第一参数集合包括第一数值,所述第二参数集合包括第二数值和第三数值;所述第一数值和所述第二数值都针对所述第一参考信号资源集合,所述第一数值和所述第二数值不同;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二数值和所述第三数值分别被用于确定所述第一子信号的发送功率值和所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一数值被用于确定所述第一信号的发送功率值。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于;所述第一参数集合包括第一系数,所述第二参数集合包括第二系数和第三系数;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值,所述第三系数和第二路损的乘积被用于确定所述第二子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源,所述第二参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第四参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损,所述第四参考信号资源中接收的无线信号被用于确定所述第二路损。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于;所述第一信令包括第一索引组;当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第一索引组被用于确定所述第一子信号和所述第二子信号所分别采用的预编码矩阵指示;当所述第一信令不被用于确定所述第二参考信号资源时,所述第一索引组被用于确定所述第一信号所采用的预编码矩阵指示。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于;所述第一信令包括第一索引组,所述第一索引组被用于从所述第一参考信号资源集合中确定第一参考信号资源子集,或者所述第一索引组被用于同时从所述第一参考信号资源集合中确定第一参考信号资源子集以及从所述第二参考信号资源集合中确定第二参考信号资源子集。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并发 送第一信令;
    第二接收机,接收第一信号;
    其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并接收第一信令;
    发送第一信号;
    其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息集合,所述第一信息集合被用于指示第一参数集合和第二参数集合;并发送第一信令;
    接收第一信号;
    其中,所述第一信号的发送功率是第一功率值;所述第一参数集合和所述第二参数集合都被关联到第一参考信号资源集合,所述第一信令指示所述第一参考信号资源集合中的至少一个参考信号资源;目标参数集合是所述第一参数集合和所述第二参数集合中的之一,所述目标参数集合所包括的至少一个备选参数被用于确定所述第一功率值;所述第一信令是否被用于指示第二参考信号资源集合中的至少一个参考信号资源被用于从所述第一参数集合和所述第二参数集合中确定所述目标参数集合;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
PCT/CN2023/071131 2022-01-13 2023-01-07 一种被用于无线通信的节点中的方法和装置 WO2023134592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210037360.3 2022-01-13
CN202210037360.3A CN116489753A (zh) 2022-01-13 2022-01-13 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023134592A1 true WO2023134592A1 (zh) 2023-07-20

Family

ID=87223683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071131 WO2023134592A1 (zh) 2022-01-13 2023-01-07 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116489753A (zh)
WO (1) WO2023134592A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972251A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 信号传输方法、相关设备及系统
WO2020118574A1 (zh) * 2018-12-12 2020-06-18 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
WO2021156825A1 (en) * 2020-02-06 2021-08-12 Lenovo (Singapore) Pte. Ltd. Power control using at least one power control parameter
CN113302987A (zh) * 2019-01-10 2021-08-24 联想(新加坡)私人有限公司 上行链路功率控制

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972251A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 信号传输方法、相关设备及系统
WO2020118574A1 (zh) * 2018-12-12 2020-06-18 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
CN113302987A (zh) * 2019-01-10 2021-08-24 联想(新加坡)私人有限公司 上行链路功率控制
WO2021156825A1 (en) * 2020-02-06 2021-08-12 Lenovo (Singapore) Pte. Ltd. Power control using at least one power control parameter

Also Published As

Publication number Publication date
CN116489753A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112333776B (zh) 一种被用于无线通信的节点中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11895050B2 (en) Method and device in nodes used for wireless communication
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
CN117335944A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11985605B2 (en) Method and device in nodes used for wireless communication
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113381845B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023147763A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160463A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138552A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067798A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023165344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023088128A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151671A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739935

Country of ref document: EP

Kind code of ref document: A1