WO2023138552A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023138552A1
WO2023138552A1 PCT/CN2023/072514 CN2023072514W WO2023138552A1 WO 2023138552 A1 WO2023138552 A1 WO 2023138552A1 CN 2023072514 W CN2023072514 W CN 2023072514W WO 2023138552 A1 WO2023138552 A1 WO 2023138552A1
Authority
WO
WIPO (PCT)
Prior art keywords
power value
reference signal
value
signal resource
target power
Prior art date
Application number
PCT/CN2023/072514
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023138552A1 publication Critical patent/WO2023138552A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for uplink power control reports in wireless communication.
  • the 5G wireless cellular communication network system enhances the uplink power control of the UE on the basis of the original LTE (Long-Term Evolution, long-term evolution).
  • LTE Long-Term Evolution, long-term evolution
  • the path loss (Pathloss) measurement required for uplink power control needs to use CSI-RS (Channel State Information Reference Signal, channel state information reference signal) and SSB (SS/PBCH Block, synchronization signal/physical broadcast channel block).
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • SSB SS/PBCH Block, synchronization signal/physical broadcast channel block.
  • the biggest feature of the NR system is the introduction of a beam management mechanism.
  • the terminal can use multiple different transmitting and receiving beams for communication, and the terminal needs to be able to measure multiple path losses corresponding to multiple beams.
  • One way to determine the path loss is to indicate to a certain associated downlink RS resource through the SRI (Sounding Reference Signal Resource Indicator) in the DCI.
  • the transmission of the terminal has been enhanced.
  • One of the important aspects is the introduction of two panels.
  • the terminal can use two panels to transmit on two transmission beams at the same time to obtain better space diversity gain.
  • an important indicator for uplink transmission is power control. Whether two panels use the same power control parameters as one panel when they are used at the same time, and whether power is dynamically allocated between the two panels will have an impact on the uplink power control under multiple panels. Further, the existing PHR (Power Headroom Report, power headroom report) reporting mechanism also needs to be reconsidered.
  • PHR Power Headroom Report, power headroom report
  • the present application discloses a solution.
  • multi-panel is only used as a typical application scenario or example; this application is also applicable to other scenarios facing similar problems, such as single-panel scenarios, or for different technical fields, such as technical fields other than uplink power control, such as measurement reporting, uplink data transmission and other non-uplink power control fields to achieve similar technical effects.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments in the first node device of the present application and the features in the embodiments can be applied to the second node device, and vice versa.
  • TS36 series for explanations of terms (Terminology), nouns, functions, and variables in this application (if not specified otherwise), reference may be made to definitions in 3GPP standard protocols TS36 series, TS38 series, and TS37 series.
  • the present application discloses a method in a first node for wireless communication, including:
  • the second information set includes a first power difference value and a second power difference value;
  • the first power difference value is equal to the difference obtained by subtracting the first target power value from the first power value, and the second power difference value is equal to the difference obtained by subtracting the second target power value from the second power value;
  • both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set;
  • the first target power value and the second target power value are for the same cell, and the first target power value and the second target power value are for PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the above method is characterized in that: for one SRS resource in one SRS (Sounding Reference Signal, sounding reference signal) resource set, the first node will report two PHRs to give more references to the base station, so as to inform the base station of the corresponding remaining power values when single Panel transmission and multi-Panel transmission are used.
  • SRS Sounding Reference Signal, sounding reference signal
  • another feature of the above method is that: corresponding to the same uplink beam, when single-Panel transmission and multi-Panel transmission are used, the upper limit of the corresponding transmission power value is different, and multiple PHRs for one uplink beam need to be reported at the same time.
  • the first information set is used to indicate the second reference signal resource set;
  • the second information set includes a third power difference and a fourth power difference;
  • the third power difference is equal to the difference obtained by subtracting the third target power value from the third power value, and the fourth power difference is equal to the difference obtained by subtracting the fourth target power value from the fourth power value;
  • both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set; and the fourth target power value are both for PUSCH.
  • the above method is characterized in that: when the first node configures two sets of SRS resources, for one SRS resource in another set of SRS resources, the first node also reports two PHRs to give the base station more references to inform the base station of the corresponding remaining power values when single-panel transmission and multi-panel transmission are used.
  • both the first power value and the second power value are associated with the first reference signal resource set, and the third power value and the fourth power value are both associated with the second reference signal resource set; the first power value is different from the second power value, and the third power value is different from the fourth power value.
  • the above method is characterized in that: the first power value is a power control parameter used when the first SRS reference resource set of the two SRS reference resource sets is used alone, and the second power value is a power control parameter used by the first SRS reference resource set when the two SRS reference resource sets are used simultaneously.
  • the above method is characterized in that: the third power value is a power control parameter used when the second SRS reference resource set of the two SRS reference resource sets is used alone, and the fourth power value is a power control parameter used by the second SRS reference resource set when the two SRS reference resource sets are used simultaneously.
  • the first signaling is used to determine the first reference signal resource
  • the first reference signal resource is used to determine the spatial transmission parameter of the first signal
  • the transmission power value of the first signal is equal to the first target power value
  • the uplink scheduling includes a physical uplink shared channel, and the power control parameters associated with the first reference signal resources are predefined.
  • the first signaling is used to determine the first reference signal resource and the second reference signal resource, the first signal includes a first sub-signal and a second sub-signal; the first reference signal resource is used to determine the spatial transmission parameter of the first sub-signal, and the second reference signal resource is used to determine the spatial transmission parameter of the second sub-signal; the transmission power value of the first sub-signal is equal to the second target power value, and the transmission power value of the second sub-signal is equal to the fourth target power value.
  • the power control parameters associated with the second reference signal resources are predefined.
  • both the first value and the second value are associated with the first reference signal resource set, and both the first coefficient and the second coefficient are associated with the first reference signal resource set; the first value and the first coefficient are used to determine the first target power value, and the second value and the second coefficient are used to determine the second target power value; the first value and the second value are of the same type, and the first coefficient and the second coefficient are of the same type.
  • the above-mentioned method is characterized in that two sets of power control parameter sets are configured, respectively including a first value and a first coefficient, and a second value and a second coefficient, and the above two sets of parameter sets all correspond to the same given beam; when a given beam is used for single Panel (panel) transmission, a set of parameters is used; when a given beam is used for multi-Panel simultaneous transmission, another set of parameters is used.
  • the present application discloses a method in a second node for wireless communication, including:
  • the second information set includes a first power difference value and a second power difference value; the first power difference value is equal to the first power value minus The difference obtained by subtracting the first target power value, the second power difference is equal to the difference obtained by subtracting the second target power value from the second power value; both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and the first target power value and the second target power value are for PUSCH.
  • the first information set is used to indicate a second reference signal resource set;
  • the second information set includes a third power difference and a fourth power difference;
  • the third power difference is equal to the difference obtained by subtracting the third target power value from the third power value, and the fourth power difference is equal to the difference obtained by subtracting the fourth target power value from the fourth power value;
  • both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set; and the fourth target power value are both for PUSCH.
  • the first power value and the second power value are both associated with the first reference signal resource set, and the third power value and the fourth power value are both associated with the second reference signal resource set; the first power value is different from the second power value, and the third power value is different from the fourth power value.
  • the first signaling is used to determine the first reference signal resource
  • the first reference signal resource is used to determine the spatial transmission parameter of the first signal
  • the transmission power value of the first signal is equal to the first target power value
  • No downlink control information for indicating uplink scheduling of the first node is sent in the first time window
  • the uplink scheduling includes a physical uplink shared channel, and the power control parameter associated with the first reference signal resource is predefined; the sender of the second information set includes the first node.
  • the first signaling is used to determine the first reference signal resource and the second reference signal resource, the first signal includes a first sub-signal and a second sub-signal; the first reference signal resource is used to determine the spatial transmission parameter of the first sub-signal, and the second reference signal resource is used to determine the spatial transmission parameter of the second sub-signal; the transmission power value of the first sub-signal is equal to the second target power value, and the transmission power value of the second sub-signal is equal to the fourth target power value.
  • the power control parameters associated with the second reference signal resources are predefined.
  • both the first value and the second value are associated with the first reference signal resource set, and both the first coefficient and the second coefficient are associated with the first reference signal resource set; the first value and the first coefficient are used to determine the first target power value, and the second value and the second coefficient are used to determine the second target power value; the first value and the second value are of the same type, and the first coefficient and the second coefficient are of the same type.
  • This application discloses a first node for wireless communication, including:
  • a first receiver receiving a first set of information, where the first set of information is used to indicate a first set of reference signal resources;
  • the second information set includes a first power difference value and a second power difference value;
  • the first power difference value is equal to the difference obtained by subtracting the first target power value from the first power value, and the second power difference value is equal to the difference obtained by subtracting the second target power value from the second power value;
  • both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set;
  • the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the present application discloses a second node for wireless communication, including:
  • a second transmitter sending a first set of information, where the first set of information is used to indicate a first set of reference signal resources;
  • a second receiver receiving a second information set
  • the second information set includes a first power difference value and a second power difference value;
  • the first power difference value is equal to the difference obtained by subtracting the first target power value from the first power value, and the second power difference value is equal to the difference obtained by subtracting the second target power value from the second power value;
  • both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set;
  • the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the benefit of the solution in this application lies in: improving the completeness of PHR reporting under multiple Panels, thereby improving power control efficiency and transmission performance.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of a first information collection according to an embodiment of the present application
  • FIG. 6 shows a flowchart of the first signaling according to an embodiment of the present application
  • FIG. 7 shows a flowchart of the first signaling according to another embodiment of the present application.
  • FIG. 8 shows a flowchart of downlink control information according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a second information set according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a first reference signal resource set and a second reference signal resource set according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of a first node according to an embodiment of the present application.
  • Fig. 12 shows a schematic diagram of an antenna port and an antenna port group according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 14 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application receives a first information set in step 101, and the first information set is used to indicate a first reference signal resource set; and sends a second information set in step 102.
  • the second information set includes a first power difference and a second power difference; the first power difference is equal to the difference obtained by subtracting the first target power value from the first power value, and the second power difference is equal to the difference obtained by subtracting the second target power value from the second power value; both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the first information set is transmitted through RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information set is configured through RRC signaling.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields in the PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes PUSCH-P0- PUSCH-AlphaSet.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields in the SRI-PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes SRI-PUSCH-PowerControl in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields in the CSI-ResourceConfig in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields of the CSI-SSB-ResourceSet in the Specification.
  • the RRC signaling for transmitting or configuring the first information set includes one or more fields of the SRS-Config in the Specification.
  • the name of the RRC signaling that transmits or configures the first information set includes Power.
  • the name of the RRC signaling that transmits or configures the first information set includes Control.
  • the name of the RRC signaling for transmitting or configuring the first information set includes PUSCH.
  • the name of the RRC signaling for transmitting or configuring the first information set includes CSI (Channel State Information, channel state information).
  • the name of the RRC signaling that transmits or configures the first information set includes CSI-RS.
  • the name of the RRC signaling that transmits or configures the first information set includes SRS.
  • the name of the RRC signaling that transmits or configures the first information set includes SRI.
  • the first reference signal resource set is identified by SRS-ResourceSetId.
  • the first reference signal resource set corresponds to one SRS Resource Set.
  • the first reference signal resource set includes one reference signal resource.
  • the reference signal resource included in the first reference signal resource set is an SRS Resource.
  • the reference signal resource included in the first reference signal resource set is a CSI-RS resource.
  • the reference signal resource included in the first reference signal resource set is an SSB.
  • the first reference signal resource set includes K1 reference signal resources, where K1 is a positive integer greater than 1.
  • any reference signal resource among the K1 reference signal resources included in the first reference signal resource set is an SRS Resource.
  • At least one reference signal resource among the K1 reference signal resources included in the first reference signal resource set is an SRS Resource.
  • any reference signal resource among the K1 reference signal resources included in the first reference signal resource set is a CSI-RS resource.
  • any reference signal resource among the K1 reference signal resources included in the first reference signal resource set is an SSB.
  • the physical layer channel occupied by the second information set includes PUSCH.
  • the physical layer channel occupied by the second information set includes a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the second information set is a MAC (Medium Access Control, Media Access Control) CE (Control Elements, control unit).
  • the second information set is a PHR.
  • the unit of the first power difference is dBm (millidb).
  • a unit of the second power difference is dBm.
  • the unit of the first power difference is dB (decibel).
  • a unit of the second power difference is dB.
  • the unit of the first power difference is mW (milliwatt).
  • the unit of the second power difference is mW.
  • the first power value is PCMAX,f,c (i) in the Specification.
  • the second power value is PCMAX,f,c (i) in the Specification.
  • the first power value is in the Specification
  • the second power value is in the Specification
  • the first power value is different from the second power value.
  • the first power value is the same as the second power value.
  • the first power value and the second power value are independently configured.
  • both the first power value and the second power value are associated with the first reference signal resource set.
  • the first power value and the second power value are both one of the first candidate power value and the second candidate power value, and whether the first node configures two SRS resource sets is used to determine the first power value and the second power value.
  • the first node configures two SRS resource sets for uplink transmission, the first power value is the first candidate power value, and the second power value is the second candidate power value.
  • the first candidate power value and the second candidate power value are different.
  • the difference between the first candidate power value and the second candidate power value is equal to 3dB.
  • the first node configures one SRS resource set for uplink transmission, the first power value is the first candidate power value, and the second power value is the first candidate power value.
  • the first power value and the second power value are both one of the first candidate power value and the second candidate power value, and whether the first node uses two SRS resource sets to determine whether a spatial transmission parameter is used to determine the first power value and the second power value.
  • the two SRS resource sets of the first node are used to determine the spatial transmission parameter, the first power value is the first candidate power value, and the second power value is the second candidate power value.
  • the first candidate power value and the second candidate power value are different.
  • the difference between the first candidate power value and the second candidate power value is equal to 3dB.
  • the meaning that the two SRS resource sets are used to determine the spatial transmission parameters includes: the two SRS resource sets respectively include a first SRS resource and a second SRS resource, the first SRS resource is associated to the first SRI, the second SRS resource is associated to the second SRI, and the first SRI and the second SRI are respectively used to determine the QCL (Quasi-Colocated, quasi-colocated) relationship of two wireless signals sent by the first node.
  • the two SRS resource sets respectively include a first SRS resource and a second SRS resource
  • the first SRS resource is associated to the first SRI
  • the second SRS resource is associated to the second SRI
  • the first SRI and the second SRI are respectively used to determine the QCL (Quasi-Colocated, quasi-colocated) relationship of two wireless signals sent by the first node.
  • the meaning that the two sets of SRS resources are used to determine the spatial transmission parameters includes: the two sets of SRS resources respectively include a first SRS resource and a second SRS resource, and the wireless signal sent in the first SRS resource and the wireless signal sent in the second SRS resource are respectively QCL with the two wireless signals sent by the first node.
  • the first node uses one SRS resource set to determine the spatial transmission parameter, the first power value is the first candidate power value, and the second power value is the first candidate power value.
  • the meaning that the one set of SRS resources is used to determine the spatial transmission parameters includes: the one set of SRS resources includes a first SRS resource, the first SRS resource is associated with a first SRI, and the first SRI is used to determine the QCL relationship of one wireless signal sent by the first node.
  • the meaning that the one SRS resource set is used to determine the spatial transmission parameters includes: the one SRS resource set includes the first SRS resource, and the wireless signal sent in the first SRS resource is QCL with the one wireless signal sent by the first node.
  • the QCL refers to: Quasi Co-Located (quasi-co-located).
  • the QCL refers to: Quasi Co-Location (quasi co-location).
  • the QCL includes QCL parameters.
  • the QCL includes a QCL assumption.
  • the QCL type includes QCL-TypeA.
  • the QCL type includes QCL-TypeB.
  • the QCL type includes QCL-TypeC.
  • the QCL type includes QCL-TypeD.
  • the QCL-TypeA includes Doppler shift, Doppler spread, average delay and delay spread.
  • the QCL-TypeB includes Doppler shift and Doppler spread.
  • the QCL-TypeC includes Doppler shift (Doppler shift) and average delay (average delay).
  • the QCL-TypeD includes a spatial reception parameter (Spatial Rx parameter).
  • the QCL parameter includes at least one of delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average delay (average delay), spatial sending parameter (Spatial Tx parameter) or spatial receiving parameter (Spatial Rx parameter).
  • the spatial transmit parameter includes at least one of a transmit antenna port, a transmit antenna port group, a transmit beam, a transmit analog beamforming matrix, a transmit analog beamforming vector, a transmit beamforming matrix, a transmit beamforming vector, or a spatial domain transmit filter.
  • a unit of the first power difference is dB.
  • a unit of the second power difference is dB.
  • the first power difference is PH (Power Headroom, power headroom) for the first reference signal resource.
  • the second power difference is PH (Power Headroom, power headroom) for the first reference signal resource.
  • the first power difference is a PH when the first node uses a single Panel transmission.
  • the second power difference is the PH when the first node adopts dual-Panel transmission.
  • the first power difference value is the PH corresponding to the first node sending the wireless signal only on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set.
  • the second power difference is the PH corresponding to when the first node simultaneously transmits a wireless signal on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set and the spatial transmission parameter corresponding to one reference signal resource in the second reference signal resource set.
  • the first power difference is a PH corresponding to a wireless signal generated by the first node sending only one TB (Transport Block, transport block) on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set.
  • Transport Block Transport Block
  • the second power difference is the PH corresponding to one wireless signal when the first node simultaneously transmits two wireless signals generated by two TBs on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set and the spatial transmission parameter corresponding to one reference signal resource in the second reference signal resource set.
  • the unit of the first target power value is dBm.
  • the unit of the second target power value is dBm.
  • the first target power value is a power value of a wireless signal sent by the first node in a first time window, and the first time window is not later than a start moment of sending the second information set.
  • the first target power value is a power value of a wireless signal transmitted by the first node only on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set.
  • the first target power value is a transmission power value of the PUSCH referenced by the first node in a first time window, and the first time window is no later than the start moment of sending the second information set.
  • the first target power value is a power value of the wireless signal that the first node assumes to transmit on the spatial transmission parameter corresponding to only one reference signal resource in the first reference signal resource set.
  • the second target power value is a power value of the wireless signal sent by the first node in a first time window, and the first time window is no later than the start moment of sending the second information set.
  • the first node simultaneously uses the first reference signal in the first reference signal resource set Sending two wireless signals simultaneously on the spatial transmission parameter corresponding to the resource and the spatial transmission parameter corresponding to the second reference signal resource in the second reference signal resource set
  • the second target power value is a transmission power value of the wireless signal transmitted on the spatial transmission parameter corresponding to the first reference signal resource in the first reference signal resource set.
  • the second target power value is a transmission power value of the PUSCH referenced by the first node in a first time window, and the first time window is no later than the start moment of sending the second information set.
  • the first node assumes that two wireless signals are simultaneously transmitted on the spatial transmission parameter corresponding to the first reference signal resource in the first reference signal resource set and on the spatial transmission parameter corresponding to the second reference signal resource in the second reference signal resource set, and the second target power value is a transmission power value of the wireless signal transmitted on the spatial transmission parameter corresponding to the first reference signal resource in the first reference signal resource set.
  • the meaning of the above phrase that both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set includes: the first reference signal resource in the first reference signal resource set is used to determine the first target power value and the second target power value.
  • the meaning of the above phrase that both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set includes; the first reference signal resource in the first reference signal resource set is associated with a given CSI-RS resource, and the channel quality of the wireless signal received in the given CSI-RS resource is used to determine the first target power value and the second target power value.
  • the meaning of the above phrase that both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set includes; the first reference signal resource in the first reference signal resource set is associated with a given SSB, and the channel quality of the wireless signal received in the given SSB is used to determine the first target power value and the second target power value.
  • the channel quality in this application includes path loss.
  • the channel quality in this application includes RSRP (Reference Signal Received Power, reference signal received power).
  • RSRP Reference Signal Received Power, reference signal received power
  • the channel quality in this application includes at least one of RSRQ (Reference Signal Received Quality, reference signal reception quality), RSSI (Received Signal Strength Indicator, received channel strength indicator), SNR (Signal-to-noise ratio, signal-to-noise ratio) or SINR (Signal to Interference plus Noise Ratio, signal to interference plus noise ratio) one of.
  • RSRQ Reference Signal Received Quality, reference signal reception quality
  • RSSI Receiveived Signal Strength Indicator, received channel strength indicator
  • SNR Signal-to-noise ratio, signal-to-noise ratio
  • SINR Signal to Interference plus Noise Ratio, signal to interference plus noise ratio
  • the meaning of the above phrase that the first target power value and the second target power value are for the same cell includes: both the first target power value and the second target power value are based on the transmission power value of the PUSCH transmitted in the carrier corresponding to the same cell.
  • the meaning of the above phrase that the first target power value and the second target power value are for the same cell includes: both the first target power value and the second target power value are based on the transmission power value of the PUSCH transmitted in the carrier corresponding to the same cell.
  • the meaning of the above phrase that the first target power value and the second target power value refer to the same cell includes: the parameter c of the serving cell corresponding to the wireless signal using the first target power value as the transmission power value is the same as the parameter c of the serving cell corresponding to the wireless signal using the second target power value as the transmission power value.
  • the meaning of the above phrase "both the first target power value and the second target power value are for PUSCH” includes: the first target power value is the transmission power value of PUSCH and the second target power value is the transmission power value of PUSCH.
  • the meaning of the above phrase "both the first target power value and the second target power value are for PUSCH” includes: the first target power value is based on a reference PUSCH transmission power value, and the second target power value is based on a reference PUSCH transmission power value.
  • the meaning of sending a wireless signal on a spatial transmission parameter corresponding to a reference signal resource in this application includes: the wireless signal and the wireless signal sent in the reference signal resource are QCL.
  • the meaning of sending a wireless signal on a spatial transmission parameter corresponding to a reference signal resource in this application includes: the wireless signal uses the same spatial transmission parameter as the wireless signal transmitted in the reference signal resource.
  • the first target power value is linearly related to the first component
  • the second target power value is linearly related to the second component Correlation; the first component and the second component are respectively related to the MCS; the first component is not equal to the second component.
  • the first component is related to an MCS (Modulation and Coding Scheme, modulation and coding scheme) of the first signal
  • the second component is related to a default MCS.
  • the first component is related to a default MCS
  • the second component is related to the MCS of the first sub-signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include a UE (User Equipment, User Equipment) 201, NR-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE201 supports simultaneous sending of multiple Panels.
  • the UE 201 supports power sharing based on multiple Panels.
  • the UE201 supports multiple uplink RFs (Radio Frequency, radio frequency).
  • RFs Radio Frequency, radio frequency
  • the UE 201 supports simultaneous transmission of multiple uplink RFs.
  • the UE 201 supports reporting multiple sets of UE capability values.
  • the NR Node B corresponds to the second node in this application.
  • the NR Node B supports simultaneous reception of signals from multiple Panels of a terminal.
  • the NR Node B supports receiving signals sent by multiple uplink RF (Radio Frequency, radio frequency) from the same terminal.
  • RF Radio Frequency, radio frequency
  • the NR Node B is a base station.
  • the NR Node B is a cell.
  • the NR Node B includes multiple cells.
  • the first node in this application corresponds to the UE201
  • the second node in this application corresponds to the NR Node B.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows the radio protocol architecture for a control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X) with three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for a link between the first communication node device and the second communication node device through the PHY 301 .
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, an RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, and these sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using RRC signaling between the second communication node device and the first communication node device to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355.
  • the CP sublayer 354 also provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer) to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and an application layer terminating at the other end of the connection (e.g., a remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first information set is generated by the MAC302 or the MAC352.
  • the first information set is generated in the RRC306.
  • the second information set is generated by the MAC302 or the MAC352.
  • the second information set is generated in the RRC306.
  • the first signaling is generated by the MAC302 or the MAC352.
  • the first signaling is generated by the PHY301 or the PHY351.
  • the first signal is generated by the MAC302 or the MAC352.
  • the first signal is generated by the RRC306.
  • the first signal is generated by the PHY301 or the PHY351.
  • the first node is a terminal.
  • the first node is a relay.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point, sending and receiving point).
  • TRP Transmitter Receiver Point, sending and receiving point
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • First communications device 450 includes controller/processor 459 , memory 460 , data source 467 , transmit processor 468 , receive processor 456 , multiple antenna transmit processor 457 , multiple antenna receive processor 458 , transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the first communications device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying the time domain multicarrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • a reference signal e.g., pilot
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and any spatial stream destined for the first communication device 450 is recovered from the data signal after multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the second communications device 410 to the second communications device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457.
  • Each transmitter 454 first connects the multi-antenna
  • the baseband symbol stream provided by the transmit processor 457 is converted into a radio frequency symbol stream, and then provided to the antenna 452 .
  • the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the apparatus of the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor, the apparatus of the first communication device 450 at least: firstly receive a first information set, the first information set is used to indicate a first reference signal resource set; then send a second information set; the second information set includes a first power difference and a second power difference; The second power difference is equal to the difference obtained by subtracting the second target power value from the second power value; both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, the actions include: first receiving a first information set, the first information set being used to indicate a first reference signal resource set; then sending a second information set; the second information set includes a first power difference value and a second power difference value; Both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the apparatus of the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 410 means at least: first sending a first set of information, the first set of information being used to indicate a first set of reference signal resources; then receiving a second set of information; the second set of information includes a first power difference and a second power difference; the first power difference is equal to the difference obtained by subtracting the first target power value from the first power value, and the second power difference is equal to the difference obtained by subtracting the second target power value from the second power value;
  • the second target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for the PUSCH.
  • the second communication device 410 includes: a memory for storing computer-readable instruction programs, the computer-readable instruction programs generate actions when executed by at least one processor, the actions include: first sending a first information set, the first information set is used to indicate a first reference signal resource set; then receiving a second information set; the second information set includes a first power difference value and a second power difference value; ; Both the first target power value and the second target power value are associated to the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first information set; the antenna 420, the transmitter 418, the multi-antenna transmitting processor 471, the transmitting processor 416, and at least the first four of the controller/processor 475 are used to send the first information set.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to send the second information set; the antenna 420, the transmitter 418, the multi-antenna transmitting processor 471, the transmitting processor 416, and at least the first four of the controller/processor 475 are used to receive the second information set.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first signaling; the antenna 420, the transmitter 418, the multi-antenna transmitting processor 471, the transmitting processor 416, and at least the first four of the controller/processor 475 are used to send the first signaling.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to send the first signal; the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and at least the first four of the controller/processor 475 are used to receive the first signal.
  • Embodiment 5 illustrates a flowchart of a first information collection, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node N2 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiment, sub-embodiment and subsidiary embodiment in embodiment 5 can be applied to any embodiment in embodiment 6, 7, 8; Conversely, in the case of no conflict, any embodiment, sub-embodiment and subsidiary embodiment in embodiment 6, 7, 8 can be applied in embodiment 5.
  • the first information set is received in step S10; the second information set is sent in step S11.
  • the first information set is sent in step S20; the second information set is received in step S21.
  • the second information set includes a first power difference and a second power difference; the first power difference is equal to the difference obtained by subtracting the first target power value from the first power value, and the second power difference is equal to the difference obtained by subtracting the second target power value from the second power value; both the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and both the first target power value and the second target power value are for PUSCH.
  • the first information set is used to indicate the second reference signal resource set;
  • the second information set includes a third power difference and a fourth power difference;
  • the third power difference is equal to the difference obtained by subtracting the third target power value from the third power value, and the fourth power difference is equal to the difference obtained by subtracting the fourth target power value from the fourth power value;
  • both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set;
  • the target power values are all for PUSCH.
  • the second reference signal resource set is identified by SRS-ResourceSetId.
  • the second reference signal resource set corresponds to one SRS Resource Set.
  • the first reference signal resource set and the second reference signal resource set are respectively identified by different SRS-ResourceSetIds.
  • the second reference signal resource set includes one reference signal resource.
  • the reference signal resource included in the second reference signal resource set is an SRS Resource.
  • the reference signal resource included in the second reference signal resource set is a CSI- RS resources.
  • the reference signal resource included in the second reference signal resource set is an SSB.
  • the second reference signal resource set includes K2 reference signal resources, where K2 is a positive integer greater than 1.
  • any reference signal resource among the K2 reference signal resources included in the second reference signal resource set is an SRS Resource.
  • At least one reference signal resource among the K2 reference signal resources included in the second reference signal resource set is an SRS Resource.
  • any one of the K2 reference signal resources included in the second reference signal resource set is a CSI-RS resource.
  • any reference signal resource among the K2 reference signal resources included in the second reference signal resource set is an SSB.
  • the unit of the third power value is dBm.
  • the unit of the fourth power value is dBm.
  • the unit of the third power value is dB.
  • the unit of the fourth power value is dB.
  • the unit of the third power value is mW.
  • the unit of the fourth power value is mW.
  • the third power value is PCMAX,f,c (i) in the Specification.
  • the fourth power value is PCMAX,f,c (i) in the Specification.
  • the third power value is in the Specification
  • the fourth power value is in the Specification
  • the third power value is different from the fourth power value.
  • the third power value is the same as the fourth power value.
  • the third power value and the fourth power value are independently configured.
  • both the third power value and the fourth power value are associated with the first reference signal resource set.
  • the third power value and the fourth power value are both one of the third candidate power value and the fourth candidate power value, and whether the first node configures two SRS resource sets is used to determine the third power value and the fourth power value.
  • the first node configures two SRS resource sets for uplink transmission, the third power value is the third candidate power value, and the fourth power value is the fourth candidate power value.
  • the third candidate power value is different from the fourth candidate power value.
  • the difference between the third candidate power value and the fourth candidate power value is equal to 3dB.
  • the first node configures one SRS resource set for uplink transmission, the third power value is the third candidate power value, and the fourth power value is the third candidate power value.
  • the third power value and the fourth power value are both one of the third candidate power value and the fourth candidate power value, and whether the first node uses two SRS resource sets to determine whether a spatial transmission parameter is used to determine the third power value and the fourth power value.
  • the two SRS resource sets of the first node are used to determine spatial transmission parameters
  • the third power value is the third candidate power value
  • the fourth power value is the fourth candidate power value.
  • the third candidate power value is different from the fourth candidate power value.
  • the difference between the third candidate power value and the fourth candidate power value is equal to 3dB.
  • the meaning that the two sets of SRS resources are used to determine the spatial transmission parameters includes: the two sets of SRS resources respectively include a first SRS resource and a second SRS resource, the first SRS resource is associated to the first SRI, the second SRS resource is associated to the second SRI, and the first SRI and the second SRI are respectively used to determine the QCL relationship of the two wireless signals sent by the first node.
  • the meaning that the two sets of SRS resources are used to determine the spatial transmission parameters includes: the two sets of SRS resources respectively include the first SRS resource and the second SRS resource, and the wireless signal transmitted in the first SRS resource and the wireless signal sent in the second SRS resource are QCL with the two wireless signals sent by the first node respectively.
  • the first node uses one SRS resource set to determine the spatial transmission parameter, the third power value is the third candidate power value, and the fourth power value is the third candidate power value.
  • the meaning that the one set of SRS resources is used to determine the spatial transmission parameters includes: the one set of SRS resources includes a first SRS resource, the first SRS resource is associated with a first SRI, and the first SRI is used to determine the QCL relationship of one wireless signal sent by the first node.
  • the meaning that the one SRS resource set is used to determine the spatial transmission parameters includes: the one SRS resource set includes the first SRS resource, and the wireless signal sent in the first SRS resource is QCL with the one wireless signal sent by the first node.
  • the unit of the third power difference is dB.
  • a unit of the fourth power difference is dB.
  • the third power difference is for the PH of the second reference signal resource.
  • the fourth power difference is for the PH of the second reference signal resource.
  • the third power difference is the PH when the first node uses a single Panel transmission.
  • the fourth power difference is the PH when the first node uses dual-Panel transmission.
  • the third power difference value is the PH corresponding to the first node sending the wireless signal only on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set.
  • the fourth power difference is the PH corresponding to when the first node simultaneously transmits a wireless signal on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set and the spatial transmission parameter corresponding to one reference signal resource in the second reference signal resource set.
  • the third power difference is a PH corresponding to a radio signal generated by the first node sending only one TB on the spatial transmission parameter corresponding to one reference signal resource in the second reference signal resource set.
  • the fourth power difference is the PH corresponding to one wireless signal when the first node simultaneously transmits two wireless signals generated by two TBs on the spatial transmission parameter corresponding to one reference signal resource in the first reference signal resource set and the spatial transmission parameter corresponding to one reference signal resource in the second reference signal resource set.
  • the unit of the third target power value is dBm.
  • the unit of the fourth target power value is dBm.
  • the third target power value is a power value of a wireless signal sent by the first node in a first time window, and the first time window is not later than a start moment of sending the second information block.
  • the third target power value is a power value of the wireless signal transmitted by the first node only on the spatial transmission parameter corresponding to one reference signal resource in the second reference signal resource set.
  • the third target power value is the transmission power value of the PUSCH referenced by the first node in the first time window, and the first time window is no later than the start moment of the second information block transmission.
  • the third target power value is a power value of the radio signal that the first node assumes to transmit on the spatial transmission parameter corresponding to only one reference signal resource in the second reference signal resource set.
  • the fourth target power value is a power value of a wireless signal sent by the first node in a first time window, and the first time window is not later than a start moment of sending the second information block.
  • the first node simultaneously transmits two wireless signals on the spatial transmission parameter corresponding to the first reference signal resource in the first reference signal resource set and on the spatial transmission parameter corresponding to the second reference signal resource in the second reference signal resource set
  • the fourth target power value is a transmission power value of the wireless signal transmitted on the spatial transmission parameter corresponding to the second reference signal resource in the second reference signal resource set.
  • the fourth target power value is the transmission power value of the PUSCH referenced by the first node in the first time window, and the first time window is no later than the start moment of sending the third information block.
  • the first node assumes that two wireless signals are simultaneously transmitted on the spatial transmission parameter corresponding to the first reference signal resource in the first reference signal resource set and the spatial transmission parameter corresponding to the second reference signal resource in the second reference signal resource set, and the fourth target power value is the second reference signal in the second reference signal resource set The transmission power value of the wireless signal transmitted on the spatial transmission parameter corresponding to the number resource.
  • the meaning of the above phrase that both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set includes: the second reference signal resource in the second reference signal resource set is used to determine the third target power value and the fourth target power value.
  • the meaning of the above phrase that both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set includes; the second reference signal resource in the second reference signal resource set is associated with a given CSI-RS resource, and the channel quality of the wireless signal received in the given CSI-RS resource is used to determine the third target power value and the fourth target power value.
  • the meaning of the above phrase that both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set includes; the second reference signal resource in the second reference signal resource set is associated with a given SSB, and the channel quality of the wireless signal received in the given SSB is used to determine the third target power value and the fourth target power value.
  • the meaning of the above phrase that the third target power value and the fourth target power value are for the same cell includes: both the third target power value and the fourth target power value are based on the transmission power value of the PUSCH transmitted in the carrier corresponding to the same cell.
  • the meaning of the above phrase that the third target power value and the fourth target power value are for the same cell includes: both the third target power value and the fourth target power value are based on the transmission power value of the PUSCH transmitted in the carrier corresponding to the same cell.
  • the meaning of the above phrase that the third target power value and the fourth target power value refer to the same cell includes: the parameter c of the serving cell corresponding to the wireless signal using the third target power value as the transmission power value is the same as the parameter c of the serving cell corresponding to the wireless signal using the fourth target power value as the transmission power value.
  • the above phrase "both the third target power value and the fourth target power value are for PUSCH” includes: the third target power value is the transmission power value of PUSCH and the fourth target power value is the transmission power value of PUSCH.
  • the meaning of the above phrase "both the third target power value and the fourth target power value are for PUSCH” includes: the third target power value is based on a reference PUSCH transmission power value, and the fourth target power value is based on a reference PUSCH transmission power value.
  • the third target power value is linearly related to the third component
  • the fourth target power value is linearly related to the fourth component
  • the third component and the fourth component are respectively related to the MCS; the third component is not equal to the fourth component.
  • the third component is related to the MCS of the first signal
  • the fourth component is related to a default MCS.
  • the third component is related to a default MCS
  • the fourth component is related to the MCS of the second sub-signal.
  • both the first power value and the second power value are associated with the first reference signal resource set, and the third power value and the fourth power value are both associated with the second reference signal resource set; the first power value is different from the second power value, and the third power value is different from the fourth power value.
  • both the first power value and the second power value are associated with the first reference signal resource set includes: both the first power value and the second power value are used to determine a transmit power value of a wireless signal related to any reference signal resource QCL in the first reference signal resource set.
  • both the first power value and the second power value are associated with the first reference signal resource set includes: both the first power value and the second power value are used to determine the transmission power value of the wireless signal related to the first reference signal resource QCL in the first reference signal resource set.
  • both the first power value and the second power value are associated with the first reference signal resource set includes: both the first power value and the second power value are used to determine a transmission power value of a wireless signal related to at least one reference signal resource QCL in the first reference signal resource set.
  • both the first power value and the second power value are associated with the first reference signal resource set includes: both the first power value and the second power value are used to determine any reference signal in the first reference signal resource set.
  • both the first power value and the second power value are associated with the first reference signal resource set includes: both the first power value and the second power value are used to determine the PCMAX of the wireless signal related to the first reference signal resource QCL in the first reference signal resource set.
  • both the first power value and the second power value are associated with the first reference signal resource set includes: both the first power value and the second power value are used to determine PCMAX of a wireless signal related to at least one reference signal resource QCL in the first reference signal resource set.
  • the first power value is used to determine a transmission power value of a given wireless signal, and the given wireless signal is only QCL with one reference signal resource in the first reference signal resource set.
  • the second power value is used to determine a transmission power value of a given wireless signal
  • the given wireless signal includes two wireless sub-signals; the two wireless sub-signals are respectively associated with one reference signal resource QCL in the first reference signal resource set and with one reference signal resource QCL in the second reference signal resource set.
  • the second power value is used to determine a transmit power value of a radio sub-signal among the two radio sub-signals and one reference signal resource QCL in the first reference signal resource set.
  • both the third power value and the fourth power value are associated with the second reference signal resource set includes: both the third power value and the fourth power value are used to determine a transmission power value of a wireless signal related to any reference signal resource QCL in the second reference signal resource set.
  • both the third power value and the fourth power value are associated with the second reference signal resource set includes: both the third power value and the fourth power value are used to determine the transmission power value of the wireless signal related to the second reference signal resource QCL in the second reference signal resource set.
  • both the third power value and the fourth power value are associated with the second reference signal resource set includes: both the third power value and the fourth power value are used to determine a transmission power value of a wireless signal related to at least one reference signal resource QCL in the second reference signal resource set.
  • both the third power value and the fourth power value are associated with the second reference signal resource set includes: both the third power value and the fourth power value are used to determine PCMAX of a wireless signal related to any reference signal resource QCL in the second reference signal resource set.
  • both the third power value and the fourth power value are associated with the second reference signal resource set includes: both the third power value and the fourth power value are used to determine the PCMAX of the wireless signal with the second reference signal resource QCL in the second reference signal resource set.
  • both the third power value and the fourth power value are associated with the second reference signal resource set includes: both the third power value and the fourth power value are used to determine PCMAX of a wireless signal related to at least one reference signal resource QCL in the second reference signal resource set.
  • the third power value is used to determine a transmission power value of a given wireless signal, and the given wireless signal is only QCL with one reference signal resource in the second reference signal resource set.
  • the fourth power value is used to determine a transmission power value of a given wireless signal
  • the given wireless signal includes two wireless sub-signals; the two wireless sub-signals are respectively associated with one reference signal resource QCL in the first reference signal resource set and with one reference signal resource QCL in the second reference signal resource set.
  • the fourth power value is used to determine a transmit power value of a radio sub-signal of the two radio sub-signals and one reference signal resource QCL in the second reference signal resource set.
  • both the first value and the second value are associated with the first reference signal resource set, and both the first coefficient and the second coefficient are associated with the first reference signal resource set; the first value and the first coefficient are used to determine the first target power value, and the second value and the second coefficient are used to determine the second target power value; the first value and the second value are of the same type, and the first coefficient and the second coefficient are of the same type.
  • the unit of the first value is dBm.
  • the first value is a P0.
  • the unit of the second value is dBm.
  • the second value is a P0.
  • both the first value and the second value are associated with one reference signal resource in the first set of reference signal resources.
  • both the first value and the second value are associated with a first reference signal resource in the first reference signal resource set.
  • the first target power value is not greater than the first power value, and the first numerical value is linearly related to the first target power value.
  • a linear coefficient between the first value and the first target power value is equal to 1.
  • the second target power value is not greater than the second power value, and the second numerical value is linearly related to the second target power value.
  • the linear coefficient between the second value and the second target power value is equal to 1.
  • the first coefficient is not greater than 1.
  • the first coefficient is a real number between 0 and 1.
  • the second coefficient is not greater than 1.
  • the second coefficient is a real number between 0 and 1.
  • the first coefficient is different from the second coefficient.
  • the first coefficient is the same as the second coefficient.
  • the first coefficient has nothing to do with the second coefficient.
  • the first coefficient is related to the second coefficient.
  • the first coefficient and the second coefficient are configured independently.
  • the first coefficient and the second coefficient are jointly configured.
  • the first signaling when the first signaling is used to indicate at least one reference signal resource in the second reference signal resource set, the first signal includes a first sub-signal and a second sub-signal, and the product of the second coefficient and the first path loss is used to determine the transmission power value of the first sub-signal; when the first signaling is not used to indicate the reference signal resource in the second reference signal resource set, the product of the first coefficient and the first path loss is used to determine the transmission power value of the first signal; the reference signal resource in the first reference signal resource set indicated by the first signaling It is used to determine a third reference signal resource; the wireless signal received in the third reference signal resource is used to determine the first path loss.
  • the third reference signal resource is a CSI-RS resource.
  • the third reference signal resource is an SSB.
  • the first reference signal resource in the first reference signal resource set is indicated by the first signaling, and the first reference signal resource is used to determine the third reference signal resource.
  • the wireless signal sent in the first reference signal resource and the wireless signal sent in the third reference signal resource are QCL.
  • the ssb-Index or csi-RS-Index corresponding to the third reference signal resource is associated with the pusch-PathlossReferenceRS-Id corresponding to the first reference signal resource.
  • the unit of the first path loss is dB.
  • the unit of the second path loss is dB.
  • the product of the second coefficient and the first path loss is used to determine the transmit power value of the first sub-signal, and the transmit power value of the first sub-signal is not greater than the second power value, the product of the second coefficient and the first path loss is linearly related to the transmit power value of the first sub-signal.
  • the linear coefficient of the product of the second coefficient and the first path loss and the transmit power value of the first sub-signal is equal to 1.
  • the product of the first coefficient and the first path loss is used to determine the transmit power value of the first signal, and the transmit power value of the first signal is not greater than the first power value, the product of the first coefficient and the first path loss is linearly related to the transmit power value of the first signal.
  • the product of the first coefficient and the first path loss and the transmit power value of the first signal is equal to 1.
  • the first value is P0 in TS 38.331.
  • the first coefficient is Alpha in TS 38.331.
  • the second value is P0 in TS 38.331.
  • the second coefficient is Alpha in TS 38.331.
  • Embodiment 6 illustrates a flow chart of the first signaling, as shown in FIG. 6 .
  • the communication between the first node U3 and the second node N4 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiment, sub-embodiment and subsidiary embodiment in embodiment 6 can be applied to any embodiment in embodiment 5, 7, 8; Conversely, in the case of no conflict, any embodiment, sub-embodiment and subsidiary embodiment in embodiment 5, 7, 8 can be applied in embodiment 6.
  • the first signaling is received in step S30; and the first signal is sent in step S31.
  • the first signaling is sent in step S40; and the first signal is received in step S41.
  • the first signaling is used to determine the first reference signal resource
  • the first reference signal resource is used to determine the spatial transmission parameter of the first signal
  • the transmission power value of the first signal is equal to the first target power value
  • the time domain resource occupied by the first signal is located in the first time window of the present application.
  • the time domain resource occupied by the first signaling is located in the first time window of the present application.
  • the physical layer channel occupied by the first signaling includes a PDCCH.
  • the first signaling is DCI.
  • the physical layer channel occupied by the first signal includes a PUSCH.
  • the first signaling is used to schedule the first signal.
  • the first signaling is used to indicate frequency domain resources occupied by the first signal.
  • the first signaling is used to indicate time domain resources occupied by the first signal.
  • the first signaling is used to indicate the first reference signal resource.
  • the first signaling is used to indicate the first reference signal resource from the first reference signal resource set.
  • the wireless signal sent in the first reference signal resource and the first signal are QCL.
  • the first signaling is only used to indicate the first reference signal resource from the first reference signal resource set, and the first signaling is not used to indicate the second reference signal resource from the second reference signal resource set.
  • the first signal is generated by one TB.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the first time window in this application includes 1 time slot.
  • the first time window in this application includes multiple consecutive time slots.
  • the first signal includes the second information set.
  • the step S31 is the same step as the step S11 in the fifth embodiment.
  • the step S41 is the same step as the step S21 in the fifth example.
  • the step S30 is located after the step S10 and before the step S11 in the fifth embodiment.
  • the step S40 is located after the step S20 and before the step S21 in the fifth embodiment.
  • the step S31 is before the step S11 in the fifth embodiment.
  • the step S41 is before the step S21 in the fifth embodiment.
  • Embodiment 7 illustrates another flow chart of the first signaling, as shown in FIG. 7 .
  • the first node U5 communicates with the second node N6 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiment, sub-embodiment and subsidiary embodiment in embodiment 7 can be applied to any embodiment in embodiment 5, 6, 8; Conversely, in the case of no conflict, any embodiment, sub-embodiment and subsidiary embodiment in embodiment 5, 6, 8 can be applied in embodiment 7.
  • the first signaling is received in step S50; and the first signal is sent in step S51.
  • the first signaling is used to determine the first reference signal resource and the second reference signal resource, the first signal includes a first sub-signal and a second sub-signal; the first reference signal resource is used to determine the spatial transmission parameter of the first sub-signal, and the second reference signal resource is used to determine the spatial transmission parameter of the second sub-signal; the transmission power value of the first sub-signal is equal to the second target power value, and the transmission power value of the second sub-signal is equal to the fourth target power value.
  • the time domain resource occupied by the first signal is located in the first time window of the present application.
  • the time domain resource occupied by the first signaling is located in the first time window of the present application.
  • the physical layer channel occupied by the first signaling includes a PDCCH.
  • the first signaling is DCI.
  • the physical layer channel occupied by the first signal includes a PUSCH.
  • the first signaling is used to schedule the first signal.
  • the first signaling is used to indicate frequency domain resources occupied by the first signal.
  • the first signaling is used to indicate time domain resources occupied by the first signal.
  • the first signaling is used to indicate the first reference signal resource and the second reference signal resource.
  • the first signaling is used to indicate the first reference signal resource from the first reference signal resource set, and the first signaling is used to indicate the second reference signal resource from the second reference signal resource set.
  • the wireless signal transmitted in the first reference signal resource and the first sub-signal are QCL
  • the wireless signal transmitted in the second reference signal resource and the second sub-signal are QCL
  • the first signal is generated by 2 TBs, and the 2 TBs are used to generate the first sub-signal and the second sub-signal respectively.
  • the step S51 is the same step as the step S11 in the fifth embodiment.
  • the step S61 is the same step as the step S21 in the fifth embodiment.
  • the step S50 is located after the step S10 and before the step S11 in the fifth embodiment.
  • the step S60 is located after the step S20 and before the step S21 in the fifth embodiment.
  • the step S51 is before the step S11 in the fifth embodiment.
  • the step S61 is before the step S21 in the fifth embodiment.
  • Embodiment 8 illustrates a flowchart of downlink control information, as shown in FIG. 8 .
  • the first node U7 detects the downlink control information from the second node N8, but the second node N8 does not send the downlink control information for the first node for uplink scheduling in the first time window.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiment, sub-embodiment and subsidiary embodiment in embodiment 8 can be applied to any embodiment in embodiment 5, 6, 7; Conversely, in the case of no conflict, any embodiment, sub-embodiment and subsidiary embodiment in embodiment 5, 6, 7 can be applied in embodiment 8.
  • step S70 the downlink control information for indicating uplink scheduling is detected in the first time window.
  • the first node does not detect downlink control information used to indicate uplink scheduling for the first node in the first time window; the uplink scheduling includes a physical uplink shared channel, and the power control parameters associated with the first reference signal resource are predefined.
  • the meaning of the above phrase "the power control parameter associated with the first reference signal resource is predefined” includes: j in P O_NOMINAL_PUSCH,f,c (j) associated with the first reference signal resource is correspondingly equal to 0.
  • the meaning of the above phrase "the power control parameter associated with the first reference signal resource is predefined" includes: the PUSCH-AlphaSetId associated with the first reference signal resource is equal to 0.
  • the above phrase "the power control parameter associated with the first reference signal resource is predefined” includes: the pusch-PathlossReferenceRS-Id used to obtain the path loss associated with the first reference signal resource is equal to 0.
  • the meaning of the phrase "the power control parameters associated with the first reference signal resource are predefined" includes: the index corresponding to the first reference signal resource is corresponding to any reference signal resource included in the first reference signal resource set The smallest one in the index.
  • the index of the first reference signal resource in the first reference signal resource set is an SRI.
  • the step S70 is located after the step S10 and before the step S11 in the fifth embodiment.
  • Embodiment 9 illustrates a schematic diagram of a second information set, as shown in FIG. 9 .
  • the second information set includes a first power difference value and a second power difference value.
  • the second information set includes the third power difference and the fourth power difference in this application.
  • the second information set includes the first power difference, the second power difference, the third power difference, and the fourth power difference in this application.
  • the second information set includes the first power value in this application.
  • the second information set includes the second power value in this application.
  • the second information set includes the third power value in this application.
  • the second information set includes the fourth power value in this application.
  • the second information set includes a first field, and the first field is used to indicate the ServCellIndex of the serving cell corresponding to a given power difference, where the given power difference is any one of the first power difference, the second power difference, the third power difference, and the fourth power difference.
  • the second information set includes a second field, and the second field is used to indicate whether the given power difference is based on actual transmission or a reference format (Reference Format), and the given power difference is any one of the first power difference, the second power difference, the third power difference, and the fourth power difference.
  • Reference Format Reference Format
  • the second information set includes a third field
  • the third field is used to indicate whether the reference signal resource set associated with a given power difference value is the first reference signal resource set or the second reference signal resource set, and the given power difference value is any one of the first power difference value, the second power difference value, the third power difference value, and the fourth power difference value.
  • the second information set includes a fourth field
  • the fourth field is used to indicate whether a given power difference is adopted based on one of the first reference signal resource set or the second reference signal resource set, or is adopted based on both the first reference signal resource set and the second reference signal resource set, and the given power difference is any one of the first power difference, the second power difference, the third power difference, and the fourth power difference.
  • Embodiment 10 illustrates a schematic diagram of a first reference signal resource set and a second reference signal resource set, as shown in FIG. 10 .
  • the first reference signal resource set includes K1 reference signal resources, respectively corresponding to reference signal resource 1_1 to reference signal resource 1_K1 in the figure;
  • the second reference signal resource set includes K2 reference signal resources, respectively corresponding to reference signal resource 2_1 to reference signal resource 2_K2 in the figure;
  • K1 is a positive integer
  • K2 is a positive integer.
  • the K1 is equal to 1, and the first reference signal resource set only includes the first reference signal resources in this application.
  • the K2 is equal to 1, and the second reference signal resource set only includes the second reference signal resources in this application.
  • the K1 is greater than 1.
  • the K2 is greater than 1.
  • the first value is applicable to all reference signal resources in the first reference signal resource set.
  • the first value is applicable to a first reference signal resource in the first reference signal resource set.
  • the second value is applicable to all reference signal resources in the first reference signal resource set.
  • the second value is applicable to the first reference signal resource in the first reference signal resource set.
  • the first coefficient is applicable to all reference signal resources in the first reference signal resource set.
  • the first coefficient is applicable to a first reference signal resource in the first reference signal resource set.
  • the second coefficient is applicable to all reference signal resources in the first reference signal resource set.
  • the second coefficient is applicable to the first reference signal resource in the first reference signal resource set.
  • the first power value is applicable to all reference signal resources in the first reference signal resource set.
  • the first power value is applicable to a first reference signal resource in the first reference signal resource set.
  • the second power value is applicable to all reference signal resources in the first reference signal resource set.
  • the second power value is applicable to the first reference signal resource in the first reference signal resource set.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two different Panel IDs.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two Panels included in the first node.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two RFs (Radio Frequency, radio frequency) included in the first node.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two radio frequency channels included in the first node.
  • Embodiment 11 illustrates a schematic diagram of a first node, as shown in FIG. 11 .
  • the first node has two panels, namely a first panel and a second panel, and the first panel and the second panel are respectively associated to a first reference signal resource set and a second reference signal resource set; the two panels can transmit two independent wireless signals in the same time-frequency resource.
  • the maximum transmit power value may be dynamically shared (Shared) between the first Panel and the second Panel.
  • the maximum transmit power value of the first Panel or the second Panel is not greater than the first threshold in this application.
  • the maximum transmit power value of the first Panel and the maximum transmit power value of the second Panel are not greater than the second threshold and the third threshold in this application respectively.
  • Embodiment 12 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG. 12 .
  • an antenna port group includes a positive integer number of antenna ports; an antenna port is formed by stacking antennas in a positive integer number of antenna groups through antenna virtualization; and an antenna group includes a positive integer number of antennas.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency, radio frequency) chain (chain), and different antenna groups correspond to different RF chains.
  • the mapping coefficients of all the antennas in the positive integer number of antenna groups included in the given antenna port to the given antenna port form the beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of multiple antennas included in any given antenna group within the positive integer number of antenna groups included in the given antenna port to the given antenna port form an analog beamforming vector of the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer number of antenna groups are arranged diagonally to form an analog beamforming matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port form a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beamforming matrix and the digital beamforming vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • Figure 12 shows two antenna port groups: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of antenna group #0
  • the antenna port group #1 is composed of antenna group #1 and antenna group #2.
  • the mapping coefficients from multiple antennas in the antenna group #0 to the antenna port group #0 form an analog beamforming vector #0
  • the mapping coefficients from the antenna group #0 to the antenna port group #0 form a digital beamforming vector #0.
  • Mapping coefficients from multiple antennas in the antenna group #1 and multiple antennas in the antenna group #2 to the antenna port group #1 respectively form an analog beamforming vector #1 and an analog beamforming vector #2
  • the mapping coefficients from the antenna group #1 and the antenna group #2 to the antenna port group #1 form a digital beamforming vector #1.
  • the beamforming vector corresponding to any antenna port in the antenna port group #0 is obtained by the product of the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is obtained by multiplying the analog beamforming matrix formed by the diagonal arrangement of the analog beamforming vector #1 and the analog beamforming vector #2 and the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in FIG. 12 includes An antenna port.
  • the dimensionality of the analog beamforming matrix corresponding to the one antenna port is reduced to an analog beamforming vector
  • the dimensionality of the digital beamforming vector corresponding to the one antenna port is reduced to a scalar
  • the beamforming vector corresponding to the one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • one antenna port group includes multiple antenna ports.
  • the antenna port group #1 in FIG. 12 includes multiple antenna ports.
  • the multiple antenna ports correspond to the same analog beamforming matrix and different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beamforming matrices.
  • any two antenna ports in an antenna port group are QCL (Quasi-Colocated, quasi-colocated).
  • any two antenna ports in an antenna port group are of spatial QCL.
  • multiple antenna port groups in the figure correspond to one Panel in this application.
  • the first reference signal resource set corresponds to multiple antenna port groups.
  • the second reference signal resource set corresponds to multiple antenna port groups.
  • one reference signal resource in the first reference signal resource set corresponds to one antenna port group.
  • one reference signal resource in the second reference signal resource set corresponds to one antenna port group.
  • Embodiment 13 illustrates a structural block diagram of a first node, as shown in FIG. 13 .
  • a first node 1300 includes a first receiver 1301 and a first transmitter 1302 .
  • the first receiver 1301 receives a first information set, where the first information set is used to indicate a first reference signal resource set;
  • the second information set includes the first power difference and the second power difference; the first power difference is equal to the first power value minus the difference between the first target power is worth the difference, equal to the difference between the second power value minus the second target power;
  • the first reference signal resource; the first target power value and the second target power value for the same community, the first target power value and the second target power value are for PUSCH.
  • the first information set is used to indicate the second reference signal resource set;
  • the second information set includes a third power difference and a fourth power difference;
  • the third power difference is equal to the difference obtained by subtracting the third target power value from the third power value, and the fourth power difference is equal to the difference obtained by subtracting the fourth target power value from the fourth power value;
  • both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set;
  • the fourth target power values are all for PUSCH.
  • both the first power value and the second power value are associated with the first reference signal resource set, and the third power value and the fourth power value are both associated with the second reference signal resource set; the first power value is different from the second power value, and the third power value is different from the fourth power value.
  • the first receiver 1301 receives first signaling; the first transmitter 1302 sends a first signal; the first signaling is used to determine the first reference signal resource, the first reference signal resource is used to determine the spatial transmission parameter of the first signal, and the transmission power value of the first signal is equal to the first target power value.
  • the first receiver 1301 does not detect downlink control information for indicating uplink scheduling in the first time window; the uplink scheduling includes a physical uplink shared channel, and the power control parameters associated with the first reference signal resource are predefined.
  • the first receiver 1301 receives first signaling, and the first transmitter 1302 sends a first signal; the first signaling is used to determine the first reference signal resource and the second reference signal resource, the first signal includes a first sub-signal and a second sub-signal; the first reference signal resource is used to determine the spatial transmission parameter of the first sub-signal, and the second reference signal resource is used to determine the spatial transmission parameter of the second sub-signal; the transmission power value of the first sub-signal is equal to the second target power value, and the transmission power value of the second sub-signal is equal to the fourth target power value.
  • the power control parameter associated with the second reference signal resource is predefined.
  • both the first value and the second value are associated with the first reference signal resource set, and the first coefficient and the second Both coefficients are associated with the first reference signal resource set; the first value and the first coefficient are used to determine the first target power value, and the second value and the second coefficient are used to determine the second target power value; the first value is of the same type as the second value, and the first coefficient is of the same type as the second coefficient.
  • the first receiver 1301 includes at least the first four of the antenna 452 , receiver 454 , multi-antenna receiving processor 458 , receiving processor 456 , and controller/processor 459 in Embodiment 4.
  • the first transmitter 1302 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in Embodiment 4.
  • the first information set is transmitted through RRC signaling, the first parameter set and the second parameter set are both used for uplink power control corresponding to the same SRS resource, the second information set is PHR, the first power difference value and the second power difference value are both PH, the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and the first target power value and the second target power value are for Push.
  • Embodiment 14 illustrates a structural block diagram of a second node, as shown in FIG. 14 .
  • the second node 1400 includes a second transmitter 1401 and a second receiver 1402 .
  • the second transmitter 1401 sends a first information set, where the first information set is used to indicate a first reference signal resource set;
  • the second receiver 1402 receives a second information set
  • the second information set includes the first power difference and the second power difference; the first power difference is equal to the first power value minus the difference between the first target power is worth it, which is equal to the difference between the second power value minus the difference between the second target power;
  • the first reference signal resource; the first target power value and the second target power value for the same community, the first target power value and the second target power value are for PUSCH.
  • the first information set is used to indicate the second reference signal resource set;
  • the second information set includes a third power difference and a fourth power difference;
  • the third power difference is equal to the difference obtained by subtracting the third target power value from the third power value, and the fourth power difference is equal to the difference obtained by subtracting the fourth target power value from the fourth power value;
  • both the third target power value and the fourth target power value are associated with the second reference signal resource in the second reference signal resource set;
  • the fourth target power values are all for PUSCH.
  • both the first power value and the second power value are associated with the first reference signal resource set, and the third power value and the fourth power value are both associated with the second reference signal resource set; the first power value is different from the second power value, and the third power value is different from the fourth power value.
  • the second transmitter 1401 sends the first signaling; the second receiver 1402 receives the first signal; the first signaling is used to determine the first reference signal resource, the first reference signal resource is used to determine the spatial transmission parameter of the first signal, and the transmission power value of the first signal is equal to the first target power value.
  • the second transmitter 1401 does not send downlink control information used to indicate uplink scheduling of the first node in the first time window; the uplink scheduling includes a physical uplink shared channel, and the power control parameters associated with the first reference signal resource are predefined.
  • the second transmitter 1401 sends a first signaling; the second receiver 1402 receives a first signal; the first signaling is used to determine the first reference signal resource and the second reference signal resource, the first signal includes a first sub-signal and a second sub-signal; the first reference signal resource is used to determine the spatial transmission parameter of the first sub-signal, and the second reference signal resource is used to determine the spatial transmission parameter of the second sub-signal; the transmission power value of the first sub-signal is equal to the second target power value, and the transmission power value of the second sub-signal is equal to the fourth target power value.
  • the power control parameter associated with the second reference signal resource is predefined.
  • both the first value and the second value are associated with the first reference signal resource set, and both the first coefficient and the second coefficient are associated with the first reference signal resource set; the first value and the first coefficient are used to determine the first target power value, and the second value and the second coefficient are used to determine the second target power value; the first value and the second value are of the same type, and the first coefficient and the second coefficient are of the same type.
  • the second transmitter 1401 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1402 includes at least the first four of the antenna 420 , receiver 418 , multi-antenna receiving processor 472 , receiving processor 470 , and controller/processor 475 in Embodiment 4.
  • the first information set is transmitted through RRC signaling, the first parameter set and the second parameter set are both used for uplink power control corresponding to the same SRS resource, the second information set is PHR, the first power difference value and the second power difference value are both PH, the first target power value and the second target power value are associated with the first reference signal resource in the first reference signal resource set; the first target power value and the second target power value are for the same cell, and the first target power value and the second target power value are for Push.
  • the first node in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, vehicles, vehicles, RSUs, aircrafts, airplanes, drones, remote control aircraft and other wireless communication devices.
  • the second node in this application includes, but is not limited to, macrocell base stations, microcell base stations, small cell base stations, home base stations, relay base stations, eNBs, gNBs, transmission and reception nodes TRP, GNSS, relay satellites, satellite base stations, air base stations, RSUs, drones, test equipment, such as wireless communication equipment such as transceivers or signaling testers that simulate some functions of base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;随后发送第二信息集合;所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。本申请改进多面板终端下的上行功控,以提高系统灵活性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中上行功控汇报的传输方案和装置。
背景技术
5G无线蜂窝通信网络系统(5G-RAN)在原有LTE(Long-Term Evolution,长期演进)的基础上对UE的上行功率控制进行了增强。相较于LTE,因为NR系统没有CRS(Common Reference Signal,公共参考信号),上行功控所需要的路损(Pathloss)测量需要采用CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)和SSB(SS/PBCH Block,同步信号/物理广播信道块)进行。除此之外,NR系统最大的特点是引入了波束管理机制,终端可以用多个不同的发射和接收波束进行通信,进而终端需要能够测量多个波束所对应的多个路损,其中,确定路损的一种方式是通过DCI中的SRI(Sounding Reference Signal Resource Indicator,探测参考信道资源指示)指示到某个关联的下行RS资源以实现。
在NR R17的讨论中,终端侧配置多个Panel(面板)的场景已经被采纳,而引入多个Panel所带来的对功率控制的影响也相应的需要被考虑。
发明内容
在NR R17的讨论中,对终端的发送进行了增强,其中一个重要的方面就是引入了两个Panel,终端可以采用两个Panel同时在两个发送波束上进行发送以获得更好的空间分集增益。然而,上行发送的一个重要的指标是功率控制,两个Panel在同时采用时是否使用和一个Panel同样的功控参数,以及两个Panel之间是否会进行功率的动态分配,这些都会对多Panel下的上行功控的做法产生影响,进一步的,现有的PHR(Power Headroom Report,功率头空间汇报)的上报机制也需要被重新考虑。
针对上述多面板场景下的上行功控的问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将多面板作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景,例如单面板的场景,或者针对不同的技术领域,比如除了上行功控之外的技术领域,例如测量上报领域,上行数据传输等其它非上行功控领域以取得类似的技术效果。此外,不同场景(包括但不限于多面板的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
发送第二信息集合;
其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的。
作为一个实施例,上述方法的特征在于:针对一个SRS(Sounding Reference Signal,探测参考信号)资源集合中的一个SRS资源,所述第一节点会上报两个PHR,以给与基站更多的参考,以告知基站在采用单Panel传输和多Panel传输时,各自对应的剩余的功率值。
作为一个实施例,上述方法另一个的特征在于:对应同一个上行波束,采用单Panel发送和多Panel发送时,对应的发送功率值的上限是不同的,进而需要同时上报针对一个上行波束的多个PHR。
根据本申请的一个方面,所述第一信息集合被用于指示第二参考信号资源集合;所述第二信息集合包括第三功率差值和第四功率差值;所述第三功率差值等于第三功率值减去第三目标功率值得到的差,所述第四功率差值等于第四功率值减去第四目标功率值得到的差;所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源;所述第三目标功率值和所述第四目标功率值针对同一个小区,所述第三目标功率值和所述第四目标功率值都是针对PUSCH的。
作为一个实施例,上述方法的特征在于:当所述第一节点配置了两个SRS资源集合时,针对另一个SRS资源集合中的一个SRS资源,所述第一节点同样会上报两个PHR,以给与基站更多的参考,以告知基站在采用单Panel传输和多Panel传输时,各自对应的剩余的功率值。
根据本申请的一个方面,所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合,所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合;所述第一功率值和所述第二功率值不同,且所述第三功率值和所述第四功率值不同。
作为一个实施例,上述方法的特征在于:所述第一功率值是两个SRS参考资源集合中的第一个SRS参考资源集合被单独使用时所采用的功控参数,所述第二功率值是两个SRS参考资源集合被同时使用时,第一个SRS参考资源集合采用的功控参数。
作为一个实施例,上述方法的特征在于:所述第三功率值是两个SRS参考资源集合中的第二个SRS参考资源集合被单独使用时所采用的功控参数,所述第四功率值是两个SRS参考资源集合被同时使用时,第二个SRS参考资源集合采用的功控参数。
根据本申请的一个方面,包括:
接收第一信令;
发送第一信号;
其中,所述第一信令被用于确定所述第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数,所述第一信号的发送功率值等于所述第一目标功率值。
根据本申请的一个方面,包括:
在第一时间窗中没有检测到用于指示上行调度的下行控制信息;
其中,所述上行调度包括物理上行共享信道,所述第一参考信号资源所关联的功控参数是预定义的。
根据本申请的一个方面,包括:
接收第一信令;
发送第一信号;
其中,所述第一信令被用于确定所述第一参考信号资源和所述第二参考信号资源,所述第一信号包括第一子信号和第二子信号;所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数;所述第一子信号的发送功率值等于所述第二目标功率值,所述第二子信号的发送功率值等于所述第四目标功率值。
根据本申请的一个方面,所述第二参考信号资源所关联的功控参数是预定义的。
根据本申请的一个方面,第一数值和第二数值都被关联到所述第一参考信号资源集合,且第一系数和第二系数都被关联到所述第一参考信号资源集合;所述第一数值和所述第一系数被用于确定所述第一目标功率值,所述第二数值和所述第二系数被用于确定所述第二目标功率值;所述第一数值和所述第二数值的类型相同,且所述第一系数和所述第二系数的类型相同。
作为一个实施例,上述方法的特征在于:配置两套功控参数集合,分别包括第一数值和第一系数,以及第二数值和第二系数,上述两套参数集合均对应同一给定波束;当给定波束被用于单Panel(面板)传输时,采用一套参数;当给定波束被用于多Panel同时传输时,采用另一套参数。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
接收第二信息集合;
其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减 去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
根据本申请的一个方面;所述第一信息集合被用于指示第二参考信号资源集合;所述第二信息集合包括第三功率差值和第四功率差值;所述第三功率差值等于第三功率值减去第三目标功率值得到的差,所述第四功率差值等于第四功率值减去第四目标功率值得到的差;所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源;所述第三目标功率值和所述第四目标功率值针对同一个小区,所述第三目标功率值和所述第四目标功率值都是针对PUSCH的。
根据本申请的一个方面;所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合,所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合;所述第一功率值和所述第二功率值不同,且所述第三功率值和所述第四功率值不同。
根据本申请的一个方面,包括:
发送第一信令;
接收第一信号;
其中,所述第一信令被用于确定所述第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数,所述第一信号的发送功率值等于所述第一目标功率值。
根据本申请的一个方面,包括:
在第一时间窗中没有发送用于指示第一节点的上行调度的下行控制信息;
其中,所述上行调度包括物理上行共享信道,所述第一参考信号资源所关联的功控参数是预定义的;所述第二信息集合的发送者包括所述第一节点。
根据本申请的一个方面,包括:
发送第一信令;
接收第一信号;
其中,所述第一信令被用于确定所述第一参考信号资源和所述第二参考信号资源,所述第一信号包括第一子信号和第二子信号;所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数;所述第一子信号的发送功率值等于所述第二目标功率值,所述第二子信号的发送功率值等于所述第四目标功率值。
根据本申请的一个方面,所述第二参考信号资源所关联的功控参数是预定义的。
根据本申请的一个方面,第一数值和第二数值都被关联到所述第一参考信号资源集合,且第一系数和第二系数都被关联到所述第一参考信号资源集合;所述第一数值和所述第一系数被用于确定所述第一目标功率值,所述第二数值和所述第二系数被用于确定所述第二目标功率值;所述第一数值和所述第二数值的类型相同,且所述第一系数和所述第二系数的类型相同。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
第一发射机,发送第二信息集合;
其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
第二接收机,接收第二信息集合;
其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,本申请中的方案的好处在于:改进多Panel下PHR上报的完备性,进而提高功控效率和传输性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信息集合的流程图;
图6示出了根据本申请的一个实施例的第一信令的流程图;
图7示出了根据本申请的另一个实施例的第一信令的流程图;
图8示出了根据本申请的一个实施例的下行控制信息的流程图;
图9示出了根据本申请的一个实施例的第二信息集合的示意图;
图10示出了根据本申请的一个实施例的第一参考信号资源集合和第二参考信号资源集合的示意图;
图11示出了根据本申请的一个实施例的第一节点的示意图;
图12示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图13示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;在步骤102中发送第二信息集合。
实施例1中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第一信息集合通过RRC(Radio Resource Control,无线资源控制)信令传输。
作为一个实施例,所述第一信息集合通过RRC信令配置。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的PUSCH-PowerControl中的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的PUSCH-PowerControl。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的PUSCH-P0- PUSCH-AlphaSet。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的SRI-PUSCH-PowerControl中的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的SRI-PUSCH-PowerControl。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的CSI-ResourceConfig中的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的CSI-SSB-ResourceSet的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令包括Specification中的SRS-Config的一个或多个域。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括Power。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括Control。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括PUSCH。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括CSI(Channel State Information,信道状态信息)。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括CSI-RS。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括SRS。
作为一个实施例,传输或配置所述第一信息集合的RRC信令的名字包括SRI。
作为一个实施例,所述第一参考信号资源集合SRS-ResourceSetId所标识。
作为一个实施例,所述第一参考信号资源集合对应一个SRS Resource Set。
作为一个实施例,所述第一参考信号资源集合包括一个参考信号资源。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述参考信号资源是一个CSI-RS资源。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述参考信号资源是一个SSB。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1是大于1的正整数。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述K1个参考信号资源中的任一参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述K1个参考信号资源中的至少存在一个参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述K1个参考信号资源中的任一参考信号资源是一个CSI-RS资源。
作为该实施例的一个子实施例,所述第一参考信号资源集合所包括的所述K1个参考信号资源中的任一参考信号资源是一个SSB。
作为一个实施例,所述第二信息集合所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二信息集合所占用的物理层信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第二信息集合是一个MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制单元)。
作为一个实施例,所述第二信息集合是一个PHR。
作为一个实施例,所述第一功率差值的单位是dBm(毫分贝)。
作为一个实施例,所述第二功率差值的单位是dBm。
作为一个实施例,所述第一功率差值的单位是dB(分贝)。
作为一个实施例,所述第二功率差值的单位是dB。
作为一个实施例,所述第一功率差值的单位是mW(毫瓦)。
作为一个实施例,所述第二功率差值的单位是mW。
作为一个实施例,所述第一功率值是Specification中的PCMAX,f,c(i)。
作为一个实施例,所述第二功率值是Specification中的PCMAX,f,c(i)。
作为一个实施例,所述第一功率值是Specification中的
作为一个实施例,所述第二功率值是Specification中的
作为一个实施例,所述第一功率值和所述第二功率值不同。
作为一个实施例,所述第一功率值和所述第二功率值相同。
作为一个实施例,所述第一功率值和所述第二功率值是独立配置的。
作为一个实施例,所述第一功率值和所述第二功率值都被关联到所述第一参考信号资源集合。
作为一个实施例,所述第一功率值和所述第二功率值均是第一候选功率值和第二候选功率值中的之一,所述第一节点是否配置两个SRS资源集合被用于确定所述第一功率值和所述第二功率值。
作为该实施例的一个子实施例,所述第一节点配置两个SRS资源集合用于上行传输,所述第一功率值是所述第一候选功率值,所述第二功率值是所述第二候选功率值。
作为该子实施例的一个附属实施例,所述第一候选功率值和所述第二候选功率值不同。
作为该子实施例的一个附属实施例,所述第一候选功率值与所述第二候选功率值的差等于3dB。
作为该实施例的一个子实施例,所述第一节点配置1个SRS资源集合用于上行传输,所述第一功率值是所述第一候选功率值,所述第二功率值是所述第一候选功率值。
作为一个实施例,所述第一功率值和所述第二功率值均是第一候选功率值和第二候选功率值中的之一,所述第一节点是否采用两个SRS资源集合用于确定空间发送参数被用于确定所述第一功率值和所述第二功率值。
作为该实施例的一个子实施例,所述第一节点的两个SRS资源集合被用于确定空间发送参数,所述第一功率值是所述第一候选功率值,所述第二功率值是所述第二候选功率值。
作为该子实施例的一个附属实施例,所述第一候选功率值和所述第二候选功率值不同。
作为该子实施例的一个附属实施例,所述第一候选功率值与所述第二候选功率值的差等于3dB。
作为该子实施例的一个附属实施例,所述两个SRS资源集合被用于确定空间发送参数的意思包括:所述两个SRS资源集合中分别包括第一SRS资源和第二SRS资源,所述第一SRS资源被关联到第一SRI,所述第二SRS资源被关联到第二SRI,所述第一SRI和所述第二SRI分别被用于确定所述第一节点发送的两个无线信号的QCL(Quasi-Colocated,准共址)关系。
作为该子实施例的一个附属实施例,所述两个SRS资源集合被用于确定空间发送参数的意思包括:所述两个SRS资源集合中分别包括第一SRS资源和第二SRS资源,所述第一SRS资源中发送的无线信号和所述第二SRS资源中发送的无线信号分别与所述第一节点发送的两个无线信号是QCL的。
作为该实施例的一个子实施例,所述第一节点采用1个SRS资源集合用于确定空间发送参数,所述第一功率值是所述第一候选功率值,所述第二功率值是所述第一候选功率值。
作为该子实施例的一个附属实施例,所述1个SRS资源集合被用于确定空间发送参数的意思包括:所述1个SRS资源集合中包括第一SRS资源,所述第一SRS资源被关联到第一SRI,所述第一SRI被用于确定所述第一节点发送的1个无线信号的QCL关系。
作为该子实施例的一个附属实施例,所述1个SRS资源集合被用于确定空间发送参数的意思包括:所述1个SRS资源集合中包括第一SRS资源,所述第一SRS资源中发送的无线信号与所述第一节点发送的1个无线信号是QCL的。
作为一个实施例,所述QCL是指:Quasi Co-Located(准共址的)。
作为一个实施例,所述QCL是指:Quasi Co-Location(准共址)。
作为一个实施例,所述QCL包括QCL参数。
作为一个实施例,所述QCL包括QCL假设(assumption)。
作为一个实施例,所述QCL类型包括QCL-TypeA。
作为一个实施例,所述QCL类型包括QCL-TypeB。
作为一个实施例,所述QCL类型包括QCL-TypeC。
作为一个实施例,所述QCL类型包括QCL-TypeD。
作为一个实施例,所述QCL-TypeA包括多普勒位移(Doppler shift)、多普勒扩展(Doppler spread)、平均延时(average delay)和延时扩展(delay spread)。
作为一个实施例,所述QCL-TypeB包括多普勒位移(Doppler shift)和多普勒扩展(Doppler spread)。
作为一个实施例,所述QCL-TypeC包括多普勒位移(Doppler shift)和平均延时(average delay)。
作为一个实施例,所述QCL-TypeD包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述QCL参数包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),空间发送参数(Spatial Tx parameter)或空间接收参数(Spatial Rx parameter)中的至少之一。
作为一个实施例,所述空间发送参数(Spatial Tx parameter)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量或者空域发送滤波器中的至少之一。
作为一个实施例,所述第一功率差值的单位是dB。
作为一个实施例,所述第二功率差值的单位是dB。
作为一个实施例,所述第一功率差值是针对所述第一参考信号资源的PH(Power Headroom,功率头空间)。
作为一个实施例,所述第二功率差值是针对所述第一参考信号资源的PH(Power Headroom,功率头空间)。
作为一个实施例,所述第一功率差值是所述第一节点采用单Panel传输下的PH。
作为一个实施例,所述第二功率差值是所述第一节点采用双Panel传输下的PH。
作为一个实施例,所述第一功率差值是所述第一节点仅在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送无线信号所对应的PH。
作为一个实施例,所述第二功率差值是所述第一节点在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上同时发送无线信号时所对应的PH。
作为一个实施例,所述第一功率差值是所述第一节点仅在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送一个TB(Transport Block,传输块)所生成的无线信号所对应的PH。
作为一个实施例,所述第二功率差值是所述第一节点在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上同时发送2个TB所生成的两个无线信号时一个无线信号所对应的PH。
作为一个实施例,所述第一目标功率值的单位是dBm。
作为一个实施例,所述第二目标功率值的单位是dBm。
作为一个实施例,所述第一目标功率值是在第一时间窗中所述第一节点发送的无线信号的功率值,所述第一时间窗不晚于所述第二信息集合发送的起始时刻。
作为该实施例的一个子实施例,所述第一目标功率值是所述第一节点仅在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送的无线信号的功率值。
作为一个实施例,所述第一目标功率值是在第一时间窗中所述第一节点参考的PUSCH的发送功率值,所述第一时间窗不晚于所述第二信息集合发送的起始时刻。
作为该实施例的一个子实施例,所述第一目标功率值是所述第一节点假设仅在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送的无线信号的功率值。
作为一个实施例,所述第二目标功率值是在第一时间窗中所述第一节点发送的无线信号的功率值,所述第一时间窗不晚于所述第二信息集合发送的起始时刻。
作为该实施例的一个子实施例,所述第一节点同时在所述第一参考信号资源集合中的第一参考信号 资源所对应的空间发送参数和所述第二参考信号资源集合中的第二参考信号资源所对应的空间发送参数上同时发送两个无线信号,且所述第二目标功率值是在所述第一参考信号资源集合中的第一参考信号资源所对应的空间发送参数上发送的无线信号的发送功率值。
作为一个实施例,所述第二目标功率值是在第一时间窗中所述第一节点参考的PUSCH的发送功率值,所述第一时间窗不晚于所述第二信息集合发送的起始时刻。
作为该实施例的一个子实施例,所述第一节点假设同时在所述第一参考信号资源集合中的第一参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的第二参考信号资源所对应的空间发送参数上同时发送两个无线信号,且所述第二目标功率值是在所述第一参考信号资源集合中的第一参考信号资源所对应的空间发送参数上发送的无线信号的发送功率值。
作为一个实施例,上述短语所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源的意思包括;所述第一参考信号资源集合中的所述第一参考信号资源被用于确定所述第一目标功率值和所述第二目标功率值。
作为一个实施例,上述短语所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源的意思包括;所述第一参考信号资源集合中的所述第一参考信号资源被关联到一个给定CSI-RS资源,针对所述给定CSI-RS资源中接收到的无线信号的信道质量被用于确定所述第一目标功率值和所述第二目标功率值。
作为一个实施例,上述短语所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源的意思包括;所述第一参考信号资源集合中的所述第一参考信号资源被关联到一个给定SSB,针对所述给定SSB中接收到的无线信号的信道质量被用于确定所述第一目标功率值和所述第二目标功率值。
作为一个实施例,本申请中的所述信道质量包括路损。
作为一个实施例,本申请中的所述信道质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,本申请中的所述信道质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)、RSSI(Received Signal Strength Indicator,接收信道强度指示)、SNR(Signal-to-noise ratio,信噪比)或SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)中的至少之一。
作为一个实施例,上述短语所述第一目标功率值和所述第二目标功率值针对同一个小区的意思包括:所述第一目标功率值和所述第二目标功率值都是基于同一个小区所对应的载波中传输的PUSCH的发送功率值。
作为一个实施例,上述短语所述第一目标功率值和所述第二目标功率值针对同一个小区的意思包括:所述第一目标功率值和所述第二目标功率值都是基于同一个小区所对应的载波中传输的PUSCH的发送功率值。
作为一个实施例,上述短语所述第一目标功率值和所述第二目标功率值针对同一个小区的意思包括:采用所述第一目标功率值作为发送功率值的无线信号所对应的服务小区参数c和采用所述第二目标功率值作为发送功率值的无线信号所对应的服务小区参数c相同。
作为一个实施例,上述短语“所述第一目标功率值和所述第二目标功率值都是针对PUSCH的”的意思包括:所述第一目标功率值是PUSCH的发送功率值且所述第二目标功率值是PUSCH的发送功率值。
作为一个实施例,上述短语“所述第一目标功率值和所述第二目标功率值都是针对PUSCH的”的意思包括:所述第一目标功率值基于一个参考PUSCH的发送功率值,且所述第二目标功率值基于一个参考PUSCH的发送功率值。
作为一个实施例,本申请中的所述在一个参考信号资源所对应的空间发送参数上发送无线信号的意思包括:所述无线信号与所述参考信号资源中发送的无线信号是QCL的。
作为一个实施例,本申请中的所述在一个参考信号资源所对应的空间发送参数上发送无线信号的意思包括:所述无线信号与所述参考信号资源中发送的无线信号采用相同的空间发送参数。
作为一个实施例,所述第一目标功率值和第一分量线性相关,所述第二目标功率值和第二分量线性 相关;所述第一分量和所述第二分量分别和MCS有关;所述第一分量不等于所述第二分量。
作为上述实施例的一个子实施例,所述第一分量和所述第一信号的MCS(Modulation and Coding Scheme,调制编码方式)有关,所述第二分量和一个默认的MCS有关。
作为上述实施例的一个子实施例,所述第一分量和一个默认的MCS有关,所述第二分量和所述第一子信号的MCS有关。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持多个Panel同时发送。
作为一个实施例,所述UE201支持基于多Panel之间的功率分享。
作为一个实施例,所述UE201支持多个上行RF(Radio Frequency,射频)。
作为一个实施例,所述UE201支持多个上行RF同时发送。
作为一个实施例,所述UE201支持上报多个UE能力值集合。
作为一个实施例,所述NR节点B对应本申请中的所述第二节点。
作为一个实施例,所述NR节点B支持同时接收来自一个终端的多个Panel的信号。
作为一个实施例,所述NR节点B支持接收来自同一个终端的多个上行RF(Radio Frequency,射频)发送的信号。
作为一个实施例,所述NR节点B是一个基站。
作为一个实施例,所述NR节点B是一个小区。
作为一个实施例,所述NR节点B包括多个小区。
作为一个实施例,本申请中的所述第一节点对应所述UE201,本申请中的所述第二节点对应所述NR节点B。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信息集合生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信息集合生成于所述RRC306。
作为一个实施例,所述第二信息集合生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信息集合生成于所述RRC306。
作为一个实施例,所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线 发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;随后发送第二信息集合;所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;随后发送第二信息集合;所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;随后接收第二信息集合;所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;随后接收第二信息集合;所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息集合。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于发送第二信息集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于接收第二信息集合。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第一信号。
实施例5
实施例5示例了一个第一信息集合的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6、7、8中的任一实施例中;反之,在不冲突的情况下,实施例6、7、8中的任一实施例、子实施例和附属实施例能够被应用到实施例5中。
对于第一节点U1,在步骤S10中接收第一信息集合;在步骤S11中发送第二信息集合。
对于第二节点N2,在步骤S20中发送第一信息集合;在步骤S21中接收第二信息集合。
实施例5中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
典型的,所述第一信息集合被用于指示第二参考信号资源集合;所述第二信息集合包括第三功率差值和第四功率差值;所述第三功率差值等于第三功率值减去第三目标功率值得到的差,所述第四功率差值等于第四功率值减去第四目标功率值得到的差;所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源;所述第三目标功率值和所述第四目标功率值针对同一个小区,所述第三目标功率值和所述第四目标功率值都是针对PUSCH的。
作为一个实施例,所述第二参考信号资源集合SRS-ResourceSetId所标识。
作为一个实施例,所述第二参考信号资源集合对应一个SRS Resource Set。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别被不同的SRS-ResourceSetId所标识。
作为一个实施例,所述第二参考信号资源集合包括一个参考信号资源。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述参考信号资源是一个CSI- RS资源。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述参考信号资源是一个SSB。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2是大于1的正整数。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述K2个参考信号资源中的任一参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述K2个参考信号资源中的至少存在一个参考信号资源是一个SRS Resource。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述K2个参考信号资源中的任一参考信号资源是一个CSI-RS资源。
作为该实施例的一个子实施例,所述第二参考信号资源集合所包括的所述K2个参考信号资源中的任一参考信号资源是一个SSB。
作为一个实施例,所述第三功率值的单位是dBm。
作为一个实施例,所述第四功率值的单位是dBm。
作为一个实施例,所述第三功率值的单位是dB。
作为一个实施例,所述第四功率值的单位是dB。
作为一个实施例,所述第三功率值的单位是mW。
作为一个实施例,所述第四功率值的单位是mW。
作为一个实施例,所述第三功率值是Specification中的PCMAX,f,c(i)。
作为一个实施例,所述第四功率值是Specification中的PCMAX,f,c(i)。
作为一个实施例,所述第三功率值是Specification中的
作为一个实施例,所述第四功率值是Specification中的
作为一个实施例,所述第三功率值和所述第四功率值不同。
作为一个实施例,所述第三功率值和所述第四功率值相同。
作为一个实施例,所述第三功率值和所述第四功率值是独立配置的。
作为一个实施例,所述第三功率值和所述第四功率值都被关联到所述第一参考信号资源集合。
作为一个实施例,所述第三功率值和所述第四功率值均是第三候选功率值和第四候选功率值中的之一,所述第一节点是否配置两个SRS资源集合被用于确定所述第三功率值和所述第四功率值。
作为该实施例的一个子实施例,所述第一节点配置两个SRS资源集合用于上行传输,所述第三功率值是所述第三候选功率值,所述第四功率值是所述第四候选功率值。
作为该子实施例的一个附属实施例,所述第三候选功率值和所述第四候选功率值不同。
作为该子实施例的一个附属实施例,所述第三候选功率值与所述第四候选功率值的差等于3dB。
作为该实施例的一个子实施例,所述第一节点配置1个SRS资源集合用于上行传输,所述第三功率值是所述第三候选功率值,所述第四功率值是所述第三候选功率值。
作为一个实施例,所述第三功率值和所述第四功率值均是第三候选功率值和第四候选功率值中的之一,所述第一节点是否采用两个SRS资源集合用于确定空间发送参数被用于确定所述第三功率值和所述第四功率值。
作为该实施例的一个子实施例,所述第一节点的两个SRS资源集合被用于确定空间发送参数,所述第三功率值是所述第三候选功率值,所述第四功率值是所述第四候选功率值。
作为该子实施例的一个附属实施例,所述第三候选功率值和所述第四候选功率值不同。
作为该子实施例的一个附属实施例,所述第三候选功率值与所述第四候选功率值的差等于3dB。
作为该子实施例的一个附属实施例,所述两个SRS资源集合被用于确定空间发送参数的意思包括:所述两个SRS资源集合中分别包括第一SRS资源和第二SRS资源,所述第一SRS资源被关联到第一SRI,所述第二SRS资源被关联到第二SRI,所述第一SRI和所述第二SRI分别被用于确定所述第一节点发送的两个无线信号的QCL关系。
作为该子实施例的一个附属实施例,所述两个SRS资源集合被用于确定空间发送参数的意思包括:所述两个SRS资源集合中分别包括第一SRS资源和第二SRS资源,所述第一SRS资源中发送的无线信号 和所述第二SRS资源中发送的无线信号分别与所述第一节点发送的两个无线信号是QCL的。
作为该实施例的一个子实施例,所述第一节点采用1个SRS资源集合用于确定空间发送参数,所述第三功率值是所述第三候选功率值,所述第四功率值是所述第三候选功率值。
作为该子实施例的一个附属实施例,所述1个SRS资源集合被用于确定空间发送参数的意思包括:所述1个SRS资源集合中包括第一SRS资源,所述第一SRS资源被关联到第一SRI,所述第一SRI被用于确定所述第一节点发送的1个无线信号的QCL关系。
作为该子实施例的一个附属实施例,所述1个SRS资源集合被用于确定空间发送参数的意思包括:所述1个SRS资源集合中包括第一SRS资源,所述第一SRS资源中发送的无线信号与所述第一节点发送的1个无线信号是QCL的。
作为一个实施例,所述第三功率差值的单位是dB。
作为一个实施例,所述第四功率差值的单位是dB。
作为一个实施例,所述第三功率差值是针对所述第二参考信号资源的PH。
作为一个实施例,所述第四功率差值是针对所述第二参考信号资源的PH。
作为一个实施例,所述第三功率差值是所述第一节点采用单Panel传输下的PH。
作为一个实施例,所述第四功率差值是所述第一节点采用双Panel传输下的PH。
作为一个实施例,所述第三功率差值是所述第一节点仅在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送无线信号所对应的PH。
作为一个实施例,所述第四功率差值是所述第一节点在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上同时发送无线信号时所对应的PH。
作为一个实施例,所述第三功率差值是所述第一节点仅在所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送一个TB所生成的无线信号所对应的PH。
作为一个实施例,所述第四功率差值是所述第一节点在所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上同时发送2个TB所生成的两个无线信号时一个无线信号所对应的PH。
作为一个实施例,所述第三目标功率值的单位是dBm。
作为一个实施例,所述第四目标功率值的单位是dBm。
作为一个实施例,所述第三目标功率值是在第一时间窗中所述第一节点发送的无线信号的功率值,所述第一时间窗不晚于所述第二信息块发送的起始时刻。
作为该实施例的一个子实施例,所述第三目标功率值是所述第一节点仅在所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送的无线信号的功率值。
作为一个实施例,所述第三目标功率值是在第一时间窗中所述第一节点参考的PUSCH的发送功率值,所述第一时间窗不晚于所述第二信息块发送的起始时刻。
作为该实施例的一个子实施例,所述第三目标功率值是所述第一节点假设仅在所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数上发送的无线信号的功率值。
作为一个实施例,所述第四目标功率值是在第一时间窗中所述第一节点发送的无线信号的功率值,所述第一时间窗不晚于所述第二信息块发送的起始时刻。
作为该实施例的一个子实施例,所述第一节点同时在所述第一参考信号资源集合中的第一参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的第二参考信号资源所对应的空间发送参数上同时发送两个无线信号,且所述第四目标功率值是在所述第二参考信号资源集合中的第二参考信号资源所对应的空间发送参数上发送的无线信号的发送功率值。
作为一个实施例,所述第四目标功率值是在第一时间窗中所述第一节点参考的PUSCH的发送功率值,所述第一时间窗不晚于所述第三信息块发送的起始时刻。
作为该实施例的一个子实施例,所述第一节点假设同时在所述第一参考信号资源集合中的第一参考信号资源所对应的空间发送参数和所述第二参考信号资源集合中的第二参考信号资源所对应的空间发送参数上同时发送两个无线信号,且所述第四目标功率值是在所述第二参考信号资源集合中的第二参考信 号资源所对应的空间发送参数上发送的无线信号的发送功率值。
作为一个实施例,上述短语所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源的意思包括;所述第二参考信号资源集合中的所述第二参考信号资源被用于确定所述第三目标功率值和所述第四目标功率值。
作为一个实施例,上述短语所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源的意思包括;所述第二参考信号资源集合中的所述第二参考信号资源被关联到一个给定CSI-RS资源,针对所述给定CSI-RS资源中接收到的无线信号的信道质量被用于确定所述第三目标功率值和所述第四目标功率值。
作为一个实施例,上述短语所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源的意思包括;所述第二参考信号资源集合中的所述第二参考信号资源被关联到一个给定SSB,针对所述给定SSB中接收到的无线信号的信道质量被用于确定所述第三目标功率值和所述第四目标功率值。
作为一个实施例,上述短语所述第三目标功率值和所述第四目标功率值针对同一个小区的意思包括:所述第三目标功率值和所述第四目标功率值都是基于同一个小区所对应的载波中传输的PUSCH的发送功率值。
作为一个实施例,上述短语所述第三目标功率值和所述第四目标功率值针对同一个小区的意思包括:所述第三目标功率值和所述第四目标功率值都是基于同一个小区所对应的载波中传输的PUSCH的发送功率值。
作为一个实施例,上述短语所述第三目标功率值和所述第四目标功率值针对同一个小区的意思包括:采用所述第三目标功率值作为发送功率值的无线信号所对应的服务小区参数c和采用所述第四目标功率值作为发送功率值的无线信号所对应的服务小区参数c相同。
作为一个实施例,上述短语“所述第三目标功率值和所述第四目标功率值都是针对PUSCH的”的意思包括:所述第三目标功率值是PUSCH的发送功率值且所述第四目标功率值是PUSCH的发送功率值。
作为一个实施例,上述短语“所述第三目标功率值和所述第四目标功率值都是针对PUSCH的”的意思包括:所述第三目标功率值基于一个参考PUSCH的发送功率值,且所述第四目标功率值基于一个参考PUSCH的发送功率值。
作为一个实施例,所述第三目标功率值和第三分量线性相关,所述第四目标功率值和第四分量线性相关;所述第三分量和所述第四分量分别和MCS有关;所述第三分量不等于所述第四分量。
作为上述实施例的一个子实施例,所述第三分量和所述第一信号的MCS有关,所述第四分量和一个默认的MCS有关。
作为上述实施例的一个子实施例,所述第三分量和一个默认的MCS有关,所述第四分量和所述第二子信号的MCS有关。
典型的,所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合,所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合;所述第一功率值和所述第二功率值不同,且所述第三功率值和所述第四功率值不同。
作为一个实施例,上述短语所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合的意思包括:所述第一功率值和所述第二功率值都被用于确定与所述第一参考信号资源集合中任一参考信号资源QCL的无线信号的发送功率值。
作为一个实施例,上述短语所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合的意思包括:所述第一功率值和所述第二功率值都被用于确定与所述第一参考信号资源集合中的第一参考信号资源QCL的无线信号的发送功率值。
作为一个实施例,上述短语所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合的意思包括:所述第一功率值和所述第二功率值都被用于确定与所述第一参考信号资源集合中的至少一个参考信号资源QCL的无线信号的发送功率值。
作为一个实施例,上述短语所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合的意思包括:所述第一功率值和所述第二功率值都被用于确定与所述第一参考信号资源集合中任一参 考信号资源QCL的无线信号的PCMAX
作为一个实施例,上述短语所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合的意思包括:所述第一功率值和所述第二功率值都被用于确定与所述第一参考信号资源集合中的第一参考信号资源QCL的无线信号的PCMAX
作为一个实施例,上述短语所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合的意思包括:所述第一功率值和所述第二功率值都被用于确定与所述第一参考信号资源集合中的至少一个参考信号资源QCL的无线信号的PCMAX
作为一个实施例,所述第一功率值被用于确定给定无线信号的发送功率值,且所述给定无线信号仅与所述第一参考信号资源集合中的一个参考信号资源QCL。
作为一个实施例,所述第二功率值被用于确定给定无线信号的发送功率值,且所述给定无线信号包括两个无线子信号;所述两个无线子信号分别与所述第一参考信号资源集合中的一个参考信号资源QCL,以及与所述第二参考信号资源集合中的一个参考信号资源QCL。
作为该实施例的一个子实施例,所述第二功率值被用于确定所述两个无线子信号中与所述第一参考信号资源集合中的一个参考信号资源QCL的无线子信号的发送功率值。
作为一个实施例,上述短语所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合的意思包括:所述第三功率值和所述第四功率值都被用于确定与所述第二参考信号资源集合中任一参考信号资源QCL的无线信号的发送功率值。
作为一个实施例,上述短语所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合的意思包括:所述第三功率值和所述第四功率值都被用于确定与所述第二参考信号资源集合中的第二参考信号资源QCL的无线信号的发送功率值。
作为一个实施例,上述短语所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合的意思包括:所述第三功率值和所述第四功率值都被用于确定与所述第二参考信号资源集合中的至少一个参考信号资源QCL的无线信号的发送功率值。
作为一个实施例,上述短语所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合的意思包括:所述第三功率值和所述第四功率值都被用于确定与所述第二参考信号资源集合中任一参考信号资源QCL的无线信号的PCMAX
作为一个实施例,上述短语所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合的意思包括:所述第三功率值和所述第四功率值都被用于确定与所述第二参考信号资源集合中的第二参考信号资源QCL的无线信号的PCMAX
作为一个实施例,上述短语所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合的意思包括:所述第三功率值和所述第四功率值都被用于确定与所述第二参考信号资源集合中的至少一个参考信号资源QCL的无线信号的PCMAX
作为一个实施例,所述第三功率值被用于确定给定无线信号的发送功率值,且所述给定无线信号仅与所述第二参考信号资源集合中的一个参考信号资源QCL。
作为一个实施例,所述第四功率值被用于确定给定无线信号的发送功率值,且所述给定无线信号包括两个无线子信号;所述两个无线子信号分别与所述第一参考信号资源集合中的一个参考信号资源QCL,以及与所述第二参考信号资源集合中的一个参考信号资源QCL。
作为该实施例的一个子实施例,所述第四功率值被用于确定所述两个无线子信号中与所述第二参考信号资源集合中的一个参考信号资源QCL的无线子信号的发送功率值。
典型的,第一数值和第二数值都被关联到所述第一参考信号资源集合,且第一系数和第二系数都被关联到所述第一参考信号资源集合;所述第一数值和所述第一系数被用于确定所述第一目标功率值,所述第二数值和所述第二系数被用于确定所述第二目标功率值;所述第一数值和所述第二数值的类型相同,且所述第一系数和所述第二系数的类型相同。
作为一个实施例,所述第一数值的单位是dBm。
作为一个实施例,所述第一数值是一个P0。
作为一个实施例,所述第二数值的单位是dBm。
作为一个实施例,所述第二数值是一个P0。
作为一个实施例,所述第一数值和所述第二数值都被关联到所述第一参考信号资源集合中的一个参考信号资源。
作为一个实施例,所述第一数值和所述第二数值都被关联到所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第一目标功率值不大于所述第一功率值,所述第一数值与所述第一目标功率值线性相关。
作为该实施例的一个子实施例,所述第一数值与所述第一目标功率值的线性系数等于1。
作为一个实施例,所述第二目标功率值不大于所述第二功率值,所述第二数值与所述第二目标功率值线性相关。
作为该实施例的一个子实施例,所述第二数值与所述第二目标功率值的线性系数等于1。
作为一个实施例,所述第一系数不大于1。
作为一个实施例,所述第一系数是0到1之间的实数。
作为一个实施例,所述第二系数不大于1。
作为一个实施例,所述第二系数是0到1之间的实数。
作为一个实施例,所述第一系数与所述第二系数不同。
作为一个实施例,所述第一系数与所述第二系数相同。
作为一个实施例,所述第一系数与所述第二系数无关。
作为一个实施例,所述第一系数与所述第二系数有关。
作为一个实施例,所述第一系数与所述第二系数是独立配置的。
作为一个实施例,所述第一系数与所述第二系数是联合配置的。
作为一个实施例,当所述第一信令被用于指示所述第二参考信号资源集合中的至少一个参考信号资源时,所述第一信号包括第一子信号和第二子信号,所述第二系数和第一路损的乘积被用于确定所述第一子信号的发送功率值;当所述第一信令不被用于指示所述第二参考信号资源集合中的参考信号资源时,所述第一系数和第一路损的乘积被用于确定所述第一信号的发送功率值;所述第一参考信号资源集合中被所述第一信令指示的参考信号资源被用于确定第三参考信号资源;所述第三参考信号资源中接收的无线信号被用于确定所述第一路损。
作为一个实施例,所述第三参考信号资源是CSI-RS资源。
作为一个实施例,所述第三参考信号资源是一个SSB。
作为一个实施例,所述第一参考信号资源集合中的第一参考信号资源被所述第一信令指示,所述第一参考信号资源被用于确定所述第三参考信号资源。
作为该实施例的一个子实施例,所述第一参考信号资源中发送的无线信号和所述第三参考信号资源中发送的无线信号是QCL的。
作为该实施例的一个子实施例,所述第三参考信号资源所对应的ssb-Index或csi-RS-Index被关联到所述第一参考信号资源所对应的pusch-PathlossReferenceRS-Id。
作为一个实施例,所述第一路损的单位是dB。
作为一个实施例,所述第二路损的单位是dB。
作为一个实施例,当所述第二系数和所述第一路损的乘积被用于确定所述第一子信号的发送功率值,且所述第一子信号的发送功率值不大于所述第二功率值时,所述第二系数和所述第一路损的乘积与所述第一子信号的发送功率值线性相关。
作为该实施例的一个子实施例,所述第二系数和所述第一路损的乘积与所述第一子信号的发送功率值线性系数等于1。
作为一个实施例,当所述第一系数和所述第一路损的乘积被用于确定所述第一信号的发送功率值,且所述第一信号的发送功率值不大于所述第一功率值时,所述第一系数和所述第一路损的乘积与所述第一信号的发送功率值线性相关。
作为该实施例的一个子实施例,所述第一系数和所述第一路损的乘积与所述第一信号的发送功率值 线性系数等于1。
作为一个实施例,所述第一数值是TS 38.331中的P0。
作为一个实施例,所述第一系数是TS 38.331中的Alpha。
作为一个实施例,所述第二数值是TS 38.331中的P0。
作为一个实施例,所述第二系数是TS 38.331中的Alpha。
实施例6
实施例6示例了一个第一信令的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5、7、8中的任一实施例中;反之,在不冲突的情况下,实施例5、7、8中的任一实施例、子实施例和附属实施例能够被应用到实施例6中。
对于第一节点U3,在步骤S30中接收第一信令;在步骤S31中发送第一信号。
对于第二节点N4,在步骤S40中发送第一信令;在步骤S41中接收第一信号。
实施例6中,所述第一信令被用于确定所述第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数,所述第一信号的发送功率值等于所述第一目标功率值。
作为一个实施例,所述第一信号所占用的时域资源位于本申请的所述第一时间窗中。
作为一个实施例,所述第一信令所占用的时域资源位于本申请的所述第一时间窗中。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信令被用于调度所述第一信号。
作为一个实施例,所述第一信令被用于指示所述第一信号所占用的频域资源。
作为一个实施例,所述第一信令被用于指示所述第一信号所占用的时域资源。
作为一个实施例,所述第一信令被用于指示所述第一参考信号资源。
作为一个实施例,所述第一信令被用于从所述第一参考信号资源集合中指示所述第一参考信号资源。
作为一个实施例,所述第一参考信号资源中发送的无线信号与所述第一信号是QCL的。
作为一个实施例,所述第一信令仅被用于从所述第一参考信号资源集合中指示所述第一参考信号资源,且所述第一信令不被用于从所述第二参考信号资源集合中指示所述第二参考信号资源。
作为一个实施例,所述第一信号由一个TB生成。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,本申请中的所述第一时间窗包括1个时隙。
作为一个实施例,本申请中的所述第一时间窗包括多个连续的时隙。
作为一个实施例,所述第一信号包括所述第二信息集合。
作为一个实施例,所述步骤S31和实施例5中的步骤S11是相同的步骤。
作为一个实施例,所述步骤S41和实施例5中的步骤S21是相同的步骤。
作为一个实施例,所述步骤S30位于实施例5中步骤S10之后,且步骤S11之前。
作为一个实施例,所述步骤S40位于实施例5中步骤S20之后,且步骤S21之前。
作为一个实施例,所述步骤S31位于实施例5中步骤S11之前。
作为一个实施例,所述步骤S41位于实施例5中步骤S21之前。
实施例7
实施例7示例了另一个第一信令的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例5、6、8中的任一实施例中;反之,在不冲突的情况下,实施例5、6、8中的任一实施例、子实施例和附属实施例能够被应用到实施例7中。
对于第一节点U5,在步骤S50中接收第一信令;在步骤S51中发送第一信号。
对于第二节点N6,在步骤S60中发送第一信令;在步骤S61中接收第一信号。
实施例7中,所述第一信令被用于确定所述第一参考信号资源和所述第二参考信号资源,所述第一信号包括第一子信号和第二子信号;所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数;所述第一子信号的发送功率值等于所述第二目标功率值,所述第二子信号的发送功率值等于所述第四目标功率值。
作为一个实施例,所述第一信号所占用的时域资源位于本申请的所述第一时间窗中。
作为一个实施例,所述第一信令所占用的时域资源位于本申请的所述第一时间窗中。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信令被用于调度所述第一信号。
作为一个实施例,所述第一信令被用于指示所述第一信号所占用的频域资源。
作为一个实施例,所述第一信令被用于指示所述第一信号所占用的时域资源。
作为一个实施例,所述第一信令被用于指示所述第一参考信号资源和所述第二参考信号资源。
作为一个实施例,所述第一信令被用于从所述第一参考信号资源集合中指示所述第一参考信号资源,且所述第一信令被用于从所述第二参考信号资源集合中指示所述第二参考信号资源。
作为一个实施例,所述第一参考信号资源中发送的无线信号与所述第一子信号是QCL的,且所述第二参考信号资源中发送的无线信号与所述第二子信号是QCL的
作为一个实施例,所述第一信号由2个TB生成,所述2个TB分别被用于生成所述第一子信号和所述第二子信号。
作为一个实施例,所述步骤S51和实施例5中的步骤S11是相同的步骤。
作为一个实施例,所述步骤S61和实施例5中的步骤S21是相同的步骤。
作为一个实施例,所述步骤S50位于实施例5中步骤S10之后,且步骤S11之前。
作为一个实施例,所述步骤S60位于实施例5中步骤S20之后,且步骤S21之前。
作为一个实施例,所述步骤S51位于实施例5中步骤S11之前。
作为一个实施例,所述步骤S61位于实施例5中步骤S21之前。
实施例8
实施例8示例了一个下行控制信息的流程图,如附图8所示。在附图8中,第一节点U7检测来自第二节点N8的下行控制信息,但第二节点N8在第一时间窗中没有发送针对所述第一节点的用于上行调度的下行控制信息。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例8中的实施例、子实施例和附属实施例能够被应用到实施例5、6、7中的任一实施例中;反之,在不冲突的情况下,实施例5、6、7中的任一实施例、子实施例和附属实施例能够被应用到实施例8中。
对于第一节点U7,在步骤S70中在第一时间窗中检测用于指示上行调度的下行控制信息。
实施例8中,所述第一节点在所述第一时间窗中没有检测到用于指示针对所述第一节点的上行调度的下行控制信息;所述上行调度包括物理上行共享信道,所述第一参考信号资源所关联的功控参数是预定义的。
作为一个实施例,上述短语“所述第一参考信号资源所关联的功控参数是预定义的”的意思包括:所述第一参考信号资源所关联的PO_NOMINAL_PUSCH,f,c(j)中的j对应等于0。
作为一个实施例,上述短语“所述第一参考信号资源所关联的功控参数是预定义的”的意思包括:所述第一参考信号资源所关联的PUSCH-AlphaSetId等于0。
作为一个实施例,上述短语“所述第一参考信号资源所关联的功控参数是预定义的”的意思包括:所述第一参考信号资源所关联的获得路损采用的pusch-PathlossReferenceRS-Id等于0。
作为一个实施例,上述短语“所述第一参考信号资源所关联的功控参数是预定义的”的意思包括:所述第一参考信号资源所对应的索引是所述第一参考信号资源集合所包括的任一参考信号资源所对应的 索引中最小的一个。
作为一个实施例,所述第一参考信号资源在所述第一参考信号资源集合中的索引是一个SRI。
作为一个实施例,所述步骤S70位于实施例5中步骤S10之后,且步骤S11之前。
实施例9
实施例9示例了一个第二信息集合的示意图,如附图9所示。在附图9中,所述第二信息集合包括第一功率差值和第二功率差值。
作为一个实施例,所述第二信息集合包括本申请中的所述第三功率差值和所述第四功率差值。
作为一个实施例,所述第二信息集合包括本申请中的所述第一功率差值、所述第二功率差值、所述第三功率差值和所述第四功率差值。
作为一个实施例,所述第二信息集合包括本申请中的所述第一功率值。
作为一个实施例,所述第二信息集合包括本申请中的所述第二功率值。
作为一个实施例,所述第二信息集合包括本申请中的所述第三功率值。
作为一个实施例,所述第二信息集合包括本申请中的所述第四功率值。
作为一个实施例,所述第二信息集合包括第一域,所述第一域被用于指示给定功率差值所对应的服务小区的ServCellIndex,所述给定功率差值是所述第一功率差值、所述第二功率差值、所述第三功率差值和所述第四功率差值中的任意一个。
作为一个实施例,所述第二信息集合包括第二域,所述第二域被用于指示给定功率差值是基于实际传输还是参考格式(Reference Format),所述给定功率差值是所述第一功率差值、所述第二功率差值、所述第三功率差值和所述第四功率差值中的任意一个。
作为一个实施例,所述第二信息集合包括第三域,所述第三域被用于指示给定功率差值所关联的参考信号资源集合是所述第一参考信号资源集合还是所述第二参考信号资源集合,所述给定功率差值是所述第一功率差值、所述第二功率差值、所述第三功率差值和所述第四功率差值中的任意一个。
作为一个实施例,所述第二信息集合包括第四域,所述第四域被用于指示给定功率差值是基于所述第一参考信号资源集合或所述第二参考信号资源集合中的之一被采用,还是基于所述第一参考信号资源集合和所述第二参考信号资源集合被同时采用,所述给定功率差值是所述第一功率差值、所述第二功率差值、所述第三功率差值和所述第四功率差值中的任意一个。
作为一个实施例,对应给定服务小区的ServCellIndex,所述第一功率差值、所述第二功率差值、所述第三功率差值和所述第四功率差值之间的相对位置是固定的。
实施例10
实施例10示例了一个第一参考信号资源集合和第二参考信号资源集合的示意图,如附图10所示。在附图10中,所述第一参考信号资源集合包括K1个参考信号资源,分别对应图中的参考信号资源1_1至参考信号资源1_K1;所述第二参考信号资源集合包括K2个参考信号资源,分别对应图中的参考信号资源2_1至参考信号资源2_K2;所述K1是正整数,所述K2是正整数。
作为一个实施例,所述K1等于1,所述第一参考信号资源集合仅包括本申请中的所述第一参考信号资源。
作为一个实施例,所述K2等于1,所述第二参考信号资源集合仅包括本申请中的所述第二参考信号资源。
作为一个实施例,所述K1大于1。
作为一个实施例,所述K2大于1。
作为一个实施例,所述第一数值适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第一数值适用于所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第二数值适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第二数值适用于所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第一系数适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第一系数适用于所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第二系数适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第二系数适用于所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第一功率值适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第一功率值适用于所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第二功率值适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第二功率值适用于所述第一参考信号资源集合中的第一参考信号资源。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应两个不同的Panel ID。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个Panel。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个RF(Radio Frequency,射频)。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个射频通道。
实施例11
实施例11示例了一个第一节点的示意图,如附图11所示。在附图11中,所述第一节点具有两个Panel,分别是第一Panel和第二Panel,所述第一Panel和所述第二Panel分别被关联到第一参考信号资源集合和第二参考信号资源集合;所述两个Panel能够在同一块时频资源中发送两个独立的无线信号。
作为一个实施例,所述第一Panel和所述第二Panel之间可以动态分享(Share)最大发送功率值。
作为一个实施例,当所述第一Panel或所述第二Panel被单独使用时,所述第一Panel或所述第二Panel的最大发送功率值不大于本申请中的第一阈值。
作为一个实施例,当所述第一Panel和所述第二Panel被同时使用时,所述第一Panel的最大发送功率值和所述第二Panel的最大发送功率值分别不大于本申请中的第二阈值和第三阈值。
实施例12
实施例12示例了天线端口和天线端口组的示意图,如附图12所示。
在实施例12中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图12中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个子实施例,一个天线端口组包括一个天线端口。例如,附图12中的所述天线端口组#0包括 一个天线端口。
作为上述子实施例的一个附属实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。
作为一个子实施例,一个天线端口组包括多个天线端口。例如,附图12中的所述天线端口组#1包括多个天线端口。
作为上述子实施例的一个附属实施例,所述多个天线端口对应相同的模拟波束赋型矩阵和不同的数字波束赋型向量。
作为一个子实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个子实施例,一个天线端口组中的任意两个天线端口是QCL(Quasi-Colocated,准共址)的。
作为一个子实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
作为一个实施例,图中的多个天线端口组对应本申请中的一个Panel。
作为一个实施例,所述第一参考信号资源集合对应多个天线端口组。
作为一个实施例,所述第二参考信号资源集合对应多个天线端口组。
作为一个实施例,所述第一参考信号资源集合中的一个参考信号资源对应一个天线端口组。
作为一个实施例,所述第二参考信号资源集合中的一个参考信号资源对应一个天线端口组。
实施例13
实施例13示例了一个第一节点中的结构框图,如附图13所示。附图13中,第一节点1300包括第一接收机1301和第一发射机1302。
第一接收机1301,接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
第一发射机1302,发送第二信息集合;
实施例13中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第一信息集合被用于指示第二参考信号资源集合;所述第二信息集合包括第三功率差值和第四功率差值;所述第三功率差值等于第三功率值减去第三目标功率值得到的差,所述第四功率差值等于第四功率值减去第四目标功率值得到的差;所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源;所述第三目标功率值和所述第四目标功率值针对同一个小区,所述第三目标功率值和所述第四目标功率值都是针对PUSCH的。
作为一个实施例,所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合,所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合;所述第一功率值和所述第二功率值不同,且所述第三功率值和所述第四功率值不同。
作为一个实施例,所述第一接收机1301接收第一信令;所述第一发射机1302发送第一信号;所述第一信令被用于确定所述第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数,所述第一信号的发送功率值等于所述第一目标功率值。
作为一个实施例,所述第一接收机1301在第一时间窗中没有检测到用于指示上行调度的下行控制信息;所述上行调度包括物理上行共享信道,所述第一参考信号资源所关联的功控参数是预定义的。
作为一个实施例,所述第一接收机1301接收第一信令,所述第一发射机1302发送第一信号;所述第一信令被用于确定所述第一参考信号资源和所述第二参考信号资源,所述第一信号包括第一子信号和第二子信号;所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数;所述第一子信号的发送功率值等于所述第二目标功率值,所述第二子信号的发送功率值等于所述第四目标功率值。
作为一个实施例,所述第二参考信号资源所关联的功控参数是预定义的。
作为一个实施例,第一数值和第二数值都被关联到所述第一参考信号资源集合,且第一系数和第 二系数都被关联到所述第一参考信号资源集合;所述第一数值和所述第一系数被用于确定所述第一目标功率值,所述第二数值和所述第二系数被用于确定所述第二目标功率值;所述第一数值和所述第二数值的类型相同,且所述第一系数和所述第二系数的类型相同。
作为一个实施例,所述第一接收机1301包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1302包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一信息集合通过RRC信令传输,所述第一参数集合和所述第二参数集合均被用于有同一个SRS资源所对应的上行功率控制,所述第二信息集合是PHR,所述第一功率差值和所述第二功率差值均是PH,所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
实施例14
实施例14示例了一个第二节点中的结构框图,如附图14所示。附图14中,第二节点1400包括第二发射机1401和第二接收机1402。
第二发射机1401,发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
第二接收机1402,接收第二信息集合;
实施例14中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
作为一个实施例,所述第一信息集合被用于指示第二参考信号资源集合;所述第二信息集合包括第三功率差值和第四功率差值;所述第三功率差值等于第三功率值减去第三目标功率值得到的差,所述第四功率差值等于第四功率值减去第四目标功率值得到的差;所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源;所述第三目标功率值和所述第四目标功率值针对同一个小区,所述第三目标功率值和所述第四目标功率值都是针对PUSCH的。
作为一个实施例,所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合,所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合;所述第一功率值和所述第二功率值不同,且所述第三功率值和所述第四功率值不同。
作为一个实施例,所述第二发射机1401发送第一信令;所述第二接收机1402接收第一信号;所述第一信令被用于确定所述第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数,所述第一信号的发送功率值等于所述第一目标功率值。
作为一个实施例,所述第二发射机1401在第一时间窗中不发送用于指示所述第一节点的上行调度的下行控制信息;所述上行调度包括物理上行共享信道,所述第一参考信号资源所关联的功控参数是预定义的。
作为一个实施例,所述第二发射机1401发送第一信令;所述第二接收机1402接收第一信号;所述第一信令被用于确定所述第一参考信号资源和所述第二参考信号资源,所述第一信号包括第一子信号和第二子信号;所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数;所述第一子信号的发送功率值等于所述第二目标功率值,所述第二子信号的发送功率值等于所述第四目标功率值。
作为一个实施例,所述第二参考信号资源所关联的功控参数是预定义的。
作为一个实施例,第一数值和第二数值都被关联到所述第一参考信号资源集合,且第一系数和第二系数都被关联到所述第一参考信号资源集合;所述第一数值和所述第一系数被用于确定所述第一目标功率值,所述第二数值和所述第二系数被用于确定所述第二目标功率值;所述第一数值和所述第二数值的类型相同,且所述第一系数和所述第二系数的类型相同。
作为一个实施例,所述第二发射机1401包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1402包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第一信息集合通过RRC信令传输,所述第一参数集合和所述第二参数集合均被用于有同一个SRS资源所对应的上行功率控制,所述第二信息集合是PHR,所述第一功率差值和所述第二功率差值均是PH,所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
    第一发射机,发送第二信息集合;
    其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
  2. 根据权利要求1所述的第一节点,其特征在于;所述第一信息集合被用于指示第二参考信号资源集合;所述第二信息集合包括第三功率差值和第四功率差值;所述第三功率差值等于第三功率值减去第三目标功率值得到的差,所述第四功率差值等于第四功率值减去第四目标功率值得到的差;所述第三目标功率值和所述第四目标功率值都被关联到所述第二参考信号资源集合中的第二参考信号资源;所述第三目标功率值和所述第四目标功率值针对同一个小区,所述第三目标功率值和所述第四目标功率值都是针对PUSCH的。
  3. 根据权利要求2所述的第一节点,其特征在于;所述第一功率值和所述第二功率值均被关联到所述第一参考信号资源集合,所述第三功率值和所述第四功率值均被关联到所述第二参考信号资源集合;所述第一功率值和所述第二功率值不同,且所述第三功率值和所述第四功率值不同。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于包括:
    所述第一接收机,接收第一信令;
    所述第一发射机,发送第一信号;
    其中,所述第一信令被用于确定所述第一参考信号资源,所述第一参考信号资源被用于确定所述第一信号的空间发送参数,所述第一信号的发送功率值等于所述第一目标功率值。
  5. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于包括:
    所述第一接收机,在第一时间窗中没有检测到用于指示上行调度的下行控制信息;
    其中,所述上行调度包括物理上行共享信道,所述第一参考信号资源所关联的功控参数是预定义的。
  6. 根据权利要求2或3所述的第一节点,其特征在于包括:
    所述第一接收机,接收第一信令;
    所述第一发射机,发送第一信号;
    其中,所述第一信令被用于确定所述第一参考信号资源和所述第二参考信号资源,所述第一信号包括第一子信号和第二子信号;所述第一参考信号资源被用于确定所述第一子信号的空间发送参数,所述第二参考信号资源被用于确定所述第二子信号的空间发送参数;所述第一子信号的发送功率值等于所述第二目标功率值,所述第二子信号的发送功率值等于所述第四目标功率值。
  7. 根据权利要求2、3或6所述的第一节点,其特征在于,所述第二参考信号资源所关联的功控参数是预定义的。
  8. 根据权利要求3至7中任一权利要求所述的第一节点,其特征在于,第一数值和第二数值都被关联到所述第一参考信号资源集合,且第一系数和第二系数都被关联到所述第一参考信号资源集合;所述第一数值和所述第一系数被用于确定所述第一目标功率值,所述第二数值和所述第二系数被用于确定所述第二目标功率值;所述第一数值和所述第二数值的类型相同,且所述第一系数和所述第二系数的类型相同。
  9. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
    第二接收机,接收第二信息集合;
    其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
    发送第二信息集合;
    其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息集合,所述第一信息集合被用于指示第一参考信号资源集合;
    接收第二信息集合;
    其中,所述第二信息集合包括第一功率差值和第二功率差值;所述第一功率差值等于第一功率值减去第一目标功率值得到的差,所述第二功率差值等于第二功率值减去第二目标功率值得到的差;所述第一目标功率值和所述第二目标功率值都被关联到所述第一参考信号资源集合中的第一参考信号资源;所述第一目标功率值和所述第二目标功率值针对同一个小区,所述第一目标功率值和所述第二目标功率值都是针对PUSCH的。
PCT/CN2023/072514 2022-01-21 2023-01-17 一种被用于无线通信的节点中的方法和装置 WO2023138552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210071479.2 2022-01-21
CN202210071479.2A CN116527216A (zh) 2022-01-21 2022-01-21 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023138552A1 true WO2023138552A1 (zh) 2023-07-27

Family

ID=87347820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072514 WO2023138552A1 (zh) 2022-01-21 2023-01-17 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116527216A (zh)
WO (1) WO2023138552A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206711A (zh) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN110213012A (zh) * 2018-02-28 2019-09-06 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111866790A (zh) * 2019-04-25 2020-10-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111865476A (zh) * 2019-04-25 2020-10-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020244381A1 (zh) * 2019-06-03 2020-12-10 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113543357A (zh) * 2020-04-21 2021-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206711A (zh) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN110213012A (zh) * 2018-02-28 2019-09-06 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111866790A (zh) * 2019-04-25 2020-10-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111865476A (zh) * 2019-04-25 2020-10-30 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020244381A1 (zh) * 2019-06-03 2020-12-10 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113543357A (zh) * 2020-04-21 2021-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116527216A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US11770229B2 (en) Method and device in communication node used for wireless communication with multiple antenna panels
WO2018130125A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
CN110913483B (zh) 一种被用于无线通信节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113543357B (zh) 一种被用于无线通信的节点中的方法和装置
CN111866790B (zh) 一种被用于无线通信的节点中的方法和装置
US11985605B2 (en) Method and device in nodes used for wireless communication
CN114866985A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138552A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023147763A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160463A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067798A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023088128A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023131152A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093883A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005963A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023036040A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099211A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024008064A1 (zh) 用于无线通信的方法和装置
WO2023160320A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742867

Country of ref document: EP

Kind code of ref document: A1