WO2020244381A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2020244381A1
WO2020244381A1 PCT/CN2020/091068 CN2020091068W WO2020244381A1 WO 2020244381 A1 WO2020244381 A1 WO 2020244381A1 CN 2020091068 W CN2020091068 W CN 2020091068W WO 2020244381 A1 WO2020244381 A1 WO 2020244381A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
type
information
sub
Prior art date
Application number
PCT/CN2020/091068
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020244381A1 publication Critical patent/WO2020244381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device related to a side link (Sidelink) in wireless communication.
  • Sidelink side link
  • V2X Vehicle-to-Everything
  • 3GPP has also started standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services and has written it into the standard TS22.886.
  • 3GPP defines 4 Use Case Groups for 5G V2X services, including: Automated Queued Driving (Vehicles Platnooning), Support for Extended Sensors (Extended Sensors), Semi/Fully Automatic Driving (Advanced Driving) and Remote Driving ( Remote Driving).
  • Automated Queued Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • NR V2X Compared with the existing LTE (Long-term Evolution) V2X system, NR V2X has a remarkable feature that it supports unicast and supports power control based on the path loss on the side link (SideLink). Based on the results of the 3GPP RAN1#97 meeting, when a UE (User Equipment) is configured with power control based on the path loss on the downlink (Downlink) and the secondary link at the same time, the UE will choose the two methods respectively. The minimum value of the generated power.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the first signal carries first information
  • the first The information is related to the difference between the second power and the first power
  • the sending of the first information is triggered by a first condition.
  • the problem to be solved by this application includes: how to calculate the secondary link when the transmission power on the secondary link is constrained by both the downlink path loss-based power control and the secondary link path loss-based power control PHR report on the website.
  • the above method solves this problem by determining the report information according to the difference of the power obtained by the two methods.
  • the characteristic of the above method is that the first power is power obtained based on the downlink path loss, and the second power is power obtained based on the secondary link path loss. The difference between the first power and the second power is used to determine the first information.
  • the benefits of the above method include: more accurately reflecting the power headroom of the secondary link.
  • the advantages of the above method include: avoiding that the power control based on the downlink path loss severely restricts the transmission power on the secondary link, thereby causing the performance of the secondary link to decrease.
  • the first signaling is used to determine the time-frequency resource occupied by the first signal.
  • the first information includes a first difference value
  • the first power and the second power are used to determine the first difference value
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the measurement for the second type signal is used to determine the third information, and the third information is used to determine the second power; the first node sends the second type signal.
  • measurement for the first type of signal is used to determine the fourth information, and the fourth information is used to determine the first power; the first node sends the first type of signal.
  • the measurement for the second type of signal is used to determine K path losses, and K is a positive integer greater than 1, and the K path losses are used to determine the first Two power.
  • the transmission power of the second signal is the minimum value of the first power and the second power.
  • the second information is used to determine the transmission power of the third signal; the second time window is later than the time domain resources occupied by the first signal.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the second type of signal is different from the first type of signal.
  • a node of the sender sends; the first signal carries first information, and the first information is related to the difference between the second power and the first power; the sending of the first information is subject to the first condition trigger.
  • the first signaling is used to determine the time-frequency resource occupied by the first signal.
  • the first information includes a first difference value
  • the first power and the second power are used to determine the first difference value
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the measurement for the first type of signal is used to determine the fourth information, and the fourth information is used to determine the first power; the second node receives the first type of signal.
  • the measurement for the second type of signal is used to determine K path losses, and K is a positive integer greater than 1, and the K path losses are used to determine the first Two power.
  • the second information is used to determine the transmission power of the third signal; the third signal is transmitted in a second time window, and the second time window is later than the time domain occupied by the first signal Resources.
  • the second node is a base station device.
  • the second node is a user equipment.
  • the second node is a relay node.
  • This application discloses a method used in a third node for wireless communication, which is characterized in that it includes:
  • the measurement for the first type of signal is used to determine the first power, and the first type of signal is sent by a node different from the sender of the target second type of sub-signal; the second type of signal includes the target The second type of sub-signal, the measurement of the second type of signal is used to determine the second power; the first information is related to the difference between the second power and the first power; the transmission of the first information Triggered by the first condition.
  • the first information includes a first difference value
  • the first power and the second power are used to determine the first difference value
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the measurement of the target second-type sub-signal is used to determine the target third sub-information; the third information includes the target third sub-information, and the third information is used to determine the second Power; the third node receives the target second-type sub-signal.
  • the measurement for the second type of signal is used to determine K path losses, and K is a positive integer greater than 1, and the K path losses are used to determine the first Two power.
  • the transmission power of the second signal is the minimum value of the first power and the second power.
  • the second time window is later than the time domain resource used to send the first information.
  • the third node is user equipment.
  • the third node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first processor receives the first type signal or sends the first type signal, and sends the second type signal or receives the second type signal;
  • the first transmitter sends the first signal
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the first signal carries first information
  • the first The information is related to the difference between the second power and the first power
  • the sending of the first information is triggered by a first condition.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second processor sends the first type of signal or receives the first type of signal
  • the second receiver receives the first signal
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the second type of signal is different from the sender of the first type of signal
  • the first signal carries first information, and the first information is related to the difference between the second power and the first power; the sending of the first information is triggered by a first condition .
  • This application discloses a third node device used for wireless communication, which is characterized in that it includes:
  • the third processor receives the target second-type sub-signal or sends the target second-type sub-signal;
  • the measurement for the first type of signal is used to determine the first power
  • the first type of signal is sent by a node device that is different from the sender of the target second type of sub-signal
  • the second type of signal includes the The target second-type sub-signal
  • the measurement of the second-type signal is used to determine the second power
  • the first information is related to the difference between the second power and the first power
  • the value of the first information The sending is triggered by the first condition.
  • this application has the following advantages:
  • Fig. 1 shows a flow chart of the first type of signal, the second type of signal and the first signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of the first power according to an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of the second power according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of the second power according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of sending of first information triggered by a first condition according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of first signaling according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of the first information including the first difference value according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the first condition according to an embodiment of the present application.
  • FIG. 14 shows a schematic diagram of the first information including the first sub-information according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of a second type of signal measurement used to determine K path losses according to an embodiment of the present application
  • FIG. 16 shows a schematic diagram of K path losses used to determine the second power according to an embodiment of the present application
  • FIG. 17 shows a schematic diagram of K path losses used to determine the second power according to an embodiment of the present application.
  • Fig. 18 shows a schematic diagram of a second signal according to an embodiment of the present application.
  • Fig. 19 shows a schematic diagram of second information according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of a first node sending a third signal in a second time window according to an embodiment of the present application
  • Fig. 21 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 22 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application
  • FIG. 23 shows a structural block diagram of a processing apparatus for equipment in a third node according to an embodiment of the present application.
  • Figure 24 shows a flow chart of transmission according to an embodiment of the present application.
  • Figure 25 shows a flow chart of transmission according to an embodiment of the present application.
  • FIG. 26 shows a schematic diagram of third information according to an embodiment of the present application.
  • Fig. 27 shows a schematic diagram of fourth information according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first type of signal, the second type of signal and the first signal according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in this application receives the first type signal or sends the first type signal in step 101; sends the second type signal or receives the second type signal in step 102; in step 103 Send the first signal in.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the first signal carries first information
  • the first The information is related to the difference between the second power and the first power
  • the sending of the first information is triggered by a first condition.
  • the first node receives the first type signal and sends the second type signal.
  • the first node receives the first type signal and receives the second type signal.
  • the first node sends the first type of signal and sends the second type of signal.
  • the first node sends the first type signal and receives the second type signal.
  • the first type of signal is a wireless signal.
  • the first type of signal is a baseband signal.
  • the first type of signal includes a reference signal.
  • the first type of signal includes a DL (DownLink, downlink) reference signal.
  • the first type of signal includes an SL (SideLink, secondary link) reference signal.
  • the first type of signal includes CSI-RS (Channel-State Information Reference Signals, channel state information reference signals).
  • CSI-RS Channel-State Information Reference Signals, channel state information reference signals.
  • the first type of signal includes SS/PBCH block (Synchronization Signal/Physical Broadcast Channel block, synchronization signal/physical broadcast channel block).
  • SS/PBCH block Synchronization Signal/Physical Broadcast Channel block, synchronization signal/physical broadcast channel block.
  • the first type of signal is transmitted through the Uu interface.
  • the first type of signal is transmitted through the link between the base station equipment and the user equipment.
  • the first type of signal is transmitted through the downlink.
  • the first type of signal is transmitted through a secondary link.
  • the first type of signal appears multiple times in the time domain.
  • the first type of signal appears only once in the time domain.
  • the second type of signal is a wireless signal.
  • the second type of signal is a baseband signal.
  • the second type of signal includes a reference signal.
  • the second type of signal includes an SL reference signal.
  • the second type signal includes a UL (UpLink, uplink) reference signal.
  • UL UpLink, uplink
  • the second type of signal includes CSI-RS.
  • the second type of signal includes SL CSI-RS.
  • the second type of signal includes SRS (Sounding Reference Signal, sounding reference signal).
  • the second type of signal includes DMRS (DeModulation Reference Signals).
  • the second type of signal includes SS (Synchronization Signal, synchronization signal).
  • the second type of signal includes SL SS.
  • the second type of signal includes SL SSB (SS/PBCH block).
  • the second type of signal is transmitted through the Pc5 interface.
  • the second type of signal is transmitted through a link between the user equipment and the user equipment.
  • the second type of signal is transmitted through a secondary link.
  • the second type of signal is transmitted through the uplink.
  • the second type of signal appears multiple times in the time domain.
  • the second type of signal appears only once in the time domain.
  • the first type signal and the second type signal belong to the same carrier in the frequency domain.
  • the unit of the first power is dBm (millidecibels).
  • the unit of the second power is dBm (millidecibel).
  • the first type of signal is transmitted on the first type of link
  • the second type of signal is transmitted on the second type of link
  • the first type of link is DL
  • the second type of link is SL
  • the first type of link is SL
  • the second type of link is SL
  • the first type of link is a link between a base station device and a user equipment
  • the second type of link is a link between the user equipment and the user equipment
  • the first type of link and the second type of link are links between user equipment and user equipment, respectively.
  • the measurement of the sentence for the first type of signal is used to determine the first power includes: the measurement for the first type of signal is used to determine the first path loss, the first path loss Is used to determine the first power.
  • the measurement of the sentence for the second type of signal is used to determine the second power includes: the measurement for the second type of signal is used to determine the second path loss, the second path loss Is used to determine the second power.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the first signal is transmitted through a Uu interface.
  • the first signal is transmitted through a link between the base station equipment and the user equipment.
  • the first signal is transmitted through the uplink.
  • the first signal is transmitted through a secondary link.
  • the first signal is transmitted on PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the first signal is transmitted on PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the information bit block of the first information is used to generate the first signal.
  • the first information is carried by higher layer signaling.
  • the first information is carried by MAC CE (Medium Access Control Layer Control Element, Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element, Medium Access Control Layer Control Element
  • the first information includes a MAC CE.
  • the first information includes all or part of information in a MAC CE.
  • the first information includes PHR (Power Headroom Report, Power Headroom Report).
  • the first information includes second sub-information, and the second sub-information indicates that the first information is for a link between the user equipment and the user equipment.
  • the first information includes second sub-information, and the second sub-information indicates that the first information is for a secondary link.
  • the first information includes second sub-information
  • the second sub-information indicates that the first information is for a link used to transmit the second type of reference signal.
  • the first information includes second sub-information, and the second sub-information indicates that the first information is not for a link used to transmit the first type of reference signal.
  • the difference between the second power and the first power is used to determine the first information.
  • the first information is used to determine the difference between the second power and the first power.
  • the first information indicates the difference between the second power and the first power.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UEs (User Equipment) 201, a UE 241 that communicates with UE 201 on a side link (Sidelink), NG-RAN (Next Generation Radio Access Network) 202, 5G-CN (5G) -CoreNetwork, 5G core network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • UE 241 Next Generation Radio Access Network
  • 5G-CN (5G) -CoreNetwork Next Generation Radio Access Network
  • 5G core network 5G core network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5G-CN/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane) Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Serving Gateway) 212, and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that handles signaling between UE201 and 5G-CN/EPC210. Generally, MME/AMF/UPF211 provides bearer and connection management.
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the gNB203.
  • the second node in this application includes the UE241.
  • the third node in this application includes the UE241.
  • the third node in this application includes the UE201.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the air interface between the UE201 and the UE241 is a PC-5 interface.
  • the radio link between the UE 201 and the UE 241 is a side link (Sidelink).
  • the first node in this application and the third node in this application are respectively a terminal within the coverage of the gNB203.
  • the first node in this application is a terminal within the coverage of the gNB203
  • the third node in this application is a terminal outside the coverage of the gNB203.
  • the third node in this application is a terminal covered by the gNB203.
  • the third node in this application is a terminal outside the coverage of the gNB203.
  • the UE 201 and the UE 241 support unicast (Unicast) transmission.
  • unicast unicast
  • the UE 201 and the UE 241 support broadcast (Broadcast) transmission.
  • the UE 201 and the UE 241 support multicast (Groupcast) transmission.
  • the sender of the first-type signal in this application includes the gNB203.
  • the receiver of the first-type signal in this application includes the UE201.
  • the sender of the second type signal in this application includes the UE241.
  • the receiver of the second type of signal in this application includes the UE201.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for UE and gNB with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW 213 on the network side and a network layer terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request).
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first-type signal in this application is generated in the PHY301.
  • the second type of signal in this application is generated in the PHY301.
  • the first signal in this application is generated in the PHY301.
  • the first information in this application is generated in the PHY301.
  • the first signaling in this application is generated in the PHY301.
  • the first signaling in this application is generated in the MAC sublayer 302.
  • the second signal in this application is generated in the PHY301.
  • the third signal in this application is generated in the PHY301.
  • the second information in this application is generated in the MAC sublayer 302.
  • the second information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multiple antenna receiving processor 472, a multiple antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the communication device 450 is any parallel stream to the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving or sending the first type of signal in this application; sending or receiving the second type of signal in this application; sending the first signal in this application.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the first signal carries first information, and the first The information is related to the difference between the second power and the first power; the sending of the first information is triggered by a first condition.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving or Send the first type of signal in this application; send or receive the second type of signal in this application; send the first signal in this application.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the first signal carries first information
  • the first The information is related to the difference between the second power and the first power
  • the sending of the first information is triggered by a first condition.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending or receiving the first type signal in this application; and receiving the first signal in this application.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the second type of signal is different from the first type of signal.
  • a node of the sender sends; the first signal carries first information, and the first information is related to the difference between the second power and the first power; the sending of the first information is subject to the first condition trigger.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending or Receive the first type signal in this application; receive the first signal in this application.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the second type of signal is different from the first type of signal.
  • a node of the sender sends; the first signal carries first information, and the first information is related to the difference between the second power and the first power; the sending of the first information is subject to the first condition trigger.
  • the first communication device 410 includes: at least one processor and at least one memory, where the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: receiving or sending the target second-type sub-signal in this application.
  • the measurement for the first type of signal is used to determine the first power, and the first type of signal is sent by a node different from the sender of the target second type of sub-signal; the second type of signal includes the target The second type of sub-signal, the measurement of the second type of signal is used to determine the second power; the first information is related to the difference between the second power and the first power; the transmission of the first information Triggered by the first condition.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, which generates an action when executed by at least one processor, and the action includes: receiving or sending this The second type of sub-signal of the target mentioned in the application.
  • the measurement for the first type of signal is used to determine the first power, and the first type of signal is sent by a node different from the sender of the target second type of sub-signal; the second type of signal includes the target The second type of sub-signal, the measurement of the second type of signal is used to determine the second power; the first information is related to the difference between the second power and the first power; the transmission of the first information Triggered by the first condition.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410.
  • the third node in this application includes the second communication device 410.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first type of signal in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first-type signal in this application.
  • ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the first type of signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/ At least one of the processor 459, the memory 460, and the data source 467 ⁇ is used to send the first-type signal in this application.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the second type of signal in this application;
  • the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/ At least one of the processor 459, the memory 460, and the data source 467 ⁇ is used to send the second type signal in this application.
  • ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the first signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processing At least one of the device 459, the memory 460, and the data source 467 ⁇ is used to send the first signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the third information in this application;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the fourth information in this application;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first signaling in this application.
  • ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the second signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processing At least one of the device 459, the memory 460, and the data source 467 ⁇ is used to send the second signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second information in this application;
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the third signal in this application in the second time window in this application;
  • the antenna 452, the transmitter 454, the transmission processor 468, the multiple At least one of the antenna transmission processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the data in the second time window in this application The third signal.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the second node U1, the first node U2, and the third node U3 are respectively communication nodes transmitted between each other through an air interface.
  • the steps in blocks F51 to F57 are optional.
  • the second node U1 sends the first type of signal in step S511; sends the second signal in step S5101; sends the first signal in step S5102; receives the first signal in step S512; and sends the first signal in step S5103 Second information: send the third signaling in step S5104.
  • the first node U2 receives the first type of signal in step S521; sends the second type of signal in step S522; receives the third information in step S5201; receives the second signaling in step S5202; and sends the second signal in step S5203 Second signal; in step S5204, the first signaling is received; in step S523, the first signal is sent; in step S5205, the second information is received; in step S5206, the third signaling is received; in step S5207, in the second time window Send the third signal in.
  • the third node U3 receives the second-type signal in step S531; sends the third information in step S5301; receives the second signal in step S5302; and receives the third signal in the second time window in step S5303.
  • the measurement for the first type of signal is used by the first node U2 to determine the first power
  • the measurement for the second type of signal is used by the first node U2 to determine the second power.
  • Power; the first signal carries first information, the first information is related to the difference between the second power and the first power; the sending of the first information is triggered by a first condition.
  • the measurement for the second type of signal is used by the third node U3 to determine the third information, and the third information is used by the first node U2 to determine the second power.
  • the first signaling is used by the first node U2 to determine the time-frequency resource occupied by the first signal.
  • the second signaling is used by the first node U2 to determine the time-frequency resource occupied by the second signal; the transmission power of the second signal is the first power and the second power Minimum value.
  • the second information is used by the first node U2 to determine the transmit power of the third signal; the third signaling is used by the first node U2 to determine the time frequency occupied by the third signal Resources; the second time window is later than the time domain resources occupied by the first signal.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the third node U3 is the third node in this application.
  • the air interface between the second node U1 and the first node U2 is a Uu interface.
  • the air interface between the second node U1 and the first node U2 includes a cellular link.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the relay node and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the air interface between the third node U3 and the first node U2 is a PC5 interface.
  • the air interface between the third node U3 and the first node U2 includes a secondary link.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between the user equipment and the relay node.
  • the first node in this application is a terminal.
  • the first node in this application is a car.
  • the first node in this application is a vehicle.
  • the first node in this application is an RSU (Road Side Unit, Road Side Unit).
  • the second node in this application is a terminal.
  • the third node in this application is a terminal.
  • the third node in this application is a car.
  • the third node in this application is a vehicle.
  • the third node in this application is an RSU.
  • the second-type signal is the target second-type sub-signal in this application.
  • the second-type signal only includes the target second-type sub-signal in this application.
  • the second-type signal is composed of the target second-type sub-signal in this application.
  • the third information is the target third sub-information in this application.
  • the third information is composed of the target third sub-information in this application.
  • the third information only includes the target third sub-information in this application.
  • the sending of the second-type signal of the sentence by a node different from the sender of the first-type signal includes: the sender of the second-type signal is a user equipment, and the first The sender of the analog signal is a base station.
  • the transmission of the first-type signal of the sentence by a node different from the sender of the target second-type sub-signal includes: the sender of the first-type signal is a base station, and the target The sender of the second type of sub-signal is a user equipment.
  • the second type signal of the sentence being sent by a node different from the sender of the first type signal includes: the sender of the second type signal and the sending of the first type signal Each is a user equipment, and the identifier of the sender of the second type of signal is different from the identifier of the sender of the first type of signal.
  • the first-type signal of the sentence being sent by a node different from the sender of the target second-type sub-signal includes: the sender of the first-type signal and the target second-type signal
  • the senders of the sub-signals are respectively user equipment, and the identifier of the sender of the first-type signal is different from the identifier of the sender of the target second-type sub-signal.
  • the identifier includes C (Cell)-RNTI (Radio Network Temporary Identifier, radio network temporary identifier).
  • C Cell
  • RTI Radio Network Temporary Identifier, radio network temporary identifier
  • the identifier includes IMSI (International Mobile Subscriber Identification Number, International Mobile Subscriber Identification Number).
  • the identifier includes S-TMSI (SAE Temporary Mobile Subscriber Identity, SAE Temporary Mobile Subscriber Identity).
  • S-TMSI SAE Temporary Mobile Subscriber Identity, SAE Temporary Mobile Subscriber Identity
  • the first information includes a first difference
  • the first power and the second power are used by the first node U2 to determine the first difference
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the first information includes first sub-information, and the first sub-information indicates that the difference between the second power and the first power is greater than the first threshold.
  • the second signaling is layer 1 (L1) signaling.
  • the second signaling is layer 1 (L1) control signaling.
  • the second signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the second signaling includes one or more fields in the DCI.
  • the second signaling indicates the time-frequency resource occupied by the second signal.
  • the second signaling is transmitted through a Uu interface.
  • the second signaling is transmitted on PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the third signaling is layer 1 (L1) signaling.
  • the third signaling is layer 1 (L1) control signaling.
  • the third signaling includes DCI.
  • the third signaling includes one or more fields in the DCI.
  • the third signaling indicates the time-frequency resource occupied by the third signal.
  • the third signaling is transmitted through the Uu interface.
  • the third signaling is transmitted on the PDCCH.
  • the time domain resource occupied by the third signaling belongs to the second time window.
  • Embodiment 6 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 6.
  • the second node U4, the first node U5, and the third node U6 are communication nodes that are transmitted between each other through an air interface.
  • the steps in block F61 and block F62 are optional respectively.
  • the second node U4 receives the first type signal in step S641; and sends the fourth information in step S6401.
  • the first node U5 sends the first-type signal in step S651; receives the fourth information in step S6501; receives the target second-type sub-signal in step S652; receives the K second-type sub-signals in step S6502. K-1 second-type sub-signals other than the target second-type sub-signal.
  • the third node U6 sends the target sub-signal of the second type in step S661.
  • the measurement for the first type of signal is used by the first node U5 to determine the first power
  • the measurement for the second type of signal is used by the first node U5 to determine the second power
  • the second-type signal includes the K second-type sub-signals, K is a positive integer greater than 1, and the target second-type sub-signal is one of the K second-type sub-signals signal.
  • the measurement for the first type of signal is used by the second node U4 to determine the fourth information, and the fourth information is used by the first node U5 to determine the first power.
  • the measurements for the K second-type sub-signals are respectively used by the first node U5 to determine the K path losses in this application, and the K path losses are used by the first node U5.
  • the node U5 is used to determine the second power.
  • the sender of any second-type sub-signal in the K-1 second-type sub-signals is different from the third node.
  • the identifier of the sender of any second type sub-signal in the K-1 second type sub-signals is different from the identifier of the third node.
  • Embodiment 7 illustrates a schematic diagram of the first power according to an embodiment of the present application; as shown in FIG. 7.
  • the first power is the minimum value of the first reference power and the first power threshold; the first reference power and the first path loss are linearly correlated, which is aimed at the first category in this application.
  • the measurement of the signal is used to determine the first path loss; the linear coefficient between the first reference power and the first path loss is the first coefficient.
  • the symbol " ⁇ " in Figure 7 indicates linear correlation.
  • the first path loss is equal to the transmit power of the first type signal minus the RSRP (Reference Signal Received Power) of the first type signal.
  • the first path loss is PL b, f, c (q d ), and the index of the first type signal is the q d .
  • the first node in this application sends the first type of signal, and the fourth information in this application is used to determine the first path loss.
  • the first power threshold is an uplink transmit power threshold.
  • the first power threshold is a PUSCH transmit power threshold.
  • the unit of the first power threshold is dBm (millidecibels).
  • the first power threshold is P CMAX,f,c (i).
  • the unit of the first reference power is dBm (millidecibels).
  • the first coefficient is a non-negative real number less than or equal to 1.
  • the first coefficient is ⁇ b, f, c (j).
  • the first coefficient is configured by a higher layer parameter.
  • the first reference power and the first component are linearly related, and the linear coefficient between the first reference power and the first component is 1; the first component is a power reference.
  • the first component is P 0_PUSCH, b, f, c (j).
  • the first component is P 0 (j) used for uplink power control.
  • the first component is P 0 (j) for PUSCH power control.
  • the first component is configured with higher-layer parameters.
  • the first reference power and the second component are linearly related, and the linear coefficient between the first reference power and the second component is 1; the second component is related to the first bandwidth.
  • the first bandwidth is a bandwidth represented by the number of RBs (Resource Block, resource block) to which the first signal is allocated.
  • the first bandwidth is the bandwidth expressed by the number of RBs allocated to the PUSCH.
  • the first bandwidth is a bandwidth represented by the number of RBs.
  • the first bandwidth is pre-configured.
  • the second component is The first bandwidth
  • the first reference power and the third component are linearly related, the linear coefficient between the first reference power and the third component is 1, and the third component is ⁇ TF, b, f ,c (i).
  • the first reference power and the fourth component are linearly related, the linear coefficient between the first reference power and the fourth component is 1, and the fourth component is a power control adjustment state.
  • the fourth component is f b, f, c (i, l).
  • the first reference power is linearly related to the first path loss, the first component, the second component, the third component and the fourth component, respectively.
  • the linear coefficient between the first reference power and the first path loss is the first coefficient; the first reference power and the first component, the second component, the third component and the The linear coefficients between the fourth components are 1 respectively.
  • Embodiment 8 illustrates a schematic diagram of the second power according to an embodiment of the present application; as shown in FIG. 8.
  • the second power is the minimum value of the second reference power and the second power threshold; the second reference power and the second path loss are linearly correlated, which is aimed at the second category in this application.
  • the measurement of the signal is used to determine the second path loss; the linear coefficient between the second reference power and the second path loss is the second coefficient.
  • the symbol " ⁇ " in Fig. 8 indicates linear correlation.
  • the second path loss is equal to the transmit power of the second type signal minus the RSRP of the second type signal.
  • the second path loss is PL.
  • the first node in this application sends the second type of signal, and the third information in this application is used to determine the second path loss.
  • the unit of the second power threshold is dBm (millidecibels).
  • the second power threshold is P CMAX, PSSCH .
  • the unit of the second reference power is dBm (millidecibels).
  • the second coefficient is a non-negative real number less than or equal to 1.
  • the second coefficient is ⁇ PSSCH .
  • the second coefficient is ⁇ used for power control on the secondary link.
  • the second coefficient is configured by a higher layer parameter.
  • the second reference power and the fifth component are linearly related, and the linear coefficient between the second reference power and the fifth component is 1; the fifth component is a power reference.
  • the fifth component is P 0 used for power control on the secondary link.
  • the fifth component is P 0_PSSCH .
  • the fifth component is configured with higher layer parameters.
  • the second reference power and the sixth component are linearly related, and the linear coefficient between the second reference power and the sixth component is 1; the sixth component is related to the second bandwidth.
  • the second bandwidth is a bandwidth expressed by the number of RBs to which the second signal is allocated.
  • the second bandwidth is a bandwidth expressed by the number of RBs to which PSSCH (Physical Sidelink Shared Channel) is allocated.
  • the second bandwidth is a bandwidth represented by the number of RBs.
  • the second bandwidth is pre-configured.
  • a sub-embodiment of the sixth component is 10log 10 (2 ⁇ M PSSCH) , the second bandwidth is an M PSSCH.
  • the sixth component is 10log 10 (M PSSCH ), and the second bandwidth is M PSSCH .
  • the second reference power is linearly related to the second path loss, the fifth component and the sixth component, respectively.
  • the linear coefficient between the second reference power and the second path loss is the second coefficient; the linear coefficients between the second reference power and the fifth component and the sixth component are respectively 1.
  • the first information in this application includes the second power threshold.
  • Embodiment 9 illustrates a schematic diagram of the second power according to an embodiment of the present application; as shown in FIG. 9.
  • the second power is linearly related to the third reference power, and the linear coefficient between the second power and the third reference power is 1;
  • the third reference power is the fourth reference power And the minimum value of the third power threshold, the fourth reference power is linearly related to the second path loss, and the measurement for the second type of signal in this application is used to determine the second path loss;
  • the linear coefficient between the fourth reference power and the second path loss is the third coefficient.
  • the symbol " ⁇ " indicates linear correlation.
  • the unit of the third power threshold is dBm (millidecibels).
  • the third power threshold is P CMAX .
  • the third power threshold is the minimum value of the fourth power threshold and the fifth power threshold.
  • the unit of the fourth power threshold is dBm.
  • the unit of the fifth power threshold is dBm.
  • the fourth power threshold is P CMAX .
  • the fifth power threshold is P MAX_CBR .
  • the unit of the third reference power is dBm (millidecibels).
  • the unit of the fourth reference power is dBm (millidecibel).
  • the second power is equal to the sum of the third reference power and the fifth reference power
  • the fifth reference power is respectively related to the third bandwidth and the fourth bandwidth.
  • the third bandwidth is the bandwidth represented by the number of RBs to which the PSSCH is allocated
  • the fourth bandwidth is the PSCCH (Physical Sidelink Control Channel, physical secondary link control channel) allocated The received bandwidth expressed in the number of RBs.
  • the third bandwidth and the fourth bandwidth are M PSSCH and M PSCCH respectively .
  • the bandwidth represented by the number of RBs to which the second signal in this application is allocated includes the third bandwidth.
  • the bandwidth represented by the number of RBs to which the second signal in this application is allocated includes the fourth bandwidth.
  • the third bandwidth and the fourth bandwidth are bandwidths represented by the number of RBs.
  • the third bandwidth and the fourth bandwidth are respectively pre-configured.
  • the third coefficient is a non-negative real number less than or equal to 1.
  • the third coefficient is ⁇ PSSCH .
  • the third coefficient is ⁇ used for power control on the secondary link.
  • the third coefficient is configured by a higher layer parameter.
  • the fourth reference power and the seventh component are linearly related, and the linear coefficient between the fourth reference power and the seventh component is 1; the seventh component is a power reference.
  • the seventh component is P 0 for power control on the secondary link.
  • the seventh component is P 0_PSSCH .
  • the seventh component is configured with higher-layer parameters.
  • the fourth reference power and the eighth component are linearly related, and the linear coefficient between the fourth reference power and the eighth component is 1; the eighth component and the third bandwidth are summed The fourth bandwidths are related respectively.
  • the fourth reference power is linearly related to the second path loss, the seventh component and the eighth component, respectively.
  • the linear coefficient between the fourth reference power and the second path loss is the third coefficient; the linear coefficients between the fourth reference power and the seventh component and the eighth component are respectively 1.
  • the first information in this application includes the fifth power threshold.
  • Embodiment 10 illustrates a schematic diagram of sending first information triggered by a first condition according to an embodiment of the present application; as shown in FIG. 10.
  • the sending of the first information in the sentence being triggered by a first condition includes: when the first condition is not met, the first information is not sent.
  • the sending of the first information in the sentence being triggered by a first condition includes: when the first condition is satisfied, the first information is sent.
  • the sending of the first information in the sentence being triggered by a first condition includes: when the first condition is not met, the sending of the first information is not triggered.
  • the sending of the first information in the sentence being triggered by a first condition includes: when the first condition is met, the sending of the first information is triggered.
  • the first condition includes: the first timer has expired.
  • the first timer is configured by higher layer signaling.
  • the first timer is configured by RRC signaling.
  • the first timer is for the link between the user equipment and the user equipment.
  • the first timer is for the link between the base station device and the user equipment.
  • the first timer is for a link used to transmit the first-type signal in this application.
  • the first timer is for a link used to transmit the second type of signal in this application.
  • the first timer is a phr-PeriodicTimer.
  • the first timer is phr-ProhibitTimer.
  • the first condition includes: both the third timer and the second timer have expired.
  • the third timer and the second timer are respectively configured by higher layer signaling.
  • the third timer and the second timer are respectively configured by RRC signaling.
  • the third timer is for the link between the base station equipment and the user equipment
  • the second timer is for the link between the user equipment and the user equipment
  • the third timer is for the link used to transmit the first type of signal in this application
  • the second timer is for the link used to transmit the signal in this application.
  • the link of the second type of signal is for the link used to transmit the first type of signal in this application.
  • the second timer is a phr-PeriodicTimer.
  • the second timer is a phr-ProhibitTimer.
  • the third timer is phr-PeriodicTimer.
  • the third timer is phr-ProhibitTimer.
  • the specific definition of the phr-PeriodicTimer participates in 3GPP TS38.331.
  • the specific definition of the phr-ProhibitTimer participates in 3GPP TS38.331.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the first path loss measured by the first node in this application exceeds a first given time window. Threshold; the measurement for the first type of signal in this application is used to determine the first path loss.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the second path loss measured by the first node in this application exceeds a second given time window. Threshold; the measurement for the second type of signal in this application is used to determine the second path loss.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the first path loss measured by the first node in this application exceeds a first given time window. Threshold, and the difference between the maximum value and the minimum value of the second path loss measured by the first node exceeds a second given threshold; for the measurement of the first type signal and the second type signal in this application They are used to determine the first path loss and the second path loss respectively.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the first path loss measured by the first node in this application exceeds a first given time window. Threshold; in a second given time window, the difference between the maximum value and the minimum value of the second path loss measured by the first node exceeds the second given threshold. Measurements for the first type signal and the second type signal in this application are used to determine the first path loss and the second path loss, respectively.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the first power exceeds a third given threshold.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the second power exceeds a fourth given threshold;
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the first power exceeds a third given threshold, and the maximum value of the second power The difference from the minimum value exceeds the fourth given threshold.
  • the first condition includes: within a first given time window, the difference between the maximum value and the minimum value of the first power exceeds a third given threshold; within a second given time window, The difference between the maximum value and the minimum value of the second power exceeds a fourth given threshold.
  • the given power is the minimum power of the first power and the second power
  • the first condition includes: within a first given time window, the given power is the first power Whether the first power or the second power has changed.
  • the first condition includes: within a first given time window, the minimum power of the first power and the second power changes from the first power to the second power.
  • the first condition includes: within a first given time window, the minimum power of the first power and the second power changes from the second power to the first power.
  • the given path loss is the smallest path loss of the first path loss and the second path loss
  • the first condition includes: within a first given time window, the given path loss Whether the first path loss or the second path loss has changed.
  • the first condition includes: within a first given time window, the minimum path loss of the first path loss and the second path loss changes from the first path loss to the The second road loss.
  • the first condition includes: within a first given time window, the smallest path loss of the first path loss and the second path loss changes from the second path loss to the The first road loss.
  • the first given time window is a continuous time period.
  • the first given time window is not less than prohibitPHR-Timer and not greater than periodicPHR-Timer.
  • the first given time window is the length of time of the first timer.
  • the second given time window is a continuous time period.
  • the second given time window is not less than prohibitPHR-Timer and not greater than periodicPHR-Timer.
  • the second given time window is the length of time of the second timer.
  • the first condition includes: the difference between the first power in this application and the second power in this application is greater than a second threshold, and the second threshold is a non-negative real number.
  • the first condition includes: the first power in the present application minus the second power in the present application is greater than a second threshold, and the second threshold is a non-negative real number.
  • the first condition includes: the absolute value of the difference between the first power in this application and the second power in this application is greater than a second threshold, and the second threshold is a non-negative real number.
  • the second threshold is a positive real number.
  • the second threshold is configured by higher layer signaling.
  • the second threshold is configured by RRC signaling.
  • the second threshold is UE-specific.
  • the second threshold is configured semi-statically.
  • the second threshold is predefined.
  • the first node in this application determines the second threshold by itself.
  • Embodiment 11 illustrates a schematic diagram of the first signaling according to an embodiment of the present application; as shown in FIG. 11.
  • the first signaling is used to determine the time-frequency resource occupied by the first signal in this application.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) control signaling.
  • the first signaling includes DCI.
  • the first signaling includes one or more fields in the DCI.
  • the first signaling indicates the time-frequency resource occupied by the first signal.
  • the first signaling explicitly indicates the time-frequency resource occupied by the first signal.
  • the first signaling implicitly indicates the time-frequency resource occupied by the first signal.
  • the first signaling includes scheduling information of the first signal.
  • the scheduling information of the first signal includes occupied time domain resources, occupied frequency domain resources, scheduled MCS (Modulation and Coding Scheme), DMRS configuration information, HARQ (Hybrid Automatic Repeat reQuest) one or more of process number (process number), RV (Redundancy Version), and NDI (New Data Indicator, new data indicator).
  • MCS Modulation and Coding Scheme
  • DMRS configuration information HARQ (Hybrid Automatic Repeat reQuest) one or more of process number (process number), RV (Redundancy Version), and NDI (New Data Indicator, new data indicator).
  • the first signaling is transmitted through a Uu interface.
  • the first signaling is transmitted through a Pc5 interface.
  • the first signaling is transmitted through a link between the base station equipment and the user equipment.
  • the first signaling is transmitted through DL.
  • the first signaling is transmitted on the PDCCH.
  • Embodiment 12 illustrates a schematic diagram of the first information including the first difference according to an embodiment of the present application; as shown in FIG. 12.
  • the first information includes the first difference, and the first power and the second power in this application are used to determine the first difference.
  • the unit of the first difference is dB (decibel).
  • the first difference is PHR.
  • the first difference is the difference between the second power and the first power.
  • the first difference is equal to the second power minus the first power.
  • the first difference is equal to the first power minus the second power.
  • the first difference is the absolute value of the difference between the second power and the first power.
  • Embodiment 13 illustrates a schematic diagram of the first condition according to an embodiment of the present application; as shown in FIG. 13.
  • the first condition includes that the difference between the second power in the present application and the first power in the present application is greater than the first threshold in the present application.
  • the first condition includes: the second power minus the first power is greater than the first threshold.
  • the unit of the first threshold is dBm.
  • the first threshold is a non-negative real number.
  • the first threshold is a positive real number.
  • the first threshold is equal to zero.
  • the first threshold is greater than zero.
  • the first threshold is configured by higher layer signaling.
  • the first threshold is configured by RRC signaling.
  • the first threshold is predefined.
  • the first threshold is UE-specific.
  • the first threshold is configured semi-statically.
  • the first node in this application determines the first threshold by itself.
  • the method in the first node used for wireless communication in this application includes:
  • the downlink information indicates the first threshold
  • the downlink information is carried by RRC signaling
  • the downlink information is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • Embodiment 14 illustrates a schematic diagram of the first information including the first sub-information according to an embodiment of the present application; as shown in FIG. 14.
  • the first information includes first sub-information, and the first sub-information indicates that the difference between the second power in this application and the first power in this application is greater than that in this application.
  • the first threshold is the first threshold.
  • the first sub-information includes one information bit.
  • the first sub-information includes a bit sequence.
  • Embodiment 15 illustrates a schematic diagram of a second type of signal measurement used to determine K path losses according to an embodiment of the present application; as shown in FIG. 15.
  • the indexes of the K path losses are #0, ..., #K-1, respectively.
  • the second-type signal includes K second-type sub-signals; measurements on the K second-type sub-signals are respectively used to determine K path losses.
  • the senders of the K second-type sub-signals are all the first nodes in this application.
  • the senders of the K second-type sub-signals are all the first nodes in this application, and the K second-type sub-signals respectively correspond to different target receivers. .
  • the senders of any two second-type sub-signals in the K second-type sub-signals are different.
  • the sender of any second-type sub-signal in the K second-type sub-signals is a user equipment, and any two second-type sub-signals in the K second-type sub-signals The identity of the sender of the class sub-signal is different.
  • At least two of the K second-type sub-signals have different senders.
  • the sender of any second-type sub-signal in the K second-type sub-signals is a user equipment, and there are at least two second-type sub-signals in the K second-type sub-signals.
  • the identifiers of the senders of the two types of sub-signals are different.
  • any two of the K second-type sub-signals cannot be assumed to be QCL (Quasi Co-Located).
  • At least two of the K second-type sub-signals cannot be assumed to be QCL.
  • At least two of the K second-type sub-signals are QCL.
  • the K second-type sub-signals are respectively K wireless signals.
  • the K second-type sub-signals are K baseband signals, respectively.
  • any second-type sub-signal in the K second-type sub-signals includes a reference signal.
  • any second-type sub-signal in the K second-type sub-signals includes a CSI-RS.
  • any of the K second-type sub-signals includes SLCSI-RS.
  • any second-type sub-signal in the K second-type sub-signals includes SS.
  • any of the K second-type sub-signals includes SLSS.
  • any of the K second-type sub-signals includes SLSSB.
  • the K second-type sub-signals are respectively transmitted through a Pc5 interface.
  • the K second-type sub-signals are respectively transmitted through SL.
  • one second-type sub-signal appears multiple times in the time domain.
  • one of the K second-type sub-signals only appears once in the time domain.
  • any one of the K path losses is equal to the transmission power of the corresponding second-type sub-signal minus the RSRP of the corresponding second-type sub-signal.
  • the K second-type sub-signals respectively correspond to different target receivers, and any one of the K path losses is equal to the transmission power of the corresponding second-type sub-signal minus Remove the RSRP of the corresponding second-type sub-signal measured by the target receiver of the corresponding second-type sub-signal.
  • the target receiver of the second-type signal includes K nodes, and the measurements of the K nodes for the second-type signal are respectively used to determine the K path losses.
  • any one of the K path losses is equal to the transmit power of the second type signal minus the RSRP of the second type signal measured by the corresponding node.
  • the K nodes are respectively user equipment; any two of the K nodes have different identities.
  • the first node in this application sends the second type of signal; the third information in this application is used to determine the K path losses.
  • Embodiment 16 illustrates a schematic diagram of K path losses used to determine the second power according to an embodiment of the present application; as shown in FIG. 16.
  • the K path losses are respectively used to determine K second type powers, and the K second type powers are used to determine the second power.
  • the indexes of the K path losses and the K second type powers are #0,..., #K-1, respectively.
  • the measurement of the sentence for the second type signal used to determine the second power includes: the K path losses are respectively used to determine K second type powers, and the K second types of power The class power is used to determine the second power.
  • the units of the K second type powers are dBm respectively.
  • the second power is the largest second power in the K second powers.
  • the second power is the smallest second-class power among the K second-class powers.
  • the second power is an average value of the K second type powers.
  • the second power is linearly related to each of the K second powers.
  • K reference powers are respectively used to determine the K second type powers; the K reference powers are linearly related to the K path losses respectively; any one of the K reference powers The linear coefficient between the reference power and the corresponding path loss is a positive real number not greater than 1.
  • the method for determining the second power according to the second reference power in Embodiment 8 of the present application may be used to determine the second power according to one of the K reference powers. Determine the corresponding second type of power.
  • the method for determining the second power according to the fourth reference power in Embodiment 8 of the present application may be used to determine the second power according to one of the K reference powers. Determine the corresponding second type of power.
  • the method for determining the second reference power in Embodiment 8 of the present application may be used to determine one reference power of the K reference powers.
  • the method for calculating the fourth reference power in Embodiment 9 of the present application may be used to determine the calculation of one reference power among the K reference powers.
  • the first condition in this application includes: Which of the K second-type powers among the K second-type powers is the largest second-type power among the K second-type powers Variety.
  • the first condition in this application includes: which of the K second-class powers is the smallest second-class power among the K second-class powers Variety.
  • Embodiment 17 illustrates a schematic diagram of K path losses being used to determine the second power according to an embodiment of the present application; as shown in FIG. 17.
  • the K path losses are used to determine the target path loss, and the target path loss is used to determine the second power.
  • the K path loss indexes are #0, ..., #K-1, respectively.
  • the measurement of the sentence for the second type of signal used to determine the second power includes: the target path loss is used to determine the second power, and the K path losses in this application are used to determine the second power. Used to determine the target path loss.
  • the target path loss is the largest path loss among the K path losses.
  • the target path loss is the smallest path loss among the K path losses.
  • the target path loss is an average value of the K path losses.
  • the target path loss is an average value of the linear values of the K path losses.
  • the target path loss is linearly related to each of the K path losses.
  • the linear value of the target path loss is linearly related to the linear value of each of the K path losses.
  • the target path loss is the path loss with the largest change among the K path losses.
  • the target path loss is the path loss with the smallest change among the K path losses.
  • the second reference power and the target path loss in the embodiment 8 of the present application are linearly related, and the linear coefficient between the second reference power and the target path loss is the same as that of the embodiment 8.
  • the second reference power in Embodiment 8 of the present application is linearly related to the target path loss
  • the fifth component in Embodiment 8 is linearly related to the sixth component in Embodiment 8.
  • the linear coefficient between the second reference power and the target path loss is the second coefficient described in Embodiment 8; the linear coefficient between the second reference power and the fifth component and the sixth component The coefficients are 1 respectively.
  • the first condition in this application includes: within a first given time window, the difference between the maximum value and the minimum value of the target path loss measured by the first node in this application Exceeds the third given threshold.
  • the first condition in this application includes: within a first given time window, the maximum and minimum value of the first path loss measured by the first node in this application The difference exceeds a first given threshold, and the difference between the maximum value and the minimum value of the target path loss measured by the first node exceeds a third given threshold; for the measurement of the first type of signal in this application Is used to determine the first path loss.
  • the first condition in this application includes: within a first given time window, the maximum and minimum value of the first path loss measured by the first node in this application The difference exceeds a first given threshold; within a second given time window, the difference between the maximum value and the minimum value of the target path loss measured by the first node exceeds a third given threshold.
  • the measurement for the first type of signal in this application is used to determine the first path loss.
  • the fourth reference power and the target path loss in the embodiment 9 of the present application are linearly correlated, and the linear coefficient between the fourth reference power and the target path loss is that of the embodiment 9.
  • the fourth reference power and the target path loss in embodiment 9 in this application are respectively linear, and the seventh component in embodiment 9 and the eighth component in embodiment 9 are linear.
  • the linear coefficient between the fourth reference power and the target path loss is the third coefficient in Embodiment 9; the fourth reference power is between the seventh component and the eighth component
  • the linear coefficients are 1 respectively.
  • the first condition in this application includes: the largest path loss among the K path losses is which of the K path losses has changed.
  • the first condition in this application includes: the smallest path loss among the K path losses is which of the K path losses has changed.
  • the first condition in this application includes: within a first given time window, the difference between the maximum value and the minimum value of the target path loss exceeds a fifth given threshold.
  • Embodiment 18 illustrates a schematic diagram of the second signal according to an embodiment of the present application; as shown in FIG. 18.
  • the transmission power of the second signal is the minimum value of the first power in this application and the second power in this application.
  • the end time of the time domain resource occupied by the second signal is earlier than the start time of the time domain resource occupied by the first signal.
  • the end time of the time domain resource occupied by the second signal is not later than the start time of the time domain resource occupied by the first signaling in this application.
  • the start time of the time domain resource occupied by the second signal is related to the time when the first condition in this application is satisfied.
  • the start time of the time domain resource occupied by the second signal is not earlier than the time when the first condition in this application is satisfied.
  • the end time of the time domain resource occupied by the scheduling signaling of the second signal is earlier than the start time of the time domain resource occupied by the first signal.
  • the end time of the time domain resource occupied by the scheduling signaling of the second signal is no later than the start time of the time domain resource occupied by the first signaling in this application.
  • the start time of the time domain resource occupied by the scheduling signaling of the second signal is related to the time when the first condition in this application is satisfied.
  • the start time of the time domain resource occupied by the scheduling signaling of the second signal is not earlier than the time when the first condition in this application is satisfied.
  • the second signal is a wireless signal.
  • the second signal is a baseband signal.
  • the unit of the transmission power of the second signal is dBm.
  • the second signal carries a TB (Transport Block).
  • the second signal carries SCI (Sidelink Control Information, secondary link control information).
  • the second signal carries information in one or more fields in the SCI.
  • the second signal is transmitted through a Pc5 interface.
  • the second signal is transmitted through a link between the user equipment and the user equipment.
  • the second signal is transmitted through a secondary link.
  • the second signal is transmitted through the uplink.
  • the second signal is transmitted on the PSSCH.
  • the second signal is transmitted on the PSCCH.
  • the second signal is transmitted on PSSCH and PSCCH.
  • the target receiver of the second signal includes the sender of the second type of signal in this application.
  • the second-type signal includes K second-type sub-signals
  • the target receiver of the second signal includes the sender of one second-type sub-signal among the K second-type sub-signals .
  • the second-type signal includes K second-type sub-signals, and measurements on the K second-type sub-signals are respectively used to determine the K path losses in this application;
  • the target receiver of the second signal includes the sender of a given second-type sub-signal, and the given second-type sub-signal is the K number of second-type sub-signals and the target path loss in Embodiment 17.
  • the second type of sub-signal corresponds to the second type of sub-signal.
  • Embodiment 19 illustrates a schematic diagram of the second information according to an embodiment of the present application; as shown in FIG. 19.
  • the second information is used to determine the transmission power of the third signal in this application.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information is carried by MAC CE signaling.
  • the second information is carried by physical layer signaling.
  • the second information includes all or part of information in an IE (Information Element).
  • the second information includes part or all of the information in the PUSCH-PowerControl IE.
  • the second information includes part or all of the information in P0-PUSCH-AlphaSet.
  • PUSCH-PowerControl IE for the specific definition of the PUSCH-PowerControl IE, refer to 3GPP TS38.331.
  • the second information is transmitted through a Pc5 interface.
  • the second information is transmitted through a Uu interface.
  • the second information is transmitted through a link between the base station equipment and the user equipment.
  • the second information is transmitted through the downlink.
  • the second information is transmitted on the PDSCH.
  • the second information is transmitted on the PDCCH.
  • the unit of the transmission power of the third signal is dBm.
  • the transmission power of the third signal is not equal to the transmission power of the second signal in this application.
  • the transmission power of the third signal is greater than the transmission power of the second signal in this application.
  • the transmission power of the third signal is not equal to the minimum value of the first power in this application and the second power in this application.
  • the transmission power of the third signal is greater than the minimum value of the first power and the second power.
  • the transmission power of the third signal is not equal to the first power and the second power.
  • the transmission power of the third signal is equal to the first power.
  • the second information indicates that the transmission power of the third signal is equal to the first power.
  • the second information indicates that the transmission power of the third signal is equal to the second power.
  • the second information indicates that the transmission power of the third signal has nothing to do with the measurement for the first type of signal in this application.
  • the second information indicates that the transmission power of the third signal has nothing to do with the measurement of the second type of signal in this application.
  • the third signal is transmitted on the secondary link; the second information indicates that the transmission power of the third signal is obtained based on the measurement of the reference signal transmitted on the downlink.
  • the third signal is transmitted on the secondary link; the second information indicates that the transmission power of the third signal has nothing to do with the reference signal transmitted on the secondary link.
  • the third signal is transmitted on the secondary link; the second information indicates that the transmission power of the third signal is obtained based on the measurement of the reference signal transmitted on the secondary link.
  • the third signal is transmitted on the secondary link; the second information indicates that the transmission power of the third signal has nothing to do with the reference signal transmitted on the downlink.
  • the second information is used to update the value of the power control parameter for the uplink.
  • the power control parameter used for the uplink includes the first component in Embodiment 7.
  • the power control parameter for uplink includes P 0_PUSCH, b, f, c (j).
  • the power control parameter used for the uplink includes P 0 (j) used for the uplink power control.
  • the power control parameter used for the uplink includes P 0 (j) used for PUSCH power control.
  • the power control parameter used for the uplink includes the first coefficient in the seventh embodiment.
  • the power control parameters used for the uplink include ⁇ b, f, c (j).
  • the power control parameter for uplink includes ⁇ (j) for uplink power control.
  • the power control parameter for uplink includes ⁇ (j) for PUSCH power control.
  • the second information is used to update the value of the power control parameter for the secondary link.
  • the power control parameter for the secondary link includes the fifth component in Embodiment 8.
  • the power control parameter for the secondary link includes the seventh component in Embodiment 9.
  • the power control parameter for the secondary link includes P 0_PSSCH .
  • the power control parameter for the secondary link includes P 0 for power control of the secondary link.
  • the power control parameter for the secondary link includes the second coefficient in Embodiment 8.
  • the power control parameter for the secondary link includes the third coefficient in Embodiment 9.
  • the power control parameter for the secondary link includes ⁇ PSSCH .
  • the power control parameter for the secondary link includes ⁇ for the power control of the secondary link.
  • the second information is used to update the value of the power control parameter for the uplink
  • the updated power control parameter for the uplink is used to determine the third power.
  • the transmission power of the third signal is the minimum value of the third power and the second power.
  • the third power is obtained according to the method for determining the first power in Embodiment 7 using the first coefficient updated by the second information.
  • the third power is obtained according to the method for determining the first power in Embodiment 7 using the first component updated by the second information.
  • the third power is based on the method for determining the first power in Embodiment 7, using the first coefficient and the first coefficient updated by the second information. Get the weight.
  • the second information is used to update the value of the power control parameter for the secondary link; the updated power control parameter for the secondary link is used to determine the fourth power, the The transmission power of the third signal is the minimum value of the first power and the fourth power.
  • the fourth power is obtained according to the method for determining the second power in Embodiment 8 using the second coefficient updated by the second information.
  • the fourth power is obtained according to the method for determining the second power in Embodiment 8 using the fifth component updated by the second information.
  • the fourth power is based on the method for determining the second power in Embodiment 8, using the second coefficient and the fifth coefficient updated by the second information. Get the weight.
  • the fourth power is obtained according to the method for determining the second power in Embodiment 9 using the third coefficient updated by the second information.
  • the fourth power is obtained according to the method for determining the second power in Embodiment 9 using the seventh component updated by the second information.
  • the fourth power is based on the method for determining the second power in Embodiment 9, using the third coefficient and the seventh coefficient updated by the second information. Get the weight.
  • Embodiment 20 illustrates a schematic diagram of the first node sending the third signal in the second time window according to an embodiment of the present application; as shown in FIG. 20.
  • the second time window is later than the time domain resources occupied by the first signal in this application.
  • the third signal is a wireless signal.
  • the third signal is a baseband signal.
  • the third signal carries one TB.
  • the third signal carries SCI.
  • the third signal carries information in one or more fields in the SCI.
  • the third signal carries UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the third signal is transmitted through a Pc5 interface.
  • the third signal is transmitted through a link between the user equipment and the user equipment.
  • the third signal is transmitted through a secondary link.
  • the third signal is transmitted through the Uu interface.
  • the third signal is transmitted on the PSSCH.
  • the third signal is transmitted on the PSCCH.
  • the third signal is transmitted on PSSCH and PSCCH.
  • the third signal is transmitted on PUSCH.
  • the third signal is transmitted on PUCCH.
  • the second time window is a continuous time period.
  • the start time of the second time window is later than the end time of the time domain resource occupied by the first signal.
  • the start time of the time domain resource occupied by the second information in this application is later than the end time of the time domain resource occupied by the first signal.
  • the target receiver of the third signal is the target receiver of the second signal in this application.
  • the target recipient of the third signal includes the target recipient of the second signal.
  • the target recipient of the third signal does not include the target recipient of the second signal.
  • Embodiment 21 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 21.
  • the processing device 2100 in the first node device includes a first processor 2101 and a first transmitter 2102.
  • the first processor 2101 receives the first type of signal or sends the first type of signal, and sends the second type of signal or receives the second type of signal; the first transmitter 2102 sends the first signal.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the first signal carries first information
  • the first information is related to the difference between the second power and the first power
  • the sending of the first information is triggered by a first condition.
  • the first processor 2101 receives first signaling; wherein, the first signaling is used to determine the time-frequency resource occupied by the first signal.
  • the first information includes a first difference
  • the first power and the second power are used to determine the first difference
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the first processor 2101 receives third information; wherein the measurement for the second type of signal is used to determine the third information, and the third information is used to determine the first Two power; the first node device sends the second type of signal.
  • the first processor 2101 receives fourth information; wherein the measurement of the first type of signal is used to determine the fourth information, and the fourth information is used to determine the first A power; the first node device sends the first type of signal.
  • the measurement for the second type of signal is used to determine K path losses, K is a positive integer greater than 1, and the K path losses are used to determine the second power.
  • the first transmitter 2102 transmits a second signal; wherein the transmission power of the second signal is the minimum value of the first power and the second power.
  • the first processor 2101 receives second signaling; wherein, the second signaling is used to determine the time-frequency resource occupied by the second signal.
  • the first processor 2101 receives second information; the first transmitter 2102 sends a third signal in a second time window; wherein, the second information is used to determine the third signal The transmission power of the signal; the second time window is later than the time domain resources occupied by the first signal.
  • the first processor 2101 receives third signaling; wherein, the third signaling is used to determine the time-frequency resources occupied by the third signal.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first processor 2101 includes ⁇ antenna 452, receiver/transmitter 454, receiving processor 456, transmitting processor 468, multi-antenna receiving processor 458, multi-antenna transmitting processing At least one of the controller 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ .
  • the first transmitter 2102 includes ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in the fourth embodiment At least one of 467 ⁇ .
  • Embodiment 22 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 22.
  • the processing device 2200 in the second node device includes a second processor 2201 and a second receiver 2202.
  • the second processor 2201 sends the first type of signal or receives the first type of signal; the second receiver 2202 receives the first type of signal.
  • the measurement for the first type of signal is used to determine the first power
  • the measurement for the second type of signal is used to determine the second power
  • the second type of signal is different from the first type.
  • the signal is sent by a node device of the sender; the first signal carries first information, and the first information is related to the difference between the second power and the first power; the transmission of the first information is The first condition is triggered.
  • the second processor 2201 sends first signaling; wherein, the first signaling is used to determine the time-frequency resource occupied by the first signal.
  • the first information includes a first difference
  • the first power and the second power are used to determine the first difference
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the second processor 2201 sends fourth information; wherein the measurement for the first type of signal is used to determine the fourth information, and the fourth information is used to determine the first A power; the second node device receives the first type of signal.
  • the measurement for the second type of signal is used to determine K path losses, K is a positive integer greater than 1, and the K path losses are used to determine the second power.
  • the second processor 2201 sends second signaling; where the second signaling is used to determine the time-frequency resources occupied by the second signal in this application.
  • the second processor 2201 sends second information; wherein, the second information is used to determine the transmission power of the third signal; the third signal is sent in the second time window, so The second time window is later than the time domain resource occupied by the first signal.
  • the second processor 2201 sends third signaling; where the third signaling is used to determine the time-frequency resources occupied by the third signal.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second processor 2201 includes ⁇ antenna 420, receiver/transmitter 418, receiving processor 470, transmitting processor 416, multi-antenna receiving processor 472, multi-antenna transmitting processing 471, controller/processor 475, memory 476 ⁇ .
  • the second receiver 2202 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • Embodiment 23 illustrates a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application; as shown in FIG. 23.
  • the processing device 2300 in the third node device includes a third processor 2301.
  • the third processor 2301 receives the target second-type sub-signal or sends the target second-type sub-signal.
  • the measurement for the first type of signal is used to determine the first power, and the first type of signal is sent by a node device different from the sender of the target second type of sub-signal; the second type The signal includes the target second-type sub-signal, and the measurement of the second-type signal is used to determine the second power; the first information is related to the difference between the second power and the first power; The sending of the first information is triggered by the first condition.
  • the first information includes a first difference
  • the first power and the second power are used to determine the first difference
  • the first condition includes that the difference between the second power and the first power is greater than a first threshold.
  • the third processor 2301 sends the target third sub-information; wherein the measurement of the target second-type sub-signal is used to determine the target third sub-information; the third information includes the Target third sub-information, the third information is used to determine the second power; the third node device receives the target second-type sub-signal.
  • the measurement for the second type of signal is used to determine K path losses, K is a positive integer greater than 1, and the K path losses are used to determine the second power.
  • the third processor 2301 receives the second signal; wherein the transmission power of the second signal is the minimum value of the first power and the second power.
  • the third processor 2301 receives the third signal in a second time window; wherein the second time window is later than the time domain resource used to send the first information.
  • the third node device is user equipment.
  • the third node device is a relay node.
  • the third processor 2301 includes ⁇ antenna 420, transmitter/receiver 418, transmit processor 416, receive processor 470, multi-antenna transmit processor 471, and multi-antenna receive processing in the fourth embodiment. At least one of the controller 472, the controller/processor 475, and the memory 476 ⁇ .
  • Embodiment 24 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 24.
  • the second node U1, the first node U2, and the third node U3 are respectively communication nodes transmitted between each other through an air interface.
  • the second node U1 sends the first type of signal in step S2411.
  • the first node U2 receives the first type signal in step S2421; and receives the target second type sub-signal in step S2422.
  • the third node U3 sends the target second type sub-signal in step S2431.
  • Embodiment 25 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 25.
  • the second node U1, the first node U2, and the third node U3 are respectively communication nodes transmitted between each other through an air interface.
  • the steps in block F251 are optional.
  • the second node U1 receives the first type signal in step S2511.
  • the first node U2 sends the first-type signal in step S2521; sends the target second-type sub-signal in step S2522; and receives the target third sub-information in step S25201.
  • the third node U3 receives the target second type sub-signal in step S2531; and sends the target third sub-information in step S25301.
  • the measurement for the target second-type sub-signal is used by the third node U3 to determine the target third sub-information; the third information in this application includes the target third Sub-information, the third information is used by the first node U2 to determine the second power in this application.
  • the target third sub-signal includes the RSRP of the target second-type sub-signal.
  • Embodiment 26 illustrates a schematic diagram of the third information according to an embodiment of the present application; as shown in FIG. 26.
  • the measurement for the second type signal in this application is used to determine the third information
  • the third information is used to determine the second power in this application.
  • the third information is carried by higher layer signaling.
  • the third information is carried by MAC CE signaling.
  • the third information is carried by physical layer signaling.
  • the third information is transmitted through the Pc5 interface.
  • the third information is transmitted through a secondary link.
  • the third information is transmitted on the PSSCH.
  • the third information is transmitted on the PSCCH.
  • the third information includes the RSRP of the second type of signal.
  • the target receiver of the second type signal includes K nodes, and K is a positive integer greater than 1; the third information includes K third sub-information, and the K third sub-information respectively The RSRP of the second type signal measured by the K nodes is included.
  • the second-type signal includes K second-type sub-signals, K is a positive integer greater than 1, and the K second-type sub-signals are respectively directed to different target receivers; the third information K pieces of third sub-information are included, and the K pieces of third sub-information respectively include RSRPs of the K second-type sub-signals.
  • the K third sub-information are respectively used to determine the K path losses in this application.
  • the third information includes K third sub-information, and K is a positive integer greater than 1, and the K third sub-information is respectively transmitted on K physical layer channels.
  • the K pieces of third sub-information respectively include K pieces of RSRP.
  • the K physical layer channels include PSSCH.
  • the K physical layer channels include PSCCH.
  • the third information is used to determine the second path loss.
  • Embodiment 27 illustrates a schematic diagram of the fourth information according to an embodiment of the present application; as shown in FIG. 27.
  • the measurement for the first type of signal in this application is used to determine the fourth information
  • the fourth information is used to determine the first power in this application.
  • the fourth information is carried by higher layer signaling.
  • the fourth information is carried by MAC CE signaling.
  • the fourth information is carried by physical layer signaling.
  • the fourth information is transmitted through the Pc5 interface.
  • the fourth information is transmitted through a secondary link.
  • the fourth information is transmitted on the PSSCH.
  • the fourth information is transmitted on the PSCCH.
  • the fourth information includes the RSRP of the first type of signal.
  • the fourth information is used to determine the first path loss.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR node B), NR node B, TRP (Transmitter Receiver Point), etc. wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收或发送第一类信号;发送或接收第二类信号;发送第一信号。针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。上述方法的好处包括更准确的反应了副链路的功率头空间,提高副链路的传输性能和资源利用率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和副链路(Sidelink)相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
NR V2X和现有的LTE(Long-term Evolution,长期演进)V2X系统相比,一个显著的特征在于支持单播并支持基于副链路(SideLink)上的路损的功率控制。基于3GPP RAN1#97次会议的结果,当一个UE(User Equipment,用户设备)被同时配置了基于下行链路(Downlink)和副链路上的路损的功率控制,UE会选择两中方法各自产生的功率中的最小值。
发明人通过研究发现,上述方法在对副链路上PHR(Power Headroom Report,功率头空间汇报)的汇报会产生影响。针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他两个节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一类信号,或者发送第一类信号;
发送第二类信号,或者接收第二类信号;
发送第一信号;
其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,本申请要解决的问题包括:当副链路上的发送功率同时受到基于下行链路路损的功率控制和基于副链路路损的功率控制约束时,如何计算副链路上的PHR汇报。上述方法通过根据两种方法得到的功率的差值来确定汇报信息,解决了这一问题。
作为一个实施例,上述方法的特质在于:所述第一功率是基于下行链路路损得到的功率,所述第二功率是基于副链路路损得到的功率。所述第一功率和所述第二功率的差值被用于确定所述第一信息。
作为一个实施例,上述方法的好处包括:更准确的反应了副链路的功率头空间(Power Headroom)。
作为一个实施例,上述方法的好处包括:避免了基于下行链路路损的功率控制严重制约副链路上的发送功率从而导致副链路的性能下降。
根据本申请的一个方面,其特征在于,包括:
接收第一信令;
其中,所述第一信令被用于确定所述第一信号所占用的时频资源。
根据本申请的一个方面,其特征在于,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
根据本申请的一个方面,其特征在于,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
根据本申请的一个方面,其特征在于,包括:
接收第三信息;
其中,针对所述第二类信号的测量被用于确定所述第三信息,所述第三信息被用于确定所述第二功率;所述第一节点发送所述第二类信号。
根据本申请的一个方面,其特征在于,包括:
接收第四信息;
其中,针对所述第一类信号的测量被用于确定所述第四信息,所述第四信息被用于确定所述第一功率;所述第一节点发送所述第一类信号。
根据本申请的一个方面,其特征在于,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
根据本申请的一个方面,其特征在于,包括:
发送第二信号;
其中,所述第二信号的发送功率是所述第一功率和所述第二功率中的最小值。
根据本申请的一个方面,其特征在于,包括:
接收第二信息;
在第二时间窗中发送第三信号;
其中,所述第二信息被用于确定所述第三信号的发送功率;所述第二时间窗晚于所述第一信号所占用的时域资源。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一类信号,或者接收第一类信号;
接收第一信号;
其中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于所述第一类信号的发送者的一个节点发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
根据本申请的一个方面,其特征在于,包括:
发送第一信令;
其中,所述第一信令被用于确定所述第一信号所占用的时频资源。
根据本申请的一个方面,其特征在于,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
根据本申请的一个方面,其特征在于,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
根据本申请的一个方面,其特征在于,包括:
发送第四信息;
其中,针对所述第一类信号的测量被用于确定所述第四信息,所述第四信息被用于确定所述第一功率;所述第二节点接收所述第一类信号。
根据本申请的一个方面,其特征在于,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
根据本申请的一个方面,其特征在于,包括:
发送第二信息;
其中,所述第二信息被用于确定第三信号的发送功率;所述第三信号在第二时间窗中被发送,所述第二时间窗晚于所述第一信号所占用的时域资源。
根据本申请的一个方面,其特征在于,所述第二节点是基站设备。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于,包括:
接收目标第二类子信号,或者发送目标第二类子信号;
其中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
根据本申请的一个方面,其特征在于,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
根据本申请的一个方面,其特征在于,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
根据本申请的一个方面,其特征在于,包括:
发送目标第三子信息;
其中,针对所述目标第二类子信号的测量被用于确定所述目标第三子信息;第三信息包括所述目标第三子信息,所述第三信息被用于确定所述第二功率;所述第三节点接收所述目标第二类子信号。
根据本申请的一个方面,其特征在于,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
根据本申请的一个方面,其特征在于,包括:
接收第二信号;
其中,所述第二信号的发送功率是所述第一功率和所述第二功率中的最小值。
根据本申请的一个方面,其特征在于,包括:
在第二时间窗中接收第三信号;
其中,所述第二时间窗晚于被用于发送所述第一信息的时域资源。
根据本申请的一个方面,其特征在于,所述第三节点是用户设备。
根据本申请的一个方面,其特征在于,所述第三节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一处理器,接收第一类信号或者发送第一类信号,并且发送第二类信号或者接收第二类信号;
第一发送机,发送第一信号;
其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二处理器,发送第一类信号,或者接收第一类信号;
第二接收机,接收第一信号;
其中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于第一类信号的发送者的一个节点设备发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
本申请公开了一种被用于无线通信的第三节点设备,其特征在于,包括:
第三处理器,接收目标第二类子信号,或者发送目标第二类子信号;
其中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点设备发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,和传统方案相比,本申请具备如下优势:
更准确的反应了副链路(Sidelink)的功率头空间(Power Headroom)。
避免了基于下行链路路损的功率控制严重制约副链路上的发送功率从而导致副链路的性能下降。
提高副链路的传输性能和资源利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一类信号,第二类信号和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的传输的流程图;
图7示出了根据本申请的一个实施例的第一功率的示意图;
图8示出了根据本申请的一个实施例的第二功率的示意图;
图9示出了根据本申请的一个实施例的第二功率的示意图;
图10示出了根据本申请的一个实施例的第一信息的发送被第一条件触发的示意图;
图11示出了根据本申请的一个实施例的第一信令的示意图;
图12示出了根据本申请的一个实施例的第一信息包括第一差值的示意图;
图13示出了根据本申请的一个实施例的第一条件的示意图;
图14示出了根据本申请的一个实施例的第一信息包括第一子信息的示意图;
图15示出了根据本申请的一个实施例的针对第二类信号的测量被用于确定K个路损的示意图;
图16示出了根据本申请的一个实施例的K个路损被用于确定第二功率的示意图;
图17示出了根据本申请的一个实施例的K个路损被用于确定第二功率的示意图;
图18示出了根据本申请的一个实施例的第二信号的示意图;
图19示出了根据本申请的一个实施例的第二信息的示意图;
图20示出了根据本申请的一个实施例的第一节点在第二时间窗中发送第三信号的示意图;
图21示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图22示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图;
图23示出了根据本申请的一个实施例的用于第三节点中设备的处理装置的结构框图;
图24示出了根据本申请的一个实施例的传输的流程图;
图25示出了根据本申请的一个实施例的传输的流程图;
图26示出了根据本申请的一个实施例第三信息的示意图;
图27示出了根据本申请的一个实施例第四信息的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一类信号,第二类信号和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一类信号或者发送第一类信号;在步骤102中发送第二类信号或者接收第二类信号;在步骤103中发送第一信号。其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第一节点接收所述第一类信号,发送所述第二类信号。
作为一个实施例,所述第一节点接收所述第一类信号,接收所述第二类信号。
作为一个实施例,所述第一节点发送所述第一类信号,发送所述第二类信号。
作为一个实施例,所述第一节点发送所述第一类信号,接收所述第二类信号。
作为一个实施例,所述第一类信号是无线信号。
作为一个实施例,所述第一类信号是基带信号。
作为一个实施例,所述第一类信号包括参考信号。
作为一个实施例,所述第一类信号包括DL(DownLink,下行链路)参考信号。
作为一个实施例,所述第一类信号包括SL(SideLink,副链路)参考信号。
作为一个实施例,所述第一类信号包括CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)。
作为一个实施例,所述第一类信号包括SS/PBCH block(Synchronization Signal/Physical Broadcast Channel block,同步信号/物理广播信道块)。
作为一个实施例,所述第一类信号是通过Uu接口传输的。
作为一个实施例,所述第一类信号是通过基站设备和用户设备之间的链路传输的。
作为一个实施例,所述第一类信号是通过下行链路传输的。
作为一个实施例,所述第一类信号是通过副链路传输的。
作为一个实施例,所述第一类信号在时域多次出现。
作为一个实施例,所述第一类信号在时域只出现一次。
作为一个实施例,所述第二类信号是无线信号。
作为一个实施例,所述第二类信号是基带信号。
作为一个实施例,所述第二类信号包括参考信号。
作为一个实施例,所述第二类信号包括SL参考信号。
作为一个实施例,所述第二类信号包括UL(UpLink,上行链路)参考信号。
作为一个实施例,所述第二类信号包括CSI-RS。
作为一个实施例,所述第二类信号包括SL CSI-RS。
作为一个实施例,所述第二类信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第二类信号包括DMRS(DeModulation Reference Signals,解调参考信号)。
作为一个实施例,所述第二类信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第二类信号包括SL SS。
作为一个实施例,所述第二类信号包括SL SSB(SS/PBCH block)。
作为一个实施例,所述第二类信号是通过Pc5接口传输的。
作为一个实施例,所述第二类信号是通过用户设备和用户设备之间的链路传输的。
作为一个实施例,所述第二类信号是通过副链路传输的。
作为一个实施例,所述第二类信号是通过上行链路传输的。
作为一个实施例,所述第二类信号在时域多次出现。
作为一个实施例,所述第二类信号在时域只出现一次。
作为一个实施例,所述第一类信号和所述第二类信号在频域属于同一个载波(Carrier)。
作为一个实施例,所述第一功率的单位是dBm(毫分贝)。
作为一个实施例,所述第二功率的单位是dBm(毫分贝)。
作为一个实施例,所述第一类信号在第一类链路上被传输,所述第二类信号在第二类链路上被传输。
作为上述实施例的一个子实施例,所述第一类链路是DL,所述第二类链路是SL。
作为上述实施例的一个子实施例,所述第一类链路是SL,所述第二类链路是SL。
作为上述实施例的一个子实施例,所述第一类链路是基站设备和用户设备之间的链路,所述第二类链路是用户设备和用户设备之间的链路。
作为上述实施例的一个子实施例,所述第一类链路和所述第二类链路分别是用户设备和用户设备之间的链路。
作为一个实施例,所述句子针对所述第一类信号的测量被用于确定第一功率包括:针对所述第一类信号的测量被用于确定第一路损,所述第一路损被用于确定所述第一功率。
作为一个实施例,所述句子针对所述第二类信号的测量被用于确定第二功率包括:针对所述第二类信号的测量被用于确定第二路损,所述第二路损被用于确定所述第二功率。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号是通过Uu接口传输的。
作为一个实施例,所述第一信号是通过基站设备和用户设备之间的链路传输的。
作为一个实施例,所述第一信号是通过上行链路传输的。
作为一个实施例,所述第一信号是通过副链路传输的。
作为一个实施例,所述第一信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上被传输。
作为一个实施例,所述第一信号在PUCCH(Physical Uplink Control CHannel,物理上行控制信道)上被传输。
作为一个实施例,所述第一信息的信息比特块被用于生成所述第一信号。
作为一个实施例,所述第一信息由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令承载。
作为一个实施例,所述第一信息包括一个MAC CE。
作为一个实施例,所述第一信息包括一个MAC CE中的全部或部分信息。
作为一个实施例,所述第一信息包括PHR(Power Headroom Report,功率头空间汇报)。
作为一个实施例,所述第一信息包括第二子信息,所述第二子信息指示所述第一信息是针对用户设备和用户设备之间的链路的。
作为一个实施例,所述第一信息包括第二子信息,所述第二子信息指示所述第一信息是针对副链路的。
作为一个实施例,所述第一信息包括第二子信息,所述第二子信息指示所述第一信息是针对被用于传输所述第二类参考信号的链路的。
作为一个实施例,所述第一信息包括第二子信息,所述第二子信息指示所述第一信息不是针对被用于传输所述第一类参考信号的链路的。
作为一个实施例,所述第二功率和所述第一功率的差值被用于确定所述第一信息。
作为一个实施例,所述第一信息被用于确定所述第二功率和所述第一功率的差值。
作为一个实施例,所述第一信息指示所述第二功率和所述第一功率的差值。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,本申请中的所述第三节点包括所述UE241。
作为一个实施例,本申请中的所述第三节点包括所述UE201。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC-5接口。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路(Sidelink)。
作为一个实施例,本申请中的所述第一节点和本申请中的所述第三节点分别是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端,本申请 中的所述第三节点是所述gNB203覆盖外的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第三节点是所述gNB203覆盖外的一个终端。
作为一个实施例,所述UE201和所述UE241之间支持单播(Unicast)传输。
作为一个实施例,所述UE201和所述UE241之间支持广播(Broadcast)传输。
作为一个实施例,所述UE201和所述UE241之间支持组播(Groupcast)传输。
作为一个实施例,本申请中的所述第一类信号的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一类信号的接收者包括所述UE201。
作为一个实施例,本申请中的所述第二类信号的发送者包括所述UE241。
作为一个实施例,本申请中的所述第二类信号的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的接收者包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,本申请中的所述第一类信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二类信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上 的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收或发送本申请中的所述第一类信号;发送或接收本申请中的所述第二类信号;发送本申请中的所述第一信号。其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收或发送本申请中的所述第一类信号;发送或接收本申请中的所述第二类信号;发送本申请中的所述第一信号。其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送或接收本申请中的所述第一类信号;接收本申请中的所述第一信号。其中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于所述第一类信号的发送者的一个节点发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送或接收本申请中的所述第一类信号;接收本申请中的所述第一信号。其中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于所述第一类信号的发送者的一个节点发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器, 所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。第一通信设备410装置至少:接收或发送本申请中的所述目标第二类子信号。其中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收或发送本申请中的所述目标第二类子信号。其中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第三节点包括所述第二通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一类信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一类信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一类信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一类信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二类信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述目标第二类子信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二类信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第二类信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第三信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第三信息。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线 接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第四信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第四信息。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第二信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信息。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二时间窗中接收本申请中的所述第三信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二时间窗中发送本申请中的所述第三信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1,第一节点U2和第三节点U3分别是两两之间通过空中接口传输的通信节点。附图5中,方框F51至F57中的步骤分别是可选的。
第二节点U1,在步骤S511中发送第一类信号;在步骤S5101中发送第二信令;在步骤S5102中发送第一信令;在步骤S512中接收第一信号;在步骤S5103中发送第二信息;在步骤S5104中发送第三信令。
第一节点U2,在步骤S521中接收第一类信号;在步骤S522中发送第二类信号;在步骤S5201中接收第三信息;在步骤S5202中接收第二信令;在步骤S5203中发送第二信号;在步骤S5204中接收第一信令;在步骤S523中发送第一信号;在步骤S5205中接收第二信息;在步骤S5206中接收第三信令;在步骤S5207中在第二时间窗中发送第三信号。
第三节点U3,在步骤S531中接收第二类信号;在步骤S5301中发送第三信息;在步骤S5302中接收第二信号;在步骤S5303中在第二时间窗中接收第三信号。
在实施例5中,针对所述第一类信号的测量被所述第一节点U2用于确定第一功率,针对所述第二类信号的测量被所述第一节点U2用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。针对所述第二类信号的测量被所述第三节点U3用于确定所述第三信息,所述第三信息被所述第一节点U2用于确定所述第二功率。所述第一信令被所述第一节点U2用于确定所述第一信号所占用的时频资源。所述第二信令被所述第一节点U2用于确定所述第二信号所占用的时频资源;所述第二信号的发送功率是所述第一功率和所述第二功率中的最小值。 所述第二信息被所述第一节点U2用于确定所述第三信号的发送功率;所述第三信令被所述第一节点U2用于确定所述第三信号所占用的时频资源;所述第二时间窗晚于所述第一信号所占用的时域资源。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第三节点U3是本申请中的所述第三节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口是PC5接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括副链路。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括用户设备与中继节点之间的无线接口。
作为一个实施例,本申请中的所述第一节点是一个终端。
作为一个实施例,本申请中的所述第一节点是一辆汽车。
作为一个实施例,本申请中的所述第一节点是一个交通工具。
作为一个实施例,本申请中的所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,本申请中的所述第二节点是一个终端。
作为一个实施例,本申请中的所述第三节点是一个终端。
作为一个实施例,本申请中的所述第三节点是一辆汽车。
作为一个实施例,本申请中的所述第三节点是一个交通工具。
作为一个实施例,本申请中的所述第三节点是一个RSU。
作为一个实施例,所述第二类信号是本申请中的所述目标第二类子信号。
作为一个实施例,所述第二类信号仅包括本申请中的所述目标第二类子信号。
作为一个实施例,所述第二类信号由本申请中的所述目标第二类子信号组成。
作为一个实施例,所述第三信息是本申请中的所述目标第三子信息。
作为一个实施例,所述第三信息由本申请中的所述目标第三子信息组成。
作为一个实施例,所述第三信息仅包括本申请中的所述目标第三子信息。
作为一个实施例,所述句子所述第二类信号被不同于所述第一类信号的发送者的一个节点发送包括:所述第二类信号的发送者是一个用户设备,所述第一类信号的发送者是一个基站。
作为一个实施例,所述句子所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点发送包括:所述第一类信号的发送者是一个基站,所述目标第二类子信号的发送者是一个用户设备。
作为一个实施例,所述句子所述第二类信号被不同于所述第一类信号的发送者的一个节点发送包括:所述第二类信号的发送者和所述第一类信号的发送者分别是用户设备,所述第二类信号的发送者的标识不同于所述第一类信号的发送者的标识。
作为一个实施例,所述句子所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点发送包括:所述第一类信号的发送者和所述目标第二类子信号的发送者分别是用户 设备,所述第一类信号的发送者的标识不同于所述目标第二类子信号的发送者的标识。
作为一个实施例,所述标识包括C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线电网络临时标识)。
作为一个实施例,所述标识包括IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)。
作为一个实施例,所述标识包括S-TMSI(SAE Temporary Mobile Subscriber Identity,SAE临时移动用户识别码)。
作为一个实施例,所述第一信息包括第一差值,所述第一功率和所述第二功率被所述第一节点U2用于确定所述第一差值。
作为一个实施例,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
作为一个实施例,所述第一信息包括第一子信息,所述第一子信息指示所述第二功率和所述第一功率的差大于所述第一阈值。
作为一个实施例,所述第二信令是层1(L1)信令。
作为一个实施例,所述第二信令是层1(L1)的控制信令。
作为一个实施例,所述第二信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二信令包括DCI中的一个或多个域(field)。
作为一个实施例,所述第二信令指示所述第二信号所占用的时频资源。
作为一个实施例,所述第二信令是通过Uu接口传输的。
作为一个实施例,所述第二信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上被传输。
作为一个实施例,所述第三信令是层1(L1)信令。
作为一个实施例,所述第三信令是层1(L1)的控制信令。
作为一个实施例,所述第三信令包括DCI。
作为一个实施例,所述第三信令包括DCI中的一个或多个域(field)。
作为一个实施例,所述第三信令指示所述第三信号所占用的时频资源。
作为一个实施例,所述第三信令是通过Uu接口传输的。
作为一个实施例,所述第三信令在PDCCH上被传输。
作为一个实施例,所述第三信令所占用的时域资源属于所述第二时间窗。
实施例6
实施例6示例了根据本申请的一个实施例的无线传输的流程图,如附图6所示。在附图6中,第二节点U4,第一节点U5和第三节点U6分别是两两之间通过空中接口传输的通信节点。附图6中,方框F61和方框F62中的步骤分别是可选的。
第二节点U4,在步骤S641中接收第一类信号;在步骤S6401中发送第四信息。
第一节点U5,在步骤S651中发送第一类信号;在步骤S6501中接收第四信息;在步骤S652中接收目标第二类子信号;在步骤S6502中接收K个第二类子信号中除所述目标第二类子信号以外的其他K-1个第二类子信号。
第三节点U6,在步骤S661中发送目标第二类子信号。
在实施例6中,针对所述第一类信号的测量被所述第一节点U5用于确定第一功率,针对第二类信号的测量被所述第一节点U5用于确定第二功率。所述第二类信号包括所述K个第二类子信号,K是大于1的正整数,所述目标第二类子信号是所述K个第二类子信号中的一个第二类子信号。针对所述第一类信号的测量被所述第二节点U4用于确定所述第四信息,所述第四信息被所述第一节点U5用于确定所述第一功率。作为一个实施例,针对所述K个第二类子信号的测量分别被所述第一节点U5用于确定本申请中的所述K个路损,所述K个路损被所述第一节点U5用于确定所述第二功率。作为一个实施例,所述K-1个第二类子信号中任一第二类子信号的发送者不同于所述第三节点。
作为一个实施例,所述K-1个第二类子信号中任一第二类子信号的发送者的标识不同于所述第三节点的标识。
实施例7
实施例7示例了根据本申请的一个实施例的第一功率的示意图;如附图7所示。在实施例7中,所述第一功率是第一参考功率和第一功率阈值中的最小值;所述第一参考功率和第一路损线性相关,针对本申请中的所述第一类信号的测量被用于确定所述第一路损;所述第一参考功率和所述第一路损之间的线性系数是第一系数。在附图7中符号“∝”表示线性相关。
作为一个实施例,所述第一路损等于所述第一类信号的发送功率减去所述第一类信号的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一路损是PL b,f,c(q d),所述第一类信号的索引是所述q d
作为一个实施例,本申请中的所述第一节点发送所述第一类信号,本申请中的所述第四信息被用于确定所述第一路损。
作为一个实施例,所述第一功率阈值是上行链路的发送功率阈值。
作为一个实施例,所述第一功率阈值是PUSCH的发送功率阈值。
作为一个实施例,所述第一功率阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一功率阈值是P CMAX,f,c(i)。
作为一个实施例,所述第一参考功率的单位是dBm(毫分贝)。
作为一个实施例,所述第一系数是是小于或者等于1的非负实数。
作为一个实施例,所述第一系数是α b,f,c(j)。
作为一个实施例,所述第一系数是更高层(higher layer)参数配置的。
作为一个实施例,所述第一参考功率和第一分量线性相关,所述第一参考功率和所述第一分量之间的线性系数是1;所述第一分量是功率基准。
作为上述实施例的一个子实施例,所述第一分量是P 0_PUSCH,b,f,c(j)。
作为上述实施例的一个子实施例,所述第一分量是用于上行链路功率控制的P 0(j)。
作为上述实施例的一个子实施例,所述第一分量是用于PUSCH功率控制的P 0(j)。
作为上述实施例的一个子实施例,所述第一分量是更高层参数配置的。
作为一个实施例,所述第一参考功率和第二分量线性相关,所述第一参考功率和所述第二分量之间的线性系数是1;所述第二分量和第一带宽有关。
作为上述实施例的一个子实施例,所述第一带宽是所述第一信号被分配到的以RB(Resource Block,资源块)数表示的带宽。
作为上述实施例的一个子实施例,所述第一带宽是PUSCH分配到的以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第一带宽是以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第一带宽是预配置的。
作为上述实施例的一个子实施例,所述第二分量是
Figure PCTCN2020091068-appb-000001
所述第一带宽是
Figure PCTCN2020091068-appb-000002
作为一个实施例,所述第一参考功率和第三分量线性相关,所述第一参考功率与所述第三分量之间的线性系数是1,所述第三分量是Δ TF,b,f,c(i)。
作为一个实施例,所述第一参考功率和第四分量线性相关,所述第一参考功率与所述第四分量之间的线性系数是1,所述第四分量是功率控制调整的状态。
作为上述实施例的一个子实施例,所述第四分量是f b,f,c(i,l)。
作为一个实施例,所述第一参考功率分别和所述第一路损,所述第一分量,所述第二分量,所述第三分量和所述第四分量线性相关。所述第一参考功率和所述第一路损之间的线性系数是所述第一系数;所述第一参考功率和所述第一分量,所述第二分量,所述第三分量和所述第四分量之间的线性系数分别是1。
实施例8
实施例8示例了根据本申请的一个实施例的第二功率的示意图;如附图8所示。在实施例8中,所述第二功率是第二参考功率和第二功率阈值中的最小值;所述第二参考功率和第二路损线性相关,针对本申请中的所述第二类信号的测量被用于确定所述第二路损;所述第二参考功率和所述第二路损之间的线性系数是第二系数。在附图8中符号“∝”表示线性相关。
作为一个实施例,所述第二路损等于所述第二类信号的发送功率减去所述第二类信号的RSRP。
作为一个实施例,所述第二路损是PL。
作为一个实施例,本申请中的所述第一节点发送所述第二类信号,本申请中的所述第三信息被用于确定所述第二路损。
作为一个实施例,所述第二功率阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第二功率阈值是P CMAX,PSSCH
作为一个实施例,所述第二参考功率的单位是dBm(毫分贝)。
作为一个实施例,所述第二系数是是小于或者等于1的非负实数。
作为一个实施例,所述第二系数是α PSSCH
作为一个实施例,所述第二系数是用于副链路上功率控制的α。
作为一个实施例,所述第二系数是更高层(higher layer)参数配置的。
作为一个实施例,所述第二参考功率和第五分量线性相关,所述第二参考功率和所述第五分量之间的线性系数是1;所述第五分量是功率基准。
作为上述实施例的一个子实施例,所述第五分量是用于副链路上功率控制的P 0
作为上述实施例的一个子实施例,所述第五分量是P 0_PSSCH
作为上述实施例的一个子实施例,所述第五分量是更高层(higher layer)参数配置的。
作为一个实施例,所述第二参考功率和第六分量线性相关,所述第二参考功率和所述第六分量之间的线性系数是1;所述第六分量和第二带宽有关。
作为上述实施例的一个子实施例,所述第二带宽是所述第二信号被分配到的以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第二带宽是PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)被分配到的以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第二带宽是以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第二带宽是预配置的。
作为上述实施例的一个子实施例,所述第六分量是10log 10(2 μM PSSCH),所述第二带宽是M PSSCH
作为上述实施例的一个子实施例,所述第六分量是10log 10(M PSSCH),所述第二带宽是M PSSCH
作为一个实施例,所述第二参考功率分别和所述第二路损,所述第五分量和所述第六分量线性相关。所述第二参考功率和所述第二路损之间的线性系数是所述第二系数;所述第二参考功率和所述第五分量以及所述第六分量之间的线性系数分别是1。
作为一个实施例,本申请中的所述第一信息包括所述第二功率阈值。
实施例9
实施例9示例了根据本申请的一个实施例的第二功率的示意图;如附图9所示。在实施例9中,所述第二功率与第三参考功率线性相关,所述第二功率和所述第三参考功率之间的线性系数是1;所述第三参考功率是第四参考功率和第三功率阈值中的最小值,所述第四参考功率和第二路损线性相关,针对本申请中的所述第二类信号的测量被用于确定所述第二路损;所述第四参考功率和所述第二路损之间的线性系数是第三系数。在附图9中,符号“∝”表示线性相关。
作为一个实施例,所述第三功率阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第三功率阈值是P CMAX
作为一个实施例,所述第三功率阈值是第四功率阈值和第五功率阈值中的最小值。
作为上述实施例的一个子实施例,所述第四功率阈值的单位是dBm。
作为上述实施例的一个子实施例,所述第五功率阈值的单位是dBm。
作为上述实施例的一个子实施例,所述第四功率阈值是P CMAX
作为上述实施例的一个子实施例,所述第五功率阈值是P MAX_CBR
作为一个实施例,所述第三参考功率的单位是dBm(毫分贝)。
作为一个实施例,所述第四参考功率的单位是dBm(毫分贝)。
作为一个实施例,所述第二功率等于所述第三参考功率与第五参考功率之和,所述第五参考功率与第三带宽和第四带宽分别有关。
作为上述实施例的一个子实施例,所述第三带宽是PSSCH被分配到的以RB数表示的带宽,所述第四带宽是PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)被分配到的以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第三带宽和所述第四带宽分别是M PSSCH和M PSCCH
作为上述实施例的一个子实施例,本申请中的所述第二信号被分配到的以RB数表示的带宽包括所述第三带宽。
作为上述实施例的一个子实施例,本申请中的所述第二信号被分配到的以RB数表示的带宽包括所述第四带宽。
作为上述实施例的一个子实施例,所述第三带宽和所述第四带宽分别是以RB数表示的带宽。
作为上述实施例的一个子实施例,所述第三带宽和所述第四带宽分别是预配置的。
作为一个实施例,所述第三系数是是小于或者等于1的非负实数。
作为一个实施例,所述第三系数是α PSSCH
作为一个实施例,所述第三系数是用于副链路上功率控制的α。
作为一个实施例,所述第三系数是更高层参数配置的。
作为一个实施例,所述第四参考功率和第七分量线性相关,所述第四参考功率和所述第七分量之间的线性系数是1;所述第七分量是功率基准。
作为上述实施例的一个子实施例,所述第七分量是用于副链路上功率控制的P 0
作为上述实施例的一个子实施例,所述第七分量是P 0_PSSCH
作为上述实施例的一个子实施例,所述第七分量是更高层参数配置的。
作为一个实施例,所述第四参考功率和第八分量线性相关,所述第四参考功率和所述第八分量之间的线性系数是1;所述第八分量和所述第三带宽和所述第四带宽分别有关。
作为一个实施例,所述第四参考功率分别和所述第二路损,所述第七分量和所述第八分量线性相关。所述第四参考功率和所述第二路损之间的线性系数是所述第三系数;所述第四参考功率和所述第七分量以及所述第八分量之间的线性系数分别是1。
作为一个实施例,本申请中的所述第一信息包括所述第五功率阈值。
实施例10
实施例10示例了根据本申请的一个实施例的第一信息的发送被第一条件触发的示意图;如附图10所示。
作为一个实施例,所述句子所述第一信息的发送被第一条件触发包括:当所述第一条件不被满足时,所述第一信息不被发送。
作为一个实施例,所述句子所述第一信息的发送被第一条件触发包括:当所述第一条件被满足时,所述第一信息被发送。
作为一个实施例,所述句子所述第一信息的发送被第一条件触发包括:当所述第一条件 不被满足时,所述第一信息的发送不被触发。
作为一个实施例,所述句子所述第一信息的发送被第一条件触发包括:当所述第一条件被满足时,所述第一信息的发送被触发。作为一个实施例,所述第一条件包括:第一计时器已过期。
作为上述实施例的一个子实施例,所述第一计时器是更高层(higher layer)信令配置的。
作为上述实施例的一个子实施例,所述第一计时器是RRC信令配置的。
作为上述实施例的一个子实施例,所述第一计时器针对用户设备和用户设备之间的链路。
作为上述实施例的一个子实施例,所述第一计时器针对基站设备和用户设备之间的链路。
作为上述实施例的一个子实施例,所述第一计时器针对被用于传输本申请中的所述第一类信号的链路。
作为上述实施例的一个子实施例,所述第一计时器针对被用于传输本申请中的所述第二类信号的链路。
作为上述实施例的一个子实施例,所述第一定时器是phr-PeriodicTimer。
作为上述实施例的一个子实施例,所述第一定时器是phr-ProhibitTimer。
作为一个实施例,所述第一条件包括:第三计时器和第二计时器均已过期。
作为上述实施例的一个子实施例,所述第三计时器和所述第二计时器分别由更高层信令配置。
作为上述实施例的一个子实施例,所述第三计时器和所述第二计时器分别由RRC信令配置。
作为上述实施例的一个子实施例,所述第三计时器针对基站设备和用户设备之间的链路,所述第二计时器针对用户设备和用户设备之间的链路。
作为上述实施例的一个子实施例,所述第三计时器针对被用于传输本申请中的所述第一类信号的链路,所述第二计时器针对被用于传输本申请中的所述第二类信号的链路。
作为上述实施例的一个子实施例,所述第二定时器是phr-PeriodicTimer。
作为上述实施例的一个子实施例,所述第二定时器是phr-ProhibitTimer。
作为上述实施例的一个子实施例,所述第三定时器是phr-PeriodicTimer。
作为上述实施例的一个子实施例,所述第三定时器是phr-ProhibitTimer。
作为一个实施例,所述phr-PeriodicTimer的具体定义参加3GPP TS38.331。
作为一个实施例,所述phr-ProhibitTimer的具体定义参加3GPP TS38.331。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的第一路损的最大值和最小值的差超过第一给定阈值;针对本申请中的所述第一类信号的测量被用于确定所述第一路损。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的第二路损的最大值和最小值的差超过第二给定阈值;针对本申请中的所述第二类信号的测量被用于确定所述第二路损。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的第一路损的最大值和最小值的差超过第一给定阈值,并且所述第一节点测量到的第二路损的最大值和最小值的差超过第二给定阈值;针对本申请中的所述第一类信号和所述第二类信号的测量分别被用于确定所述第一路损和所述第二路损。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的第一路损的最大值和最小值的差超过第一给定阈值;在第二给定时间窗内,所述第一节点测量到的第二路损的最大值和最小值的差超过第二给定阈值。针对本申请中的所述第一类信号和所述第二类信号的测量分别被用于确定所述第一路损和所述第二路损。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一功率的最大值和最小值的差超过第三给定阈值。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第二功率的最大值和 最小值的差超过第四给定阈值;
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一功率的最大值和最小值的差超过第三给定阈值,并且所述第二功率的最大值和最小值的差超过第四给定阈值。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一功率的最大值和最小值的差超过第三给定阈值;在第二给定时间窗内,所述第二功率的最大值和最小值的差超过第四给定阈值。
作为一个实施例,给定功率是所述第一功率和所述第二功率中的最小功率,所述第一条件包括:在第一给定时间窗内,所述给定功率是所述第一功率还是所述第二功率发生了变化。作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一功率和所述第二功率中的最小功率由所述第一功率变成所述第二功率。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一功率和所述第二功率中的最小功率由所述第二功率变成所述第一功率。
作为一个实施例,给定路损是所述第一路损和所述第二路损中的最小路损,所述第一条件包括:在第一给定时间窗内,所述给定路损是所述第一路损还是所述第二路损发生了变化。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一路损和所述第二路损中的最小路损由所述第一路损变成所述第二路损。
作为一个实施例,所述第一条件包括:在第一给定时间窗内,所述第一路损和所述第二路损中的最小路损由所述第二路损变成所述第一路损。
作为一个实施例,所述第一给定时间窗是一个连续的时间段。
作为一个实施例,所述第一给定时间窗不小于prohibitPHR-Timer,并且不大于periodicPHR-Timer。
作为一个实施例,所述第一给定时间窗是所述第一计时器的时间长度。
作为一个实施例,所述第二给定时间窗是一个连续的时间段。
作为一个实施例,所述第二给定时间窗不小于prohibitPHR-Timer,并且不大于periodicPHR-Timer。
作为一个实施例,所述第二给定时间窗是所述第二计时器的时间长度。
作为一个实施例,所述第一条件包括:本申请中的所述第一功率和本申请中的所述第二功率的差大于第二阈值,所述第二阈值是非负实数。
作为一个实施例,所述第一条件包括:本申请中的所述第一功率减本申请中的所述第二功率大于第二阈值,所述第二阈值是非负实数。
作为一个实施例,所述第一条件包括:本申请中的所述第一功率和本申请中的所述第二功率的差的绝对值大于第二阈值,所述第二阈值是非负实数。
作为一个实施例,所述第二阈值是正实数。
作为一个实施例,所述第二阈值是由更高层(higher layer)信令配置。
作为一个实施例,所述第二阈值是由RRC信令配置。
作为一个实施例,所述第二阈值是UE特定(UE specific)的。
作为一个实施例,所述第二阈值是准静态(semi-statically)配置的。
作为一个实施例,所述第二阈值是预定义的。
作为一个实施例,本申请中的所述第一节点自行确定所述第二阈值。
实施例11
实施例11示例了根据本申请的一个实施例的第一信令的示意图;如附图11所示。在实施例11中,所述第一信令被用于确定本申请中的所述第一信号所占用的时频资源。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是层1(L1)信令。
作为一个实施例,所述第一信令是层1(L1)的控制信令。
作为一个实施例,所述第一信令包括DCI。
作为一个实施例,所述第一信令包括DCI中的一个或多个域(field)。
作为一个实施例,所述第一信令指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信令显式的指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信令隐式的指示所述第一信号所占用的时频资源。
作为一个实施例,所述第一信令包括所述第一信号的调度信息。
作为一个实施例,所述第一信号的所述调度信息包括所占用的时域资源,所占用的频域资源,被调度的MCS(Modulation and Coding Scheme,调制编码方式),DMRS配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number),RV(Redundancy Version,冗余版本)和NDI(New Data Indicator,新数据指示)中的一种或多种。
作为一个实施例,所述第一信令是通过Uu接口传输的。
作为一个实施例,所述第一信令是通过Pc5接口传输的。
作为一个实施例,所述第一信令是通过基站设备和用户设备之间的链路传输的。
作为一个实施例,所述第一信令是通过DL传输的。
作为一个实施例,所述第一信令在PDCCH上被传输。
实施例12
实施例12示例了根据本申请的一个实施例的第一信息包括第一差值的示意图;如附图12所示。在实施例12中,所述第一信息包括所述第一差值,本申请中的所述第一功率和所述第二功率被用于确定所述第一差值。
作为一个实施例,所述第一差值的单位是dB(分贝)。
作为一个实施例,所述第一差值是PHR。
作为一个实施例,所述第一差值是所述第二功率和所述第一功率的差。
作为一个实施例,所述第一差值等于所述第二功率减去所述第一功率。
作为一个实施例,所述第一差值等于所述第一功率减去所述第二功率。
作为一个实施例,所述第一差值是所述第二功率和所述第一功率的差的绝对值。
实施例13
实施例13示例了根据本申请的一个实施例的第一条件的示意图;如附图13所示。在实施例13中,所述第一条件包括本申请中的所述第二功率和本申请中的所述第一功率的差大于本申请中的所述第一阈值。
作为一个实施例,所述第一条件包括:所述第二功率减所述第一功率大于所述第一阈值。
作为一个实施例,所述第一阈值的单位是dBm。
作为一个实施例,所述第一阈值是非负实数。
作为一个实施例,所述第一阈值是正实数。
作为一个实施例,所述第一阈值等于0。
作为一个实施例,所述第一阈值大于0。
作为一个实施例,所述第一阈值由更高层(higher layer)信令配置。
作为一个实施例,所述第一阈值由RRC信令配置。
作为一个实施例,所述第一阈值是预定义的。
作为一个实施例,所述第一阈值是UE特定(UE specific)的。
作为一个实施例,所述第一阈值是准静态(semi-statically)配置的。
作为一个实施例,本申请中的所述第一节点自行确定所述第一阈值。
作为一个实施例,本申请中的所述被用于无线通信的所述第一节点中的所述方法包括:
接收下行信息;
其中,所述下行信息指示所述第一阈值,所述下行信息由RRC信令承载,所述下行信息在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上被传输。
实施例14
实施例14示例了根据本申请的一个实施例的第一信息包括第一子信息的示意图;如附图14所示。在实施例14中,所述第一信息包括第一子信息,所述第一子信息指示本申请中的所述第二功率和本申请中的所述第一功率的差大于本申请中的所述第一阈值。
作为一个实施例,所述第一子信息包括一个信息比特。
作为一个实施例,所述第一子信息包括一个比特序列。
实施例15
实施例15示例了根据本申请的一个实施例的针对第二类信号的测量被用于确定K个路损的示意图;如附图15所示。在附图15中,所述K个路损的索引分别是#0,...,#K-1。
作为一个实施例,所述第二类信号包括K个第二类子信号;针对所述K个第二类子信号的测量分别被用于确定K个路损。
作为上述实施例的一个子实施例,所述K个第二类子信号的发送者都是本申请中的所述第一节点。
作为上述实施例的一个子实施例,所述K个第二类子信号的发送者都是本申请中的所述第一节点,所述K个第二类子信号分别对应不同的目标接收者。
作为上述实施例的一个子实施例,所述K个第二类子信号中任意两个第二类子信号的发送者不相同。
作为上述实施例的一个子实施例,所述K个第二类子信号中任一第二类子信号的发送者是一个用户设备,所述K个第二类子信号中任意两个第二类子信号的发送者的标识不同。
作为上述实施例的一个子实施例,所述K个第二类子信号中至少有两个第二类子信号的发送者不相同。
作为上述实施例的一个子实施例,所述K个第二类子信号中任一第二类子信号的发送者是一个用户设备,所述K个第二类子信号中至少有两个第二类子信号的发送者的标识不同。
作为上述实施例的一个子实施例,所述K个第二类子信号中任意两个第二类子信号不能被假设QCL(Quasi Co-Located,准共址)。
作为上述实施例的一个子实施例,所述K个第二类子信号中至少有两个第二类子信号不能被假设QCL。
作为上述实施例的一个子实施例,所述K个第二类子信号中至少有两个第二类子信号是QCL的。
作为上述实施例的一个子实施例,所述K个第二类子信号分别是K个无线信号。
作为上述实施例的一个子实施例,所述K个第二类子信号分别是K个基带信号。
作为上述实施例的一个子实施例,所述K个第二类子信号中的任一第二类子信号包括参考信号。
作为上述实施例的一个子实施例,所述K个第二类子信号中的任一第二类子信号包括CSI-RS。
作为上述实施例的一个子实施例,所述K个第二类子信号中的任一第二类子信号包括SLCSI-RS。
作为上述实施例的一个子实施例,所述K个第二类子信号中的任一第二类子信号包括SS。
作为上述实施例的一个子实施例,所述K个第二类子信号中的任一第二类子信号包括SLSS。
作为上述实施例的一个子实施例,所述K个第二类子信号中的任一第二类子信号包括SLSSB。
作为上述实施例的一个子实施例,所述K个第二类子信号分别是通过Pc5接口传输的。
作为上述实施例的一个子实施例,所述K个第二类子信号分别是通过SL传输的。
作为上述实施例的一个子实施例,所述K个第二类子信号中存在一个第二类子信号在时域上多次出现。
作为上述实施例的一个子实施例,所述K个第二类子信号中存在一个第二类子信号在时域上只出现一次。
作为上述实施例的一个子实施例,所述K个路损中的任一路损等于对应的第二类子信号的发送功率减去所述对应的第二类子信号的RSRP。
作为上述实施例的一个子实施例,所述K个第二类子信号分别对应不同的目标接收者,所述K个路损中的任一路损等于对应的第二类子信号的发送功率减去所述对应的第二类子信号的所述目标接收者测量到的所述对应的第二类子信号的RSRP。
作为一个实施例,所述第二类信号的目标接收者包括K个节点,所述K个节点针对所述第二类信号的测量分别被用于确定所述K个路损。
作为上述实施例的一个子实施例,所述K个路损中的任一路损等于所述第二类信号的发送功率减去对应的节点测量到的所述第二类信号的RSRP。
作为上述实施例的一个子实施例,所述K个节点分别是用户设备;所述K个节点中任意两个节点的标识不同。
作为一个实施例,本申请中的所述第一节点发送所述第二类信号;本申请中的所述第三信息被用于确定所述K个路损。
实施例16
实施例16示例了根据本申请的一个实施例的K个路损被用于确定第二功率的示意图;如附图16所示。在实施例16中,所述K个路损分别被用于确定K个第二类功率,所述K个第二类功率被用于确定所述第二功率。在附图16中,所述K个路损和K个第二类功率的索引分别是#0,...,#K-1。
作为一个实施例,所述句子针对所述第二类信号的测量被用于确定第二功率包括:所述K个路损分别被用于确定K个第二类功率,所述K个第二类功率被用于确定所述第二功率。
作为一个实施例,所述K个第二类功率的单位分别是dBm。
作为一个实施例,所述第二功率是所述K个第二类功率中最大的一个第二类功率。
作为一个实施例,所述第二功率是所述K个第二类功率中最小的一个第二类功率。
作为一个实施例,所述第二功率是所述K个第二类功率的平均值。
作为一个实施例,所述第二功率和所述K个第二类功率中的每一个第二类功率线性相关。
作为一个实施例,K个参考功率分别被用于确定所述K个第二类功率;所述K个参考功率分别和所述K个路损线性相关;所述K个参考功率中的任一参考功率和对应的路损之间的线性系数是不大于1的正实数。
作为上述实施例的一个子实施例,本申请中的实施例8中的根据所述第二参考功率确定所述第二功率的方法可以被用于根据所述K个参考功率中的一个参考功率确定对应的第二类功率。
作为上述实施例的一个子实施例,本申请中的实施例8中的根据所述第四参考功率确定所述第二功率的方法可以被用于根据所述K个参考功率中的一个参考功率确定对应的第二类功率。
作为上述实施例的一个子实施例,本申请中的实施例8中用于确定所述第二参考功率的方法可以被用于确定所述K个参考功率中的一个参考功率。
作为上述实施例的一个子实施例,本申请中的实施例9中用于计算所述第四参考功率的方法可以被用于确定所述K个参考功率中的一个参考功率的计算。
作为一个实施例,本申请中的所述第一条件包括:所述K个第二类功率中最大的第二类 功率是所述K个第二类功率中的哪一个第二类功率发生了变化。
作为一个实施例,本申请中的所述第一条件包括:所述K个第二类功率中最小的第二类功率是所述K个第二类功率中的哪一个第二类功率发生了变化。
实施例17
实施例17示例了根据本申请的一个实施例的K个路损被用于确定第二功率的示意图;如附图17所示。在实施例17中,所述K个路损被用于确定目标路损,所述目标路损被用于确定所述第二功率。在附图17中,所述K个路损索引分别是#0,...,#K-1。
作为一个实施例,所述句子针对所述第二类信号的测量被用于确定第二功率包括:目标路损被用于确定所述第二功率,本申请中的所述K个路损被用于确定所述目标路损。
作为一个实施例,所述目标路损是所述K个路损中最大的一个路损。
作为一个实施例,所述目标路损是所述K个路损中最小的一个路损。
作为一个实施例,所述目标路损是所述K个路损的平均值。
作为一个实施例,所述目标路损是所述K个路损的线性值的平均值。
作为一个实施例,所述目标路损和所述K个路损中的每一个路损线性相关。
作为一个实施例,所述目标路损的线性值和所述K个路损中每个路损的线性值线性相关。
作为一个实施例,所述目标路损是所述K个路损中变化最大的路损。
作为一个实施例,所述目标路损是所述K个路损中变化最小的路损。
作为一个实施例,本申请中的实施例8中的所述第二参考功率和所述目标路损线性相关,所述第二参考功率和所述目标路损之间的线性系数是实施例8中的所述第二系数。
作为一个实施例,本申请中的实施例8中的所述第二参考功率分别和所述目标路损,实施例8中所述第五分量和实施例8中所述第六分量线性相关。所述第二参考功率和所述目标路损之间的线性系数是实施例8中所述第二系数;所述第二参考功率和所述第五分量以及所述第六分量之间的线性系数分别是1。
作为一个实施例,本申请中的所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的所述目标路损的最大值和最小值的差超过第三给定阈值。
作为一个实施例,本申请中的所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的所述第一路损的最大值和最小值的差超过第一给定阈值,并且所述第一节点测量到的所述目标路损的最大值和最小值的差超过第三给定阈值;针对本申请中的所述第一类信号的测量被用于确定所述第一路损。
作为一个实施例,本申请中的所述第一条件包括:在第一给定时间窗内,本申请中的所述第一节点测量到的所述第一路损的最大值和最小值的差超过第一给定阈值;在第二给定时间窗内,所述第一节点测量到的所述目标路损的最大值和最小值的差超过第三给定阈值。针对本申请中的所述第一类信号的测量被用于确定所述第一路损。
作为一个实施例,本申请中的实施例9中的所述第四参考功率和所述目标路损线性相关,所述第四参考功率和所述目标路损之间的线性系数是实施例9中的所述第三系数。
作为一个实施例,本申请中的实施例9中的所述第四参考功率分别和所述目标路损,实施例9中的所述第七分量和实施例9中的所述第八分量线性相关。所述第四参考功率和所述目标路损之间的线性系数是实施例9中的所述第三系数;所述第四参考功率和所述第七分量以及所述第八分量之间的线性系数分别是1。
作为一个实施例,本申请中的所述第一条件包括:所述K个路损中最大的路损是所述K个路损中的哪一个路损发生了变化。
作为一个实施例,本申请中的所述第一条件包括:所述K个路损中最小的路损是所述K个路损中的哪一个路损发生了变化。
作为一个实施例,本申请中的所述第一条件包括:在第一给定时间窗内,所述目标路损的最大值和最小值的差超过第五给定阈值。
实施例18
实施例18示例了根据本申请的一个实施例的第二信号的示意图;如附图18所示。在实施例18中,所述第二信号的发送功率是本申请中的所述第一功率和本申请中的所述第二功率中的最小值。
作为一个实施例,所述第二信号所占用的时域资源的结束时刻早于所述第一信号所占用的时域资源的起始时刻。
作为一个实施例,所述第二信号所占用的时域资源的结束时刻不晚于本申请中的所述第一信令所占用的时域资源的起始时刻。
作为一个实施例,所述第二信号所占用的时域资源的起始时刻和本申请中的所述第一条件被满足的时刻有关。
作为一个实施例,所述第二信号所占用的时域资源的起始时刻不早于本申请中的所述第一条件被满足的时刻。
作为一个实施例,所述第二信号的调度信令所占用的时域资源的结束时刻早于所述第一信号所占用的时域资源的起始时刻。
作为一个实施例,所述第二信号的调度信令所占用的时域资源的结束时刻不晚于本申请中的所述第一信令所占用的时域资源的起始时刻。
作为一个实施例,所述第二信号的调度信令所占用的时域资源的起始时刻和本申请中的所述第一条件被满足的时刻有关。
作为一个实施例,所述第二信号的调度信令所占用的时域资源的起始时刻不早于本申请中的所述第一条件被满足的时刻。
作为一个实施例,所述第二信号是无线信号。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述第二信号的所述发送功率的单位是dBm。
作为一个实施例,所述第二信号携带一个TB(Transport Block,传输块)。
作为一个实施例,所述第二信号携带SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第二信号携带SCI中一个或多个域(field)中的信息。
作为一个实施例,所述第二信号是通过Pc5接口传输的。
作为一个实施例,所述第二信号是通过用户设备和用户设备之间的链路传输的。
作为一个实施例,所述第二信号是通过副链路传输的。
作为一个实施例,所述第二信号是通过上行链路传输的。
作为一个实施例,所述第二信号在PSSCH上被传输。
作为一个实施例,所述第二信号在PSCCH上被传输。
作为一个实施例,所述第二信号在PSSCH和PSCCH上被传输。
作为一个实施例,所述第二信号的目标接收者包括本申请中的所述第二类信号的发送者。
作为一个实施例,所述第二类信号包括K个第二类子信号,所述第二信号的目标接收者包括所述K个第二类子信号中的一个第二类子信号的发送者。
作为一个实施例,所述第二类信号包括K个第二类子信号,针对所述K个第二类子信号的测量分别被用于确定本申请中的所述K个路损;所述第二信号的目标接收者包括给定第二类子信号的发送者,所述给定第二类子信号是所述K个第二类子信号中和实施例17中的所述目标路损对应的第二类子信号。
实施例19
实施例19示例了根据本申请的一个实施例的第二信息的示意图;如附图19所示。在实施例19中,所述第二信息被用于确定本申请中的所述第三信号的发送功率。
作为一个实施例,所述第二信息由更高层(higher layer)信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息由MAC CE信令承载。
作为一个实施例,所述第二信息由物理层信令承载。
作为一个实施例,所述第二信息包括一个IE(Information Element,信息单元)中的全部或部分信息。
作为一个实施例,所述第二信息包括PUSCH-PowerControl IE中的部分或全部信息。
作为一个实施例,所述第二信息包括P0-PUSCH-AlphaSet中的部分或全部信息。
作为一个实施例,所述PUSCH-PowerControl IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述P0-PUSCH-AlphaSet的具体定义参见3GPP TS38.331。
作为一个实施例,所述第二信息是通过Pc5接口传输的。
作为一个实施例,所述第二信息是通过Uu接口传输的。
作为一个实施例,所述第二信息是通过基站设备和用户设备之间的链路传输的。
作为一个实施例,所述第二信息是通过下行链路传输的。
作为一个实施例,所述第二信息在PDSCH上被传输。
作为一个实施例,所述第二信息在PDCCH上被传输。
作为一个实施例,所述第三信号的发送功率的单位是dBm。
作为一个实施例,所述第三信号的发送功率不等于本申请中的所述第二信号的发送功率。
作为一个实施例,所述第三信号的发送功率大于本申请中的所述第二信号的发送功率。
作为一个实施例,所述第三信号的发送功率不等于本申请中的所述第一功率和本申请中的所述第二功率中的最小值。
作为一个实施例,所述第三信号的发送功率大于所述第一功率和所述第二功率中的最小值。
作为一个实施例,所述第三信号的发送功率不等于所述第一功率和所述第二功率。
作为一个实施例,所述第三信号的发送功率等于所述第一功率。
作为一个实施例,所述第二信息指示所述第三信号的发送功率等于所述第一功率。
作为一个实施例,所述第二信息指示所述第三信号的发送功率等于所述第二功率。
作为一个实施例,所述第二信息指示所述第三信号的发送功率与针对本申请中的所述第一类信号的测量无关。
作为一个实施例,所述第二信息指示所述第三信号的发送功率与针对本申请中的所述第二类信号的测量无关。
作为一个实施例,所述第三信号在副链路上被传输;所述第二信息指示所述第三信号的发送功率是基于在下行链路上传输的参考信号的测量得到的。
作为一个实施例,所述第三信号在副链路上被传输;所述第二信息指示所述第三信号的发送功率与在副链路上传输的参考信号无关。
作为一个实施例,所述第三信号在副链路上被传输;所述第二信息指示所述第三信号的发送功率是基于在副链路上传输的参考信号的测量得到的。
作为一个实施例,所述第三信号在副链路上被传输;所述第二信息指示所述第三信号的发送功率与在下行链路上传输的参考信号无关。
作为一个实施例,所述第二信息被用于更新用于上行链路的功率控制参数的值。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括实施例7中的所述第一分量。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括P 0_PUSCH,b,f,c(j)。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括用于上行链路功率控制的P 0(j)。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括用于PUSCH功率控制的P 0(j)。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括实施例7中的所述第一系数。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括α b,f,c(j)。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括用于上行链路功率控制的α(j)。
作为上述实施例的一个子实施例,所述用于上行链路的功率控制参数包括用于PUSCH功率控制的α(j)。
作为一个实施例,所述第二信息被用于更新用于副链路的功率控制参数的值。
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括实施例8中的所述第五分量。
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括实施例9中的所述第七分量。
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括P 0_PSSCH
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括用于副链路功率控制的P 0
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括实施例8中的所述第二系数。
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括实施例9中的所述第三系数。
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括α PSSCH
作为上述实施例的一个子实施例,所述用于副链路的功率控制参数包括用于副链路功率控制的α。
作为一个实施例,所述第二信息被用于更新用于上行链路的功率控制参数的值,更新后的所述用于上行链路的功率控制参数被用于确定第三功率,所述第三信号的发送功率是所述第三功率和所述第二功率中的最小值。
作为上述实施例的一个子实施例,所述第三功率是根据实施例7中所述第一功率的确定方法,使用被所述第二信息更新后的所述第一系数得到的。
作为上述实施例的一个子实施例,所述第三功率是根据实施例7中所述第一功率的确定方法,使用被所述第二信息更新后的所述第一分量得到的。
作为上述实施例的一个子实施例,所述第三功率是根据实施例7中所述第一功率的确定方法,使用被所述第二信息更新后的所述第一系数和所述第一分量得到的。
作为一个实施例,所述第二信息被用于更新用于副链路的功率控制参数的值;更新后的所述用于副链路的功率控制参数被用于确定第四功率,所述第三信号的发送功率是所述第一功率和所述第四功率的最小值。
作为上述实施例的一个子实施例,所述第四功率是根据实施例8中所述第二功率的确定方法,使用被所述第二信息更新后的所述第二系数得到的。
作为上述实施例的一个子实施例,所述第四功率是根据实施例8中所述第二功率的确定方法,使用被所述第二信息更新后的所述第五分量得到的。
作为上述实施例的一个子实施例,所述第四功率是根据实施例8中所述第二功率的确定方法,使用被所述第二信息更新后的所述第二系数和所述第五分量得到的。
作为上述实施例的一个子实施例,所述第四功率是根据实施例9中所述第二功率的确定方法,使用被所述第二信息更新后的所述第三系数得到的。
作为上述实施例的一个子实施例,所述第四功率是根据实施例9中所述第二功率的确定方法,使用被所述第二信息更新后的所述第七分量得到的。
作为上述实施例的一个子实施例,所述第四功率是根据实施例9中所述第二功率的确定方法,使用被所述第二信息更新后的所述第三系数和所述第七分量得到的。
实施例20
实施例20示例了根据本申请的一个实施例的第一节点在第二时间窗中发送第三信号的示意图;如附图20所示。在实施例20中,所述第二时间窗晚于本申请中的所述第一信号所占用的时域资源。
作为一个实施例,所述第三信号是无线信号。
作为一个实施例,所述第三信号是基带信号。
作为一个实施例,所述第三信号携带一个TB。
作为一个实施例,所述第三信号携带SCI。
作为一个实施例,所述第三信号携带SCI中一个或多个域(field)中的信息。
作为一个实施例,所述第三信号携带UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第三信号是通过Pc5接口传输的。
作为一个实施例,所述第三信号是通过用户设备和用户设备之间的链路传输的。
作为一个实施例,所述第三信号是通过副链路传输的。
作为一个实施例,所述第三信号是通过Uu接口传输的。
作为一个实施例,所述第三信号在PSSCH上被传输。
作为一个实施例,所述第三信号在PSCCH上被传输。
作为一个实施例,所述第三信号在PSSCH和PSCCH上被传输。
作为一个实施例,所述第三信号在PUSCH上被传输。
作为一个实施例,所述第三信号在PUCCH上被传输。
作为一个实施例,所述第二时间窗是一个连续的时间段。
作为一个实施例,所述第二时间窗的起始时刻晚于所述第一信号所占用的时域资源的结束时刻。
作为一个实施例,本申请中的所述第二信息所占用的时域资源的起始时刻晚于所述第一信号所占用的时域资源的结束时刻。
作为一个实施例,所述第三信号的目标接收者是本申请中的所述第二信号的目标接收者。
作为一个实施例,所述第三信号的目标接收者包括所述第二信号的目标接收者。
作为一个实施例,所述第三信号的目标接收者不包括所述第二信号的目标接收者。
实施例21
实施例21示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图21所示。在附图21中,第一节点设备中的处理装置2100包括第一处理器2101和第一发送机2102。
在实施例21中,第一处理器2101接收第一类信号或者发送第一类信号,并且发送第二类信号或者接收第二类信号;第一发送机2102发送第一信号。
在实施例21中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第一处理器2101接收第一信令;其中,所述第一信令被用于确定所述第一信号所占用的时频资源。
作为一个实施例,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
作为一个实施例,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
作为一个实施例,所述第一处理器2101接收第三信息;其中,针对所述第二类信号的测量被用于确定所述第三信息,所述第三信息被用于确定所述第二功率;所述第一节点设备发送所述第二类信号。
作为一个实施例,所述第一处理器2101接收第四信息;其中,针对所述第一类信号的测量被用于确定所述第四信息,所述第四信息被用于确定所述第一功率;所述第一节点设备发送所述第一类信号。
作为一个实施例,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
作为一个实施例,所述第一发送机2102发送第二信号;其中,所述第二信号的发送功率是所述第一功率和所述第二功率中的最小值。
作为一个实施例,所述第一处理器2101接收第二信令;其中,所述第二信令被用于确定所述第二信号所占用的时频资源。
作为一个实施例,所述第一处理器2101接收第二信息;所述第一发送机2102在第二时间窗中发送第三信号;其中,所述第二信息被用于确定所述第三信号的发送功率;所述第二时间窗晚于所述第一信号所占用的时域资源。
作为一个实施例,所述第一处理器2101接收第三信令;其中,所述第三信令被用于确定所述第三信号所占用的时频资源。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一处理器2101包括实施例4中的{天线452,接收器/发射器454,接收处理器456,发射处理器468,多天线接收处理器458,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机2102包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例22
实施例22示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图22所示。在附图22中,第二节点设备中的处理装置2200包括第二处理器2201和第二接收机2202。
在实施例22中,第二处理器2201发送第一类信号,或者接收第一类信号;第二接收机2202接收第一信号。
在实施例22中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于第一类信号的发送者的一个节点设备发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第二处理器2201发送第一信令;其中,所述第一信令被用于确定所述第一信号所占用的时频资源。
作为一个实施例,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
作为一个实施例,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
作为一个实施例,所述第二处理器2201发送第四信息;其中,针对所述第一类信号的测量被用于确定所述第四信息,所述第四信息被用于确定所述第一功率;所述第二节点设备接收所述第一类信号。
作为一个实施例,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
作为一个实施例,所述第二处理器2201发送第二信令;其中,所述第二信令被用于确定本申请中的所述第二信号所占用的时频资源。
作为一个实施例,所述第二处理器2201发送第二信息;其中,所述第二信息被用于确定 第三信号的发送功率;所述第三信号在第二时间窗中被发送,所述第二时间窗晚于所述第一信号所占用的时域资源。
作为一个实施例,所述第二处理器2201发送第三信令;其中,所述第三信令被用于确定所述第三信号所占用的时频资源。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二处理器2201包括实施例4中的{天线420,接收器/发射器418,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机2202包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
实施例23
实施例23示例了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图;如附图23所示。在附图23中,第三节点设备中的处理装置2300包括第三处理器2301。
在实施例23中,第三处理器2301接收目标第二类子信号,或者发送目标第二类子信号。
在实施例23中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点设备发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
作为一个实施例,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
作为一个实施例,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
作为一个实施例,所述第三处理器2301发送目标第三子信息;其中,针对所述目标第二类子信号的测量被用于确定所述目标第三子信息;第三信息包括所述目标第三子信息,所述第三信息被用于确定所述第二功率;所述第三节点设备接收所述目标第二类子信号。
作为一个实施例,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
作为一个实施例,所述第三处理器2301接收第二信号;其中,所述第二信号的发送功率是所述第一功率和所述第二功率中的最小值。
作为一个实施例,所述第三处理器2301在第二时间窗中接收第三信号;其中,所述第二时间窗晚于被用于发送所述第一信息的时域资源。
作为一个实施例,所述第三节点设备是用户设备。
作为一个实施例,所述第三节点设备是中继节点。
作为一个实施例,所述第三处理器2301包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
实施例24
实施例24示例了根据本申请的一个实施例的无线传输的流程图,如附图24所示。在附图24中,第二节点U1,第一节点U2和第三节点U3分别是两两之间通过空中接口传输的通信节点。
第二节点U1,在步骤S2411中发送第一类信号。
第一节点U2,在步骤S2421中接收第一类信号;在步骤S2422中接收目标第二类子信号。
第三节点U3,在步骤S2431中发送目标第二类子信号。
实施例25
实施例25示例了根据本申请的一个实施例的无线传输的流程图,如附图25所示。在附图25中,第二节点U1,第一节点U2和第三节点U3分别是两两之间通过空中接口传输的通信节点。附图25中,方框F251中的步骤是可选的。
第二节点U1,在步骤S2511中接收第一类信号。
第一节点U2,在步骤S2521中发送第一类信号;在步骤S2522中发送目标第二类子信号;在步骤S25201中接收目标第三子信息。
第三节点U3,在步骤S2531中接收目标第二类子信号;在步骤S25301中发送目标第三子信息。
在实施例25中,针对所述目标第二类子信号的测量被所述第三节点U3用于确定所述目标第三子信息;本申请中的所述第三信息包括所述目标第三子信息,所述第三信息被所述第一节点U2用于确定本申请中的所述第二功率。
作为一个实施例,所述目标第三子信号包括所述目标第二类子信号的RSRP。
实施例26
实施例26示例了根据本申请的一个实施例第三信息的示意图;如附图26所示。在实施例26中,针对本申请中的所述第二类信号的测量被用于确定所述第三信息,所述第三信息被用于确定本申请中的所述第二功率。
作为一个实施例,所述第三信息由更高层(higher layer)信令承载。
作为一个实施例,所述第三信息由MAC CE信令承载。
作为一个实施例,所述第三信息由物理层信令承载。
作为一个实施例,所述第三信息是通过Pc5接口传输的。
作为一个实施例,所述第三信息是通过副链路传输的。
作为一个实施例,所述第三信息在PSSCH上被传输。
作为一个实施例,所述第三信息在PSCCH上被传输。
作为一个实施例,所述第三信息包括所述第二类信号的RSRP。
作为一个实施例,所述第二类信号的目标接收者包括K个节点,K是大于1的正整数;所述第三信息包括K个第三子信息,所述K个第三子信息分别包括所述K个节点测量到的所述第二类信号的RSRP。
作为一个实施例,所述第二类信号包括K个第二类子信号,K是大于1的正整数,所述K个第二类子信号分别针对不同的目标接收者;所述第三信息包括K个第三子信息,所述K个第三子信息分别包括所述K个第二类子信号的RSRP。
作为一个实施例,所述K个第三子信息分别被用于确定本申请中的所述K个路损。
作为一个实施例,所述第三信息包括K个第三子信息,K是大于1的正整数;所述K个第三子信息分别在K个物理层信道上传输。
作为上述实施例的一个子实施例,所述K个第三子信息分别包括K个RSRP。
作为上述实施例的一个子实施例,所述K个物理层信道包括PSSCH。
作为上述实施例的一个子实施例,所述K个物理层信道包括PSCCH。
作为一个实施例,所述第三信息被用于确定所述第二路损。
实施例27
实施例27示例了根据本申请的一个实施例第四信息的示意图;如附图27所示。在实施例27中,针对本申请中的所述第一类信号的测量被用于确定所述第四信息,所述第四信息被用于确定本申请中的所述第一功率。
作为一个实施例,所述第四信息由更高层(higher layer)信令承载。
作为一个实施例,所述第四信息由MAC CE信令承载。
作为一个实施例,所述第四信息由物理层信令承载。
作为一个实施例,所述第四信息是通过Pc5接口传输的。
作为一个实施例,所述第四信息是通过副链路传输的。
作为一个实施例,所述第四信息在PSSCH上被传输。
作为一个实施例,所述第四信息在PSCCH上被传输。
作为一个实施例,所述第四信息包括所述第一类信号的RSRP。
作为一个实施例,所述第四信息被用于确定所述第一路损。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一处理器,接收第一类信号或者发送第一类信号,并且发送第二类信号或者接收第二类信号;
    第一发送机,发送第一信号;
    其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一处理器接收第一信令;其中,所述第一信令被用于确定所述第一信号所占用的时频资源。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一信息包括第一差值,所述第一功率和所述第二功率被用于确定所述第一差值。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一条件包括所述第二功率和所述第一功率的差大于第一阈值。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器接收第三信息;其中,针对所述第二类信号的测量被用于确定所述第三信息,所述第三信息被用于确定所述第二功率;所述第一节点设备发送所述第二类信号。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器接收第四信息;其中,针对所述第一类信号的测量被用于确定所述第四信息,所述第四信息被用于确定所述第一功率;所述第一节点设备发送所述第一类信号。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,针对所述第二类信号的测量被用于确定K个路损,K是大于1的正整数;所述K个路损被用于确定所述第二功率。
  8. 根据权利要求1至7中任一权利要求所述的第一节点设备,其特征在于,所述第一发送机发送第二信号;其中,所述第二信号的发送功率是所述第一功率和所述第二功率中的最小值。
  9. 根据权利要求1至8中任一权利要求所述的第一节点设备,其特征在于,所述第一处理器接收第二信息;所述第一发送机在第二时间窗中发送第三信号;其中,所述第二信息被用于确定所述第三信号的发送功率;所述第二时间窗晚于所述第一信号所占用的时域资源。
  10. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二处理器,发送第一类信号,或者接收第一类信号;
    第二接收机,接收第一信号;
    其中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于所述第一类信号的发送者的一个节点设备发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
  11. 一种被用于无线通信的第三节点设备,其特征在于,包括:
    第三处理器,接收目标第二类子信号,或者发送目标第二类子信号;
    其中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点设备发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
  12. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一类信号,或者发送第一类信号;
    发送第二类信号,或者接收第二类信号;
    发送第一信号;
    其中,针对所述第一类信号的测量被用于确定第一功率,针对所述第二类信号的测量被 用于确定第二功率;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
  13. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一类信号,或者接收第一类信号;
    接收第一信号;
    其中,针对所述第一类信号的测量被用于确定第一功率,针对第二类信号的测量被用于确定第二功率,所述第二类信号被不同于所述第一类信号的发送者的一个节点发送;所述第一信号携带第一信息,所述第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
  14. 一种被用于无线通信的第三节点中的方法,其特征在于,包括:
    接收目标第二类子信号,或者发送目标第二类子信号;
    其中,针对第一类信号的测量被用于确定第一功率,所述第一类信号被不同于所述目标第二类子信号的发送者的一个节点发送;第二类信号包括所述目标第二类子信号,针对所述第二类信号的测量被用于确定第二功率;第一信息与所述第二功率和所述第一功率的差值有关;所述第一信息的发送被第一条件触发。
PCT/CN2020/091068 2019-06-03 2020-05-19 一种被用于无线通信的节点中的方法和装置 WO2020244381A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910477790 2019-06-03
CN201910477790.5 2019-06-03
CN201910504603.8 2019-06-12
CN201910504603.8A CN112040494B (zh) 2019-06-03 2019-06-12 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2020244381A1 true WO2020244381A1 (zh) 2020-12-10

Family

ID=73576238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091068 WO2020244381A1 (zh) 2019-06-03 2020-05-19 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN112040494B (zh)
WO (1) WO2020244381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138552A1 (zh) * 2022-01-21 2023-07-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307255A (zh) * 2008-12-03 2016-02-03 交互数字专利控股公司 用于计算功率余量的方法和无线发射/接收单元
CN106575995A (zh) * 2014-09-23 2017-04-19 Lg电子株式会社 用于在d2d通信系统中对缓冲区状态报告进行优先级处理的方法及其装置
CN106797401A (zh) * 2014-10-31 2017-05-31 Lg电子株式会社 用于避免在d2d通信系统中发送仅具有填充的mac pdu的方法及其装置
US10299224B2 (en) * 2013-04-05 2019-05-21 Pantech Inc. Method and apparatus for transmitting power headroom report by terminal in wireless communication system
WO2019099634A1 (en) * 2017-11-15 2019-05-23 Convida Wireless, Llc Method and device for power headroom reporting in 5g nr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307255A (zh) * 2008-12-03 2016-02-03 交互数字专利控股公司 用于计算功率余量的方法和无线发射/接收单元
US10299224B2 (en) * 2013-04-05 2019-05-21 Pantech Inc. Method and apparatus for transmitting power headroom report by terminal in wireless communication system
CN106575995A (zh) * 2014-09-23 2017-04-19 Lg电子株式会社 用于在d2d通信系统中对缓冲区状态报告进行优先级处理的方法及其装置
CN106797401A (zh) * 2014-10-31 2017-05-31 Lg电子株式会社 用于避免在d2d通信系统中发送仅具有填充的mac pdu的方法及其装置
WO2019099634A1 (en) * 2017-11-15 2019-05-23 Convida Wireless, Llc Method and device for power headroom reporting in 5g nr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138552A1 (zh) * 2022-01-21 2023-07-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN112040494B (zh) 2022-03-01
CN112040494A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2020199977A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021151367A1 (en) Method and device in a node used for wireless communication
WO2022193643A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113890708A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11051254B2 (en) Method and device in a node used for wireless communication
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244381A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11985605B2 (en) Method and device in nodes used for wireless communication
CN112423260B (zh) 一种被用于无线通信的节点中的方法和装置
CN115348676A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023020453A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023061353A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005963A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023241548A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023093516A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819100

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20819100

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20819100

Country of ref document: EP

Kind code of ref document: A1