WO2023241548A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023241548A1
WO2023241548A1 PCT/CN2023/099845 CN2023099845W WO2023241548A1 WO 2023241548 A1 WO2023241548 A1 WO 2023241548A1 CN 2023099845 W CN2023099845 W CN 2023099845W WO 2023241548 A1 WO2023241548 A1 WO 2023241548A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
control parameter
srs resource
parameter group
group
Prior art date
Application number
PCT/CN2023/099845
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023241548A1 publication Critical patent/WO2023241548A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, in particular to wireless signal transmission methods and devices in wireless communication systems supporting cellular networks.
  • Multi-antenna technology is a key technology in the 3GPP (3rd Generation Partner Project) LTE (Long-term Evolution) system and NR (New Radio) system. Additional spatial degrees of freedom are obtained by configuring multiple antennas at communication nodes, such as base stations or UEs (User Equipment). Multiple antennas use beamforming to form beams pointing in a specific direction to improve communication quality. The degree of freedom provided by multiple antenna systems can be exploited to improve transmission reliability and/or throughput. When multiple antennas belong to multiple TRPs (Transmitter Receiver Points, transmitting and receiving nodes)/panels (antenna panels), additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels.
  • TRPs Transmitter Receiver Points, transmitting and receiving nodes
  • panels panels
  • additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels.
  • NRR(release)17 uplink transmission based on multiple beams/TRP/panel is supported to improve the reliability of uplink transmission.
  • a UE can be configured with multiple SRS (Sounding Reference Signal) resource sets based on codebook or non-codebook (non-codebook) to implement multi-beam/TRP/panel Uplink transmission.
  • SRS Sounding Reference Signal
  • Uplink signals based on different SRS resource sets can occupy mutually orthogonal time domain resources, such as the approach in R17, or can also occupy overlapping time domain resources.
  • the applicant found through research that when uplink signals based on different SRS resource sets occupy overlapping time domain resources, the impact on uplink power control is a problem that needs to be solved.
  • this application discloses a solution. It should be noted that although the above description uses cellular networks and uplink transmission based on multiple SRS resource sets as examples, this application is also applicable to other scenarios such as sidelink transmission and uplink transmission based on a single SRS resource set, and obtains It is similar to the technical effects in cellular networks and uplink transmission based on multiple SRS resource sets.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first signaling is used to determine a first SRS resource group, and the first SRS resource group is used to determine an antenna port for sending the first signal;
  • the first SRS resource group includes a first SRS Resource subgroup and second SRS resource subgroup, the first SRS resource subgroup and the second SRS resource subgroup respectively include at least one SRS resource;
  • any SRS resource in the first SRS resource subgroup belongs to a first SRS resource set, any SRS resource in the second SRS resource subgroup belongs to a second SRS resource set, and the first SRS resource set and the second SRS resource set each include at least one SRS resource;
  • a power control parameter group is associated with the first SRS resource set, and a second power control parameter group is associated with the second SRS resource set;
  • a target power control parameter group is used to determine the transmit power of the first signal;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group, or the target power control parameter group is a third power control parameter group;
  • the problems to be solved by this application include: power control problem of uplink transmission based on multiple SRS resource sets.
  • the power control parameter group associated with one SRS resource set among multiple SRS resource sets is used to determine the transmit power of uplink transmission based on multiple SRS resource sets, which solves this problem.
  • the problems to be solved by this application include: power control problem of uplink transmission based on multiple SRS resource sets.
  • another power control parameter group that is different from the power control parameter group associated with any one of the multiple SRS resource sets is used to determine the transmit power of the uplink transmission based on the multiple SRS resource sets, which solves this problem.
  • characteristics of the above method include: both the first SRS resource set and the second SRS resource set are used to determine the antenna port for sending the first signal, but the The calculation of the transmit power uses only one power control parameter group, that is, the target power control parameter group.
  • the benefits of the above method include: solving the power control problem of uplink transmission based on multiple SRS resource sets.
  • the benefits of the above method include: using one power control parameter group to calculate the transmit power of uplink transmission based on multiple SRS resource sets, simplifying uplink power control.
  • the benefits of the above method include: using a power control parameter set that matches the uplink transmission, improving the performance of the uplink transmission.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the first signaling is used from The target power control parameter group is determined from the first power control parameter group and the second power control parameter group.
  • the benefits of the above method include: more flexibly indicating the power control parameter group used for uplink transmission based on multiple SRS resource sets from the power control parameter group associated with the two SRS resource sets, thereby improving the uplink transmission performance.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the target power control parameter group is the The default one of the first power control parameter group and the second power control parameter group.
  • the benefits of the above method include: determining the power control parameter group used for uplink transmission based on multiple SRS resource sets from the power control parameter groups associated with two SRS resource sets in a default manner, reducing signaling overhead.
  • the target power control parameter group is the third power control parameter group; the first information block is used to configure the first power control parameter group, and the second information block is used to configure the The second power control parameter group, the third information block is used to configure the third power control parameter group.
  • the benefits of the above method include: separately configuring power control parameter groups for uplink transmission based on a single SRS resource set and uplink transmission based on multiple SRS resource sets, enabling more flexible and accurate uplink power control, improving uplink efficiency. Transmission performance.
  • the second signaling is used to determine a second SRS resource group, and the second SRS resource group is used to determine an antenna port for sending the second signal;
  • the second SRS resource group includes at least one SRS Resources; any SRS resource in the second SRS resource group belongs to a given SRS resource set, and the given SRS resource set is the first SRS resource set or the second SRS resource set; given power control
  • the parameter group is a power control parameter group associated with the given SRS resource set among the first power control parameter group and the second power control parameter group, and the given power control parameter group is used to determine the The transmit power of the second signal.
  • the first SRS resource subgroup is used to determine a first antenna port group
  • the second SRS resource subgroup is used to determine a second antenna port group
  • the third SRS resource subgroup is used to determine a second antenna port group
  • a signal is transmitted by the first antenna port group and the second antenna port group
  • the transmission power of the first signal is equal to the first power
  • the first signal is transmitted by the first antenna port group.
  • the transmit power of the portion of the first signal sent by the second antenna port group is equal to the third power
  • the first offset is used to determine the second power and the The difference between the third power.
  • the first node includes a user equipment.
  • the first node includes a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first signaling is used to determine a first SRS resource group, and the first SRS resource group is used to determine an antenna port for sending the first signal;
  • the first SRS resource group includes a first SRS Resource subgroup and second SRS resource subgroup, the first SRS resource subgroup and the second SRS resource subgroup respectively include at least one SRS resource;
  • any SRS resource in the first SRS resource subgroup belongs to a first SRS resource set, any SRS resource in the second SRS resource subgroup belongs to a second SRS resource set, and the first SRS resource set and the second SRS resource set each include at least one SRS resource;
  • a power control parameter group is associated with the first SRS resource set, and a second power control parameter group is associated with the second SRS resource set;
  • a target power control parameter group is used to determine the transmit power of the first signal;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group, or the target power control parameter group is a third power control parameter group;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the first signaling is used from The target power control parameter group is determined from the first power control parameter group and the second power control parameter group.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the target power control parameter group is the The default one of the first power control parameter group and the second power control parameter group.
  • the target power control parameter group is the third power control parameter group; the first information block is used to configure the first power control parameter group, and the second information block is used to configure the The second power control parameter group, the third information block is used to configure the third power control parameter group.
  • the second signaling is used to determine a second SRS resource group, and the second SRS resource group is used to determine an antenna port for sending the second signal;
  • the second SRS resource group includes at least one SRS Resources; any SRS resource in the second SRS resource group belongs to a given SRS resource set, and the given SRS resource set is the first SRS resource set or the second SRS resource set; given power control
  • the parameter group is a power control parameter group associated with the given SRS resource set among the first power control parameter group and the second power control parameter group, and the given power control parameter group is used to determine the The transmit power of the second signal.
  • the first SRS resource subgroup is used to determine a first antenna port group
  • the second SRS resource subgroup is used to determine a second antenna port group
  • the third SRS resource subgroup is used to determine a second antenna port group
  • a signal is transmitted by the first antenna port group and the second antenna port group
  • the transmission power of the first signal is equal to the first power
  • the first signal is transmitted by the first antenna port group.
  • the transmit power of the portion of the first signal sent by the second antenna port group is equal to the third power
  • the first offset is used to determine the second power and the The difference between the third power.
  • the second node is a base station.
  • the second node is user equipment.
  • the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling
  • the first transmitter sends the first signal
  • the first signaling is used to determine a first SRS resource group, and the first SRS resource group is used to determine an antenna port for sending the first signal;
  • the first SRS resource group includes a first SRS Resource subgroup and second SRS resource subgroup, the first SRS resource subgroup and the second SRS resource subgroup respectively include at least one SRS resource;
  • any SRS resource in the first SRS resource subgroup belongs to a first SRS resource set, any SRS resource in the second SRS resource subgroup belongs to a second SRS resource set, and the first SRS resource set and the second SRS resource set each include at least one SRS resource;
  • a power control parameter group is associated with the first SRS resource set, and a second power control parameter group is associated with the second SRS resource set;
  • a target power control parameter group is used to determine the transmit power of the first signal;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group, or the target power control parameter group is a third power control parameter group;
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling
  • a second receiver to receive the first signal
  • the first signaling is used to determine a first SRS resource group, and the first SRS resource group is used to determine an antenna port for sending the first signal;
  • the first SRS resource group includes a first SRS Resource subgroup and second SRS resource subgroup, the first SRS resource subgroup and the second SRS resource subgroup respectively include at least one SRS resource;
  • any SRS resource in the first SRS resource subgroup belongs to a first SRS resource set, any SRS resource in the second SRS resource subgroup belongs to a second SRS resource set, and the first SRS resource set and the second SRS resource set each include at least one SRS resource;
  • a power control parameter group is associated with the first SRS resource set, and a second power control parameter group is associated with the second SRS resource set;
  • a target power control parameter group is used to determine the transmit power of the first signal;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group, or the target power control parameter group is a third power control parameter group;
  • this application has the following advantages:
  • the performance of uplink transmission is improved by using a power control parameter group that matches the uplink transmission.
  • Figure 1 shows a flow chart of first signaling and first signals according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of an antenna port for transmitting a first signal according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of an antenna port for transmitting a first signal according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of the association between a power control parameter group and an SRS resource set according to an embodiment of the present application
  • Figure 9 shows a schematic diagram in which first signaling includes a second domain and a third domain according to an embodiment of the present application
  • Figure 10 shows a schematic diagram in which a target power control parameter set is used to determine the transmission power of the first signal according to an embodiment of the present application
  • Figure 11 shows a schematic diagram in which first signaling is used to determine a target power control parameter group from the first power control parameter group and the second power control parameter group according to an embodiment of the present application;
  • Figure 12 shows a schematic diagram in which the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group according to an embodiment of the present application;
  • Figure 13 shows a schematic diagram of a first information block, a second information block and a third information block according to an embodiment of the present application
  • Figure 14 shows a schematic diagram in which second signaling includes a second domain and a third domain according to an embodiment of the present application
  • Figure 15 shows a schematic diagram in which a given power control parameter set is used to determine the transmission power of the second signal according to an embodiment of the present application
  • Figure 16 shows a schematic diagram of the first offset, the second power and the third power according to an embodiment of the present application
  • Figure 17 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Figure 18 shows a structural block diagram of a processing device used in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signaling and the first signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the order of the steps in the box does not imply a specific temporal relationship between the steps.
  • the first node in this application receives the first signaling in step 101; sends the first signal in step 102; wherein the first signaling is used to determine the first SRS resource group, the first SRS resource group is used to determine the antenna port for transmitting the first signal; the first SRS resource group includes a first SRS resource subgroup and a second SRS resource subgroup, and the first SRS resource group
  • the resource subgroup and the second SRS resource subgroup each include at least one SRS resource; any SRS resource in the first SRS resource subgroup belongs to the first SRS resource set, and any SRS resource in the second SRS resource subgroup
  • Any SRS resource belongs to a second SRS resource set, and the first SRS resource set and the second SRS resource set respectively include at least one SRS resource; a first power control parameter group is associated with the first SRS resource set, and the first SRS resource set is associated with the first SRS resource set.
  • Two power control parameter groups are associated with the second SRS resource set; a target power control parameter group is used to determine the transmit power of the first signal; the target power control parameter group is the first power control parameter group or One of the second power control parameter groups, or the target power control parameter group is a third power control parameter group; the first power control parameter group, the second power control parameter group and the third power control parameter group
  • the three power control parameter groups are configured separately.
  • the first signaling includes physical layer signaling.
  • the first signaling includes dynamic signaling.
  • the first signaling includes layer 1 (L1) signaling.
  • the first signaling includes DCI (Downlink Control Information).
  • the first signaling is a DCI.
  • the first signaling includes one or more DCI fields (fields) in one DCI.
  • the format of the first signaling is one of Format 0_0, Format 0_1 or Format 0_2.
  • the first signaling includes RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first signaling includes MAC CE (Medium Access Control layer Control Element, media access control layer control element).
  • MAC CE Medium Access Control layer Control Element, media access control layer control element
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal carries at least one TB (Transport Block).
  • the first signal carries at least one CBG (Code Block Group).
  • CBG Code Block Group
  • the first signal includes at least one layer.
  • the layer refers to a MIMO (Multiple Input Multiple Output, Multiple Input Multiple Output) layer.
  • MIMO Multiple Input Multiple Output, Multiple Input Multiple Output
  • the first signaling includes scheduling information of the first signal.
  • the first signaling indicates scheduling information of the first signal.
  • the scheduling information of the first signal includes a QCL (Quasi Co-Location) relationship.
  • the scheduling information of the first signal includes spatial relationships.
  • the scheduling information of the first signal includes time domain resources, frequency domain resources, MCS (Modulation and Coding Scheme), DMRS (DeModulation Reference Signals, demodulation reference signal) port (port), HARQ ( Hybrid Automatic Repeat request) one or more of process number, RV (Redundancy version), NDI (New data indicator), TCI (Transmission Configuration Indicator) state or SRI (Sounding reference signal Resource Indicator) kind.
  • MCS Modulation and Coding Scheme
  • DMRS DeModulation Reference Signals
  • demodulation reference signal port
  • HARQ Hybrid Automatic Repeat request
  • RV Redundancy version
  • NDI New data indicator
  • TCI Transmission Configuration Indicator
  • SRI Sounding reference signal Resource Indicator
  • the first signal is transmitted based on SFN (Single Frequency Network).
  • SFN Single Frequency Network
  • the first node is configured with a second higher-level parameter, and the name of the second higher-level parameter includes "sfn" and "scheme”.
  • the name of the second higher-level parameter includes "sfnscheme”.
  • the name of the second higher-level parameter includes "sfn", “scheme” and "pusch".
  • the second higher layer parameter is configured by PUSCH-Config IE (Information Element).
  • the first node is not configured with a third higher layer parameter, or the first node is configured with a third higher layer parameter.
  • the value of the layer parameter belongs to the first parameter value set; the name of the third higher-level parameter includes "repetitionScheme", the first parameter value set includes at least one parameter value, and each parameter value in the first parameter value set None of the parameter values include the string "tdm”.
  • each parameter group in the first parameter value set does not include the string "fdm”.
  • any parameter value in the first parameter value set includes the character string "sfn".
  • one parameter value in the first parameter value set includes the character string "sfn".
  • the third higher layer parameter is configured by PUSCH-Config IE.
  • the first node is not configured with the higher-level parameter "pusch-AggregationFactor".
  • the name of the fourth higher-level parameter includes “pusch-TimeDomain” and “ AllocationList”
  • the name of the first type of parameter includes “numberOfRepetitions”.
  • the fourth higher layer parameter is configured by PUSCH-Config IE.
  • the name of the fourth higher-level parameter includes "pusch-TimeDomainAllocationList”.
  • the name of the fourth higher-level parameter includes "pusch-TimeDomainResourceAllocationList”.
  • the first SRS resource group includes a number of SRS resources greater than 1.
  • any SRS resource in the first SRS resource group includes at least one SRS port.
  • any SRS resource in the first SRS resource group is identified by an SRS-ResourceId.
  • the first SRS resource set and the second SRS resource set are respectively identified by two different SRS-ResourceSetIds.
  • the first SRS resource set and the second SRS resource set are configured by a first higher-layer parameter, and the name of the first higher-layer parameter includes "srs-ResourceSetToAddModList".
  • the first higher-level parameter configures two SRS resource sets, and the higher-level parameter "usage" of the two SRS resource sets is both set to "nonCodebook" or both are set to "codebook”;
  • the first SRS resource set is the smaller one of the two SRS resource sets corresponding to srs-ResourceSetId, and the second SRS resource set is the larger one of the two SRS resource sets corresponding to srs-ResourceSetId. .
  • the first higher-level parameter is "srs-ResourceSetToAddModList” or “srs-ResourceSetToAddModListDCI-0-2”.
  • the higher-level parameter "usage” associated with the first SRS resource set and the higher-level parameter “usage” associated with the second SRS resource set are both set to “nonCodebook” or both are set to “codebook” ".
  • any SRS resource in the first SRS resource set is identified by an SRS-ResourceId
  • any SRS resource in the second SRS resource set is identified by an SRS-ResourceId.
  • any SRS resource in the first SRS resource set includes at least one SRS port
  • any SRS resource in the second SRS resource set includes at least one SRS port
  • the first SRS resource set and the second SRS resource set respectively correspond to different TCI states.
  • different TCI states are used to determine the spatial domain filter (spatial domain filter) of the first SRS resource set and the spatial domain filter of the second SRS resource set respectively.
  • the first SRS resource set and the second SRS resource set respectively correspond to different TAs (Timing Advance).
  • the first SRS resource set and the second SRS resource set respectively belong to different TAG (Time-Advance Group).
  • the first SRS resource set and the second SRS resource set respectively correspond to different power control adjustment state (power control adjustment state) indexes.
  • the first SRS resource set and the second SRS resource set are configured to the same BWP (BandWidth Part, bandwidth interval).
  • the first SRS resource set and the second SRS resource set are configured to the same carrier (Carrier).
  • the first SRS resource set and the second SRS resource set are configured for the same cell.
  • the first SRS resource group consists of the first SRS resource subgroup and the second SRS resource subgroup.
  • the number of SRS resources included in the first SRS resource subgroup is equal to 1.
  • the first SRS resource subgroup includes a number of SRS resources greater than 1.
  • the number of SRS resources included in the second SRS resource subgroup is equal to 1.
  • the second SRS resource subgroup includes a number of SRS resources greater than 1.
  • the number of SRS resources included in the first SRS resource subgroup is equal to the number of SRS resources included in the second SRS resource subgroup.
  • the number of SRS ports of any SRS resource in the first SRS resource set is equal to the number of SRS ports of any SRS resource in the second SRS resource set.
  • the number of SRS ports of one SRS resource in the first SRS resource set is not equal to the number of SRS ports of one SRS resource in the second SRS resource set.
  • the first signaling indicates the first SRS resource group.
  • the first signaling indicates the number of SRS resources included in the first SRS resource group.
  • the first signaling indicates the number of SRS resources included in the first SRS resource subgroup.
  • the first signaling indicates the number of SRS resources included in the second SRS resource subgroup.
  • the first signaling implicitly indicates the number of SRS resources included in the second SRS resource subgroup by indicating the number of SRS resources included in the first SRS resource subgroup.
  • the first signaling indicates the SRI of each SRS resource in the first SRS resource subgroup.
  • the first signaling indicates the SRI of each SRS resource in the second SRS resource subgroup.
  • the first signaling indicates that the first SRS resource group is used to determine the antenna port for transmitting the first signal.
  • the first signaling indicates that the first SRS resource group includes at least one SRS resource belonging to the first SRS resource set and at least one SRS resource belonging to the second SRS resource set.
  • the third signaling indicates that the first SRS resource group includes at least one SRS resource belonging to the first SRS resource set and at least one SRS resource belonging to the second SRS resource set.
  • the number of the antenna ports for transmitting the first signal is equal to 1.
  • the number of antenna ports for transmitting the first signal is greater than 1.
  • the antenna ports that send the first signal are ⁇ p 0 ,..., p ⁇ -1 ⁇ , and ⁇ is the number of the antenna ports that send the first signal.
  • ⁇ p 0 ,..., p ⁇ -1 ⁇ can be found in 3GPP TS38.214 and 3GPP TS38.211.
  • the channel in which a signal sent on one antenna port is transmitted can be inferred from the channel in which another signal sent on the same antenna port is transmitted.
  • the channel in which a signal sent on one antenna port is transmitted cannot be inferred from the channel in which a signal sent on another antenna port is transmitted.
  • the SRS resources in the first SRS resource set and the SRS resources in the second SRS resource set are jointly used to determine the antenna port for transmitting the first signal.
  • the first signaling indicates that the SRS resources in the first SRS resource set and the SRS resources in the second SRS resource set are jointly used to determine the method for sending the first signal. Antenna port.
  • the third signaling indicates that the SRS resources in the first SRS resource set and the SRS resources in the second SRS resource set are jointly used to determine the antenna port for transmitting the first signal. .
  • two TCI states are used together to determine the spatial filter of the first signal.
  • the TCI state of the first signal includes a first TCI state and a second TCI state; the first TCI state is used to determine the air domain filter of the first SRS resource set, and the second TCI state is used to determine the spatial filter of the first SRS resource set.
  • the TCI status is used to determine the spatial filter of the second set of SRS resources.
  • the first TCI state and the second TCI state are jointly used to determine the spatial filter of the first signal.
  • the TCI-StateId of the first TCI state is different from the TCI-StateId of the second TCI state.
  • the first node uses a first spatial filter to receive or transmit a reference signal in a reference signal resource indicated by the first TCI status, and the first node uses a second spatial filter to receive or send a reference signal in the reference signal resource indicated by the first TCI status.
  • a reference signal is received or transmitted in a reference signal resource indicated by the second TCI status; the first node uses the first spatial filter and the second spatial filter to send the first signal.
  • the first node uses the first spatial filter and the second spatial filter to send the first signal in the same or overlapping time-frequency resources.
  • the first node uses the first spatial filter and the second spatial filter to send each of the first signals in the same or overlapping time-frequency resources. layer.
  • the first node uses the first spatial filter and the second spatial filter in the same or overlapping time-frequency resources to detect each signal in the first signal. Send DMRS on the DMRS port.
  • the first signaling indicates that the TCI state of the first signal includes the first TCI state and the second TCI state.
  • the third signaling indicates that the TCI state of the first signal includes the first TCI state and the second TCI state.
  • the third signaling is another signaling different from the first signaling.
  • the third signaling includes DCI.
  • the third signaling includes MAC CE.
  • the third signaling is earlier than the first signaling in the time domain.
  • the third signaling indicates at least one of the first TCI state or the second TCI state.
  • the third signaling indicates the first TCI state and the second TCI state.
  • the first signal is sent by the same antenna port as the SRS port of the SRS resource in the first SRS resource group.
  • the first signal is transmitted by the same antenna port as the SRS port of the SRS resource in the first SRS resource subgroup and by the second SRS resource subgroup in the same or overlapping time-frequency resource.
  • the SRS resources in the group are transmitted through the same SRS port as the antenna port.
  • any layer of the first signal is used in the same or overlapping time-frequency resources by the same antenna port as the SRS port of the SRS resource in the first SRS resource subgroup and by The SRS resources in the second SRS resource subgroup are transmitted through the same SRS port as the antenna port.
  • the DMRS in any DMRS port of the first signal is used in the same or overlapping time-frequency resource by the same antenna port as the SRS port of the SRS resource in the first SRS resource subgroup and The antenna port is the same as the SRS port of the SRS resource in the second SRS resource subgroup.
  • the first node uses the same spatial filter to send the SRS and the first signal in the SRS resource in the first SRS resource group.
  • the first node uses a first spatial filter to send SRS in any SRS resource in the first SRS resource subgroup, and the first node uses a second spatial filter to send SRS in the first SRS resource subgroup.
  • the SRS is sent in any SRS resource among the two SRS resource subgroups; the first node uses the first spatial filter and the second spatial filter to send the first signal.
  • the first node uses the first spatial filter and the second spatial filter to send the first signal in the same or overlapping time-frequency resources.
  • the part of the first signal sent by the first spatial filter and the part sent by the second spatial filter occupy overlapping or the same time-frequency resources.
  • any layer of the first signal is transmitted by the first spatial filter and the second spatial filter in overlapping or same time-frequency resources.
  • the DMRS on any DMRS port of the first signal is transmitted by the first spatial filter and the second spatial filter in overlapping or same time-frequency resources.
  • the higher-level parameter "usage” associated with the first SRS resource set and the higher-level parameter “usage” associated with the second SRS resource set are both set to "nonCodebook";
  • the first SRS resource The SRS ports included in any SRS resource in the group The number is equal to 1;
  • the first signal includes v layers, and v is a positive integer;
  • the number of SRS resources included in the first SRS resource subgroup is equal to v, and the SRS resources included in the second SRS resource subgroup are The number of resources is equal to v;
  • the v layers are mapped to the first antenna port group and the second antenna port group in the same or overlapping time-frequency resources after being precoded by the unit array;
  • the first SRS resource The subgroup is used to determine the first antenna port group, and the second SRS resource subgroup is used to determine the second antenna port group.
  • the higher-level parameter "usage” associated with the first SRS resource set and the higher-level parameter "usage” associated with the second SRS resource set are both set to "codebook";
  • the first SRS resource The subgroup includes only one SRS resource, and the second SRS resource subgroup includes only one SRS resource;
  • the first signaling indicates a first precoder and a second precoder;
  • the first signal includes v layers , the v is a positive integer;
  • the v layers are mapped to the first antenna port group after being precoded by the first precoder in the same or overlapping time-frequency resources, and are precoded by the second After precoding, it is mapped to the second antenna port group;
  • the first SRS resource subgroup is used to determine the first antenna port group, and the second SRS resource subgroup is used to determine the second antenna Port group.
  • the first signaling indicates the TPMI (Transmitted Precoding Matrix Indicator) of the first precoder and the TPMI of the second precoder.
  • TPMI Transmitted Precoding Matrix Indicator
  • the first precoder and the second precoder are respectively a matrix or a column vector.
  • the first precoder and the second precoder correspond to the same number of layers.
  • the number of layers corresponding to the first precoder and the number of layers corresponding to the second precoder are both equal to the number of layers of the first signal.
  • the first signal includes v layers, where v is a positive integer; the v layers are precoded by a third precoder and mapped to the first antenna port group, and the v layers are After being precoded by the fourth precoder, it is mapped to the second antenna port group; the first SRS resource subgroup is used to determine the first antenna port group, and the second SRS resource subgroup is used to determine the The second antenna port group; the fifth precoder and the first phase offset are jointly used to determine the fourth precoder.
  • the third precoder and the fifth precoder are unit matrices respectively.
  • the first signaling indicates the TPMI of the third precoder; the first signaling indicates the TPMI of the fifth precoder.
  • the fourth precoder is equal to the product of the fifth precoder and the first phase offset.
  • the first phase offset is a scalar quantity.
  • the first signaling indicates the first phase offset.
  • the first phase offset is configured by higher layer signaling.
  • the first node determines the first phase offset by itself.
  • the first phase offset belongs to a first phase offset set, and the first node determines the first phase in the first phase offset set by itself. Offset.
  • the third precoder and the fifth precoder are respectively a matrix or a column vector.
  • the number of layers corresponding to the third precoder and the number of layers corresponding to the fifth precoder are both equal to the number of layers of the first signal.
  • the first power control parameter group includes at least one of P0, alfa, power control adjustment state index or pathloss reference RS Id.
  • the second power control parameter group includes at least one of P0, alfa, power control adjustment state index or path loss reference signal identity.
  • the third power control parameter group includes at least one of P0, alfa, power control adjustment state index or path loss reference signal identity.
  • the P0 is used for power control of the first signal.
  • the P0 is used for power control of PUSCH.
  • P0 can be found in 3GPP TS 38.331 and TS 38.213.
  • the P0 refers to P 0_PUSCH,b,f,c (j).
  • P 0_PUSCH,b,f,c (j) can be found in 3GPP TS 38.213.
  • the alfa is used for power control of the first signal.
  • the alfa is used for power control of PUSCH.
  • alfa can be found in 3GPP TS 38.331 and TS 38.213.
  • the alfa refers to ⁇ b,f,c (j).
  • ⁇ b,f,c (j) can be found in 3GPP TS 38.213.
  • the power control adjustment state index is a PUSCH power control adjustment state index.
  • the power control adjustment state index is the PUSCH power control adjustment state index l.
  • the power control adjustment state index is a closed-loop index.
  • the path loss reference signal identity is PUSCH-PathlossReferenceRS-Id.
  • the path loss reference signal identity is an identifier of a reference signal used to measure path loss.
  • the identifier of the reference signal used for measuring path loss includes SSB-Index or NZP-CSI-RS-ResourceId.
  • the first power control parameter group includes a P0, an alfa, a power control adjustment state index and a path loss reference signal identity.
  • the first power control parameter group includes a P0, an alfa and a power control adjustment state index.
  • the first power control parameter group includes a P0 and an alfa.
  • the second power control parameter group includes a P0, an alfa, a power control adjustment state index and a path loss reference signal identity.
  • the second power control parameter group includes a P0, an alfa and a power control adjustment state index.
  • the second power control parameter group includes a P0 and an alfa.
  • the third power control parameter group includes a P0, an alfa, a power control adjustment state index and a path loss reference signal identity.
  • the third power control parameter group includes a P0, an alfa and a power control adjustment state index.
  • the third power control parameter group includes a P0 and an alfa.
  • a power control parameter group includes at least one power control parameter, and any one of the at least one power control parameter is P0, alfa, power control adjustment state index, or path loss reference signal identity. one.
  • a power control parameter group includes at least one type of power control parameters, and the number of any type of power control parameters included in the power control parameter group is equal to 1; the at least one type of power control parameters includes Any type of power control parameter among the control parameters is one of P0, alfa, power control adjustment state index, or path loss reference signal identity.
  • the first SRS resource set is associated with M1 power control parameter groups, where M1 is a positive integer greater than 1; the M1 power control parameter groups respectively correspond to M1 different transmission types, and the M1 Different transmission types include part or all of PUSCH transmission, PUCCH transmission and SRS transmission; the first power control parameter group is the corresponding transmission type among the M1 power control parameter groups and the transmission type of the first signal The same power control parameter set.
  • the second SRS resource set is associated with M2 power control parameter groups, where M2 is a positive integer greater than 1; the M2 power control parameter groups respectively correspond to M2 different transmission types, and the M2 Different transmission types include part or all of PUSCH transmission, PUCCH transmission and SRS transmission; the second power control parameter group is the corresponding transmission type of the M2 power control parameter groups and the transmission type of the first signal The same power control parameter set.
  • the transmission type of the first signal is one of PUSCH transmission, PUCCH transmission or SRS transmission.
  • the transmission type of the first signal is PUSCH transmission.
  • the transmission type of the first signal is PUCCH transmission.
  • only the first power control parameter group is associated with the first SRS resource set, and the first power control parameter group It is associated with only the second power control parameter group and the second SRS resource set among the second power control parameter group.
  • only the first power control parameter group is associated with the first SRS resource set.
  • only the second power control parameter group is associated with the second SRS resource set.
  • the calculation of the transmission power of the first signal uses only one P0, and the one P0 is the target power.
  • the control parameter group includes P0.
  • the calculation of the transmission power of the first signal uses only one alpha, and the one alpha is the alpha included in the target power control parameter group.
  • the calculation of the transmit power of the first signal uses only one power control adjustment state index, and the one power control adjustment state index is the power control adjustment state index included in the target power control parameter group. .
  • the calculation of the transmit power of the first signal uses only one path loss reference signal identity, and the one path loss reference signal identity is the path loss reference signal identity included in the target power control parameter group. .
  • multiple types of power control parameters are used for calculation of the transmission power of the first signal; the multiple types of power control parameters include P0, alfa, power control adjustment state index and path loss reference signal; the number of any type of power control parameter used in the calculation of the transmission power of the first signal is equal to 1; at least one type of power control parameter among the plurality of types of power control parameters is The target power control parameter group includes power control parameters of the same type.
  • any one type of power control parameter among the multiple types of power control parameters is the same type of power control parameter included in the target power control parameter group.
  • the first power control parameter group and the second power control parameter group are configured separately.
  • different IEs are used to configure the first power control parameter group and the second power control parameter group.
  • different domains in the same IE are used to configure the first power control parameter group and the second power control parameter group respectively.
  • different information blocks are used to configure the first power control parameter group and the second power control parameter group respectively; the name of any one of the different information blocks includes "SRS -ResourceSet”.
  • the first TCI state is used to determine the air domain filter of the first SRS resource set, and the second TCI state is used to determine the air domain filter of the second SRS resource set; the first TCI The state is used to determine the first power control parameter set, and the second TCI state is used to determine the second power control parameter set.
  • the first TCI state is used to determine the air domain filter of the first SRS resource set
  • the second TCI state is used to determine the air domain filter of the second SRS resource set
  • first TCI-state IE is used to configure the first TCI state
  • the second TCI-state IE is used to configure the second TCI state
  • the first TCI-state IE indicates the first power control parameter group
  • the third TCI-state IE is used to configure the second TCI state.
  • the second TCI-state IE indicates the second power control parameter group.
  • the first TCI-state IE indicates M1 power control parameter groups, M1 is a positive integer greater than 1; the M1 power control parameter groups respectively correspond to M1 different transmission types , the M1 different transmission types include part or all of PUSCH transmission, PUCCH transmission and SRS transmission; the first power control parameter group is the corresponding transmission type in the M1 power control parameter group and the third A power control parameter group with the same signal transmission type.
  • the second TCI-state IE indicates M2 power control parameter groups, M2 is a positive integer greater than 1; the M2 power control parameter groups respectively correspond to M2 different transmission types , the M2 different transmission types include part or all of PUSCH transmission, PUCCH transmission and SRS transmission; the second power control parameter group is the corresponding transmission type in the M2 power control parameter groups and the third A power control parameter group with the same signal transmission type.
  • the meaning of the sentence target power control parameter set is used to determine the transmission power of the first signal includes: the target power control parameter set is used to calculate the transmission power of the first signal. .
  • the first SRS resource group is used by the first node to determine: the target power control parameter group in the first power control parameter group and the second power control parameter group is used. To determine the transmission power of the first signal.
  • the first node determines based on the fact that the first SRS resource group includes at least one SRS resource belonging to the first SRS resource set and at least one SRS resource belonging to the second SRS resource set:
  • the target power control parameter set in the first power control parameter set and the second power control parameter set is used to determine the transmit power of the first signal.
  • the first SRS resource group is used by the first node to determine: the target power control parameter group is the first power control parameter group, the second power control parameter group and the The third power control parameter group in the third power control parameter group.
  • the first node determines based on the fact that the first SRS resource group includes at least one SRS resource belonging to the first SRS resource set and at least one SRS resource belonging to the second SRS resource set:
  • the target power control parameter group is the third power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the first power control parameter group and the second power control parameter group Only the set of target power control parameters in the set is used to determine the transmit power of the first signal.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the sixth signaling is obtained from the first power control parameter group and the second power control parameter group.
  • the target power control parameter group is indicated in the second power control parameter group.
  • the sixth signaling is another signaling different from the first signaling.
  • the sixth signaling is higher layer signaling.
  • the sixth signaling is MAC CE.
  • the sixth signaling is DCI.
  • the sixth signaling is earlier than the first signaling in the time domain.
  • the sixth signaling indicates that the first TCI state and the second TCI state are mapped to the same TCI code point (codepoint); the first TCI state is used to determine the A spatial filter of the first SRS resource set, and the second TCI state is used to determine a spatial filter of the second SRS resource set.
  • codepoint TCI code point
  • the sixth signaling indicates that the target power control parameter group is associated with the same TCI code point.
  • the target power control parameter group is the third power control parameter group.
  • the target power control parameter group is the third power control parameter group; among the first power control parameter group, the second power control parameter group and the third power control parameter group Only the third set of power control parameters is used to determine the transmit power of the first signal.
  • the first power control parameter group, the second power control parameter group and the third power control parameter group are respectively configured by different higher layer signaling.
  • At least one power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group is configured by RRC signaling
  • the first power control parameter group Control parameter group, at least another power control parameter group among the second power control parameter group and the third power control parameter group is configured by MAC CE signaling.
  • At least one power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group is configured by higher layer signaling, and the first power control parameter group A power control parameter group, at least another of the second power control parameter group and the third power control parameter group is configured by DCI.
  • the first power control parameter group, the second power control parameter group and the third power control parameter group are respectively configured by different IEs.
  • the first power control parameter group, the second power control parameter group and the third power control parameter group are respectively configured in different domains of the same IE.
  • the first power control parameter group, the second power control parameter group and the third power control parameter group are respectively configured in the same domain of the same IE.
  • At least one power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group is configured by an IE
  • the first power control parameter group Parameter group, at least another power control parameter group among the second power control parameter group and the third power control parameter group is configured by at least one IE and at least one MAC CE.
  • the first power control parameter group and the second power control parameter group are configured by one IE respectively, and the third power control parameter group is configured by at least one IE and at least one MAC CE.
  • the first power control parameter group and the second power control parameter group are respectively configured by one IE, and the third power control parameter group is configured by at least one IE and at least one DCI.
  • the third power control parameter group is one of P1 candidate power control parameter groups, and P1 is a positive integer greater than 1; the fourth signaling is used to configure the P1 candidate power control parameter group. , the fifth signaling is used to indicate the third power control parameter group from the P1 candidate power control parameter groups.
  • the fourth signaling is higher layer signaling
  • the fifth signaling is DCI
  • the fourth signaling is RRC signaling
  • the fifth signaling is MAC CE
  • the fourth signaling includes at least one IE, and the fifth signaling is MAC CE.
  • the P1 candidate power control parameter groups do not include the first power control parameter group and the second Power control parameter group.
  • the P1 candidate power control parameter groups include at least one of the first power control parameter group and the second power control parameter group.
  • the fifth signaling is used to activate the third power control parameter group from the P1 candidate power control parameter groups.
  • the third information block is carried jointly by the fourth signaling and the fifth signaling.
  • the third power control parameter group is associated with a first TCI code point; the first TCI code point indicates a first TCI state and a second TCI state; the first TCI state is used to determine the The air domain filter of the first SRS resource set, the second TCI state is used to determine the air domain filter of the second SRS resource set.
  • the TCI state indicated by the first TCI code point that can be used for the uplink includes the first TCI state and the second TCI state.
  • only the third power control parameter group and the third power control parameter group are A TCI code point associated.
  • the first power control parameter group is associated with a second TCI code point, and the second TCI code point indicates only one of the first TCI state and the second TCI state.
  • the first TCI state; the second power control parameter group is associated with a third TCI code point, and the third TCI code point indicates only the first TCI state and the second TCI state. 2 TCI status.
  • the TCI state indicated by the second TCI code point that can be used for the uplink only includes the first TCI state
  • the third TCI code point indicates that the TCI state that can be used for the uplink
  • the TCI status of the road only includes the second TCI status.
  • the meaning of associating a power control parameter group with a TCI code point includes: when the TCI state of an uplink signal is composed of all TCI states indicated by the one TCI code point, the power control parameter group is Used to determine the transmit power of the one uplink signal.
  • the meaning of associating a power control parameter group with a TCI code point includes: when the TCI state of an uplink signal consists of all TCI states indicated by the one TCI code point, and the transmission type of the one uplink signal When the transmission type corresponding to the one power control parameter group is the same, the one power control parameter group is used to determine the transmission power of the one uplink signal; the transmission type of the one uplink signal is PUSCH transmission, PUCCH One of transmission or SRS transmission, the transmission type corresponding to the one power control parameter group is one of PUSCH transmission, PUCCH transmission or SRS transmission.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 can be called 5GS (5G System)/EPS (Evolved Packet System). Grouping System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, a UE 241 that communicates with the UE 201 on a side link, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnection with other access networks is possible, but these entities/interfaces are not shown for simplicity.
  • 5GS/EPS200 provides packet switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks providing circuit switched services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • the gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communications devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent , mobile client, client, or some other appropriate term.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically MME/AMF/SMF211 provides bearer and connection management.
  • Internet Protocol Internet Protocol
  • S-GW/UPF212 All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet services 230 include Internet protocol services corresponding to operators, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the wireless link between the UE201 and the gNB203 includes a cellular network link.
  • the sender of the first signaling includes the gNB203.
  • the recipient of the first signaling includes the UE201.
  • the sender of the first signal includes the UE201.
  • the receiver of the first signal includes the gNB203.
  • the UE 201 supports simultaneous multi-beam/panel/TRP UL transmission (simultaneous multi-beam/panel/TRP UL transmission).
  • Embodiment 3 illustrates a schematic diagram of an embodiment of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for a first communication node device between second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the connection between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side. and the application layer terminating at the other end of the connection (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first signal is generated from the PHY301 or the PHY351.
  • the first information block is generated in the RRC sublayer 306.
  • the second information block is generated in the RRC sublayer 306.
  • the third information block is generated in the RRC sublayer 306.
  • the third information block is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the third information block is generated in the RRC sublayer 306 and the MAC sublayer 302 or the MAC sublayer 352.
  • the second signaling is generated in the PHY301 or the PHY351.
  • the second signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the second signal is generated from the PHY301 or the PHY351.
  • the higher layer in this application refers to the layer above the physical layer.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in the access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and control of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the second communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 450, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • Transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the second communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 with the second Any parallel flow to which communication device 450 is the destination.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media. In the DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which undergo analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then are provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the functionality at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • the reception function at the second communication device 450 is described in the transmission.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communications device 450 .
  • Upper layer packets from controller/processor 475 may be provided to the core network.
  • Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 450 receives at least the first signaling; sends the first signal.
  • the second communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving The first signaling; sending the first signal.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the first communication device 410 at least sends the first signaling; receives the first signal.
  • the first communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending the The first signaling; receiving the first signal.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller /Processor 475, at least one of the memories 476 ⁇ is used to send the first signaling.
  • At least one of ⁇ the antenna 420, the receiver 418, the reception processor 470, the multi-antenna reception processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first signal; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the Described memory 460, At least one of the data sources 467 ⁇ is used to send the first signal.
  • the antenna 452 the receiver 454, the reception processor 456, the multi-antenna reception processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller /Processor 475, at least one of the memories 476 ⁇ is used to send the second signaling.
  • At least one of ⁇ the antenna 420, the receiver 418, the reception processor 470, the multi-antenna reception processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the second signal; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the The memory 460, at least one of the data sources 467 ⁇ is used to send the second signal.
  • Embodiment 5 illustrates a flow chart of transmission according to an embodiment of the present application; as shown in Figure 5.
  • the second node U1 and the first node U2 are communication nodes transmitting through the air interface.
  • the steps in block F51 and block F52 are respectively optional.
  • step S5201 For the first node U2, receive the first information block, the second information block and the third information block in step S5201; receive the first signaling in step S521; send the first signal in step S522; receive in step S5202 Second signaling; send a second signal in step S5203.
  • the first signaling is used by the first node U2 to determine a first SRS resource group
  • the first SRS resource group is used by the first node U2 to determine to send the first The antenna port of the signal
  • the first SRS resource group includes a first SRS resource subgroup and a second SRS resource subgroup
  • the first SRS resource subgroup and the second SRS resource subgroup each include at least one SRS resource.
  • Any SRS resource in the first SRS resource subgroup belongs to the first SRS resource set, and any SRS resource in the second SRS resource subgroup belongs to the second SRS resource set, and the first SRS resource set and the second SRS resource set respectively include at least one SRS resource; a first power control parameter group is associated with the first SRS resource set, and a second power control parameter group is associated with the second SRS resource set; target power control The parameter group is used by the first node U2 to determine the transmission power of the first signal; the target power control parameter group is one of the first power control parameter group or the second power control parameter group, Alternatively, the target power control parameter group is a third power control parameter group; the first power control parameter group, the second power control parameter group and the third power control parameter group are configured separately.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the relay node device and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the second node U1 is the serving cell maintenance base station of the first node U2.
  • the first signaling is transmitted in a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the first signaling is transmitted in PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first signaling is performed on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data). transmission.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the first signaling is transmitted in PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first signal is transmitted in an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the first signal is transmitted in PUSCH (Physical Uplink Shared CHannel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared CHannel, Physical Uplink Shared Channel
  • the target power control parameter group is the third power control parameter group; the first information block is used to configure the first function
  • the second information block is used to configure the second power control parameter group, and the third information block is used to configure the third power control parameter group.
  • the first information block, the second information block and the third information block are respectively transmitted on the PDSCH.
  • the first information block and the second information block are transmitted on the PDSCH respectively.
  • the third information block is transmitted on PDCCH.
  • a part of the third information block is transmitted on the PDSCH, and another part of the third information block is transmitted on the PDCCH.
  • the step in block F51 in Figure 5 does not exist.
  • the steps in block F52 in Figure 5 exist, the second signaling is used by the first node U2 to determine a second SRS resource group, and the second SRS resource group is used by the The first node U2 is used to determine the antenna port for sending the second signal; the second SRS resource group includes at least one SRS resource; any SRS resource in the second SRS resource group belongs to a given SRS resource set, The given SRS resource set is the first SRS resource set or the second SRS resource set; the given power control parameter group is the sum of the first power control parameter group and the second power control parameter group.
  • the power control parameter group associated with the given SRS resource set is used by the first node U2 to determine the transmission power of the second signal.
  • the second signaling includes physical layer signaling.
  • the second signaling includes dynamic signaling.
  • the second signaling includes DCI.
  • the second signaling is a DCI.
  • the format of the second signaling belongs to one of Format 0_0, Format 0_1 or Format 0_2.
  • the format of the second signaling is the same as the format of the first signaling.
  • the second signaling includes RRC signaling.
  • the second signaling includes MAC CE.
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal carries at least one TB or at least one CBG.
  • the second signaling includes scheduling information of the second signal.
  • the scheduling information of the second signal includes a QCL relationship.
  • the scheduling information of the second signal includes spatial relationships.
  • the scheduling information of the second signal includes one or more of time domain resources, frequency domain resources, MCS, DMRS port, HARQ process number, RV, NDI, TCI status or SRI.
  • the second SRS resource group includes only SRS resources in the given SRS resource set among the first SRS resource set and the second SRS resource set.
  • the second signaling indicates the given SRS resource set.
  • the second signaling indicates the given SRS resource set from the first SRS resource set and the second SRS resource set.
  • the given SRS resource set is the first SRS resource set
  • the given power control parameter group is the first power control parameter group
  • the given SRS resource set is the second SRS resource set
  • the given power control parameter group is the second power control parameter group
  • the second signal is sent by the same antenna port as the SRS port of the SRS resource in the second SRS resource group.
  • the first node sends the second signal using the same air domain filter used to send SRS in the second SRS resource group.
  • the second signal includes v1 layers, where v1 is a positive integer; the v1 layers are precoded by the unit matrix or the sixth precoder and then mapped to the third antenna port group; Two SRS resource groups are used to determine the third antenna port group; the third antenna port group includes at least one antenna port.
  • the third antenna port group includes v1 antenna ports, and the v1 layers are respectively mapped to the v1 antenna ports;
  • the second SRS resource group includes v1 SRSs resources, any SRS resource among the v1 SRS resources has only one SRS port, and the v1 antenna ports are the same antenna ports as the SRS ports of the v1 SRS resources.
  • the third antenna port group includes ⁇ 2 antenna ports, ⁇ 2 is a positive integer greater than 1; the second SRS resource group only includes one SRS resource, and the second SRS resource The one SRS included in the group has ⁇ 2 SRS ports; the ⁇ 2 antenna ports are the same antenna ports as the ⁇ 2 SRS ports respectively; the v1 layer is precoded by the sixth precoder. mapped to the ⁇ 2 antenna ports.
  • the second signaling indicates the sixth precoder.
  • the second signaling indicates the TPMI of the sixth precoder.
  • the sixth precoder is a matrix or a column vector.
  • the second signaling indicates the second SRS resource group.
  • the second signaling indicates the number of SRS resources included in the second SRS resource group.
  • the second signaling indicates the SRI of each SRS resource in the second SRS resource group.
  • the second signaling indicates that the second SRS resource group is used to determine the antenna port for transmitting the second signal.
  • the second SRS resource group includes only one SRS resource.
  • the second SRS resource group includes multiple SRS resources.
  • the first node U2 determines the SRS resource based on the second SRS resource group including only the SRS resources in the given SRS resource set among the first SRS resource set and the second SRS resource set. It is determined that: the given power control parameter group among the first power control parameter group and the second power control parameter group is used to determine the transmit power of the second signal.
  • the first node U2 determines the SRS resource based on the second SRS resource group including only the SRS resources in the given SRS resource set among the first SRS resource set and the second SRS resource set. Determine: the given power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group is used to determine the second signal Transmit power.
  • only the given power control parameter group among the first power control parameter group and the second power control parameter group is used to determine the transmit power of the second signal.
  • only the given power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group is used to determine the second signal of the transmit power.
  • the second signaling is transmitted in PDCCH.
  • the second signaling is transmitted in PDSCH.
  • the second signal is transmitted in PUSCH.
  • Embodiment 6 illustrates a schematic diagram of an antenna port that transmits a first signal according to an embodiment of the present application; as shown in FIG. 6 .
  • the first SRS resource subgroup is used by the first node to determine a first antenna port group
  • the second SRS resource subgroup is used by the first node to determine a second antenna port. group
  • the first signal is sent by the first antenna port group and the second antenna port group.
  • the first signal is sent by the first antenna port group and the second antenna port group in the same time-frequency resource.
  • the first signal is sent by the first antenna port group and the second antenna port group in overlapping time-frequency resources.
  • the part of the first signal sent by the first antenna port group and the part sent by the second antenna port group occupy overlapping or the same time-frequency resources.
  • any layer of the first signal is transmitted by the first antenna port group and the second antenna port group in the same time-frequency resource.
  • any layer of the first signal is transmitted by the first antenna port group and the second antenna port group in overlapping time-frequency resources.
  • the part sent by the first antenna port group and the part sent by the second antenna port group occupy overlapping or the same time-frequency resources.
  • any DMRS port of the first signal is mapped to the first antenna port group and the second antenna port group in the same time-frequency resource.
  • any DMRS port of the first signal is mapped to the first antenna port group and the second antenna port group in overlapping time-frequency resources.
  • the DMRS on any DMRS port of the first signal is transmitted by the first antenna port group and the second antenna port group in the same time-frequency resource.
  • the DMRS on any DMRS port of the first signal is transmitted by the first antenna port group and the second antenna port group in overlapping time-frequency resources.
  • the first antenna port group includes the same SRS port as the SRS resource in the first SRS resource subgroup
  • the second antenna port group includes the same SRS port as the second SRS resource subgroup.
  • the SRS ports of the SRS resources in the group are the same antenna ports.
  • the first antenna port group is composed of the same SRS ports as the SRS resources in the first SRS resource subgroup
  • the second antenna port group is composed of the same SRS ports as the second SRS resource.
  • the SRS resources in the subgroup are composed of the same antenna ports as the SRS ports.
  • the first antenna port group and the second antenna port group each include at least one antenna port.
  • the number of antenna ports included in the first antenna port group is equal to 1.
  • the first antenna port group includes a number of antenna ports greater than 1.
  • the number of antenna ports included in the second antenna port group is equal to 1.
  • the second antenna port group includes a number of antenna ports greater than 1.
  • the number of antenna ports included in the first antenna port group is equal to the number of antenna ports included in the second antenna port group.
  • the number of antenna ports included in the first antenna port group is not equal to the number of antenna ports included in the second antenna port group.
  • Embodiment 7 illustrates a schematic diagram of an antenna port that transmits a first signal according to an embodiment of the present application; as shown in FIG. 7 .
  • the first signal includes v layers, where v is a positive integer; the v layers are precoded by W 0 and mapped to the first antenna port group in Embodiment 6, so The v layers are precoded by W 1 and then mapped to the second antenna port group in Embodiment 6, where W 0 and W 1 are respectively a precoder; the first antenna port group includes The number of antenna ports is equal to ⁇ 0, the number of antenna ports included in the second antenna port group is equal to ⁇ 1, and ⁇ 0 and ⁇ 1 are respectively positive integers.
  • the are respectively ⁇ 0 antenna ports in the first antenna port group, and the are respectively the ⁇ 1 antenna ports in the second antenna port group, and the y (0) (i),..., y (v-1) (i) are the v layers respectively; the M is each The number of modulation symbols in a layer.
  • z (p) (i) can be found in 3GPP TS38.211, where or
  • the first SRS resource subgroup includes ⁇ 0 SRS ports
  • the second SRS resource subgroup includes ⁇ 1 SRS port
  • the ⁇ 0 antenna ports are the same antenna ports as the ⁇ 0 SRS ports included in the first SRS resource subgroup
  • the ⁇ 1 antenna ports are respectively the same as the ⁇ 0 SRS ports included in the second SRS resource subgroup.
  • the ⁇ 1 SRS ports are the same antenna ports.
  • the p0 antenna ports correspond to the p0 SRS ports one-to-one, and any antenna port among the p0 antenna ports is the same antenna port as the corresponding SRS port.
  • the ⁇ 1 antenna ports correspond to the ⁇ 1 SRS ports one-to-one, and any of the ⁇ 1 antenna ports is the same antenna port as the corresponding SRS port.
  • the number of SRS resources included in the first SRS resource subgroup is equal to the p0, and the number of SRS ports configured for any SRS resource in the first SRS resource subgroup is Equal to 1, the ⁇ 0 SRS ports included in the first SRS resource subgroup are respectively the SRS ports of the ⁇ 0 SRS resources in the first SRS resource subgroup; the SRS ports included in the second SRS resource subgroup The number of resources is equal to ⁇ 1, the number of SRS ports configured for any SRS resource in the second SRS resource subgroup is equal to 1, and the ⁇ 1 SRS ports included in the second SRS resource subgroup are respectively SRS ports of ⁇ 1 SRS resources in the second SRS resource subgroup.
  • the ⁇ 0 is equal to the ⁇ 1.
  • the W 0 and the W 1 are each a unit matrix.
  • the first SRS resource subgroup includes only one SRS resource, and the number of SRS ports configured for the one SRS resource included in the first SRS resource subgroup is equal to the p0 , the ⁇ 0 SRS ports included in the first SRS resource subgroup are the ⁇ 0 SRS ports of the one SRS resource included in the first SRS resource subgroup; the second SRS resource subgroup only includes one SRS resources, the number of SRS ports configured for the one SRS resource included in the second SRS resource subgroup is equal to the ⁇ 1, and the ⁇ 1 SRS port included in the second SRS resource subgroup is the first SRS port.
  • the two SRS resource subgroups include ⁇ 1 SRS ports of the one SRS resource.
  • the first signaling indicates the W 0 and the W 1 .
  • Embodiment 8 illustrates a schematic diagram of the association between a power control parameter group and an SRS resource set according to an embodiment of the present application; as shown in FIG. 8 .
  • the one SRS resource set is any one of the first SRS resource set or the second SRS resource set
  • the one power control parameter group is the first power control parameter set.
  • the one power control parameter group is the first power control parameter group, and the one SRS resource set is the first SRS resource set; or the one power control parameter group is the third Two power control parameter groups, the one SRS resource set is the second SRS resource set.
  • the meaning of associating a power control parameter group with an SRS resource set includes: a given TCI state is used to determine the one power control parameter group; the given TCI state is used to determine the one SRS Spatial domain filter for resource collections.
  • the meaning of associating a power control parameter group with an SRS resource set includes: the TCI-state IE used to configure a given TCI state indicates the power control parameter group; the given TCI state is used used to determine the spatial filter of the one SRS resource set.
  • the meaning of associating a power control parameter group with an SRS resource set includes: the power control parameter group is associated with a given TCI state; the given TCI state is used to determine the SRS resource set. spatial filter.
  • the meaning of associating a power control parameter group with an SRS resource set includes: when the antenna port for sending an uplink signal is determined by and only the SRS resources in the one SRS resource set, the power control parameter group is associated with an SRS resource set.
  • the parameter set is used to determine the transmit power of the one uplink signal.
  • the meaning of associating a power control parameter group with an SRS resource set includes: when the antenna port for sending an uplink signal is determined by and only by the SRS resources in the one SRS resource set, and the one uplink signal
  • the one power control parameter group is used to determine the transmission power of the one signal
  • the transmission type of the one uplink signal is PUSCH transmission , one of PUCCH transmission or SRS transmission
  • the transmission type corresponding to the one power control parameter group is one of PUSCH transmission, PUCCH transmission or SRS transmission.
  • the meaning of associating a power control parameter group with an SRS resource set includes: when the TCI state of an uplink signal only includes a given TCI state, the power control parameter group is used to determine the uplink signal. The transmission power of the signal; the given TCI state is used to determine the spatial filter of the one SRS resource set.
  • the meaning of associating a power control parameter group with an SRS resource set includes: when the TCI state of an uplink signal only includes a given TCI state, and the transmission type of the uplink signal and the power control parameter When the transmission types corresponding to the groups are the same, the one power control parameter group is used to determine the transmit power of the one uplink signal; the given TCI state is used to determine the air domain filter of the one SRS resource set; the The transmission type of the one uplink signal is one of PUSCH transmission, PUCCH transmission or SRS transmission, and the transmission type corresponding to the one power control parameter group is one of PUSCH transmission, PUCCH transmission or SRS transmission.
  • the association between a power control parameter group and an SRS resource set means that the configuration information of an SRS resource set includes the power control parameter group.
  • the meaning of associating a power control parameter group with an SRS resource set includes: associating the power control parameter group with the SRS-ResourceSetId of the SRS resource set.
  • the meaning of associating a power control parameter group with an SRS resource set includes: the same information block is used to indicate the SRS-ResourceSetId of the SRS resource set and the power control parameter group;
  • the name of an information block includes "SRS-ResourceSet”.
  • the meaning of associating a power control parameter group with an SRS resource set includes: the SRS resource set is configured with the power control parameter group.
  • the meaning of associating a power control parameter group with an SRS resource set includes: the power control parameter group is mapped to the SRI of an SRS resource in the SRS resource set.
  • the meaning of a TCI state being used to determine the spatial filter of an SRS resource set includes: the first node receives or sends the spatial filter of a reference signal in a reference signal resource indicated by the TCI state.
  • the controller is used to determine the air domain filter for the first node to transmit SRS in the one SRS resource set.
  • the meaning of a TCI state being used to determine the spatial filter of an SRS resource set includes: the first node uses the same method as receiving or transmitting a reference signal in a reference signal resource indicated by the TCI state. air domain filter, and transmit SRS in the one SRS resource set.
  • the meaning that a TCI state is used to determine the air domain filter of an SRS resource set includes: the TCI state of an SRS resource set is the TCI state.
  • Embodiment 9 illustrates a schematic diagram in which the first signaling includes the second domain and the third domain according to an embodiment of the present application; as shown in FIG. 9 .
  • the first signaling includes a second domain and a third domain, and the second domain in the first signaling and the third domain in the first signaling jointly indicate The first SRS resource group.
  • the second field and the third field each include at least one bit.
  • the second domain and the third domain each include at least one DCI domain.
  • the second field and the third field respectively include all or part of the bits in at least one DCI field.
  • the second domain and the third domain are respectively a DCI domain.
  • the second domain includes a DCI domain SRS resource indicator.
  • the second domain includes the first SRS resource indicator domain in the DCI.
  • the third domain includes DCI domain Second SRS resource indicator.
  • the third domain includes information in the DCI domain Second SRS resource indicator.
  • the third domain includes the second SRS resource indicator domain in the DCI.
  • the second field and the third field respectively indicate at least one SRI.
  • the second domain and the third domain respectively indicate at least one SRS resource.
  • the position of the second domain in the first signaling is before the third domain.
  • the second domain in the first signaling indicates the first SRS resource subgroup.
  • the third field in the first signaling indicates the second SRS resource subgroup.
  • the second domain in the first signaling indicates the first SRS resource subgroup in the first SRS resource set.
  • the third domain in the first signaling indicates the second SRS resource subgroup in the second SRS resource set.
  • the second domain in the first signaling indicates the number of SRS resources included in the first SRS resource subgroup.
  • the second domain in the first signaling indicates the number of SRS resources included in the first SRS resource subgroup by indicating the first SRS resource subgroup.
  • the interpretation of the third domain in the first signaling depends on the second domain in the first signaling.
  • the interpretation of the third field in the first signaling is based on having the same number of layers as the number of layers indicated by the second field in the first signaling.
  • the number of layers indicated by the second domain in the first signaling is equal to the number of SRS resources included in the first SRS resource subgroup.
  • the interpretation of the third domain in the first signaling depends on the number of SRS resources included in the first SRS resource subgroup.
  • the interpretation of the third domain in the first signaling is based on having the same number of layers as the number of SRS resources included in the first SRS resource subgroup.
  • the number of SRS resources included in the second SRS resource subgroup is equal to the number of SRS resources included in the first SRS resource subgroup.
  • the value of the third field in the first signaling and the number of SRS resources included in the first SRS resource subgroup are jointly used to determine the second SRS resource subgroup.
  • the second domain in the first signaling indicates the SRI of each SRS resource in the first SRS resource subgroup.
  • the third domain in the first signaling indicates the SRI of each SRS resource in the second SRS resource subgroup.
  • the number of SRS resources included in the first SRS resource subgroup and the number of SRS resources included in the second SRS resource subgroup are both equal to 1.
  • the interpretation of the third domain in the first signaling does not depend on the second domain in the first signaling.
  • the second domain in the first signaling indicates one SRS resource in the first SRS resource set, and the first SRS resource subgroup is composed of the one SRS resource.
  • the third domain in the first signaling indicates one SRS resource in the second SRS resource set, and the second SRS resource subgroup is composed of the one SRS resource.
  • the first signaling includes a fourth domain
  • the fourth domain in the first signaling indicates the second domain in the first signaling and the first SRS resource.
  • the set is associated, and the fourth domain in the first signaling indicates that the third domain in the first signaling is associated with the second SRS resource set.
  • the meaning of a field in the first signaling being associated with an SRS resource set includes: any SRS resource indicated by the field in the first signaling belongs to the one SRS resource. gather.
  • the meaning of a domain in the first signaling being associated with an SRS resource set includes: the domain in the first signaling indicates at least one SRS from the SRS resource set. resource.
  • the fourth domain includes DCI domain SRS resource set indicator.
  • the fourth domain in the first signaling indicates that the SRS resources in the first SRS resource set and the SRS resources in the second SRS resource set are jointly used to determine whether to send the the antenna port for the first signal.
  • the fourth field in the first signaling indicates that the TCI state of the first signal includes the first TCI state and the second TCI state.
  • Embodiment 10 illustrates a schematic diagram in which a target power control parameter set is used to determine the transmission power of a first signal according to an embodiment of the present application; as shown in FIG. 10 .
  • the target power control parameter set is used to determine the first reference power; the first reference power is used to determine the transmit power of the first signal; the first reference power and The first component is linearly related to the first reference power and The second component is linearly related; the target power control parameter set is used to determine at least one of the first component and the second component.
  • the linear coefficient between the first reference power and the first component is equal to 1.
  • the linear coefficient between the first reference power and the second component is equal to 1.
  • the transmission power of the first signal is the minimum value of the first reference power and the first power threshold.
  • the first power threshold is the maximum output power configured by the first node.
  • the unit of the first power threshold is dBm (millidecibels).
  • the first power threshold is PCMAX,f,c (i).
  • PCMAX,f,c (i) can be found in 3GPP TS38.213.
  • the first power threshold is PCMAX .
  • the unit of the first reference power is dBm (millidecibels).
  • the unit of the transmission power of the first signal is dBm (millidecibels).
  • the first component is P0.
  • the first component is P0 for uplink power control.
  • the first component is P0 used for PUSCH power control.
  • the first component is P 0_PUSCH,b,f,c (j).
  • the PUSCH carrying the first signal is configured for transmission with a parameter set indexed j in the active uplink BWP b of the carrier f of the serving cell c.
  • the second component is equal to the product of the first path loss and the first coefficient; the measurement of the first reference signal is used to determine the first path loss, and the first reference signal is is transmitted in signal resources.
  • the first reference signal resource includes CSI-RS (Channel State Information-Reference Signal, Channel State Information Reference Signal) resource (resource).
  • CSI-RS Channel State Information-Reference Signal, Channel State Information Reference Signal
  • the first reference signal resource includes SS/PBCH block (Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block) resource.
  • SS/PBCH block Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block
  • the first path loss is equal to the transmission power of the first reference signal minus the RSRP (Reference Signal Received Power) of the first reference signal.
  • the first coefficient is a non-negative real number less than or equal to 1.
  • the first coefficient is alfa.
  • the first coefficient is alfa used for uplink power control.
  • the first coefficient is alfa used for PUSCH power control.
  • the first coefficient is ⁇ b,f,c (j).
  • the first reference power and the third component are linearly related, the linear coefficient between the first reference power and the third component is 1, and the third component is the power control adjustment state.
  • the third component is f b,f,c (i,l).
  • f b, f, c (i, l) can be found in 3GPP TS38.213.
  • the first reference power and the fourth component are linearly related, and the linear coefficient between the first reference power and the fourth component is 1; the fourth component and the fourth component carry the first signal
  • the PUSCH is allocated to the bandwidth expressed as the number of RB (Resource Block, resource block).
  • the first reference power and the fifth component are linearly related, the linear coefficient between the first reference power and the fifth component is 1, and the fifth component and the first signal carry The number of code blocks, the size of each code block carried by the first signal, and the number of symbols and subcarriers allocated to the PUSCH carrying the first signal are all related.
  • the fifth component is ⁇ TF,b,f,c (i).
  • ⁇ TF,b,f,c (i) can be found in 3GPP TS38.213.
  • the first reference power is linearly related to the first component, the second component, the third component, the fourth component and the fifth component respectively; the first reference The linear coefficients between the power and the first component, the second component, the third component, the fourth component and the fifth component are respectively 1.
  • the first reference power and the first component, the second component, the third component and the fourth component are respectively linearly related; the linear coefficients between the first reference power and the first component, the second component, the third component and the fourth component are respectively 1.
  • the target power control parameter set includes the first component.
  • the first component is P0 included in the target power control parameter group.
  • the target power control parameter group includes the identification of the first reference signal resource.
  • the identifier of the first reference signal resource includes SSB-Index.
  • the identifier of the first reference signal resource includes NZP-CSI-RS-ResourceId.
  • the path loss reference signal identity included in the target power control parameter group is used to indicate the first reference signal resource.
  • the target power control parameter set includes the first coefficient.
  • the first coefficient is alfa included in the target power control parameter group.
  • the target power control parameter group includes a power control adjustment state index corresponding to the third component.
  • the power control adjustment state index corresponding to the third component is the power control adjustment state index included in the target power control parameter group.
  • the target power control parameter group includes a closed-loop index corresponding to the third component.
  • the target power control parameter group includes at least the first component, the identifier of the first reference signal resource, the first coefficient and the power control adjustment state index corresponding to the third component. one.
  • the target power control parameter group includes at least one of the first component, the first path loss reference signal identity, the first coefficient and the power control adjustment state index corresponding to the third component. ;
  • the first path loss reference signal identity is used to indicate the first reference signal resource.
  • the target power control parameter group includes the first component, the first path loss reference signal identity, the first coefficient and the power control adjustment state index corresponding to the third component.
  • the target power control parameter group includes the first component, the first coefficient and the power control adjustment state index corresponding to the third component.
  • the target power control parameter group includes the first component and the first coefficient.
  • Embodiment 11 illustrates a schematic diagram in which the first signaling is used by the first node to determine the target power control parameter group from the first power control parameter group and the second power control parameter group according to an embodiment of the present application; such as As shown in Figure 11.
  • the first signaling indicates the target power control parameter set.
  • the first signaling indicates the target power control parameter group from the first power control parameter group and the second power control parameter group.
  • the first signaling explicitly indicates the target power control parameter set.
  • the first signaling includes a first field, and the first field in the first signaling indicates the target power control parameter set.
  • the first domain in the first signaling indicates the target power control parameter group from the first power control parameter group and the second power control parameter group.
  • the target power control parameter group when the value of the first domain in the first signaling is equal to a first value, the target power control parameter group is the first power control parameter group; when the first signal When the value of the first domain in is equal to the second value, the target power control parameter group is the second power control parameter group; the first value and the second value are respectively non-negative integers.
  • the first domain includes information in the DCI domain Open-loop power control parameter set indication.
  • the first signaling includes the fourth domain in Embodiment 9, and the fourth domain in the first signaling is used to determine the target power control parameter set.
  • the fourth domain in the first signaling is used to determine the target power control parameter group from the first power control parameter group and the second power control parameter group.
  • the value of the fourth domain in the first signaling is one of the first candidate value or the second candidate value; when the value of the fourth domain in the first signaling When equal to the first candidate value, the target power control parameter group is the first power control parameter group; when the When the value of the fourth field in a signaling is equal to the second candidate value, the target power control parameter set is the second power control parameter set.
  • the fourth field in the first signaling regardless of whether the value of the fourth field in the first signaling is equal to the first candidate value or the second candidate value, all the values in the first signaling are equal to the first candidate value or the second candidate value.
  • the fourth field indicates that the SRS resources in the first SRS resource set and the SRS resources in the second SRS resource set are jointly used to determine the antenna port for transmitting the first signal.
  • the fourth fields all indicate that: the second domain in the first signaling is associated with the first SRS resource set, and the third domain in the first signaling is associated with the second SRS Resource collections are associated.
  • the candidate values of the fourth domain include Q1 candidate values, and the Q1 is greater than 2; the Q1 candidate values include the first candidate value and the second candidate value. , the Q1 candidate values include at least one candidate value other than the first candidate value and the second candidate value.
  • the first signaling implicitly indicates the target power control parameter set.
  • the first signaling implicitly indicates the target power control parameter group by indicating other information.
  • the first signaling implicitly indicates the target power control parameter group by indicating the time-frequency resource of the first signal.
  • the first signaling implicitly indicates the target power control parameter group by indicating the DMRS port or DMRS sequence of the first signal.
  • Embodiment 12 illustrates a schematic diagram in which the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group according to an embodiment of the present application; as shown in FIG. 12 .
  • the SRS-ResourceSetId of the first SRS resource set and the SRS-ResourceSetId of the second SRS resource set are used to select from the first power control parameter group and the second power control parameter group. Determine the target power control parameter set.
  • the sentence that the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group includes: the target power control parameter group is the In the first power control parameter group and the second power control parameter group, the power control associated with the SRS resource set corresponding to the smaller SRS-ResourceSetId in the first SRS resource set and the second SRS resource set is Parameter group.
  • the sentence that the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group includes: the target power control parameter group is the Among the first power control parameter group and the second power control parameter group, the power control associated with the SRS resource set that has a larger corresponding SRS-ResourceSetId in the first SRS resource set and the second SRS resource set is Parameter group.
  • the target power control parameter group is the first power control parameter group; the first SRS resource set is the corresponding SRS-SRS in the first SRS resource set and the second SRS resource set.
  • the target power control parameter group is the second power control parameter group; the second SRS resource set is the corresponding SRS-SRS in the first SRS resource set and the second SRS resource set.
  • the sentence that the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group includes: the target power control parameter group is the The first power control parameter group and the second power control parameter group are associated with an SRS resource set that has a smaller TCI-StateId of the corresponding TCI state in the first SRS resource set and the second SRS resource set.
  • the power control parameter group is the The first power control parameter group and the second power control parameter group are associated with an SRS resource set that has a smaller TCI-StateId of the corresponding TCI state in the first SRS resource set and the second SRS resource set.
  • the sentence that the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group includes: the target power control parameter group is the The first power control parameter group and the second power control parameter group are associated with an SRS resource set that has a larger TCI-StateId of the corresponding TCI state in the first SRS resource set and the second SRS resource set.
  • the power control parameter group is the The first power control parameter group and the second power control parameter group are associated with an SRS resource set that has a larger TCI-StateId of the corresponding TCI state in the first SRS resource set and the second SRS resource set.
  • the sentence that the target power control parameter group is the default one of the first power control parameter group and the second power control parameter group includes: the target power control parameter group is the The SRS that has a smaller TCI code point (codepoint) of the corresponding TCI state in the first SRS resource set and the second SRS resource set among the first power control parameter group and the second power control parameter group.
  • the power control parameter group associated with the resource collection includes: the target power control parameter group is the The SRS that has a smaller TCI code point (codepoint) of the corresponding TCI state in the first SRS resource set and the second SRS resource set among the first power control parameter group and the second power control parameter group.
  • the target power control parameter group in the sentence is the default among the first power control parameter group and the second power control parameter group.
  • the meaning of one includes: the target power control parameter group is corresponding to the first power control parameter group and the second power control parameter group and the first SRS resource set and the second SRS resource set.
  • the TCI state corresponding to an SRS resource set is the TCI state used to determine the air domain filter of the SRS resource set.
  • the first TCI state is used to determine the spatial domain filter of the first SRS resource set
  • the second TCI state is used to determine the spatial domain filter of the second SRS resource set.
  • the first TCI state and the second TCI state are used to determine the target power control parameter group from the first power control parameter group and the second power control parameter group.
  • the target power control parameter group is the first power control parameter group; if the first The TCI-StateId of the TCI state is greater than the TCI-StateId of the second TCI state, and the target power control parameter set is the second power control parameter set.
  • the target power control parameter group is the first power control parameter group; if the first The TCI-StateId of the TCI state is smaller than the TCI-StateId of the second TCI state, and the target power control parameter set is the second power control parameter set.
  • the target power control parameter group is the first power control parameter group; if the The TCI code point corresponding to the first TCI state is greater than the TCI code point corresponding to the second TCI state, and the target power control parameter group is the second power control parameter group.
  • the target power control parameter group is the first power control parameter group; if the The TCI code point corresponding to the first TCI state is smaller than the TCI code point corresponding to the second TCI state, and the target power control parameter group is the second power control parameter group.
  • the TCI-StateId of the first TCI state is different from the TCI-StateId of the second TCI state.
  • Embodiment 13 illustrates a schematic diagram of the first information block, the second information block and the third information block according to an embodiment of the present application; as shown in Figure 13.
  • the first information block is used to configure the first power control parameter group
  • the second information block is used to configure the second power control parameter group
  • the third information block is used to configure the third power control parameter group.
  • the first information block is carried by higher layer signaling.
  • the first information block is carried by RRC signaling.
  • the first information block is carried by MAC CE.
  • the first information block is carried by an IE.
  • the second information block is carried by higher layer signaling.
  • the second information block is carried by RRC signaling.
  • the second information block is carried by MAC CE.
  • the second information block is carried by an IE.
  • the third information block is carried by higher layer signaling.
  • the third information block is carried by RRC signaling.
  • the third information block is carried by MAC CE.
  • the third information block is carried by at least one IE.
  • the third information block is carried by RRC signaling and MAC CE.
  • At least two information blocks among the first information block, the second information block and the third information block are carried by different IEs.
  • the first information block, the second information block and the third information block are carried by three different IEs respectively.
  • At least two information blocks among the first information block, the second information block and the third information block are carried by different fields in the same IE.
  • At least two information blocks among the first information block, the second information block and the third information block are composed of the same carried by the same domain in IE.
  • At least one information block among the first information block, the second information block and the third information block is carried by higher layer signaling, and the first information block, the second information block block and at least one other of the third information block is carried by DCI.
  • At least one information block among the first information block, the second information block and the third information block is carried by RRC signaling, and the first information block, the second information block and at least another information block in the third information block is carried by RRC signaling and MAC CE.
  • the first information block and the second information block are carried by an IE respectively, and the third information block is carried by a MAC CE.
  • the first information block and the second information block are carried by one IE respectively, and the third information block is carried by at least one IE and at least one MAC CE.
  • the first information block and the second information block are carried by an IE respectively, and the third information block is carried by a DCI.
  • the first information block and the second information block are carried by one IE respectively, and the third information block is carried by at least one higher layer signaling and one DCI.
  • the first TCI state is used to determine the air domain filter of the first SRS resource set
  • the second TCI state is used to determine the air domain filter of the second SRS resource set
  • the first TCI The state is configured by the first TCI-state IE
  • the second TCI state is configured by the second TCI-state IE
  • the first information block is carried by the first TCI-state IE
  • the second information block is carried by the The second TCI-state IE carries.
  • the third information block is carried by another IE that is neither different from the first TCI-state IE nor the second TCI-state IE.
  • the third information block is carried by a third TCI-state IE, the third TCI-state IE, the first TCI-state IE or the second TCI-state IE One of them; the third information block and the given information block are respectively carried by different fields of the third TCI-state IE; the given information block is the first information block and the second information block The information block carried by the third TCI-state IE.
  • Embodiment 14 illustrates a schematic diagram in which the second signaling includes a second domain and a third domain according to an embodiment of the present application; as shown in FIG. 14 .
  • the second domain and the third domain are respectively the second domain and the third domain in Embodiment 9; the second domain indication in the second signaling The second SRS resource group.
  • the second field in the second signaling indicates the number of SRS resources included in the second SRS resource group.
  • the second domain in the second signaling indicates the SRI of each SRS resource in the second SRS resource group.
  • only the second domain among the second domain and the third domain in the second signaling is used to indicate the second SRS resource group.
  • only the second domain among the second domain and the third domain in the second signaling is used to determine the antenna port for transmitting the second signal.
  • the second signaling includes the fourth domain in Embodiment 9, and the fourth domain in the second signaling indicates the second domain in the second signaling. associated with the given SRS resource set.
  • the fourth domain in the second signaling indicates that the third domain in the second signaling is reserved.
  • the fourth domain in the second signaling indicates that the second SRS resource group includes only the given SRS resource set in the first SRS resource set and the second SRS resource set. SRS resources in the SRS resource collection.
  • the fourth field in the second signaling indicates the given SRS resource set.
  • the fourth domain in the second signaling indicates the given SRS resource set from the first SRS resource set and the second SRS resource set.
  • Embodiment 15 illustrates a schematic in which a given power control parameter set is used to determine the transmission power of the second signal according to an embodiment of the present application.
  • the given power control parameter set is used to determine the second reference power; the second reference power is used to determine the transmission power of the second signal; the second reference power is linearly related to the sixth component, and the second reference power is linearly related to the seventh component; the linear coefficient between the second reference power and the sixth component is equal to 1; the second reference power and the seventh component are linearly related.
  • the linear coefficient between the seven components is equal to 1; the given power control parameter set is used to determine at least one of the sixth component and the seventh component.
  • the transmission power of the second signal is the minimum value of the second reference power and the second power threshold.
  • the second power threshold is the maximum output power configured by the first node.
  • the unit of the second power threshold is dBm (millidecibels).
  • the second power threshold is PCMAX,f,c (i).
  • PCMAX,f,c (i) can be found in 3GPP TS38.213.
  • the second power threshold is PCMAX .
  • the unit of the second reference power is dBm (millidecibels).
  • the unit of the transmission power of the second signal is dBm (millidecibels).
  • the sixth component is P0.
  • the sixth component is P 0_PUSCH,b,f,c (j).
  • the PUSCH carrying the second signal is configured for transmission with a parameter set indexed j in the active uplink BWP b of the carrier f of the serving cell c.
  • the seventh component is equal to the product of the second path loss and the second coefficient; the measurement of the second reference signal is used to determine the second path loss, and the second reference signal is is transmitted in signal resources.
  • the second reference signal resources include CSI-RS resources.
  • the second reference signal resource includes SS/PBCH block resources.
  • the second path loss is equal to the transmit power of the second reference signal minus the RSRP of the second reference signal.
  • the second coefficient is a non-negative real number less than or equal to 1.
  • the second coefficient is alfa.
  • the second coefficient is ⁇ b,f,c (j).
  • the second reference power is linearly related to the eighth component
  • the linear coefficient between the second reference power and the eighth component is 1
  • the eighth component is the power control adjustment state
  • the eighth component is f b,f,c (i,l).
  • the second reference power and the ninth component are linearly related, and the linear coefficient between the second reference power and the ninth component is 1; the ninth component and the ninth component carry the second signal
  • the PUSCH is allocated to the bandwidth expressed as the number of RBs.
  • the second reference power is linearly related to the tenth component
  • the linear coefficient between the second reference power and the tenth component is 1
  • the tenth component and the tenth component are The number of code blocks carried by the second signal, the size of each code block carried by the second signal, and the number of symbols and subcarriers allocated to the PUSCH carrying the second signal are all related.
  • the tenth component is ⁇ TF,b,f,c (i).
  • the second reference power is linearly related to the sixth component, the seventh component, the eighth component, the ninth component and the tenth component respectively; the second The linear coefficients between the reference power and the sixth component, the seventh component, the eighth component, the ninth component and the tenth component are 1 respectively.
  • the second reference power is linearly related to the sixth component, the seventh component, the eighth component and the ninth component respectively; the second reference power is linearly related to the sixth component. component, the linear coefficient between the seventh component, the eighth component and the ninth component is 1 respectively.
  • the given power control parameter group includes the sixth component.
  • the given power control parameter group includes the identification of the second reference signal resource.
  • the identifier of the second reference signal resource includes SSB-Index.
  • the identifier of the second reference signal resource includes NZP-CSI-RS-ResourceId.
  • the path loss reference signal identity included in the given power control parameter group indicates the second reference signal resource.
  • the given power control parameter set includes the second coefficient.
  • the given power control parameter group includes a power control adjustment state index corresponding to the eighth component.
  • the given power control parameter group includes a closed-loop index corresponding to the eighth component.
  • the given power control parameter group includes the sixth component, the identifier of the second reference signal resource, the second coefficient and the power control adjustment state index corresponding to the eighth component. At least one.
  • the given power control parameter group includes at least one of the sixth component, the second path loss reference signal identity, the second coefficient and the power control adjustment state index corresponding to the eighth component.
  • the second path loss reference signal identity indicates the second reference signal resource.
  • the given power control parameter group includes the sixth component, the second path loss reference signal identity, the second coefficient and the power control adjustment state index corresponding to the eighth component.
  • the given power control parameter group includes the sixth component, the second coefficient and the power control adjustment state index corresponding to the eighth component.
  • the given power control parameter group includes the sixth component and the second coefficient.
  • only the given power control parameter group among the first power control parameter group and the second power control parameter group is used to determine the transmission power of the second signal.
  • only the given power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group is used to determine the second power control parameter group.
  • the transmit power of the signal is only the given power control parameter group among the first power control parameter group, the second power control parameter group and the third power control parameter group.
  • Embodiment 16 illustrates a schematic diagram of the first offset, the second power and the third power according to an embodiment of the present application; as shown in Figure 16.
  • the transmission power of the first signal is equal to the first power
  • the transmission power of the part of the first signal transmitted by the first antenna port group is equal to the second power
  • the transmission power of the part of the first signal transmitted by the second antenna port group is equal to the third power
  • the first offset is used to determine the difference between the second power and the third power. difference.
  • the first antenna port group includes the same SRS port as the SRS resource in the first SRS resource subgroup
  • the second antenna port group includes the same SRS port as the second SRS resource subgroup.
  • the SRS ports of the SRS resources in the group are the same antenna ports.
  • the first antenna port group is composed of the same SRS ports as the SRS resources in the first SRS resource subgroup
  • the second antenna port group is composed of the same SRS ports as the second SRS resource.
  • the SRS resources in the subgroup are composed of the same antenna ports as the SRS ports.
  • the units of the first power, the second power and the third power are dBm respectively.
  • the total transmission power of the first signal is equal to the first power.
  • the total transmission power of the first signal on the first antenna port group and the second antenna port group is equal to the first power.
  • the sum of the linear value of the second power and the linear value of the third power is equal to the linear value of the first power.
  • the sum of the linear value of the second power and the linear value of the third power is not greater than the linear value of the first power.
  • the unit of the first offset is dB.
  • the first offset has no unit.
  • the first offset is a positive real number.
  • the first offset is a real number.
  • the first offset is configurable.
  • the first offset is configured by higher layer signaling.
  • the first offset is configured by layer 1 signaling.
  • the first offset is indicated by the first signaling.
  • the first offset does not need to be configured.
  • the difference between the second power and the third power is equal to the first offset.
  • the difference between the second power and the third power is not greater than the first offset.
  • the difference between the second power and the third power is not less than the first offset.
  • the absolute value of the difference between the second power and the third power is not greater than the first offset.
  • the ratio of the linear value of the second power to the linear value of the third power is equal to the first offset.
  • the ratio of the linear value of the second power to the linear value of the third power is not greater than the first offset.
  • the ratio of the linear value of the second power to the linear value of the third power is not less than the first offset.
  • the linear value of a power is equal to 10 raised to the power of x1, and x1 is equal to the power divided by 10.
  • the fifth field in the first signaling indicates the first offset.
  • the first signaling includes DCI
  • the fifth domain includes DCI domain TPC command for scheduled PUSCH.
  • Embodiment 17 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 17 .
  • the processing device 1700 in the first node device includes a first receiver 1701 and a first transmitter 1702.
  • the first receiver 1701 receives the first signaling; the first transmitter 1702 sends the first signal.
  • the first signaling is used to determine a first SRS resource group, and the first SRS resource group is used to determine an antenna port for sending the first signal;
  • the first SRS resource group Includes a first SRS resource subgroup and a second SRS resource subgroup, the first SRS resource subgroup and the second SRS resource subgroup respectively include at least one SRS resource; any of the first SRS resource subgroup An SRS resource belongs to the first SRS resource set, any SRS resource in the second SRS resource subgroup belongs to the second SRS resource set, and the first SRS resource set and the second SRS resource set each include at least one SRS resources;
  • the first power control parameter group is associated with the first SRS resource set, the second power control parameter group is associated with the second SRS resource set;
  • the target power control parameter group is used to determine the first signal Transmit power;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group, or the target power control parameter group is the third power control parameter group; so The first power control parameter group,
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the first signaling is used to obtain the signal from the first power control parameter group.
  • the target power control parameter group is determined among the parameter group and the second power control parameter group.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the target power control parameter group is the first power control parameter group. and the default one in the second power control parameter group.
  • the first receiver 1701 receives a first information block, a second information block and a third information block; wherein the target power control parameter group is the third power control parameter group; the third An information block is used to configure the first power control parameter group, the second information block is used to configure the second power control parameter group, and the third information block is used to configure the third function control parameter group.
  • the first receiver 1701 receives second signaling; the first transmitter 1702 sends a second signal; wherein the second signaling is used to determine the second SRS resource group, and the The second SRS resource group is used to determine the antenna port for transmitting the second signal; the second SRS resource group includes at least one SRS resource; any SRS resource in the second SRS resource group belongs to a given SRS resource Set, the given SRS resource set is the first SRS resource set or the second SRS resource set; the given power control parameter group is the first power control parameter group and the second power control parameter group Neutralize the power control parameter set associated with the given SRS resource set, and the given power control parameter set is used to determine the transmission power of the second signal.
  • the first SRS resource subgroup is used to determine a first antenna port group
  • the second SRS resource subgroup is used to determine a second antenna port group
  • the first signal is used by the third antenna port group.
  • One antenna port group and the second antenna port group transmit; the transmission power of the first signal is equal to the first power, and the transmission power of the part of the first signal transmitted by the first antenna port group is equal to the third Second power, the transmission power of the part of the first signal transmitted by the second antenna port group is equal to the third power; the first offset is used to determine the difference between the second power and the third power. difference.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first signaling includes DCI; the first SRS resource set and the second SRS resource set are respectively identified by two different SRS-ResourceSetIds; the first SRS resource set and the The second SRS resource set is configured by a first higher-level parameter, and the name of the first higher-level parameter includes "srs-ResourceSetToAddModList"; the first SRS resource set is related to The higher-level parameter "usage” associated with the second SRS resource set and the higher-level parameter "usage” associated with the second SRS resource set are both set to "nonCodebook" or both are set to "codebook”; the first SRS resource subgroup includes The number of SRS resources is equal to the number of SRS resources included in the second SRS resource subgroup; the first signal is transmitted by the same antenna port as the SRS port of the SRS resource in the first SRS resource group.
  • a power control parameter group includes at least one type of power control parameters, and the number of any type of power control parameters included in the power control parameter group is equal to 1; the at least one type of power control parameters includes Any type of power control parameter among the control parameters is one of P0, alfa, power control adjustment state index, or path loss reference signal identity.
  • the first SRS resource set is associated with M1 power control parameter groups, where M1 is a positive integer greater than 1; the M1 power control parameter groups respectively correspond to M1 different transmission types, and the M1 Different transmission types include part or all of PUSCH transmission, PUCCH transmission and SRS transmission; the first power control parameter group is a power control parameter group whose corresponding transmission type among the M1 power control parameter groups is PUSCH transmission;
  • the second SRS resource set is associated with M2 power control parameter groups, M2 is a positive integer greater than 1; the M2 power control parameter groups respectively correspond to M2 different transmission types, and the M2 different transmission types include PUSCH transmission, part or all of PUCCH transmission and SRS transmission; the second power control parameter group is a power control parameter group whose corresponding transmission type among the M2 power control parameter groups is PUSCH transmission; the first signal Transmitted in PUSCH.
  • the first receiver 1701 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, and data source in Embodiment 4. At least one of 467 ⁇ .
  • the first transmitter 1702 includes the ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source in Embodiment 4. At least one of 467 ⁇ .
  • Embodiment 18 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 18 .
  • the processing device 1800 in the second node device includes a second transmitter 1801 and a second receiver 1802.
  • the second transmitter 1801 sends the first signaling; the second receiver 1802 receives the first signal.
  • the first signaling is used to determine a first SRS resource group, and the first SRS resource group is used to determine an antenna port for sending the first signal;
  • the first SRS resource group Includes a first SRS resource subgroup and a second SRS resource subgroup, the first SRS resource subgroup and the second SRS resource subgroup respectively include at least one SRS resource; any of the first SRS resource subgroup An SRS resource belongs to the first SRS resource set, any SRS resource in the second SRS resource subgroup belongs to the second SRS resource set, and the first SRS resource set and the second SRS resource set each include at least one SRS resources;
  • the first power control parameter group is associated with the first SRS resource set, the second power control parameter group is associated with the second SRS resource set;
  • the target power control parameter group is used to determine the first signal Transmit power;
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group, or the target power control parameter group is the third power control parameter group; so The first power control parameter group,
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the first signaling is used to obtain the signal from the first power control parameter group.
  • the target power control parameter group is determined among the parameter group and the second power control parameter group.
  • the target power control parameter group is one of the first power control parameter group or the second power control parameter group; the target power control parameter group is the first power control parameter group. and the default one in the second power control parameter group.
  • the second transmitter 1801 sends a first information block, a second information block and a third information block; wherein the target power control parameter group is the third power control parameter group; the third An information block is used to configure the first power control parameter group, the second information block is used to configure the second power control parameter group, and the third information block is used to configure the third function control parameter group.
  • the second transmitter 1801 sends second signaling; the second receiver 1802 receives a second signal; wherein the second signaling is used to determine a second SRS resource group, and the second receiver 1802 receives a second signal.
  • the second SRS resource group is used to determine the antenna port for transmitting the second signal; the second SRS resource group includes at least one SRS resource; any SRS resource in the second SRS resource group belongs to a given SRS resource Set, the given SRS resource set is the first SRS resource set or the second SRS resource set; the given power control parameter group is the first power control parameter group and the second power control parameter group Neutralize the power control parameter set associated with the given SRS resource set, and the given power control parameter set is used to determine the transmission power of the second signal.
  • the first SRS resource subgroup is used to determine a first antenna port group
  • the second SRS resource subgroup is used to determine a second antenna port group
  • the first signal is used by the third antenna port group.
  • One antenna port group and the second antenna port group send; the first signal
  • the transmission power is equal to the first power
  • the transmission power of the part of the first signal transmitted by the first antenna port group is equal to the second power
  • the transmit power is equal to the third power
  • the first offset is used to determine the difference between the second power and the third power.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the first signaling includes DCI; the first SRS resource set and the second SRS resource set are respectively identified by two different SRS-ResourceSetIds; the first SRS resource set and the The second SRS resource set is configured by a first higher-level parameter, and the name of the first higher-level parameter includes "srs-ResourceSetToAddModList"; the higher-level parameter "usage” associated with the first SRS resource set and the The higher-level parameter "usage” associated with the second SRS resource set is all set to "nonCodebook" or all is set to "codebook”; the number of SRS resources included in the first SRS resource subgroup is equal to the second SRS resource The number of SRS resources included in the subgroup; the first signal is sent by the same antenna port as the SRS port of the SRS resource in the first SRS resource group.
  • a power control parameter group includes at least one type of power control parameters, and the number of any type of power control parameters included in the power control parameter group is equal to 1; the at least one type of power control parameters includes Any type of power control parameter among the control parameters is one of P0, alfa, power control adjustment state index, or path loss reference signal identity.
  • the first SRS resource set is associated with M1 power control parameter groups, where M1 is a positive integer greater than 1; the M1 power control parameter groups respectively correspond to M1 different transmission types, and the M1 Different transmission types include part or all of PUSCH transmission, PUCCH transmission and SRS transmission; the first power control parameter group is a power control parameter group whose corresponding transmission type among the M1 power control parameter groups is PUSCH transmission;
  • the second SRS resource set is associated with M2 power control parameter groups, M2 is a positive integer greater than 1; the M2 power control parameter groups respectively correspond to M2 different transmission types, and the M2 different transmission types include PUSCH transmission, part or all of PUCCH transmission and SRS transmission; the second power control parameter group is a power control parameter group whose corresponding transmission type among the M2 power control parameter groups is PUSCH transmission; the first signal Transmitted in PUSCH.
  • the second transmitter 1801 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
  • the second receiver 1802 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, vehicles, vehicles, RSU, wireless sensor, network card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle Communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, TRP (Transmitter Receiver Point, sending and receiving node), GNSS, relay Satellites, satellite base stations, air base stations, RSU (Road Side Unit), drones, test equipment, such as wireless communication equipment such as transceivers or signaling testers that simulate some functions of the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令;发送第一信号。所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合;第一功控参数组和第一SRS资源集合关联,第二功控参数组和第二SRS资源集合关联;目标功控参数组被用于确定第一信号的发送功率;所述目标功控参数组是第一功控参数组或第二功控参数组,或者,所述目标功控参数组是第三功控参数组。上述方法简化了上行功率控制,提高了上行传输的性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。多天线系统提供的自由度可以用来提高传输可靠性和/或吞吐量。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。在NR R(release)17中,基于多个波束/TRP/panel的上行传输被支持,用于提高上行传输的可靠性。在R17中,一个UE可以被配置多个基于码本(codebook)或非码本(non-codebook)的SRS(Sounding Reference Signal,探测参考信号)资源集合,用于实现多波束/TRP/panel的上行传输。
发明内容
基于不同SRS资源集合的上行信号可以占用相互正交的时域资源,如R17中的做法,也可以占用交叠的时域资源。申请人通过研究发现,当基于不同SRS资源集合的上行信号占用交叠的时域资源时,对上行功率控制的影响是需要解决的问题。针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用蜂窝网和基于多SRS资源集合的上行传输作为例子,本申请也适用于其他场景比如副链路(Sidelink)传输和基于单SRS资源集合的上行传输,并取得类似在蜂窝网和基于多SRS资源集合的上行传输中的技术效果。此外,不同场景(包括但不限于蜂窝网,副链路,基于多SRS资源集合的上行传输,基于单SRS资源集合的上行传输)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令;
发送第一信号;
其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
作为一个实施例,本申请要解决的问题包括:基于多SRS资源集合的上行传输的功率控制问题。上述 方法中,多个SRS资源集合中的一个SRS资源集合关联的功控参数组被用于确定基于多SRS资源集合的上行传输的发送功率,解决了这一问题。
作为一个实施例,本申请要解决的问题包括:基于多SRS资源集合的上行传输的功率控制问题。上述方法中,不同于多个SRS资源集合中的任一SRS资源集合关联的功控参数组的另一个功控参数组被用于确定基于多SRS资源集合的上行传输的发送功率,解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一SRS资源集合和所述第二SRS资源集合都被用于确定发送所述第一信号的所述天线端口,但所述第一信号的所述发送功率的计算只使用了一个功控参数组,即所述目标功控参数组。
作为一个实施例,上述方法的好处包括:解决了基于多SRS资源集合的上行传输的功率控制问题。
作为一个实施例,上述方法的好处包括:用一个功控参数组来计算基于多SRS资源集合的上行传输的发送功率,简化了上行功率控制。
作为一个实施例,上述方法的好处包括:使用和上行传输相匹配的功控参数组,提高了上行传输的性能。
根据本申请的一个方面,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
作为一个实施例,上述方法的好处包括:更灵活的从两个SRS资源集合关联的功控参数组中指示基于多SRS资源集合的上行传输使用的功控参数组,提高了上行传输性能。
根据本申请的一个方面,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
作为一个实施例,上述方法的好处包括:以默认的方式从两个SRS资源集合关联的功控参数组中确定基于多SRS资源集合的上行传输使用的功控参数组,降低了信令开销。
根据本申请的一个方面,其特征在于,包括:
接收第一信息块,第二信息块和第三信息块;
其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
作为一个实施例,上述方法的好处包括:对基于单SRS资源集合的上行传输和基于多SRS资源集合的上行传输分别配置功控参数组,能更灵活和准确的进行上行功率控制,提高了上行传输性能。
根据本申请的一个方面,其特征在于,包括:
接收第二信令;
发送第二信号;
其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
根据本申请的一个方面,其特征在于,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
根据本申请的一个方面,其特征在于,所述第一节点包括一个用户设备。
根据本申请的一个方面,其特征在于,所述第一节点包括一个中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令;
接收第一信号;
其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
根据本申请的一个方面,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
根据本申请的一个方面,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块,第二信息块和第三信息块;
其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
根据本申请的一个方面,其特征在于,包括:
发送第二信令;
接收第二信号;
其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
根据本申请的一个方面,其特征在于,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令;
第一发送机,发送第一信号;
其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,发送第一信令;
第二接收机,接收第一信号;
其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
作为一个实施例,和传统方案相比,本申请具备如下优势:
解决了基于多SRS资源集合的上行传输的功率控制问题。
用一个功控参数组来计算基于多SRS资源集合的上行传输的发送功率,简化了上行功率控制。
使用和上行传输相匹配的功控参数组,提高了上行传输的性能。
更灵活和准确的指示和配置用于上行功率控制的功控参数,提高了上行传输性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的发送第一信号的天线端口的示意图;
图7示出了根据本申请的一个实施例的发送第一信号的天线端口的示意图;
图8示出了根据本申请的一个实施例的一个功控参数组和一个SRS资源集合关联的示意图;
图9示出了根据本申请的一个实施例的第一信令包括第二域和第三域的示意图;
图10示出了根据本申请的一个实施例的目标功控参数组被用于确定第一信号的发送功率的示意图;
图11示出了根据本申请的一个实施例的第一信令被用于从第一功控参数组和第二功控参数组中确定目标功控参数组的示意图;
图12示出了根据本申请的一个实施例的目标功控参数组是第一功控参数组和第二功控参数组中默认的一个的示意图;
图13示出了根据本申请的一个实施例的第一信息块,第二信息块和第三信息块的示意图;
图14示出了根据本申请的一个实施例的第二信令包括第二域和第三域的示意图;
图15示出了根据本申请的一个实施例的给定功控参数组被用于确定第二信号的发送功率的示意图;
图16示出了根据本申请的一个实施例的第一偏移量,第二功率和第三功率的示意图;
图17示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图18示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令;在步骤102中发送第一信号;其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括动态信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个DCI域(field)。
作为一个实施例,所述第一信令的格式(format)是Format 0_0,Format 0_1或Format 0_2中之一。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号携带至少一个TB(Transport Block,传输块)。
作为一个实施例,所述第一信号携带至少一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一信号包括至少一个层(layer)。
作为一个实施例,所述层是指MIMO(Multiple Input Multiple Output,多输入多输出)layer。
作为一个实施例,所述第一信令包括所述第一信号的调度信息。
作为一个实施例,所述第一信令指示所述第一信号的调度信息。
作为一个实施例,所述第一信号的所述调度信息包括QCL(Quasi Co-Location)关系。
作为一个实施例,所述第一信号的所述调度信息包括空间关系。
作为一个实施例,所述第一信号的所述调度信息包括时域资源,频域资源,MCS(Modulation and Coding Scheme),DMRS(DeModulation Reference Signals,解调参考信号)端口(port),HARQ(Hybrid Automatic Repeat request)进程号(process number),RV(Redundancy version),NDI(New data indicator),TCI(Transmission Configuration Indicator)状态(state)或SRI(Sounding reference signal Resource Indicator)中的一种或多种。
作为一个实施例,所述第一信号是基于SFN(Single Frequency Network)的传输。
作为一个实施例,所述第一节点被配置了第二更高层参数,所述第二更高层参数的名称里包括“sfn”和“scheme”。
作为一个实施例,所述第二更高层参数的名称里包括“sfnscheme”。
作为一个实施例,所述第二更高层参数的名称里包括“sfn”,“scheme”和“pusch”。
作为一个实施例,所述第二更高层参数是PUSCH-Config IE(Information Element,信息单元)配置的。
作为一个实施例,所述第一节点没有被配置第三更高层参数,或者,所述第一节点被配置的第三更高 层参数的值属于第一参数值集合;所述第三更高层参数的名称里包括“repetitionScheme”,所述第一参数值集合包括至少一个参数值,所述第一参数值集合中的每个参数值都不包括字符串“tdm”。
作为一个实施例,所述第一参数值集合中的每个参数组都不包括字符串“fdm”。
作为一个实施例,所述第一参数值集合中的任一参数值包括字符串“sfn”。
作为一个实施例,所述第一参数值集合中的一个参数值包括字符串“sfn”。
作为一个实施例,所述第三更高层参数由PUSCH-Config IE配置。
作为一个实施例,所述第一节点没有被配置更高层参数“pusch-AggregationFactor”。
作为一个实施例,所述第一节点被配置的第四更高层参数中不存在一个条目(entry)包括第一类参数;所述第四更高层参数的名称里包括“pusch-TimeDomain”和“AllocationList”,所述第一类参数的名称里包括“numberOfRepetitions”。
作为上述实施例的一个子实施例,所述第四更高层参数由PUSCH-Config IE配置。
作为上述实施例的一个子实施例,所述第四更高层参数的名称里包括“pusch-TimeDomainAllocationList”。
作为上述实施例的一个子实施例,所述第四更高层参数的名称里包括“pusch-TimeDomainResourceAllocationList”。
作为一个实施例,所述第一SRS资源组包括的SRS资源的数量大于1。
作为一个实施例,所述第一SRS资源组中的任一SRS资源包括至少一个SRS端口。
作为一个实施例,所述第一SRS资源组中任一SRS资源被一个SRS-ResourceId所标识。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别被两个不同的SRS-ResourceSetId所标识。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合由第一更高层参数配置,所述第一更高层参数的名称里包括“srs-ResourceSetToAddModList”。
作为一个实施例,所述第一更高层参数配置了2个SRS资源集合,所述2个SRS资源集合的更高层参数“usage”都被设置为“nonCodebook”或都被设置为“codebook”;所述第一SRS资源集合是所述2个SRS资源集合中对应的srs-ResourceSetId较小的一个,所述第二SRS资源集合是所述2个SRS资源集合对应的srs-ResourceSetId较大的一个。
作为一个实施例,所述第一更高层参数是“srs-ResourceSetToAddModList”或“srs-ResourceSetToAddModListDCI-0-2”。
作为一个实施例,所述第一SRS资源集合关联的更高层参数“usage”和所述第二SRS资源集合关联的更高层参数“usage”都被设置为“nonCodebook”或都被设置为“codebook”。
作为一个实施例,所述第一SRS资源集合中的任一SRS资源被一个SRS-ResourceId所标识,所述第二SRS资源集合中的任一SRS资源被一个SRS-ResourceId所标识。
作为一个实施例,所述第一SRS资源集合中的任一SRS资源包括至少一个SRS端口,所述第二SRS资源集合中的任一SRS资源包括至少一个SRS端口。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别对应不同的TCI状态。
作为一个实施例,不同的TCI状态分别被用于确定所述第一SRS资源集合的空域滤波器(spatial domain filter)和所述第二SRS资源集合的空域滤波器。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别对应不同的TA(Timing Advance)。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别属于不同的TAG(Time-Advance Group)。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别对应不同的功率控制调节状态(power control adjustment state)索引。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合被配置给同一个BWP(BandWidth Part,带宽区间)。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合被配置给同一个载波(Carrier)。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合被配置给同一个小区。
作为一个实施例,所述第一SRS资源组由所述第一SRS资源子组和所述第二SRS资源子组组成。
作为一个实施例,所述第一SRS资源子组包括的SRS资源的数量等于1。
作为一个实施例,所述第一SRS资源子组包括的SRS资源的数量大于1。
作为一个实施例,所述第二SRS资源子组包括的SRS资源的数量等于1。
作为一个实施例,所述第二SRS资源子组包括的SRS资源的数量大于1。
作为一个实施例,所述第一SRS资源子组包括的SRS资源的数量等于所述第二SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一SRS资源集合中任一SRS资源的SRS端口数量等于所述第二SRS资源集合中任一SRS资源的SRS端口数量。
作为一个实施例,所述第一SRS资源集合中存在一个SRS资源的SRS端口数量不等于所述第二SRS资源集合中的一个SRS资源的SRS端口数量。
作为一个实施例,所述第一信令指示所述第一SRS资源组。
作为一个实施例,所述第一信令指示所述第一SRS资源组包括的SRS资源的数量。
作为一个实施例,所述第一信令指示所述第一SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令指示所述第二SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令通过指示所述第一SRS资源子组包括的SRS资源的数量来隐式的指示所述第二SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令指示所述第一SRS资源子组中的每个SRS资源的SRI。
作为一个实施例,所述第一信令指示所述第二SRS资源子组中的每个SRS资源的SRI。
作为一个实施例,所述第一信令指示:所述第一SRS资源组被用于确定发送所述第一信号的所述天线端口。
作为一个实施例,所述第一信令指示:所述第一SRS资源组包括至少一个属于所述第一SRS资源集合的SRS资源和至少一个属于所述第二SRS资源集合的SRS资源。
作为一个实施例,第三信令指示:所述第一SRS资源组包括至少一个属于所述第一SRS资源集合的SRS资源和至少一个属于所述第二SRS资源集合的SRS资源。
作为一个实施例,发送所述第一信号的所述天线端口的数量等于1。
作为一个实施例,发送所述第一信号的所述天线端口的数量大于1。
作为一个实施例,发送所述第一信号的所述天线端口是{p0,…,pρ-1},所述ρ是发送所述第一信号的所述天线端口的数量。
作为一个实施例,所述{p0,…,pρ-1}的定义参见3GPP TS38.214和3GPP TS38.211。
作为一个实施例,一个天线端口上发送的一个信号在其中传输的信道可以从同一个天线端口上发送的另一个信号在其中传输的信道推断出来。
作为一个实施例,一个天线端口上发送的一个信号在其中传输的信道不能从另一个天线端口上发送的一个信号在其中传输的信道推断出来。
作为一个实施例,所述第一SRS资源集合中的SRS资源和所述第二SRS资源集合中的SRS资源共同被用于确定发送所述第一信号的所述天线端口。
作为一个实施例,所述第一信令指示:所述第一SRS资源集合中的SRS资源和所述第二SRS资源集合中的SRS资源共同被用于确定发送所述第一信号的所述天线端口。
作为一个实施例,第三信令指示:所述第一SRS资源集合中的SRS资源和所述第二SRS资源集合中的SRS资源共同被用于确定发送所述第一信号的所述天线端口。
作为一个实施例,两个TCI状态共同被用于确定所述第一信号的空域滤波器。
作为一个实施例,所述第一信号的TCI状态包括第一TCI状态和第二TCI状态;所述第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器,所述第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器。
作为一个实施例,所述第一TCI状态和所述第二TCI状态共同被用于确定所述第一信号的空域滤波器。
作为一个实施例,所述第一TCI状态的TCI-StateId不同于所述第二TCI状态的TCI-StateId。
作为一个实施例,所述第一节点用第一空域滤波器在所述第一TCI状态指示的一个参考信号资源中接收或发送参考信号,所述第一节点用第二空域滤波器在所述第二TCI状态指示的一个参考信号资源中接收或发送参考信号;所述第一节点用所述第一空域滤波器和所述第二空域滤波器发送所述第一信号。
作为上述实施例的一个子实施例,所述第一节点在相同或交叠的时频资源中用所述第一空域滤波器和所述第二空域滤波器发送所述第一信号。
作为上述实施例的一个子实施例,所述第一节点在相同或交叠的时频资源中用所述第一空域滤波器和所述第二空域滤波器发送所述第一信号的每一个层(layer)。
作为上述实施例的一个子实施例,所述第一节点在相同或交叠的时频资源中用所述第一空域滤波器和所述第二空域滤波器在所述第一信号的每个DMRS端口上发送DMRS。
作为一个实施例,所述第一信令指示:所述第一信号的TCI状态包括所述第一TCI状态和所述第二TCI状态。
作为一个实施例,第三信令指示:所述第一信号的TCI状态包括所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第三信令是不同于所述第一信令的另一个信令。
作为一个实施例,所述第三信令包括DCI。
作为一个实施例,所述第三信令包括MAC CE。
作为一个实施例,所述第三信令在时域早于所述第一信令。
作为一个实施例,所述第三信令指示所述第一TCI状态或所述第二TCI状态中的至少之一。
作为一个实施例,所述第三信令指示所述第一TCI状态和所述第二TCI状态。
作为一个实施例,所述第一信号被和所述第一SRS资源组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一信号在相同或交叠的时频资源中被和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口以及和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一信号的任一层(layer)在相同或交叠的时频资源中被和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口以及和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一信号的任一DMRS端口中的DMRS在相同或交叠的时频资源中被和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口以及和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一节点用相同的空域滤波器在所述第一SRS资源组中的SRS资源中发送SRS和发送所述第一信号。
作为一个实施例,所述第一节点用第一空域滤波器在所述第一SRS资源子组中的任一SRS资源中发送SRS,所述第一节点用第二空域滤波器在所述第二SRS资源子组中的任一SRS资源中发送SRS;所述第一节点用所述第一空域滤波器和所述第二空域滤波器发送所述第一信号。
作为上述实施例的一个子实施例,所述第一节点在相同或交叠的时频资源中,用所述第一空域滤波器和所述第二空域滤波器发送所述第一信号。
作为上述实施例的一个子实施例,所述第一信号被所述第一空域滤波器发送的部分和被所述第二空域滤波器发送的部分占用交叠或相同的时频资源。
作为上述实施例的一个子实施例,所述第一信号的任一层(layer)在交叠或相同的时频资源中被所述第一空域滤波器和所述第二空域滤波器发送。
作为上述实施例的一个子实施例,所述第一信号的任一DMRS端口上的DMRS在交叠或相同的时频资源中被所述第一空域滤波器和第二空域滤波器发送。
作为一个实施例,所述第一SRS资源集合关联的更高层参数“usage”和所述第二SRS资源集合关联的更高层参数“usage”都被设置为“nonCodebook”;所述第一SRS资源组中任一SRS资源包括的SRS端口的 数量等于1;所述第一信号包括v个层,所述v是正整数;所述第一SRS资源子组包括的SRS资源的数量等于所述v,所述第二SRS资源子组包括的SRS资源的数量等于所述v;所述v个层被单位阵预编码后在相同或交叠的时频资源中被映射到第一天线端口组和第二天线端口组;所述第一SRS资源子组被用于确定所述第一天线端口组,所述第二SRS资源子组被用于确定所述第二天线端口组。
作为一个实施例,所述第一SRS资源集合关联的更高层参数“usage”和所述第二SRS资源集合关联的更高层参数“usage”都被设置为“codebook”;所述第一SRS资源子组仅包括一个SRS资源,所述第二SRS资源子组仅包括一个SRS资源;所述第一信令指示第一预编码器和第二预编码器;所述第一信号包括v个层,所述v是正整数;所述v个层在相同或交叠的时频资源中被所述第一预编码器预编码后被映射到第一天线端口组,并且被所述第二预编码器预编码后被映射到第二天线端口组;所述第一SRS资源子组被用于确定所述第一天线端口组,所述第二SRS资源子组被用于确定所述第二天线端口组。
作为上述实施例的一个子实施例,所述第一信令指示所述第一预编码器的TPMI(Transmitted Precoding Matrix Indicator,发送预编码矩阵标识)和所述第二预编码器的TPMI。
作为上述实施例的一个子实施例,所述第一预编码器和所述第二预编码器分别是一个矩阵或列向量。
作为上述实施例的一个子实施例,所述第一预编码器和所述第二预编码器对应相同的层数。
作为上述实施例的一个子实施例,所述第一预编码器对应的层数和所述第二预编码器对应的层数都等于所述第一信号的层数。
作为一个实施例,所述第一信号包括v个层,所述v是正整数;所述v个层被第三预编码器预编码后被映射到第一天线端口组,所述v个层被第四预编码器预编码后被映射到第二天线端口组;所述第一SRS资源子组被用于确定所述第一天线端口组,所述第二SRS资源子组被用于确定所述第二天线端口组;第五预编码器和第一相位偏移量共同被用于确定所述第四预编码器。
作为上述实施例的一个子实施例,所述第三预编码器和所述第五预编码器分别是单位阵。
作为上述实施例的一个子实施例,所述第一信令指示所述第三预编码器的TPMI;所述第一信令指示所述第五预编码器的TPMI。
作为上述实施例的一个子实施例,所述第四预编码器等于所述第五预编码器和所述第一相位偏移量的乘积。
作为上述实施例的一个子实施例,所述第一相位偏移量是一个标量。
作为上述实施例的一个子实施例,所述第一信令指示所述第一相位偏移量。
作为上述实施例的一个子实施例,所述第一相位偏移量是更高层(higher layer)信令配置的。
作为上述实施例的一个子实施例,所述第一节点自行确定所述第一相位偏移量。
作为上述实施例的一个子实施例,所述第一相位偏移量属于第一相位偏移量集合,所述第一节点自行在所述第一相位偏移量集合中确定所述第一相位偏移量。
作为上述实施例的一个子实施例,所述第三预编码器和所述第五预编码器分别是一个矩阵或列向量。
作为上述实施例的一个子实施例,所述第三预编码器对应的层数和所述第五预编码器对应的层数都等于所述第一信号的层数。
作为一个实施例,所述第一功控参数组包括P0,alfa,功率控制调节状态(power control adjustment state)索引或路损参考信号身份(pathloss reference RS Id)中的至少之一。
作为一个实施例,所述第二功控参数组包括P0,alfa,功率控制调节状态索引或路损参考信号身份中的至少之一。
作为一个实施例,所述第三功控参数组包括P0,alfa,功率控制调节状态索引或路损参考信号身份中的至少之一。
作为一个实施例,所述P0是用于所述第一信号的功率控制的。
作为一个实施例,所述P0是用于PUSCH的功率控制的。
作为一个实施例,所述P0的定义参见3GPP TS 38.331和TS 38.213。
作为一个实施例,所述P0是指P0_PUSCH,b,f,c(j)。
作为一个实施例,所述P0_PUSCH,b,f,c(j)定义参见3GPP TS 38.213。
作为一个实施例,所述alfa是用于所述第一信号的功率控制的。
作为一个实施例,所述alfa是用于PUSCH的功率控制的。
作为一个实施例,所述alfa的定义参见3GPP TS 38.331和TS 38.213。
作为一个实施例,所述alfa是指αb,f,c(j)。
作为一个实施例,所述αb,f,c(j)定义参见3GPP TS 38.213。
作为一个实施例,所述功率控制调节状态索引是PUSCH功率控制调节状态索引。
作为一个实施例,所述功率控制调节状态索引是PUSCH功率控制调节状态索引l。
作为一个实施例,所述功率控制调节状态索引是闭环索引(closed-loop index)。
作为一个实施例,所述路损参考信号身份是PUSCH-PathlossReferenceRS-Id。
作为一个实施例,所述路损参考信号身份是用于测量路损的参考信号的标识。
作为上述实施例的一个子实施例,所述用于测量路损的参考信号的标识包括SSB-Index或NZP-CSI-RS-ResourceId。
作为一个实施例,所述第一功控参数组包括一个P0,一个alfa,一个功率控制调节状态索引和一个路损参考信号身份。
作为一个实施例,所述第一功控参数组包括一个P0,一个alfa和一个功率控制调节状态索引。
作为一个实施例,所述第一功控参数组包括一个P0和一个alfa。
作为一个实施例,所述第二功控参数组包括一个P0,一个alfa,一个功率控制调节状态索引和一个路损参考信号身份。
作为一个实施例,所述第二功控参数组包括一个P0,一个alfa和一个功率控制调节状态索引。
作为一个实施例,所述第二功控参数组包括一个P0和一个alfa。
作为一个实施例,所述第三功控参数组包括一个P0,一个alfa,一个功率控制调节状态索引和一个路损参考信号身份。
作为一个实施例,所述第三功控参数组包括一个P0,一个alfa和一个功率控制调节状态索引。
作为一个实施例,所述第三功控参数组包括一个P0和一个alfa。
作为一个实施例,一个功控参数组包括至少一个功控参数,所述至少一个功控参数中的任一功控参数是P0,alfa,功率控制调节状态索引,或路损参考信号身份中之一。
作为一个实施例,一个功控参数组包括至少一种类型的功控参数,所述一个功控参数组包括的任意一种类型的功控参数的数量等于1;所述至少一种类型的功控参数中的任意一种类型的功控参数是P0,alfa,功率控制调节状态索引,或路损参考信号身份中之一。
作为一个实施例,所述第一SRS资源集合和M1个功控参数组关联,M1是大于1的正整数;所述M1个功控参数组分别对应M1种不同的传输类型,所述M1种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第一功控参数组是所述M1个功控参数组中对应的传输类型和所述第一信号的传输类型相同的功控参数组。
作为一个实施例,所述第二SRS资源集合和M2个功控参数组关联,M2是大于1的正整数;所述M2个功控参数组分别对应M2种不同的传输类型,所述M2种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第二功控参数组是所述M2个功控参数组中对应的传输类型和所述第一信号的传输类型相同的功控参数组。
作为一个实施例,所述第一信号的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一。
作为一个实施例,所述第一信号的所述传输类型是PUSCH传输。
作为一个实施例,所述第一信号的所述传输类型是PUCCH传输。
作为一个实施例,所述第一功控参数组和所述第二功控参数组中仅所述第一功控参数组和所述第一SRS资源集合关联,所述第一功控参数组和所述第二功控参数组中仅所述第二功控参数组和所述第二SRS资源集合关联。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中仅所述第一功控参数组和所述第一SRS资源集合关联,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中仅所述第二功控参数组和所述第二SRS资源集合关联。
作为一个实施例,所述第一信号的所述发送功率的计算使用了仅一个P0,所述一个P0是所述目标功 控参数组包括的P0。
作为一个实施例,所述第一信号的所述发送功率的计算使用了仅一个alfa,所述一个alfa是所述目标功控参数组包括的alfa。
作为一个实施例,所述第一信号的所述发送功率的计算使用了仅一个功率控制调节状态索引,所述一个功率控制调节状态索引是所述目标功控参数组包括的功率控制调节状态索引。
作为一个实施例,所述第一信号的所述发送功率的计算使用了仅一个路损参考信号身份,所述一个路损参考信号身份是所述目标功控参数组包括的路损参考信号身份。
作为一个实施例,多种类型的功控参数被用于所述第一信号的所述发送功率的计算;所述多种类型的功控参数包括P0,alfa,功率控制调节状态索引和路损参考信号;所述第一信号的所述发送功率的计算使用的任意一种类型的功控参数的数量等于1;所述多种类型的功控参数中的至少一种类型的功控参数是所述目标功控参数组包括的同种类型的功控参数。
作为上述实施例的一个子实施例,所述多种类型的功控参数中的任意一种类型的功控参数是所述目标功控参数组包括的同种类型的功控参数。
作为一个实施例,所述第一功控参数组和所述第二功控参数组是被分别配置的。
作为一个实施例,不同的IE被用于配置所述第一功控参数组和所述第二功控参数组。
作为一个实施例,同一个IE中的不同域分别被用于配置所述第一功控参数组和所述第二功控参数组。
作为一个实施例,不同的信息块分别被用于配置所述第一功控参数组和所述第二功控参数组;所述不同的信息块中的任一信息块的名称里包括“SRS-ResourceSet”。
作为一个实施例,第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器,第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器;所述第一TCI状态被用于确定所述第一功控参数组,所述第二TCI状态被用于确定所述第二功控参数组。
作为一个实施例,第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器,第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器;第一TCI-state IE被用于配置所述第一TCI状态,第二TCI-state IE被用于配置所述第二TCI状态;所述第一TCI-state IE指示所述第一功控参数组,所述第二TCI-state IE指示所述第二功控参数组。
作为上述实施例的一个子实施例,所述第一TCI-state IE指示M1个功控参数组,M1是大于1的正整数;所述M1个功控参数组分别对应M1种不同的传输类型,所述M1种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第一功控参数组是所述M1个功控参数组中对应的传输类型和所述第一信号的传输类型相同的功控参数组。
作为上述实施例的一个子实施例,所述第二TCI-state IE指示M2个功控参数组,M2是大于1的正整数;所述M2个功控参数组分别对应M2种不同的传输类型,所述M2种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第二功控参数组是所述M2个功控参数组中对应的传输类型和所述第一信号的传输类型相同的功控参数组。
作为一个实施例,所述句子目标功控参数组被用于确定所述第一信号的发送功率的意思包括:所述目标功控参数组被用于计算所述第一信号的所述发送功率。
作为一个实施例,所述第一SRS资源组被所述第一节点用于确定:所述第一功控参数组和所述第二功控参数组中的所述目标功控参数组被用于确定所述第一信号的所述发送功率。
作为一个实施例,所述第一节点根据所述第一SRS资源组包括至少一个属于所述第一SRS资源集合的SRS资源以及至少一个属于所述第二SRS资源集合的SRS资源来确定:所述第一功控参数组和所述第二功控参数组中的所述目标功控参数组被用于确定所述第一信号的所述发送功率。
作为一个实施例,所述第一SRS资源组被所述第一节点用于确定:所述目标功控参数组是所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的所述第三功控参数组。
作为一个实施例,所述第一节点根据所述第一SRS资源组包括至少一个属于所述第一SRS资源集合的SRS资源以及至少一个属于所述第二SRS资源集合的SRS资源来确定:所述目标功控参数组是所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的所述第三功控参数组。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一功控参数组和所述第二功控参数组中的仅所述目标功控参数组被用于确定所述第一信号的所述发送功率。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;第六信令从所述第一功控参数组和所述第二功控参数组中指示所述目标功控参数组。
作为上述实施例的一个子实施例,所述第六信令是不同于所述第一信令的另一个信令。
作为上述实施例的一个子实施例,所述第六信令是更高层信令。
作为上述实施例的一个子实施例,所述第六信令是MAC CE。
作为上述实施例的一个子实施例,所述第六信令是DCI。
作为上述实施例的一个子实施例,所述第六信令在时域早于所述第一信令。
作为上述实施例的一个子实施例,所述第六信令指示第一TCI状态和第二TCI状态被映射到同一个TCI码点(codepoint);所述第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器,所述第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器。
作为上述子实施例的一个参考实施例,所述第六信令指示所述目标功控参数组和所述同一个TCI码点关联。
作为一个实施例,所述目标功控参数组是所述第三功控参数组。
作为一个实施例,所述目标功控参数组是所述第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的仅所述第三功控参数组被用于确定所述第一信号的所述发送功率。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组分别被不同的更高层信令配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的至少一个功控参数组被RRC信令配置,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的至少另一个功控参数组被MAC CE信令配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的至少一个功控参数组被更高层信令配置,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的至少另一个功控参数组被DCI配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组被不同的IE分别配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组被同一个IE的不同域分别配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组被同一个IE的同一个域分别配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的至少一个功控参数组被一个IE配置,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的至少另一个功控参数组被至少一个IE和至少一个MAC CE共同配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组分别被一个IE配置,所述第三功控参数组被至少一个IE和至少一个MAC CE共同配置。
作为一个实施例,所述第一功控参数组,所述第二功控参数组分别被一个IE配置,所述第三功控参数组被至少一个IE和至少一个DCI共同配置。
作为一个实施例,所述第三功控参数组是P1个候选功控参数组中之一,P1是大于1的正整数;第四信令被用于配置所述P1个候选功控参数组,第五信令被用于从所述P1个候选功控参数组中指示所述第三功控参数组。
作为上述实施例的一个子实施例,所述第四信令是更高层信令,所述第五信令是DCI。
作为上述实施例的一个子实施例,所述第四信令是RRC信令,所述第五信令是MAC CE。
作为上述实施例的一个子实施例,所述第四信令包括至少一个IE,所述第五信令是MAC CE。
作为上述实施例的一个子实施例,所述P1个候选功控参数组不包括所述第一功控参数组和所述第二 功控参数组。
作为上述实施例的一个子实施例,所述P1个候选功控参数组包括所述第一功控参数组和所述第二功控参数组中的至少之一。
作为上述实施例的一个子实施例,所述第五信令被用于从所述P1个候选功控参数组中激活所述第三功控参数组。
作为上述实施例的一个子实施例,所述第三信息块由所述第四信令和所述第五信令共同携带。
作为一个实施例,所述第三功控参数组和第一TCI码点关联;所述第一TCI码点指示第一TCI状态和第二TCI状态;所述第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器,所述第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器。
作为上述实施例的一个子实施例,所述第一TCI码点指示的可用于上行链路的TCI状态包括所述第一TCI状态和所述第二TCI状态。
作为上述实施例的一个子实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中仅所述第三功控参数组和所述第一TCI码点关联。
作为上述实施例的一个子实施例,所述第一功控参数组和第二TCI码点关联,所述第二TCI码点指示所述第一TCI状态和所述第二TCI状态中的仅所述第一TCI状态;所述第二功控参数组和第三TCI码点关联,所述第三TCI码点指示所述第一TCI状态和所述第二TCI状态中的仅所述第二TCI状态。
作为上述子实施例的一个参考实施例,所述第二TCI码点指示的可用于上行链路的TCI状态仅包括所述第一TCI状态,所述第三TCI码点指示的可用于上行链路的TCI状态仅包括所述第二TCI状态。
作为一个实施例,一个功控参数组和一个TCI码点关联的意思包括:当一个上行信号的TCI状态由所述一个TCI码点指示的所有TCI状态组成时,所述一个功控参数组被用于确定所述一个上行信号的发送功率。
作为一个实施例,一个功控参数组和一个TCI码点关联的意思包括:当一个上行信号的TCI状态由所述一个TCI码点指示的所有TCI状态组成,并且所述一个上行信号的传输类型和所述一个功控参数组对应的传输类型相同时,所述一个功控参数组被用于确定所述一个上行信号的发送功率;所述一个上行信号的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一,所述一个功控参数组对应的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、 订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路包括蜂窝网链路。
作为一个实施例,所述第一信令的发送者包括所述gNB203。
作为一个实施例,所述第一信令的接收者包括所述UE201。
作为一个实施例,所述第一信号的发送者包括所述UE201。
作为一个实施例,所述第一信号的接收者包括所述gNB203。
作为一个实施例,所述UE201支持多波束/panel/TRP同时上行传输(simultaneous multi-beam/panel/TRP UL transmission)。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层) 和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信息块生成于所述RRC子层306。
作为一个实施例,所述第二信息块生成于所述RRC子层306。
作为一个实施例,所述第三信息块生成于所述RRC子层306。
作为一个实施例,所述第三信息块生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第三信息块生成于所述RRC子层306,以及所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第二信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信令生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第二信号生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后 将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少接收所述第一信令;发送所述第一信号。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信令;发送所述第一信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少发送所述第一信令;接收所述第一信号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信令;接收所述第一信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收所述第一信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460, 所述数据源467}中的至少之一被用于发送所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信息块,所述第二信息块和所述第三信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信息块,所述第二信息块和所述第三信息块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收所述第二信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送所述第二信号。
实施例5
实施例5示例了根据本申请的一个实施例的传输的流程图;如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51和方框F52中的步骤分别是可选的。
对于第二节点U1,在步骤S5101中发送第一信息块,第二信息块和第三信息块;在步骤S511中发送第一信令;在步骤S512中接收第一信号;在步骤S5102中发送第二信令;在步骤S5103中接收第二信号。
对于第一节点U2,在步骤S5201中接收第一信息块,第二信息块和第三信息块;在步骤S521中接收第一信令;在步骤S522中发送第一信号;在步骤S5202中接收第二信令;在步骤S5203中发送第二信号。
在实施例5中,所述第一信令被所述第一节点U2用于确定第一SRS资源组,所述第一SRS资源组被所述第一节点U2用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被所述第一节点U2用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)中被传输。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)中被传输。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上被 传输。
作为一个实施例,所述第一信令在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)中被传输。
作为一个实施例,所述第一信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)中被传输。
作为一个实施例,所述第一信号在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)中被传输。
作为一个实施例,附图5中的方框F51中的步骤存在,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块分别在PDSCH上被传输。
作为一个实施例,所述第一信息块和所述第二信息块分别在PDSCH上被传输。
作为一个实施例,所述第三信息块在PDCCH上被传输。
作为一个实施例,所述第三信息块中的一部分在PDSCH上被传输,所述第三信息块的另一部分在PDCCH上被传输。
作为一个实施例,附图5中的方框F51中的步骤不存在。
作为一个实施例,附图5中的方框F52中的步骤存在,所述第二信令被所述第一节点U2用于确定第二SRS资源组,所述第二SRS资源组被所述第一节点U2用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被所述第一节点U2用于确定所述第二信号的发送功率。
作为一个实施例,所述第二信令包括物理层信令。
作为一个实施例,所述第二信令包括动态信令。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令是一个DCI。
作为一个实施例,所述第二信令的格式属于Format 0_0,Format 0_1或Format 0_2中之一。
作为一个实施例,所述第二信令的格式和所述第一信令的格式相同。
作为一个实施例,所述第二信令包括RRC信令。
作为一个实施例,所述第二信令包括MAC CE。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号携带至少一个TB或至少一个CBG。
作为一个实施例,所述第二信令包括所述第二信号的调度信息。
作为一个实施例,所述第二信号的所述调度信息包括QCL关系。
作为一个实施例,所述第二信号的所述调度信息包括空间关系。
作为一个实施例,所述第二信号的所述调度信息包括时域资源,频域资源,MCS,DMRS端口,HARQ进程号,RV,NDI,TCI状态或SRI中的一种或多种。
作为一个实施例,所述第二SRS资源组包括所述第一SRS资源集合和所述第二SRS资源集合中的仅所述给定SRS资源集合中的SRS资源。
作为一个实施例,所述第二信令指示所述给定SRS资源集合。
作为一个实施例,所述第二信令从所述第一SRS资源集合和所述第二SRS资源集合中指示所述给定SRS资源集合。
作为一个实施例,所述给定SRS资源集合是所述第一SRS资源集合,所述给定功控参数组是所述第一功控参数组。
作为一个实施例,所述给定SRS资源集合是所述第二SRS资源集合,所述给定功控参数组是所述第二功控参数组。
作为一个实施例,所述第二信号被和所述第二SRS资源组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一节点用和在所述第二SRS资源组中发送SRS相同的空域滤波器发送所述第二信号。
作为一个实施例,所述第二信号包括v1个层,所述v1是正整数;所述v1个层被单位阵或第六预编码器预编码后被映射到第三天线端口组;所述第二SRS资源组被用于确定所述第三天线端口组;所述第三天线端口组包括至少一个天线端口。
作为上述实施例的一个子实施例,所述第三天线端口组包括v1个天线端口,所述v1个层分别被映射到所述v1个天线端口;所述第二SRS资源组包括v1个SRS资源,所述v1个SRS资源中的任一SRS资源仅有一个SRS端口,所述v1个天线端口分别是和所述v1个SRS资源的SRS端口相同的天线端口。
作为上述实施例的一个子实施例,所述第三天线端口组包括ρ2个天线端口,ρ2是大于1的正整数;所述第二SRS资源组仅包括一个SRS资源,所述第二SRS资源组包括的所述一个SRS有ρ2个SRS端口;所述ρ2个天线端口分别是和所述ρ2个SRS端口相同的天线端口;所述v1个层被所述第六预编码器预编码后被映射到所述ρ2个天线端口。
作为上述实施例的一个子实施例,所述第二信令指示所述第六预编码器。
作为上述实施例的一个子实施例,所述第二信令指示所述第六预编码器的TPMI。
作为上述实施例的一个子实施例,所述第六预编码器是一个矩阵或一个列向量。
作为一个实施例,所述第二信令指示所述第二SRS资源组。
作为一个实施例,所述第二信令指示所述第二SRS资源组包括的SRS资源的数量。
作为一个实施例,所述第二信令指示所述第二SRS资源组中每个SRS资源的SRI。
作为一个实施例,所述第二信令指示:所述第二SRS资源组被用于确定发送所述第二信号的所述天线端口。
作为一个实施例,所述第二SRS资源组仅包括一个SRS资源。
作为一个实施例,所述第二SRS资源组包括多个SRS资源。
作为一个实施例,所述第一节点U2根据所述第二SRS资源组包括所述第一SRS资源集合和所述第二SRS资源集合中的仅所述给定SRS资源集合中的SRS资源来确定:所述第一功控参数组和所述第二功控参数组中的所述给定功控参数组被用于确定所述第二信号的所述发送功率。
作为一个实施例,所述第一节点U2根据所述第二SRS资源组包括所述第一SRS资源集合和所述第二SRS资源集合中的仅所述给定SRS资源集合中的SRS资源来确定:所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的所述给定功控参数组被用于确定所述第二信号的所述发送功率。
作为一个实施例,所述第一功控参数组和所述第二功控参数组中仅所述给定功控参数组被用于确定所述第二信号的所述发送功率。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中仅所述给定功控参数组被用于确定所述第二信号的所述发送功率。
作为一个实施例,所述第二信令在PDCCH中被传输。
作为一个实施例,所述第二信令在PDSCH中被传输。
作为一个实施例,所述第二信号在PUSCH中被传输。
实施例6
实施例6示例了根据本申请的一个实施例的发送第一信号的天线端口的示意图;如附图6所示。在实施例6中,所述第一SRS资源子组被所述第一节点用于确定第一天线端口组,所述第二SRS资源子组被所述第一节点用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施例,所述第一信号在相同的时频资源中被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施例,所述第一信号在交叠的时频资源中被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施例,所述第一信号被所述第一天线端口组发送的部分和被所述第二天线端口组发送的部分占用交叠或相同的时频资源。
作为一个实施例,所述第一信号的任一层在相同的时频资源中被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施例,所述第一信号的任一层在交叠的时频资源中被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施,所述第一信号的任一层中被所述第一天线端口组发送的部分和被所述第二天线端口组发送的部分占用交叠或相同的时频资源。
作为一个实施例,所述第一信号的任一DMRS端口在相同的时频资源中被映射到所述第一天线端口组和所述第二天线端口组。
作为一个实施例,所述第一信号的任一DMRS端口在交叠的时频资源中被映射到所述第一天线端口组和所述第二天线端口组。
作为一个实施例,所述第一信号的任一DMRS端口上的DMRS在相同的时频资源中被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施例,所述第一信号的任一DMRS端口上的DMRS在交叠的时频资源中被所述第一天线端口组和所述第二天线端口组发送。
作为一个实施例,所述第一天线端口组包括和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口,所述第二天线端口组包括和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口。
作为一个实施例,所述第一天线端口组由和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口组成,所述第二天线端口组由和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口组成。
作为一个实施例,所述第一天线端口组和所述第二天线端口组分别包括至少一个天线端口。
作为一个实施例,所述第一天线端口组包括的天线端口的数量等于1。
作为一个实施例,所述第一天线端口组包括的天线端口的数量大于1。
作为一个实施例,所述第二天线端口组包括的天线端口的数量等于1。
作为一个实施例,所述第二天线端口组包括的天线端口的数量大于1。
作为一个实施例,所述第一天线端口组包括的天线端口的数量等于所述第二天线端口组包括的天线端口的数量。
作为一个实施例,所述第一天线端口组包括的天线端口的数量不等于所述第二天线端口组包括的天线端口的数量。
实施例7
实施例7示例了根据本申请的一个实施例的发送第一信号的天线端口的示意图;如附图7所示。在实施例7中,所述第一信号包括v个层,所述v是正整数;所述v个层被W0预编码后被映射到实施例6中的所述第一天线端口组,所述v个层被W1预编码后被映射到实施例6中的所述第二天线端口组,所述W0和所述W1分别是一个预编码器;所述第一天线端口组包括的天线端口的数量等于ρ0,所述第二天线端口组包括的天线端口的数量等于ρ1,所述ρ0和所述ρ1分别是正整数。
在附图7中,所述分别是所述第一天线端口组中的ρ0个天线端口,所述分别是所述第二天线端口组中的ρ1个天线端口,所述y(0)(i),…,y(v-1)(i)分别是所述v个层;所述M是每一个层的调制符号数。
作为一个实施例,所述z(p)(i)的定义参见3GPP TS38.211,其中
作为一个实施例,所述第一SRS资源子组包括ρ0个SRS端口,所述第二SRS资源子组包括ρ1个SRS 端口;所述ρ0个天线端口分别是和所述第一SRS资源子组包括的所述ρ0个SRS端口相同的天线端口,所述ρ1个天线端口分别是和所述第二SRS资源子组包括的所述ρ1个SRS端口相同的天线端口。
作为上述实施例的一个子实施例,所述ρ0个天线端口和所述ρ0个SRS端口一一对应,所述ρ0个天线端口中的任一天线端口是和对应的SRS端口相同的天线端口。
作为上述实施例的一个子实施例,所述ρ1个天线端口和所述ρ1个SRS端口一一对应,所述ρ1个天线端口中的任一天线端口是和对应的SRS端口相同的天线端口。
作为上述实施例的一个子实施例,所述第一SRS资源子组包括的SRS资源的数量等于所述ρ0,所述第一SRS资源子组中的任一SRS资源被配置的SRS端口的数量等于1,所述第一SRS资源子组包括的所述ρ0个SRS端口分别是所述第一SRS资源子组中的ρ0个SRS资源的SRS端口;所述第二SRS资源子组包括的SRS资源的数量等于所述ρ1,所述第二SRS资源子组中的任一SRS资源被配置的SRS端口的数量等于1,所述第二SRS资源子组包括的所述ρ1个SRS端口分别是所述第二SRS资源子组中的ρ1个SRS资源的SRS端口。
作为上述子实施例的一个参考实施例,所述ρ0等于所述ρ1。
作为上述子实施例的一个参考实施例,所述W0和所述W1分别是一个单位阵。
作为上述实施例的一个子实施例,所述第一SRS资源子组仅包括一个SRS资源,所述第一SRS资源子组包括的所述一个SRS资源被配置的SRS端口的数量等于所述ρ0,所述第一SRS资源子组包括的所述ρ0个SRS端口是所述第一SRS资源子组包括的所述一个SRS资源的ρ0个SRS端口;所述第二SRS资源子组仅包括一个SRS资源,所述第二SRS资源子组包括的所述一个SRS资源被配置的SRS端口的数量等于所述ρ1,所述第二SRS资源子组包括的所述ρ1个SRS端口是所述第二SRS资源子组包括的所述一个SRS资源的ρ1个SRS端口。
作为上述子实施例的一个参考实施例,所述第一信令指示所述W0和所述W1
实施例8
实施例8示例了根据本申请的一个实施例的一个功控参数组和一个SRS资源集合关联的示意图;如附图8所示。在实施例8中,所述一个SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合中的任意一个SRS资源集合,所述一个功控参数组是所述第一功控参数组和所述第二功控参数组中和所述一个SRS资源集合关联的功控参数组。
作为一个实施例,所述一个功控参数组是所述第一功控参数组,所述一个SRS资源集合是所述第一SRS资源集合;或者,所述一个功控参数组是所述第二功控参数组,所述一个SRS资源集合是所述第二SRS资源集合。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:给定TCI状态被用于确定所述一个功控参数组;所述给定TCI状态被用于确定所述一个SRS资源集合的空域滤波器(spatial domain filter)。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:被用于配置给定TCI状态的TCI-state IE指示所述一个功控参数组;所述给定TCI状态被用于确定所述一个SRS资源集合的空域滤波器。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:所述一个功控参数组和给定TCI状态关联;所述给定TCI状态被用于确定所述一个SRS资源集合的空域滤波器。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:当发送一个上行信号的天线端口由且仅由所述一个SRS资源集合中的SRS资源确定时,所述一个功控参数组被用于确定所述一个上行信号的发送功率。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:当发送一个上行信号的天线端口由且仅由所述一个SRS资源集合中的SRS资源确定,并且所述一个上行信号的传输类型和所述一个功控参数组对应的传输类型相同时,所述一个功控参数组被用于确定所述一个信号的发送功率;所述一个上行信号的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一;所述一个功控参数组对应的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:当一个上行信号的TCI状态仅包括给定TCI状态时,所述一个功控参数组被用于确定所述一个上行信号的发送功率;所述给定TCI状态被用于确定所述一个SRS资源集合的空域滤波器。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:当一个上行信号的TCI状态仅包括给定TCI状态,并且所述一个上行信号的传输类型和所述一个功控参数组对应的传输类型相同时,所述一个功控参数组被用于确定所述一个上行信号的发送功率;所述给定TCI状态被用于确定所述一个SRS资源集合的空域滤波器;所述一个上行信号的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一,所述一个功控参数组对应的所述传输类型是PUSCH传输,PUCCH传输或SRS传输中之一。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:所述一个SRS资源集合的配置信息包括所述一个功控参数组。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:所述一个功控参数组和所述一个SRS资源集合的SRS-ResourceSetId关联。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:同一个信息块被用于指示所述一个SRS资源集合的SRS-ResourceSetId和所述一个功控参数组;所述同一个信息块的名称里包括“SRS-ResourceSet”。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:所述一个SRS资源集合被配置了所述一个功控参数组。
作为一个实施例,一个功控参数组和一个SRS资源集合关联的意思包括:所述一个功控参数组被映射到所述一个SRS资源集合中的一个SRS资源的SRI。
作为一个实施例,一个TCI状态被用于确定一个SRS资源集合的空域滤波器的意思包括:所述第一节点在所述一个TCI状态指示的一个参考信号资源中接收或发送参考信号的空域滤波器被用于确定所述第一节点在所述一个SRS资源集合中发送SRS的空域滤波器。
作为一个实施例,一个TCI状态被用于确定一个SRS资源集合的空域滤波器的意思包括:所述第一节点用和在所述一个TCI状态指示的一个参考信号资源中接收或发送参考信号相同的空域滤波器,在所述一个SRS资源集合中发送SRS。
作为一个实施例,一个TCI状态被用于确定一个SRS资源集合的空域滤波器的意思包括:所述一个SRS资源集合的TCI状态是所述一个TCI状态。
实施例9
实施例9示例了根据本申请的一个实施例的第一信令包括第二域和第三域的示意图;如附图9所示。在实施例9中,所述第一信令包括第二域和第三域,所述第一信令中的所述第二域和所述第一信令中的所述第三域共同指示所述第一SRS资源组。
作为一个实施例,所述第二域和所述第三域分别包括至少一个比特。
作为一个实施例,所述第二域和所述第三域分别包括至少一个DCI域。
作为一个实施例,所述第二域和所述第三域分别包括至少一个DCI域中全部或部分比特。
作为一个实施例,所述第二域和所述第三域分别是一个DCI域。
作为一个实施例,所述第二域包括DCI域SRS resource indicator。
作为一个实施例,所述第二域包括DCI中的第一个SRS resource indicator域。
作为一个实施例,所述第三域包括DCI域Second SRS resource indicator。
作为一个实施例,所述第三域包括DCI域Second SRS resource indicator中的信息。
作为一个实施例,所述第三域包括DCI中的第二个SRS resource indicator域。
作为一个实施例,所述第二域和所述第三域分别指示至少一个SRI。
作为一个实施例,所述第二域和所述第三域分别指示至少一个SRS资源。
作为一个实施例,所述第二域在所述第一信令中的位置在所述第三域之前。
作为一个实施例,所述第一信令中的所述第二域指示所述第一SRS资源子组。
作为一个实施例,所述第一信令中的所述第三域指示所述第二SRS资源子组。
作为一个实施例,所述第一信令中的所述第二域在所述第一SRS资源集合中指示所述第一SRS资源子组。
作为一个实施例,所述第一信令中的所述第三域在所述第二SRS资源集合中指示所述第二SRS资源子组。
作为一个实施例,所述第一信令中的所述第二域指示所述第一SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令中的所述第二域通过指示所述第一SRS资源子组来指示所述第一SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令中的所述第三域的解读依赖于所述第一信令中的所述第二域。
作为一个实施例,所述第一信令中的所述第三域的解读基于具有和所述第一信令中的所述第二域指示的层数相同的层数。
作为一个实施例,所述第一信令中的所述第二域指示的层数等于所述第一SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令中的所述第三域的解读依赖于所述第一SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令中的所述第三域的解读基于具有和所述第一SRS资源子组包括的SRS资源的数量相同的层数。
作为一个实施例,所述第二SRS资源子组包括的SRS资源的数量等于所述第一SRS资源子组包括的SRS资源的数量。
作为一个实施例,所述第一信令中的所述第三域的值和所述第一SRS资源子组包括的SRS资源的数量共同被用于确定所述第二SRS资源子组。
作为一个实施例,所述第一信令中的所述第二域指示所述第一SRS资源子组中每个SRS资源的SRI。
作为一个实施例,所述第一信令中的所述第三域指示所述第二SRS资源子组中每个SRS资源的SRI。
作为一个实施例,所述第一SRS资源子组包括的SRS资源的数量和所述第二SRS资源子组包括的SRS资源的数量都等于1。
作为一个实施例,所述第一信令中的所述第三域的解读不依赖于所述第一信令中的所述第二域。
作为一个实施例,所述第一信令中的所述第二域在所述第一SRS资源集合中指示一个SRS资源,所述第一SRS资源子组由所述一个SRS资源组成。
作为一个实施例,所述第一信令中的所述第三域在所述第二SRS资源集合中指示一个SRS资源,所述第二SRS资源子组由所述一个SRS资源组成。
作为一个实施例,所述第一信令包括第四域,所述第一信令中的所述第四域指示所述第一信令中的所述第二域和所述第一SRS资源集合相关联,所述第一信令中的所述第四域指示所述第一信令中的所述第三域和所述第二SRS资源集合相关联。
作为一个实施例,所述第一信令中的一个域与一个SRS资源集合相关联的意思包括:所述第一信令中的所述一个域指示的任意一个SRS资源属于所述一个SRS资源集合。
作为一个实施例,所述第一信令中的一个域与一个SRS资源集合相关联的意思包括:所述第一信令中的所述一个域从所述一个SRS资源集合中指示至少一个SRS资源。
作为一个实施例,所述第四域包括DCI域SRS resource set indicator。
作为一个实施例,所述第一信令中的所述第四域指示:所述第一SRS资源集合中的SRS资源和所述第二SRS资源集合中的SRS资源共同被用于确定发送所述第一信号的所述天线端口。
作为一个实施例,所述第一信令中的所述第四域指示:所述第一信号的TCI状态包括所述第一TCI状态和所述第二TCI状态。
实施例10
实施例10示例了根据本申请的一个实施例的目标功控参数组被用于确定第一信号的发送功率的示意图;如附图10所示。在实施例10中,所述目标功控参数组被用于确定第一参考功率;所述第一参考功率被用于确定所述第一信号的所述发送功率;所述第一参考功率和第一分量线性相关,所述第一参考功率和 第二分量线性相关;所述目标功控参数组被用于确定所述第一分量和所述第二分量中的至少之一。
作为一个实施例,所述第一参考功率和所述第一分量之间的线性系数等于1。
作为一个实施例,所述第一参考功率和所述第二分量之间的线性系数等于1。
作为一个实施例,所述第一信号的所述发送功率是所述第一参考功率和第一功率阈值中的最小值。
作为一个实施例,所述第一功率阈值是所述第一节点配置的最大输出功率。
作为一个实施例,所述第一功率阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一功率阈值是PCMAX,f,c(i)。
作为一个实施例,所述PCMAX,f,c(i)的定义参见3GPP TS38.213。
作为一个实施例,所述第一功率阈值是PCMAX
作为一个实施例,所述第一参考功率的单位是dBm(毫分贝)。
作为一个实施例,所述第一信号的所述发送功率的单位是dBm(毫分贝)。
作为一个实施例,所述第一分量是P0。
作为一个实施例,所述第一分量是用于上行链路功率控制的P0。
作为一个实施例,所述第一分量是用于PUSCH功率控制的P0。
作为一个实施例,所述第一分量是P0_PUSCH,b,f,c(j)。
作为一个实施例,承载所述第一信号的PUSCH在服务小区c的载波f的活动(active)上行链路BWP b中用索引为j的参数集合配置传输。
作为一个实施例,所述第二分量等于第一路损和第一系数的乘积;针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号在第一参考信号资源中被传输。
作为上述实施例的一个子实施例,所述第一参考信号资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源(resource)。
作为上述实施例的一个子实施例,所述第一参考信号资源包括SS/PBCH block(Synchronisation Signal/physical broadcast channel Block,同步信号/物理广播信道块)资源。
作为上述实施例的一个子实施例,所述第一路损等于所述第一参考信号的发送功率减去所述第一参考信号的RSRP(Reference Signal Received Power)。
作为上述实施例的一个子实施例,所述第一系数是小于或者等于1的非负实数。
作为上述实施例的一个子实施例,所述第一系数是alfa。
作为上述实施例的一个子实施例,所述第一系数是用于上行链路功率控制的alfa。
作为上述实施例的一个子实施例,所述第一系数是用于PUSCH功率控制的alfa。
作为上述实施例的一个子实施例,所述第一系数是αb,f,c(j)。
作为一个实施例,所述第一参考功率和第三分量线性相关,所述第一参考功率与所述第三分量之间的线性系数是1,所述第三分量是功率控制调节状态。
作为一个实施例,所述第三分量是fb,f,c(i,l)。
作为上述实施例的一个子实施例,所述fb,f,c(i,l)的定义参见3GPP TS38.213。
作为一个实施例,所述第一参考功率和第四分量线性相关,所述第一参考功率和所述第四分量之间的线性系数是1;所述第四分量和承载所述第一信号的PUSCH被分配到的表述为RB(Resource Block,资源块)数量的带宽有关。
作为一个实施例,所述第一参考功率和第五分量线性相关,所述第一参考功率与所述第五分量之间的线性系数是1,所述第五分量和所述第一信号携带的码块(code block)的数量,所述第一信号携带的每个码块的大小以及分配给承载所述第一信号的PUSCH的符号数量和子载波数量都有关。
作为一个实施例,所述第五分量是ΔTF,b,f,c(i)。
作为上述实施例的一个子实施例,所述ΔTF,b,f,c(i)的定义参见3GPP TS38.213。
作为一个实施例,所述第一参考功率和所述第一分量,所述第二分量,所述第三分量,所述第四分量以及所述第五分量分别线性相关;所述第一参考功率和所述第一分量,所述第二分量,所述第三分量,所述第四分量和所述第五分量之间的线性系数分别是1。
作为一个实施例,所述第一参考功率和所述第一分量,所述第二分量,所述第三分量以及所述第四分 量分别线性相关;所述第一参考功率和所述第一分量,所述第二分量,所述第三分量和所述第四分量之间的线性系数分别是1。
作为一个实施例,所述目标功控参数组包括所述第一分量。
作为一个实施例,所述第一分量是所述目标功控参数组包括的P0。
作为一个实施例,所述目标功控参数组包括所述第一参考信号资源的标识。
作为一个实施例,所述第一参考信号资源的标识包括SSB-Index。
作为一个实施例,所述第一参考信号资源的标识包括NZP-CSI-RS-ResourceId。
作为一个实施例,所述目标功控参数组包括的路损参考信号身份被用于指示所述第一参考信号资源。
作为一个实施例,所述目标功控参数组包括所述第一系数。
作为一个实施例,所述第一系数是所述目标功控参数组包括的alfa。
作为一个实施例,所述目标功控参数组包括所述第三分量对应的功率控制调节状态索引。
作为一个实施例,所述第三分量对应的功率控制调节状态索引是所述目标功控参数组包括的功率控制调节状态索引。
作为一个实施例,所述目标功控参数组包括所述第三分量对应的闭环索引。
作为一个实施例,所述目标功控参数组包括所述第一分量,所述第一参考信号资源的标识,所述第一系数和所述第三分量对应的功率控制调节状态索引中的至少之一。
作为一个实施例,所述目标功控参数组包括所述第一分量,第一路损参考信号身份,所述第一系数和所述第三分量对应的功率控制调节状态索引中的至少之一;所述第一路损参考信号身份被用于指示所述第一参考信号资源。
作为一个实施例,所述目标功控参数组包括所述第一分量,所述第一路损参考信号身份,所述第一系数和所述第三分量对应的功率控制调节状态索引。
作为一个实施例,所述目标功控参数组包括所述第一分量,所述第一系数和所述第三分量对应的功率控制调节状态索引。
作为一个实施例,所述目标功控参数组包括所述第一分量和所述第一系数。
实施例11
实施例11示例了根据本申请的一个实施例的第一信令被所述第一节点用于从第一功控参数组和第二功控参数组中确定目标功控参数组的示意图;如附图11所示。
作为一个实施例,所述第一信令指示所述目标功控参数组。
作为一个实施例,所述第一信令从所述第一功控参数组和所述第二功控参数组中指示所述目标功控参数组。
作为一个实施例,所述第一信令显式的指示所述目标功控参数组。
作为一个实施例,所述第一信令包括第一域,所述第一信令中的所述第一域指示所述目标功控参数组。
作为一个实施例,所述第一信令中的所述第一域从所述第一功控参数组和所述第二功控参数组中指示所述目标功控参数组。
作为一个实施例,当所述第一信令中的所述第一域的值等于第一数值时,所述目标功控参数组是所述第一功控参数组;当所述第一信令中的所述第一域的值等于第二数值时,所述目标功控参数组是所述第二功控参数组;所述第一数值和所述第二数值分别是非负整数。
作为上述实施例的一个子实施例,所述第一域包括DCI域Open-loop power control parameter set indication中的信息。
作为一个实施例,所述第一信令包括实施例9中的所述第四域,所述第一信令中的所述第四域被用于确定所述目标功控参数组。
作为一个实施例,所述第一信令中的所述第四域被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
作为一个实施例,所述第一信令中的所述第四域的值是第一候选值或第二候选值中之一;当所述第一信令中的所述第四域的值等于所述第一候选值时,所述目标功控参数组是所述第一功控参数组;当所述第 一信令中的所述第四域的值等于所述第二候选值时,所述目标功控参数组是所述第二功控参数组。
作为上述实施例的一个子实施例,无论所述第一信令中的所述第四域的值等于所述第一候选值还是所述第二候选值,所述第一信令中的所述第四域都指示:所述第一SRS资源集合中的SRS资源和所述第二SRS资源集合中的SRS资源共同被用于确定发送所述第一信号的所述天线端口。
作为上述实施例的一个子实施例,无论所述第一信令中的所述第四域的值等于所述第一候选值还是所述第二候选值,所述第一信令中的所述第四域都指示:所述第一信令中的所述第二域和所述第一SRS资源集合相关联,所述第一信令中的所述第三域和所述第二SRS资源集合相关联。
作为上述实施例的一个子实施例,所述第四域的候选值包括Q1个候选值,所述Q1大于2;所述Q1个候选值包括所述第一候选值和所述第二候选值,所述Q1个候选值中包括至少一个除所述第一候选值和所述第二候选值之外的候选值。
作为一个实施例,所述第一信令隐式的指示所述目标功控参数组。
作为一个实施例,所述第一信令通过指示其他信息来隐式的指示所述目标功控参数组。
作为一个实施例,所述第一信令通过指示所述第一信号的时频资源来隐式的指示所述目标功控参数组。
作为一个实施例,所述第一信令通过指示所述第一信号的DMRS端口或DMRS序列来隐式的指示所述目标功控参数组。
实施例12
实施例12示例了根据本申请的一个实施例的目标功控参数组是第一功控参数组和第二功控参数组中默认的一个的示意图;如附图12所示。
作为一个实施例,所述第一SRS资源集合的SRS-ResourceSetId和所述第二SRS资源集合的SRS-ResourceSetId被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
作为一个实施例,所述句子所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个的意思包括:所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中和所述第一SRS资源集合与所述第二SRS资源集合中对应的SRS-ResourceSetId较小的一个SRS资源集合关联的功控参数组。
作为一个实施例,所述句子所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个的意思包括:所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中和所述第一SRS资源集合与所述第二SRS资源集合中对应的SRS-ResourceSetId较大的一个SRS资源集合关联的功控参数组。
作为一个实施例,所述目标功控参数组是所述第一功控参数组;所述第一SRS资源集合是所述第一SRS资源集合和所述第二SRS资源集合中对应的SRS-ResourceSetId较小的一个。
作为一个实施例,所述目标功控参数组是所述第二功控参数组;所述第二SRS资源集合是所述第一SRS资源集合和所述第二SRS资源集合中对应的SRS-ResourceSetId较大的一个。
作为一个实施例,所述句子所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个的意思包括:所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中和所述第一SRS资源集合与所述第二SRS资源集合中对应的TCI状态的TCI-StateId较小的一个SRS资源集合关联的功控参数组。
作为一个实施例,所述句子所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个的意思包括:所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中和所述第一SRS资源集合与所述第二SRS资源集合中对应的TCI状态的TCI-StateId较大的一个SRS资源集合关联的功控参数组。
作为一个实施例,所述句子所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个的意思包括:所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中和所述第一SRS资源集合与所述第二SRS资源集合中对应的TCI状态的TCI码点(codepoint)较小的一个SRS资源集合关联的功控参数组。
作为一个实施例,所述句子所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认 的一个的意思包括:所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中和所述第一SRS资源集合与所述第二SRS资源集合中对应的TCI状态的TCI码点(codepoint)较大的一个SRS资源集合关联的功控参数组。
作为一个实施例,一个SRS资源集合对应的TCI状态是被用于确定所述一个SRS资源集合的空域滤波器的TCI状态。
作为一个实施例,第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器(spatial domain filter),第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器。
作为一个实施例,所述第一TCI状态和所述第二TCI状态被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
作为一个实施例,如果所述第一TCI状态的TCI-StateId小于所述第二TCI状态的TCI-StateId,所述目标功控参数组是所述第一功控参数组;如果所述第一TCI状态的TCI-StateId大于所述第二TCI状态的TCI-StateId,所述目标功控参数组是所述第二功控参数组。
作为一个实施例,如果所述第一TCI状态的TCI-StateId大于所述第二TCI状态的TCI-StateId,所述目标功控参数组是所述第一功控参数组;如果所述第一TCI状态的TCI-StateId小于所述第二TCI状态的TCI-StateId,所述目标功控参数组是所述第二功控参数组。
作为一个实施例,如果所述第一TCI状态对应的TCI码点小于所述第二TCI状态对应的TCI码点,所述目标功控参数组是所述第一功控参数组;如果所述第一TCI状态对应的TCI码点大于所述第二TCI状态对应的TCI码点,所述目标功控参数组是所述第二功控参数组。
作为一个实施例,如果所述第一TCI状态对应的TCI码点大于所述第二TCI状态对应的TCI码点,所述目标功控参数组是所述第一功控参数组;如果所述第一TCI状态对应的TCI码点小于所述第二TCI状态对应的TCI码点,所述目标功控参数组是所述第二功控参数组。
作为一个实施例,所述第一TCI状态的TCI-StateId不同于所述第二TCI状态的TCI-StateId。
实施例13
实施例13示例了根据本申请的一个实施例的第一信息块,第二信息块和第三信息块的示意图;如附图13所示。在实施例13中,所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
作为一个实施例,所述第一信息块由更高层(higher layer)信令携带。
作为一个实施例,所述第一信息块由RRC信令携带。
作为一个实施例,所述第一信息块由MAC CE携带。
作为一个实施例,所述第一信息块由一个IE携带。
作为一个实施例,所述第二信息块由更高层(higher layer)信令携带。
作为一个实施例,所述第二信息块由RRC信令携带。
作为一个实施例,所述第二信息块由MAC CE携带。
作为一个实施例,所述第二信息块由一个IE携带。
作为一个实施例,所述第三信息块由更高层(higher layer)信令携带。
作为一个实施例,所述第三信息块由RRC信令携带。
作为一个实施例,所述第三信息块由MAC CE携带。
作为一个实施例,所述第三信息块由至少一个IE携带。
作为一个实施例,所述第三信息块由RRC信令和MAC CE共同携带。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块中至少两个信息块是由不同的IE携带的。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块分别由3个不同的IE携带。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块中至少两个信息块是由同一个IE中的不同域携带的。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块中至少两个信息块是由同一个 IE中的同一个域携带的。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块中的至少一个信息块由更高层信令携带,所述第一信息块,所述第二信息块和所述第三信息块中的至少另一个信息块由DCI携带。
作为一个实施例,所述第一信息块,所述第二信息块和所述第三信息块中的至少一个信息块由RRC信令携带,所述第一信息块,所述第二信息块和所述第三信息块中的至少另一个信息块由RRC信令和MAC CE共同携带。
作为一个实施例,所述第一信息块和所述第二信息块分别由一个IE携带,所述第三信息块由MAC CE携带。
作为一个实施例,所述第一信息块和所述第二信息块分别由一个IE携带,所述第三信息块由至少一个IE和至少一个MAC CE共同携带。
作为一个实施例,所述第一信息块和所述第二信息块分别由一个IE携带,所述第三信息块由一个DCI携带。
作为一个实施例,所述第一信息块和所述第二信息块分别由一个IE携带,所述第三信息块由至少一个更高层信令和一个DCI共同携带。
作为一个实施例,第一TCI状态被用于确定所述第一SRS资源集合的空域滤波器,第二TCI状态被用于确定所述第二SRS资源集合的空域滤波器;所述第一TCI状态被第一TCI-state IE配置,所述第二TCI状态被第二TCI-state IE配置;所述第一信息块由所述第一TCI-state IE携带,所述第二信息块由所述第二TCI-state IE携带。
作为上述实施例的一个子实施例,所述第三信息块由既不同于所述第一TCI-state IE也不同于所述第二TCI-state IE的另一个IE携带。
作为上述实施例的一个子实施例,所述第三信息块由第三TCI-state IE携带,所述第三TCI-state IE所述第一TCI-state IE或所述第二TCI-state IE中之一;所述第三信息块和给定信息块分别由所述第三TCI-state IE的不同域携带;所述给定信息块是所述第一信息块和所述第二信息块中由所述第三TCI-state IE携带的信息块。
实施例14
实施例14示例了根据本申请的一个实施例的第二信令包括第二域和第三域的示意图;如附图14所示。在实施例14中,所述第二域和所述第三域分别是实施例9中的所述第二域和所述第三域;所述第二信令中的所述第二域指示所述第二SRS资源组。
作为一个实施例,所述第二信令中的所述第二域指示所述第二SRS资源组包括的SRS资源的数量。
作为一个实施例,所述第二信令中的所述第二域指示所述第二SRS资源组中每个SRS资源的SRI。
作为一个实施例,所述第二信令中的所述第二域和所述第三域中的仅所述第二域被用于指示所述第二SRS资源组。
作为一个实施例,所述第二信令中的所述第二域和所述第三域中的仅所述第二域被用于确定发送所述第二信号的所述天线端口。
作为一个实施例,所述第二信令包括实施例9中的所述第四域,所述第二信令中的所述第四域指示所述第二信令中的所述第二域和所述给定SRS资源集合相关联。
作为一个实施例,所述第二信令中的所述第四域指示所述第二信令中的所述第三域被预留(reserved)。
作为一个实施例,所述第二信令中的所述第四域指示:所述第二SRS资源组包括所述第一SRS资源集合和所述第二SRS资源集合中的仅所述给定SRS资源集合中的SRS资源。
作为一个实施例,所述第二信令中的所述第四域指示所述给定SRS资源集合。
作为一个实施例,所述第二信令中的所述第四域从所述第一SRS资源集合和所述第二SRS资源集合中指示所述给定SRS资源集合。
实施例15
实施例15示例了根据本申请的一个实施例的给定功控参数组被用于确定第二信号的发送功率的示意 图;如附图15所示。在实施例15中,所述给定功控参数组被用于确定第二参考功率;所述第二参考功率被用于确定所述第二信号的所述发送功率;所述第二参考功率和第六分量线性相关,所述第二参考功率和第七分量线性相关;所述第二参考功率和所述第六分量之间的线性系数等于1;所述第二参考功率和所述第七分量之间的线性系数等于1;所述给定功控参数组被用于确定所述第六分量和所述第七分量中的至少之一。
作为一个实施例,所述第二信号的所述发送功率是所述第二参考功率和第二功率阈值中的最小值。
作为一个实施例,所述第二功率阈值是所述第一节点配置的最大输出功率。
作为一个实施例,所述第二功率阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第二功率阈值是PCMAX,f,c(i)。
作为一个实施例,所述PCMAX,f,c(i)的定义参见3GPP TS38.213。
作为一个实施例,所述第二功率阈值是PCMAX
作为一个实施例,所述第二参考功率的单位是dBm(毫分贝)。
作为一个实施例,所述第二信号的所述发送功率的单位是dBm(毫分贝)。
作为一个实施例,所述第六分量是P0。
作为一个实施例,所述第六分量是P0_PUSCH,b,f,c(j)。
作为一个实施例,承载所述第二信号的PUSCH在服务小区c的载波f的活动(active)上行链路BWP b中用索引为j的参数集合配置传输。
作为一个实施例,所述第七分量等于第二路损和第二系数的乘积;针对第二参考信号的测量被用于确定所述第二路损,所述第二参考信号在第二参考信号资源中被传输。
作为上述实施例的一个子实施例,所述第二参考信号资源包括CSI-RS资源。
作为上述实施例的一个子实施例,所述第二参考信号资源包括SS/PBCH block资源。
作为上述实施例的一个子实施例,所述第二路损等于所述第二参考信号的发送功率减去所述第二参考信号的RSRP。
作为上述实施例的一个子实施例,所述第二系数是小于或者等于1的非负实数。
作为上述实施例的一个子实施例,所述第二系数是alfa。
作为上述实施例的一个子实施例,所述第二系数是αb,f,c(j)。
作为一个实施例,所述第二参考功率和第八分量线性相关,所述第二参考功率与所述第八分量之间的线性系数是1,所述第八分量是功率控制调节状态。
作为上述实施例的一个子实施例,所述第八分量是fb,f,c(i,l)。
作为一个实施例,所述第二参考功率和第九分量线性相关,所述第二参考功率和所述第九分量之间的线性系数是1;所述第九分量和承载所述第二信号的PUSCH被分配到的表述为RB的数量的带宽有关。
作为一个实施例,所述第二参考功率和第十分量线性相关,所述第二参考功率与所述第十分量之间的线性系数是1,所述第十分量和所述第二信号携带的码块的数量,所述第二信号携带的每个码块的大小以及分配给承载所述第二信号的PUSCH的符号数量和子载波数量都有关。
作为上述实施例的一个子实施例,所述第十分量是ΔTF,b,f,c(i)。
作为一个实施例,所述第二参考功率和所述第六分量,所述第七分量,所述第八分量,所述第九分量以及所述第十分量分别线性相关;所述第二参考功率和所述第六分量,所述第七分量,所述第八分量,所述第九分量和所述第十分量之间的线性系数分别是1。
作为一个实施例,所述第二参考功率和所述第六分量,所述第七分量,所述第八分量以及所述第九分量分别线性相关;所述第二参考功率和所述第六分量,所述第七分量,所述第八分量和所述第九分量之间的线性系数分别是1。
作为一个实施例,所述给定功控参数组包括所述第六分量。
作为一个实施例,所述给定功控参数组包括所述第二参考信号资源的标识。
作为一个实施例,所述第二参考信号资源的标识包括SSB-Index。
作为一个实施例,所述第二参考信号资源的标识包括NZP-CSI-RS-ResourceId。
作为一个实施例,所述给定功控参数组包括的路损参考信号身份指示所述第二参考信号资源。
作为一个实施例,所述给定功控参数组包括所述第二系数。
作为一个实施例,所述给定功控参数组包括所述第八分量对应的功率控制调节状态索引。
作为一个实施例,所述给定功控参数组包括所述第八分量对应的闭环索引。
作为一个实施例,所述给定功控参数组包括所述第六分量,所述第二参考信号资源的标识,所述第二系数和所述第八分量对应的功率控制调节状态索引中的至少之一。
作为一个实施例,所述给定功控参数组包括所述第六分量,第二路损参考信号身份,所述第二系数和所述第八分量对应的功率控制调节状态索引中的至少之一;所述第二路损参考信号身份指示所述第二参考信号资源。
作为一个实施例,所述给定功控参数组包括所述第六分量,所述第二路损参考信号身份,所述第二系数和所述第八分量对应的功率控制调节状态索引。
作为一个实施例,所述给定功控参数组包括所述第六分量,所述第二系数和所述第八分量对应的功率控制调节状态索引。
作为一个实施例,所述给定功控参数组包括所述第六分量和所述第二系数。
作为一个实施例,所述第一功控参数组和所述第二功控参数组中的仅所述给定功控参数组被用于确定所述第二信号的所述发送功率。
作为一个实施例,所述第一功控参数组,所述第二功控参数组和所述第三功控参数组中的仅所述给定功控参数组被用于确定所述第二信号的所述发送功率。
实施例16
实施例16示例了根据本申请的一个实施例的第一偏移量,第二功率和第三功率的示意图;如附图16所示。在实施例16中,所述第一信号的所述发送功率等于所述第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于所述第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于所述第三功率;所述第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
作为一个实施例,所述第一天线端口组包括和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口,所述第二天线端口组包括和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口。
作为一个实施例,所述第一天线端口组由和所述第一SRS资源子组中的SRS资源的SRS端口相同的天线端口组成,所述第二天线端口组由和所述第二SRS资源子组中的SRS资源的SRS端口相同的天线端口组成。
作为一个实施例,所述第一功率,所述第二功率和所述第三功率的单位分别是dBm。
作为一个实施例,所述第一信号的总发送功率等于所述第一功率。
作为一个实施例,所述第一信号在所述第一天线端口组和所述第二天线端口组上的总发送功率等于所述第一功率。
作为一个实施例,所述第二功率的线性值和所述第三功率的线性值之和等于所述第一功率的线性值。
作为一个实施例,所述第二功率的线性值和所述第三功率的线性值之和不大于所述第一功率的线性值。
作为一个实施例,所述第一偏移量的单位是dB。
作为一个实施例,所述第一偏移量没有单位。
作为一个实施例,所述第一偏移量是一个正实数。
作为一个实施例,所述第一偏移量是实数。
作为一个实施例,所述第一偏移量是可配置的。
作为一个实施例,所述第一偏移量由更高层信令配置。
作为一个实施例,所述第一偏移量由层1的信令配置。
作为一个实施例,所述第一偏移量由所述第一信令指示。
作为一个实施例,所述第一偏移量是不需要配置的。
作为一个实施例,所述第二功率和所述第三功率之差等于所述第一偏移量。
作为一个实施例,所述第二功率和所述第三功率之差不大于所述第一偏移量。
作为一个实施例,所述第二功率和所述第三功率之差不小于所述第一偏移量。
作为一个实施例,所述第二功率和所述第三功率之差的绝对值不大于所述第一偏移量。
作为一个实施例,所述第二功率的线性值和所述第三功率的线性值的比值等于所述第一偏移量。
作为一个实施例,所述第二功率的线性值和所述第三功率的线性值的比值不大于所述第一偏移量。
作为一个实施例,所述第二功率的线性值和所述第三功率的线性值的比值不小于所述第一偏移量。
作为一个实施例,一个功率的线性值等于10的x1次幂,所述x1等于所述一个功率除以10。
作为一个实施例,所述第一信令中的第五域指示所述第一偏移量。
作为上述实施例的一个子实施例,所述第一信令包括DCI,所述第五域包括DCI域TPC command for scheduled PUSCH。
实施例17
实施例17示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图17所示。在附图17中,第一节点设备中的处理装置1700包括第一接收机1701和第一发送机1702。
在实施例17中,第一接收机1701接收第一信令;第一发送机1702发送第一信号。
在实施例17中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
作为一个实施例,所述第一接收机1701接收第一信息块,第二信息块和第三信息块;其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
作为一个实施例,所述第一接收机1701接收第二信令;所述第一发送机1702发送第二信号;其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
作为一个实施例,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一信令包括DCI;所述第一SRS资源集合和所述第二SRS资源集合分别被两个不同的SRS-ResourceSetId所标识;所述第一SRS资源集合和所述第二SRS资源集合均由第一更高层参数配置,所述第一更高层参数的名称里包括“srs-ResourceSetToAddModList”;所述第一SRS资源集合关 联的更高层参数“usage”和所述第二SRS资源集合关联的更高层参数“usage”都被设置为“nonCodebook”或都被设置为“codebook”;所述第一SRS资源子组包括的SRS资源的数量等于所述第二SRS资源子组包括的SRS资源的数量;所述第一信号被和所述第一SRS资源组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,一个功控参数组包括至少一种类型的功控参数,所述一个功控参数组包括的任意一种类型的功控参数的数量等于1;所述至少一种类型的功控参数中的任意一种类型的功控参数是P0,alfa,功率控制调节状态索引,或路损参考信号身份中之一。
作为一个实施例,所述第一SRS资源集合和M1个功控参数组关联,M1是大于1的正整数;所述M1个功控参数组分别对应M1种不同的传输类型,所述M1种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第一功控参数组是所述M1个功控参数组中对应的传输类型是PUSCH传输的功控参数组;所述第二SRS资源集合和M2个功控参数组关联,M2是大于1的正整数;所述M2个功控参数组分别对应M2种不同的传输类型,所述M2种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第二功控参数组是所述M2个功控参数组中对应的传输类型是PUSCH传输的功控参数组;所述第一信号在PUSCH中被传输。
作为一个实施例,所述第一接收机1701包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1702包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例18
实施例18示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图18所示。在附图18中,第二节点设备中的处理装置1800包括第二发送机1801和第二接收机1802。
在实施例18中,第二发送机1801发送第一信令;第二接收机1802接收第一信号。
在实施例18中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
作为一个实施例,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
作为一个实施例,所述第二发送机1801发送第一信息块,第二信息块和第三信息块;其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
作为一个实施例,所述第二发送机1801发送第二信令;所述第二接收机1802接收第二信号;其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
作为一个实施例,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号 的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第一信令包括DCI;所述第一SRS资源集合和所述第二SRS资源集合分别被两个不同的SRS-ResourceSetId所标识;所述第一SRS资源集合和所述第二SRS资源集合均由第一更高层参数配置,所述第一更高层参数的名称里包括“srs-ResourceSetToAddModList”;所述第一SRS资源集合关联的更高层参数“usage”和所述第二SRS资源集合关联的更高层参数“usage”都被设置为“nonCodebook”或都被设置为“codebook”;所述第一SRS资源子组包括的SRS资源的数量等于所述第二SRS资源子组包括的SRS资源的数量;所述第一信号被和所述第一SRS资源组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,一个功控参数组包括至少一种类型的功控参数,所述一个功控参数组包括的任意一种类型的功控参数的数量等于1;所述至少一种类型的功控参数中的任意一种类型的功控参数是P0,alfa,功率控制调节状态索引,或路损参考信号身份中之一。
作为一个实施例,所述第一SRS资源集合和M1个功控参数组关联,M1是大于1的正整数;所述M1个功控参数组分别对应M1种不同的传输类型,所述M1种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第一功控参数组是所述M1个功控参数组中对应的传输类型是PUSCH传输的功控参数组;所述第二SRS资源集合和M2个功控参数组关联,M2是大于1的正整数;所述M2个功控参数组分别对应M2种不同的传输类型,所述M2种不同的传输类型包括PUSCH传输,PUCCH传输和SRS传输中的部分或全部;所述第二功控参数组是所述M2个功控参数组中对应的传输类型是PUSCH传输的功控参数组;所述第一信号在PUSCH中被传输。
作为一个实施例,所述第二发送机1801包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1802包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (24)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令;
    第一发送机,发送第一信号;
    其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信息块,第二信息块和第三信息块;其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第二信令;所述第一发送机发送第二信号;其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
  7. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,发送第一信令;
    第二接收机,接收第一信号;
    其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
  8. 根据权利要求7所述的第二节点设备,其特征在于,所述目标功控参数组是所述第一功控参数组或 所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
  9. 根据权利要求7或8所述的第二节点设备,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
  10. 根据权利要求7至9中任一权利要求所述的第二节点设备,其特征在于,所述第二发送机发送第一信息块,第二信息块和第三信息块;其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
  11. 根据权利要求7至10中任一权利要求所述的第二节点设备,其特征在于,所述第二发送机发送第二信令;所述第二接收机接收第二信号;其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
  12. 根据权利要求7至11中任一权利要求所述的第二节点设备,其特征在于,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
  13. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令;
    发送第一信号;
    其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
  14. 根据权利要求13所述的方法,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
  15. 根据权利要求13或14所述的方法,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
  16. 根据权利要求13至15中任一权利要求所述的方法,其特征在于,包括:
    接收第一信息块,第二信息块和第三信息块;
    其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
  17. 根据权利要求13至16中任一权利要求所述的方法,其特征在于,包括:
    接收第二信令;
    发送第二信号;
    其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信 号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
  18. 根据权利要求13至17中任一权利要求所述的方法,其特征在于,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
  19. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令;
    接收第一信号;
    其中,所述第一信令被用于确定第一SRS资源组,所述第一SRS资源组被用于确定发送所述第一信号的天线端口;所述第一SRS资源组包括第一SRS资源子组和第二SRS资源子组,所述第一SRS资源子组和所述第二SRS资源子组分别包括至少一个SRS资源;所述第一SRS资源子组中的任一SRS资源属于第一SRS资源集合,所述第二SRS资源子组中的任一SRS资源属于第二SRS资源集合,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源;第一功控参数组和所述第一SRS资源集合关联,第二功控参数组和所述第二SRS资源集合关联;目标功控参数组被用于确定所述第一信号的发送功率;所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一,或者,所述目标功控参数组是第三功控参数组;所述第一功控参数组,所述第二功控参数组和所述第三功控参数组是被分别配置的。
  20. 根据权利要求19所述的方法,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述第一信令被用于从所述第一功控参数组和所述第二功控参数组中确定所述目标功控参数组。
  21. 根据权利要求19或20所述的方法,其特征在于,所述目标功控参数组是所述第一功控参数组或所述第二功控参数组中之一;所述目标功控参数组是所述第一功控参数组和所述第二功控参数组中默认的一个。
  22. 根据权利要求19至21中任一权利要求所述的方法,其特征在于,包括:
    发送第一信息块,第二信息块和第三信息块;
    其中,所述目标功控参数组是所述第三功控参数组;所述第一信息块被用于配置所述第一功控参数组,所述第二信息块被用于配置所述第二功控参数组,所述第三信息块被用于配置所述第三功控参数组。
  23. 根据权利要求19至22中任一权利要求所述的方法,其特征在于,包括:
    发送第二信令;
    接收第二信号;
    其中,所述第二信令被用于确定第二SRS资源组,所述第二SRS资源组被用于确定发送所述第二信号的天线端口;所述第二SRS资源组包括至少一个SRS资源;所述第二SRS资源组中的任一SRS资源属于给定SRS资源集合,所述给定SRS资源集合是所述第一SRS资源集合或所述第二SRS资源集合;给定功控参数组是所述第一功控参数组和所述第二功控参数组中和所述给定SRS资源集合关联的功控参数组,所述给定功控参数组被用于确定所述第二信号的发送功率。
  24. 根据权利要求19至23中任一权利要求所述的方法,其特征在于,所述第一SRS资源子组被用于确定第一天线端口组,所述第二SRS资源子组被用于确定第二天线端口组;所述第一信号被所述第一天线端口组和所述第二天线端口组发送;所述第一信号的所述发送功率等于第一功率,所述第一信号被所述第一天线端口组发送的部分的发送功率等于第二功率,所述第一信号被所述第二天线端口组发送的部分的发送功率等于第三功率;第一偏移量被用于确定所述第二功率和所述第三功率之间的差值。
PCT/CN2023/099845 2022-06-14 2023-06-13 一种被用于无线通信的节点中的方法和装置 WO2023241548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210670352.2A CN117279073A (zh) 2022-06-14 2022-06-14 一种被用于无线通信的节点中的方法和装置
CN202210670352.2 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023241548A1 true WO2023241548A1 (zh) 2023-12-21

Family

ID=89192273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099845 WO2023241548A1 (zh) 2022-06-14 2023-06-13 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117279073A (zh)
WO (1) WO2023241548A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111276A (zh) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 参考信号的配置方法及装置
CN112543083A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 一种上行数据传输方法及装置
CN113207163A (zh) * 2020-01-31 2021-08-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022068868A1 (zh) * 2020-09-30 2022-04-07 维沃移动通信有限公司 上行信道参数的确定和配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111276A (zh) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 参考信号的配置方法及装置
CN112543083A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 一种上行数据传输方法及装置
CN113207163A (zh) * 2020-01-31 2021-08-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022068868A1 (zh) * 2020-09-30 2022-04-07 维沃移动通信有限公司 上行信道参数的确定和配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR(VIVO): "Summary of email discussion [107-e-NR-L1enh-URLLC-03] on issues related to SRS resource sets configured for DCI format 0_1 and DCI format 0_2", R1-210XXXX 3GPP TSG RAN WG1 #107-E E-MEETING, NOVEMBER 11TH – 19TH, 2021, 17 November 2021 (2021-11-17), XP009551695 *

Also Published As

Publication number Publication date
CN117279073A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115226193A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023241548A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023231971A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021143512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023155740A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221904A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099210A1 (zh) 一种被用于无线通信的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067390A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202416A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027693A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138554A2 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160320A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823116

Country of ref document: EP

Kind code of ref document: A1