WO2024067390A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024067390A1
WO2024067390A1 PCT/CN2023/120648 CN2023120648W WO2024067390A1 WO 2024067390 A1 WO2024067390 A1 WO 2024067390A1 CN 2023120648 W CN2023120648 W CN 2023120648W WO 2024067390 A1 WO2024067390 A1 WO 2024067390A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time
reference signal
resource block
frequency resource
Prior art date
Application number
PCT/CN2023/120648
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024067390A1 publication Critical patent/WO2024067390A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for wireless signals in a wireless communication system supporting a cellular network.
  • Multi-antenna technology is a key technology in 3GPP (3rd Generation Partner Project) LTE (Long-term Evolution) system and NR (New Radio) system. Additional spatial degrees of freedom are obtained by configuring multiple antennas at communication nodes, such as base stations or UE (User Equipment). Multiple antennas improve communication quality by beamforming to form beams pointing in a specific direction. When multiple antennas belong to multiple TRPs (Transmitter Receiver Points)/panels, additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels. In NR R (release) 16, transmission based on multiple beams/TRPs/panels was introduced to enhance the transmission quality of downlink data.
  • 3GPP 3rd Generation Partner Project
  • LTE Long-term Evolution
  • NR New Radio
  • NR R17 uplink transmission based on multiple beams/TRPs/panels is supported to improve the reliability of uplink transmission.
  • a UE can be configured with multiple codebook-based or non-codebook-based SRS (Sounding Reference Signal) resource sets. Different SRS resource sets correspond to different beams/TRPs/panels, which are used to realize multi-beam/TRP/panel uplink transmission.
  • SRS Sounding Reference Signal
  • the present application discloses a solution. It should be noted that, although the above description uses cellular network, uplink transmission and multi-beam/TRP/panel transmission as examples, the present application is also applicable to other scenarios such as sidelink transmission, downlink transmission and single beam/TRP/panel transmission, and obtains similar technical effects in cellular network, uplink transmission and multi-beam/TRP/panel transmission. In addition, the use of a unified solution for different scenarios (including but not limited to cellular network, sidelink, uplink transmission, downlink transmission, multi-beam/TRP/panel transmission and single beam/TRP/panel transmission) also helps to reduce hardware complexity and cost.
  • the embodiments in the first node of the present application and the features in the embodiments can be applied to the second node, and vice versa. In the absence of conflict, the embodiments in the present application and the features in the embodiments can be arbitrarily combined with each other.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • the first information set being used to determine a first time-frequency resource block and a second time-frequency resource block, the first time-frequency resource block being allocated to a first signal, the second time-frequency resource block being allocated to a second signal;
  • the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal
  • the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • the characteristics of the above method include: determining whether to send a signal based on the characteristics of the uplink channel/signal that overlaps in the time domain Uplink channel/signal.
  • the benefits of the above method include: improving the efficiency of uplink transmission while ensuring the reliability of uplink transmission.
  • whether to give up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling.
  • whether to give up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal carry the same TB.
  • any reference signal resource in the first reference signal resource group is an SRS resource
  • any reference signal resource in the second reference signal resource group is an SRS resource
  • the first reference signal resource group belongs to a first SRS resource set
  • the second reference signal resource group belongs to a second SRS resource set
  • the first SRS resource set and the second SRS resource set each include at least one SRS resource.
  • the first signaling is used to determine a first index, and the first signal is associated with the first index.
  • a third signal is sent in the third time-frequency resource block.
  • a third reference signal resource group is used to determine the spatial relationship of the third signal; the third reference signal resource group includes at least one reference signal resource.
  • the first node includes a user equipment.
  • the first node includes a relay node.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal
  • the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource;
  • the target receiver of the first information set gives up sending the first signal in the first time-frequency resource block;
  • the target receiver of the first information set sends the second signal in the second time-frequency resource block, or the target receiver of the first information set gives up sending the second signal in the second time-frequency resource block; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • the target receiver of the first information set gives up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling.
  • the target receiver of the first information set gives up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal carry the same TB.
  • any reference signal resource in the first reference signal resource group is an SRS resource
  • any reference signal resource in the second reference signal resource group is an SRS resource
  • the first reference signal resource group belongs to a first SRS resource set
  • the second reference signal resource group belongs to a second SRS resource set
  • the first SRS resource set and the second SRS resource set each include at least one SRS resource.
  • the first signaling is used to determine a first index, and the first signal is associated with the first index.
  • a third signal is received in the third time-frequency resource block.
  • a third reference signal resource group is used to determine the spatial relationship of the third signal; the third reference signal resource group includes at least one reference signal resource.
  • the second node is a base station.
  • the second node is a user equipment.
  • the second node is a relay node.
  • the present application discloses a first node used for wireless communication, characterized in that it includes:
  • a first receiver receives a first information set, wherein the first information set is used to determine a first time-frequency resource block and a second time-frequency resource block, wherein the first time-frequency resource block is allocated to a first signal and the second time-frequency resource block is allocated to a second signal;
  • the first receiver receives a first signaling, where the first signaling is used to determine a third time-frequency resource block;
  • a first transmitter abandons sending the first signal in the first time-frequency resource block
  • the first transmitter sends the second signal in the second time-frequency resource block, or abandons sending the second signal in the second time-frequency resource block;
  • the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal
  • the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • the present application discloses a second node used for wireless communication, characterized in that it includes:
  • a second transmitter sends a first information set, where the first information set is used to determine a first time-frequency resource block and a second time-frequency resource block, where the first time-frequency resource block is allocated to a first signal, and the second time-frequency resource block is allocated to a second signal;
  • the second transmitter sends a first signaling, where the first signaling is used to determine a third time-frequency resource block;
  • the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal
  • the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource;
  • the target receiver of the first information set gives up sending the first signal in the first time-frequency resource block;
  • the target receiver of the first information set sends the second signal in the second time-frequency resource block, or the target receiver of the first information set gives up sending the second signal in the second time-frequency resource block; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • this application has the following advantages:
  • FIG1 shows a flowchart of a first information set, a first signaling, a first signal, and a second signal according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flow chart of transmission between a first node and a second node according to an embodiment of the present application
  • FIG6 shows a schematic diagram of a first information set according to an embodiment of the present application.
  • FIG7 shows a schematic diagram of a first information set according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram showing whether to abandon sending the second signal in the second time-frequency resource block depending on whether the first signal and the second signal are scheduled by the same signaling according to an embodiment of the present application;
  • FIG9 is a schematic diagram showing whether to abandon sending the second signal in the second time-frequency resource block depending on whether the first signal and the second signal carry the same TB according to an embodiment of the present application;
  • FIG10 shows a schematic diagram of a first reference signal resource group and a second reference signal resource group according to an embodiment of the present application
  • FIG11 is a schematic diagram showing a first signaling being used to determine a first index according to an embodiment of the present application
  • FIG12 is a schematic diagram showing a spatial relationship in which a third reference signal resource group is used to determine a third signal according to an embodiment of the present application
  • FIG13 is a schematic diagram showing that the third reference signal resource group and the first reference signal resource group belong to the same reference signal resource set among M reference signal resource sets according to an embodiment of the present application;
  • FIG14 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG15 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first information set, a first signaling, a first signal, and a second signal according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in the present application receives a first information set in step 101; receives a first signaling in step 102; abandons sending a first signal in a first time-frequency resource block in step 103; and abandons sending a second signal in a second time-frequency resource block in step 104.
  • the first information set is used to determine the first time-frequency resource block and the second time-frequency resource block, the first time-frequency resource block is allocated to the first signal, and the second time-frequency resource block is allocated to the second signal;
  • the first signaling is used to determine a third time-frequency resource block; the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal, and the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group each include at least one reference signal resource; whether to abandon sending the second signal in the second time-frequency resource block depends on the first information set.
  • the first information set is carried by physical layer signaling.
  • the first information set is carried by layer 1 (L1) signaling.
  • the first information set is carried by DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first information set is carried by at least one DCI.
  • the first information set is carried by only one DCI.
  • the first information set is carried by two DCIs.
  • the first information set includes information in one or more DCI fields in at least one DCI.
  • the first information set includes information in one or more DCI fields in each of the two DCIs.
  • the first information set includes all information in each of the two DCIs.
  • the first information set is carried by higher layer signaling.
  • the first information set is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information set is carried by RRC IE (Information element).
  • the first information set is carried by only one RRC IE.
  • the first information set is carried by two RRC IEs.
  • the first information set is carried by MAC CE (Medium Access Control layer Control Element).
  • MAC CE Medium Access Control layer Control Element
  • the first information set is carried jointly by RRC IE and MAC CE.
  • the first information set is carried jointly by higher layer signaling and DCI.
  • the first information set is carried by at least one RRC IE and at least one DCI.
  • the first time-frequency resource block includes one symbol or multiple consecutive symbols in the time domain.
  • the first time-frequency resource block includes one or more RBs (Resource blocks) in the frequency domain.
  • the first time-frequency resource block includes multiple consecutive RBs in the frequency domain.
  • the first time-frequency resource block includes multiple discontinuous RBs in the frequency domain.
  • the second time-frequency resource block includes one symbol or multiple consecutive symbols in the time domain.
  • the second time-frequency resource block includes one or more RBs in the frequency domain.
  • the second time-frequency resource block includes multiple consecutive RBs in the frequency domain.
  • the second time-frequency resource block includes multiple discontinuous RBs in the frequency domain.
  • the RB includes PRB (Physical resource block).
  • the RB refers to a PRB.
  • the symbol includes OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the symbols include DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the symbol is obtained after the output of the transform precoder (transform precoding) is subjected to OFDM symbol generation (Generation).
  • the symbol refers to an OFDM symbol.
  • the first time-frequency resource block and the second time-frequency resource block completely overlap in the time domain.
  • the first time-frequency resource block and the second time-frequency resource block partially overlap in the time domain.
  • the first time-frequency resource block and the second time-frequency resource block are orthogonal in the frequency domain.
  • the first time-frequency resource block and the second time-frequency resource block overlap in the frequency domain.
  • the first time-frequency resource block and the second time-frequency resource block partially overlap in the frequency domain.
  • the first time-frequency resource block and the second time-frequency resource block completely overlap in the frequency domain.
  • the first time-frequency resource block and the second time-frequency resource block overlap in the time-frequency domain.
  • the first time-frequency resource block and the second time-frequency resource block partially overlap in the time-frequency domain.
  • the first time-frequency resource block and the second time-frequency resource block completely overlap in the time-frequency domain.
  • the first information set indicates the first time-frequency resource block and the second time-frequency resource block.
  • the first information set includes scheduling information of the first signal and scheduling information of the second signal.
  • the scheduling information includes time domain resources, frequency domain resources, MCS (Modulation and Coding Scheme), DMRS (Demodulation reference signal) port, HARQ (Hybrid automatic repeat request) process number, TCI (Transmission Configuration Indicator) state, RV (Redundancy version), NDI (New Data Indicator), antenna port, or one or more of SRI (Sounding reference signal Resource Indicator).
  • MCS Modulation and Coding Scheme
  • DMRS Demodulation reference signal
  • HARQ Hybrid automatic repeat request
  • TCI Transmission Configuration Indicator
  • RV Redundancy version
  • NDI New Data Indicator
  • antenna port or one or more of SRI (Sounding reference signal Resource Indicator).
  • the scheduling information includes the number of TBs (Transport Blocks) carried.
  • the first information set includes first sub-information and second sub-information
  • the first sub-information indicates the time domain resources occupied by the first time-frequency resource block and the time domain resources occupied by the second time-frequency resource block
  • the second sub-information indicates the frequency domain resources occupied by the first time-frequency resource block and the frequency domain resources occupied by the second time-frequency resource block.
  • the first sub-information and the second sub-information respectively include information in different DCI domains in the same DCI.
  • the first sub-information and the second sub-information respectively include information in different domains in the same RRC IE.
  • the first information set includes a first information subset and a second information subset, the first information subset indicates the first time-frequency resource block, and the second information subset indicates the second time-frequency resource block.
  • the first information subset and the second information subset respectively include information in two different DCIs.
  • the first information subset and the second information subset respectively include information in two different RRC IEs.
  • the first information subset and the second information subset respectively include information in two ConfiguredGrantConfig IEs.
  • the first signal and the second signal respectively include baseband signals.
  • the first signal and the second signal respectively include wireless signals.
  • the first signal and the second signal respectively include radio frequency signals.
  • the first signal and the second signal respectively include different layers of the same PUSCH.
  • the first signal and the second signal respectively include different layers of the same PUSCH scheduled by the same DCI.
  • the first signal and the second signal respectively include different layers of the same PUSCH transmission based on a configured grant.
  • the first signal and the second signal respectively include different PUSCH transmission opportunities (PUSCH transmission occasion) scheduled by the same DCI.
  • the first signal and the second signal respectively include different PUSCH transmission opportunities (PUSCH transmission occasions) in the same period of the same PUSCH transmission based on the configuration grant.
  • the first signal and the second signal respectively include parts of the same PUSCH transmission opportunity scheduled by the same DCI in different frequency domain resources.
  • the first signal and the second signal respectively include parts of the same PUSCH transmission opportunity in the same period of the same configuration-granted PUSCH in different frequency domain resources.
  • the first signal and the second signal respectively include two PUSCH transmissions scheduled by different DCIs.
  • the first signal and the second signal respectively include PUSCH transmission based on configuration grant corresponding to different ConfiguredGrantConfigIndex.
  • the transport channels (transport channel) corresponding to the first signal and the second signal are UL-SCH (Uplink Shared Channel) respectively.
  • the first signal and the second signal are PUSCH transmissions based on dynamic grant respectively.
  • the first signal and the second signal are PUSCH transmissions based on a configured grant, respectively.
  • the first signal and the second signal belong to the same carrier.
  • the first signal and the second signal belong to the same BWP (Bandwidth part).
  • the first signal and the second signal belong to the same service cell.
  • different DMRS ports are allocated to the first signal and the second signal respectively.
  • the first signal and the second signal are respectively allocated different DMRS port numbers.
  • the first time-frequency resource block and the second time-frequency resource block overlap in the time-frequency domain, and the first signal and the second signal are respectively allocated different DMRS ports or different DMRS port numbers.
  • the first time-frequency resource block and the second time-frequency resource block are orthogonal in the frequency domain, and the first signal and the second signal are respectively allocated the same DMRS port or the same DMRS port number.
  • the first signaling includes physical layer signaling.
  • the first signaling includes layer 1 (L1) signaling.
  • the first signaling includes DCI.
  • the first signaling includes at least one DCI field.
  • the first signaling is a DCI.
  • the first signaling includes RRC signaling.
  • the first signaling is an RRC signaling.
  • the first signaling includes at least one RRC IE.
  • the first signaling is an RRC IE.
  • the first signaling includes MAC CE.
  • the first signaling is a MAC CE.
  • the first signaling includes RRC signaling and MAC CE.
  • the first signaling includes higher layer signaling and DCI.
  • the first signaling is used to schedule PDSCH (Physical downlink shared channel).
  • PDSCH Physical downlink shared channel
  • the first signaling includes DCI, and the format of the first signaling is one of Format 1_0, Format 1_1 or Format 1_2.
  • the first signaling is used to schedule PUSCH.
  • the first signaling includes DCI, and the format of the first signaling is one of Format 0_0, Format 0_1 or Format 0_2.
  • the CRC of the first signaling is scrambled by one of C-RNTI, MCS-C-RNTI or CS-RNTI.
  • the first signaling includes ConfiguredGrantConfig IE.
  • the first signaling is used to schedule PSCCH (Physical Sidelink Control Channel) and PSSCH (Physical Sidelink Shared Channel).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the first signaling includes DCI, and the format of the first signaling is one of Format 3_0 or Format 3_1.
  • the CRC of the first signaling is scrambled by SL (SideLink)-RNTI or SL-CS-RNTI.
  • the first signaling is used to instruct the first node to cancel the RBs and symbols in which uplink transmission is to be performed.
  • the first signaling includes DCI format2_4.
  • the first signaling is DCI format 2_4.
  • the CRC of the first signaling is scrambled by CI (Cancellation indication)-RNTI.
  • the first signaling includes PUCCH-Config IE.
  • the first signaling includes information in all or part of the fields in the PUCCH-Config IE.
  • the first signaling includes SchedulingRequestResourceConfig IE.
  • the first signaling includes information in all or part of the fields in the SchedulingRequestResourceConfig IE.
  • the first signaling includes information in all or part of the fields in the BWP-UplinkDedicated IE.
  • the first signaling includes information in at least one of the pucch-Config field or the pucch-ConfigurationList field in the BWP-UplinkDedicated IE.
  • the first signaling includes information in all or part of the fields in the ServingCellConfig IE.
  • the first signaling includes information in all or part of the fields in the MAC-CellGroupConfig IE.
  • the first signaling includes information in at least one of the schedulingRequestID-LBT-SCell domain, schedulingRequestID-BFR-SCell domain, schedulingRequestID-BFR domain, schedulingRequestID-BFR2 domain or schedulingRequestConfig-v1700 domain in the MAC-CellGroupConfig IE.
  • the first signaling includes information in all or part of the fields in the SchedulingRequestConfig IE.
  • the first signaling includes information in all or part of the fields in the LogicalChannelConfig IE.
  • the first signaling includes information in the schedulingRequestID field in the LogicalChannelConfig IE.
  • the first signaling and the first information set are transmitted in the same BWP.
  • the first signaling and the first information set are transmitted in the same service cell.
  • the first signaling and the first information set are transmitted in different BWPs.
  • the first signaling and the first information set are transmitted in different service cells.
  • the first signaling is earlier than the first information set.
  • the first signaling is later than the first information set.
  • the first signaling is earlier than a part of information in the first information set and later than another part of information in the first information set.
  • the third time-frequency resource block includes one symbol or multiple consecutive symbols in the time domain.
  • the third time-frequency resource block includes one or more RBs in the frequency domain.
  • the third time-frequency resource block includes multiple consecutive RBs in the frequency domain.
  • the third time-frequency resource block includes multiple discontinuous RBs in the frequency domain.
  • the third time-frequency resource block includes a PUCCH (Physical uplink control channel) resource.
  • PUCCH Physical uplink control channel
  • the third time-frequency resource block is a PUCCH resource.
  • the third time-frequency resource block is allocated to PUSCH.
  • the third time-frequency resource block is allocated to PSCCH and PSSCH.
  • the third time-frequency resource block includes RBs and symbols in which the first node cancels uplink transmission.
  • the RB included in the third time-frequency resource block is the RB in which the first node cancels uplink transmission
  • the symbol included in the third time-frequency resource block is the symbol in which the first node cancels uplink transmission
  • the first signaling indicates the third time-frequency resource block.
  • the first signaling is a DCI used to schedule PDSCH, and the DCI domain PUCCH resource indicator and the DCI domain PDSCH-to-HARQ_feedback timing indicator of the first signaling are used to indicate the third time-frequency resource block.
  • the first signaling is a DCI used for scheduling PUSCH, and the DCI domain Frequency domain resource assignment and the DCI domain Time domain resource assignment of the first signaling are used to indicate the third time-frequency resource block.
  • the first signaling is a DCI used to schedule PSCCH and PSSCH, and the DCI field SCI format 1-Afields of the first signaling is used to indicate the third time-frequency resource block.
  • the first signaling is DCI used to schedule PSCCH and PSSCH, and the DCI domain Frequency resource assignment and DCI domain Time resource assignment of the first signaling are used to indicate the third time-frequency resource block.
  • the first signaling indicates a first bit map and a second bit map
  • the first bit map indicates the symbols included in the third time-frequency resource block
  • the second bit map indicates the RBs included in the third time-frequency resource block.
  • the third time-frequency resource block and the first time-frequency resource block overlap in the time-frequency domain.
  • At least one RE (Resource element) in the first time-frequency resource block belongs to the third time-frequency resource block.
  • At least one RE in the first time-frequency resource block belongs to a symbol indicated by the first bit map in the time domain and belongs to an RB indicated by the second bit map in the frequency domain.
  • the third time-frequency resource block and the second time-frequency resource block overlap in the time-frequency domain.
  • At least one RE in the second time-frequency resource block belongs to the third time-frequency resource block.
  • At least one RE in the second time-frequency resource block belongs to a symbol indicated by the first bit map in the time domain and belongs to an RB indicated by the second bit map in the frequency domain.
  • the priority of the first signal is lower than the reference priority.
  • the first signaling is used to determine the reference priority.
  • the reference priority is determined by the first node itself.
  • the reference priority is a default one.
  • the reference priority is defaulted to the corresponding priority index (priority index) 0.
  • the reference priority is defaulted to the corresponding priority index (priority index) 1.
  • the reference priority is the priority of the third signal.
  • the meaning of one priority being lower than another priority includes: the priority index of the one priority is smaller than the priority index of the other priority.
  • the meaning of one priority being lower than another priority includes: the priority index of the one priority is greater than the priority index of the other priority.
  • the priority of the second signal is the same as the priority of the first signal.
  • the second signal and the first signal are scheduled by the same signaling, and the priority of the second signal is the same as the priority of the first signal; the same signaling is used to determine the priority of the second signal and the priority of the first signal.
  • the second signal and the first signal are respectively scheduled by two different signalings, and the priority of the second signal and the priority of the first signal are respectively indicated.
  • the first reference signal resource group includes only one reference signal resource.
  • the first reference signal resource group includes multiple reference signal resources.
  • the first reference signal resource group includes SRS (Sounding Reference Signal) resources.
  • any reference signal resource in the first reference signal resource group is an SRS resource.
  • a reference signal resource in the first reference signal resource group which is an SRS resource.
  • the first reference signal resource group is an SRS resource set.
  • the first reference signal resource group consists of one SRS resource.
  • the first reference signal resource group includes CSI-RS (Channel State Information-Reference Signal, Channel status information reference signal) resource.
  • CSI-RS Channel State Information-Reference Signal, Channel status information reference signal
  • any reference signal resource in the first reference signal resource group is a CSI-RS resource.
  • the first reference signal resource group includes SS/PBCH (Synchronisation Signal/physical broadcast channel) block resources.
  • SS/PBCH Synchronisation Signal/physical broadcast channel
  • a reference signal resource in the first reference signal resource group which is a SS/PBCH block resource.
  • the second reference signal resource group includes only one reference signal resource.
  • the second reference signal resource group includes multiple reference signal resources.
  • the second reference signal resource group includes SRS resources.
  • any reference signal resource in the second reference signal resource group is an SRS resource.
  • the second reference signal resource group is an SRS resource set.
  • the second reference signal resource group consists of one SRS resource.
  • the second reference signal resource group includes CSI-RS resources.
  • any reference signal resource in the second reference signal resource group is a CSI-RS resource.
  • the second reference signal resource group includes SS/PBCH block resources.
  • the first reference signal resource group consists of one or more SRS resources; the transmitting antenna port of the first signal is the same antenna port as the SRS port of the SRS resources in the first reference signal resource group.
  • the second reference signal resource group consists of one or more SRS resources; the transmitting antenna port of the second signal is the same antenna port as the SRS port of the SRS resources in the second reference signal resource group.
  • the second reference signal resource group consists of one or more SRS resources; the second signal is sent by the same antenna port as the SRS port of the SRS resources in the second reference signal resource group.
  • the spatial domain filter used to send the first signal is the same as the spatial domain filter used by the first node to send or receive the reference signal in the first reference signal resource group.
  • the spatial domain filter used to send the second signal is the same as the spatial domain filter used by the first node to send or receive the reference signal in the second reference signal resource group.
  • the first node sends the second signal and the reference signal sent or received in the second reference signal resource group using the same spatial domain filter.
  • the precoder of the first signal is the same as the precoder of the reference signal transmitted in the first reference signal resource group.
  • the precoder of the second signal is the same as the precoder of the reference signal transmitted in the second reference signal resource group.
  • the sentence that the first reference signal resource group is used to determine the transmitting antenna port of the first signal includes: the transmitting antenna port of the first signal is the same antenna port as the SRS port of the SRS resource in the first reference signal resource group.
  • the sentence that the first reference signal resource group is used to determine the transmitting antenna port of the first signal includes: the transmitting spatial domain filter of the first signal and the spatial domain filter used by the first node to send or receive the reference signal in the first reference signal resource group are the same.
  • the sentence "the first reference signal resource group is used to determine the transmitting antenna port of the first signal” means that: the first reference signal resource group is used to determine the spatial relation of the first signal.
  • the sentence that the second reference signal resource group is used to determine the transmitting antenna port of the second signal includes: the transmitting antenna port of the second signal is the same antenna port as the SRS port of the SRS resource in the second reference signal resource group.
  • the sentence that the second reference signal resource group is used to determine the transmitting antenna port of the second signal includes: the transmitting spatial domain filter of the second signal is the same as the spatial domain filter used by the first node to send or receive the reference signal in the second reference signal resource group.
  • the sentence that the second reference signal resource group is used to determine the transmitting antenna port of the second signal includes: the second reference signal resource group is used to determine the spatial relationship of the second signal.
  • the first reference signal resource group is indicated by SRI in the scheduling information of the first signal.
  • the second reference signal resource group is indicated by SRI in the scheduling information of the second signal.
  • the first information set is used to determine the first reference signal resource group and the second reference signal resource group.
  • the first information set indicates the first reference signal resource group and the second reference signal resource group.
  • the first information set includes the first reference signal resource group and the second reference signal resource group.
  • any reference signal resource in the first reference signal resource group and any reference signal resource in the second reference signal resource group are not quasi co-located.
  • any reference signal resource in the first reference signal resource group and any reference signal resource in the second reference signal resource group are not quasi co-located corresponding to QCL (Quasi Co-Location)-typeD.
  • the first reference signal resource group includes only one reference signal resource
  • the second reference signal resource group includes only one reference signal resource; the one reference signal resource included in the first reference signal resource group and the one reference signal resource included in the second reference signal resource group are not quasi-co-located.
  • the one reference signal resource included in the first reference signal resource group and the one reference signal resource included in the second reference signal resource group are not quasi-co-located corresponding to QCL-typeD.
  • the number of the transmitting antenna ports of the first signal is equal to 1 or greater than 1.
  • the number of the transmitting antenna ports of the second signal is equal to 1 or greater than 1.
  • the first information set is used to determine whether to abandon sending the second signal in the second time-frequency resource block.
  • the first information set is used by the first node to determine whether to abandon sending the second signal in the second time-frequency resource block.
  • the first node sends the second signal in the second time-frequency resource block.
  • the first node abandons sending the second signal in the second time-frequency resource block.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2 .
  • FIG2 illustrates a network architecture 200 for LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced) and future 5G systems.
  • the network architecture 200 for LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System) 200.
  • the 5GNR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UEs (User Equipment) 201, a UE 241 communicating with UE 201 via a sidelink, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and Internet services 230.
  • 5GS/EPS 200 may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2 , 5GS/EPS 200 provides packet switching services, but those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit switching services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • gNB203 can be connected to other gNB204 via an Xn interface (e.g., backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive point), or some other suitable terminology.
  • gNB203 provides an access point to 5GC/EPC210 for UE201.
  • Examples of UE201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptops, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • gNB 203 is connected to 5GC/EPC 210 via an S1/NG interface.
  • 5GC/EPC 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF 214, S-GW (Service Gateway)/UPF (User Plane Function) 212, and P-GW (Packet Date Network Gateway)/UPF 213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem) and Packet switching services.
  • the first node in the present application includes the UE201.
  • the second node in the present application includes the gNB203.
  • the wireless link between the UE201 and the gNB203 includes a cellular network link.
  • the sender of the first information set includes the gNB203.
  • the recipient of the first information set includes the UE201.
  • the sender of the first signaling includes the gNB203.
  • the recipient of the first signaling includes the UE201.
  • the sender of the second signal includes the UE201.
  • the receiver of the second signal includes the gNB203.
  • the UE201 supports simultaneous multi-beam/panel/TRP UL transmission.
  • the gNB203 supports simultaneous uplink transmission of multiple beams/panel/TRP.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X), or between two UEs, using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., an IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • a network layer e.g., an IP layer
  • an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first information set is generated in the RRC sublayer 306.
  • the first information set is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first information set is generated by the PHY301 or the PHY351.
  • a portion of the first information set is generated in the RRC sublayer 306 , and another portion is generated in the PHY 301 or the PHY 351 .
  • a portion of the first information set is generated in the RRC sublayer 306 , and another portion is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • a portion of the first information set is generated in the MAC sublayer 302 or the MAC sublayer 352 , and another portion is generated in the PHY 301 or the PHY 351 .
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first signaling is generated in the RRC sublayer 306.
  • the first signal is generated by the PHY301 or the PHY351.
  • the second signal is generated by the PHY301 or the PHY351.
  • the higher layer in the present application refers to a layer above the physical layer.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as constellation mapping based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any parallel stream destined for the second communication device 450.
  • the symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 storing program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transmission and logical channels to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using confirmation (ACK) and/or negative confirmation (NACK) protocols to support HARQ operations.
  • ACK confirmation
  • NACK negative confirmation
  • a data source 467 is used to provide upper layer packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the wireless resource allocation of the first communication device 410, and implements L2 layer functions for the user plane and the control plane.
  • the controller/processor 459 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 450 device at least receives the first information set; receives the first signaling; abandons sending the first signal in the first time-frequency resource block; sends the second signal in the second time-frequency resource block, or abandons sending the second signal in the second time-frequency resource block.
  • the first information set is used to determine the first time-frequency resource block and the second time-frequency resource block, the first time-frequency resource block is allocated to the first signal, and the second time-frequency resource block is allocated to the second signal; the first signaling is used to determine the third time-frequency resource block; the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain; the first reference signal resource group is used to determine the transmitting antenna port of the first signal, and the second reference signal resource group is used to determine the transmitting antenna port of the second signal; the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving the first information set; receiving the first signaling; abandoning sending the first signal in the first time-frequency resource block; sending the second signal in the second time-frequency resource block, or abandoning sending the second signal in the second time-frequency resource block.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the first communication device 410 device at least sends the first information set; sends the first signaling.
  • the first information set is used to determine a first time-frequency resource block and a second time-frequency resource block, the first time-frequency resource block is allocated to a first signal, and the second time-frequency resource block is allocated to a second signal;
  • the first signaling is used to determine a third time-frequency resource block; the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal, and the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource;
  • the target receiver of the first information set abandons sending the first signal in the first time-frequency resource block; the target receiver of the first information set sends the second signal in the second time-frequency resource block,
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending the first information set; sending the first signaling.
  • the first node in the present application includes the second communication device 450.
  • the second node in the present application includes the first communication device 410.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first information set; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first information set.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first signaling; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first signaling.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the second signal in the second time-frequency resource block; and at least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the second signal in the second time-frequency resource block.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the third signal in the third time-frequency resource block; and at least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the third signal in the third time-frequency resource block.
  • Embodiment 5 illustrates a flow chart of transmission between a first node and a second node according to an embodiment of the present application; as shown in FIG5.
  • the second node U1 and the first node U2 are communication nodes transmitted via an air interface.
  • the steps in blocks F51 to F55 are respectively optional.
  • a first information set is sent in step S511; a first signaling is sent in step S512; receiving a first signal in a first time-frequency resource block is abandoned in step S5101; receiving a second signal in a second time-frequency resource block is abandoned in step S5102; receiving a second signal in a second time-frequency resource block is received in step S5103; and a third signal is received in a third time-frequency resource block in step S5104.
  • the first information set is used by the first node U2 to determine the first time-frequency resource block and the second time-frequency resource block, the first time-frequency resource block is allocated to the first signal, and the second time-frequency resource block is allocated to the second signal;
  • the first signaling is used by the first node U2 to determine the third time-frequency resource block; the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used by the first node U2 to determine the transmitting antenna port of the first signal, and the second reference signal resource group is used by the first node U2 to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a relay node device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipments.
  • the second node U1 is a base station maintaining a serving cell of the first node U2.
  • the first information set is transmitted in PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information set is transmitted in a PDCCH.
  • a part of the first information set is transmitted in one PDCCH, and another part of the first information set is transmitted in another PDCCH.
  • the first information set is transmitted in PDSCH.
  • a part of the first information set is transmitted in the PDCCH, and another part of the first information set is transmitted in the PDSCH.
  • the first signaling is transmitted in PDCCH.
  • the first signaling is transmitted in PDSCH.
  • a part of the first signaling is transmitted in the PDCCH, and another part of the first signaling is transmitted in the PDSCH.
  • the physical layer channel corresponding to the first signal is PUSCH.
  • the physical layer channel corresponding to the second signal is PUSCH.
  • the first node sends the second signal in the second time-frequency resource block, and the second signal is transmitted in the PUSCH.
  • the physical layer channel corresponding to the first signal is PUCCH.
  • the physical layer channel corresponding to the second signal is PUCCH.
  • the physical layer channel corresponding to the first signal and the physical layer channel corresponding to the second signal are the same PUSCH.
  • the physical layer channel corresponding to the first signal and the physical layer channel corresponding to the second signal are two different PUSCHs.
  • the first signal and the second signal correspond to two different PUSCH transmission occasions respectively.
  • the step in box F51 in FIG. 5 exists, and the second node gives up receiving the first signal in the first time-frequency resource block.
  • the second node U1 receives the second signal in the second time-frequency resource block, or the second node U1 gives up receiving the second signal in the second time-frequency resource block; whether the second node U1 gives up receiving the second signal in the second time-frequency resource block depends on the first information set.
  • the step in box F52 in FIG. 5 exists, and the second node U1 gives up receiving the second signal in the second time-frequency resource block.
  • the step in box F53 in FIG. 5 exists, and the first node U2 gives up sending the second signal in the second time-frequency resource block.
  • the steps in box F52 and box F53 in Figure 5 are both present, the first node U2 gives up sending the second signal in the second time-frequency resource block, and the second node U1 gives up receiving the second signal in the second time-frequency resource block.
  • the step in box F54 in FIG. 5 exists, the first node U2 sends the second signal in the second time-frequency resource block, and the second node U1 receives the second signal in the second time-frequency resource block.
  • the steps in block F52 and the steps in block F54 in FIG. 5 do not exist at the same time.
  • the steps in block F53 and the steps in block F54 in FIG. 5 do not exist at the same time.
  • the first node U2 sends the second signal in the second time-frequency resource block, and the second node U1 receives the second signal in the second time-frequency resource block; or, the first node U2 gives up sending the second signal in the second time-frequency resource block, and the second node U1 gives up receiving the second signal in the second time-frequency resource block.
  • the step in box F55 in FIG. 5 exists, the first node U2 sends the third signal in the third time-frequency resource block; the second node U1 receives the third signal in the third time-frequency resource block.
  • the third signal includes a baseband signal.
  • the third signal includes a wireless signal.
  • the third signal includes a radio frequency signal.
  • the third signal and the first signal belong to the same BWP.
  • the third signal and the first signal belong to the same service cell.
  • the third time-frequency resource block is allocated to the third signal.
  • the third signal is transmitted on PUCCH.
  • the third signal is transmitted on PUSCH.
  • the third signal is a PUSCH transmission based on a dynamic grant.
  • the third signal is a PUSCH transmission based on a configured grant.
  • the third signal includes SRS.
  • the first signaling includes configuration information of the third signal.
  • the third signal is transmitted on PUCCH, and the configuration information of the third signal includes one or more of time domain resources, frequency domain resources, PUCCH format, spatial relation, maximum code rate, maximum payload size (maxPayloadSize), cyclic shift, or OCC (Orthogonal Cover Code).
  • the third signal is transmitted on a PUSCH, and the configuration information of the third signal includes time domain resources.
  • the configuration information of the third signal includes time domain resources.
  • the third signal includes SRS
  • the configuration information of the third signal includes one or more of time domain resources, frequency domain resources, "usage”, power control parameters, number of SRS ports, number of repetitions, RS sequence, spatial relationship, or cyclic shift.
  • the priority of the third signal is higher than the priority of the first signal.
  • the priority index of the third signal is higher than the priority index of the first signal.
  • the priority index of the third signal is lower than the priority index of the first signal.
  • the priority index of the third signal is equal to 1, and the priority index of the first signal is equal to 0.
  • the first signaling is used to determine the priority of the third signal.
  • the first signaling indicates the priority of the third signal.
  • the third signal and the first signal are PUSCH transmissions based on a configured grant, respectively.
  • the third signal is transmitted on PUCCH, and the third signal carries SR (Scheduling Request).
  • the third signal is transmitted on PUCCH, and the third signal carries HARQ-ACK (Acknowledgement).
  • the HARQ-ACK includes ACK.
  • the HARQ-ACK includes NACK (Negative ACK acknowledgement).
  • the third signal is transmitted on PUCCH, and the third signal carries HARQ-ACK received only for PDSCH without PDCCH; the first signal includes PUSCH transmission based on a configured grant.
  • the third signal is transmitted on PUCCH, and the third signal carries HARQ-ACK received only for PDSCH without PDCCH; the first signal is transmitted on PUSCH, and the first signal carries SP (Semi-persistent)-CSI (Channel state information) report without PDCCH.
  • SP Semi-persistent
  • CE Channel state information
  • the third signal is transmitted on PUCCH, and the first signal is transmitted on PUSCH.
  • the third signal includes a HARQ-ACK for the first signaling.
  • the first signaling is used to schedule a fourth signal
  • the third signal includes a HARQ-ACK for the fourth signal
  • the fourth signal is transmitted on the PDSCH.
  • Embodiment 6 illustrates a schematic diagram of a first information set according to an embodiment of the present application, as shown in Figure 6.
  • the first information set is carried by only one signaling, namely, the second signaling.
  • the first information set is carried only by the second signaling.
  • the first information set includes all information in the second signaling.
  • the first information set includes information in one or more fields in the second signaling.
  • the second signaling is used to schedule the first signal and the second signal.
  • the second signaling includes scheduling information of the first signal and scheduling information of the second signal.
  • the second signaling is used to schedule a first PUSCH (Physical Uplink Shared CHannel), the first signal and the second signal respectively include at least one layer of the first PUSCH, and the first signal and the second signal include different layers of the first PUSCH.
  • PUSCH Physical Uplink Shared CHannel
  • the layer is a MIMO layer.
  • the layer refers to a transmission layer.
  • the second signaling is used to schedule two PUSCH transmission opportunities (transmission occasions), the first signal includes one of the two PUSCH transmission opportunities, and the second signal includes the other of the two PUSCH transmission opportunities.
  • the second signaling is used to schedule a PUSCH transmission opportunity, and the first signal and the second signal respectively include parts of the one PUSCH transmission opportunity in different frequency domain resources.
  • the first time-frequency resource block and the second time-frequency resource block are orthogonal to each other in the frequency domain
  • the first signal includes the part of the one PUSCH transmission opportunity in the first time-frequency resource block
  • the second signal includes the part of the one PUSCH transmission opportunity in the second time-frequency resource block.
  • the second signaling includes DCI.
  • the second signaling is a DCI.
  • the second signaling includes DCI
  • the first information set includes information in at least one DCI domain of the DCI domain Time domain resource assignment and the DCI domain Frequency domain resource assignment of the second signaling.
  • the second signaling includes DCI
  • the first information set includes information in at least one of the DCI domains, including Modulation and coding scheme of the DCI domain, New data indicator of the DCI domain, or HARQ process number of the DCI domain of the second signaling.
  • the second signaling is used to schedule at least one PUSCH.
  • the second signaling is used to activate PUSCH transmission based on configuration grant.
  • the CRC (Cyclic Redundancy Check) of the second signaling is scrambled by C (Cell)-RNTI (Radio Network Temporary Identifier).
  • the CRC of the second signaling is scrambled by MCS (Modulation and Coding Scheme)-C-RNTI.
  • MCS Modulation and Coding Scheme
  • the CRC of the second signaling is scrambled by CS (Configured Scheduling)-RNTI.
  • the second signaling includes RRC IE.
  • the second signaling is an RRC IE.
  • the second signaling is a ConfiguredGrantConfig IE.
  • the second signaling is used to configure PUSCH transmission based on configuration grant.
  • the second signaling is used to configure uplink transmission without dynamic grant.
  • the first information set includes information in at least one of the periodicity field, timeDomainOffset field, timeDomainAllocation field, frequencyDomainAllocation field, or mcsAndTBS field in the second signaling.
  • the first information set includes first sub-information, the first sub-information indicates a first symbol group, the first symbol group includes at least one symbol; the first symbol group includes the time domain resources occupied by the first time-frequency resource block, and the first symbol group includes the time domain resources occupied by the second time-frequency resource block.
  • the time domain resource occupied by the first time-frequency resource block is the first symbol group.
  • the time domain resource occupied by the second time-frequency resource block is the first symbol group.
  • the first time-frequency resource block only occupies part of the symbols in the first symbol group in the time domain.
  • the second time-frequency resource block occupies only part of the symbols in the first symbol group in the time domain.
  • the first information set includes second sub-information, the second sub-information indicates a first RB group, the first RB group includes at least one RB; the first RB group includes the frequency domain resources occupied by the first time-frequency resource block, and the first RB group includes the frequency domain resources occupied by the second time-frequency resource block.
  • the frequency domain resources occupied by the first time-frequency resource block are the first RB group.
  • the frequency domain resources occupied by the second time-frequency resource block are the first RB group.
  • the first time-frequency resource block occupies a part of RBs in the first RB group in the frequency domain
  • the second time-frequency resource block occupies another part of RBs in the first RB group in the frequency domain
  • the first time-frequency resource block occupies the first N1 RBs in the first RB group in the frequency domain
  • the second time-frequency resource block occupies the remaining (N-N1) RBs in the first RB group in the frequency domain
  • N1 and N are positive integers respectively
  • N1 is less than N
  • the number of RBs included in the first RB group is equal to N.
  • N1 is equal to
  • the first N1 RBs refer to: N1 lowest RBs.
  • the first N1 RBs refer to: N1 RBs with the lowest indexes.
  • all RBs in the first RB group are arranged in order from low to high, and the first N1 RBs refer to: N1 RBs at the front.
  • the first time-frequency resource block occupies an even PRG (Precoding Resource block Group) in the first RB group in the frequency domain
  • the second time-frequency resource block occupies an odd PRG in the first RB group in the frequency domain
  • the first time-frequency resource block occupies an odd PRG in the first RB group in the frequency domain
  • the second time-frequency resource block occupies an even PRG in the first RB group in the frequency domain
  • the first information set includes the first sub-information and the second sub-information.
  • the second signaling includes DCI
  • the first sub-information includes information in the DCI domain Time domain resource assignment of the second signaling.
  • the second signaling includes DCI
  • the second sub-information includes information in a Frequency domain resource assignment of a DCI domain of the second signaling.
  • the second signaling includes RRC IE
  • the first sub-information includes information in at least one of the periodicity field, timeDomainOffset field, or timeDomainAllocation field of the second signaling.
  • the second signaling includes RRC IE
  • the second sub-information includes information in the frequencyDomainAllocation field of the second signaling.
  • the second signaling is used to determine the priority of the first signal and the priority of the second signal.
  • the same field in the second signaling indicates the priority of the first signal and the priority of the second signal.
  • the second signaling indicates a first priority index
  • the priority index of the first signal is the first priority index
  • the priority index of the second signal is the first priority index
  • the second signaling is a DCI
  • the second signaling does not include a DCI domain Priority indicator
  • the first The priority index of the signal is equal to 0, and the priority index of the second signal is equal to 0.
  • the second signaling is ConfiguredGrantConfig IE, the second signaling does not include the phy-PriorityIndex domain, the priority index of the first signal is equal to 0, and the priority index of the second signal is equal to 0.
  • the second signaling indicates the first reference signal resource group and the second reference signal resource group.
  • the SRS resource indicator in the DCI domain of the second signaling indicates the first reference signal resource group
  • the Second SRS resource indicator in the DCI domain of the second signaling indicates the second reference signal resource group
  • the SRS resource indicator in the DCI domain of the second signaling indicates the second reference signal resource group
  • the Second SRS resource indicator in the DCI domain of the second signaling indicates the first reference signal resource group
  • Embodiment 7 illustrates a schematic diagram of a first information set according to an embodiment of the present application, as shown in Figure 7.
  • the first information set is carried by two signalings, namely, the third signaling and the fourth signaling;
  • the first information set includes a first information subset and a second information subset, the first information subset is carried by the third signaling, and the second information subset is carried by the fourth signaling.
  • the first information set is carried by the third signaling and the fourth signaling; the first information set includes a first information subset and a second information subset, the first information subset is carried by the third signaling, and the second information subset is carried by the fourth signaling.
  • the first information subset is used to determine the first time-frequency resource block
  • the second information subset is used to determine the second time-frequency resource block
  • the first information subset indicates the first time-frequency resource block
  • the second information subset indicates the second time-frequency resource block
  • the first information subset includes all the information in the third signaling.
  • the first information subset includes information in one or more fields in the third signaling.
  • the second information subset includes all the information in the fourth signaling.
  • the second information subset includes information in one or more fields in the fourth signaling.
  • the third signaling includes scheduling information of the first signal
  • the fourth signaling includes scheduling information of the second signal
  • the first signal includes the PUSCH transmission scheduled by the third signaling
  • the second signal includes the PUSCH transmission scheduled by the fourth signaling.
  • the third signaling includes DCI
  • the fourth signaling includes DCI
  • the third signaling and the fourth signaling respectively include two different DCIs.
  • the third signaling and the fourth signaling are two different DCIs respectively.
  • the first information subset includes information in at least one of the DCI domain Time domain resource assignment and the DCI domain Frequency domain resource assignment of the third signaling
  • the second information subset includes information in at least one of the DCI domain Time domain resource assignment and the DCI domain Frequency domain resource assignment of the fourth signaling.
  • the first information subset includes information in at least one DCI domain including Modulation and coding scheme, New data indicator in the DCI domain or HARQ process number in the DCI domain of the third signaling;
  • the second information subset includes information in at least one DCI domain including Modulation and coding scheme, New data indicator in the DCI domain or HARQ process number in the DCI domain of the fourth signaling.
  • the third signaling is transmitted in the first CORESET
  • the fourth signaling is transmitted in the second CORESET
  • the first CORESET and the second CORESET correspond to different CORESET pool indexes (coresetPoolIndex).
  • the first CORESET is configured with a CORESET pool index equal to 0 or is not configured with a CORESET pool index
  • the second CORESET is configured with a CORESET pool index equal to 1.
  • the first CORESET is configured with a CORESET pool index equal to 1
  • the second CORESET is configured with a CORESET pool index equal to 0 or is not configured with a CORESET pool index.
  • the third signaling and the fourth signaling are respectively used to schedule at least one PUSCH.
  • the third signaling and the fourth signaling are respectively used to activate PUSCH transmission based on configuration grant.
  • the CRC of the third signaling is scrambled by C-RNT.
  • the CRC of the third signaling is scrambled by MCS-C-RNTI.
  • the CRC of the third signaling is scrambled by CS-RNTI.
  • the CRC of the fourth signaling is scrambled by C-RNT.
  • the CRC of the fourth signaling is scrambled by MCS-C-RNTI.
  • the CRC of the fourth signaling is scrambled by CS-RNTI.
  • the third signaling includes RRC IE
  • the fourth signaling includes RRC IE
  • the third signaling and the fourth signaling respectively include two different RRC IEs.
  • the third signaling and the fourth signaling are two different RRC IEs.
  • the third signaling and the fourth signaling are two ConfiguredGrantConfig IEs respectively.
  • the third signaling and the fourth signaling are respectively used to configure PUSCH transmission based on configuration grant.
  • the third signaling and the fourth signaling are respectively used to configure uplink transmission without dynamic grant.
  • the ConfiguredGrantConfigIndex indicated by the third signaling is not equal to the ConfiguredGrantConfigIndex indicated by the fourth signaling.
  • the ConfiguredGrantConfigIndexMAC indicated by the third signaling is not equal to the ConfiguredGrantConfigIndexMAC indicated by the fourth signaling.
  • the first information subset includes third sub-information and fourth sub-information
  • the third sub-information indicates the time domain resources occupied by the first time-frequency resource block
  • the fourth sub-information indicates the frequency domain resources occupied by the first time-frequency resource block.
  • the third sub-information includes information in the Time domain resource assignment of the DCI domain of the third signaling
  • the fourth sub-information includes information in the Frequency domain resource assignment of the DCI domain of the third signaling.
  • the third sub-information includes information in at least one of the periodicity field, timeDomainOffset field, or timeDomainAllocation field of the third signaling; and the fourth sub-information includes information in the frequencyDomainAllocation field of the third signaling.
  • the second information subset includes fifth sub-information and sixth sub-information
  • the fifth sub-information indicates the time domain resources occupied by the second time-frequency resource block
  • the sixth sub-information indicates the frequency domain resources occupied by the second time-frequency resource block.
  • the fifth sub-information includes the information in the Time domain resource assignment of the DCI domain of the fourth signaling
  • the sixth sub-information includes the information in the Frequency domain resource assignment of the DCI domain of the fourth signaling.
  • the fifth sub-information includes information in at least one of the periodicity field, timeDomainOffset field, or timeDomainAllocation field of the fourth signaling; and the sixth sub-information includes information in the frequencyDomainAllocation field of the fourth signaling.
  • the third signaling and the fourth signaling are transmitted in the same BWP.
  • the third signaling and the fourth signaling are transmitted in different BWPs.
  • the third signaling and the fourth signaling are transmitted in the same service cell.
  • the third signaling and the fourth signaling are transmitted in different service cells.
  • the third signaling and the fourth signaling are used to schedule the same BWP.
  • the CORESET pool index corresponding to the CORESET is the CORESET pool index configured with the CORESET.
  • the CORESET pool index corresponding to the CORESET is equal to 0.
  • the third signaling is used to determine the priority of the first signal.
  • the third signaling indicates a priority index of the first signal.
  • the third signaling is a DCI
  • the third signaling does not include a DCI domain Priority indicator
  • the priority index of the first signal is equal to 0.
  • the third signaling is ConfiguredGrantConfig IE, the third signaling does not include the phy-PriorityIndex domain, and the priority index of the first signal is equal to 0.
  • the fourth signaling is used to determine the priority of the second signal.
  • the fourth signaling indicates a priority index of the second signal.
  • the fourth signaling is a DCI
  • the fourth signaling does not include a DCI domain Priority indicator
  • the priority index of the second signal is equal to 0.
  • the fourth signaling is ConfiguredGrantConfig IE, the fourth signaling does not include the phy-PriorityIndex domain, and the priority index of the second signal is equal to 0.
  • the third signaling indicates the first reference signal resource group
  • the fourth signaling indicates the second reference signal resource group
  • the DCI domain SRS resource indicator of the third signaling indicates the first reference signal resource group
  • the DCI domain SRS resource indicator of the fourth signaling indicates the second reference signal resource group
  • Embodiment 8 illustrates that whether to abandon sending the second signal in the second time-frequency resource block depends on the first signal according to an embodiment of the present application A schematic diagram showing whether the second signal is scheduled by the same signaling; as shown in Figure 8.
  • the sentence whether to give up sending the second signal in the second time-frequency resource block depends on the first information set, which means: whether to give up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling; the first information set includes the scheduling information of the first signal and the scheduling information of the second signal.
  • the sentence whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • the meaning includes: whether to give up sending the second signal in the second time-frequency resource block depends on whether the scheduling information of the first signal included in the first information set and the scheduling information of the second signal are carried by the same signaling.
  • the first signal and the second signal are scheduled by the same signaling, and the first information set only includes information in the same signaling; or, the first signal and the second signal are respectively scheduled by two different signalings, and the first information set includes information in each of the two different signalings.
  • the two different signalings are respectively transmitted in the first CORESET and the second CORESET, and the first CORESET and the second CORESET correspond to different CORESET pool indexes (coresetPoolIndex).
  • the sentence "whether the first signal and the second signal are scheduled by the same signaling" means: whether the scheduling information of the first signal and the scheduling information of the second signal are carried by the same signaling.
  • the first signal and the second signal are scheduled by the same signaling.
  • the first signal and the second signal are respectively scheduled by two different signalings.
  • the same signaling includes DCI.
  • the same signaling is a DCI.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the first signal and the second signal are scheduled by the same DCI.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the scheduling information of the first signal and the scheduling information of the second signal are carried by the same DCI.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the first signal and the second signal are PUSCH transmissions based on configuration grants activated by the same DCI.
  • the same signaling includes RRC signaling.
  • the same signaling includes RRC IE.
  • the same signaling includes ConfiguredGrantConfig IE.
  • the same signaling is an RRC signaling.
  • the same signaling is an RRC IE.
  • the same signaling is a ConfiguredGrantConfig IE.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the scheduling information of the first signal and the scheduling information of the second signal are configured by the same ConfiguredGrantConfig IE.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the first signal and the second signal are configured by the same ConfiguredGrantConfig IE as configured grant-based PUSCH transmissions.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the first signal and the second signal correspond to the same ConfiguredGrantConfigIndex.
  • the sentence whether the first signal and the second signal are scheduled by the same signaling means whether the first signal and the second signal correspond to the same ConfiguredGrantConfigIndexMAC.
  • whether the first signal and the second signal are scheduled by the same signaling is used to determine whether to abandon sending the second signal in the second time-frequency resource block.
  • whether the first signal and the second signal are scheduled by the same signaling is used by the first node to determine whether to abandon sending the second signal in the second time-frequency resource block.
  • the first node abandons sending the second signal in the second time-frequency resource block.
  • the first node when the first signal and the second signal are respectively scheduled by two different signalings, the first node sends the second signal in the second time-frequency resource block.
  • the first signal and the second signal are scheduled by the same signaling, and the first node abandons sending the second signal in the second time-frequency resource block; or, the first signal and the second signal are respectively scheduled by two different signalings, and the first node sends the second signal in the second time-frequency resource block.
  • whether to abandon sending the second signal in the second time-frequency resource block depends on whether the two different signalings are transmitted in CORESETs corresponding to different CORESET pool indexes.
  • the two different signalings are DCIs and the two different signalings are respectively transmitted in CORESETs corresponding to different CORESET pool indexes
  • the first node sends the second signal in the second time-frequency resource block.
  • the first node abandons sending the second signal in the second time-frequency resource block.
  • the first signal and the second signal are respectively scheduled by two different signalings
  • the two different signalings are DCIs
  • the CORESETs to which the two different signalings belong correspond to different CORESET pool indexes
  • the first node sends the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by the same signaling, and the first node abandons sending the second signal in the second time-frequency resource block.
  • the first signal and the second signal are respectively scheduled by two different signalings
  • the two different signalings are DCIs
  • the CORESETs to which the two different signalings belong correspond to different CORESET pool indexes
  • the first node sends the second signal in the second time-frequency resource block
  • the two different signalings are DCIs
  • the CORESETs to which the two different signalings belong correspond to the same CORESET pool index
  • the first node abandons sending the second signal in the second time-frequency resource block.
  • whether to abandon sending the second signal in the second time-frequency resource block depends on whether the TCI states of the two different signalings are associated with different cell indexes.
  • the first signal and the second signal are respectively scheduled by two different signalings, the TCI states of the two different signalings are associated with different cell indexes, and the first node sends the second signal in the second time-frequency resource block; or, the first signal and the second signal are respectively scheduled by two different signalings, the TCI states of the two different signalings are associated with the same cell index, and the first node abandons sending the second signal in the second time-frequency resource block.
  • whether the second node gives up receiving the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling.
  • the first signal and the second signal are scheduled by the same signaling, and the second node gives up receiving the second signal in the second time-frequency resource block; or, the first signal and the second signal are respectively scheduled by two different signalings, and the second node receives the second signal in the second time-frequency resource block.
  • whether the second node gives up receiving the second signal in the second time-frequency resource block depends on whether the two different signalings are transmitted in CORESETs corresponding to different CORESET pool indexes.
  • the first signal and the second signal are respectively scheduled by two different signalings
  • the two different signalings are DCIs
  • the CORESETs to which the two different signalings belong correspond to different CORESET pool indexes
  • the second node receives the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by the same signaling, and the second node gives up receiving the second signal in the second time-frequency resource block.
  • Embodiment 9 illustrates a schematic diagram of whether to abandon sending the second signal in the second time-frequency resource block depending on whether the first signal and the second signal carry the same TB according to an embodiment of the present application; as shown in FIG9 .
  • the TB refers to Transport Block.
  • the sentence whether to give up sending the second signal in the second time-frequency resource block depends on the first information set, which means: whether to give up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal carry the same TB, and the first information set is used to determine whether the first signal and the second signal carry the same TB.
  • the sentence whether the first signal and the second signal carry the same TB means: whether the first signal and the second signal carry the same codeword.
  • the sentence whether the first signal and the second signal carry the same TB includes: whether the MCS of the first signal and the MCS of the second signal are indicated by the same domain.
  • the same domain is a DCI domain.
  • the same domain is a domain in an RRC IE.
  • the same domain is a domain in the second signaling.
  • the first signal and the second signal carry the same TB, and the same TB is mapped to a codeword; or, the first signal and the second signal carry different TBs, respectively, and the different TBs are mapped to different codewords, respectively.
  • the first signal and the second signal carry the same TB.
  • the first signal and the second signal carry different TBs respectively.
  • whether the first signal and the second signal carry the same TB is used to determine whether to abandon sending the second signal in the second time-frequency resource block.
  • whether the first signal and the second signal carry the same TB is used by the first node to determine whether to abandon sending the second signal in the second time-frequency resource block.
  • the first node abandons sending the second signal in the second time-frequency resource block.
  • the first node when the first signal and the second signal carry different TBs respectively, the first node sends the second signal in the second time-frequency resource block.
  • the first signal and the second signal carry the same TB, and the first node abandons sending the second signal in the second time-frequency resource block; or, the first signal and the second signal carry different TBs respectively, and the first node sends the second signal in the second time-frequency resource block.
  • whether to abandon sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling, and whether the first signal and the second signal carry the same TB.
  • the first node abandons sending the second signal in the second time-frequency resource block.
  • the first node when the first signal and the second signal are scheduled by the same signaling and the first signal and the second signal carry different TBs respectively, the first node sends the second signal in the second time-frequency resource block.
  • the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry the same TB, and the first node abandons sending the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry different TBs respectively, and the first node sends the second signal in the second time-frequency resource block.
  • the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry the same TB, and the first node abandons sending the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry different TBs respectively, and the first node sends the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by different signaling respectively, and the first node sends the second signal in the second time-frequency resource block.
  • the first information set is used to determine whether the first signal and the second signal carry the same TB.
  • the first information set indicates whether the first signal and the second signal carry the same TB.
  • two codeword transmission is enabled.
  • the first node is configured with a second higher layer parameter, and the second higher layer parameter indicates that two codeword transmission is enabled.
  • the name of the second higher-level parameter includes "maxNrofCodewords”.
  • the name of the second higher-layer parameter includes "maxNrofCodeWordsScheduledByDCI”.
  • the PUSCH-Config IE includes the second higher layer parameter.
  • the BWP-UplinkDedicated IE includes the second higher layer parameter.
  • ServingCellConfig IE includes the second higher layer parameters.
  • the first information set indicates whether the first signal and the second signal carry the same TB by indicating whether TB 1 and TB 2 are both enabled.
  • DCI is used to determine whether the first signal and the second signal carry the same TB.
  • the second signaling is used to determine whether the first signal and the second signal carry the same TB.
  • the second signaling explicitly indicates whether the first signal and the second signal carry the same TB.
  • the second signaling implicitly indicates whether the first signal and the second signal carry the same TB.
  • the second signaling indicates whether both TBs are enabled.
  • the second signaling indicates whether the first signal and the second signal carry the same TB by indicating whether both TBs are enabled.
  • the second signaling indicates whether TB 1 is enabled, and the second signaling indicates whether TB 2 is enabled.
  • the first signal and the second signal carry the same TB.
  • the first signal and the second signal carry different TBs respectively.
  • the first signal carries TB 1 and the second signal carries TB 2.
  • the first signal carries TB 2 and the second signal carries TB 1.
  • TB 1 and TB 2 are both enabled, and the first signal and the second signal carry different TBs respectively.
  • the one TB when only one TB of TB 1 and TB 2 is enabled, the one TB is mapped to codeword 0; when both TB 1 and TB 2 are enabled, TB 1 and TB 2 are mapped to codeword 0 and codeword 1, respectively.
  • codeword 0 when only one TB of TB 1 and TB 2 is enabled, codeword 0 is enabled and codeword 1 is disabled; when both TB 1 and TB 2 are enabled, codeword 0 and codeword 1 are enabled.
  • the first information set indicates whether the first signal and the second signal carry the same TB by indicating the number of layers.
  • the second signaling indicates whether the first signal and the second signal carry the same TB by indicating the number of layers.
  • the first information set includes the number of layers indicated by the second signaling.
  • the number of layers refers to: number of MIMO layers.
  • the number of layers refers to: transmission rank.
  • the first signal and the second signal carry the same TB; when the number of layers indicated by the second signaling is greater than the first layer number threshold, the first signal and the second signal carry different TBs respectively; the first layer number threshold is a positive integer greater than 1.
  • the first layer number threshold is equal to 4.
  • the first layer number threshold is equal to 2.
  • the first layer number threshold is fixed.
  • the first layer number threshold is configurable.
  • the DCI domain SRS resource indicator of the second signaling indicates the number of layers.
  • the DCI field Precoding information and number of layers of the second signaling indicates the number of layers.
  • the second signaling indicates whether the first signal and the second signal carry the same TB by indicating whether the DCI domain Second SRS resource indicator and the DCI domain Second Precoding information field are reserved or associated with an SRS resource set.
  • the first information set includes information in the second signaling for indicating whether the Second SRS resource indicator and the Second Precoding information field in the DCI domain are reserved or associated with an SRS resource set.
  • the first signal and the second signal carry the same TB; when the second signaling indicates that the DCI domain Second SRS resource indicator and the DCI domain Second Precoding information field are associated with an SRS resource set, the first signal and the second signal respectively carry different TBs.
  • a third higher layer parameter is used to determine whether the first signal and the second signal carry the same TB.
  • a third higher layer parameter is used to indicate whether the first signal and the second signal carry the same TB.
  • the name of the third higher layer parameter includes "maxNrofCodeWords”.
  • the name of the third higher layer parameter includes "maxNrofCodeWordsScheduledByDCI”.
  • the PUSCH-Config IE includes the third higher layer parameters.
  • the BWP-UplinkDedicatedIE includes the third higher layer parameter.
  • the ServingCellConfig IE includes the third higher layer parameters.
  • the first signal and the second signal carry different TBs respectively.
  • the first signal and the second signal carry the same TB.
  • the first given parameter value is equal to 2.
  • the first given parameter value is equal to n2.
  • whether the second node gives up receiving the second signal in the second time-frequency resource block depends on whether the first signal and the second signal carry the same TB.
  • the first signal and the second signal carry the same TB, and the second node gives up receiving the second signal in the second time-frequency resource block; or, the first signal and the second signal carry different TBs respectively, and the second node receives the second signal in the second time-frequency resource block.
  • whether the second node gives up receiving the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling, and whether the first signal and the second signal carry the same TB.
  • the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry the same TB, and the second node gives up receiving the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry different TBs respectively, and the second node receives the second signal in the second time-frequency resource block.
  • the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry the same TB, and the second node gives up receiving the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by the same signaling, the first signal and the second signal carry different TBs respectively, and the second node receives the second signal in the second time-frequency resource block; or, the first signal and the second signal are scheduled by different signaling respectively, and the second node receives the second signal in the second time-frequency resource block.
  • Embodiment 10 illustrates a schematic diagram of a first reference signal resource group and a second reference signal resource group according to an embodiment of the present application, as shown in FIG10.
  • any reference signal resource in the first reference signal resource group is an SRS resource in a first SRS resource set
  • any reference signal resource in the second reference signal resource group is an SRS resource in a second SRS resource set.
  • the first SRS resource set and the second SRS resource set are respectively identified by SRS-ResourceSetId.
  • the first SRS resource set and the second SRS resource set are respectively identified by different SRS-ResourceSetIds.
  • the higher-layer parameter "usage” associated with the first SRS resource set and the higher-layer parameter “usage” associated with the second SRS resource set are both set to “codebook” or are both set to “nonCodebook", and the first higher-layer parameter is used to configure the first SRS resource set and the second SRS resource set; the name of the first higher-layer parameter includes "srs-ResourceSet”.
  • the name of the first higher layer parameter includes "srs-ResourceSetToAddModList”.
  • the first higher layer parameter is a higher layer parameter "srs-ResourceSetToAddModList”.
  • the first SRS resource set and the second SRS resource set correspond to different power control adjustment state indexes (power control adjustment state index).
  • any SRS resource in the first SRS resource set and any SRS resource in the second SRS resource set correspond to different power control adjustment state indexes (power control adjustment state index).
  • the power control adjustment state index refers to a closed loop index (closedLoopIndex).
  • Embodiment 11 illustrates a schematic diagram of a first signaling used to determine a first index according to an embodiment of the present application; as shown in FIG11 .
  • the first signaling is used by the first node to determine the first index.
  • the first index is used by the first node to determine whether to abandon sending the first signal in the first time-frequency resource block.
  • the first index is used by the first node to determine whether to give up sending the first signal among the first signal and the second signal.
  • the first index is used by the first node to determine to give up sending only the first signal out of the first signal and the second signal.
  • the first signaling indicates the first index.
  • the CORESET to which the first signaling belongs is used to determine the first index.
  • the search space set (search space set) to which the first signaling belongs is used to determine the first index.
  • the TCI state of the first signaling is used to determine the first index.
  • the first signaling indicates a TCI state
  • the first index is an identifier of a reference signal resource indicated by the TCI state.
  • the first signaling indicates a reference signal resource
  • the first index is an identifier of the reference signal resource
  • the first signaling indicates a reference signal resource set
  • the first index is an identifier of the reference signal resource set
  • the first signaling indicates an SRS resource set
  • the first index is the SRS-ResourceSetId of the SRS resource set.
  • the first signaling indicates an SRS resource
  • the first index is the SRS-ResourceSetId of the SRS resource set to which the SRS resource belongs.
  • the first signaling is used to determine an SRS resource, and the first index is the SRS-ResourceId of the SRS resource.
  • the first signaling is used to determine an SRS resource set, and the first index is the SRS-ResourceSetId of the SRS resource set.
  • the first index is a non-negative integer.
  • the first index is a non-negative real number.
  • the first index is a CORESET pool index.
  • the first index is used to identify a CORESET pool.
  • the first index is the CORESET pool index (coresetPoolIndex) corresponding to the CORESET to which the first signaling belongs.
  • the first signaling is used to determine a TCI state, the TCI state belongs to a given TCI state group, and the first index is equal to the CORESET pool index corresponding to the given TCI state group.
  • the first signaling indicates the TCI state.
  • the first signaling indicates a reference signal resource
  • the reference signal resource indicated by the one TCI state includes the one reference signal resource
  • the sentence that the first signal and the first index are associated means that: the CORESET pool index corresponding to the CORESET to which the scheduling DCI of the first signal belongs is equal to the first index.
  • the sentence that the first signal and the first index are associated means that: at least one TCI state in a given TCI state group is used to determine the spatial relationship of reference signal resources in the first reference signal resource group, and the CORESET pool index corresponding to the given TCI state group is equal to the first index.
  • the meaning of the CORESET pool index corresponding to a TCI state group includes: the index of a given CORESET pool, and the TCI state group is specifically activated for the given CORESET pool.
  • the meaning of a CORESET pool index corresponding to a TCI state group includes: given a CORESET pool index, the mapping relationship between the TCI state group and the DCI domain Transmission Configuration Indication code point is specific to the given CORESET pool.
  • the meaning of the CORESET pool index corresponding to a TCI state group includes: the CORESET pool index indicated by a given MAC CE, and the given MAC CE is used to activate the TCI state group.
  • the first index is an SRS-ResourceSetId.
  • the first index is an SRS-ResourceId.
  • the first index is used to identify an SRS resource.
  • the first index is used to identify an SRS resource set.
  • the sentence that the first signal and the first index are associated means that: the SRS-ResourceSetId of the SRS resource set to which the first reference signal resource group belongs is equal to the first index.
  • the sentence that the first signal is associated with the first index means that an identifier of a reference signal resource in the first reference signal resource group is equal to the first index.
  • the first index is a TCI-StateId.
  • the first index is used to identify a TCI state.
  • the first index is the TCI-StateId corresponding to the TCI state of the first signaling.
  • the first index is the TCI-StateId of the TCI state of the CORESET to which the first signaling belongs.
  • the sentence that the first signal and the first index are associated means that a first TCI state is used to determine the spatial relationship of reference signal resources in the first reference signal resource group, and the TCI-StateId of the first TCI state is equal to the first index.
  • the sentence that the first signal and the first index are associated means that: the TCI state of the reference signal resource in the first reference signal resource group is a first TCI state, and the TCI-StateId of the first TCI state is equal to the first index.
  • the sentence that the first signal and the first index are associated means that a given reference signal resource is used to determine the spatial relationship of reference signal resources in the first reference signal resource group, a first TCI state indicates the given reference signal resource, and the TCI-StateId of the first TCI state is equal to the first index.
  • the given reference signal resource is used to determine the spatial relationship of a second reference signal resource
  • the second reference signal resource is used to determine the spatial relationship of reference signal resources in the first reference signal resource group.
  • the sentence that the first signal and the first index are associated means that a first TCI state indicates at least one reference signal resource in the first reference signal resource group, and the TCI-StateId of the first TCI state is equal to the first index.
  • the first index is a SpatialRelationInfoId.
  • the meaning of the association between the first signal and the first index in the sentence includes: the index of the spatial relationship information (SpatialRelationInfo) of the first signal is equal to the first index.
  • the first index is a reference signal resource identifier.
  • the first index is used to identify a reference signal resource.
  • the first index is used to identify a group of reference signal resources.
  • the first index is used to identify a reference signal resource set.
  • the first index is used to identify a BFD (Beam Failure Detection)-RS set (BFD-RS set).
  • BFD-RS set Beam Failure Detection-RS set
  • the first index is used to identify a candidate RS list (candidate RS list).
  • the first index is used to identify a candidate beam RS list (candidate beam RS list).
  • the first index is an identifier of a reference signal resource indicated by the TCI status of the first signaling.
  • the first index is an identifier of a reference signal resource indicated by a TCI state of a CORESET to which the first signaling belongs.
  • the reference signal resource identifier is SSB-Index, NZP-CSI-RS-ResourceId or SRS-ResourceId.
  • the sentence that the first signal and the first index are associated means that a given reference signal resource is used to determine the spatial relationship of reference signal resources in the first reference signal resource group, and the identifier of the given reference signal resource is the first index.
  • the sentence that the first signal and the first index are associated means that: the first reference signal resource group belongs to a group of reference signal resources, or, a reference signal resource in a group of reference signal resources is used to determine the spatial relationship of reference signal resources in the first reference signal resource group; the first index is used to identify the group of reference signal resources.
  • the group of reference signal resources includes a CSI-RS resource set.
  • the group of reference signal resources includes an SRS resource set.
  • the group of reference signal resources includes a BFD-RS set.
  • the set of reference signal resources includes a candidate beam RS list.
  • the first index is a capability index (Capability index) or a capability set index (Capability set index).
  • the first index is used to identify a UE capability value or a UE capability value set.
  • the sentence that the first signal and the first index are associated means that: the capability index or capability set index corresponding to the first reference signal resource group is equal to the first index.
  • the capability index or capability set index is an index of the UE capability value.
  • one of the capability indexes or capability set indexes indicates: the maximum number of supported SRS ports.
  • two different capability indexes or capability set indexes indicate different maximum values of the number of supported SRS ports.
  • the first index is a power control adjustment state index (power control adjustment state index).
  • the sentence that the first signal and the first index are associated means that: the power control adjustment state index corresponding to the first reference signal resource group is equal to the first index.
  • the first index is a cell index.
  • the sentence that the first signal is associated with the first index means that: the cell index associated with the first reference signal resource group is equal to the first index.
  • the cell index includes: ServCellIndex.
  • the cell index includes: SCellIndex.
  • the cell index includes: PhysCellId
  • the cell index includes: PCI (Physical Cell Identity).
  • the meaning of a cell index associated with a reference signal resource group includes: a cell index associated with a TCI state of a reference signal in the reference signal resource group.
  • the cell index associated with a TCI state means: additionalPCI or ServCellIndex indicated by the TCI-State IE that configures the TCI state.
  • the meaning of a cell index associated with a reference signal resource group includes: a cell index associated with a first SS/PBCH block, and the first SS/PBCH block is used to determine the spatial relationship of reference signals in the reference signal resource group.
  • the cell index associated with an SS/PBCH block means: the cell index used to determine the SS sequence of the SS/PBCH block.
  • the cell index associated with an SS/PBCH block means: the index of the cell in which the SS/PBCH block is transmitted.
  • the first index is used to identify a PUCCH resource.
  • the first index is a PUCCH-ResourceId.
  • the first index is used to identify a PUCCH resource set.
  • the first index is a PUCCH-ResourceSetId.
  • the first index is used to identify a BWP.
  • the first index is used to identify an antenna group.
  • the first index is used to identify a TRP (Transmitter Receiver Point).
  • TRP Transmitter Receiver Point
  • the first index is used to identify a panel (antenna panel).
  • the second signal is associated with a second index, and the second index is not equal to the first index.
  • the meaning of the sentence in which the second signal and the second index are associated is the same as the meaning of the sentence in which the first signal and the first index are associated, except that the first signal is replaced by the second signal and the first index is replaced by the second index.
  • Embodiment 12 illustrates a schematic diagram of a third reference signal resource group being used to determine a spatial relationship of a third signal according to an embodiment of the present application; as shown in FIG12 .
  • the first signaling is used to determine the third reference signal resource group.
  • the first signaling indicates the third reference signal resource group.
  • another signaling different from the first signaling indicates the third reference signal resource group.
  • the another signaling includes DCI.
  • the another signaling is used to indicate at least one TCI state.
  • the other signaling includes MAC CE.
  • the first signaling includes higher layer signaling, and the other signaling includes DCI.
  • the first signaling includes DCI
  • the other signaling includes higher-layer signaling.
  • the spatial relationship includes a TCI state.
  • the spatial relationship includes QCL parameters.
  • the spatial relationship includes a QCL relationship.
  • the spatial relationship includes a QCL assumption.
  • the spatial relationship includes a spatial domain filter.
  • the spatial relationship includes a transmitting antenna port.
  • the spatial relationship includes a precoder.
  • any reference signal resource in the third reference signal resource group is an SRS resource
  • the third signal is sent by the same antenna port as the SRS port of the SRS resource in the third reference signal resource group.
  • the first node uses the same spatial domain filter to send the third signal and to send or receive a reference signal in the third reference signal resource group.
  • the third reference signal resource group includes only one reference signal resource.
  • the third reference signal resource group includes multiple reference signal resources.
  • the third reference signal resource group includes SRS resources.
  • any reference signal resource in the third reference signal resource group is an SRS resource.
  • the third reference signal resource group consists of one SRS resource.
  • the third reference signal resource group includes CSI-RS resources.
  • the third reference signal resource group consists of one CSI-RS resource.
  • the third reference signal resource group includes SS/PBCH block resources.
  • the third reference signal resource group consists of one SS/PBCH block resource.
  • any reference signal resource in the third reference signal resource group is a CSI-RS resource or a SS/PBCH block resource.
  • the third reference signal resource group includes only one reference signal resource, and the first index is an identifier of the one reference signal resource in the third reference signal resource group.
  • the first index is an identifier of a CSI-RS resource set or an SRS resource set to which the third reference signal resource group belongs.
  • the first index is the TCI-StateId of the TCI state of the reference signal resource in the third reference signal resource group.
  • the second TCI state indicates the third reference signal resource group
  • the first index is the TCI-StateId of the second TCI state.
  • the first spatial relationship information indicates the third reference signal resource group, and the first index is the SpatialRelationInfoId of the first spatial relationship information.
  • a given reference signal resource is used to determine the spatial relationship of reference signal resources in the third reference signal resource group, and the first index is an identifier of the given reference signal resource.
  • the first index is a power control adjustment state index corresponding to the third reference signal resource group.
  • the first index is a capability index or a capability set index corresponding to the third reference signal resource group.
  • the first index is a cell index associated with a reference signal in the third reference signal resource group.
  • Embodiment 13 illustrates a schematic diagram of a third reference signal resource group and a first reference signal resource group belonging to the same reference signal resource group among M reference signal resource groups according to an embodiment of the present application; as shown in FIG13.
  • the third reference signal resource group and the first reference signal resource group belong to the same reference signal resource group among M reference signal resource groups;
  • the M reference signal resource groups each include at least one reference signal resource; and
  • M is a positive integer greater than 1.
  • the first reference signal resource group and the second reference signal resource group belong to different reference signal resource sets among the M reference signal resource sets.
  • the third reference signal resource group and the second reference signal resource group belong to different reference signal resource sets among the M reference signal resource sets.
  • the M reference signal resource sets are respectively configurable.
  • the M reference signal resource sets are respectively configured by higher layer parameters.
  • a reference signal resource set including uplink reference signal resources among the M reference signal resource sets there is a reference signal resource set including uplink reference signal resources among the M reference signal resource sets.
  • a reference signal resource set among the M reference signal resource sets which includes both downlink reference signal resources and uplink reference signal resources.
  • any reference signal resource in the M reference signal resource sets is one of CSI-RS resources, SS/PBCH block resources, or SRS resources.
  • any reference signal resource in the M reference signal resource sets is a CSI-RS resource or a SS/PBCH block resource.
  • any reference signal resource in the M reference signal resource sets is an SRS resource.
  • the first reference signal resource set and the second reference signal resource set are any two reference signal resource sets among the M reference signal resource sets; any reference signal resource in the first reference signal resource set and any reference signal resource in the second reference signal resource set are not quasi-co-located.
  • any reference signal resource in the first reference signal resource set and any reference signal resource in the second reference signal resource set are not quasi co-located corresponding to QCL-TypeD.
  • any reference signal resource in the M reference signal resource sets corresponds to a first type index
  • the M reference signal resource sets and the M index values correspond one-to-one
  • the first type indexes corresponding to all reference signal resources in any reference signal resource set in the M reference signal resource sets are equal to the corresponding index values
  • any two index values among the M index values are not equal.
  • M is equal to 2.
  • M is greater than 2.
  • the first type of index is a non-negative integer.
  • the first type of index corresponding to a reference signal resource is configurable.
  • the first type of index corresponding to a reference signal resource is configured by higher-layer signaling.
  • configuration information of a reference signal resource includes the corresponding first type index.
  • the first type of index corresponding to a reference signal resource is included in the configuration information of the reference signal resource set to which the reference signal resource belongs; the reference signal resource set includes a CSI-RS resource set or an SRS resource set.
  • a first-category index is related to a reference signal resource set to which a corresponding reference signal resource belongs; the reference signal resource set includes a CSI-RS resource set or an SRS resource set.
  • a reference signal resource set is configured by NZP-CSI-RS-ResourceSet IE, or by a higher layer parameter “srs-ResourceSetToAddModList”.
  • a first-category index is related to a spatial relationship between a corresponding reference signal resource.
  • one of the first category indexes is related to a cell associated with a corresponding reference signal resource.
  • a first-category index is related to a BWP to which a corresponding reference signal resource belongs.
  • one of the first-category indexes is related to a CORESET pool index (coresetPoolIndex) corresponding to the TCI state of the corresponding reference signal resource.
  • the first type index corresponding to a reference signal resource is equal to the TCI state of the reference signal resource. TCI-StateId.
  • the first category index corresponding to a reference signal resource is equal to the SpatialRelationInfoId of the spatial relationship of the reference signal resource.
  • the first category index corresponding to a reference signal resource is equal to the CORESET pool index (coresetPoolIndex) corresponding to the TCI state of the reference signal resource.
  • a cell associated with a reference signal resource is used to determine the value of the first type index corresponding to the reference signal.
  • the BWP to which a reference signal resource belongs is used to determine the value of the first type index corresponding to the reference signal.
  • the M index values are respectively M non-negative integers.
  • the M index values are respectively M real numbers.
  • the M index values are respectively M candidate values of the first category index.
  • the M index values are respectively M CORESET pool indexes.
  • M TCI state groups correspond one-to-one to the M reference signal resource sets, and the M TCI state groups respectively include at least one TCI state; the M TCI state groups are respectively TCI state groups activated for M CORESET pools; and the M index values are respectively equal to the M CORESET pool indexes.
  • M MAC CEs are respectively used to activate the M TCI state groups; the M MAC CEs respectively indicate the M CORESET pool indexes.
  • a given reference signal resource set is any reference signal resource set among the M reference signal resource sets;
  • a given TCI state group is a TCI state group among the M TCI state groups corresponding to the given reference signal resource set; for any given reference signal resource in the given reference signal resource set, at least one TCI state in the given TCI state group is used to determine the spatial relationship of the given reference signal resource, or, a TCI state in the given TCI state group indicates the given reference signal resource.
  • the M reference signal resource sets correspond to the M capability indexes or capability set indexes one-to-one; and the M capability indexes or capability set indexes are different from each other.
  • the M reference signal resource sets correspond to the M UE capability value sets one-to-one; and at least one UE capability value in any two UE capability value sets among the M UE capability value sets is different.
  • the UE capability value set refers to: UE capability value set.
  • a UE capability value set includes at least one UE capability value.
  • the M UE capability value sets include UE capability values of the same type.
  • the M UE capability value sets include the same number of UE capability values.
  • the M UE capability value sets include UE capability values of the same type and the same number.
  • a set of UE capability values includes: a maximum value of the number of supported SRS ports.
  • the maximum values of the number of supported SRS ports included in any two UE capability value sets among the M UE capability value sets are not equal.
  • the indexes of any two UE capability value sets in the M UE capability value sets are different.
  • M given reference signal resource sets correspond one-to-one to the M reference signal resource sets, and any given reference signal resource set among the M given reference signal resource sets includes at least one reference signal resource; and the M given reference signal resource groups are respectively configurable.
  • the M reference signal resource sets are respectively the M given reference signal resource sets.
  • the spatial relationship of any reference signal resource in any reference signal resource set in the M reference signal resource sets is determined by a reference signal resource in a corresponding given reference signal resource set.
  • the M given reference signal resource sets are configured by a fourth higher layer parameter.
  • the name of the fourth higher-layer parameter includes "RadioLinkMonitoring".
  • the name of the fourth higher-layer parameter includes "failureDetectionResources”.
  • the name of the fourth higher-layer parameter includes "failureDetectionResourcesToAddModList”.
  • the name of the fourth higher-layer parameter includes "BeamFailureDetection".
  • the name of the fourth higher-layer parameter includes "BeamFailureDetectionSet”.
  • the name of the fourth higher-layer parameter includes "BeamFailureRecovery".
  • the name of the fourth higher-layer parameter includes "BeamFailureRecoveryConfig".
  • the name of the fourth higher-layer parameter includes "candidateBeamRSList".
  • the M given reference signal resource sets are respectively configured by M fifth higher layer parameters.
  • the names of the M fifth higher layer parameters all include "failureDetectionResources”.
  • the names of the M fifth higher-layer parameters all include "failureDetectionResourcesToAddModList”.
  • the names of the M fifth higher-layer parameters all include "BeamFailureDetection".
  • the names of the M fifth higher-layer parameters all include "BeamFailureDetectionSet”.
  • the name of one of the M fifth higher-layer parameters includes “failureDetectionResources”, and the name of another fifth higher-layer parameter of the M fifth higher-layer parameters includes "BeamFailureDetection”.
  • the name of one of the M fifth higher-layer parameters includes "failureDetectionResourcesToAddModList”, and the name of another fifth higher-layer parameter of the M fifth higher-layer parameters includes "BeamFailureDetectionSet”.
  • the names of the M fifth higher-layer parameters all include "candidateBeamRSList".
  • the name of one of the M fifth higher-layer parameters includes “candidateBeamRSList1", and the name of another fifth higher-layer parameter of the M fifth higher-layer parameters includes "candidateBeamRSList2".
  • the M is equal to 2
  • the M given reference signal resource sets are respectively and
  • the M is equal to 2
  • the M given reference signal resource sets are respectively and
  • the M is equal to 2
  • the M given reference signal resource sets are respectively configured by a first higher-layer parameter
  • the associated higher-layer parameters "usage” are both set to "codebook” or are both set to "nonCodebook” SRS resource sets
  • the name of the first higher-layer parameter includes "srs-ResourceSetToAddModList”.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG14.
  • the processing device 1400 in the first node includes a first receiver 1401 and a first transmitter 1402.
  • the first receiver 1401 receives a first information set and a first signaling; the first transmitter 1402 abandons sending a first signal in a first time-frequency resource block; the first transmitter 1402 sends a second signal in a second time-frequency resource block, or abandons sending a second signal in a second time-frequency resource block.
  • the first information set is used to determine the first time-frequency resource block and the second time-frequency resource block, the first time-frequency resource block is allocated to the first signal, and the second time-frequency resource block is allocated to the second signal;
  • the first signaling is used to determine the third time-frequency resource block; the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal, and the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource; whether to give up sending the second signal in the second time-frequency resource block depends on the first information set.
  • whether to abandon sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling.
  • whether to abandon sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal carry the same TB.
  • any reference signal resource in the first reference signal resource group is an SRS resource
  • any reference signal resource in the second reference signal resource group is an SRS resource
  • the first reference signal resource group belongs to a first SRS resource set
  • the second reference signal resource group belongs to a second SRS resource set
  • the first SRS resource set and the second SRS resource set respectively include at least one SRS resource.
  • the first signaling is used to determine a first index, and the first signal is associated with the first index.
  • the first transmitter 1401 sends a third signal in the third time-frequency resource block.
  • a third reference signal resource group is used to determine the spatial relationship of the third signal; the third reference signal resource group includes at least one reference signal resource.
  • the first node is user equipment.
  • the first node is a relay node device.
  • the first information set is carried only by the second signaling, and the second signaling is a DCI; the first information set includes information in at least one of the DCI domain Time domain resource assignment, DCI domain Frequency domain resource assignment, DCI domain Modulation and coding scheme, DCI domain New data indicator or DCI domain HARQ process number of the second signaling.
  • the first information set includes a first information subset and a second information subset, the first information subset is carried by a third signaling, the second information subset is carried by a fourth signaling, the third signaling is a DCI, and the fourth signaling is a DCI;
  • the first information subset includes information in at least one of the DCI domain Time domain resource assignment, DCI domain Frequency domain resource assignment, DCI domain Modulation and coding scheme, DCI domain New data indicator or DCI domain HARQ process number of the third signaling
  • the second information subset includes the DCI domain Time domain of the fourth signaling.
  • the third signaling is transmitted in the first CORESET
  • the fourth signaling is transmitted in the second CORESET
  • one of the first CORESET and the second CORESET is configured with a CORESEST pool index equal to 0 or is not configured with a CORESEST pool index
  • the other of the first CORESET and the second CORESET is configured with a CORESEST pool index equal to 1.
  • the first signal and the second signal belong to the same BWP; the priority of the third signal is higher than the priority of the first signal.
  • the first time-frequency resource block and the second time-frequency resource block are orthogonal in the frequency domain, or the first time-frequency resource block and the second time-frequency resource block overlap in the time-frequency domain and the DMRS port number of the first signal is different from the DMRS port number of the second signal.
  • the first index is the CORESET pool index corresponding to the CORESET to which the first signaling belongs; the meaning of the sentence that the first signal is associated with the first index includes: the CORESET pool index corresponding to the CORESET to which the scheduling DCI of the first signal belongs is equal to the first index.
  • the first index is an SRS-ResourceSetId; the meaning of the sentence that the first signal and the first index are associated includes: the SRS-ResourceSetId of the SRS resource set to which the first reference signal resource group belongs is equal to the first index.
  • the first receiver 1401 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • the first transmitter 1402 includes at least one of ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • Embodiment 15 illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application, as shown in FIG15.
  • the processing device 1500 in the second node includes a second transmitter 1501 and a second receiver 1502, wherein the second receiver 1502 is optional.
  • the second transmitter 1501 sends a first information set and a first signaling.
  • the first information set is used to determine a first time-frequency resource block and a second time-frequency resource block, the first time-frequency resource block is allocated to a first signal, and the second time-frequency resource block is allocated to a second signal;
  • the first signaling is used to determine a third time-frequency resource block; the first time-frequency resource block and the second time-frequency resource block overlap in the time domain, the third time-frequency resource block and the first time-frequency resource block overlap in the time domain, and the third time-frequency resource block and the second time-frequency resource block overlap in the time domain;
  • the first reference signal resource group is used to determine the transmitting antenna port of the first signal, and the second reference signal resource group is used to determine the transmitting antenna port of the second signal;
  • the first reference signal resource group and the second reference signal resource group respectively include at least one reference signal resource;
  • the target receiver of the first information set abandons sending the first signal in the first time-frequency resource block; the target receiver of the first information set sends the second signal in the second time-frequency resource block,
  • the second node includes a second receiver 1502, and the second receiver 1502 abandons receiving the first signal in the first time-frequency resource block.
  • the second node includes a second receiver 1502, and the second receiver 1502 receives the second signal in the second time-frequency resource block, or the second receiver 1502 abandons receiving the second signal in the second time-frequency resource block; Whether the second receiver 1502 gives up receiving the second signal in the second time-frequency resource block depends on the first information set.
  • whether the target receiver of the first information set gives up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal are scheduled by the same signaling.
  • whether the target receiver of the first information set gives up sending the second signal in the second time-frequency resource block depends on whether the first signal and the second signal carry the same TB.
  • any reference signal resource in the first reference signal resource group is an SRS resource
  • any reference signal resource in the second reference signal resource group is an SRS resource
  • the first reference signal resource group belongs to a first SRS resource set
  • the second reference signal resource group belongs to a second SRS resource set
  • the first SRS resource set and the second SRS resource set each include at least one SRS resource.
  • the first signaling is used to determine a first index, and the first signal is associated with the first index.
  • the second node includes a second receiver 1502, and the second receiver 1502 receives a third signal in the third time-frequency resource block.
  • a third reference signal resource group is used to determine the spatial relationship of the third signal; the third reference signal resource group includes at least one reference signal resource.
  • the second node is a base station device.
  • the second node is user equipment.
  • the second node is a relay node device.
  • the first information set is carried only by the second signaling, and the second signaling is a DCI; the first information set includes information in at least one of the DCI domain Time domain resource assignment, DCI domain Frequency domain resource assignment, DCI domain Modulation and coding scheme, DCI domain New data indicator or DCI domain HARQ process number of the second signaling.
  • the first information set includes a first information subset and a second information subset, the first information subset is carried by a third signaling, the second information subset is carried by a fourth signaling, the third signaling is a DCI, and the fourth signaling is a DCI;
  • the first information subset includes information in at least one of the DCI domain Time domain resource assignment, DCI domain Frequency domain resource assignment, DCI domain Modulation and coding scheme, DCI domain New data indicator or DCI domain HARQ process number of the third signaling
  • the second information subset includes the DCI domain Time domain of the fourth signaling.
  • the third signaling is transmitted in the first CORESET
  • the fourth signaling is transmitted in the second CORESET
  • one of the first CORESET and the second CORESET is configured with a CORESEST pool index equal to 0 or is not configured with a CORESEST pool index
  • the other of the first CORESET and the second CORESET is configured with a CORESEST pool index equal to 1.
  • the first signal and the second signal belong to the same BWP; the priority of the third signal is higher than the priority of the first signal.
  • the first time-frequency resource block and the second time-frequency resource block are orthogonal in the frequency domain, or the first time-frequency resource block and the second time-frequency resource block overlap in the time-frequency domain and the DMRS port number of the first signal is different from the DMRS port number of the second signal.
  • the first index is the CORESET pool index corresponding to the CORESET to which the first signaling belongs; the meaning of the sentence that the first signal is associated with the first index includes: the CORESET pool index corresponding to the CORESET to which the scheduling DCI of the first signal belongs is equal to the first index.
  • the first index is an SRS-ResourceSetId; the meaning of the sentence that the first signal and the first index are associated includes: the SRS-ResourceSetId of the SRS resource set to which the first reference signal resource group belongs is equal to the first index.
  • the second transmitter 1501 includes at least one of ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second receiver 1502 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna transmitting processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software functional module.
  • the present application is not limited to any specific form of combination of software and hardware.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, vehicles, RSUs, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, vehicles, RSUs, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile
  • the base stations or system equipment in this application include but are not limited to macrocell base stations, microcell base stations, small cell base stations, home base stations, relay base stations, eNB, gNB, TRP (Transmitter Receiver Point), GNSS, relay satellites, satellite base stations, aerial base stations, RSU (Road Side Unit), drones, test equipment, such as transceivers or signaling testers that simulate some functions of base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信息集合和第一信令;放弃在第一时频资源块中发送第一信号;在第二时频资源块中发送或放弃发送第二信号。所述第一信息集合被用于确定所述第一时频资源块和所述第二时频资源块;所述第一信令被用于确定第三时频资源块;所述第一时频资源块,所述第二时频资源块和所述第三时频资源块两两在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。上述方法提高了上行传输的效率,同时保证了上行传输的可靠性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。在NR R(release)16,基于多个波束/TRP/panel的传输被引入用于增强下行数据的传输质量。在NR R17中,基于多个波束/TRP/panel的上行传输被支持用于提高上行传输的可靠性。在R17中一个UE可以配置多个基于码本(codebook)或非码本(non-codebook)的SRS(Sounding Reference Signal,探测参考信号)资源集合,不同SRS资源集合对应不同波束/TRP/panel,用于实现多波束/TRP/panel的上行传输。
在3GPP中,当不同的上行信道/信号在时域发生交叠时,放弃其中部分上行信道/信号的发送来解决交叠,满足上行传输的功率限制并/或降低PAPR,是常用的手段。
发明内容
在NR R18中,基于多波束/TRP/panel的同时上行传输(simultaneous multi-beam/panel/TRP UL transmission)被讨论。相比于R17中采用的时分复用方式,这种实现方式更有利于提高吞吐量,特别是对于信道质量较好的用户。申请人通过研究发现,这种传输模式的引入,对上行信道/信号之间的交叠解决会产生影响。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用蜂窝网,上行传输和多波束/TRP/panel传输作为例子,本申请也适用于其他场景比如副链路(Sidelink)传输,下行传输和单波束/TRP/panel传输,并取得类似在蜂窝网,上行传输和多波束/TRP/panel传输中的技术效果。此外,不同场景(包括但不限于蜂窝网,副链路,上行传输,下行传输,多波束/TRP/panel传输和单波束/TRP/panel传输)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
接收第一信令,所述第一信令被用于确定第三时频资源块;
放弃在所述第一时频资源块中发送所述第一信号;
在所述第二时频资源块中发送所述第二信号,或者,放弃在所述第二时频资源块中发送所述第二信号;
其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,上述方法的特质包括:根据在时域发生交叠的上行信道/信号的特性来判断是否发送 上行信道/信号。
作为一个实施例,上述方法的好处包括:提高了上行传输的效率,同时保证了上行传输的可靠性。
根据本申请的一个方面,其特征在于,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
根据本申请的一个方面,其特征在于,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
根据本申请的一个方面,其特征在于,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
根据本申请的一个方面,其特征在于,包括:
在所述第三时频资源块中发送第三信号。
根据本申请的一个方面,其特征在于,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
根据本申请的一个方面,其特征在于,所述第一节点包括一个用户设备。
根据本申请的一个方面,其特征在于,所述第一节点包括一个中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
发送第一信令,所述第一信令被用于确定第三时频资源块;
其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;所述第一信息集合的目标接收者放弃在所述第一时频资源块中发送所述第一信号;所述第一信息集合的所述目标接收者在所述第二时频资源块中发送所述第二信号,或者,所述第一信息集合的所述目标接收者放弃在所述第二时频资源块中发送所述第二信号;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
根据本申请的一个方面,其特征在于,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
根据本申请的一个方面,其特征在于,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
根据本申请的一个方面,其特征在于,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
根据本申请的一个方面,其特征在于,包括:
在所述第三时频资源块中接收第三信号。
根据本申请的一个方面,其特征在于,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
所述第一接收机,接收第一信令,所述第一信令被用于确定第三时频资源块;
第一发送机,放弃在所述第一时频资源块中发送所述第一信号;
所述第一发送机,在所述第二时频资源块中发送所述第二信号,或者,放弃在所述第二时频资源块中发送所述第二信号;
其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发送机,发送第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
所述第二发送机,发送第一信令,所述第一信令被用于确定第三时频资源块;
其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;所述第一信息集合的目标接收者放弃在所述第一时频资源块中发送所述第一信号;所述第一信息集合的所述目标接收者在所述第二时频资源块中发送所述第二信号,或者,所述第一信息集合的所述目标接收者放弃在所述第二时频资源块中发送所述第二信号;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,和传统方案相比,本申请具备如下优势:
提高了上行传输的效率;
同时保证了上行传输的可靠性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息集合,第一信令,第一信号和第二信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一节点和第二节点之间的传输的流程图;
图6示出了根据本申请的一个实施例的第一信息集合的示意图;
图7示出了根据本申请的一个实施例的第一信息集合的示意图;
图8示出了根据本申请的一个实施例的是否放弃在第二时频资源块中发送第二信号依赖第一信号和第二信号是否被同一个信令调度的示意图;
图9示出了根据本申请的一个实施例的是否放弃在第二时频资源块中发送第二信号依赖第一信号和第二信号是否携带同一个TB的示意图;
图10示出了根据本申请的一个实施例的第一参考信号资源组和第二参考信号资源组的示意图;
图11示出了根据本申请的一个实施例的第一信令被用于确定第一索引的示意图;
图12示出了根据本申请的一个实施例的第三参考信号资源组被用于确定第三信号的空间关系的示意图;
图13示出了根据本申请的一个实施例的第三参考信号资源组和第一参考信号资源组属于M个参考信号资源集合中的同一个参考信号资源集合的示意图;
图14示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息集合,第一信令,第一信号和第二信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信息集合;在步骤102中接收第一信令;在步骤103中放弃在第一时频资源块中发送第一信号;在步骤104中在第二时频资源块中发送第二信号,或者,放弃在第二时频资源块中发送第二信号。其中,所述第一信息集合被用于确定所述第一时频资源块和所述第二时频资源块,所述第一时频资源块被分配给所述第一信号,所述第二时频资源块被分配给所述第二信号;所述第一信令被用于确定第三时频资源块;所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,所述第一信息集合由物理层信令携带。
作为一个实施例,所述第一信息集合由层1(L1)的信令携带。
作为一个实施例,所述第一信息集合由DCI(Downlink Control Information,下行控制信息)携带。
作为一个实施例,所述第一信息集合由至少一个DCI携带。
作为一个实施例,所述第一信息集合仅由一个DCI携带。
作为一个实施例,所述第一信息集合由两个DCI携带。
作为一个实施例,所述第一信息集合包括至少一个DCI中的一个或多个DCI域中的信息。
作为一个实施例,所述第一信息集合包括两个DCI中的每个DCI中的一个或多个DCI域中的信息。
作为一个实施例,所述第一信息集合包括两个DCI中的每个DCI中的所有信息。
作为一个实施例,所述第一信息集合由更高层信令携带。
作为一个实施例,所述第一信息集合由RRC(Radio Resource Control,无线电资源控制)信令携带。
作为一个实施例,所述第一信息集合由RRC IE(Information element,信息单元)携带。
作为一个实施例,所述第一信息集合仅由一个RRC IE携带。
作为一个实施例,所述第一信息集合由两个RRC IE携带。
作为一个实施例,所述第一信息集合由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)携带。
作为一个实施例,所述第一信息集合由RRC IE和MAC CE共同携带。
作为一个实施例,所述第一信息集合由更高层信令和DCI共同携带。
作为一个实施例,所述第一信息集合由至少一个RRC IE和至少一个DCI共同携带。
作为一个实施例,所述第一时频资源块在时域包括一个符号或多个连续的符号。
作为一个实施例,所述第一时频资源块在频域包括一个或多个RB(Resource block)。
作为一个实施例,所述第一时频资源块在频域包括多个连续的RB。
作为一个实施例,所述第一时频资源块在频域包括多个不连续的RB。
作为一个实施例,所述第二时频资源块在时域包括一个符号或多个连续的符号。
作为一个实施例,所述第二时频资源块在频域包括一个或多个RB。
作为一个实施例,所述第二时频资源块在频域包括多个连续的RB。
作为一个实施例,所述第二时频资源块在频域包括多个不连续的RB。
作为一个实施例,所述RB包括PRB(Physical resource block)。
作为一个实施例,所述RB是指PRB。
作为一个实施例,所述符号包括OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号包括DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变换正交频分复用)符号。
作为一个实施例,所述符号是转换预编码器(transform precoding)的输出经过OFDM符号发生(Generation)后得到的。
作为一个实施例,所述符号是指OFDM符号。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时域完全重叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时域部分重叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域正交。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域交叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域部分重叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域完全重叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时频域交叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时频域部分重叠。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时频域完全重叠。
作为一个实施例,所述第一信息集合指示所述第一时频资源块和所述第二时频资源块。
作为一个实施例,所述第一信息集合包括所述第一信号的调度信息和所述第二信号的调度信息。
作为一个实施例,所述调度信息包括时域资源,频域资源,MCS(Modulation and Coding Scheme,调制与编码方案),DMRS(Demodulation reference signal,解调参考信号)端口(port),HARQ(Hybrid automatic repeat request,混合自动重传请求)进程号(process number),TCI(Transmission Configuration Indicator)状态(state),RV(Redundancy version,冗余版本),NDI(New Data Indicator,新数据指示),天线端口,或SRI(Sounding reference signal Resource Indicator)中的一种或多种。
作为一个实施例,所述调度信息包括携带的TB(Transport Block)的数量。
作为一个实施例,所述第一信息集合包括第一子信息和第二子信息,所述第一子信息指示所述第一时频资源块占用的时域资源和所述第二时频资源块占用的时域资源,所述第二子信息指示所述第一时频资源块占用的频域资源和所述第二时频资源块占用的频域资源。
作为一个实施例,所述第一子信息和所述第二子信息分别包括同一个DCI中不同DCI域中的信息。
作为一个实施例,所述第一子信息和所述第二子信息分别包括同一个RRC IE中不同域中的信息。
作为一个实施例,所述第一信息集合包括第一信息子集和第二信息子集,所述第一信息子集指示所述第一时频资源块,所述第二信息子集指示所述第二时频资源块。
作为一个实施例,所述第一信息子集和所述第二信息子集分别包括两个不同的DCI中的信息。
作为一个实施例,所述第一信息子集和所述第二信息子集分别包括两个不同的RRC IE中的信息。
作为一个实施例,所述第一信息子集和所述第二信息子集分别包括两个ConfiguredGrantConfig IE中的信息。
作为一个实施例,所述第一信号和所述第二信号分别包括基带信号。
作为一个实施例,所述第一信号和所述第二信号分别包括无线信号。
作为一个实施例,所述第一信号和所述第二信号分别包括射频信号。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个PUSCH的不同层。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个DCI调度的同一个PUSCH的不同层。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个基于配置授予(configured grant)的PUSCH传输的不同层。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个DCI调度的不同PUSCH传输机会(PUSCH transmission occasion)。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个基于配置授予的PUSCH传输在同一个周期中的不同PUSCH传输机会(PUSCH transmission occasion)。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个DCI调度的同一个PUSCH传输机会在不同频域资源中的部分。
作为一个实施例,所述第一信号和所述第二信号分别包括同一个基于配置授予的PUSCH传输在同一个周期中的同一个PUSCH传输机会在不同频域资源中的部分。
作为一个实施例,所述第一信号和所述第二信号分别包括两个不同DCI调度的PUSCH传输。
作为一个实施例,所述第一信号和所述第二信号分别包括对应不同的ConfiguredGrantConfigIndex的基于配置授予的PUSCH传输。
作为一个实施例,所述第一信号和所述第二信号对应的传输信道(transport channel)分别是UL-SCH(Uplink Shared Channel)。
作为一个实施例,所述第一信号和所述第二信号分别是基于动态授予(dynamic grant)的PUSCH传输。
作为一个实施例,所述第一信号和所述第二信号分别是基于配置授予(configured grant)的PUSCH传输。
作为一个实施例,所述第一信号和所述第二信号属于同一个载波(carrier)。
作为一个实施例,所述第一信号和所述第二信号属于同一个BWP(Bandwidth part,部分带宽)。
作为一个实施例,所述第一信号和所述第二信号属于同一个服务小区。
作为一个实施例,所述第一信号和所述第二信号分别被分配了不同的DMRS端口。
作为一个实施例,所述第一信号和所述第二信号分别被分配了不同的DMRS端口号。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时频域交叠,所述第一信号和所述第二信号分别被分配了不同的DMRS端口或不同的DMRS端口号。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域正交,所述第一信号和所述第二信号分别被分配了相同的DMRS端口或相同的DMRS端口号。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括DCI。
作为一个实施例,所述第一信令包括至少一个DCI域(field)。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令包括RRC信令。
作为一个实施例,所述第一信令是一个RRC信令。
作为一个实施例,所述第一信令包括至少一个RRC IE。
作为一个实施例,所述第一信令是一个RRC IE。
作为一个实施例,所述第一信令包括MAC CE。
作为一个实施例,所述第一信令是一个MAC CE。
作为一个实施例,所述第一信令包括RRC信令和MAC CE。
作为一个实施例,所述第一信令包括更高层信令和DCI。
作为一个实施例,所述第一信令被用于调度PDSCH(Physical downlink shared channel,物理下行共享信道)。
作为一个实施例,所述第一信令包括DCI,所述第一信令的格式(format)是Format 1_0,Format 1_1或Format 1_2中之一。
作为一个实施例,所述第一信令被用于调度PUSCH。
作为一个实施例,所述第一信令包括DCI,所述第一信令的格式(format)是Format 0_0,Format 0_1或Format 0_2中之一。
作为一个实施例,所述第一信令的CRC被C-RNTI,MCS-C-RNTI或CS-RNTI中之一所加扰。
作为一个实施例,所述第一信令包括ConfiguredGrantConfig IE。
作为一个实施例,所述第一信令被用于调度PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)和PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一信令包括DCI,所述第一信令的格式是Format 3_0或Format 3_1中之一。
作为一个实施例,所述第一信令的CRC被SL(SideLink)-RNTI或SL-CS-RNTI所加扰。
作为一个实施例,所述第一信令被用于指示所述第一节点在其中撤销(cancel)上行传输的RB和符号。
作为一个实施例,所述第一信令包括DCI format2_4。
作为一个实施例,所述第一信令是DCI format 2_4。
作为一个实施例,所述第一信令的CRC被CI(Cancellation indication)-RNTI所加扰。
作为一个实施例,所述第一信令包括PUCCH-Config IE。
作为一个实施例,所述第一信令包括PUCCH-Config IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括SchedulingRequestResourceConfig IE。
作为一个实施例,所述第一信令包括SchedulingRequestResourceConfig IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括BWP-UplinkDedicated IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括BWP-UplinkDedicated IE中的pucch-Config域或pucch-ConfigurationList域中的至少一个域中的信息。
作为一个实施例,所述第一信令包括ServingCellConfig IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括MAC-CellGroupConfig IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括MAC-CellGroupConfig IE中的schedulingRequestID-LBT-SCell域,schedulingRequestID-BFR-SCell域,schedulingRequestID-BFR域,schedulingRequestID-BFR2域或schedulingRequestConfig-v1700域中的至少一个域中的信息。
作为一个实施例,所述第一信令包括SchedulingRequestConfig IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括LogicalChannelConfig IE中的全部或部分域中的信息。
作为一个实施例,所述第一信令包括LogicalChannelConfig IE中的schedulingRequestID域中的信息。
作为一个实施例,所述第一信令和所述第一信息集合在同一个BWP中被传输。
作为一个实施例,所述第一信令和所述第一信息集合在同一个服务小区中被传输。
作为一个实施例,所述第一信令和所述第一信息集合在不同的BWP中被传输。
作为一个实施例,所述第一信令和所述第一信息集合在不同的服务小区中被传输。
作为一个实施例,所述第一信令早于所述第一信息集合。
作为一个实施例,所述第一信令晚于所述第一信息集合。
作为一个实施例,所述第一信令早于所述第一信息集合中的一部分信息,晚于所述第一信息集合中的另一部分信息。
作为一个实施例,所述第三时频资源块在时域包括一个符号或多个连续的符号。
作为一个实施例,所述第三时频资源块在频域包括一个或多个RB。
作为一个实施例,所述第三时频资源块在频域包括多个连续的RB。
作为一个实施例,所述第三时频资源块在频域包括多个不连续的RB。
作为一个实施例,所述第三时频资源块包括一个PUCCH(Physical uplink control channel,物理上行控制信道)资源(resource)。
作为一个实施例,所述第三时频资源块是一个PUCCH资源。
作为一个实施例,所述第三时频资源块被分配给PUSCH。
作为一个实施例,所述第三时频资源块被分配给PSCCH和PSSCH。
作为一个实施例,所述第三时频资源块包括所述第一节点在其中撤销(cancel)上行传输的RB和符号。
作为一个实施例,所述第三时频资源块包括的RB是所述第一节点在其中撤销(cancel)上行传输的RB,所述第三时频资源块包括的符号是所述第一节点在其中撤销上行传输的符号。
作为一个实施例,所述第一信令指示所述第三时频资源块。
作为一个实施例,所述第一信令是被用于调度PDSCH的DCI,所述第一信令的DCI域PUCCH resource indicator和DCI域PDSCH-to-HARQ_feedback timing indicator被用于指示所述第三时频资源块。
作为一个实施例,所述第一信令是被用于调度PUSCH的DCI,所述第一信令的DCI域Frequency domain resource assignment和DCI域Time domain resource assignment被用于指示所述第三时频资源块。
作为一个实施例,所述第一信令是被用于调度PSCCH和PSSCH的DCI,所述第一信令的DCI域SCI format 1-Afields被用于指示所述第三时频资源块。
作为一个实施例,所述第一信令是被用于调度PSCCH和PSSCH的DCI,所述第一信令的DCI域Frequency resource assignment和DCI域Time resource assignment被用于指示所述第三时频资源块。
作为一个实施例,所述第一信令指示第一比特位图和第二比特位图,所述第一比特位图指示所述第三时频资源块包括的符号,所述第二比特位图指示所述第三时频资源块包括的RB。
作为一个实施例,所述第三时频资源块和所述第一时频资源块在时频域交叠。
作为一个实施例,所述第一时频资源块中的至少一个RE(Resource element)属于所述第三时频资源块。
作为一个实施例,所述第一时频资源块中的至少一个RE在时域属于所述第一比特位图指示的一个符号,在频域属于所述第二比特位图指示的一个RB。
作为一个实施例,所述第三时频资源块和所述第二时频资源块在时频域交叠。
作为一个实施例,所述第二时频资源块中的至少一个RE属于所述第三时频资源块。
作为一个实施例,所述第二时频资源块中的至少一个RE在时域属于所述第一比特位图指示的一个符号,在频域属于所述第二比特位图指示的一个RB。
作为一个实施例,所述第一信号的优先级低于参考优先级。
作为上述实施例的一个子实施例,所述第一信令被用于确定所述参考优先级。
作为上述实施例的一个子实施例,所述参考优先级是所述第一节点自行确定的。
作为上述实施例的一个子实施例,所述参考优先级是默认的。
作为上述实施例的一个子实施例,所述参考优先级被默认为对应优先级索引(priority index)0。
作为上述实施例的一个子实施例,所述参考优先级被默认为对应优先级索引(priority index)1。
作为上述实施例的一个子实施例,所述参考优先级是所述第三信号的优先级。
作为一个实施例,一个优先级低于另一个优先级的意思包括:所述一个优先级的优先级索引(priority index)小于所述另一个优先级的优先级索引。
作为一个实施例,一个优先级低于另一个优先级的意思包括:所述一个优先级的优先级索引(priority index)大于所述另一个优先级的优先级索引。
作为一个实施例,所述第二信号的优先级和所述第一信号的优先级相同。
作为一个实施例,所述第二信号和所述第一信号由同一个信令调度,所述第二信号的优先级和所述第一信号的优先级相同;所述同一个信令被用于确定所述第二信号的优先级和所述第一信号的优先级。
作为一个实施例,所述第二信号和所述第一信号分别由两个不同的信令调度,所述第二信号的优先级和所述第一信号的优先级是分别指示的。
作为一个实施例,所述第一参考信号资源组仅包括一个参考信号资源。
作为一个实施例,所述第一参考信号资源组包括多个参考信号资源。
作为一个实施例,所述第一参考信号资源组包括SRS(Sounding Reference Signal,探测参考信号)资源。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源。
作为一个实施例,所述第一参考信号资源组中存在一个参考信号资源是一个SRS资源。
作为一个实施例,所述第一参考信号资源组是一个SRS资源集合。
作为一个实施例,所述第一参考信号资源组由一个SRS资源组成。
作为一个实施例,所述第一参考信号资源组包括CSI-RS(Channel State Information-Reference Signal,信 道状态信息参考信号)资源(resource)。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源是一个CSI-RS资源。
作为一个实施例,所述第一参考信号资源组中存在一个参考信号资源是一个CSI-RS资源。
作为一个实施例,所述第一参考信号资源组包括SS/PBCH(Synchronisation Signal/physical broadcast channel,同步信号/物理广播信道)block资源。
作为一个实施例,所述第一参考信号资源组中存在一个参考信号资源是一个SS/PBCH block资源。
作为一个实施例,所述第二参考信号资源组仅包括一个参考信号资源。
作为一个实施例,所述第二参考信号资源组包括多个参考信号资源。
作为一个实施例,所述第二参考信号资源组包括SRS资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源。
作为一个实施例,所述第二参考信号资源组中存在一个参考信号资源是一个SRS资源。
作为一个实施例,所述第二参考信号资源组是一个SRS资源集合。
作为一个实施例,所述第二参考信号资源组由一个SRS资源组成。
作为一个实施例,所述第二参考信号资源组包括CSI-RS资源。
作为一个实施例,所述第二参考信号资源组中的任一参考信号资源是一个CSI-RS资源。
作为一个实施例,所述第二参考信号资源组中存在一个参考信号资源是一个CSI-RS资源。
作为一个实施例,所述第二参考信号资源组包括SS/PBCH block资源。
作为一个实施例,所述第二参考信号资源组中存在一个参考信号资源是一个SS/PBCH block资源。
作为一个实施例,所述第一参考信号资源组由一个或多个SRS资源组成;所述第一信号的发送天线端口是和所述第一参考信号资源组中的SRS资源的SRS端口相同的天线端口。
作为一个实施例,所述第二参考信号资源组由一个或多个SRS资源组成;所述第二信号的发送天线端口是和所述第二参考信号资源组中的SRS资源的SRS端口相同的天线端口。
作为一个实施例,所述第二参考信号资源组由一个或多个SRS资源组成;所述第二信号被和所述第二参考信号资源组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一信号的发送空域滤波器(spatial domain filter)和所述第一节点用于在所述第一参考信号资源组中发送或接收参考信号的空域滤波器相同。
作为一个实施例,所述第二信号的发送空域滤波器(spatial domain filter)和所述第一节点用于在所述第二参考信号资源组中发送或接收参考信号的空域滤波器相同。
作为一个实施例,所述第一节点用相同的空域滤波器发送所述第二信号和在所述第二参考信号资源组中发送或接收的参考信号。
作为一个实施例,所述第一信号的预编码器和在所述第一参考信号资源组中传输的参考信号的预编码器相同。
作为一个实施例,所述第二信号的预编码器和在所述第二参考信号资源组中传输的参考信号的预编码器相同。
作为一个实施例,所述句子第一参考信号资源组被用于确定所述第一信号的发送天线端口的意思包括:所述第一信号的发送天线端口是和所述第一参考信号资源组中的SRS资源的SRS端口相同的天线端口。
作为一个实施例,所述句子第一参考信号资源组被用于确定所述第一信号的发送天线端口的意思包括:所述第一信号的发送空域滤波器和所述第一节点用于在所述第一参考信号资源组中发送或接收参考信号的空域滤波器相同。
作为一个实施例,所述句子第一参考信号资源组被用于确定所述第一信号的发送天线端口的意思包括:所述第一参考信号资源组被用于确定所述第一信号的空间关系(spatial relation)。
作为一个实施例,所述句子第二参考信号资源组被用于确定所述第二信号的发送天线端口的意思包括:所述第二信号的发送天线端口是和所述第二参考信号资源组中的SRS资源的SRS端口相同的天线端口。
作为一个实施例,所述句子第二参考信号资源组被用于确定所述第二信号的发送天线端口的意思包括:所述第二信号的发送空域滤波器和所述第一节点用于在所述第二参考信号资源组中发送或接收参考信号的空域滤波器相同。
作为一个实施例,所述句子第二参考信号资源组被用于确定所述第二信号的发送天线端口的意思包括:所述第二参考信号资源组被用于确定所述第二信号的空间关系。
作为一个实施例,所述第一参考信号资源组由所述第一信号的调度信息中的SRI所指示。
作为一个实施例,所述第二参考信号资源组由所述第二信号的调度信息中的SRI所指示。
作为一个实施例,所述第一信息集合被用于确定所述第一参考信号资源组和所述第二参考信号资源组。
作为一个实施例,所述第一信息集合指示所述第一参考信号资源组和所述第二参考信号资源组。
作为一个实施例,所述第一信息集合包括所述第一参考信号资源组和所述第二参考信号资源组。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源和所述第二参考信号资源组中的任一参考信号资源不是准共址(quasi co-located)的。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源和所述第二参考信号资源组中的任一参考信号资源不是对应QCL(Quasi Co-Location)-typeD的准共址。
作为一个实施例,所述第一参考信号资源组仅包括一个参考信号资源,所述第二参考信号资源组仅包括一个参考信号资源;所述第一参考信号资源组包括的所述一个参考信号资源和所述第二参考信号资源组包括的所述一个参考信号资源不是准共址的。
作为上述实施例的一个子实施例;所述第一参考信号资源组包括的所述一个参考信号资源和所述第二参考信号资源组包括的所述一个参考信号资源不是对应QCL-typeD的准共址的。
作为一个实施例,所述第一信号的所述发送天线端口的数量等于1或大于1。
作为一个实施例,所述第二信号的所述发送天线端口的数量等于1或大于1。
作为一个实施例,所述第一信息集合被用于确定是否放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信息集合被所述第一节点用于确定是否放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5GNR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路包括蜂窝网链路。
作为一个实施例,所述第一信息集合的发送者包括所述gNB203。
作为一个实施例,所述第一信息集合的接收者包括所述UE201。
作为一个实施例,所述第一信令的发送者包括所述gNB203。
作为一个实施例,所述第一信令的接收者包括所述UE201。
作为一个实施例,所述第二信号的发送者包括所述UE201。
作为一个实施例,所述第二信号的接收者包括所述gNB203。
作为一个实施例,所述UE201支持多波束/panel/TRP同时上行传输(simultaneous multi-beam/panel/TRP UL transmission)。
作为一个实施例,所述gNB203支持多波束/panel/TRP同时上行传输。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信息集合生成于所述RRC子层306。
作为一个实施例,所述第一信息集合生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第一信息集合生成于所述PHY301或所述PHY351。
作为一个实施例,所述第一信息集合的一部分生成于所述RRC子层306,另一部分生成于所述PHY301或所述PHY351。
作为一个实施例,所述第一信息集合的一部分生成于所述RRC子层306,另一部分生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第一信息集合的一部分生成于所述MAC子层302或所述MAC子层352,另一部分生成于所述PHY301或所述PHY351。
作为一个实施例,所述第一信令生成于所述PHY301或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302或所述MAC子层352。
作为一个实施例,所述第一信令生成于所述RRC子层306。
作为一个实施例,所述第一信号生成于所述PHY301或所述PHY351。
作为一个实施例,所述第二信号生成于所述PHY301或所述PHY351。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在 DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少接收所述第一信息集合;接收所述第一信令;放弃在所述第一时频资源块中发送所述第一信号;在所述第二时频资源块中发送所述第二信号,或者,放弃在所述第二时频资源块中发送所述第二信号。所述第一信息集合被用于确定所述第一时频资源块和所述第二时频资源块,所述第一时频资源块被分配给所述第一信号,所述第二时频资源块被分配给所述第二信号;所述第一信令被用于确定所述第三时频资源块;所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信息集合;接收所述第一信令;放弃在所述第一时频资源块中发送所述第一信号;在所述第二时频资源块中发送所述第二信号,或者,放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少发送所述第一信息集合;发送所述第一信令。所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;所述第一信令被用于确定第三时频资源块;所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;所述第一信息集合的目标接收者放弃在所述第一时频资源块中发送所述第一信号;所述第一信息集合的所述目标接收者在所述第二时频资源块中发送所述第二信号,或者,所述第一信息集合的所述目标接收者放弃在所述第二时频资源块中发送所述第二信号;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信息集合;发送所述第一信令。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信息集合;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信息集合。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在所述第二时频资源块中发送所述第二信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第二时频资源块中接收所述第二信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在所述第三时频资源块中发送所述第三信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第三时频资源块中接收所述第三信号。
实施例5
实施例5示例了根据本申请的一个实施例的第一节点和第二节点之间的传输的流程图;如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51至方框F55中的步骤分别是可选的。
对于第二节点U1,在步骤S511中发送第一信息集合;在步骤S512中发送第一信令;在步骤S5101中放弃在第一时频资源块中接收第一信号;在步骤S5102中放弃在第二时频资源块中接收第二信号;在步骤S5103中在第二时频资源块中接收第二信号;在步骤S5104中在第三时频资源块中接收第三信号。
对于第一节点U2,在步骤S521中接收第一信息集合;在步骤S522中接收第一信令;在步骤S523中放弃在第一时频资源块中发送第一信号;在步骤S5201中放弃在第二时频资源块中发送第二信号;在步骤S5202中在第二时频资源块中发送第二信号;在步骤S5203中在第三时频资源块中发送第三信号。
在实施例5中,所述第一信息集合被所述第一节点U2用于确定所述第一时频资源块和所述第二时频资源块,所述第一时频资源块被分配给所述第一信号,所述第二时频资源块被分配给所述第二信号;所述第一信令被所述第一节点U2用于确定所述第三时频资源块;所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被所述第一节点U2用于确定所述第一信号的发送天线端口,第二参考信号资源组被所述第一节点U2用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第一信息集合在PDCCH(Physical Downlink Control Channel,物理下行控制信道)中被传输。
作为一个实施例,所述第一信息集合在一个PDCCH中被传输。
作为一个实施例,所述第一信息集合中的一部分在一个PDCCH中被传输,所述第一信息集合中的另一部分在另一个PDCCH中被传输。
作为一个实施例,所述第一信息集合在PDSCH中被传输。
作为一个实施例,所述第一信息集合中的一部分在PDCCH中被传输,所述第一信息集合中的另一部分在PDSCH中被传输。
作为一个实施例,所述第一信令在PDCCH中被传输。
作为一个实施例,所述第一信令在PDSCH中被传输。
作为一个实施例,所述第一信令的一部分在PDCCH中被传输,所述第一信令的另一部分在PDSCH中被传输。
作为一个实施例,所述第一信号对应的物理层信道是PUSCH。
作为一个实施例,所述第二信号对应的物理层信道是PUSCH。
作为一个实施例,所述第一节点在所述第二时频资源块中发送所述第二信号,所述第二信号在PUSCH中被传输。
作为一个实施例,所述第一信号对应的物理层信道是PUCCH。
作为一个实施例,所述第二信号对应的物理层信道是PUCCH。
作为一个实施例,所述第一信号对应的物理层信道和所述第二信号对应的物理层信道是同一个PUSCH。
作为一个实施例,所述第一信号对应的物理层信道和所述第二信号对应的物理层信道分别是两个不同的PUSCH。
作为一个实施例,所述第一信号和所述第二信号分别对应两个不同的PUSCH传输机会(occasion)。
作为一个实施例,附图5中的方框F51中的步骤存在,所述第二节点放弃在所述第一时频资源块中接收所述第一信号。
作为一个实施例,所述第二节点U1在所述第二时频资源块中接收所述第二信号,或者,所述第二节点U1放弃在所述第二时频资源块中接收所述第二信号;所述第二节点U1是否放弃在所述第二时频资源块中接收所述第二信号依赖所述第一信息集合。
作为一个实施例,附图5中的方框F52中的步骤存在,所述第二节点U1放弃在所述第二时频资源块中接收所述第二信号。
作为一个实施例,附图5中的方框F53中的步骤存在,所述第一节点U2放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,附图5中的方框F52和方框F53中的步骤都存在,所述第一节点U2放弃在所述第二时频资源块中发送所述第二信号,所述第二节点U1放弃在所述第二时频资源块中接收所述第二信号。
作为一个实施例,附图5中的方框F54中的步骤存在,所述第一节点U2在所述第二时频资源块中发送所述第二信号,所述第二节点U1在所述第二时频资源块中接收所述第二信号。
作为一个实施例,附图5中的方框F52中的步骤和方框F54中的步骤不会同时存在。
作为一个实施例,附图5中的方框F53中的步骤和方框F54中的步骤不会同时存在。
作为一个实施例,所述第一节点U2在所述第二时频资源块中发送所述第二信号,所述第二节点U1在所述第二时频资源块中接收所述第二信号;或者,所述第一节点U2放弃在所述第二时频资源块中发送所述第二信号,所述第二节点U1放弃在所述第二时频资源块中接收所述第二信号。
作为一个实施例,附图5中的方框F55中的步骤存在,所述第一节点U2在所述第三时频资源块中发送所述第三信号;所述第二节点U1在所述第三时频资源块中接收所述第三信号。
作为一个实施例,所述第三信号包括基带信号。
作为一个实施例,所述第三信号包括无线信号。
作为一个实施例,所述第三信号包括射频信号。
作为一个实施例,所述第三信号和所述第一信号属于同一个BWP。
作为一个实施例,所述第三信号和所述第一信号属于同一个服务小区。
作为一个实施例,所述第三时频资源块被分配给所述第三信号。
作为一个实施例,所述第三信号在PUCCH上被传输。
作为一个实施例,所述第三信号在PUSCH上被传输。
作为一个实施例,所述第三信号是基于动态授予(dynamic grant)的PUSCH传输。
作为一个实施例,所述第三信号是基于配置授予(configured grant)的PUSCH传输。
作为一个实施例,所述第三信号包括SRS。
作为一个实施例,所述第一信令包括所述第三信号的配置信息。
作为一个实施例,所述第三信号在PUCCH上被传输,所述第三信号的所述配置信息包括时域资源,频域资源,PUCCH格式(format),空间关系(spatial relation),最大码率,最大负载尺寸(maxPayloadSize),循环偏移量(Cyclic shift),或OCC(Orthogonal Cover Code,正交掩码)中的一种或多种。
作为一个实施例,所述第三信号在PUSCH上被传输,所述第三信号的所述配置信息包括时域资源, 频域资源,MCS,DMRS端口,HARQ进程号,TCI状态,RV,NDI,天线端口,或SRI中的一种或多种。
作为一个实施例,所述第三信号包括SRS,所述第三信号的所述配置信息包括时域资源,频域资源,“usage”,功率控制参数,SRS端口(port)数量,重复次数,RS序列,空间关系,或循环偏移量(Cyclic shift)中的一种或多种。
作为一个实施例,所述第三信号的优先级高于所述第一信号的优先级。
作为一个实施例,所述第三信号的优先级索引高于所述第一信号的优先级索引。
作为一个实施例,所述第三信号的优先级索引低于所述第一信号的优先级索引。
作为一个实施例,所述第三信号的优先级索引等于1,所述第一信号的优先级索引等于0。
作为一个实施例,所述第一信令被用于确定所述第三信号的优先级。
作为一个实施例,所述第一信令指示所述第三信号的优先级。
作为一个实施例,所述第三信号和所述第一信号分别是基于配置授予(configured grant)的PUSCH传输。
作为一个实施例,所述第三信号在PUCCH上被传输,所述第三信号携带SR(Scheduling Request)。
作为一个实施例,所述第三信号在PUCCH上被传输,所述第三信号携带HARQ-ACK(Acknowledgement)。
作为一个实施例,所述HARQ-ACK包括ACK。
作为一个实施例,所述HARQ-ACK包括NACK(Negative ACKnowledgement)。
作为一个实施例,所述第三信号在PUCCH上被传输,所述第三信号携带仅针对无PDCCH的PDSCH接收的HARQ-ACK;所述第一信号包括基于配置授予(configured grant)的PUSCH传输。
作为一个实施例,所述第三信号在PUCCH上被传输,所述第三信号携带仅针对无PDCCH的PDSCH接收的HARQ-ACK;所述第一信号在PUSCH上被传输,所述第一信号携带无PDCCH的SP(Semi-persistent)-CSI(Channel state information)汇报(report)。
作为一个实施例,所述第三信号在PUCCH上被传输,所述第一信号在PUSCH上被传输。
作为一个实施例,所述第三信号包括针对所述第一信令的HARQ-ACK。
作为一个实施例,所述第一信令被用于调度第四信号,所述第三信号包括针对所述第四信号的HARQ-ACK。
作为上述实施例的一个子实施例,所述第四信号在PDSCH上被传输。
实施例6
实施例6示例了根据本申请的一个实施例的第一信息集合的示意图;如附图6所示。在实施例6中,所述第一信息集合仅由一个信令,即第二信令,携带。
作为一个实施例,所述第一信息集合仅由第二信令携带。
作为一个实施例,所述第一信息集合包括所述第二信令中的全部信息。
作为一个实施例,所述第一信息集合包括所述第二信令中的一个或多个域中的信息。
作为一个实施例,所述第二信令被用于调度所述第一信号和所述第二信号。
作为一个实施例,所述第二信令包括所述第一信号的调度信息和所述第二信号的调度信息。
作为一个实施例,所述第二信令被用于调度第一PUSCH(Physical Uplink Shared CHannel,物理上行共享信道),所述第一信号和所述第二信号分别包括所述第一PUSCH的至少一个层(layer),所述第一信号和所述第二信号包括所述第一PUSCH的不同层。
作为一个实施例,所述层是指MIMO层。
作为一个实施例,所述层是指传输层(transmission layer)。
作为一个实施例,所述第二信令被用于调度两个PUSCH传输机会(transmission occasion),所述第一信号包括所述两个PUSCH传输机会中的一个,所述第二信号包括所述两个PUSCH传输机会中的另一个。
作为一个实施例,所述第二信令被用于调度一个PUSCH传输机会,所述第一信号和所述第二信号分别包括所述一个PUSCH传输机会在不同频域资源中的部分。
作为上述实施例的一个子实施例,所述第一时频资源块和所述第二时频资源块在频域相互正交,所述第一信号包括所述一个PUSCH传输机会在所述第一时频资源块中的部分,所述第二信号包括所述一个PUSCH传输机会在所述第二时频资源块中的部分。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令是一个DCI。
作为一个实施例,所述第二信令包括DCI,所述第一信息集合包括所述第二信令的DCI域Time domain resource assignment和DCI域Frequency domain resource assignment中的至少一个DCI域中的信息。
作为一个实施例,所述第二信令包括DCI,所述第一信息集合包括所述第二信令的DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中至少一个DCI域中的信息。
作为一个实施例,所述第二信令被用于调度至少一个PUSCH。
作为一个实施例,所述第二信令被用于激活基于配置授予的PUSCH传输。
作为一个实施例,所述第二信令的CRC(Cyclic Redundancy Check,循环冗余校验)被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)加扰(scrambled)。
作为一个实施例,所述第二信令的CRC被MCS(Modulation and Coding Scheme)-C-RNTI加扰。
作为一个实施例,所述第二信令的CRC被CS(Configured Scheduling)-RNTI加扰。
作为一个实施例,所述第二信令包括RRC IE。
作为一个实施例,所述第二信令是一个RRC IE。
作为一个实施例,所述第二信令是一个ConfiguredGrantConfig IE。
作为一个实施例,所述第二信令被用于配置基于配置授予的PUSCH传输。
作为一个实施例,所述第二信令被用于配置没有动态授予(dynamic grant)的上行传输。
作为一个实施例,所述第一信息集合包括所述第二信令中的periodicity域,timeDomainOffset域,timeDomainAllocation域,frequencyDomainAllocation域,或mcsAndTBS域中的至少一个域中的信息。
作为一个实施例,所述第一信息集合包括第一子信息,所述第一子信息指示第一符号组,所述第一符号组包括至少一个符号;所述第一符号组包括所述第一时频资源块占用的时域资源,所述第一符号组包括所述第二时频资源块占用的时域资源。
作为上述实施例的一个子实施例,所述第一时频资源块占用的时域资源是所述第一符号组。
作为上述实施例的一个子实施例,所述第二时频资源块占用的时域资源是所述第一符号组。
作为上述实施例的一个子实施例,所述第一时频资源块在时域仅占用所述第一符号组中的部分符号。
作为上述实施例的一个子实施例,所述第二时频资源块在时域仅占用所述第一符号组中的部分符号。
作为一个实施例,所述第一信息集合包括第二子信息,所述第二子信息指示第一RB组,所述第一RB组包括至少一个RB;所述第一RB组包括所述第一时频资源块占用的频域资源,所述第一RB组包括所述第二时频资源块占用的频域资源。
作为上述实施例的一个子实施例,所述第一时频资源块占用的频域资源是所述第一RB组。
作为上述实施例的一个子实施例,所述第二时频资源块占用的频域资源是所述第一RB组。
作为上述实施例的一个子实施例,所述第一时频资源块在频域占用所述第一RB组中的一部分RB,所述第二时频资源块在频域占用所述第一RB组中的另一部分RB。
作为上述实施例的一个子实施例,所述第一时频资源块在频域占用所述第一RB组中的前N1个RB,所述第二时频资源块在频域占用所述第一RB组中剩余的(N-N1)个RB,N1和N分别是正整数,所述N1小于所述N,所述第一RB组包括的RB的数量等于所述N。
作为上述子实施例的一个参考实施例,所述N1等于
作为上述子实施例的一个参考实施例,所述前N1个RB是指:N1个最低的RB。
作为上述子实施例的一个参考实施例,所述前N1个RB是指:N1个索引最低的RB。
作为上述子实施例的一个参考实施例,所述第一RB组中的所有RB按从低到高的顺序依次排列,所述前N1个RB是指:N1个排在最前面的RB。
作为上述实施例的一个子实施例,所述第一时频资源块在频域占用所述第一RB组中的偶(even)PRG(Precoding Resource block Group),所述第二时频资源块在频域占用所述第一RB组中的奇(odd)PRG。
作为上述实施例的一个子实施例,所述第一时频资源块在频域占用所述第一RB组中的奇(odd)PRG,所述第二时频资源块在频域占用所述第一RB组中的偶(even)PRG。
作为一个实施例,所述第一信息集合包括所述第一子信息和所述第二子信息。
作为一个实施例,所述第二信令包括DCI,所述第一子信息包括所述第二信令的DCI域Time domain resource assignment中的信息。
作为一个实施例,所述第二信令包括DCI,所述第二子信息包括所述第二信令的DCI域Frequency domain resource assignment中的信息。
作为一个实施例,所述第二信令包括RRC IE,所述第一子信息包括所述第二信令的periodicity域,timeDomainOffset域,或timeDomainAllocation域中至少一个域中的信息。
作为一个实施例,所述第二信令包括RRC IE,所述第二子信息包括所述第二信令的frequencyDomainAllocation域中的信息。
作为一个实施例,所述第二信令被用于确定所述第一信号的优先级和所述第二信号的优先级。
作为一个实施例,所述第二信令中的同一个域指示所述第一信号的优先级和所述第二信号的优先级。
作为一个实施例,所述第二信令指示第一优先级索引,所述第一信号的优先级索引是所述第一优先级索引,所述第二信号的优先级索引是所述第一优先级索引。
作为一个实施例,所述第二信令是一个DCI,所述第二信令不包括DCI域Priority indicator,所述第一 信号的优先级索引等于0,所述第二信号的优先级索引等于0。
作为一个实施例,所述第二信令是ConfiguredGrantConfig IE,所述第二信令不包括phy-PriorityIndex域,所述第一信号的优先级索引等于0,所述第二信号的优先级索引等于0。
作为一个实施例,所述第二信令指示所述第一参考信号资源组和所述第二参考信号资源组。
作为一个实施例,所述第二信令的DCI域SRS resource indicator指示所述第一参考信号资源组,所述第二信令的DCI域Second SRS resource indicator指示所述第二参考信号资源组。
作为一个实施例,所述第二信令的DCI域SRS resource indicator指示所述第二参考信号资源组,所述第二信令的DCI域Second SRS resource indicator指示所述第一参考信号资源组。
实施例7
实施例7示例了根据本申请的一个实施例的第一信息集合的示意图;如附图7所示。在实施例7中,所述第一信息集合由两个信令,即第三信令和第四信令,携带;所述第一信息集合包括第一信息子集和第二信息子集,所述第一信息子集由所述第三信令携带,所述第二信息子集由所述第四信令携带。
作为一个实施例,所述第一信息集合由第三信令和第四信令携带;所述第一信息集合包括第一信息子集和第二信息子集,所述第一信息子集由所述第三信令携带,所述第二信息子集由所述第四信令携带。
作为一个实施例,所述第一信息子集被用于确定所述第一时频资源块,所述第二信息子集被用于确定所述第二时频资源块。
作为一个实施例,所述第一信息子集指示所述第一时频资源块,所述第二信息子集指示所述第二时频资源块。
作为一个实施例,所述第一信息子集包括所述第三信令中的全部信息。
作为一个实施例,所述第一信息子集包括所述第三信令中的一个或多个域中的信息。
作为一个实施例,所述第二信息子集包括所述第四信令中的全部信息。
作为一个实施例,所述第二信息子集包括所述第四信令中的一个或多个域中的信息。
作为一个实施例,所述第三信令包括所述第一信号的调度信息,所述第四信令包括所述第二信号的调度信息。
作为一个实施例,所述第一信号包括所述第三信令调度的PUSCH传输,所述第二信号包括所述第四信令调度的PUSCH传输。
作为一个实施例,所述第三信令包括DCI,所述第四信令包括DCI。
作为一个实施例,所述第三信令和所述第四信令分别包括两个不同的DCI。
作为一个实施例,所述第三信令和所述第四信令分别是两个不同的DCI。
作为一个实施例,所述第一信息子集包括所述第三信令的DCI域Time domain resource assignment和DCI域Frequency domain resource assignment中至少一个域中的信息,所述第二信息子集包括所述第四信令的DCI域Time domain resource assignment和DCI域Frequency domain resource assignment中至少一个域中的信息。
作为一个实施例,所述第一信息子集包括所述第三信令的DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个DCI域中的信息;所述第二信息子集包括所述第四信令中的DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个DCI域中的信息。
作为一个实施例,所述第三信令在第一CORESET中被传输,所述第四信令在第二CORESET中被传输,所述第一CORESET和所述第二CORESET对应不同的CORESET池索引(coresetPoolIndex)。
作为上述实施例的一个子实施例,所述第一CORESET被配置了等于0的CORESET池索引或没有被配置CORESET池索引,所述第二CORESET被配置了等于1的CORESET池索引。
作为上述实施例的一个子实施例,所述第一CORESET被配置了等于1的CORESET池索引,所述第二CORESET被配置了等于0的CORESET池索引或没有被配置CORESET池索引。
作为一个实施例,所述第三信令和所述第四信令分别被用于调度至少一个PUSCH。
作为一个实施例,所述第三信令和所述第四信令分别被用于激活基于配置授予的PUSCH传输。
作为一个实施例,所述第三信令的CRC被C-RNT加扰。
作为一个实施例,所述第三信令的CRC被MCS-C-RNTI加扰。
作为一个实施例,所述第三信令的CRC被CS-RNTI加扰。
作为一个实施例,所述第四信令的CRC被C-RNT加扰。
作为一个实施例,所述第四信令的CRC被MCS-C-RNTI加扰。
作为一个实施例,所述第四信令的CRC被CS-RNTI加扰。
作为一个实施例,所述第三信令包括RRC IE,所述第四信令包括RRC IE。
作为一个实施例,所述第三信令和所述第四信令分别包括两个不同的RRC IE。
作为一个实施例,所述第三信令和所述第四信令分别是两个不同的RRC IE。
作为一个实施例,所述第三信令和所述第四信令分别是两个ConfiguredGrantConfig IE。
作为一个实施例,所述第三信令和所述第四信令分别被用于配置基于配置授予的PUSCH传输。
作为一个实施例,所述第三信令和所述第四信令分别被用于配置没有动态授予的上行传输。
作为一个实施例,所述第三信令指示的ConfiguredGrantConfigIndex不等于所述第四信令指示的ConfiguredGrantConfigIndex。
作为一个实施例,所述第三信令指示的ConfiguredGrantConfigIndexMAC不等于所述第四信令指示的ConfiguredGrantConfigIndexMAC。
作为一个实施例,所述第一信息子集包括第三子信息和第四子信息,所述第三子信息指示所述第一时频资源块所占用的时域资源,所述第四子信息指示所述第一时频资源块所占用的频域资源。
作为上述实施例的一个子实施例,所述第三子信息包括所述第三信令的DCI域Time domain resource assignment中的信息,所述第四子信息包括所述第三信令的DCI域Frequency domain resource assignment中的信息。
作为上述实施例的一个子实施例,所述第三子信息包括所述第三信令的periodicity域,timeDomainOffset域,或timeDomainAllocation域中的至少一个域中的信息;所述第四子信息包括所述第三信令的frequencyDomainAllocation域中的信息。
作为一个实施例,所述第二信息子集包括第五子信息和第六子信息,所述第五子信息指示所述第二时频资源块所占用的时域资源,所述第六子信息指示所述第二时频资源块所占用的频域资源。
作为上述实施例的一个子实施例,所述第五子信息包括所述第四信令的DCI域Time domain resource assignment中的信息,所述第六子信息包括所述第四信令的DCI域Frequency domain resource assignment中的信息。
作为上述实施例的一个子实施例,所述第五子信息包括所述第四信令的periodicity域,timeDomainOffset域,或timeDomainAllocation域中的至少一个域中的信息;所述第六子信息包括所述第四信令的frequencyDomainAllocation域中的信息。
作为一个实施例,所述第三信令和所述第四信令在同一个BWP中被传输。
作为一个实施例,所述第三信令和所述第四信令在不同的BWP中被传输。
作为一个实施例,所述第三信令和所述第四信令在同一个服务小区中被传输。
作为一个实施例,所述第三信令和所述第四信令在不同的服务小区中被传输。
作为一个实施例,所述第三信令和所述第四信令被用于调度同一个BWP。
作为一个实施例,一个CORESET如果被配置了CORESET池索引,所述一个CORESET对应的CORESET池索引是所述一个CORESET被配置的CORESET池索引。
作为一个实施例,一个CORESET如果没有被配置CORESET池索引,所述一个CORESET对应的CORESET池索引等于0。
作为一个实施例,所述第三信令被用于确定所述第一信号的优先级。
作为一个实施例,所述第三信令指示所述第一信号的优先级索引。
作为一个实施例,所述第三信令是一个DCI,所述第三信令不包括DCI域Priority indicator,所述第一信号的优先级索引等于0。
作为一个实施例,所述第三信令是ConfiguredGrantConfig IE,所述第三信令不包括phy-PriorityIndex域,所述第一信号的优先级索引等于0。
作为一个实施例,所述第四信令被用于确定所述第二信号的优先级。
作为一个实施例,所述第四信令指示所述第二信号的优先级索引。
作为一个实施例,所述第四信令是一个DCI,所述第四信令不包括DCI域Priority indicator,所述第二信号的优先级索引等于0。
作为一个实施例,所述第四信令是ConfiguredGrantConfig IE,所述第四信令不包括phy-PriorityIndex域,所述第二信号的优先级索引等于0。
作为一个实施例,所述第三信令指示所述第一参考信号资源组,所述第四信令指示所述第二参考信号资源组。
作为一个实施例,所述第三信令的DCI域SRS resource indicator指示所述第一参考信号资源组,所述第四信令的DCI域SRS resource indicator指示所述第二参考信号资源组。
实施例8
实施例8示例了根据本申请的一个实施例的是否放弃在第二时频资源块中发送第二信号依赖第一信号 和第二信号是否被同一个信令调度的示意图;如附图8所示。
作为一个实施例,所述句子是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合的意思包括:是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度;所述第一信息集合包括所述第一信号的调度信息和所述第二信号的调度信息。
作为一个实施例,所述句子是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合的意思包括:是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合包括的所述第一信号的调度信息和所述第二信号的调度信息是否被同一个信令携带。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第一信息集合仅包括所述同一个信令中的信息;或者,所述第一信号和所述第二信号分别被两个不同的信令调度,所述第一信息集合包括所述两个不同的信令中的每个信令中的信息。
作为一个实施例,当所述第一信号和所述第二信号分别被两个不同的信令调度并且所述两个不同的信令分别是DCI时,所述两个不同的信令分别在第一CORESET和第二CORESET中被传输,所述第一CORESET和所述第二CORESET对应不同的CORESET池索引(coresetPoolIndex)。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号的调度信息和所述第二信号的调度信息是否由同一个信令携带。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度。
作为一个实施例,所述第一信号和所述第二信号分别被两个不同的信令调度。
作为一个实施例,所述同一个信令包括DCI。
作为一个实施例,所述同一个信令是一个DCI。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号和所述第二信号是否被同一个DCI调度。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号的调度信息和所述第二信号的调度信息是否由同一个DCI携带。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号和所述第二信号是否是由同一个DCI激活的基于配置授予的PUSCH传输。
作为一个实施例,所述同一个信令包括RRC信令。
作为一个实施例,所述同一个信令包括RRC IE。
作为一个实施例,所述同一个信令包括ConfiguredGrantConfig IE。
作为一个实施例,所述同一个信令是一个RRC信令。
作为一个实施例,所述同一个信令是一个RRC IE。
作为一个实施例,所述同一个信令是一个ConfiguredGrantConfig IE。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号的调度信息和所述第二信号的调度信息是否是由同一个ConfiguredGrantConfig IE配置。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号和所述第二信号是否是由同一个ConfiguredGrantConfig IE配置的基于配置授予的PUSCH传输。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号和所述第二信号是否对应同一个ConfiguredGrantConfigIndex。
作为一个实施例,所述句子所述第一信号和所述第二信号是否被同一个信令调度的意思包括:所述第一信号和所述第二信号是否对应同一个ConfiguredGrantConfigIndexMAC。
作为一个实施例,所述第一信号和所述第二信号是否被同一个信令调度被用于确定是否放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号是否被同一个信令调度被所述第一节点用于确定是否放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号被同一个信令调度时,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号分别被同两个不同的信令调度时,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第一节点放弃在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号分别被同两个不同的信令调度,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号分别被同两个不同的信令调度并且所述两个不同的信令分别是DCI时,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述两个不同的信令是否在对应不同CORESET池索引的CORESET中被传输。
作为一个实施例,当所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令分别是DCI并且所述两个不同的信令分别在对应不同CORESET池索引的CORESET中被传输时,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令分别是DCI并且所述两个不同的信令所属的CORESET对应相同的CORESET池索引时,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令分别是DCI,所述两个不同的信令所属的CORESET对应不同的CORESET池索引,所述第一节点在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号被同一个信令调度,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令分别是DCI,所述两个不同的信令所属的CORESET对应不同的CORESET池索引,所述第一节点在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令分别是DCI,所述两个不同的信令所属的CORESET对应相同的CORESET池索引,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号分别被同两个不同的信令调度时,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述两个不同的信令的TCI状态是否关联到不同的小区索引。
作为一个实施例,所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令的TCI状态关联到不同的小区索引,所述第一节点在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令的TCI状态关联到相同的小区索引,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第二节点是否放弃在所述第二时频资源块中接收所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第二节点放弃在所述第二时频资源块中接收所述第二信号;或者,所述第一信号和所述第二信号分别被同两个不同的信令调度,所述第二节点在所述第二时频资源块中接收所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号分别被同两个不同的信令调度并且所述两个不同的信令分别是DCI时,所述第二节点是否放弃在所述第二时频资源块中接收所述第二信号依赖所述两个不同的信令是否在对应不同CORESET池索引的CORESET中被传输。
作为一个实施例,所述第一信号和所述第二信号分别被两个不同的信令调度,所述两个不同的信令分别是DCI,所述两个不同的信令所属的CORESET对应不同的CORESET池索引,所述第二节点在所述第二时频资源块中接收所述第二信号;或者,所述第一信号和所述第二信号被同一个信令调度,所述第二节点放弃在所述第二时频资源块中接收所述第二信号。
实施例9
实施例9示例了根据本申请的一个实施例的是否放弃在第二时频资源块中发送第二信号依赖第一信号和第二信号是否携带同一个TB的示意图;如附图9所示。
作为一个实施例,所述TB是指Transport Block。
作为一个实施例,所述句子是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合的意思包括:是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB,所述第一信息集合被用于确定所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述句子所述第一信号和所述第二信号是否携带同一个TB的意思是指:所述第一信号和所述第二信号是否携带同一个codeword。
作为一个实施例,所述句子所述第一信号和所述第二信号是否携带同一个TB的意思包括:所述第一信号的MCS和所述第二信号的MCS是否被同一个域指示。
作为上述实施例的一个子实施例,所述同一个域是一个DCI域。
作为上述实施例的一个子实施例,所述同一个域是一个RRC IE中的域。
作为上述实施例的一个子实施例,所述同一个域是所述第二信令中的一个域。
作为一个实施例,所述第一信号和所述第二信号携带同一个TB,所述同一个TB被映射到一个codeword;或者,所述第一信号和所述第二信号分别携带不同的TB,所述不同的TB分别被映射到不同的codeword。
作为一个实施例,所述第一信号和所述第二信号携带同一个TB。
作为一个实施例,所述第一信号和所述第二信号分别携带不同的TB。
作为一个实施例,所述第一信号和所述第二信号是否携带同一个TB被用于确定是否放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号是否携带同一个TB被所述第一节点用于确定是否放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号携带同一个TB时,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号分别携带不同的TB时,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号携带同一个TB,所述第一节点放弃在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号分别携带不同的TB,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度,并且依赖所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,当所述第一信号和所述第二信号被同一个信令调度并且所述第一信号和所述第二信号携带同一个TB时,所述第一节点放弃在所述第二时频资源块中发送所述第二信号。
作为一个实施例,当所述第一信号和所述第二信号被同一个信令调度并且所述第一信号和所述第二信号分别携带不同的TB时,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号携带同一个TB,所述第一节点放弃在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号分别携带不同的TB,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号携带同一个TB,所述第一节点放弃在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号分别携带不同的TB,所述第一节点在所述第二时频资源块中发送所述第二信号;或者,所述第一信号和所述第二信号分别被不同的信令调度,所述第一节点在所述第二时频资源块中发送所述第二信号。
作为一个实施例,所述第一信息集合被用于确定所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第一信息集合指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,针对所述第一节点,两codeword传输被使能(enabled)。
作为一个实施例,所述第一节点被配置了第二更高层参数,所述第二更高层参数指示两codeword传输被使能(enabled)。
作为上述实施例的一个子实施例,所述第二更高层参数的名称里包括“maxNrofCodewords”。
作为上述实施例的一个子实施例,所述第二更高层参数的名称里包括“maxNrofCodeWordsScheduledByDCI”。
作为上述实施例的一个子实施例,PUSCH-Config IE包括所述第二更高层参数。
作为上述实施例的一个子实施例,BWP-UplinkDedicated IE包括所述第二更高层参数。
作为上述实施例的一个子实施例,ServingCellConfig IE包括所述第二更高层参数。
作为一个实施例,所述第一信息集合通过指示TB 1和TB 2是否都被使能(enabled)来指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,DCI被用于确定所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第二信令被用于确定所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第二信令显式的指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第二信令隐式的指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第二信令指示两个TB是否都被使能(enabled)。
作为一个实施例,所述第二信令通过指示两个TB是否都被使能来指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第二信令指示TB 1是否都被使能,所述第二信令指示TB 2是否被使能。
作为一个实施例,当TB 1和TB 2中只有一个TB被使能时,所述第一信号和所述第二信号携带同一个TB。
作为一个实施例,当TB 1和TB 2中均被使能时,所述第一信号和所述第二信号分别携带不同的TB。
作为上述实施例的一个子实施例,所述第一信号携带TB 1,所述第二信号携带TB 2。
作为上述实施例的一个子实施例,所述第一信号携带TB 2,所述第二信号携带TB 1。
作为一个实施例,TB 1和TB 2中只有一个TB被使能,所述第一信号和所述第二信号携带同一个TB; 或者,TB 1和TB 2均被使能,所述第一信号和所述第二信号分别携带不同的TB。
作为一个实施例,当TB 1和TB 2中只有一个TB被使能时,所述一个TB被映射到codeword 0;当TB 1和TB 2均被使能时,TB 1和TB 2分别被映射到codeword 0和codeword 1。
作为一个实施例,当TB 1和TB 2中只有一个TB被使能时,codeword 0被使能且codeword 1被去使能(disabled);当TB 1和TB 2均被使能时,codeword 0和codeword 1均被使能。
作为一个实施例,当所述第二信令的针对TB 1的DCI域Modulation and coding scheme指示IMCS=26并且所述第二信令的针对TB 1的DCI域Redundancy version指示rvid=1时,TB 1被去使能(disabled);当所述第二信令的针对TB 2的DCI域Modulation and coding scheme指示IMCS=26并且所述第二信令的针对TB 2的DCI域Redundancy version指示rvid=1时,TB 2被去使能(disabled)。
作为一个实施例,所述第一信息集合通过指示层数(number of layers)来指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第二信令通过指示层数来指示所述第一信号和所述第二信号是否携带同一个TB。
作为上述实施例的一个子实施例,所述第一信息集合包括所述第二信令指示的所述层数。
作为一个实施例,所述层数是指:number of MIMO layers。
作为一个实施例,所述层数是指:传输秩(transmission rank)。
作为一个实施例,当所述第二信令指示的层数不大于第一层数阈值时,所述第一信号和所述第二信号携带同一个TB;当所述第二信令指示的层数大于所述第一层数阈值时,所述第一信号和所述第二信号分别携带不同的TB;所述第一层数阈值是大于1的正整数。
作为一个实施例,所述第一层数阈值等于4。
作为一个实施例,所述第一层数阈值等于2。
作为一个实施例,所述第一层数阈值是固定的。
作为一个实施例,所述第一层数阈值是可配置的。
作为一个实施例,所述第二信令的DCI域SRS resource indicator指示所述层数。
作为一个实施例,所述第二信令的DCI域Precoding information and number of layers指示所述层数。
作为一个实施例,所述第二信令通过指示DCI域Second SRS resource indicator和DCI域Second Precoding information field是被预留(reserved)还是关联到(associated with)一个SRS资源集合,来指示所述第一信号和所述第二信号是否携带同一个TB。
作为上述实施例的一个子实施例,所述第一信息集合包括所述第二信令中用于指示DCI域Second SRS resource indicator和Second Precoding information field是被预留还是关联到一个SRS资源集合的信息。
作为一个实施例,当所述第二信令指示DCI域Second SRS resource indicator和DCI域Second Precoding information field被预留时,所述第一信号和所述第二信号携带同一个TB;当所述第二信令指示DCI域Second SRS resource indicator和DCI域Second Precoding information field关联到一个SRS资源集合时,所述第一信号和所述第二信号分别携带不同的TB。
作为一个实施例,第三更高层参数被用于确定所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,第三更高层参数被用于指示所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第三更高层参数的名称里包括“maxNrofCodeWords”。
作为一个实施例,所述第三更高层参数的名称里包括“maxNrofCodeWordsScheduledByDCI”。
作为一个实施例,PUSCH-Config IE包括所述第三更高层参数。
作为一个实施例,BWP-UplinkDedicatedIE包括所述第三更高层参数。
作为一个实施例,ServingCellConfig IE包括所述第三更高层参数。
作为一个实施例,当所述第一节点被配置了设置为第一给定参数值的第三更高层参数时,所述第一信号和所述第二信号分别携带不同的TB。
作为一个实施例,当所述第一节点没有被配置第三更高层参数或者被配置的第三更高层参数的值不等于第一给定参数值时,所述第一信号和所述第二信号携带同一个TB。
作为一个实施例,所述第一给定参数值等于2。
作为一个实施例,所述第一给定参数值等于n2。
作为一个实施例,所述第二节点是否放弃在所述第二时频资源块中接收所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第一信号和所述第二信号携带同一个TB,所述第二节点放弃在所述第二时频资源块中接收所述第二信号;或者,所述第一信号和所述第二信号分别携带不同的TB,所述第二节点在所述第二时频资源块中接收所述第二信号。
作为一个实施例,所述第二节点是否放弃在所述第二时频资源块中接收所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度,并且依赖所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号携带同一个TB,所述第二节点放弃在所述第二时频资源块中接收所述第二信号;或者,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号分别携带不同的TB,所述第二节点在所述第二时频资源块中接收所述第二信号。
作为一个实施例,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号携带同一个TB,所述第二节点放弃在所述第二时频资源块中接收所述第二信号;或者,所述第一信号和所述第二信号被同一个信令调度,所述第一信号和所述第二信号分别携带不同的TB,所述第二节点在所述第二时频资源块中接收所述第二信号;或者,所述第一信号和所述第二信号分别被不同的信令调度,所述第二节点在所述第二时频资源块中接收所述第二信号。
实施例10
实施例10示例了根据本申请的一个实施例的第一参考信号资源组和第二参考信号资源组的示意图;如附图10所示。在实施例10中,所述第一参考信号资源组中任一参考信号资源是第一SRS资源集合中的一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是第二SRS资源集合中的一个SRS资源。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别被SRS-ResourceSetId所标识。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别被不同的SRS-ResourceSetId所标识。
作为一个实施例,所述第一SRS资源集合关联的更高层参数“usage”和所述第二SRS资源集合关联的更高层参数“usage”都被设置为“codebook”或者都被设置为“nonCodebook”,第一更高层参数被用于配置所述第一SRS资源集合和所述第二SRS资源集合;所述第一更高层参数的名称里包括“srs-ResourceSet”。
作为一个实施例,所述第一更高层参数的名称里包括“srs-ResourceSetToAddModList”。
作为一个实施例,所述第一更高层参数是更高层参数“srs-ResourceSetToAddModList”。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合对应不同的功率控制调整状态索引(power control adjustment state index)。
作为一个实施例,所述第一SRS资源集合中的任一SRS资源和所述第二SRS资源集合中的任一SRS资源对应不同的功率控制调整状态索引(power control adjustment state index)。
作为一个实施例,所述功率控制调整状态索引是指闭环索引(closedLoopIndex)。
实施例11
实施例11示例了根据本申请的一个实施例的第一信令被用于确定第一索引的示意图;如附图11所示。
作为一个实施例,所述第一信令被所述第一节点用于确定所述第一索引。
作为一个实施例,所述第一索引被所述第一节点用于确定放弃在所述第一时频资源块中发送所述第一信号。
作为一个实施例,所述第一索引被所述第一节点用于确定放弃发送所述第一信号和所述第二信号中的所述第一信号。
作为一个实施例,所述第一索引被所述第一节点用于确定放弃发送所述第一信号和所述第二信号中的仅所述第一信号。
作为一个实施例,所述第一信令指示所述第一索引。
作为一个实施例,所述第一信令所属的CORESET被用于确定所述第一索引。
作为一个实施例,所述第一信令所属的搜索空间集合(search space set)被用于确定所述第一索引。
作为一个实施例,所述第一信令的TCI状态被用于确定所述第一索引。
作为一个实施例,所述第一信令指示一个TCI状态,所述第一索引是所述一个TCI状态指示的参考信号资源的标识。
作为一个实施例,所述第一信令指示一个参考信号资源,所述第一索引是所述一个参考信号资源的标识。
作为一个实施例,所述第一信令指示一个参考信号资源集合,所述第一索引是所述一个参考信号资源集合的标识。
作为一个实施例,所述第一信令指示一个SRS资源集合,所述第一索引是所述一个SRS资源集合的SRS-ResourceSetId。
作为一个实施例,所述第一信令指示一个SRS资源,所述第一索引是所述一个SRS资源所属的SRS资源集合的SRS-ResourceSetId。
作为一个实施例,所述第一信令被用于确定一个SRS资源,所述第一索引是所述一个SRS资源的SRS-ResourceId。
作为一个实施例,所述第一信令被用于确定一个SRS资源集合,所述第一索引是所述一个SRS资源集合的SRS-ResourceSetId。
作为一个实施例,所述第一索引是非负整数。
作为一个实施例,所述第一索引是非负实数。
作为一个实施例,所述第一索引是一个CORESET池索引。
作为一个实施例,所述第一索引被用于标识一个CORESET池(pool)。
作为一个实施例,所述第一索引是所述第一信令所属的CORESET对应的CORESET池索引(coresetPoolIndex)。
作为一个实施例,所述第一信令被用于确定一个TCI状态,所述一个TCI状态属于给定TCI状态组,所述第一索引等于所述给定TCI状态组对应的CORESET池索引。
作为上述实施例的一个子实施例,所述第一信令指示所述一个TCI状态。
作为上述实施例的一个子实施例,所述第一信令指示一个参考信号资源,所述一个TCI状态指示的参考信号资源包括所述一个参考信号资源。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一信号的调度DCI所属的CORESET对应的CORESET池索引等于所述第一索引。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:给定TCI状态组中的至少一个TCI状态被用于确定所述第一参考信号资源组中的参考信号资源的空间关系,所述给定TCI状态组对应的CORESET池索引等于所述第一索引。
作为一个实施例,一个TCI状态组对应的CORESET池索引的意思包括:给定CORESET池的索引,所述一个TCI状态组是特别为所述给定CORESET池激活的。
作为一个实施例,一个TCI状态组对应的CORESET池索引的意思包括:给定CORESET池的索引,所述一个TCI状态组和DCI域Transmission Configuration Indication码点之间的映射关系是所述给定CORESET池特定的。
作为一个实施例,一个TCI状态组对应的CORESET池索引的意思包括:给定MAC CE指示的CORESET池索引,所述给定MAC CE被用于激活所述一个TCI状态组。
作为一个实施例,所述第一索引是一个SRS-ResourceSetId。
作为一个实施例,所述第一索引是一个SRS-ResourceId。
作为一个实施例,所述第一索引被用于标识一个SRS资源。
作为一个实施例,所述第一索引被用于标识一个SRS资源集合。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组所属的SRS资源集合的SRS-ResourceSetId等于所述第一索引。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组中的一个参考信号资源的标识等于所述第一索引。
作为一个实施例,所述第一索引是一个TCI-StateId。
作为一个实施例,所述第一索引被用于标识一个TCI状态。
作为一个实施例,所述第一索引是所述第一信令的TCI状态对应的TCI-StateId。
作为一个实施例,所述第一索引是所述第一信令所属的CORESET的TCI状态的TCI-StateId。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:第一TCI状态被用于确定所述第一参考信号资源组中的参考信号资源的空间关系,所述第一TCI状态的TCI-StateId等于所述第一索引。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组中的参考信号资源的TCI状态是第一TCI状态,所述第一TCI状态的TCI-StateId等于所述第一索引。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:给定参考信号资源被用于确定所述第一参考信号资源组中的参考信号资源的空间关系,第一TCI状态指示所述给定参考信号资源,所述第一TCI状态的TCI-StateId等于所述第一索引。
作为一个实施例,所述给定参考信号资源被用于确定第二参考信号资源的空间关系,所述第二参考信号资源被用于确定所述第一参考信号资源组中的参考信号资源的空间关系。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:第一TCI状态指示所述第一参考信号资源组中的至少一个参考信号资源,所述第一TCI状态的TCI-StateId等于所述第一索引。
作为一个实施例,所述第一索引是一个SpatialRelationInfoId。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一信号的空间关系信息(SpatialRelationInfo)的索引等于所述第一索引。
作为一个实施例,所述第一索引是一个参考信号资源标识。
作为一个实施例,所述第一索引被用于标识一个参考信号资源。
作为一个实施例,所述第一索引被用于标识一组参考信号资源。
作为一个实施例,所述第一索引被用于标识一个参考信号资源集合。
作为一个实施例,所述第一索引被用于标识一个BFD(Beam Failure Detection)-RS集合(BFD-RS set)。
作为一个实施例,所述第一索引被用于标识一个候选RS列表(candidate RS list)。
作为一个实施例,所述第一索引被用于标识一个候选波束RS列表(candidate beam RS list)。
作为一个实施例,所述第一索引是所述第一信令的TCI状态指示的参考信号资源的标识。
作为一个实施例,所述第一索引是所述第一信令所属的CORESET的TCI状态指示的参考信号资源的标识。
作为一个实施例,所述参考信号资源标识是SSB-Index,NZP-CSI-RS-ResourceId或SRS-ResourceId。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:给定参考信号资源被用于确定所述第一参考信号资源组中参考信号资源的空间关系,所述给定参考信号资源的标识是所述第一索引。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组属于一组参考信号资源,或者,一组参考信号资源中的一个参考信号资源被用于确定所述第一参考信号资源组中参考信号资源的空间关系;所述第一索引被用于标识所述一组参考信号资源。
作为上述实施例的一个子实施例,所述一组参考信号资源包括一个CSI-RS资源集合。
作为上述实施例的一个子实施例,所述一组参考信号资源包括一个SRS资源集合。
作为上述实施例的一个子实施例,所述一组参考信号资源包括一个BFD-RS集合。
作为上述实施例的一个子实施例,所述一组参考信号资源包括一个候选波束RS列表。
作为一个实施例,所述第一索引是一个能力索引(Capability index)或能力集合索引(Capability set index)。
作为一个实施例,所述第一索引被用于标识一个UE能力值或UE能力值集合。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组对应的能力索引或能力集合索引等于所述第一索引。
作为一个实施例,所述能力索引或能力集合索引是UE能力值(capability value)的索引。
作为一个实施例,一个所述能力索引或能力集合索引指示:支持的SRS端口数量最大值。
作为一个实施例,两个不同的所述能力索引或能力集合索引指示不同的支持的SRS端口数量最大值。
作为一个实施例,所述第一索引是一个功率控制调整状态索引(power control adjustment state index)。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组对应的功率控制调整状态索引等于所述第一索引。
作为一个实施例,所述第一索引是一个小区索引。
作为一个实施例,所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组关联的小区索引等于所述第一索引。
作为一个实施例,所述小区索引包括:ServCellIndex。
作为一个实施例,所述小区索引包括:SCellIndex。
作为一个实施例,所述小区索引包括:PhysCellId
作为一个实施例,所述小区索引包括:PCI(Physical Cell Identity,物理小区身份)。
作为一个实施例,一个参考信号资源组关联的小区索引的意思包括:所述一个参考信号资源组中的参考信号的TCI状态所关联的小区索引。
作为一个实施例,一个TCI状态所关联的小区索引的意思包括:配置所述一个TCI状态的TCI-State IE指示的additionalPCI或ServCellIndex。
作为一个实施例,一个参考信号资源组关联的小区索引的意思包括:第一SS/PBCH block所关联的小区索引,所述第一SS/PBCH block被用于确定所述一个参考信号资源组中的参考信号的空间关系。
作为一个实施例,一个SS/PBCH block所关联的小区索引的意思包括:被用于确定所述一个SS/PBCH block的SS序列的小区索引。
作为一个实施例,一个SS/PBCH block所关联的小区索引的意思包括:所述一个SS/PBCH block在其中被传输的小区的索引。
作为一个实施例,所述第一索引被用于标识一个PUCCH资源。
作为一个实施例,所述第一索引是一个PUCCH-ResourceId。
作为一个实施例,所述第一索引被用于标识一个PUCCH资源集合。
作为一个实施例,所述第一索引是一个PUCCH-ResourceSetId。
作为一个实施例,所述第一索引被用于标识一个BWP。
作为一个实施例,所述第一索引被用于标识一个天线组。
作为一个实施例,所述第一索引被用于标识一个TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述第一索引被用于标识一个panel(天线面板)。
作为一个实施例,所述第二信号和第二索引关联,所述第二索引不等于所述第一索引。
作为一个实施例,所述句子所述第二信号和第二索引关联的意思和所述句子所述第一信号和所述第一索引关联的意思相同,除了把所述第一信号替换成所述第二信号并且把所述第一索引替换成所述第二索引。
实施例12
实施例12示例了根据本申请的一个实施例的第三参考信号资源组被用于确定第三信号的空间关系的示意图;如附图12所示。
作为一个实施例,所述第一信令被用于确定所述第三参考信号资源组。
作为一个实施例,所述第一信令指示所述第三参考信号资源组。
作为一个实施例,不同于所述第一信令的另一个信令指示所述第三参考信号资源组。
作为上述实施例的一个子实施例,所述另一个信令包括DCI。
作为上述实施例的一个子实施例,所述另一个信令被用于指示至少一个TCI状态。
作为上述实施例的一个子实施例,所述另一个信令包括MAC CE。
作为上述实施例的一个子实施例,所述第一信令包括更高层信令,所述另一个信令包括DCI。
作为上述实施例的一个子实施例,所述第一信令包括DCI,所述另一个信令包括更高层信令。
作为一个实施例,所述空间关系包括TCI状态。
作为一个实施例,所述空间关系包括QCL参数。
作为一个实施例,所述空间关系包括QCL关系。
作为一个实施例,所述空间关系包括QCL假设。
作为一个实施例,所述空间关系包括空域滤波器(spatial domain filter)。
作为一个实施例,所述空间关系包括发送天线端口。
作为一个实施例,所述空间关系包括预编码器。
作为一个实施例,所述第三参考信号资源组中的任一参考信号资源是一个SRS资源,所述第三信号被和所述第三参考信号资源组中的SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一节点用相同的空域滤波器发送所述第三信号和在所述第三参考信号资源组中发送或接收参考信号。
作为一个实施例,所述第三参考信号资源组仅包括一个参考信号资源。
作为一个实施例,所述第三参考信号资源组包括多个参考信号资源。
作为一个实施例,所述第三参考信号资源组包括SRS资源。
作为一个实施例,所述第三参考信号资源组中的任一参考信号资源是一个SRS资源。
作为一个实施例,所述第三参考信号资源组由一个SRS资源组成。
作为一个实施例,所述第三参考信号资源组包括CSI-RS资源。
作为一个实施例,所述第三参考信号资源组由一个CSI-RS资源组成。
作为一个实施例,所述第三参考信号资源组包括SS/PBCH block资源。
作为一个实施例,所述第三参考信号资源组由一个SS/PBCH block资源组成。
作为一个实施例,所述第三参考信号资源组中任一参考信号资源是CSI-RS资源或SS/PBCH block资源。
作为一个实施例,所述第三参考信号资源组仅包括一个参考信号资源,所述第一索引是所述第三参考信号资源组中的所述一个参考信号资源的标识。
作为一个实施例,所述第一索引是所述第三参考信号资源组所属的CSI-RS资源集合或SRS资源集合的标识。
作为一个实施例,所述第一索引是所述第三参考信号资源组中的参考信号资源的TCI状态的TCI-StateId。
作为一个实施例,第二TCI状态指示所述第三参考信号资源组,所述第一索引是所述第二TCI状态的TCI-StateId。
作为一个实施例,第一空间关系信息指示所述第三参考信号资源组,所述第一索引是所述第一空间关系信息的SpatialRelationInfoId。
作为一个实施例,给定参考信号资源被用于确定所述第三参考信号资源组中参考信号资源的空间关系,所述第一索引是所述给定参考信号资源的标识。
作为一个实施例,所述第一索引是所述第三参考信号资源组对应的功率控制调整状态索引。
作为一个实施例,所述第一索引是所述第三参考信号资源组对应的能力索引或能力集合索引。
作为一个实施例,所述第一索引是所述第三参考信号资源组中的参考信号关联的小区索引。
实施例13
实施例13示例了根据本申请的一个实施例的第三参考信号资源组和第一参考信号资源组属于M个参考信号资源集合中的同一个参考信号资源集合的示意图;如附图13所示。在实施例13中,所述第三参考信号资源组和所述第一参考信号资源组属于M个参考信号资源集合中的同一个参考信号资源集合;所述M个参考信号资源集合分别包括至少一个参考信号资源;M是大于1的正整数。
作为一个实施例,所述第一参考信号资源组和所述第二参考信号资源组属于所述M个参考信号资源集合中不同的参考信号资源集合。
作为一个实施例,所述第三参考信号资源组和所述第二参考信号资源组属于所述M个参考信号资源集合中不同的参考信号资源集合。
作为一个实施例,所述M个参考信号资源集合分别是可配置的。
作为一个实施例,所述M个参考信号资源集合分别由更高层参数配置。
作为一个实施例,所述M个参考信号资源集合中存在一个参考信号资源集合仅包括一个参考信号资源。
作为一个实施例,所述M个参考信号资源集合中存在一个参考信号资源集合包括多个参考信号资源。
作为一个实施例,所述M个参考信号资源集合中存在两个参考信号资源集合包括的参考信号资源的数量不相等。
作为一个实施例,所述M个参考信号资源集合中存在一个参考信号资源集合包括下行参考信号资源。
作为一个实施例,所述M个参考信号资源集合中存在一个参考信号资源集合包括上行参考信号资源。
作为一个实施例,所述M个参考信号资源集合中存在一个参考信号资源集合既包括下行参考信号资源也包括上行参考信号资源。
作为一个实施例,不存在一个参考信号资源同时属于所述M个参考信号资源集合中的两个参考信号资源集合。
作为一个实施例,所述M个参考信号资源集合中的任一参考信号资源是CSI-RS资源,SS/PBCH block资源,或SRS资源中之一。
作为一个实施例,所述M个参考信号资源集合中的任一参考信号资源是CSI-RS资源或SS/PBCH block资源。
作为一个实施例,所述M个参考信号资源集合中的任一参考信号资源是SRS资源。
作为一个实施例,第一参考信号资源集合和第二参考信号资源集合是所述M个参考信号资源集合中任意两个参考信号资源集合;所述第一参考信号资源集合中任一参考信号资源和所述第二参考信号资源集合中任一参考信号资源不是准共址的。
作为上述实施例的一个子实施例,所述第一参考信号资源集合中任一参考信号资源和所述第二参考信号资源集合中任一参考信号资源不是对应QCL-TypeD的准共址。
作为一个实施例,所述M个参考信号资源集合中的任一参考信号资源对应一个第一类索引,所述M个参考信号资源集合和所述M个索引值一一对应;所述M个参考信号资源集合中的任一参考信号资源集合中的所有参考信号资源对应的所述第一类索引都等于对应的索引值;所述M个索引值中任意两个索引值不相等。
作为一个实施例,所述M等于2。
作为一个实施例,所述M大于2。
作为一个实施例,所述第一类索引是非负整数。
作为一个实施例,一个参考信号资源对应的所述第一类索引是可配置的。
作为一个实施例,一个参考信号资源对应的所述第一类索引是更高层信令配置的。
作为一个实施例,一个参考信号资源的配置信息包括对应的所述第一类索引。
作为一个实施例,一个参考信号资源对应的所述第一类索引包括在所述一个参考信号资源所属的参考信号资源集合的配置信息中;所述参考信号资源集合包括CSI-RS资源集合或SRS资源集合。
作为一个实施例,一个所述第一类索引和对应的参考信号资源所属的参考信号资源集合有关;所述参考信号资源集合包括CSI-RS资源集合或SRS资源集合。
作为一个实施例,一个参考信号资源集合由NZP-CSI-RS-ResourceSet IE配置,或者由更高层参数“srs-ResourceSetToAddModList”配置。
作为一个实施例,一个所述第一类索引和对应的参考信号资源的空间关系有关。
作为一个实施例,一个所述第一类索引和对应的参考信号资源关联的小区有关。
作为一个实施例,一个所述第一类索引和对应的参考信号资源所属的BWP有关。
作为一个实施例,一个所述第一类索引和对应的参考信号资源的TCI状态对应的CORESET池索引(coresetPoolIndex)有关。
作为一个实施例,一个参考信号资源对应的所述第一类索引等于所述一个参考信号资源的TCI状态的 TCI-StateId。
作为一个实施例,一个参考信号资源对应的所述第一类索引等于所述一个参考信号资源的空间关系的SpatialRelationInfoId。
作为一个实施例,一个参考信号资源对应的所述第一类索引等于所述一个参考信号资源的TCI状态对应的CORESET池索引(coresetPoolIndex)。
作为一个实施例,一个参考信号资源关联的小区被用于确定所述一个参考信号对应的所述第一类索引的值。
作为一个实施例,一个参考信号资源所属的BWP被用于确定所述一个参考信号对应的所述第一类索引的值。
作为一个实施例,所述M个索引值分别是M个非负整数。
作为一个实施例,所述M个索引值分别是M个实数。
作为一个实施例,所述M个索引值分别是所述第一类索引的M个候选值。
作为一个实施例,所述M个索引值分别是M个CORESET池索引。
作为一个实施例,M个TCI状态组和所述M个参考信号资源集合一一对应,所述M个TCI状态组分别包括至少一个TCI状态;所述M个TCI状态组分别是为M个CORESET池激活的TCI状态组;所述M个索引值分别等于所述M个CORESET池索引。
作为上述实施例的一个子实施例,M个MAC CE分别被用于激活所述M个TCI状态组;所述M个MAC CE分别指示所述M个CORESET池索引。
作为上述实施例的一个子实施例,给定参考信号资源集合是所述M个参考信号资源集合中的任一参考信号资源集合;给定TCI状态组是所述M个TCI状态组中和所述给定参考信号资源集合对应的TCI状态组;对于所述给定参考信号资源集合中的任一给定参考信号资源,所述给定TCI状态组中的至少一个TCI状态被用于确定所述给定参考信号资源的空间关系,或者,所述给定TCI状态组中的一个TCI状态指示所述给定参考信号资源。
作为一个实施例,所述M个参考信号资源集合和M个能力索引或能力集合索引一一对应;所述M个能力索引或能力集合索引两两互不相同。
作为一个实施例,所述M个参考信号资源集合和M个UE能力值集合一一对应;所述M个UE能力值集合中的任意两个UE能力值集合中有至少一个UE能力值是不同的。
作为一个实施例,所述UE能力值集合是指:UE capability value set。
作为一个实施例,一个所述UE能力值集合包括至少一个UE能力值。
作为一个实施例,所述M个UE能力值集合包括相同种类的UE能力值。
作为一个实施例,所述M个UE能力值集合包括相同数量的UE能力值。
作为一个实施例,所述M个UE能力值集合包括相同种类和相同数量的UE能力值。
作为一个实施例,所述M个UE能力值集合中存在两个UE能力值集合包括不同种类或不同数量的UE能力值。
作为一个实施例,一个所述UE能力值集合包括:支持的SRS端口数量的最大值。
作为一个实施例,所述M个UE能力值集合中的任意两个UE能力值集合包括的支持的SRS端口数量的最大值是不相等的。
作为一个实施例,所述M个UE能力值集合中任意两个UE能力值集合的索引是不同的。
作为一个实施例,M个给定参考信号资源集合和所述M个参考信号资源集合一一对应,所述M个给定参考信号资源集合中任一给定参考信号资源集合包括至少一个参考信号资源;所述M个给定参考信号资源组分别是可配置的。
作为上述实施例的一个子实施例,所述M个参考信号资源集合分别是所述M个给定参考信号资源集合。
作为上述实施例的一个子实施例,所述M个参考信号资源集合中的任一参考信号资源集合中的任一参考信号资源的空间关系由对应的给定参考信号资源集合中的一个参考信号资源确定。
作为上述实施例的一个子实施例,所述M个给定参考信号资源集合被第四更高层参数配置。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“RadioLinkMonitoring”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“failureDetectionResources”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“failureDetectionResourcesToAddModList”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“BeamFailureDetection”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“BeamFailureDetectionSet”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“BeamFailureRecovery”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“BeamFailureRecoveryConfig”。
作为上述子实施例的一个参考实施例,所述第四更高层参数的名称里包括“candidateBeamRSList”。
作为上述实施例的一个子实施例,所述M个给定参考信号资源集合分别被M个第五更高层参数配置。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数的名称里均包括“failureDetectionResources”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数的名称里均包括“failureDetectionResourcesToAddModList”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数的名称里均包括“BeamFailureDetection”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数的名称里均包括“BeamFailureDetectionSet”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数中的一个第五更高层参数的名称里包括“failureDetectionResources”,所述M个第五更高层参数中的另一个第五更高层参数的名称里包括“BeamFailureDetection”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数中的一个第五更高层参数的名称里包括“failureDetectionResourcesToAddModList”,所述M个第五更高层参数中的另一个第五更高层参数的名称里包括“BeamFailureDetectionSet”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数的名称里均包括“candidateBeamRSList”。
作为上述子实施例的一个参考实施例,所述M个第五更高层参数中的一个第五更高层参数的名称里包括“candidateBeamRSList1”,所述M个第五更高层参数中的另一个第五更高层参数的名称里包括“candidateBeamRSList2”。
作为上述实施例的一个子实施例,所述M等于2,所述M个给定参考信号资源集合分别是
作为上述实施例的一个子实施例,所述M等于2,所述M个给定参考信号资源集合分别是
作为上述实施例的一个子实施例,所述M等于2,所述M个给定参考信号资源集合分别是第一更高层参数配置的,关联的更高层参数“usage”都被设置为“codebook”或者都被设置为“nonCodebook”的两个SRS资源集合;所述第一更高层参数的名称里包括“srs-ResourceSetToAddModList”。
作为一个实施例,的具体定义参见3GPP TS38.213。
作为一个实施例,的具体定义参见3GPP TS38.213。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图14所示。在附图14中,第一节点中的处理装置1400包括第一接收机1401和第一发送机1402。
在实施例14中,第一接收机1401接收第一信息集合和第一信令;第一发送机1402放弃在第一时频资源块中发送第一信号;所述第一发送机1402在第二时频资源块中发送第二信号,或者,放弃在第二时频资源块中发送第二信号。
在实施例14中,所述第一信息集合被用于确定所述第一时频资源块和所述第二时频资源块,所述第一时频资源块被分配给所述第一信号,所述第二时频资源块被分配给所述第二信号;所述第一信令被用于确定第三时频资源块;所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
作为一个实施例,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
作为一个实施例,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
作为一个实施例,所述第一发送机1401在所述第三时频资源块中发送第三信号。
作为一个实施例,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
作为一个实施例,所述第一节点是用户设备。
作为一个实施例,所述第一节点是中继节点设备。
作为一个实施例,所述第一信息集合仅由第二信令携带,所述第二信令是一个DCI;所述第一信息集合包括所述第二信令的DCI域Time domain resource assignment,DCI域Frequency domain resource assignment,DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个域中的信息。
作为一个实施例,所述第一信息集合包括第一信息子集和第二信息子集,所述第一信息子集由第三信令携带,所述第二信息子集由第四信令携带,所述第三信令是一个DCI,所述第四信令是一个DCI;所述第一信息子集包括所述第三信令的DCI域Time domain resource assignment,DCI域Frequency domain resource assignment,DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个域中的信息,所述第二信息子集包括所述第四信令的DCI域Time domain resource assignment,DCI域Frequency domain resource assignment,DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个域中的信息;所述第三信令在第一CORESET中被传输,所述第四信令在第二CORESET中被传输,所述第一CORESET和所述第二CORESET中的一个被配置了等于0的CORESEST池索引或没有被配置CORESEST池索引,所述第一CORESET和所述第二CORESET中的另一个被配置了等于1的CORESEST池索引。
作为一个实施例,所述第一信号和所述第二信号属于同一个BWP;所述第三信号的优先级高于所述第一信号的优先级。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域正交,或者,所述第一时频资源块和所述第二时频资源块在时频域交叠且所述第一信号的DMRS端口号和所述第二信号的DMRS端口号不同。
作为一个实施例,所述第一索引是所述第一信令所属的CORESET对应的CORESET池索引;所述句子所述第一信号和所述第一索引关联的意思包括:所述第一信号的调度DCI所属的CORESET对应的CORESET池索引等于所述第一索引。
作为一个实施例,所述第一索引是一个SRS-ResourceSetId;所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组所属的SRS资源集合的SRS-ResourceSetId等于所述第一索引。
作为一个实施例,所述第一接收机1401包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1402包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图15所示。在附图15中,第二节点中的处理装置1500包括第二发送机1501和第二接收机1502;其中,所述第二接收机1502是可选的。
在实施例15中,第二发送机1501发送第一信息集合和第一信令。
在实施例15中,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;所述第一信令被用于确定第三时频资源块;所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;所述第一信息集合的目标接收者放弃在所述第一时频资源块中发送所述第一信号;所述第一信息集合的所述目标接收者在所述第二时频资源块中发送所述第二信号,或者,所述第一信息集合的所述目标接收者放弃在所述第二时频资源块中发送所述第二信号;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
作为一个实施例,所述第二节点包括第二接收机1502,所述第二接收机1502放弃在所述第一时频资源块中接收所述第一信号。
作为一个实施例,所述第二节点包括第二接收机1502,所述第二接收机1502在所述第二时频资源块中接收所述第二信号,或者,所述第二接收机1502放弃在所述第二时频资源块中接收所述第二信号;所 述第二接收机1502是否放弃在所述第二时频资源块中接收所述第二信号依赖所述第一信息集合。
作为一个实施例,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
作为一个实施例,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
作为一个实施例,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
作为一个实施例,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
作为一个实施例,所述第二节点包括第二接收机1502,所述第二接收机1502在所述第三时频资源块中接收第三信号。
作为一个实施例,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
作为一个实施例,所述第二节点是基站设备。
作为一个实施例,所述第二节点是用户设备。
作为一个实施例,所述第二节点是中继节点设备。
作为一个实施例,所述第一信息集合仅由第二信令携带,所述第二信令是一个DCI;所述第一信息集合包括所述第二信令的DCI域Time domain resource assignment,DCI域Frequency domain resource assignment,DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个域中的信息。
作为一个实施例,所述第一信息集合包括第一信息子集和第二信息子集,所述第一信息子集由第三信令携带,所述第二信息子集由第四信令携带,所述第三信令是一个DCI,所述第四信令是一个DCI;所述第一信息子集包括所述第三信令的DCI域Time domain resource assignment,DCI域Frequency domain resource assignment,DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个域中的信息,所述第二信息子集包括所述第四信令的DCI域Time domain resource assignment,DCI域Frequency domain resource assignment,DCI域Modulation and coding scheme,DCI域New data indicator或DCI域HARQ process number中的至少一个域中的信息;所述第三信令在第一CORESET中被传输,所述第四信令在第二CORESET中被传输,所述第一CORESET和所述第二CORESET中的一个被配置了等于0的CORESEST池索引或没有被配置CORESEST池索引,所述第一CORESET和所述第二CORESET中的另一个被配置了等于1的CORESEST池索引。
作为一个实施例,所述第一信号和所述第二信号属于同一个BWP;所述第三信号的优先级高于所述第一信号的优先级。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在频域正交,或者,所述第一时频资源块和所述第二时频资源块在时频域交叠且所述第一信号的DMRS端口号和所述第二信号的DMRS端口号不同。
作为一个实施例,所述第一索引是所述第一信令所属的CORESET对应的CORESET池索引;所述句子所述第一信号和所述第一索引关联的意思包括:所述第一信号的调度DCI所属的CORESET对应的CORESET池索引等于所述第一索引。
作为一个实施例,所述第一索引是一个SRS-ResourceSetId;所述句子所述第一信号和所述第一索引关联的意思包括:所述第一参考信号资源组所属的SRS资源集合的SRS-ResourceSetId等于所述第一索引。
作为一个实施例,所述第二发送机1501包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1502包括实施例4中的{天线420,接收器418,接收处理器470,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced  MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
    所述第一接收机,接收第一信令,所述第一信令被用于确定第三时频资源块;
    第一发送机,放弃在所述第一时频资源块中发送所述第一信号;
    所述第一发送机,在所述第二时频资源块中发送所述第二信号,或者,放弃在所述第二时频资源块中发送所述第二信号;
    其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
  2. 根据权利要求1所述的第一节点,其特征在于,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
  3. 根据权利要求1或2所述的第一节点,其特征在于,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一发送机在所述第三时频资源块中发送第三信号。
  7. 根据权利要求6所述的第一节点,其特征在于,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发送机,发送第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
    所述第二发送机,发送第一信令,所述第一信令被用于确定第三时频资源块;
    其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;所述第一信息集合的目标接收者放弃在所述第一时频资源块中发送所述第一信号;所述第一信息集合的所述目标接收者在所述第二时频资源块中发送所述第二信号,或者,所述第一信息集合的所述目标接收者放弃在所述第二时频资源块中发送所述第二信号;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
  9. 根据权利要求8所述的第二节点,其特征在于,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
  10. 根据权利要求8或9所述的第二节点,其特征在于,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
  11. 根据权利要求8至10中任一权利要求所述的第二节点,其特征在于,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
  12. 根据权利要求8至11中任一权利要求所述的第二节点,其特征在于,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
  13. 根据权利要求8至12中任一权利要求所述的第二节点,其特征在于,包括:
    第二接收机,在所述第三时频资源块中接收第三信号。
  14. 根据权利要求13所述的第二节点,其特征在于,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频 资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
    接收第一信令,所述第一信令被用于确定第三时频资源块;
    放弃在所述第一时频资源块中发送所述第一信号;
    在所述第二时频资源块中发送所述第二信号,或者,放弃在所述第二时频资源块中发送所述第二信号;
    其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
  16. 根据权利要求15所述的方法,其特征在于,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
  17. 根据权利要求15或16所述的方法,其特征在于,是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
  18. 根据权利要求15至17中任一权利要求所述的方法,其特征在于,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
  19. 根据权利要求15至18中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
  20. 根据权利要求15至19中任一权利要求所述的方法,其特征在于,包括:
    在所述第三时频资源块中发送第三信号。
  21. 根据权利要求20所述的方法,其特征在于,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息集合,所述第一信息集合被用于确定第一时频资源块和第二时频资源块,所述第一时频资源块被分配给第一信号,所述第二时频资源块被分配给第二信号;
    发送第一信令,所述第一信令被用于确定第三时频资源块;
    其中,所述第一时频资源块和所述第二时频资源块在时域交叠,所述第三时频资源块和所述第一时频资源块在时域交叠,所述第三时频资源块和所述第二时频资源块在时域交叠;第一参考信号资源组被用于确定所述第一信号的发送天线端口,第二参考信号资源组被用于确定所述第二信号的发送天线端口;所述第一参考信号资源组和所述第二参考信号资源组分别包括至少一个参考信号资源;所述第一信息集合的目标接收者放弃在所述第一时频资源块中发送所述第一信号;所述第一信息集合的所述目标接收者在所述第二时频资源块中发送所述第二信号,或者,所述第一信息集合的所述目标接收者放弃在所述第二时频资源块中发送所述第二信号;是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信息集合。
  23. 根据权利要求22所述的方法,其特征在于,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否被同一个信令调度。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一信息集合的所述目标接收者是否放弃在所述第二时频资源块中发送所述第二信号依赖所述第一信号和所述第二信号是否携带同一个TB。
  25. 根据权利要求22至24中任一权利要求所述的方法,其特征在于,所述第一参考信号资源组中的任一参考信号资源是一个SRS资源,所述第二参考信号资源组中的任一参考信号资源是一个SRS资源;所述第一参考信号资源组属于第一SRS资源集合,所述第二参考信号资源组属于第二SRS资源集合;所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
  26. 根据权利要求22至25中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定第一索引,所述第一信号和所述第一索引关联。
  27. 根据权利要求22至26中任一权利要求所述的方法,其特征在于,包括:
    在所述第三时频资源块中接收第三信号。
  28. 根据权利要求27所述的方法,其特征在于,第三参考信号资源组被用于确定所述第三信号的空间关系;所述第三参考信号资源组包括至少一个参考信号资源。
PCT/CN2023/120648 2022-09-26 2023-09-22 一种被用于无线通信的节点中的方法和装置 WO2024067390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211173549.1A CN117835406A (zh) 2022-09-26 2022-09-26 一种被用于无线通信的节点中的方法和装置
CN202211173549.1 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024067390A1 true WO2024067390A1 (zh) 2024-04-04

Family

ID=90476146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120648 WO2024067390A1 (zh) 2022-09-26 2023-09-22 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117835406A (zh)
WO (1) WO2024067390A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210021394A1 (en) * 2019-07-20 2021-01-21 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication
CN113543328A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 一种通信方法和通信装置
CN113747587A (zh) * 2020-05-28 2021-12-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210021394A1 (en) * 2019-07-20 2021-01-21 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication
CN113543328A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 一种通信方法和通信装置
CN113747587A (zh) * 2020-05-28 2021-12-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN117835406A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113271193A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113709889A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112769532B (zh) 一种被用于无线通信的节点中的方法和装置
CN113194535B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067390A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113498075A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN115412221A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099210A1 (zh) 一种被用于无线通信的方法和装置
WO2023193673A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138554A2 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037475A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113099482B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021143512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023093516A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023131154A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870621

Country of ref document: EP

Kind code of ref document: A1