WO2021031950A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021031950A1
WO2021031950A1 PCT/CN2020/108641 CN2020108641W WO2021031950A1 WO 2021031950 A1 WO2021031950 A1 WO 2021031950A1 CN 2020108641 W CN2020108641 W CN 2020108641W WO 2021031950 A1 WO2021031950 A1 WO 2021031950A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reference signal
power value
type
index
Prior art date
Application number
PCT/CN2020/108641
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010475194.6A external-priority patent/CN112423260B/zh
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021031950A1 publication Critical patent/WO2021031950A1/zh
Priority to US17/676,258 priority Critical patent/US11985605B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device related to a side link (Sidelink) in wireless communication.
  • Sidelink side link
  • V2X Vehicle-to-Everything
  • 3GPP has initiated standard formulation and research work under the NR framework.
  • 3GPP has completed the formulation of requirements for 5G V2X services, and has written it into the standard TS22.886.
  • 3GPP has defined 4 Use Case Groups for 5G V2X services, including: Automated Queued Driving (Vehicles Platnooning), support Extended sensors (Extended Sensors), semi/automatic driving (Advanced Driving) and remote driving (Remote Driving).
  • Automated Queued Driving Vehicle-to-Everything
  • Advanced Driving Advanced Driving
  • Remote Driving Remote Driving
  • NR V2X Compared with the existing LTE (Long-term Evolution) V2X system, NR V2X has a remarkable feature that it supports unicast and supports power control based on the path loss on the side link (SideLink). Based on the results of the 3GPP RAN1#97 meeting, when a node is configured with power control based on the path loss on the downlink (Downlink) and the secondary link at the same time, the node will select the smallest power obtained by the two methods. value.
  • a technical feature of the NR system is to support beam-based power control. How to implement V2X power control based on beam-based power control is a problem that needs to be solved.
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiment in any node of the present application and the features in the embodiment can be applied to any other node. In the case of no conflict, the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the transmission power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss.
  • the measurement of the reference signal is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals
  • the transmitting antenna port is related, and the first index is used to determine the first reference signal from the K first-type reference signals; the sender of the K first-type reference signals is different from the first The intended recipient of the signal.
  • the problem to be solved by this application includes: when a node is configured with multiple downlink reference signals for path loss estimation on a cellular network link, how does this node choose to use for power control on the secondary link?
  • the downlink reference signal selects the downlink reference signal used for power control on the secondary link according to the spatial information used for the transmission on the secondary link, thereby solving this problem.
  • the characteristics of the above method include: the K first-type reference signals are downlink reference signals, the first signals are transmitted on a secondary link, and the first index includes the first The spatial information of the signal; the spatial information of the first signal is used to determine a downlink reference signal used for power control of the first signal from the K first-type reference signals.
  • the characteristics of the above method include: the first reference power value reflects the maximum transmission power that the first signal can use when the interference of the first signal to the cellular network is limited.
  • the advantages of the above method include: using a downlink reference signal matching the transmission beam of the first signal to measure the downlink path loss, and more accurately estimate the interference of the transmission on the secondary link to the cellular network; It is avoided that the transmission power on the secondary link is restricted due to overestimation of the interference of the secondary link to the cellular network, which leads to the performance degradation of the secondary link.
  • the same spatial filter is used to transmit the first signal and receive the first reference signal.
  • the second reference power value is used to determine the first power value, and the second reference power value is linearly related to the second path loss; the measurement of the second type reference signal is used to determine the first power value. Two-way loss; the operation is sending, or the operation is receiving.
  • the operation is sending; the first information block indicates the first channel quality, the measurement for the second type of reference signal is used to determine the first channel quality, and the first channel quality is used for Determine the second path loss.
  • the first reference signal is associated with the first index.
  • the first index indicates a second reference signal
  • the second reference signal is associated with the first reference signal
  • the target receiver of the second reference signal includes all The K senders of the first type reference signal.
  • the second information block indicates configuration information of each of the K first-type reference signals.
  • the measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmission of the first signal. Antenna port.
  • the first node is a user equipment.
  • the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • Send K first-type reference signals where K is a positive integer greater than 1;
  • the measurement for the first reference signal is used to determine the first path loss, and the first reference signal is one of the K first type reference signals; the first index and the first signal The target receiver of the first signal is different from the second node; the transmission power of the first signal is the first power value, and the first reference power value is used to determine the first The power value, the first reference power value and the first path loss are linearly related; the first index is used to determine the first reference signal from the K first-type reference signals.
  • the same spatial filter is used for sending the first signal and receiving the first reference signal.
  • the first reference signal is associated with the first index.
  • the first index indicates a second reference signal
  • the second reference signal is associated with the first reference signal
  • the target receiver of the second reference signal includes all The second node.
  • the second information block indicates configuration information of each of the K first-type reference signals.
  • the measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmission of the first signal. Antenna port.
  • the second node is a base station device.
  • the second node is a relay node.
  • This application discloses a method used in a third node for wireless communication, which is characterized in that it includes:
  • the transmission power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss.
  • the measurement of the reference signal is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals, and K is a positive integer greater than 1
  • the first index and The transmitting antenna port of the first signal is related, and the first index is used to determine the first reference signal from the K first-type reference signals; the sender of the K first-type reference signals Different from the third node.
  • the same spatial filter is used to transmit the first signal and receive the first reference signal.
  • the second reference power value is used to determine the first power value, and the second reference power value is linearly related to the second path loss; the measurement of the second type reference signal is used to determine the first power value. Two-way loss; the execution is receiving, or the execution is sending.
  • the execution is receiving; the first information block indicates the first channel quality, the measurement for the second type of reference signal is used to determine the first channel quality, and the first channel quality is used for Determine the second path loss.
  • the first reference signal is associated with the first index.
  • the first index indicates a second reference signal
  • the second reference signal is associated with the first reference signal
  • the target receiver of the second reference signal includes all The K senders of the first type reference signal.
  • the measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmission of the first signal. Antenna port.
  • the third node is user equipment.
  • the third node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives K first type reference signals, where K is a positive integer greater than 1;
  • the first processor sends the first signal
  • the transmission power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss.
  • the measurement of the reference signal is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals
  • the transmitting antenna port is related, and the first index is used to determine the first reference signal from the K first-type reference signals; the sender of the K first-type reference signals is different from the first The intended recipient of the signal.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends K first-type reference signals, where K is a positive integer greater than 1;
  • the measurement for the first reference signal is used to determine the first path loss, and the first reference signal is one of the K first type reference signals; the first index and the first signal The target receiver of the first signal is different from the second node device; the transmission power of the first signal is the first power value, and the first reference power value is used to determine the first signal A power value, the first reference power value is linearly related to the first path loss; the first index is used to determine the first reference signal from the K first-type reference signals.
  • This application discloses a third node device used for wireless communication, which is characterized in that it includes:
  • the second processor receives the first signal
  • the transmission power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss.
  • the measurement of the reference signal is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals, and K is a positive integer greater than 1
  • the first index and The transmitting antenna port of the first signal is related, and the first index is used to determine the first reference signal from the K first-type reference signals; the sender of the K first-type reference signals Different from the third node device.
  • this application has the following advantages:
  • FIG. 1 shows a flowchart of K first-type reference signals and first signals according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • Figure 6 shows a flow chart of transmission according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of a first reference power value according to an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of a first index according to an embodiment of the present application.
  • Fig. 9 shows a schematic diagram of a second reference power value according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a first power value according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of a first power value according to an embodiment of the present application.
  • Fig. 12 shows a schematic diagram of a first power value according to an embodiment of the present application
  • Fig. 13 shows a schematic diagram of a first power value according to an embodiment of the present application
  • Fig. 14 shows a schematic diagram of a first power value according to an embodiment of the present application.
  • Fig. 15 shows a schematic diagram of a first information block according to an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of the correlation between the first reference signal and the first index according to an embodiment of the present application
  • FIG. 17 shows a schematic diagram of the relationship between the first index, the second reference signal and the first reference signal according to an embodiment of the present application
  • Fig. 18 shows a schematic diagram of a second information block according to an embodiment of the present application.
  • Fig. 19 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 20 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application
  • Fig. 21 shows a structural block diagram of a processing apparatus for a device in a third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of K first-type reference signals and first signals according to an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence between the steps.
  • the first node in this application receives K first-type reference signals in step 101; and sends the first signal in step 102.
  • K is a positive integer greater than 1
  • the transmission power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the path loss is linearly correlated, and the measurement for a first reference signal is used to determine the first path loss, and the first reference signal is one of the K first type reference signals
  • the index is related to the transmitting antenna port of the first signal, and the first index is used to determine the first reference signal from the K first-type reference signals
  • the sender is different from the target receiver of the first signal.
  • the K first-type reference signals are DL (DownLink, downlink) reference signals.
  • the K first-type reference signals include CSI-RS (Channel State Information-Reference Signal, Channel State Information Reference Signal).
  • CSI-RS Channel State Information-Reference Signal, Channel State Information Reference Signal
  • the K first type reference signals include NZP (None Zero Power, non-zero power) CSI-RS.
  • the K first type reference signals include SS/PBCH block (Synchronization Signal/Physical Broadcast Channel block, synchronization signal/physical broadcast channel block).
  • SS/PBCH block Synchronization Signal/Physical Broadcast Channel block, synchronization signal/physical broadcast channel block.
  • the K first-type reference signals include DMRS (DeModulation Reference Signals, demodulation reference signals).
  • the K first-type reference signals are transmitted through a Uu interface.
  • the K first-type reference signals are transmitted on the DownLink.
  • the K first-type reference signals are transmitted through a link between the base station equipment and the user equipment.
  • the transmit antenna ports of any two first-type reference signals in the K first-type reference signals cannot be assumed to be QCL (Quasi Co-Located).
  • any first-type reference signal among the K first-type reference signals may be used for path loss estimation of V2X transmission.
  • the two antenna ports QCL refers to: the large-scale properties of the channel experienced by the wireless signal transmitted on one of the two antenna ports can be inferred from the large-scale properties of the two antenna ports.
  • the large-scale properties include ⁇ delay spread, Doppler spread, Doppler shift, average gain ), one or more of average delay (average delay), and spatial reception parameters (Spatial Rx parameters) ⁇ .
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal is transmitted on a side link (SideLink).
  • SideLink side link
  • the first signal is transmitted through the PC5 interface.
  • the first signal is unicast (Unicast) transmission.
  • the first signal is multicast (Groupcast) transmission.
  • the first signal is broadcast (Boradcast) transmission.
  • the first signal carries a TB (Transport Block).
  • the first signal carries a CB (Code Block, code block).
  • the first signal carries a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the K first-type reference signals and the first signal are transmitted on the same carrier (Carrier).
  • the K first-type reference signals are transmitted on the downlink, and the first signals are transmitted on the secondary link.
  • the first reference signal includes CSI-RS.
  • the first reference signal includes NZP CSI-RS.
  • the first reference signal includes SS/PBCH block.
  • the same spatial domain filter is used to send the first signal and receive the first reference signal.
  • the first index is a non-negative integer.
  • the first index is a positive integer.
  • the first index is used to identify an SRS (Sounding Reference Signal) resource (SRS resource).
  • SRS Sounding Reference Signal
  • the first index is used to identify an SRS resource set (SRS resource set).
  • the first index is used to identify an antenna group.
  • one antenna group includes a positive integer number of antennas, and different antenna groups include different antennas.
  • different antenna groups are connected to the baseband processor through different RF (Radio Frequency) chains.
  • the first index is used to identify an antenna panel (panel).
  • one antenna panel includes a positive integer number of antennas, and different antenna panels include different antennas.
  • different antenna panels are connected to the baseband processor through different RF chains.
  • the first index is used to identify a spatial relationship information (spatialRelationInfo) group, and a spatial relationship information group includes a positive integer number of spatial relationship information.
  • spatialRelationInfo spatial relationship information
  • spatialRelationInfo the specific definition of the spatial relation information (spatialRelationInfo) can be found in 3GPP TS38.331.
  • the first index is used to identify a downlink reference signal resource.
  • the first index is used to identify a downlink reference signal resource group, and a downlink reference signal resource group includes a positive integer number of downlink reference signal resources.
  • the downlink reference signal resource includes a CSI-RS resource (CSI-RS resource).
  • the downlink reference signal resource includes SSB (SS/PBCH Block) resource (SSB resource).
  • SSB SS/PBCH Block
  • the first index is used to identify a TCI (Transmission Configuration Indication) state group, and a TCI state group includes a positive integer number of TCI states.
  • TCI Transmission Configuration Indication
  • the first index is used to identify a TCI state.
  • TCI state refers to 3GPP TS38.214 and 3GPP TS38.331.
  • the first index includes SRI (Sounding reference signal Resource Indicator, sounding reference signal resource identifier).
  • the first index includes CRI (CSI-RS Resource indicator, CSI-RS resource identifier).
  • CRI CSI-RS Resource indicator, CSI-RS resource identifier
  • the first index includes SSBRI (SSB Resource indicator, SSB resource identifier).
  • SSBRI SSB Resource indicator, SSB resource identifier
  • the first index includes SRS-Resource Id.
  • the first index includes SRS-ResourceSetId.
  • the first index includes NZP-CSI-RS-ResourceId.
  • the first index includes NZP-CSI-RS-ResourceSetId.
  • the first index includes SSB-Index.
  • the first index includes SRI-PUSCH-PowerControlId.
  • the specific definition of the SRS-ResourceId can be found in 3GPP TS38.331.
  • the specific definition of the NZP-CSI-RS-ResourceId can be found in 3GPP TS38.331.
  • the specific definition of the NZP-CSI-RS-ResourceSetId can be found in 3GPP TS38.331.
  • the first index is a first type index; different uplink reference signals associated with the same first type index correspond to the same TA (Timing Advance, timing advance).
  • the first index is a first-type index; there are at least two different first-type indexes, and the uplink reference signals respectively associated with the two different first-type indexes correspond to different TAs. .
  • the first index is a first-type index; different uplink reference signals associated with the same first-type index cannot be sent at the same time.
  • the first index is a first-type index; the uplink reference signals associated with different first-type indexes may be sent at the same time.
  • the uplink reference signal includes SRS.
  • the first index of the sentence being used to determine the first reference signal from the K first type reference signals includes: the first reference signal is the K first type reference signals Among the reference signals, a first-type reference signal is associated with the first index.
  • the first index of the sentence used to determine the first reference signal from the K first-type reference signals includes: the first index indicates the second A reference signal, and the second reference signal is associated with the first reference signal in the K first-type reference signals.
  • the second reference signal is associated with only the first reference signal among the K first-type reference signals.
  • the first index is used to determine the RV (Redundancy Version, redundancy version) of the first signal.
  • the first index and the time-frequency resource occupied by the first signal are jointly used to determine the first reference signal from the K first-type reference signals.
  • the time-frequency resources occupied by the first signal belong to a first resource pool
  • the first resource pool is one of M candidate resource pools, and M is a positive integer greater than 1.
  • the candidate resource pool has a one-to-one correspondence with M reference signal sets, and any reference signal set in the M reference signal sets includes one or more reference signals in the K first type reference signals; the first index Is used to determine the first reference signal from the reference signal set corresponding to the first resource pool.
  • any one of the M candidate resource pools is reserved for V2X transmission.
  • one candidate resource pool in the M candidate resource pools is reserved for V2X transmission.
  • one candidate resource pool in the M candidate resource pools is reserved for uplink transmission.
  • the M reference signal sets are configured by RRC signaling.
  • the first reference signal is a reference signal associated with the first index in a reference signal set corresponding to the first resource pool.
  • the first reference signal is the only reference signal associated with the first index in the reference signal set corresponding to the first resource pool.
  • the priority of the first signal is used to determine the first reference signal.
  • the priority of the first signal belongs to a first priority set, the first priority set is one of M priority sets, and M is a positive integer greater than 1; the M priorities There is a one-to-one correspondence between the level set and the M reference signal sets, and any reference signal set in the M reference signal sets includes one or more reference signals in the K first-type reference signals; the first index is And used to determine the first reference signal from a reference signal set corresponding to the first priority set.
  • the M priority sets are configured by RRC signaling.
  • the first reference signal is the only reference signal associated with the first index in the reference signal set corresponding to the first priority set.
  • one first-type reference signal in the K first-type reference signals belongs to two different reference signal sets in the M reference signal sets.
  • none of the K first-type reference signals belongs to two different reference signal sets in the M reference signal sets at the same time.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • FIG. 2 illustrates the network architecture 200 of LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) and the future 5G system.
  • the network architecture 200 of LTE, LTE-A and the future 5G system is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UEs (User Equipment) 201, a UE 241 that communicates with UE 201 on a side link (Sidelink), NG-RAN (Next Generation Radio Access Network) 202, 5G-CN (5G) -CoreNetwork, 5G core network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • UE 241 Next Generation Radio Access Network
  • 5G-CN (5G) -CoreNetwork Next Generation Radio Access Network
  • 5G core network 5G core network
  • EPC Evolved Packet Core
  • HSS Home Subscriber Server
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5G-CN/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircrafts, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5G-CN/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function, user plane) Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Serving Gateway) 212, and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that handles signaling between UE201 and 5G-CN/EPC210. Generally, MME/AMF/UPF211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the third node in this application includes the UE241.
  • the third node in this application includes the UE201.
  • the air interface between the UE201 and the gNB203 is a Uu interface.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the air interface between the UE201 and the UE241 is a PC5 interface.
  • the radio link between the UE 201 and the UE 241 is a side link (Sidelink).
  • the first node in this application and the third node in this application are respectively a terminal within the coverage of the gNB203.
  • the first node in this application is a terminal covered by the gNB203
  • the third node in this application is a terminal outside the coverage of the gNB203.
  • the UE 201 and the UE 241 support unicast (Unicast) transmission.
  • unicast unicast
  • the UE 201 and the UE 241 support broadcast (Broadcast) transmission.
  • the UE 201 and the UE 241 support multicast (Groupcast) transmission.
  • the sender of the K first type reference signals in this application includes the gNB203.
  • the recipients of the K first type reference signals in this application include the UE201.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the UE241.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Figure 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • Figure 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second Communication node equipment (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301, and is responsible for the link between the first communication node device and the second communication node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, as well as providing support for handover between the second communication node devices and the first communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the difference between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the Data Radio Bearer (DRB). To support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • Application layer at one end for example, remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the K first-type reference signals are generated in the PHY301 or the PHY351.
  • the first signal is generated in the PHY301 or the PHY351.
  • the second type of reference signal is generated in the PHY301 or the PHY351.
  • the first information block is generated in the PHY301 or the PHY351.
  • the first information block is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the second information block is generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the second information block is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of the first communication device and the second communication device according to an embodiment of the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multiple antenna receiving processor 472, a multiple antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transmission channels, and multiplexing of the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying) (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilot) in the time and/or frequency domain, and then uses inverse fast Fourier transform (IFFT) ) To generate a physical channel carrying a multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the communication device 450 is any parallel stream to the destination. The symbols on each parallel stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the wireless resource allocation of the first communication device 410 Multiplexing between transport channels to implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: receiving the K first-type reference signals in this application; sending the first signals in this application.
  • the K is a positive integer greater than 1;
  • the transmission power of the first signal is a first power value, the first reference power value is used to determine the first power value, the first reference power value and the first power value
  • the path loss is linearly correlated, and the measurement for a first reference signal is used to determine the first path loss, and the first reference signal is one of the K first type reference signals;
  • the index is related to the transmitting antenna port of the first signal, and the first index is used to determine the first reference signal from the K first-type reference signals;
  • the sender is different from the target receiver of the first signal.
  • the second communication device 450 includes: a memory storing a computer-readable program of instructions, the computer-readable program of instructions generates actions when executed by at least one processor, and the actions include: The K first-type reference signals in the application; sending the first signals in the application.
  • the K is a positive integer greater than 1;
  • the transmission power of the first signal is a first power value, the first reference power value is used to determine the first power value, the first reference power value and the first power value
  • the path loss is linearly correlated, and the measurement for a first reference signal is used to determine the first path loss, and the first reference signal is one of the K first type reference signals;
  • the index is related to the transmitting antenna port of the first signal, and the first index is used to determine the first reference signal from the K first-type reference signals;
  • the sender is different from the target receiver of the first signal.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending the K first-type reference signals in this application, where K is a positive integer greater than 1.
  • the measurement for the first reference signal is used to determine the first path loss, the first reference signal is one of the K first type reference signals; the first index and the transmission of the first signal
  • the antenna port is related, the target receiver of the first signal is different from the first communication device 410; the transmission power of the first signal is the first power value, and the first reference power value is used to determine the first
  • the power value, the first reference power value and the first path loss are linearly related; the first index is used to determine the first reference signal from the K first-type reference signals.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: For the K reference signals of the first type in the application, the K is a positive integer greater than 1.
  • the measurement for the first reference signal is used to determine the first path loss, the first reference signal is one of the K first type reference signals; the first index and the transmission of the first signal
  • the antenna port is related, the target receiver of the first signal is different from the first communication device 410; the transmission power of the first signal is the first power value, and the first reference power value is used to determine the first
  • the power value, the first reference power value and the first path loss are linearly related; the first index is used to determine the first reference signal from the K first-type reference signals.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the device of the first communication device 410 at least receives the first signal in this application.
  • the transmit power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss, and is for the first reference signal
  • the measurement of is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals, and K is a positive integer greater than 1
  • the first index and the The transmitting antenna port of the first signal is related, and the first index is used to determine the first reference signal from the K first-type reference signals; the sender of the K first-type reference signals is different from The first communication device 410.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signal in the application.
  • the transmit power of the first signal is a first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss, and is for the first reference signal
  • the measurement of is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals, and K is a positive integer greater than 1
  • the first index and the The transmitting antenna port of the first signal is related, and the first index is used to determine the first reference signal from the K first-type reference signals; the sender of the K first-type reference signals is different from The first communication device 410.
  • the first node in this application includes the second communication device 450.
  • the second node in this application includes the first communication device 410.
  • the third node in this application includes the first communication device 410.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the K first type reference signals in this application;
  • ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the first signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processing At least one of the device 459, the memory 460, and the data source 467 ⁇ is used to send the first signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data
  • At least one of the sources 467 ⁇ is used to receive the second-type reference signal in this application;
  • At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the second type reference signal in this application.
  • the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ at least One is used to receive the second type of reference signal in this application; ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller At least one of the processor 459, the memory 460, and the data source 467 ⁇ is used to send the second type reference signal in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information block in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471 At least one of the controller/processor 475 and the memory 476 ⁇ is used to send the first information block in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5.
  • the second node U1, the first node U2, and the third node U3 are communication nodes transmitted in pairs over the air interface.
  • the steps in blocks F51 to F55 are optional.
  • the second node U1 sends the second information block in step S5101; sends K first-type reference signals in step S511; and receives the third information block in step S5102.
  • the first node U2 receives the second information block in step S5201; receives K first-type reference signals in step S521; sends the third information block in step S5202; sends the second-type reference signal in step S5203; In step S5204, the first information block is received; in step S5205, the first signaling is sent; in step S522, the first signal is sent.
  • the third node U3 receives the second-type reference signal in step S5301; sends the first information block in step S5302; receives the first signaling in step S5303; and receives the first signal in step S531.
  • the transmission power of the first signal is a first power value
  • the first reference power value is used by the first node U2 to determine the first power value
  • the first reference power value and The first path loss is linearly related
  • the measurement for the first reference signal is used by the first node U2 to determine the first path loss
  • the first reference signal is one of the K first-type reference signals
  • the first type of reference signal; the first index is related to the transmit antenna port of the first signal, and the first index is used by the first node U2 to determine the first type from the K first type reference signals A reference signal; the target receiver of the first signal does not include the second node U1.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the third node U3 is the third node in this application.
  • the air interface between the second node U1 and the first node U2 is a Uu interface.
  • the air interface between the second node U1 and the first node U2 includes a cellular link.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the relay node and the user equipment.
  • the air interface between the third node U3 and the first node U2 is a PC5 interface.
  • the air interface between the third node U3 and the first node U2 includes a secondary link.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between the relay node and the user equipment.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the first node in this application is a terminal.
  • the first node in this application is a car.
  • the first node in this application is a vehicle.
  • the first node in this application is an RSU (Road Side Unit, Road Side Unit).
  • the third node in this application is a terminal.
  • the third node in this application is a car.
  • the third node in this application is a vehicle.
  • the third node in this application is an RSU.
  • the first node in this application sends the second type reference signal
  • the third node in this application receives the second type reference signal
  • the operation in this application is sending; the first node in this application uses the same spatial filter to send the second-type reference signal and the first signal.
  • the operation in this application is transmission; the first node in this application uses the same antenna panel to transmit the second type reference signal and the first signal.
  • the operation in this application is sending; the target receiver of the second type reference signal does not include the K senders of the first type reference signal.
  • the execution in this application is receiving; the third node in this application uses the same spatial filter to receive the second-type reference signal and the first signal.
  • the execution in this application is receiving; the third node in this application uses the same antenna panel to receive the second-type reference signal and the first signal.
  • the first signal is transmitted on a secondary link physical layer data channel (that is, a secondary link channel that can be used to carry physical layer data).
  • a secondary link physical layer data channel that is, a secondary link channel that can be used to carry physical layer data
  • the first signal is transmitted on a PSSCH (Physical Sidelink Shared Channel, physical secondary link shared channel).
  • PSSCH Physical Sidelink Shared Channel, physical secondary link shared channel
  • the steps in block F53 in FIG. 5 exist; the second reference power value is used by the first node U2 to determine the first power value, the second reference power value and the second The path loss is linearly related; the measurement for the second type of reference signal is used to determine the second path loss.
  • the steps in block F53 and block F54 in FIG. 5 exist; the first information block indicates the first channel quality, and the measurement of the second type of reference signal is measured by the third The node U3 is used to determine the first channel quality, and the first channel quality is used by the first node U2 to determine the second path loss.
  • the first information block is transmitted on the PSSCH.
  • the first information block is transmitted on PSCCH (Physical Sidelink Control Channel, Physical Secondary Link Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Secondary Link Control Channel
  • the first information block is transmitted on a PSFCH (Physical Sidelink Feedback Channel, physical secondary link feedback channel).
  • PSFCH Physical Sidelink Feedback Channel, physical secondary link feedback channel
  • the steps in block F51 in FIG. 5 exist; the second information block indicates the configuration information of each of the K first-type reference signals.
  • the second information block is transmitted on PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information block includes P1 information sub-blocks, and P1 is a positive integer greater than 1, and the P1 information sub-blocks are respectively transmitted on P1 PDSCHs.
  • the steps in block F55 in FIG. 5 exist; the method used in the first node for wireless communication includes:
  • the first signaling includes scheduling information of the first signal; the scheduling information of the first signal includes occupied time domain resources and occupied frequency domain resources , MCS (Modulation and Coding Scheme), DMRS configuration information, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number (process number), RV (Redundancy Version, redundancy version) or NDI (New One or more of Data Indicator, new data indicator).
  • MCS Modulation and Coding Scheme
  • DMRS configuration information including occupied time domain resources and occupied frequency domain resources , MCS (Modulation and Coding Scheme), DMRS configuration information, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number (process number), RV (Redundancy Version, redundancy version) or NDI (New One or more of Data Indicator, new data indicator).
  • the first signaling includes one or more fields in SCI (Sidelink Control Information, secondary link control information).
  • SCI Servicelink Control Information, secondary link control information
  • the first signaling is transmitted on a side link (SideLink).
  • the first signaling is transmitted through the PC5 interface.
  • the first signaling is transmitted on the PSCCH.
  • the first signaling indicates the priority of the first signal.
  • the steps in block F52 in FIG. 5 exist; the method used in the first node for wireless communication includes:
  • the third information block is carried by physical layer signaling.
  • the third information block is carried by MAC CE (Medium Access Control Layer Control Element, Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element, Medium Access Control Layer Control Element
  • the third information block is transmitted on the uplink.
  • the third information block is transmitted through the Uu interface.
  • the third information block indicates that the first index is used to determine a spatial domain receive filter (spatial domain receive filter) of the first reference signal.
  • the third information block indicates that the antenna panel used to receive the first reference signal is identified by the first index.
  • the third information block indicates that the antenna group used to receive the first reference signal is identified by the first index.
  • the third information block is transmitted on PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmit antenna port of the first signal.
  • the K path losses are used to determine the first index.
  • the K path losses are used to determine the first reference signal from the K first-type reference signals.
  • the first reference signal is used to determine the transmitting antenna port of the first signal.
  • the first index is an index of the first path loss in the K path losses.
  • the first index is an index of the first reference signal in the K reference signals of the first type.
  • the first index is an identifier of the first reference signal.
  • any one of the K path losses is equal to the transmission power of the corresponding first type reference signal in dBm minus the RSRP of the corresponding first type reference signal in dBm.
  • the first path loss is the largest path loss among the K path losses.
  • the first path loss is the smallest path loss among the K path losses.
  • the K path losses are respectively used to determine K reference powers
  • the first reference power is a reference power corresponding to the first path loss among the K reference powers.
  • the calculation method of any given reference power among the K reference powers is the same as the calculation method of the first reference power, except that the first path loss is replaced by Fixed path loss, where the given path loss is the path loss corresponding to the given reference power among the K path losses.
  • the first reference power is a reference power with the largest K reference powers.
  • the first reference power is the smallest reference power among the K reference powers.
  • the first reference power is the largest reference power that is not greater than a first threshold among the K reference powers; the first threshold is a positive real number.
  • the first reference power is the smallest reference power that is not less than a first threshold among the K reference powers; the first threshold is a positive real number.
  • the K1 reference powers are composed of all the reference powers that are not greater than the first threshold among the K reference powers, K1 is a positive integer greater than 1, and the first reference power is the One of the K1 reference powers; the third type of reference signal is used to determine the first reference power from the K1 reference powers; the first threshold is a positive real number.
  • K1 reference powers are composed of all reference powers not less than a first threshold in the K reference powers, K1 is a positive integer greater than 1, and the first reference power is the One of the K1 reference powers; the third type of reference signal is used to determine the first reference power from the K1 reference powers; the first threshold is a positive real number.
  • the sender of the third-type reference signal is the first node
  • the target receiver of the third-type reference signal is the target receiver of the first signal
  • the sender of the third-type reference signal is the target receiver of the first signal
  • the target receiver of the third-type reference signal is the first node
  • the third-type reference signal is the second-type reference signal.
  • the third type of reference signal includes DMRS.
  • the third type of reference signal includes CSI-RS.
  • the third type of reference signal includes SL CSI-RS.
  • the measurement for the third type of reference signal is used to determine the first reference signal.
  • the K1 spatial filters are the spatial filters used by the first node to receive K1 reference signals of the first type, and the K1 reference signals of the first type are respectively the Among the K first-type reference signals, the first-type reference signal corresponding to the K1 reference power;
  • the first filter is a filter used by the first node to receive the first reference signal, and the first The RSRP obtained by the node using the first filter to receive the third-type reference signal is not less than that of the first node using any one of the K1 filters except the first filter to receive the RSRP obtained from the third type of reference signal.
  • the QCL relationship of the second type of reference signal is used to determine the first reference signal.
  • the K1 first-type reference signals are respectively the first-type reference signals corresponding to the K1 reference powers among the K first-type reference signals, and the first reference signals It is the only reference signal of the first type among the K1 reference signals of the first type and the reference signal of the second type QCL.
  • the first threshold is configured by RRC.
  • the first threshold is predefined.
  • the K reference power values are used to determine the first threshold.
  • the second threshold is used to determine K2 reference powers from the K reference powers, K2 is a positive integer less than the K; the first threshold is the largest of the K2 reference powers value.
  • the second threshold is used to determine K2 reference powers from the K reference powers, K2 is a positive integer smaller than the K; the first threshold is the smallest of the K2 reference powers value.
  • the second threshold is a positive real number less than one.
  • the ratio of the K2 to the K is the largest positive integer not greater than the second threshold.
  • the K2 is the smallest positive integer whose ratio to the K is not less than the second threshold.
  • the K2 reference powers are the K2 maximum reference powers among the K reference powers.
  • the K2 reference powers are the K2 minimum reference powers among the K reference powers.
  • the first node determines the first reference signal by determining the first reference power from the K reference powers.
  • the first node determines the first reference signal by determining the first path loss from the K path losses.
  • the first reference power is not greater than a first threshold; the first threshold is a positive real number.
  • the K path losses are used to determine the transmitting antenna port of the first signal.
  • Embodiment 6 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 6.
  • the second node U4, the first node U5, and the third node U6 are communication nodes that are transmitted in pairs over the air interface.
  • the steps in blocks F61 and F62 are optional.
  • the second node U4 sends the second information block in step S6401; sends K reference signals of the first type in step S641.
  • the first node U5 receives the second information block in step S6501; receives K first-type reference signals in step S651; receives the second-type reference signals in step S6502; and sends the first signal in step S652.
  • the third node U6 sends the second type reference signal in step S6601; receives the first signal in step S661.
  • the first node in this application receives the second type reference signal; the third node in this application sends the second type reference signal.
  • the steps in block F62 in FIG. 6 exist; the second reference power value is used by the first node U5 to determine the first power value, the second reference power value and the second The path loss is linearly related; the measurement for the second type of reference signal is used by the first node U5 to determine the second path loss.
  • the operation in this application is receiving; the first node in this application uses the same spatial filter to receive the second-type reference signal and send the first signal.
  • the operation in this application is receiving; the first node in this application uses the same antenna panel to receive the second type of reference signal and transmit the first signal.
  • the execution in this application is sending; the third node in this application uses the same spatial filter to send the second-type reference signal and receive the first signal.
  • the execution in this application is sending; the third node in this application uses the same antenna panel to send the second type of reference signal and receive the first signal.
  • Embodiment 7 illustrates a schematic diagram of the first reference power value according to an embodiment of the present application; as shown in FIG. 7.
  • the first reference power value is linearly related to the first path loss in this application, and the measurement of the first reference signal in this application is used to determine the first path loss ,
  • the linear coefficient between the first reference power value and the first path loss is the first coefficient.
  • the symbol " ⁇ " in Figure 7 indicates linear correlation.
  • the unit of the first reference power value is Watt.
  • the unit of the first reference power value is dBm (millidecibels).
  • the unit of the first path loss is dB.
  • the first path loss is equal to the transmit power of the first reference signal minus the RSRP (Reference Signal Received Power) of the first reference signal.
  • the first path loss is equal to the transmit power of the first reference signal in dBm minus the RSRP of the first reference signal in dBm.
  • the first path loss is equal to the transmit power of the first reference signal minus the RSRP obtained by the first node using the first spatial filter to receive the first reference signal, and the first spatial domain
  • the filter is a spatial domain filter (spatial domain filter) used by the first node to send the first signal in this application.
  • the first path loss is equal to the transmit power of the first reference signal minus the RSRP obtained by the first node using the first antenna group to receive the first reference signal
  • the first antenna group Is an antenna group used by the first node to transmit the first signal in the present application
  • the first antenna group includes a positive integer number of antennas.
  • the first path loss is equal to the transmit power of the first reference signal minus the RSRP obtained by the first node receiving the first reference signal using a first antenna panel (panel).
  • An antenna panel is an antenna panel used by the first node to transmit the first signal in this application, and the first antenna panel includes a positive integer number of antennas.
  • the first coefficient is a non-negative real number not greater than 1.
  • the first coefficient is configured by a higher layer parameter.
  • the first coefficient is pre-configured.
  • the first coefficient is ⁇ (j) used for uplink power control.
  • the first coefficient is ⁇ (j) used for secondary link power control.
  • the first reference power value and the first component are linearly related, and the linear coefficient between the first reference power value and the first component is 1; the first component is a power reference.
  • the first component is P 0 (j) used for uplink power control.
  • the first component is P 0 (j) used for secondary link power control.
  • the first component is configured with higher-layer parameters.
  • the first component is pre-configured.
  • the first reference power value and the second component are linearly related, and the linear coefficient between the first reference power value and the second component is 1; the second component and the first component The bandwidth to which the signal is allocated is related.
  • the second component is related to a bandwidth in a unit of RB (Resource Block, resource block) to which the first signal is allocated.
  • the first reference power value and the third component are linearly correlated, the linear coefficient between the first reference power value and the third component is 1, and the third component and the first The signal is related to the MCS.
  • the first reference power value and the fourth component are linearly related, the linear coefficient between the first reference power value and the fourth component is 1, and the fourth component is adjusted by power control status.
  • the first reference power value is linearly related to the first path loss, the first component, the second component, the third component, and the fourth component, respectively.
  • the linear coefficient between the first reference power value and the first path loss is the first coefficient; the first reference power value and the first component, the second component, and the third
  • the linear coefficients between the component and the fourth component are 1 respectively.
  • the first reference power value is linearly related to the first path loss, the first component, and the second component, respectively.
  • the linear coefficient between the first reference power value and the first path loss is the first coefficient; the linear coefficient between the first reference power value and the first component and the second component They are 1.
  • Embodiment 8 illustrates a schematic diagram of the first index according to an embodiment of the present application; as shown in FIG. 8.
  • the first index is related to the transmitting antenna port of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the transmitting antenna port of the first signal is used to determine the first index.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: an antenna panel used to transmit the first signal is used to determine the first index.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the antenna group used to transmit the first signal is used to determine the first index.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: a spatial domain transmission filter of the first signal is used to determine the first index.
  • the correlation between the first index of the sentence and the transmitting antenna port of the first signal includes: the TCI state of the first signal is used to determine the first index.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is an identifier of an antenna panel used to transmit the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is an identifier of an antenna group used to transmit the first signal.
  • the relation between the first index of the sentence and the transmitting antenna port of the first signal includes: the first index is an identifier of the TCI state of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first node uses the same spatial domain filter to transmit the first uplink reference signal and the A first signal, where the first index indicates the first uplink reference signal.
  • the first index is an identifier of the first uplink reference signal.
  • the first uplink reference signal includes SRS.
  • the first uplink reference signal is the second reference signal in this application.
  • the first index explicitly indicates the first uplink reference signal.
  • the first index implicitly indicates the first uplink reference signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first node uses the same spatial domain filter to receive and transmit the first downlink reference signal In the first signal, the first index indicates the first downlink reference signal.
  • the first index is an identifier of the first downlink reference signal.
  • the first downlink reference signal includes CSI-RS.
  • the first downlink reference signal includes SSB.
  • the first downlink reference signal is the first reference signal in this application.
  • the first index explicitly indicates the first downlink reference signal.
  • the first index implicitly indicates the first downlink reference signal.
  • the first index of the sentence being related to the transmitting antenna port of the first signal includes: the first node uses a first antenna panel to transmit the first signal, and the first index Indicates the first antenna panel.
  • the first index explicitly indicates the first antenna panel.
  • the first index implicitly indicates the first antenna panel.
  • the first index of the sentence being related to the transmitting antenna port of the first signal includes: the first node uses a first antenna group to transmit the first signal, and the first index indicates the The first antenna group.
  • the first index explicitly indicates the first antenna group.
  • the first index implicitly indicates the first antenna group.
  • the first index of the sentence being related to the transmitting antenna port of the first signal includes: the first node uses the same antenna panel to transmit the first reference signal group and the first signal, and The first reference signal group includes a positive integer number of uplink reference signals; the first index indicates the first reference signal group.
  • the first index of the sentence being related to the transmitting antenna port of the first signal includes: the first node uses the same antenna panel to receive the first reference signal group and transmit the first signal, so
  • the first reference signal group includes a positive integer number of downlink reference signals; the first index indicates the first reference signal group.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the transmitting antenna port of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the antenna used to transmit the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the antenna panel used to transmit the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the antenna group used to transmit the first signal.
  • that the first index of the sentence is related to the transmit antenna port of the first signal includes: the first index is used to determine at least one transmit antenna port of the first signal.
  • the relation between the first index of the sentence and the transmitting antenna port of the first signal includes: the first index is used to determine all the transmitting antenna ports of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine a spatial domain transmission filter of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the precoding matrix of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index indicates the TCI state of the first signal.
  • the channel experienced by one wireless signal sent on one antenna port can be inferred from the channel experienced by another wireless signal sent on the one antenna port.
  • the channel experienced by the wireless signal sent on one antenna port cannot be inferred from the channel experienced by the wireless signal sent on another antenna port.
  • the channel includes ⁇ CIR (Channel Impulse Response, channel impulse response), PMI (Precoding Matrix Indicator), CQI (Channel Quality Indicator, channel quality indicator), RI (Rank Indicator, One or more of rank identifier) ⁇ .
  • CIR Channel Impulse Response, channel impulse response
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator, channel quality indicator
  • RI Rank Indicator, One or more of rank identifier
  • the transmit antenna port of the first signal is a transmit antenna port of a DMRS carrying the PSSCH of the first signal.
  • the transmitting antenna port of the first signal is the transmitting antenna port of the DMRS corresponding to the first signal.
  • the first signal is transmitted on the first PSSCH, and the first DMRS is the DMRS of the first PSSCH; the first PSSCH symbol is a symbol of the first PSSCH, and the first DMRS symbol is the DMRS of the first PSSCH.
  • One symbol of the first DMRS, the first PSSCH symbol and the first DMRS symbol are transmitted by the same antenna port; if and only if the first PSSCH symbol and the first DMRS symbol are located in the same time slot (slot) and the same PRG (Physical Resource Group, physical resource group), the channel experienced by the first DMRS symbol can be inferred from the channel experienced by the first DMRS symbol.
  • the first DMRS is the DMRS corresponding to the first signal; the first symbol is a symbol of the first signal, the first DMRS symbol is a symbol of the first DMRS, and the first symbol is The symbol and the first DMRS symbol are transmitted by the same antenna port; if and only if the first symbol and the first DMRS symbol are located in the same slot and the same PRG, the The channel experienced by the DMRS symbol can be inferred from the channel experienced by the first symbol.
  • the symbol is a modulation symbol.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the transmitting antenna port of the first signal.
  • that the first index of the sentence is related to the transmitting antenna port of the first signal includes: the first index is used to determine the first reference signal, and the first reference signal is used to determine The transmitting antenna port of the first signal.
  • the K first-type reference signals correspond to the K fourth-type reference signals one-to-one
  • the first reference signals correspond to the fourth antenna ports in the K fourth-type reference signals
  • the K fourth type reference signals include SRS.
  • the K fourth type reference signals include CSI-RS.
  • the K fourth type reference signals include SL CSI-RS.
  • the correspondence between the K first type reference signals and the K fourth type reference signals is configured by RRC signaling.
  • the first node uses the same spatial filter to receive the first reference signal and send the first signal.
  • the first node uses the same antenna panel to receive the first reference signal and transmit the first signal.
  • the first node uses the same antenna group to receive the first reference signal and transmit the first signal.
  • Embodiment 9 illustrates a schematic diagram of the second reference power value according to an embodiment of the present application; as shown in FIG. 9.
  • the second reference power value is linearly related to the second path loss in this application; the measurement of the second type of reference signal in this application is used to determine the second path loss.
  • Loss the linear coefficient between the second reference power value and the second path loss is a second coefficient.
  • the symbol " ⁇ " in Fig. 9 indicates linear correlation.
  • the second type of reference signal is a secondary link reference signal.
  • the second type of reference signal includes CSI-RS.
  • the second type of reference signal includes SL (SideLink, secondary link) CSI-RS.
  • the second type of reference signal includes DMRS.
  • the second type of reference signal includes SL DMRS.
  • the second type of reference signal includes SRS.
  • the second type of reference signal includes SS (Synchronization Signal, synchronization signal).
  • the second type of reference signal includes SL SS.
  • the second type of reference signal is transmitted on the side link (SideLink).
  • the second type of reference signal is transmitted through the PC5 interface.
  • the second type of reference signal is unicast (Unicast) transmission.
  • the second type of reference signal is multicast (Groupcast) transmission.
  • the second type of reference signal is broadcast (Boradcast) transmission.
  • the K reference signals of the first type and the reference signals of the second type in this application are transmitted on the same carrier.
  • the unit of the second reference power value is Watt.
  • the unit of the second reference power value is dBm (millidecibels).
  • the unit of the second path loss is dB.
  • the second path loss is equal to the transmit power of the second type reference signal minus the RSRP of the second type reference signal.
  • the second path loss is equal to the transmit power of the second type reference signal in dBm minus the RSRP of the second type reference signal in dBm.
  • the second coefficient is a non-negative real number not greater than 1.
  • the second coefficient is configured by a higher layer parameter.
  • the second coefficient is pre-configured.
  • the second coefficient is ⁇ (j) used for power control on the secondary link.
  • the second reference power value and the fifth component are linearly related, and the linear coefficient between the second reference power value and the fifth component is 1; the fifth component is a power reference.
  • the fifth component is P 0 used for power control on the secondary link.
  • the fifth component is pre-configured.
  • the fifth component is configured with higher layer parameters.
  • the second reference power value and the sixth component are linearly related, and the linear coefficient between the second reference power value and the sixth component is 1; the sixth component and the first The bandwidth to which the signal is allocated is related.
  • the sixth component is related to the bandwidth represented by the number of RBs to which the first signal is allocated.
  • the second reference power value and the seventh component are linearly related, and the linear coefficient between the second reference power value and the seventh component is 1; the seventh component and the first The bandwidth of the signal is related to the bandwidth of the first signaling in Embodiment 5.
  • the seventh component is related to the bandwidth represented by the number of RBs to which the first signal is allocated and the bandwidth represented by the number of RBs of the first signaling.
  • the second reference power value is linearly related to the second path loss, the fifth component, and the sixth component, respectively.
  • the linear coefficient between the second reference power value and the second path loss is the second coefficient; the linear coefficient between the second reference power value and the fifth component and the sixth component They are 1.
  • the second reference power value is linearly related to the second path loss, the fifth component, and the seventh component, respectively.
  • the linear coefficient between the second reference power value and the second path loss is the second coefficient; the linear coefficient between the second reference power value and the fifth component and the seventh component They are 1.
  • Embodiment 10 illustrates a schematic diagram of the first power value according to an embodiment of the present application; as shown in FIG. 10.
  • the first power value is the minimum value between the first reference power value and the first power threshold of the present application.
  • the unit of the first power value is Watt.
  • the unit of the first power value is dBm (millidecibels).
  • the first power value is not greater than the first reference power value.
  • the first power value is equal to the first reference power value.
  • the first power value is less than the first reference power value.
  • the unit of the first power threshold is Watt.
  • the unit of the first power threshold is dBm (millidecibels).
  • the first power threshold is the maximum transmit power of the first node on the uplink.
  • the first power threshold is the maximum power that the first node can use to transmit a PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the first power threshold is the maximum transmit power of the first node on the secondary link.
  • the first power threshold is the maximum power that the first node can use to transmit the PSSCH.
  • Embodiment 11 illustrates a schematic diagram of the first power value according to an embodiment of the present application; as shown in FIG. 11.
  • the first power value is the minimum value between the first reference power value and the second reference power value in this application.
  • the first reference power value and the second reference power value are jointly used to determine the first power value.
  • the first power value is not greater than the second reference power value.
  • the first power value is equal to the second reference power value.
  • the first power value is less than the second reference power value.
  • Embodiment 12 illustrates a schematic diagram of the first power value according to an embodiment of the present application; as shown in FIG. 12.
  • the first power value is the minimum value between the first reference power value in this application, the second reference power value in this application and the first power threshold.
  • Embodiment 13 illustrates a schematic diagram of the first power value according to an embodiment of the present application; as shown in FIG. 13.
  • the first power value is the first reference power value in this application, the second reference power value in this application, and the minimum value between the first power threshold and the second power threshold value.
  • the unit of the second power threshold is Watt.
  • the unit of the second power threshold is dBm (millidecibels).
  • the second power threshold is the maximum transmit power of the first node on the secondary link.
  • the second power threshold is the maximum power that the first node can use to transmit the PSSCH.
  • the second power threshold is the minimum value of the third power threshold and the fourth power threshold.
  • the first power threshold is the maximum transmit power of the first node on the uplink
  • the second power threshold is the maximum transmit power of the first node on the secondary link.
  • the first power threshold is the maximum power that the first node can use to transmit the PUSCH
  • the second power threshold is the maximum power that the first node can use to transmit the PSSCH.
  • Embodiment 14 illustrates a schematic diagram of the first power value according to an embodiment of the present application; as shown in FIG. 14.
  • the first power value is the minimum value between the first reference power value, the third reference power value and the first power threshold in this application; the third reference power value is equal to the first power value.
  • the sum of the fourth reference power value and the fifth reference power value; the fourth reference power value is the minimum value of the second reference power value and the second power threshold in this application, and the fifth reference power value is The bandwidth of the first signal in this application and the bandwidth of the first signaling in Embodiment 5 are both related.
  • the fifth reference power value decreases as the bandwidth of the first signaling increases.
  • Embodiment 15 illustrates a schematic diagram of the first information block according to an embodiment of the present application; as shown in FIG. 15.
  • the first information block indicates the first channel quality in this application, and the measurement of the second type reference signal in this application is used to determine the first channel quality, so The first channel quality is used to determine the second path loss in this application.
  • the first information block is carried by physical layer signaling.
  • the first information block is carried by MAC CE signaling.
  • the first information block is carried by higher layer signaling.
  • the sender of the first information block is different from the sender of the K first-type reference signals.
  • the first information block includes a positive integer number of information bits.
  • the first information block is transmitted on a side link (SideLink).
  • SideLink side link
  • the first information block is transmitted through the PC5 interface.
  • the first information block is unicast (Unicast) transmission.
  • the first information block is multicast (Groupcast) transmission.
  • the first information block is broadcast (Boradcast) transmission.
  • the first information block explicitly indicates the first channel quality.
  • the first information block implicitly indicates the first channel quality.
  • the first channel quality includes the RSRP of the second type of reference signal.
  • the first channel quality includes L1 (layer 1)-RSRP of the second type of reference signal.
  • the first channel quality includes L3 (layer 3)-RSRP of the second type of reference signal.
  • the first channel quality includes CQI.
  • the unit of the first channel quality is dBm.
  • the second path loss is equal to the transmit power in dBm of the second type of reference signal minus the first channel quality.
  • the second path loss is equal to the transmit power in dBm of the second type of reference signal minus the average channel quality
  • the average channel quality is the linear average of P channel qualities converted into dBm
  • P is a positive integer greater than 1
  • the first channel quality is one of the P channel qualities.
  • the second path loss is equal to the value obtained by converting the linear average of P path losses into dB, P is a positive integer greater than 1, and one of the P path losses is equal to the first The transmission power of the second type reference signal minus the first channel quality.
  • Embodiment 16 illustrates a schematic diagram of the correlation between the first reference signal and the first index according to an embodiment of the present application; as shown in FIG. 16.
  • associating the first reference signal with the first index in the sentence includes: the first index is used to determine spatial reception parameters (Spatial Rx Parameters) of the first reference signal.
  • associating the first reference signal with the first index in the sentence includes: the first index is used to determine the spatial domain receive filter of the first reference signal .
  • associating the first reference signal with the first index in the sentence includes: the first index is used to determine an antenna group used to receive the first reference signal.
  • associating the first reference signal with the first index in the sentence includes: the first index is used to determine an antenna panel used to receive the first reference signal.
  • associating the first reference signal with the first index in the sentence includes: the first index indicates a first uplink reference signal, and the first node uses the same spatial domain filter (spatial domain filter). filter) to send the first uplink reference signal and receive the first reference signal.
  • spatial domain filter spatial domain filter
  • the first uplink reference signal includes an SRS.
  • associating the first reference signal and the first index of the sentence includes: the first index indicates a first downlink reference signal, and the first node uses the same spatial filter (spatial filter). domain filter) to receive the first downlink reference signal and the first reference signal.
  • the first downlink reference signal includes CSI-RS.
  • the first downlink reference signal includes SSB.
  • associating the first reference signal of the sentence with the first index includes: the first index indicates a first antenna panel (panel), and the first node uses the first antenna panel To receive the first reference signal.
  • associating the first reference signal of the sentence with the first index includes: the first index indicates a first antenna group, and the first node uses the first antenna group to receive the The first reference signal.
  • associating the first reference signal with the first index in the sentence includes: the first index is an identifier of the first reference signal.
  • associating the first reference signal with the first index in the sentence includes: the first index is an identifier of a reference signal resource corresponding to the first reference signal.
  • associating the first reference signal with the first index in the sentence includes: the first index is an identifier of a reference signal resource group corresponding to the first reference signal.
  • the Q reference signals are respectively associated with the first index, and Q is a positive integer greater than 1, and the first reference signal is one of the Q reference signals.
  • the first node uses the same spatial reception parameters (Spatial Rx Parameters) to receive the Q reference signals.
  • the first node uses the same spatial filter to receive the Q reference signals.
  • the first node uses the same antenna panel to receive the Q reference signals.
  • the first node uses the same antenna group to receive the Q reference signals.
  • the third information block in Embodiment 5 indicates that the first reference signal is associated with the first index.
  • Embodiment 17 illustrates a schematic diagram of the relationship between the first index, the second reference signal and the first reference signal according to an embodiment of the present application; as shown in FIG. 17.
  • the first index indicates the second reference signal
  • the second reference signal is associated with the first reference signal.
  • the first index explicitly indicates the second reference signal.
  • the first index implicitly indicates the second reference signal.
  • the first index is an identifier of the second reference signal.
  • the first index is an identifier of a reference signal resource corresponding to the second reference signal.
  • the first index is an identifier of a reference signal resource group corresponding to the second reference signal.
  • the second reference signal is an uplink reference signal.
  • the second reference signal includes SRS.
  • the sender of the second reference signal is the first node.
  • the second reference signal is transmitted on the uplink.
  • the second reference signal is transmitted through the Uu interface.
  • associating the second reference signal with the first reference signal in the sentence includes: the measurement of the first reference signal is used to determine the spatial transmission filter of the second reference signal ( spatial domain transmission filter).
  • associating the second reference signal of the sentence with the first reference signal includes: the first node uses the same spatial filter to receive the first reference signal and send the second reference signal Reference signal.
  • the first signal and the second reference signal in this application are transmitted by the same antenna port.
  • any transmission antenna port of the first signal in this application is one transmission antenna port of the second reference signal.
  • one transmitting antenna port of the first signal and one transmitting antenna port QCL of the second reference signal in this application are provided.
  • any transmission antenna port of the first signal and one transmission antenna port QCL of the second reference signal in this application are provided.
  • the first node uses the same spatial domain transmission filter to transmit the first signal and the second reference signal in this application.
  • the transmitting antenna port of the first signal in this application is obtained after the first precoding matrix is applied to the transmitting antenna port of the second reference signal.
  • the first node uses the same antenna panel to transmit the first signal and the second reference signal in this application.
  • the first node uses the same antenna group to transmit the first signal and the second reference signal in this application.
  • associating the second reference signal with the first reference signal in the sentence includes: the second reference signal includes an SRS, and the first index includes the SRI corresponding to the second reference signal,
  • the fifth information block indicates the first reference signal and the first index; the fifth information block indicates that the first reference signal is used for path loss estimation corresponding to the SRI corresponding to the second reference signal Reference signal.
  • the fifth information block includes information in all or part of the fields in an IE.
  • the fifth information block includes all or part of the information in the PUSCH-PowerControl IE.
  • the fifth information block includes information in the sri-PUSCH-MappingToAddModList field of the PUSCH-PowerControl IE.
  • associating the second reference signal with the first reference signal in the sentence includes: the measurement of the first reference signal is used to determine the value used in calculating the transmission power of a given signal Path loss, where the given signal is a wireless signal sent by the first node on the Uu interface and the second reference signal QCL.
  • Embodiment 18 illustrates a schematic diagram of the second information block according to an embodiment of the present application; as shown in FIG. 18.
  • the second information block indicates configuration information of each first-type reference signal in the K first-type reference signals in this application.
  • the second information block is carried by higher layer signaling.
  • the second information block is carried by RRC signaling.
  • the second information block is carried by MAC CE signaling.
  • the second information block includes P1 information sub-blocks, and P1 is a positive integer greater than 1.
  • the P1 information sub-blocks are respectively carried by P1 RRC signaling.
  • the P1 information sub-blocks are respectively carried by P1 MAC CE signaling.
  • the second information block includes information in all or part of a field in an IE (Information Element).
  • the second information block is transmitted on the downlink.
  • the second information block is transmitted through the Uu interface.
  • the sender of the second information block is the same as the sender of the K first-type reference signals.
  • the configuration information of any one of the K first type reference signals includes: occupied time domain resources, occupied frequency domain resources, and occupied code domain resources, RS sequence, mapping method, cyclic shift (cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask), one or more of frequency domain spreading sequence or time domain spreading sequence.
  • the second information block indicates configuration information of each of the K0 first-type reference signals, and any one of the K first-type reference signals is One of the K0 first-type reference signals, K0 is a positive integer greater than the K; the fourth information block indicates the K first-type reference signals from the K0 first-type reference signals.
  • the fourth information block includes a bitmap indicating whether each of the K0 first-type reference signals belongs to the K first type reference signals.
  • only the K first-type reference signals among the K0 first-type reference signals may be used for path loss estimation of V2X transmission.
  • the fourth information block is carried by RRC signaling.
  • the fourth information block is carried by MAC CE signaling.
  • Embodiment 19 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 19.
  • the processing device 1900 in the first node device includes a first receiver 1901 and a first processor 1902.
  • the first receiver 1901 receives K first-type reference signals; the first processor 1902 sends the first signal.
  • K is a positive integer greater than 1;
  • the transmission power of the first signal is a first power value, and the first reference power value is used to determine the first power value, and the first reference power The value is linearly related to the first path loss, the measurement for the first reference signal is used to determine the first path loss, and the first reference signal is one of the K first type reference signals Signal;
  • the first index is related to the transmitting antenna port of the first signal, and the first index is used to determine the first reference signal from the K first-type reference signals;
  • the K first The sender of the class reference signal is different from the target receiver of the first signal.
  • the same spatial filter is used to send the first signal and receive the first reference signal.
  • the first processor 1902 operates the second type of reference signal; wherein, the second reference power value is used to determine the first power value, and the second reference power value is linear with the second path loss Correlation; measurement for the second type of reference signal is used to determine the second path loss; the operation is sending, or the operation is receiving.
  • the first processor 1902 sends the second type of reference signal.
  • the first processor 1902 receives the second type of reference signal.
  • the first processor 1902 receives a first information block; wherein, the operation is sending; the first information block indicates the first channel quality, and the measurement for the second type of reference signal is used To determine the first channel quality, the first channel quality is used to determine the second path loss.
  • the first reference signal is associated with the first index.
  • the first index indicates a second reference signal
  • the second reference signal is associated with the first reference signal
  • the target receiver of the second reference signal includes the K first types The sender of the reference signal.
  • the first receiver 1901 receives a second information block; wherein, the second information block indicates configuration information of each of the K first-type reference signals.
  • measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmit antenna port of the first signal.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1901 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in embodiment 4 At least one of 467 ⁇ .
  • the first processor 1902 includes ⁇ antenna 452, transmitter/receiver 454, transmit processor 468, receive processor 456, multi-antenna transmit processor 457, and multi-antenna receive processing in the fourth embodiment. At least one of the processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ .
  • Embodiment 20 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 20.
  • the processing device 2000 in the second node device includes a first transmitter 2001.
  • the first transmitter 2001 transmits K first-type reference signals.
  • K is a positive integer greater than 1; the measurement for the first reference signal is used to determine the first path loss, and the first reference signal is one of the K first-type reference signals.
  • the same spatial filter is used to send the first signal and receive the first reference signal.
  • the first reference signal is associated with the first index.
  • the first index indicates a second reference signal
  • the second reference signal is associated with the first reference signal
  • the target receiver of the second reference signal includes the second node device
  • the first transmitter 2001 sends a second information block; where the second information block indicates configuration information of each first-type reference signal in the K first-type reference signals.
  • measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmit antenna port of the first signal.
  • the second node device is a base station device.
  • the second node device is a relay node device.
  • the first transmitter 2001 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 At least one.
  • Embodiment 21 illustrates a structural block diagram of a processing device used in a third node device according to an embodiment of the present application; as shown in FIG. 21.
  • the processing device 2100 in the third node device includes a second processor 2101.
  • the second processor 2101 receives the first signal.
  • the transmit power of the first signal is the first power value
  • the first reference power value is used to determine the first power value
  • the first reference power value is linearly related to the first path loss
  • the measurement for the first reference signal is used to determine the first path loss
  • the first reference signal is one of the K first type reference signals, and K is a positive integer greater than 1
  • the first index is related to the transmitting antenna port of the first signal, and the first index is used to determine the first reference signal from the K first-type reference signals; the K first-type references
  • the sender of the signal is different from the third node device.
  • the same spatial filter is used to send the first signal and receive the first reference signal.
  • the second processor 2101 executes the second type of reference signal; wherein, the second reference power value is used to determine the first power value, and the second reference power value is linear with the second path loss Correlation; measurement for the second type of reference signal is used to determine the second path loss; the execution is reception, or the execution is transmission.
  • the second processor 2101 receives the second type of reference signal.
  • the second processor 2101 sends the second type of reference signal.
  • the second processor 2101 sends a first information block; wherein, the execution is reception; the first information block indicates the first channel quality, and the measurement for the second type of reference signal is used To determine the first channel quality, the first channel quality is used to determine the second path loss.
  • the first reference signal is associated with the first index.
  • the first index indicates a second reference signal
  • the second reference signal is associated with the first reference signal
  • the target receiver of the second reference signal includes the K first types The sender of the reference signal.
  • measurements for the K first-type reference signals are respectively used to determine K path losses, and the K path losses are used to determine the transmit antenna port of the first signal.
  • the third node device is user equipment.
  • the third node device is a relay node device.
  • the second processor 2101 includes ⁇ antenna 420, transmitter/receiver 418, transmit processor 416, receive processor 470, multi-antenna transmit processor 471, multi-antenna receive processing 472, controller/processor 475, memory 476 ⁇ .
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication equipment, low-cost mobile phones, low cost Cost of wireless communication equipment such as tablets.
  • MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point) and other wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收K个第一类参考信号;发送第一信号。所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。上述方法更准确的估计了副链路上的传输对蜂窝网的干扰,提高副链路的传输性能和资源利用率。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中和副链路(Sidelink)相关的传输方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成面向5G V2X业务的需求制定工作,并写入标准TS22.886。3GPP为5G V2X业务定义了4大应用场景组(Use Case Groups),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPP RAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
NR V2X和现有的LTE(Long-term Evolution,长期演进)V2X系统相比,一个显著的特征在于支持单播并支持基于副链路(SideLink)上的路损的功率控制。基于3GPP RAN1#97次会议的结果,当一个节点被同时配置了基于下行链路(Downlink)和副链路上的路损的功率控制,这个节点会选择两种方法各自得到的功率中的最小值。NR系统的一个技术特征是支持基于波束的功率控制。在基于波束的功率控制基础之上如何实现V2X的功率控制是一个需要解决的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收K个第一类参考信号,K是大于1的正整数;
发送第一信号;
其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
作为一个实施例,本申请要解决的问题包括:当一个节点在蜂窝网链路上被配置了多个用于路损估计的下行参考信号时,这个节点如何选择用于副链路上功率控制的下行参考信号。上述方法根据副链路上的传输所采用的空域信息来选择用于副链路上功率控制的下行参考信号,从而解决了这一问题。
作为一个实施例,上述方法的特质包括:所述K个第一类参考信号是下行参考信号,所述第一信号是在副链路上传输的,所述第一索引包含了所述第一信号的空域信息;所述第一信号的空域信息被用于从所述K个第一类参考信号中确定用于所述第一信号的功率控制的下行参考信号。
作为一个实施例,上述方法的特质包括:所述第一参考功率值反应了在所述第一信号对蜂窝网的干扰受限的情况下,所述第一信号能采用的最大发送功率。
作为一个实施例,上述方法的好处包括:采用和所述第一信号的发送波束相匹配的下行参考信号来测量下行路损,更准确的估计了副链路上的传输对蜂窝网的干扰;避免了由于过高估计副链路对蜂窝网的干扰而制约副链路上的发送功率从而导致副链路的性能下降。
根据本申请的一个方面,其特征在于,相同的空域滤波器被用于发送所述第一信号和接收所述第一参 考信号。
根据本申请的一个方面,其特征在于,包括:
操作第二类参考信号;
其中,第二参考功率值被用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被用于确定所述第二路损;所述操作是发送,或者所述操作是接收。
根据本申请的一个方面,其特征在于,包括:
接收第一信息块;
其中,所述操作是发送;所述第一信息块指示第一信道质量,针对所述第二类参考信号的测量被用于确定所述第一信道质量,所述第一信道质量被用于确定所述第二路损。
根据本申请的一个方面,其特征在于,所述第一参考信号和所述第一索引相关联。
根据本申请的一个方面,其特征在于,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述K个第一类参考信号的发送者。
根据本申请的一个方面,其特征在于,包括:
接收第二信息块;
其中,所述第二信息块指示所述K个第一类参考信号中每一个第一类参考信号的配置信息。
根据本申请的一个方面,其特征在于,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送K个第一类参考信号,K是大于1的正整数;
其中,针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第一信号的目标接收者不同于所述第二节点;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
根据本申请的一个方面,其特征在于,相同的空域滤波器被用于发送所述第一信号和接收所述第一参考信号。
根据本申请的一个方面,其特征在于,所述第一参考信号和所述第一索引相关联。
根据本申请的一个方面,其特征在于,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述第二节点。
根据本申请的一个方面,其特征在于,包括:
发送第二信息块;
其中,所述第二信息块指示所述K个第一类参考信号中每一个第一类参考信号的配置信息。
根据本申请的一个方面,其特征在于,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
根据本申请的一个方面,其特征在于,所述第二节点是基站设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于,包括:
接收第一信号;
其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第三节点。
根据本申请的一个方面,其特征在于,相同的空域滤波器被用于发送所述第一信号和接收所述第一参 考信号。
根据本申请的一个方面,其特征在于,包括:
执行第二类参考信号;
其中,第二参考功率值被用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被用于确定所述第二路损;所述执行是接收,或者所述执行是发送。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块;
其中,所述执行是接收;所述第一信息块指示第一信道质量,针对所述第二类参考信号的测量被用于确定所述第一信道质量,所述第一信道质量被用于确定所述第二路损。
根据本申请的一个方面,其特征在于,所述第一参考信号和所述第一索引相关联。
根据本申请的一个方面,其特征在于,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述K个第一类参考信号的发送者。
根据本申请的一个方面,其特征在于,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
根据本申请的一个方面,其特征在于,所述第三节点是用户设备。
根据本申请的一个方面,其特征在于,所述第三节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收K个第一类参考信号,K是大于1的正整数;
第一处理器,发送第一信号;
其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第一发送机,发送K个第一类参考信号,K是大于1的正整数;
其中,针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第一信号的目标接收者不同于所述第二节点设备;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
本申请公开了一种被用于无线通信的第三节点设备,其特征在于,包括:
第二处理器,接收第一信号;
其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第三节点设备。
作为一个实施例,和传统方案相比,本申请具备如下优势:
--更准确的估计了副链路上的传输对蜂窝网的干扰;
--避免了由于过高估计副链路对蜂窝网的干扰而制约副链路上的发送功率从而导致副链路的性能下降;
--提高副链路的传输性能和资源利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会 变得更加明显:
图1示出了根据本申请的一个实施例的K个第一类参考信号和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的传输的流程图;
图7示出了根据本申请的一个实施例的第一参考功率值的示意图;
图8示出了根据本申请的一个实施例的第一索引的示意图;
图9示出了根据本申请的一个实施例的第二参考功率值的示意图;
图10示出了根据本申请的一个实施例的第一功率值的示意图;
图11示出了根据本申请的一个实施例的第一功率值的示意图;
图12示出了根据本申请的一个实施例的第一功率值的示意图;
图13示出了根据本申请的一个实施例的第一功率值的示意图;
图14示出了根据本申请的一个实施例的第一功率值的示意图;
图15示出了根据本申请的一个实施例的第一信息块的示意图;
图16示出了根据本申请的一个实施例的第一参考信号和第一索引相关联的示意图;
图17示出了根据本申请的一个实施例的第一索引,第二参考信号和第一参考信号之间关系的示意图;
图18示出了根据本申请的一个实施例的第二信息块的示意图;
图19示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图20示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图;
图21示出了根据本申请的一个实施例的用于第三节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的K个第一类参考信号和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收K个第一类参考信号;在步骤102中发送第一信号。其中,K是大于1的正整数;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
作为一个实施例,所述K个第一类参考信号是DL(DownLink,下行链路)参考信号。
作为一个实施例,所述K个第一类参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述K个第一类参考信号包括NZP(None Zero Power,非零功率)CSI-RS。
作为一个实施例,所述K个第一类参考信号包括SS/PBCH block(Synchronization Signal/Physical Broadcast CHannel block,同步信号/物理广播信道块)。
作为一个实施例,所述K个第一类参考信号包括DMRS(DeModulation Reference Signals,解调参考信号)。
作为一个实施例,所述K个第一类参考信号是通过Uu接口传输的。
作为一个实施例,所述K个第一类参考信号是在下行链路(DownLink)上被传输的。
作为一个实施例,所述K个第一类参考信号通过基站设备和用户设备之间的链路传输。
作为一个实施例,所述K个第一类参考信号中任意两个第一类参考信号的发送天线端口不能被假设是QCL(Quasi Co-Located,准共址)的。
作为一个实施例,所述K个第一类参考信号中任一第一类参考信号可以被用于V2X传输的路损估计。
作为一个实施例,两个天线端口QCL是指:从所述两个天线端口中的一个天线端口上发送的无线信号经历的信道的大尺度特性(large-scale properties)可以推断出所述两个天线端口中的另一个天线端口上发送的无线信号经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性(large-scale properties)包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,所述QCL的具体定义参见3GPP TS38.211的4.4章节。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号在副链路(SideLink)上被传输。
作为一个实施例,所述第一信号通过PC5接口被传输。
作为一个实施例,所述第一信号是单播(Unicast)传输的。
作为一个实施例,所述第一信号是组播(Groupcast)传输的。
作为一个实施例,所述第一信号是广播(Boradcast)传输的。
作为一个实施例,所述第一信号携带一个TB(Transport Block,传输块)。
作为一个实施例,所述第一信号携带一个CB(Code Block,码块)。
作为一个实施例,所述第一信号携带一个CBG(Code Block Group,码块组)。
作为一个实施例,所述K个第一类参考信号和所述第一信号在同一个载波(Carrier)上被传输。
作为一个实施例,所述K个第一类参考信号在下行链路上被传输,所述第一信号在副链路上被传输。
作为一个实施例,所述第一参考信号包括CSI-RS。
作为一个实施例,所述第一参考信号包括NZP CSI-RS。
作为一个实施例,所述第一参考信号包括SS/PBCH block。
作为一个实施例,相同的空域滤波器(spatial domain filter)被用于发送所述第一信号和接收所述第一参考信号。
作为一个实施例,所述第一索引是一个非负整数。
作为一个实施例,所述第一索引是一个正整数。
作为一个实施例,所述第一索引被用于标识一个SRS(Sounding Reference Signal,探测参考信号)resource(SRS资源)。
作为一个实施例,所述第一索引被用于标识一个SRS resource set(SRS资源集合)。
作为一个实施例,所述第一索引被用于标识一个天线组。
作为一个实施例,一个天线组包括正整数根天线,不同的天线组包括不同的天线。
作为一个实施例,不同天线组通过不同RF(Radio Frequency,射频)chain(链)连接到基带处理器。
作为一个实施例,所述第一索引被用于标识一个天线面板(panel)。
作为一个实施例,一个天线面板包括正整数根天线,不同的天线面板包括不同的天线。
作为一个实施例,不同天线面板(panel)通过不同RF chain(链)连接到基带处理器。
作为一个实施例,所述第一索引被用于标识一个空域关系信息(spatialRelationInfo)组,一个空域关系信息组包括正整数个空域关系信息。
作为一个实施例,所述空域关系信息(spatialRelationInfo)的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一索引被用于标识一个下行参考信号资源。
作为一个实施例,所述第一索引被用于标识一个下行参考信号资源组,一个下行参考信号资源组包括正整数个下行参考信号资源。
作为上述实施例的一个子实施例,所述下行参考信号资源包括CSI-RS resource(CSI-RS资源)。
作为上述实施例的一个子实施例,所述下行参考信号资源包括SSB(SS/PBCH Block)resource(SSB资源)。
作为一个实施例,所述第一索引被用于标识一个TCI(Transmission Configuration Indication,传输配置标识)state(状态)组,一个TCI state组包括正整数个TCI state。
作为一个实施例,所述第一索引被用于标识一个TCI state(状态)。
作为一个实施例,所述TCI state的具体定义参见3GPP TS38.214和3GPP TS38.331。
作为一个实施例,所述第一索引包括SRI(Sounding reference signal Resource Indicator,探测参考信号资源标识)。
作为一个实施例,所述第一索引包括CRI(CSI-RS Resource indicator,CSI-RS资源标识)。
作为一个实施例,所述第一索引包括SSBRI(SSB Resource indicator,SSB资源标识)。
作为一个实施例,所述第一索引包括SRS-Resource Id。
作为一个实施例,所述第一索引包括SRS-ResourceSetId。
作为一个实施例,所述第一索引包括NZP-CSI-RS-ResourceId。
作为一个实施例,所述第一索引包括NZP-CSI-RS-ResourceSetId。
作为一个实施例,所述第一索引包括SSB-Index。
作为一个实施例,所述第一索引包括SRI-PUSCH-PowerControlId。
作为一个实施例,所述SRS-ResourceId的具体定义参见3GPP TS38.331。
作为一个实施例,所述SRS-ResourceSetId的具体定义参见3GPP TS38.331。
作为一个实施例,所述NZP-CSI-RS-ResourceId的具体定义参见3GPP TS38.331。
作为一个实施例,所述NZP-CSI-RS-ResourceSetId的具体定义参见3GPP TS38.331。
作为一个实施例,所述SSB-Index的具体定义参见3GPP TS38.331。
作为一个实施例,所述SRI-PUSCH-PowerControlId的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一索引是一个第一类索引;被关联到同一个第一类索引的不同上行参考信号对应相同的TA(Timing Advance,时间提前量)。
作为一个实施例,所述第一索引是一个第一类索引;存在至少两个不同的第一类索引,分别被关联到所述两个不同的第一类索引的上行参考信号对应不同的TA。
作为一个实施例,所述第一索引是一个第一类索引;被关联到同一个第一类索引的不同上行参考信号不能被同时发送。
作为一个实施例,所述第一索引是一个第一类索引;被关联到不同第一类索引的上行参考信号可以被同时发送。
作为一个实施例,所述上行参考信号包括SRS。
作为一个实施例,所述句子所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号包括:所述第一参考信号是所述K个第一类参考信号中和所述第一索引相关联的一个第一类参考信号。
作为一个实施例,所述K个第一类参考信号中仅所述第一参考信号和所述第一索引相关联。作为一个实施例,所述句子所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号包括:所述第一索引指示本申请中的所述第二参考信号,所述第二参考信号和所述K个第一类参考信号中的所述第一参考信号相关联。
作为一个实施例,所述第二参考信号和所述K个第一类参考信号中的仅所述第一参考信号相关联。
作为一个实施例,所述第一索引被用于确定所述第一信号的RV(Redundancy Version,冗余版本)。
作为一个实施例,所述第一索引和所述第一信号所占用的时频资源共同被用于从所述K个第一类参考信号中确定所述第一参考信号。
作为一个实施例,所述第一信号所占用的时频资源属于第一资源池,所述第一资源池是M个候选资源池中之一,M是大于1的正整数;所述M个候选资源池和M个参考信号集合一一对应,所述M个参考信号集合中任一参考信号集合包括所述K个第一类参考信号中的一个或多个参考信号;所述第一索引被用于从所述第一资源池对应的参考信号集合中确定所述第一参考信号。
作为上述实施例的一个子实施例,所述M个候选资源池中的任一候选资源池被预留给V2X传输。
作为上述实施例的一个子实施例,所述M个候选资源池中的存在一个候选资源池被预留给V2X传输。
作为上述实施例的一个子实施例,所述M个候选资源池中的存在一个候选资源池被预留给上行传输。
作为上述实施例的一个子实施例,所述M个参考信号集合是RRC信令配置的。
作为上述实施例的一个子实施例,所述第一参考信号是所述第一资源池对应的参考信号集合中和所述第一索引相关联的参考信号。
作为上述实施例的一个子实施例,所述第一参考信号是所述第一资源池对应的参考信号集合中唯一的一个和所述第一索引相关联的参考信号。作为一个实施例,所述第一信号的优先级(priority)被用于确定所述第一参考信号。
作为一个实施例,所述第一信号的优先级属于第一优先级集合,所述第一优先级集合是M个优先级集合中之一,M是大于1的正整数;所述M个优先级集合和M个参考信号集合一一对应,所述M个参考信号集合中任一参考信号集合包括所述K个第一类参考信号中的一个或多个参考信号;所述第一索引被用于从所述第一优先级集合对应的参考信号集合中确定所述第一参考信号。
作为上述实施例的一个子实施例,所述M个优先级集合是RRC信令配置的。
作为上述实施例的一个子实施例,所述第一参考信号是所述第一优先级集合对应的参考信号集合中唯一的一个和所述第一索引相关联的参考信号。
作为一个实施例,所述K个第一类参考信号中存在一个第一类参考信号同时属于所述M个参考信号集合中的两个不同的参考信号集合。
作为一个实施例,所述K个第一类参考信号中不存在一个第一类参考信号同时属于所述M个参考信号集合中的两个不同的参考信号集合。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特 网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第三节点包括所述UE241。
作为一个实施例,本申请中的所述第三节点包括所述UE201。
作为一个实施例,所述UE201与所述gNB203之间的空中接口是Uu接口。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述UE201与所述UE241之间的空中接口是PC5接口。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路(Sidelink)。
作为一个实施例,本申请中的所述第一节点和本申请中的所述第三节点分别是所述gNB203覆盖内的一个终端。
作为一个实施例,本申请中的所述第一节点是所述gNB203覆盖内的一个终端,本申请中的所述第三节点是所述gNB203覆盖外的一个终端。
作为一个实施例,所述UE201和所述UE241之间支持单播(Unicast)传输。
作为一个实施例,所述UE201和所述UE241之间支持广播(Broadcast)传输。
作为一个实施例,所述UE201和所述UE241之间支持组播(Groupcast)传输。
作为一个实施例,本申请中的所述K个第一类参考信号的发送者包括所述gNB203。
作为一个实施例,本申请中的所述K个第一类参考信号的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的接收者包括所述UE241。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一 通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述K个第一类参考信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二类参考信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信息块生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信息块生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第二信息块生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第二信息块生成于所述RRC子层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信 号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述K个第一类参考信号;发送本申请中的所述第一信号。所述K是大于1的正整数;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述K个第一类参考信号;发送本申请中的所述第一信号。所述K是大于1的正整数;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请中的所述K个第一类参考信号,所述K是大于1的正整数。针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第一信号的目标接收者不同于所述第一通信设备410;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述K个第一类参考 信号,所述K是大于1的正整数。针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第一信号的目标接收者不同于所述第一通信设备410;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收本申请中的所述第一信号。所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一通信设备410。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信号。所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一通信设备410。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第三节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述K个第一类参考信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述K个第一类参考信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二类参考信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二类参考信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二类参考信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第二类参考信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控 制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1,第一节点U2和第三节点U3是两两通过空中接口传输的通信节点。附图5中,方框F51至F55中的步骤分别是可选的。
第二节点U1,在步骤S5101中发送第二信息块;在步骤S511中发送K个第一类参考信号;在步骤S5102中接收第三信息块。
第一节点U2,在步骤S5201中接收第二信息块;在步骤S521中接收K个第一类参考信号;在步骤S5202中发送第三信息块;在步骤S5203中发送第二类参考信号;在步骤S5204中接收第一信息块;在步骤S5205中发送第一信令;在步骤S522中发送第一信号。
第三节点U3,在步骤S5301中接收第二类参考信号;在步骤S5302中发送第一信息块;在步骤S5303中接收第一信令;在步骤S531中接收第一信号。
在实施例5中,所述第一信号的发送功率是第一功率值,第一参考功率值被所述第一节点U2用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被所述第一节点U2用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被所述第一节点U2用于从所述K个第一类参考信号中确定所述第一参考信号;所述第一信号的目标接收者不包括所述第二节点U1。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第三节点U3是本申请中的所述第三节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括中继节点与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口是PC5接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括副链路。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括中继节点与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,本申请中的所述第一节点是一个终端。
作为一个实施例,本申请中的所述第一节点是一辆汽车。
作为一个实施例,本申请中的所述第一节点是一个交通工具。
作为一个实施例,本申请中的所述第一节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,本申请中的所述第三节点是一个终端。
作为一个实施例,本申请中的所述第三节点是一辆汽车。
作为一个实施例,本申请中的所述第三节点是一个交通工具。
作为一个实施例,本申请中的所述第三节点是一个RSU。
作为一个实施例,本申请中的所述第一节点发送所述第二类参考信号,本申请中的所述第三节点接收所述第二类参考信号。
作为一个实施例,本申请中的所述操作是发送;本申请中的所述第一节点用相同的空域滤波器来发送所述第二类参考信号和所述第一信号。
作为一个实施例,本申请中的所述操作是发送;本申请中的所述第一节点用相同的天线面板来发送所 述第二类参考信号和所述第一信号。
作为一个实施例,本申请中的所述操作是发送;所述第二类参考信号的目标接收者不包括所述K个第一类参考信号的发送者。
作为一个实施例,本申请中的所述执行是接收;本申请中的所述第三节点用相同的空域滤波器来接收所述第二类参考信号和所述第一信号。
作为一个实施例,本申请中的所述执行是接收;本申请中的所述第三节点用相同的天线面板来接收所述第二类参考信号和所述第一信号。
作为一个实施例,所述第一信号在副链路物理层数据信道(即能用于承载物理层数据的副链路信道)上被传输。
作为一个实施例,所述第一信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被传输。
作为一个实施例,附图5中的方框F53中的步骤存在;第二参考功率值被所述第一节点U2用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被用于确定所述第二路损。
作为一个实施例,附图5中的方框F53和方框F54中的步骤都存在;所述第一信息块指示第一信道质量,针对所述第二类参考信号的测量被所述第三节点U3用于确定所述第一信道质量,所述第一信道质量被所述第一节点U2用于确定所述第二路损。
作为一个实施例,所述第一信息块在PSSCH上被传输。
作为一个实施例,所述第一信息块在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被传输。
作为一个实施例,所述第一信息块在PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)上被传输。
作为一个实施例,附图5中的方框F51中的步骤存在;所述第二信息块指示所述K个第一类参考信号中每一个第一类参考信号的配置信息。
作为一个实施例,所述第二信息块在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上被传输。
作为一个实施例,所述第二信息块包括P1个信息子块,P1是大于1的正整数;所述P1个信息子块分别在P1个PDSCH上被传输。
作为一个实施例,附图5中的方框F55中的步骤存在;所述被用于无线通信的第一节点中的方法包括:
发送所述第一信令;其中,所述第一信令包括所述第一信号的调度信息;所述第一信号的所述调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number),RV(Redundancy Version,冗余版本)或NDI(New Data Indicator,新数据指示)中的一种或多种。
作为一个实施例,所述第一信令包括SCI(Sidelink Control Information,副链路控制信息)中的一个或多个域(field)。
作为一个实施例,所述第一信令在副链路(SideLink)上被传输。
作为一个实施例,所述第一信令通过PC5接口被传输。
作为一个实施例,所述第一信令在PSCCH上被传输。
作为一个实施例,所述第一信令指示所述第一信号的优先级。
作为一个实施例,附图5中的方框F52中的步骤存在;所述被用于无线通信的第一节点中的方法包括:
发送所述第三信息块;其中,所述第三信息块指示所述第一参考信号和所述第一索引。
作为一个实施例,所述第三信息块由物理层信令承载。
作为一个实施例,所述第三信息块由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令承载。
作为一个实施例,所述第三信息块在上行链路上被传输。
作为一个实施例,所述第三信息块通过Uu接口被传输。
作为一个实施例,所述第三信息块指示所述第一索引被用于确定所述第一参考信号的空域接收滤波器(Spatial domain receive filter)。
作为一个实施例,所述第三信息块指示被用于接收所述第一参考信号的天线面板被所述第一索引所标识。
作为一个实施例,所述第三信息块指示被用于接收所述第一参考信号的天线组被所述第一索引所标识。
作为一个实施例,所述第三信息块在PUCCH(Physical Uplink Control CHannel,物理上行控制信道)上被传输。
作为一个实施例,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述K个路损被用于确定所述第一索引。
作为一个实施例,所述K个路损被用于从所述K个第一类参考信号中确定所述第一参考信号。
作为一个实施例,所述第一索引被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述第一参考信号被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述第一索引是所述第一路损在所述K个路损中的索引。
作为一个实施例,所述第一索引是所述第一参考信号在所述K个第一类参考信号中的索引。
作为一个实施例,所述第一索引是所述第一参考信号的标识。
作为一个实施例,所述K个路损中任一路损等于对应的第一类参考信号的以dBm为单位的发送功率减去对应的第一类参考信号的以dBm为单位的RSRP。
作为一个实施例,所述第一路损是所述K个路损中最大的一个路损。
作为一个实施例,所述第一路损是所述K个路损中最小的一个路损。
作为一个实施例,所述K个路损分别被用于确定K个参考功率,所述第一参考功率是所述K个参考功率中和所述第一路损对应的参考功率。
作为上述实施例的一个子实施例,所述K个参考功率中的任一给定参考功率的计算方法和所述第一参考功率的计算方法相同,除了把所述第一路损替换成给定路损,所述给定路损是所述K个路损中和所述给定参考功率对应的路损。
作为上述实施例的一个子实施例,所述第一参考功率是所述K个参考功率最大的一个参考功率。
作为上述实施例的一个子实施例,所述第一参考功率是所述K个参考功率中最小的一个参考功率。
作为上述实施例的一个子实施例,所述第一参考功率是所述K个参考功率中不大于第一阈值的最大的一个参考功率;所述第一阈值是一个正实数。
作为上述实施例的一个子实施例,所述第一参考功率是所述K个参考功率中不小于第一阈值的最小的一个参考功率;所述第一阈值是一个正实数。
作为上述实施例的一个子实施例,K1个参考功率由所述K个参考功率中所有不大于第一阈值的参考功率组成,K1是大于1的正整数;所述第一参考功率是所述K1个参考功率中之一;第三类参考信号被用于从所述K1个参考功率中确定所述第一参考功率;所述第一阈值是一个正实数。
作为上述实施例的一个子实施例,K1个参考功率由所述K个参考功率中所有不小于第一阈值的参考功率组成,K1是大于1的正整数;所述第一参考功率是所述K1个参考功率中之一;第三类参考信号被用于从所述K1个参考功率中确定所述第一参考功率;所述第一阈值是一个正实数。
作为上述实施例的一个子实施例,所述第三类参考信号的发送者是所述第一节点,所述第三类参考信号的目标接收者是所述第一信号的目标接收者。
作为上述实施例的一个子实施例,所述第三类参考信号的发送者是所述第一信号的目标接收者,所述第三类参考信号的目标接收者是所述第一节点。
作为上述实施例的一个子实施例,所述第三类参考信号是所述第二类参考信号。
作为上述实施例的一个子实施例,所述第三类参考信号包括DMRS。
作为上述实施例的一个子实施例,所述第三类参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述第三类参考信号包括SL CSI-RS。
作为上述实施例的一个子实施例,针对所述第三类参考信号的测量被用于确定所述第一参考信号。
作为上述实施例的一个子实施例,K1个空域滤波器分别是所述第一节点用于接收K1个第一类参考信号的空域滤波器,所述K1个第一类参考信号分别是所述K个第一类参考信号中和所述K1个参考功率对应的第一类参考信号;第一滤波器是所述第一节点用于接收所述第一参考信号的滤波器,所述第一节点用所述第一滤波器接收所述第三类参考信号得到的RSRP不小于所述第一节点用所述K1个滤波器中除所述第一滤波器以外的任一滤波器接收所述第三类参考信号得到的RSRP。
作为上述实施例的一个子实施例,所述第二类参考信号的QCL关系被用于确定所述第一参考信号。
作为上述实施例的一个子实施例,K1个第一类参考信号分别是所述K个第一类参考信号中和所述K1个参考功率对应的第一类参考信号,所述第一参考信号是所述K1个第一类参考信号中唯一和所述第二类参考信号QCL的第一类参考信号。
作为一个实施例,所述第一阈值是RRC配置的。
作为一个实施例,所述第一阈值是预定义的。
作为一个实施例,所述K个参考功率的值被用于确定所述第一阈值。
作为一个实施例,第二阈值被用于从所述K个参考功率中确定K2个参考功率,K2是小于所述K的正整数;所述第一阈值是所述K2个参考功率中的最大值。
作为一个实施例,第二阈值被用于从所述K个参考功率中确定K2个参考功率,K2是小于所述K的正整数;所述第一阈值是所述K2个参考功率中的最小值。
作为一个实施例,所述第二阈值是小于1的正实数。
作为一个实施例,所述K2是和所述K的比值不大于第二阈值的最大的正整数。
作为一个实施例,所述K2是和所述K的比值不小于第二阈值的最小的正整数。
作为一个实施例,所述K2个参考功率是所述K个参考功率中K2个最大的参考功率。
作为一个实施例,所述K2个参考功率是所述K个参考功率中K2个最小的参考功率。
作为一个实施例,所述第一节点通过从所述K个参考功率中确定所述第一参考功率来确定所述第一参考信号。
作为一个实施例,所述第一节点通过从所述K个路损中确定所述第一路损来确定所述第一参考信号。
作为一个实施例,所述第一参考功率不大于第一阈值;所述第一阈值是一个正实数。
作为一个实施例,所述K个路损被用于确定所述第一信号的发送天线端口。
实施例6
实施例6示例了根据本申请的一个实施例的无线传输的流程图,如附图6所示。在附图6中,第二节点U4,第一节点U5和第三节点U6是两两通过空中接口传输的通信节点。附图6中,方框F61和F62中的步骤分别是可选的。
第二节点U4,在步骤S6401中发送第二信息块;在步骤S641中发送K个第一类参考信号。
第一节点U5,在步骤S6501中接收第二信息块;在步骤S651中接收K个第一类参考信号;在步骤S6502中接收第二类参考信号;在步骤S652中发送第一信号。
第三节点U6,在步骤S6601中发送第二类参考信号;在步骤S661中接收第一信号。
作为一个实施例,本申请中的所述第一节点接收所述第二类参考信号;本申请中的所述第三节点发送所述第二类参考信号。
作为一个实施例,附图6中的方框F62中的步骤存在;第二参考功率值被所述第一节点U5用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被所述第一节点U5用于确定所述第二路损。
作为一个实施例,本申请中的所述操作是接收;本申请中的所述第一节点用相同的空域滤波器来接收所述第二类参考信号和发送所述第一信号。
作为一个实施例,本申请中的所述操作是接收;本申请中的所述第一节点用相同的天线面板来接收所述第二类参考信号和发送所述第一信号。
作为一个实施例,本申请中的所述执行是发送;本申请中的所述第三节点用相同的空域滤波器来发送所述第二类参考信号和接收所述第一信号。
作为一个实施例,本申请中的所述执行是发送;本申请中的所述第三节点用相同的天线面板来发送所述第二类参考信号和接收所述第一信号。
实施例7
实施例7示例了根据本申请的一个实施例的第一参考功率值的示意图;如附图7所示。在实施例7中,所述第一参考功率值和本申请中的所述第一路损线性相关,针对本申请中的所述第一参考信号的测量被用于确定所述第一路损,所述第一参考功率值和所述第一路损之间的线性系数是第一系数。在附图7中符号“∝”表示线性相关。
作为一个实施例,所述第一参考功率值的单位是是瓦(Watt)。
作为一个实施例,所述第一参考功率值的单位是是dBm(毫分贝)。
作为一个实施例,所述第一路损的单位是dB。
作为一个实施例,所述第一路损等于所述第一参考信号的发送功率减去所述第一参考信号的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一路损等于所述第一参考信号的以dBm为单位的发送功率减去所述第一参考信号的以dBm为单位的RSRP。
作为一个实施例,所述第一路损等于所述第一参考信号的发送功率减去所述第一节点用第一空域滤波器接收所述第一参考信号得到的RSRP,所述第一空域滤波器是所述第一节点用于发送本申请中的所述第一信号的空域滤波器(spatial domain filter)。
作为一个实施例,所述第一路损等于所述第一参考信号的发送功率减去所述第一节点用第一天线组接收所述第一参考信号得到的RSRP,所述第一天线组是所述第一节点用于发送本申请中的所述第一信号的天线组,所述第一天线组包括正整数根天线。
作为一个实施例,所述第一路损等于所述第一参考信号的发送功率减去所述第一节点用第一天线面板(panel)接收所述第一参考信号得到的RSRP,所述第一天线面板是所述第一节点用于发送本申请中的所述第一信号的天线面板,所述第一天线面板包括正整数根天线。
作为一个实施例,所述第一系数是不大于1的非负实数。
作为一个实施例,所述第一系数是更高层(higher layer)参数配置的。
作为一个实施例,所述第一系数是预配置的。
作为一个实施例,所述第一系数是用于上行链路功率控制的α(j)。
作为一个实施例,所述第一系数是用于副链路功率控制的α(j)。
作为一个实施例,所述第一参考功率值和第一分量线性相关,所述第一参考功率值和所述第一分量之间的线性系数是1;所述第一分量是功率基准。
作为上述实施例的一个子实施例,所述第一分量是用于上行链路功率控制的P 0(j)。
作为上述实施例的一个子实施例,所述第一分量是用于副链路功率控制的P 0(j)。
作为上述实施例的一个子实施例,所述第一分量是更高层参数配置的。
作为上述实施例的一个子实施例,所述第一分量是预配置的。
作为一个实施例,所述第一参考功率值和第二分量线性相关,所述第一参考功率值和所述第二分量之间的线性系数是1;所述第二分量和所述第一信号被分配到的带宽有关。
作为上述实施例的一个子实施例,所述第二分量和所述第一信号被分配到的以RB(Resource Block,资源块)为单位的带宽有关。
作为一个实施例,所述第一参考功率值和第三分量线性相关,所述第一参考功率值和所述第三分量之间的线性系数是1,所述第三分量和所述第一信号的MCS有关。
作为一个实施例,所述第一参考功率值和第四分量线性相关,所述第一参考功率值和所述第四分量之间的线性系数是1,所述第四分量是功率控制调整的状态。
作为一个实施例,所述第一参考功率值分别和所述第一路损,所述第一分量,所述第二分量,所述第 三分量及所述第四分量线性相关。所述第一参考功率值和所述第一路损之间的线性系数是所述第一系数;所述第一参考功率值和所述第一分量,所述第二分量,所述第三分量及所述第四分量之间的线性系数分别是1。
作为一个实施例,所述第一参考功率值分别和所述第一路损,所述第一分量及所述第二分量线性相关。所述第一参考功率值和所述第一路损之间的线性系数是所述第一系数;所述第一参考功率值和所述第一分量以及所述第二分量之间的线性系数分别是1。
实施例8
实施例8示例了根据本申请的一个实施例的第一索引的示意图;如附图8所示。在实施例8中,所述第一索引和所述第一信号的发送天线端口有关。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一信号的发送天线端口被用于确定所述第一索引。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:被用于发送所述第一信号的天线面板(panel)被用于确定所述第一索引。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:被用于发送所述第一信号的天线组被用于确定所述第一索引。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一信号的空域发送滤波器(spatial domain transmission filter)被用于确定所述第一索引。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一信号的TCI state(状态)被用于确定所述第一索引。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引是被用于发送所述第一信号的天线面板(panel)的标识。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引是被用于发送所述第一信号的天线组的标识。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引是所述第一信号的TCI state(状态)的标识。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一节点用相同的空域滤波器(spatial domain filter)来发送第一上行参考信号和所述第一信号,所述第一索引指示所述第一上行参考信号。
作为一个实施例,所述第一索引是所述第一上行参考信号的标识。
作为一个实施例,所述第一上行参考信号包括SRS。
作为一个实施例,所述第一上行参考信号是本申请中的所述第二参考信号。
作为一个实施例,所述第一索引显式的指示所述第一上行参考信号。
作为一个实施例,所述第一索引隐式的指示所述第一上行参考信号。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一节点用相同的空域滤波器(spatial domain filter)来接收第一下行参考信号和发送所述第一信号,所述第一索引指示所述第一下行参考信号。
作为一个实施例,所述第一索引是所述第一下行参考信号的标识。
作为一个实施例,所述第一下行参考信号包括CSI-RS。
作为一个实施例,所述第一下行参考信号包括SSB。
作为一个实施例,所述第一下行参考信号是本申请中的所述第一参考信号。
作为一个实施例,所述第一索引显式的指示所述第一下行参考信号。
作为一个实施例,所述第一索引隐式的指示所述第一下行参考信号。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一节点用第一天线面板(panel)来发送所述第一信号,所述第一索引指示所述第一天线面板。
作为一个实施例,所述第一索引显式的指示所述第一天线面板。
作为一个实施例,所述第一索引隐式的指示所述第一天线面板。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一节点用第一天线组来发送所述第一信号,所述第一索引指示所述第一天线组。
作为一个实施例,所述第一索引显式的指示所述第一天线组。
作为一个实施例,所述第一索引隐式的指示所述第一天线组。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一节点用相同的天线面板来发送第一参考信号组和所述第一信号,所述第一参考信号组包括正整数个上行参考信号;所述第一索引指示所述第一参考信号组。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一节点用相同的天线面板来接收第一参考信号组和发送所述第一信号,所述第一参考信号组包括正整数个下行参考信号;所述第一索引指示所述第一参考信号组。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定被用于发送所述第一信号的天线。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定被用于发送所述第一信号的天线面板(panel)。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定被用于发送所述第一信号的天线组。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一信号的至少一个发送天线端口。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一信号的所有发送天线端口。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一信号的空域发送滤波器(spatial domain transmission filter)。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一信号的预编码矩阵。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引指示所述第一信号的TCI state(状态)。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的信道可以推断出所述一个天线端口上发送的另一个无线信号所经历的信道。
作为一个实施例,从一个天线端口上发送的无线信号所经历的信道不可以推断出另一个天线端口上发送的无线信号所经历的信道。
作为一个实施例,所述信道包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI(Channel Quality Indicator,信道质量标识),RI(Rank Indicator,秩标识)}中的一种或多种。
作为一个实施例,所述第一信号的所述发送天线端口是承载所述第一信号的PSSCH的DMRS的发送天线端口。
作为一个实施例,所述第一信号的所述发送天线端口是所述第一信号所对应的DMRS的发送天线端口。
作为一个实施例,所述第一信号在第一PSSCH上被传输,第一DMRS是所述第一PSSCH的DMRS;第一PSSCH符号是所述第一PSSCH的一个符号,第一DMRS符号是所述第一DMRS的一个符号,所述第一PSSCH符号和所述第一DMRS符号被同一个天线端口发送;当且仅当所述第一PSSCH符号和所述第一DMRS符号位于相同的时隙(slot)和相同的PRG(Physical Resource Group,物理资源组)时,从所述第一DMRS符号所经历的信道可以推断出所述第一PSSCH符号所经历的信道。
作为一个实施例,第一DMRS是所述第一信号所对应的DMRS;第一符号是所述第一信号的一个符号,第一DMRS符号是所述第一DMRS的一个符号,所述第一符号和所述第一DMRS符号被同一个天线 端口发送;当且仅当所述第一符号和所述第一DMRS符号位于相同的时隙(slot)和相同的PRG时,从所述第一DMRS符号所经历的信道可以推断出所述第一符号所经历的信道。
作为一个实施例,所述符号是调制符号。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述句子第一索引和所述第一信号的发送天线端口有关包括:所述第一索引被用于确定所述第一参考信号,所述第一参考信号被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述K个第一类参考信号和K个第四类参考信号一一对应,第一参考信号和所述K个第四类参考信号中的第四天线端口对应,所述第一信号的发送天线端口和所述第四参考信号QCL。
作为上述实施例的一个子实施例,所述K个第四类参考信号包括SRS。
作为上述实施例的一个子实施例,所述K个第四类参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述K个第四类参考信号包括SL CSI-RS。
作为上述实施例的一个子实施例,所述K个第一类参考信号和所述K个第四类参考信号之间的对应关系是RRC信令配置的。
作为一个实施例,所述第一节点用相同的空域滤波器来接收所述第一参考信号和发送所述第一信号。
作为一个实施例,所述第一节点用相同的天线面板来接收所述第一参考信号和发送所述第一信号。
作为一个实施例,所述第一节点用相同的天线组来接收所述第一参考信号和发送所述第一信号。
实施例9
实施例9示例了根据本申请的一个实施例的第二参考功率值的示意图;如附图9所示。在实施例9中,所述第二参考功率值和本申请中的所述第二路损线性相关;针对本申请中的所述第二类参考信号的测量被用于确定所述第二路损,所述第二参考功率值和所述第二路损之间的线性系数是第二系数。在附图9中符号“∝”表示线性相关。
作为一个实施例,所述第二类参考信号是副链路参考信号。
作为一个实施例,所述第二类参考信号包括CSI-RS。
作为一个实施例,所述第二类参考信号包括SL(SideLink,副链路)CSI-RS。
作为一个实施例,所述第二类参考信号包括DMRS。
作为一个实施例,所述第二类参考信号包括SL DMRS。
作为一个实施例,所述第二类参考信号包括SRS。
作为一个实施例,所述第二类参考信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第二类参考信号包括SL SS。
作为一个实施例,所述第二类参考信号在副链路(SideLink)上被传输。
作为一个实施例,所述第二类参考信号通过PC5接口被传输。
作为一个实施例,所述第二类参考信号是单播(Unicast)传输的。
作为一个实施例,所述第二类参考信号是组播(Groupcast)传输的。
作为一个实施例,所述第二类参考信号是广播(Boradcast)传输的。
作为一个实施例,本申请中的所述K个第一类参考信号和所述第二类参考信号在同一个载波(Carrier)上被传输。
作为一个实施例,所述第二参考功率值的单位是是瓦(Watt)。
作为一个实施例,所述第二参考功率值的单位是是dBm(毫分贝)。
作为一个实施例,所述第二路损的单位是dB。
作为一个实施例,所述第二路损等于所述第二类参考信号的发送功率减去所述第二类参考信号的RSRP。
作为一个实施例,所述第二路损等于所述第二类参考信号的以dBm为单位的发送功率减去所述第二类参考信号的以dBm为单位的RSRP。
作为一个实施例,所述第二系数是不大于1的非负实数。
作为一个实施例,所述第二系数是更高层(higher layer)参数配置的。
作为一个实施例,所述第二系数是预配置的。
作为一个实施例,所述第二系数是用于副链路上功率控制的α(j)。
作为一个实施例,所述第二参考功率值和第五分量线性相关,所述第二参考功率值和所述第五分量之间的线性系数是1;所述第五分量是功率基准。
作为上述实施例的一个子实施例,所述第五分量是用于副链路上功率控制的P 0
作为上述实施例的一个子实施例,所述第五分量是预配置的。
作为上述实施例的一个子实施例,所述第五分量是更高层(higher layer)参数配置的。
作为一个实施例,所述第二参考功率值和第六分量线性相关,所述第二参考功率值和所述第六分量之间的线性系数是1;所述第六分量和所述第一信号被分配到的带宽有关。
作为上述实施例的一个子实施例,所述第六分量和所述第一信号被分配到的以RB数表示的带宽有关。
作为一个实施例,所述第二参考功率值和第七分量线性相关,所述第二参考功率值和所述第七分量之间的线性系数是1;所述第七分量和所述第一信号的带宽及实施例5中的所述第一信令的带宽均有关。
作为上述实施例的一个子实施例,所述第七分量和所述第一信号被分配到的以RB数表示的带宽以及所述第一信令的以RB数表示的带宽均有关。
作为一个实施例,所述第二参考功率值分别和所述第二路损,所述第五分量及所述第六分量线性相关。所述第二参考功率值和所述第二路损之间的线性系数是所述第二系数;所述第二参考功率值和所述第五分量以及所述第六分量之间的线性系数分别是1。
作为一个实施例,所述第二参考功率值分别和所述第二路损,所述第五分量及所述第七分量线性相关。所述第二参考功率值和所述第二路损之间的线性系数是所述第二系数;所述第二参考功率值和所述第五分量以及所述第七分量之间的线性系数分别是1。
实施例10
实施例10示例了根据本申请的一个实施例的第一功率值的示意图;如附图10所示。在实施例10中,所述第一功率值是本申请的所述第一参考功率值和第一功率阈值之间的最小值。
作为一个实施例,所述第一功率值的单位是是瓦(Watt)。
作为一个实施例,所述第一功率值的单位是是dBm(毫分贝)。
作为一个实施例,所述第一功率值不大于所述第一参考功率值。
作为一个实施例,所述第一功率值等于所述第一参考功率值。
作为一个实施例,所述第一功率值小于所述第一参考功率值。
作为一个实施例,所述第一功率阈值的单位是是瓦(Watt)。
作为一个实施例,所述第一功率阈值的单位是是dBm(毫分贝)。
作为一个实施例,所述第一功率阈值是所述第一节点在上行链路上的最大发送功率。
作为一个实施例,所述第一功率阈值是所述第一节点能用于发送PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)的最大功率。
作为一个实施例,所述第一功率阈值是所述第一节点在副链路上的最大发送功率。
作为一个实施例,所述第一功率阈值是所述第一节点能用于发送PSSCH的最大功率。
实施例11
实施例11示例了根据本申请的一个实施例的第一功率值的示意图;如附图11所示。在实施例11中,所述第一功率值是本申请中的所述第一参考功率值和所述第二参考功率值之间的最小值。
作为一个实施例,所述第一参考功率值和所述第二参考功率值共同被用于确定所述第一功率值。
作为一个实施例,所述第一功率值不大于所述第二参考功率值。
作为一个实施例,所述第一功率值等于所述第二参考功率值。
作为一个实施例,所述第一功率值小于所述第二参考功率值。
实施例12
实施例12示例了根据本申请的一个实施例的第一功率值的示意图;如附图12所示。在实施例12中,所述第一功率值是本申请中的所述第一参考功率值,本申请中的所述第二参考功率值和第一功率阈值之间的最小值。
实施例13
实施例13示例了根据本申请的一个实施例的第一功率值的示意图;如附图13所示。在实施例13中,所述第一功率值是本申请中的所述第一参考功率值,本申请中的所述第二参考功率值,第一功率阈值和第二功率阈值之间的最小值。
作为一个实施例,所述第二功率阈值的单位是是瓦(Watt)。
作为一个实施例,所述第二功率阈值的单位是是dBm(毫分贝)。
作为一个实施例,所述第二功率阈值是所述第一节点在副链路上的最大发送功率。
作为一个实施例,所述第二功率阈值是所述第一节点能用于发送PSSCH的最大功率。
作为一个实施例,所述第二功率阈值是第三功率阈值和第四功率阈值中的最小值。
作为一个实施例,所述第一功率阈值是所述第一节点在上行链路上的最大发送功率,所述第二功率阈值是所述第一节点在副链路上的最大发送功率。
作为一个实施例,所述第一功率阈值是所述第一节点能用于发送PUSCH的最大功率,所述第二功率阈值是所述第一节点能用于发送PSSCH的最大功率。
实施例14
实施例14示例了根据本申请的一个实施例的第一功率值的示意图;如附图14所示。在实施例14中,所述第一功率值是本申请中的所述第一参考功率值,第三参考功率值和第一功率阈值之间的最小值;所述第三参考功率值等于第四参考功率值和第五参考功率值之和;所述第四参考功率值是本申请中的所述第二参考功率值和第二功率阈值中的最小值,所述第五参考功率值与本申请中的所述第一信号的带宽及实施例5中的所述第一信令的带宽均有关。
作为一个实施例,所述第五参考功率值随着所述第一信令的带宽的增加而减小。
实施例15
实施例15示例了根据本申请的一个实施例的第一信息块的示意图;如附图15所示。在实施例15中,所述第一信息块指示本申请中的所述第一信道质量,针对本申请中的所述第二类参考信号的测量被用于确定所述第一信道质量,所述第一信道质量被用于确定本申请中的所述第二路损。
作为一个实施例,所述第一信息块由物理层信令承载。
作为一个实施例,所述第一信息块由MAC CE信令承载。
作为一个实施例,所述第一信息块由更高层(higher layer)信令承载。
作为一个实施例,所述第一信息块的发送者不同于所述K个第一类参考信号的发送者。
作为一个实施例,所述第一信息块包括正整数个信息比特。
作为一个实施例,所述第一信息块在副链路(SideLink)上被传输。
作为一个实施例,所述第一信息块通过PC5接口被传输。
作为一个实施例,所述第一信息块是单播(Unicast)传输的。
作为一个实施例,所述第一信息块是组播(Groupcast)传输的。
作为一个实施例,所述第一信息块是广播(Boradcast)传输的。
作为一个实施例,所述第一信息块显式的指示所述第一信道质量。
作为一个实施例,所述第一信息块隐式的指示所述第一信道质量。
作为一个实施例,所述第一信道质量包括所述第二类参考信号的RSRP。
作为一个实施例,所述第一信道质量包括所述第二类参考信号的L1(层1)-RSRP。
作为一个实施例,所述第一信道质量包括所述第二类参考信号的L3(层3)-RSRP。
作为一个实施例,所述第一信道质量包括CQI。
作为一个实施例,所述第一信道质量的单位是dBm。
作为一个实施例,所述第二路损等于所述第二类参考信号的以dBm为单位的发送功率减去所述第一信道质量。
作为一个实施例,所述第二路损等于所述第二类参考信号的以dBm为单位的发送功率减去平均信道质量,所述平均信道质量是P个信道质量的线性平均值换算成dBm后的值,P是大于1的正整数,所述第一信道质量是所述P个信道质量中之一。
作为一个实施例,所述第二路损等于P个路损的线性平均值换算成dB后的值,P是大于1的正整数,所述P个路损中的一个路损等于所述第二类参考信号的发送功率减去所述第一信道质量。
实施例16
实施例16示例了根据本申请的一个实施例的第一参考信号和第一索引相关联的示意图;如附图16所示。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引被用于确定所述第一参考信号的空域接收参数(Spatial Rx Parameters)。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引被用于确定所述第一参考信号的空域接收滤波器(Spatial domain receive filter)。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引被用于确定被用于接收所述第一参考信号的天线组。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引被用于确定被用于接收所述第一参考信号的天线面板。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引指示第一上行参考信号,所述第一节点用相同的空域滤波器(spatial domain filter)来发送所述第一上行参考信号和接收所述第一参考信号。
作为上述实施例的一个子实施例,所述第一上行参考信号包括SRS。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引指示第一下行参考信号,所述第一节点用相同的空域滤波器(spatial domain filter)来接收所述第一下行参考信号和所述第一参考信号。
作为上述实施例的一个子实施例,所述第一下行参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述第一下行参考信号包括SSB。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引指示第一天线面板(panel),所述第一节点用所述第一天线面板来接收所述第一参考信号。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引指示第一天线组,所述第一节点用所述第一天线组来接收所述第一参考信号。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引是所述第一参考信号的标识。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引是所述第一参考信号对应的参考信号资源的标识。
作为一个实施例,所述句子所述第一参考信号和所述第一索引相关联包括:所述第一索引是所述第一参考信号对应的参考信号资源组的标识。
作为一个实施例,Q个参考信号分别和所述第一索引相关联,Q是大于1的正整数;所述第一参考信号是所述Q个参考信号中的一个参考信号。
作为上述实施例的一个子实施例,所述第一节点用相同的空域接收参数(Spatial Rx Parameters)来接收所述Q个参考信号。
作为上述实施例的一个子实施例,所述第一节点用相同的空域滤波器来接收所述Q个参考信号。
作为上述实施例的一个子实施例,所述第一节点用相同天线面板接收所述Q个参考信号。
作为上述实施例的一个子实施例,所述第一节点用相同的天线组接收所述Q个参考信号。
作为一个实施例,实施例5中的所述第三信息块指示所述第一参考信号和所述第一索引相关联。
实施例17
实施例17示例了根据本申请的一个实施例的第一索引,第二参考信号和第一参考信号之间关系示意图;如附图17所示。在实施例17中,所述第一索引指示所述第二参考信号,所述第二参考信号和所述第一参考信号相关联。
作为一个实施例,所述第一索引显式的指示所述第二参考信号。
作为一个实施例,所述第一索引隐式的指示所述第二参考信号。
作为一个实施例,所述第一索引是所述第二参考信号的标识。
作为一个实施例,所述第一索引是所述第二参考信号对应的参考信号资源的标识。
作为一个实施例,所述第一索引是所述第二参考信号对应的参考信号资源组的标识。
作为一个实施例,所述第二参考信号是上行参考信号。
作为一个实施例,所述第二参考信号包括SRS。
作为一个实施例,所述第二参考信号的发送者是所述第一节点。
作为一个实施例,所述第二参考信号在上行链路上被传输。
作为一个实施例,所述第二参考信号通过Uu接口被传输。
作为一个实施例,所述句子所述第二参考信号和所述第一参考信号相关联包括:针对所述第一参考信号的测量被用于确定所述第二参考信号的空域发送滤波器(spatial domain transmission filter)。
作为一个实施例,所述句子所述第二参考信号和所述第一参考信号相关联包括:所述第一节点用相同的空域滤波器来接收所述第一参考信号和发送所述第二参考信号。
作为一个实施例,本申请中的所述第一信号和所述第二参考信号被相同的天线端口发送。
作为一个实施例,本申请中的所述第一信号的任一发送天线端口是所述第二参考信号的一个发送天线端口。
作为一个实施例,本申请中的所述第一信号的一个发送天线端口和所述第二参考信号的一个发送天线端口QCL。
作为一个实施例,本申请中的所述第一信号的任一发送天线端口和所述第二参考信号的一个发送天线端口QCL。
作为一个实施例,所述第一节点用相同的空域发送滤波器(spatial domain transmission filter)来发送本申请中的所述第一信号和所述第二参考信号。
作为一个实施例,本申请中的所述第一信号的发送天线端口是第一预编码矩阵被应用于所述第二参考信号的发送天线端口后得到的。
作为一个实施例,所述第一节点用相同的天线面板来发送本申请中的所述第一信号和所述第二参考信号。
作为一个实施例,所述第一节点用相同的天线组来发送本申请中的所述第一信号和所述第二参考信号。
作为一个实施例,所述句子所述第二参考信号和所述第一参考信号相关联包括:所述第二参考信号包括SRS,所述第一索引包括所述第二参考信号对应的SRI,第五信息块指示所述第一参考信号和所述第一索引;所述第五信息块指示所述第一参考信号是所述第二参考信号对应的所述SRI对应的用于路损估计的参考信号。
作为上述实施例一个子实施例,所述第五信息块包括一个IE中全部或部分域中的信息。
作为上述实施例一个子实施例,所述第五信息块包括PUSCH-PowerControl IE中全部或部分域中的信息。
作为上述实施例一个子实施例,所述第五信息块包括PUSCH-PowerControl IE的sri-PUSCH-MappingToAddModList域中的信息。
作为一个实施例,所述句子所述第二参考信号和所述第一参考信号相关联包括:针对所述第一参考信号的测量被用于确定在计算给定信号的发送功率时用到的路损,所述给定信号是一个由所述第一节点在 Uu接口上发送的和所述第二参考信号QCL的无线信号。
实施例18
实施例18示例了根据本申请的一个实施例的第二信息块的示意图;如附图18所示。在实施例18中,所述第二信息块指示本申请中的所述K个第一类参考信号中每一个第一类参考信号的配置信息。
作为一个实施例,所述第二信息块由更高层(higher layer)信令承载。
作为一个实施例,所述第二信息块由RRC信令承载。
作为一个实施例,所述第二信息块由MAC CE信令承载。
作为一个实施例,所述第二信息块包括P1个信息子块,P1是大于1的正整数。
作为上述实施例的一个子实施例,所述P1个信息子块分别由P1个RRC信令承载。
作为上述实施例的一个子实施例,所述P1个信息子块分别由P1个MAC CE信令承载。
作为一个实施例,所述第二信息块包括一个IE(Information Element,信息单元)中的全部或部分域(Field)中的信息。
作为一个实施例,所述第二信息块在下行链路上被传输。
作为一个实施例,所述第二信息块通过Uu接口被传输。
作为一个实施例,所述第二信息块的发送者和所述K个第一类参考信号的发送者相同。
作为一个实施例,所述K个第一类参考信号中任一第一类参考信号的所述配置信息包括:所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,映射方式,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),频域扩频序列或时域扩频序列中的一种或多种。
作为一个实施例,所述第二信息块指示K0个第一类参考信号中每个第一类参考信号的配置信息,所述K个第一类参考信号中的任一第一类参考信号是所述K0个第一类参考信号中之一,K0是大于所述K的正整数;第四信息块从所述K0个第一类参考信号中指示所述K个第一类参考信号。
作为上述实施例的一个子实施例,所述第四信息块包括一个比特位图,所述一个比特位图指示所述K0个第一类参考信号中每个第一类参考信号是否属于所述K个第一类参考信号。
作为上述实施例的一个子实施例,所述K0个第一类参考信号中的仅所述K个第一类参考信号可以被用于V2X传输的路损估计。
作为上述实施例的一个子实施例,所述第四信息块由RRC信令承载。
作为上述实施例的一个子实施例,所述第四信息块由MAC CE信令承载。
实施例19
实施例19示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图19所示。在附图19中,第一节点设备中的处理装置1900包括第一接收机1901和第一处理器1902。
在实施例19中,第一接收机1901接收K个第一类参考信号;第一处理器1902发送第一信号。
在实施例19中,K是大于1的正整数;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
作为一个实施例,相同的空域滤波器被用于发送所述第一信号和接收所述第一参考信号。
作为一个实施例,所述第一处理器1902操作第二类参考信号;其中,第二参考功率值被用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被用于确定所述第二路损;所述操作是发送,或者所述操作是接收。
作为一个实施例,所述第一处理器1902发送所述第二类参考信号。
作为一个实施例,所述第一处理器1902接收所述第二类参考信号。
作为一个实施例,所述第一处理器1902接收第一信息块;其中,所述操作是发送;所述第一信息块指示第一信道质量,针对所述第二类参考信号的测量被用于确定所述第一信道质量,所述第一信道质量被 用于确定所述第二路损。
作为一个实施例,所述第一参考信号和所述第一索引相关联。
作为一个实施例,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述K个第一类参考信号的发送者。
作为一个实施例,所述第一接收机1901接收第二信息块;其中,所述第二信息块指示所述K个第一类参考信号中每一个第一类参考信号的配置信息。
作为一个实施例,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1901包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理器1902包括实施例4中的{天线452,发射器/接收器454,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例20
实施例20示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图20所示。在附图20中,第二节点设备中的处理装置2000包括第一发送机2001。
在实施例20中,第一发送机2001发送K个第一类参考信号。
在实施例20中,K是大于1的正整数;针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第一信号的目标接收者不同于所述第二节点设备;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
作为一个实施例,相同的空域滤波器被用于发送所述第一信号和接收所述第一参考信号。
作为一个实施例,所述第一参考信号和所述第一索引相关联。
作为一个实施例,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述第二节点设备。
作为一个实施例,所述第一发送机2001发送第二信息块;其中,所述第二信息块指示所述K个第一类参考信号中每一个第一类参考信号的配置信息。
作为一个实施例,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第一发送机2001包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
实施例21
实施例21示例了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图;如附图21所示。在附图21中,第三节点设备中的处理装置2100包括第二处理器2101。
在实施例21中,第二处理器2101接收第一信号。
在实施例21中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号; 所述K个第一类参考信号的发送者不同于所述第三节点设备。
作为一个实施例,相同的空域滤波器被用于发送所述第一信号和接收所述第一参考信号。
作为一个实施例,所述第二处理器2101执行第二类参考信号;其中,第二参考功率值被用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被用于确定所述第二路损;所述执行是接收,或者所述执行是发送。
作为一个实施例,所述第二处理器2101接收所述第二类参考信号。
作为一个实施例,所述第二处理器2101发送所述第二类参考信号。
作为一个实施例,所述第二处理器2101发送第一信息块;其中,所述执行是接收;所述第一信息块指示第一信道质量,针对所述第二类参考信号的测量被用于确定所述第一信道质量,所述第一信道质量被用于确定所述第二路损。
作为一个实施例,所述第一参考信号和所述第一索引相关联。
作为一个实施例,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述K个第一类参考信号的发送者。
作为一个实施例,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
作为一个实施例,所述第三节点设备是用户设备。
作为一个实施例,所述第三节点设备是中继节点设备。
作为一个实施例,所述第二处理器2101包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收K个第一类参考信号,K是大于1的正整数;
    第一处理器,发送第一信号;
    其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
  2. 根据权利要求1所述的第一节点设备,其特征在于,相同的空域滤波器被用于发送所述第一信号和接收所述第一参考信号。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一处理器操作第二类参考信号;其中,第二参考功率值被用于确定所述第一功率值,所述第二参考功率值和第二路损线性相关;针对所述第二类参考信号的测量被用于确定所述第二路损;所述操作是发送,或者所述操作是接收。
  4. 根据权利要求3所述的第一节点设备,其特征在于,所述第一处理器接收第一信息块;其中,所述操作是发送;所述第一信息块指示第一信道质量,针对所述第二类参考信号的测量被用于确定所述第一信道质量,所述第一信道质量被用于确定所述第二路损。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一参考信号和所述第一索引相关联;或者,针对所述K个第一类参考信号的测量分别被用于确定K个路损,所述K个路损被用于确定所述第一信号的发送天线端口。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一索引指示第二参考信号,所述第二参考信号和所述第一参考信号相关联;所述第二参考信号的目标接收者包括所述K个第一类参考信号的发送者。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第二信息块;其中,所述第二信息块指示所述K个第一类参考信号中每一个第一类参考信号的配置信息。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第一发送机,发送K个第一类参考信号,K是大于1的正整数;
    其中,针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第 一信号的目标接收者不同于所述第二节点设备;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
  9. 一种被用于无线通信的第三节点设备,其特征在于,包括:
    第二处理器,接收第一信号;
    其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第三节点设备。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收K个第一类参考信号,K是大于1的正整数;
    发送第一信号;
    其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第一信号的目标接收者。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送K个第一类参考信号,K是大于1的正整数;
    其中,针对第一参考信号的测量被用于确定第一路损,所述第一参考信号是所述K个第一类参考信号中的一个第一类参考信号;第一索引和第一信号的发送天线端口有关,所述第一信号的目标接收者不同于所述第二节点;所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和所述第一路损线性相关;所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号。
  12. 一种被用于无线通信的第三节点中的方法,其特征在于,包括:
    接收第一信号;
    其中,所述第一信号的发送功率是第一功率值,第一参考功率值被用于确定所述第一功率值,所述第一参考功率值和第一路损线性相关,针对第一参考信号的测量被用于确定所述 第一路损,所述第一参考信号是K个第一类参考信号中的一个第一类参考信号,K是大于1的正整数;第一索引和所述第一信号的发送天线端口有关,所述第一索引被用于从所述K个第一类参考信号中确定所述第一参考信号;所述K个第一类参考信号的发送者不同于所述第三节点。
PCT/CN2020/108641 2019-08-22 2020-08-12 一种被用于无线通信的节点中的方法和装置 WO2021031950A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/676,258 US11985605B2 (en) 2019-08-22 2022-02-21 Method and device in nodes used for wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910780710 2019-08-22
CN201910780710.3 2019-08-22
CN202010475194.6A CN112423260B (zh) 2019-08-22 2020-05-29 一种被用于无线通信的节点中的方法和装置
CN202010475194.6 2020-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/676,258 Continuation US11985605B2 (en) 2019-08-22 2022-02-21 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021031950A1 true WO2021031950A1 (zh) 2021-02-25

Family

ID=74659883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108641 WO2021031950A1 (zh) 2019-08-22 2020-08-12 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US11985605B2 (zh)
CN (1) CN115426634A (zh)
WO (1) WO2021031950A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210067997A1 (en) * 2019-09-03 2021-03-04 Qualcomm Incorporated Sounding reference signal channel measurement for sidelink communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157185A1 (en) * 2013-07-05 2016-06-02 Lg Electronics Inc. Method and device for acquiring control information in wireless communication system
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108206711B (zh) 2016-12-17 2019-02-01 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN115038154A (zh) 2017-06-16 2022-09-09 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
CN114885410A (zh) 2017-11-17 2022-08-09 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN110913483B (zh) * 2018-09-18 2022-06-21 上海朗帛通信技术有限公司 一种被用于无线通信节点中的方法和装置
CN112333776B (zh) * 2019-07-20 2022-05-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11737029B2 (en) * 2019-08-06 2023-08-22 Qualcomm Incorporated Downlink pathloss determination for transmit power control for sidelink communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157185A1 (en) * 2013-07-05 2016-06-02 Lg Electronics Inc. Method and device for acquiring control information in wireless communication system
CN108616840A (zh) * 2017-01-20 2018-10-02 北京三星通信技术研究有限公司 一种车对外界v2x通信的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer procedures for NR sidelink", 3GPP TSG RAN WG1 MEETING #97; R1-1907018, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 17 May 2019 (2019-05-17), Reno, USA; 20190513 - 20190517, pages 1 - 11, XP051709051 *
SAMSUNG: "On Sidelink CSI", 3GPP TSG RAN WG1 #96BIS ; R1-1904434, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 3 April 2019 (2019-04-03), Xi’an, China; 20190408 - 20190412, XP051707217 *

Also Published As

Publication number Publication date
US20220191806A1 (en) 2022-06-16
US11985605B2 (en) 2024-05-14
CN115426634A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020233405A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114079947B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115226193A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022193643A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112423260B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244381A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115348676A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027693A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024012340A1 (zh) 用于无线通信的方法和装置
WO2024017079A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023088128A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115459889B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023241548A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853631

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20853631

Country of ref document: EP

Kind code of ref document: A1