WO2019228145A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2019228145A1
WO2019228145A1 PCT/CN2019/085631 CN2019085631W WO2019228145A1 WO 2019228145 A1 WO2019228145 A1 WO 2019228145A1 CN 2019085631 W CN2019085631 W CN 2019085631W WO 2019228145 A1 WO2019228145 A1 WO 2019228145A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time unit
symbols
type
symbol
Prior art date
Application number
PCT/CN2019/085631
Other languages
English (en)
French (fr)
Inventor
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019228145A1 publication Critical patent/WO2019228145A1/zh
Priority to US17/022,109 priority Critical patent/US11469851B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and more particularly to a transmission scheme and device related to multiple antennas in wireless communication.
  • the 3rd Generation Partnership Project (3GPP) Radio Access Network (RAN) # 72 plenary session decided on the new air interface technology (NR , New Radio (or Fifth Generation, 5G) to conduct research, passed the NR's WI (Work Item) at the 3GPP RAN # 75 plenary meeting, and began to standardize the NR.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • 5G Fifth Generation
  • V2X Vehicle-to-Everything
  • 3GPP has also started the work of standard formulation and research under the NR framework.
  • 3GPP has completed the development of requirements for 5G V2X services and has written them into the standard TS22.886.
  • 3GPP has identified and defined 4 use case groups for 5G V2X services, including: Vehicles Platnooning, Extended Sensors, Semi / Fully Driving and Advanced Driving (Remote Driving).
  • the NR V2X system In order to meet the new business requirements, compared with the LTE V2X system, the NR V2X system has higher throughput, higher reliability, lower latency, longer transmission distance, more accurate positioning, more variability in packet size and transmission cycle And key technical features that coexist more effectively with existing 3GPP technologies and non-3GPP technologies. Further, NR V2X will be applied to higher frequency bands. Currently, 3GPP is discussing a Sidelink channel model above 6GHz. At the same time, the NR system will support more flexible uplink and downlink resource configuration, and the configuration accuracy will reach the symbol level.
  • SCS subcarrier spacing
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiments in the user equipment and the features in the embodiments can be applied to a base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other. Further, although the original intention of this application is for multi-antenna based transmission, this application can also be used for single-antenna transmission. Furthermore, although the original intention of this application is for high-frequency band communication, this application can also be used for low-frequency band communication.
  • This application discloses a method used in a first node for wireless communication, which is characterized in that it includes:
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbol in the first time unit format;
  • the first type of symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • This application discloses a method used in a first node for wireless communication, which is characterized in that it includes:
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbol in the first time unit format;
  • the first type of symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the problem to be solved in this application is: in the 5G NR system, the fragmented uplink and downlink resource configuration results in the limitation of transmission resources on the secondary link.
  • the beam space domain is orthogonal, and the secondary link transmission is performed in a specific beam direction of the downlink symbol, thereby expanding the secondary link transmission resources without affecting the existing system.
  • the above method is characterized by establishing an association between a time domain resource and an airspace resource.
  • the above method is characterized in that an association is established between the first symbol set and the first spatial receiving parameter group.
  • the above method has the advantage that the secondary link transmission is performed in the idle beam direction of the first symbol set, thereby obtaining more secondary link transmission opportunities.
  • the above method is characterized in that the first node is in coverage, and the first information and the second information are configured by a base station.
  • the above method is characterized in that the first node is not in coverage, and the first information and the second information are determined by the first node on its own.
  • the above method is characterized by comprising:
  • the first set of time units includes a positive integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; and the first set of symbols includes the first time unit All multi-carrier symbols in the set corresponding to the first type of symbols in the first time unit format are composed, and the second symbol set is composed of the first time unit set corresponding to the first time unit format.
  • the second type of symbol consists of all multi-carrier symbols.
  • the above method is characterized by comprising:
  • the first set of time units includes a positive integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; and the first set of symbols includes the first time unit All multi-carrier symbols in the set corresponding to the first type of symbols in the first time unit format are composed, and the second symbol set is composed of the first time unit set corresponding to the first time unit format.
  • the second type of symbol consists of all multi-carrier symbols.
  • the above method is characterized by comprising:
  • the first time unit format is indicated by the first signaling; otherwise, the first time unit format is determined by itself.
  • the above method is characterized by comprising:
  • each of the Q first type wireless signals includes the first information and the second information.
  • the above method is characterized by comprising:
  • the first information is composed of Q first-type sub-information
  • the Q first-type wireless signals include the Q first-type sub-information, respectively
  • the second information is composed of the Q first-type sub-information.
  • the class of wireless signals and Q first type sub-information are jointly determined.
  • the above method is characterized by comprising:
  • the above method is characterized by comprising:
  • the first information and the second information are used to determine at least one of a time domain resource and an air domain resource occupied by the second wireless signal.
  • the above method is characterized in that the first node is a user equipment.
  • the above method is characterized in that the first node is a relay node.
  • This application discloses a method used in a second node for wireless communication, which is characterized in that it includes:
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbols in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first type The symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first space receiving parameter group associated with the first symbol set; the first time unit format is A signaling indication.
  • This application discloses a method used in a second node for wireless communication, which is characterized in that it includes:
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbols in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first type The symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first time unit format is The sender of the first information and the second information is determined by the sender.
  • the above method is characterized in that the first set of time units is indicated by the second signaling; the first set of time units includes a positive integer number of time units; Each time unit includes a positive integer number of multi-carrier symbols; the first symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the first type of symbols in the first time unit format, so The second symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format.
  • the above method is characterized in that the first set of time units is determined by a sender of the first information and the second information on its own; the first set of time units includes a positive integer number of times Each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; the first symbol set includes the first time unit set corresponding to the first time unit format corresponding to the first time unit format All types of multi-carrier symbols of a type of symbol are composed, and the second symbol set is composed of all multi-carrier symbols corresponding to the second type of symbols in the first time unit format in the first time unit set.
  • the above method is characterized in that if the senders of the first information and the second information are within coverage, the first time unit format is indicated by the first signaling; Otherwise, the first time unit format is determined by itself.
  • the above method is characterized by comprising:
  • each of the Q first type wireless signals includes the first information and the second information.
  • the above method is characterized by comprising:
  • the first information is composed of Q first-type sub-information; the Q first-type wireless signals include the Q first-type sub-information respectively; and the second information is composed of the Q first-type sub-information
  • the class of wireless signals and Q first type sub-information are jointly determined.
  • the above method is characterized in that the reception quality of the received target specific signal is used by the sender of the first information and the second information to determine the first information and Whether the sender of the second information is located within the coverage.
  • the above method is characterized by comprising:
  • the first information and the second information are used to determine at least one of a time domain resource and an air domain resource occupied by the second wireless signal.
  • the above method is characterized in that the second node is a user equipment.
  • the above method is characterized in that the second node is a relay node.
  • This application discloses a method used in a base station for wireless communication, which is characterized in that it includes:
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include a positive integer number of multi-carrier symbols; each of the first symbol set Multi-carrier symbols correspond to the first type of symbols in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first One type of symbols includes downlink symbols, and the second type of symbols includes uplink symbols; second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first information and the second The information is sent by a receiver of the first signaling.
  • the above method is characterized by comprising:
  • the first set of time units includes a positive integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; and the first set of symbols includes the first time unit All multi-carrier symbols in the set corresponding to the first type of symbols in the first time unit format are composed, and the second symbol set is composed of the first time unit set corresponding to the first time unit format.
  • the second type of symbol consists of all multi-carrier symbols.
  • the above method is characterized in that if the recipient of the first signaling is within coverage, the first time unit format is indicated by the first signaling; otherwise, the first The time unit format is determined by itself.
  • each of the Q first type wireless signals includes the first information and the second information; and Q is a positive integer.
  • the above method is characterized in that the first information is composed of Q first-type sub-information; the Q first-type wireless signals include the Q first-type sub-information respectively; Two pieces of information are jointly determined by the Q first type wireless signals and Q first type sub-information; the Q is a positive integer.
  • the above method is characterized by comprising:
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving first signaling, where the first signaling is used to indicate a first time unit format
  • a first transmitter sending first information and second information
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbol in the first time unit format;
  • the first type of symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first receiver determining a first time unit format by itself
  • a first transmitter sending first information and second information
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbol in the first time unit format;
  • the first type of symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the above-mentioned first node device is characterized by comprising:
  • the first set of time units includes a positive integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; and the first set of symbols includes the first time unit All multi-carrier symbols in the set corresponding to the first type of symbols in the first time unit format are composed, and the second symbol set is composed of the first time unit set corresponding to the first time unit format.
  • the second type of symbol consists of all multi-carrier symbols.
  • the above-mentioned first node device is characterized by comprising:
  • the first receiver determines a first time unit set by itself
  • the first set of time units includes a positive integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; and the first set of symbols includes the first time unit All multi-carrier symbols in the set corresponding to the first type of symbols in the first time unit format are composed, and the second symbol set is composed of the first time unit set corresponding to the first time unit format.
  • the second type of symbol consists of all multi-carrier symbols.
  • the above-mentioned first node device is characterized by comprising:
  • the first time unit format is indicated by the first signaling; otherwise, the first time unit format is determined by itself.
  • the above-mentioned first node device is characterized by comprising:
  • the first transmitter sends Q first type wireless signals, where Q is a positive integer
  • each of the Q first type wireless signals includes the first information and the second information.
  • the above-mentioned first node device is characterized by comprising:
  • the first transmitter sends Q first type wireless signals, where Q is a positive integer
  • the first information is composed of Q first-type sub-information; the Q first-type wireless signals include the Q first-type sub-information, respectively; and the second information is composed of the Q first-type sub-information.
  • the class of wireless signals and Q first type sub-information are jointly determined.
  • the above-mentioned first node device is characterized by comprising:
  • the first receiver receives a target specific signal, and determines whether the first node is located within a coverage according to a target reception quality of the target specific signal.
  • the above-mentioned first node device is characterized by comprising:
  • the first receiver receives a second wireless signal
  • the first information and the second information are used to determine at least one of a time domain resource and an air domain resource occupied by the second wireless signal.
  • the first node device is characterized in that the first node is a user equipment.
  • the above-mentioned first node device is characterized in that the first node is a relay node.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second receiver receiving the first information and the second information
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbols in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first type The symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first space receiving parameter group associated with the first symbol set; the first time unit format is A signaling indication.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second receiver receiving the first information and the second information
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; and in the first symbol set, Each multi-carrier symbol corresponding to the first type of symbols in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first type The symbols include downlink symbols, and the second type of symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first time unit format is The sender of the first information and the second information is determined by the sender.
  • the foregoing second node device is characterized in that the first set of time units is indicated by the second signaling; the first set of time units includes a positive integer number of time units; and the positive integer number of times Each time unit in the unit includes a positive integer number of multi-carrier symbols; the first symbol set includes all multi-carrier symbols in the first time unit set corresponding to the first type of symbols in the first time unit format.
  • the second symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format.
  • the above-mentioned second node device is characterized in that the first time unit set is determined by a sender of the first information and the second information by itself; the first time unit set includes a positive An integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; the first set of symbols is the first time unit set corresponding to the first time unit format
  • the first type of symbols are composed of all multi-carrier symbols
  • the second symbol set is composed of all the multi-carrier symbols of the second type of symbols corresponding to the first time unit format in the first time unit set.
  • the second node device is characterized in that, if the sender of the first information and the second information is within coverage, the first time unit format is determined by the first information Order instructions; otherwise, the first time unit format is determined by itself.
  • the above-mentioned second node device is characterized by comprising:
  • each of the Q first type wireless signals includes the first information and the second information.
  • the above-mentioned second node device is characterized by comprising:
  • the first information is composed of Q first-type sub-information; the Q first-type wireless signals include the Q first-type sub-information respectively; and the second information is composed of the Q first-type sub-information
  • the class of wireless signals and Q first type sub-information are jointly determined.
  • the above-mentioned second node device is characterized in that the received quality of the received target specific signal is used by a sender of the first information and the second information to determine the first Whether the sender of the first message and the second message is located in the coverage.
  • the above-mentioned second node device is characterized by comprising:
  • a second transmitter sending a second wireless signal
  • the first information and the second information are used to determine at least one of a time domain resource and an air domain resource occupied by the second wireless signal.
  • the above-mentioned second node device is characterized in that the second node is a user equipment.
  • the above-mentioned second node device is characterized in that the second node is a relay node.
  • This application discloses a base station device used for wireless communication, which is characterized by including:
  • a third transmitter sending first signaling, where the first signaling is used to indicate a first time unit format
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include a positive integer number of multi-carrier symbols; each of the first symbol set Multi-carrier symbols correspond to the first type of symbols in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first One type of symbols includes downlink symbols, and the second type of symbols includes uplink symbols; second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first information and the second The information is sent by a receiver of the first signaling.
  • the above-mentioned base station device is characterized by including:
  • the first set of time units includes a positive integer number of time units; each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; and the first set of symbols includes the first time unit All multi-carrier symbols in the set corresponding to the first type of symbols in the first time unit format are composed, and the second symbol set is composed of the first time unit set corresponding to the first time unit format.
  • the second type of symbol consists of all multi-carrier symbols.
  • the above-mentioned base station device is characterized in that, if a recipient of the first signaling is within coverage, the first time unit format is indicated by the first signaling; otherwise, the first A time unit format is determined by itself.
  • each of the Q first-type wireless signals includes the first information and the second information; and Q is a positive integer.
  • the above-mentioned base station device is characterized in that the first information is composed of Q first-type sub-information; the Q first-type wireless signals include the Q first-type sub-information, respectively; The second information is jointly determined by the Q first-type wireless signals and Q first-type sub-information; the Q is a positive integer.
  • the above-mentioned base station device is characterized by including:
  • the third transmitter sends a target specific signal, and determines whether a receiver of the first signaling is located within a coverage according to a target reception quality of the target specific signal.
  • this application has the following advantages:
  • This application establishes an association between a first symbol set and a first spatial receiving parameter group.
  • This application performs secondary link transmission in the idle beam direction of the first symbol set, thereby obtaining more secondary link transmission opportunities.
  • the first information and the second information are configured by a base station.
  • the first information and the second information are determined by the first node on its own.
  • FIG. 1 shows a flowchart of first signaling, first information, and second information transmission according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless signal transmission according to another embodiment of the present application.
  • FIG. 7 shows a flowchart of determining a first time unit format and a first time unit set according to an embodiment of the present application
  • FIG. 8 is a schematic diagram showing a relationship between a first set of time units and a time unit according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a first time unit format case A according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a first time unit format case B according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram showing a relationship between an antenna port and an antenna port group according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing a relationship between a first symbol set and a first spatial receiving parameter group according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram showing a position relationship between a first node and a second node according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram showing a relationship between a first type of sub-information and a first type of spatial receiving parameter group according to an embodiment of the present application
  • FIG. 15 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 16 shows a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application
  • FIG. 17 shows a structural block diagram of a processing apparatus used in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of first signaling, first information, and second information transmission, as shown in FIG. 1.
  • the first node in this application receives the first signaling, and the first signaling is used to indicate the first time unit format in this application Sending the first information and the second information;
  • the first information is used to indicate the first symbol set in the present application and the second symbol set in the present application;
  • the first symbol set and the second symbol set Each including a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set Corresponds to a second type of symbol in the first time unit format;
  • the second information is used to indicate a first spatial receiving parameter group associated with the first symbol set.
  • the first time format includes downlink symbols, uplink symbols, and flexible symbols.
  • the first time format includes symbols of a first type and symbols of a second type.
  • the first type of symbols include flexible symbols.
  • the second type of symbols include flexible symbols.
  • the flexible symbol is used for downlink transmission.
  • the flexible symbol is used for uplink transmission.
  • the flexible symbol is used for Sidelink transmission.
  • the flexible symbol is used by the first node for transmission.
  • the flexible symbol is used by the first node for reception.
  • the multi-carrier symbols are FDMA (Frequency, Division, Multiple Access, Frequency Access Multiple Access) symbols, OFDM (Orthogonal Frequency, Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols, and SC-FDMA (Single-Carrier Frequency Division) Multiple Access (Single Carrier Frequency Division Multiple Access), DFTS-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing) symbols, FBMC (Filter bank Bank Multi-Carrier, filter bank Multi-carrier) symbol, at least one of IFDMA (Interleaved Frequency, Division Multiple Access) symbols.
  • FDMA Frequency, Division, Multiple Access, Frequency Access Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • DFTS-OFDM Discrete Fourier Transform Spread Orthogonal
  • the first signaling is used to indicate the first time unit format.
  • the first signaling is used to indicate the first time unit format.
  • the first signaling is dynamically configured.
  • the first signaling is configured semi-statically.
  • the first signaling includes all or part of a higher layer signaling.
  • the first signaling includes all or part of an RRC layer (Radio Resource Control Layer) signaling.
  • RRC layer Radio Resource Control Layer
  • the first signaling includes one or more fields in an RRC (Information Element, Information Element).
  • the first signaling includes all or part of a MAC layer (Multimedia Access Control Layer) signaling.
  • MAC layer Multimedia Access Control Layer
  • the first signaling includes one or more fields in a MAC CE (Control Element).
  • the first signaling includes one or more domains in a PHY layer (Physical Layer).
  • PHY layer Physical Layer
  • the first signaling includes one or more domains in a DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling is transmitted on a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the first signaling includes a first control bit block, and the first control bit block includes a positive integer number of sequentially arranged bits.
  • the first control bit block includes one or more fields (Fields) in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first control bit block includes one or more fields (Fields) in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the first control bit block includes one or more fields (fields) in an SIB (System Information Block).
  • SIB System Information Block
  • all or part of the first control bit block is sequentially subjected to scrambling, transmission block-level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment, and channel coding ( Channel Coding), Rate Matching, Secondary Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Physical Resources Resources), baseband signal generation (Baseband Signal Generation), modulation and up conversion (Modulation and Upconversion) to obtain the first signaling.
  • CRC Cyclic Redundancy Check
  • cyclic redundancy check channel coding
  • Channel Coding Channel Coding
  • Rate Matching Secondary Scrambling
  • Modulation Modulation
  • Layer Mapping Transform Precoding
  • Precoding Precoding
  • Mapping to Physical Resources Resources Resources Resources Resources Resources baseband signal generation
  • Baseband Signal Generation Baseband Signal Generation
  • modulation and up conversion Modulation and Upconversion
  • the first signaling is that all or part of the first control bit block undergoes segmentation, channel coding, rate matching, concatenation, scrambling, modulation, and layer mapping. , Spreading, transforming precoding, precoding, mapping to physical resources, output after baseband signal generation, and at least one of modulation and upconversion.
  • the first control bit block includes the first time unit format.
  • the first time unit format is used to generate a scrambling sequence of the first control bit block.
  • the first signaling includes a slot format indicator (SFI).
  • SFI slot format indicator
  • the first signaling refers to one or more fields in TDD-UL-DL-Config (Information Element, Information Element) in 3GPP TS38.331.
  • the first signaling refers to one or more domains in DCI format 2_0 in 3GPP TS38.212.
  • the first signaling is transmitted through a PDCCH identified by SI-RNTI (System Information Radio Network Temporary Identity).
  • SI-RNTI System Information Radio Network Temporary Identity
  • the first signaling is transmitted through a PDCCH identified by SFI-RNTI (Slot Format Indicator-Radio Network Temporary Identity).
  • SFI-RNTI Slot Format Indicator-Radio Network Temporary Identity
  • the first signaling is transmitted through a PDCCH identified by a C-RNTI (Cell-Radio Network Temporary Identity).
  • C-RNTI Cell-Radio Network Temporary Identity
  • the first signaling is transmitted through a SI-RNTI PDCCH scrambled on a CRC (Cyclic Redundancy Check, cyclic redundancy check).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the first signaling is transmitted through SFI-RNTI on a PDCCH scrambled on a CRC (Cyclic Redundancy Check, cyclic redundancy check).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the first signaling is transmitted through a C-RNTI PDCCH scrambled on a CRC (Cyclic Redundancy Check, cyclic redundancy check).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the sender of the first signaling is a synchronization reference source (Synchronization Reference Source) of the first node.
  • the synchronization reference source of the first node includes at least one of a GNSS (Global Navigation Satellite System), a cell, and a SyncRefUE (Synchronization Reference User Equipment).
  • the SyncRefUE refers to 3GPP TS 36.331.
  • the first information includes uplink-downlink configurations of Time-Division Duplex (TDD).
  • TDD Time-Division Duplex
  • the first information includes a slot format indicator (Slot Format Indicator, SFI).
  • SFI Slot Format Indicator
  • the first information includes one or more fields in TDD-UL-DL-Config (Information Element, Information Element) in 3GPP TS38.331.
  • the first information includes one or more domains in DCI format 2_0 in 3GPP TS38.212.
  • the first information includes a first data bit block, and the first data bit block includes a positive integer number of sequentially arranged bits.
  • the first data bit block includes one or more fields (Fields) in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first data bit block includes one or more fields (Fields) in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the first data bit block includes one or more fields (fields) in an SIB (System Information Block).
  • SIB System Information Block
  • the first data bit block includes all or part of bits in a TB (Transport Block).
  • the first data bit block includes all or part of bits in a CB (Code Block).
  • all or part of the bits of the first data bit block are sequentially passed through a transmission block level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment (Attachment), LDPC (Low-Density Parity-Check Code) Pattern selection (base graph selection), code block segmentation (code block segmentation), code block level CRC attachment, channel coding (channel coding), rate matching (rate matching), code block concatenation (concatenation), scrambling (scrambling) , Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks Resource Blocks), Baseband Signal Generation, Modulation and Upconversion to obtain the first information.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • LDPC Low-Density Parity-Check Code
  • Pattern selection base graph selection
  • code block segmentation code block segmentation
  • code block level CRC attachment channel coding (channel coding), rate matching
  • the first information is that all or part of the first data bit block passes through a transmission block level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check, Attachment), LDPC (Low-Density Parity-Check code, base graph selection, code block segmentation, code block-level CRC attachment, channel coding (Channel Coding), rate matching (Rate, Matching), code block concatenation (Concatenation) Scrambling, Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks (Mapping from Virtual, Physical, Resource, and Blocks), output after at least one of baseband signal generation (Baseband Signal Generation), modulation, and upconversion.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check, Attachment
  • LDPC Low-Density Parity-Check code
  • the first data bit block includes the first information.
  • the first information indicates the first symbol set and the second symbol set with a bitmap.
  • the second information includes a first space receiving parameter group, and the first space receiving parameter group includes a positive integer number of space receiving parameters.
  • the second information includes a second data bit block, and the second data bit block includes a positive integer number of sequentially arranged bits.
  • the second data bit block includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second data bit block includes one or more fields (Fields) in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the second data bit block includes one or more fields (fields) in an SIB (System Information Block).
  • SIB System Information Block
  • the second data bit block includes all or part of bits in a TB (Transport Block).
  • the second data bit block includes all or part of bits in a CB (Code Block).
  • all or part of the bits of the second data bit block are sequentially passed through a transmission block level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment (Attachment), LDPC (Low-Density Parity-Check Code) Pattern selection (base graph selection), code block segmentation (code block segmentation), code block level CRC attachment, channel coding (channel coding), rate matching (rate matching), code block concatenation (concatenation), scrambling (scrambling) , Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks Resource Blocks), Baseband Signal Generation, Modulation and Upconversion to obtain the second information.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • LDPC Low-Density Parity-Check Code
  • Pattern selection base graph selection
  • code block segmentation code block segmentation
  • code block level CRC attachment channel coding (channel coding), rate matching
  • the second information is that all or part of the second data bit block passes through a transmission block level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check, Attachment), LDPC (Low-Density Parity-Check code, base graph selection, code block segmentation, code block-level CRC attachment, channel coding (Channel Coding), rate matching (Rate, Matching), code block concatenation (Concatenation) Scrambling, Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks (Mapping from Virtual, Physical, Resource, and Blocks), output after at least one of baseband signal generation (Baseband Signal Generation), modulation, and upconversion.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check, Attachment
  • LDPC Low-Density Parity-Check code
  • the second data bit block includes the second information.
  • the second information uses a bitmap to indicate the first spatial receiving parameter group associated with the first symbol set.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 illustrates a network architecture 200 of a 5G NR, Long-Term Evolution (LTE) and LTE-A (Long-Term Evolution Advanced) system.
  • the 5G NR or LTE network architecture 200 may be called an EPS (Evolved Packet System, evolved packet system) 200, or some other suitable term.
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core) / 5G-CN (5G-Core Network 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • 5G-CN 5G-Core Network 5G core network
  • HSS Home Subscriber Server
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, the EPS provides packet switching services, but those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • the gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmitting and receiving node), or some other suitable term.
  • gNB203 provides UE201 with an access point to EPC / 5G-CN 210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video device, digital audio player (e.g., MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video device
  • digital audio player e.g., MP3 player
  • camera game console
  • drone narrowband IoT device
  • machine type communication device land vehicle, car, wearable device, or any Other similar functional devices.
  • gNB203 is connected to EPC / 5G-CN 210 via S1 / NG interface.
  • EPC / 5G-CN 210 includes MME (Mobility Management Entity) / AMF (Authentication Management Field) / UPF (User Plane Function) 211, other MME / AMF / UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Data Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function
  • S-GW Service Gateway, Service Gateway
  • P-GW Packet Data Network Gateway
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service. Specifically, the Internet service 230 may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet switched streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • the first node in this application includes the UE 201.
  • the user equipment in this application includes the UE 201.
  • the second node in this application includes the UE 241.
  • the user equipment in this application includes the UE 241.
  • the base station in this application includes the gNB203.
  • the UE 201 supports secondary link transmission.
  • the UE 241 supports secondary link transmission.
  • the UE 201 supports beamforming-based secondary link transmission.
  • the UE 241 supports beamforming-based secondary link transmission.
  • the gNB203 supports beamforming-based downlink transmission.
  • the UE 201 supports secondary link transmission based on Massive MIMO.
  • the UE 241 supports secondary link transmission based on Massive MIMO.
  • the gNB203 supports downlink transmission based on a large-scale array antenna.
  • the sender of the target specific signal in this application includes GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the sender of the target specific signal in this application includes the gNB203.
  • the UE 201 supports determining whether the UE 201 is within the coverage of this application based on the target specific signal.
  • the UE 201 supports determining transmission resources of a secondary link based on the first time unit format in the present application and the first time unit set in the present application.
  • the UE 241 supports determining a transmission resource of a secondary link based on the first time unit format in the present application and the first time unit set in the present application.
  • a receiver of the first signaling in the present application includes the UE 201.
  • a recipient of the first information and the second information in this application includes the UE 241.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1 , Layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The layers above layer 1 belong to higher layers.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between user equipment and base station equipment through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) radio layer control sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data Aggregation Protocol) sublayers 304, which terminate at the base station equipment on the network side.
  • the user equipment may have several upper layers above the L2 layer 305, including the network layer (e.g., the IP layer) terminating at the P-GW on the network side and the other end (e.g., the terminating layer) , Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting the data packets, and provides cross-border mobile support for user equipment between base station devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat Repeat Request).
  • HARQ Hybrid Automatic Repeat Repeat Request
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between user equipments.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for user equipment and base station equipment is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (layer L3).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the base station device and the user equipment to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the target specific signal in the present application is generated in the PHY301.
  • the first signaling in this application is generated from the PHY301.
  • the first signaling in this application is generated in the RRC sublayer 306.
  • the first control bit block of the present application is generated in the RRC sublayer 306.
  • the first control bit block in the present application is passed to the PHY301 by the L2 layer.
  • the second signaling in this application is generated from the PHY301.
  • the second signaling in this application is generated in the RRC sublayer 306.
  • the second control bit block of the present application is generated in the RRC sublayer 306.
  • the second control bit block of the present application is passed to the PHY301 by the L2 layer.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the PHY301.
  • the second information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the MAC sublayer 302.
  • the second information in this application is generated in the PHY301.
  • the first data bit block in the present application is generated in the RRC sublayer 306.
  • the first data bit block in the present application is passed to the PHY301 by the L2 layer.
  • the second data bit block in the present application is generated in the RRC sublayer 306.
  • the second data bit block in the present application is passed to the PHY301 by the L2 layer.
  • the third data bit block in the present application is generated in the RRC sublayer 306.
  • the third data bit block in the present application is passed to the PHY301 by the L2 layer.
  • the Q first type wireless signals in the present application are generated in the PHY301.
  • the Q first type sub-information in this application is generated in the RRC sub-layer 306.
  • the Q first type sub-information in this application is generated in the MAC sub-layer 302.
  • the Q first type sub-information in the present application is generated in the PHY301.
  • the Q first type sub-information in this application is passed to the PHY301 by the L2 layer.
  • the Q first type sub-information in this application is passed to the PHY 301 by the MAC sub-layer 302.
  • the second wireless signal in the present application is generated in the PHY301.
  • the second data bit block in the present application is generated in the RRC sublayer 306.
  • the second data bit block in the present application is passed to the PHY301 by the L2 layer.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller / processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter / receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller / processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, and a transmitter / receiver 454 And antenna 452.
  • an upper layer data packet from a core network is provided to the controller / processor 475.
  • the controller / processor 475 implements the functionality of the L2 layer.
  • the controller / processor 475 provides header compression, encryption, packet segmentation and reordering, multiple paths between logic and transport channels. Multiplexing, and radio resource allocation to the second communication device 450 based on various priority metrics.
  • the controller / processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and is based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) signal cluster mapping.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., a pilot) in the time and / or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a multi-carrier symbol stream in the time domain.
  • the multi-antenna transmission processor 471 then performs a transmission analog precoding / beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier, and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs a receive analog precoding / beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding / beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller / processor 459.
  • the controller / processor 459 implements the functions of the L2 layer.
  • the controller / processor 459 may be associated with a memory 460 that stores program code and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller / processor 459 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, and header decompression. Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • the base station in the present application includes the first communication device 410, and the first node in the present application includes the second communication device 450.
  • the first node is a user equipment.
  • the first node is a relay node.
  • the first communication device 410 includes: at least one controller / processor; the at least one controller / processor is responsible for HARQ operations.
  • the second communication device 450 includes: at least one controller / processor; the at least one controller / processor is responsible for using acknowledgement (ACK) and / or negative acknowledgement (NACK)
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the protocol performs error detection to support HARQ operations.
  • a data source 467 is used to provide an upper layer data packet to the controller / processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller / processor 459 implements a header based on the wireless resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels implement L2 layer functions for the user and control planes.
  • the controller / processor 459 is also responsible for retransmission of lost packets and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel encoding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier / single-carrier symbol stream, and after the analog precoding / beam forming operation is performed in the multi-antenna transmitting processor 457, it is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to that at the first communication device 410 to the second communication device 450
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller / processor 475 implements L2 layer functions.
  • the controller / processor 475 may be associated with a memory 476 that stores program code and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller / processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller / processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, and header decompression Control signal processing to recover upper layer data packets from UE450. Upper-layer data packets from the controller / processor 475 may be provided to the core network.
  • the first node in the present application includes the second communication device 450, and the second node in the present application includes the first communication device 410.
  • the first node and the second node are user equipments, respectively.
  • the first node is a relay node
  • the second nodes are user equipments, respectively.
  • the second communication device 450 includes: at least one processor and at least one memory, where the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use at least one processor.
  • the second communication device 450 device at least: receives the first signaling in the present application; the first signaling is used to indicate the first time unit format in the present application; and sends all the Said first information and said second information; said first information is used to indicate a first symbol set and a second symbol set; said first symbol set and said second symbol set respectively include a positive integer number of multi-carriers Symbol; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to the first time unit
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signaling in the application; the first signaling is used to indicate the first time unit format in the application; sending the first information and the second information in the application; The first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include a positive integer number of multi-carrier symbols; each of the first symbol set The multi-carrier symbol corresponds to a first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to a second type of symbol in the first time unit format; the first The class symbols include downlink symbols, and the second type symbols include uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the second communication device 450 includes: at least one processor and at least one memory, where the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use at least one processor.
  • the second communication device 450 means at least: determine the format of the first time unit in the present application by itself; send the first information and the second information in the present application; the first information is used to indicate A first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to the first A first type of symbol in a time unit format, and each multi-carrier symbol in the second symbol set corresponds to a second type of symbol in the first time unit format; the first type of symbol includes a downlink symbol, the The second type of symbols includes uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: determining by itself The first time unit format in the present application; sending the first information and the second information in the present application; the first information is used to indicate a first symbol set and a second symbol set; the The first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in the first time unit format, and the Each multi-carrier symbol in the second symbol set corresponds to a second type of symbol in the first time unit format; the first type of symbols include downlink symbols, the second type of symbols include uplink symbols, and the second The information is used to indicate a first set of spatial reception parameters associated with the first set of symbols.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use at least one processor.
  • the first communication device 410 device at least: receives the first information and the second information in the present application; the first information is used to indicate a first symbol set and a second symbol set; the first The symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in a first time unit format, and the second symbol set Each multi-carrier symbol in the corresponding to the second type of symbols in the first time unit format; the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; the second information is used to indicate and A first spatial receiving parameter group associated with the first symbol set; the first time unit format is indicated by a first signaling.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first information and the second information in the application; the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include positive An integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in a first time unit format, and each multi-carrier symbol in the second symbol set corresponds to a first time unit
  • the second type of symbols in the format the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; the second information is used to indicate a first space reception associated with the first symbol set Parameter group; the first time unit format is indicated by the first signaling.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use at least one processor.
  • the first communication device 410 device at least: receives the first information and the second information in the present application; the first information is used to indicate a first symbol set and a second symbol set; the first The symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in a first time unit format, and the second symbol set Each multi-carrier symbol in the corresponding to the second type of symbols in the first time unit format; the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; the second information is used to indicate and A first spatial receiving parameter group associated with the first symbol set; the first time unit format is determined by a sender of the first information and the second information by itself.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first information and the second information in the application; the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include positive An integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in a first time unit format, and each multi-carrier symbol in the second symbol set corresponds to a first time unit
  • the second type of symbols in the format the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; the second information is used to indicate a first space reception associated with the first symbol set Parameter group; the first time unit format is determined by the sender of the first information and the second information.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use at least one processor.
  • the first communication device 410 device at least: sends the first signaling in the present application; the first signaling is used to indicate the first time unit format in the present application;
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set respectively include a positive integer number of multi-carrier symbols; each of the first symbol set The carrier symbol corresponds to a first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to a second type of symbol in the first time unit format;
  • the first type The symbols include downlink symbols, and the second type of symbols include uplink symbols;
  • second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first information and the second information are Sent by a receiver of the first signaling.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signaling in the application; the first signaling is used to indicate the first time unit format in the application; the first information in the application is used to indicate the first symbol set and A second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to the first time unit format First-type symbols, each multi-carrier symbol in the second symbol set corresponds to the second-type symbols in the first time unit format; the first-type symbols include downlink symbols, and the second-type symbols include Uplink symbol; second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first information and the second information are sent by a receiver of the first signaling .
  • the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data Source 467 ⁇ is used to receive the first signaling in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, and the multi-antenna transmission processor 471 At least one of the controller / processor 475 and the memory 476 ⁇ is used to send the first signaling in the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to send the first information and the second information in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multiple At least one of the antenna transmission processor 471, the controller / processor 475, and the memory 476 ⁇ is used to receive the first information and the second information in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to receive the second signaling in this application;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 At least one of the controller / processor 475 and the memory 476 ⁇ is used to send the second signaling in the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to determine whether the second communication device 450 is within coverage.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to send the Q first type wireless signals in this application;
  • the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission At least one of the processor 471, the controller / processor 475, and the memory 476 ⁇ is used to receive the Q first type wireless signals in the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to receive the target specific signal in this application;
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to receive the second wireless signal in this application;
  • the antenna 420, the transmitter 418, the transmit processor 416, and the multi-antenna transmit processor 471 At least one of the controller / processor 475 and the memory 476 ⁇ is used to send the second wireless signal in the present application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the base station N1 is a maintaining base station of the serving cell of the first node U2
  • the second node U3 is a communication node transmitted by the first node U2 through the secondary link.
  • the steps in the dotted box F0 are optional.
  • the base station N1 transmits in step S11 the target specific signal; a first signaling transmitted in step S12; second signaling transmitted in step S13.
  • step S21 For the first node U2, received at step S21, the target specific signal; determination in step S22 is within the coverage U2 node; receiving a first signaling step S23; received in step S24, the second signaling; in step In step S25, Q first-type wireless signals are transmitted; in step S26, second wireless signals are received.
  • step S31 For the second point U3, receiving the Q signal of a first type of wireless Q0 of first type of wireless signal in step S31; transmitting a second wireless signal in step S32.
  • the first node U2 determines whether the first node U2 is in coverage according to the target reception quality of the target specific signal; if the first node U2 is in coverage, the first time unit format Indicated by the first signaling; if the first node U2 is in coverage, the first set of time units is indicated by the second signaling; each of the Q first type wireless signals is of the first type
  • the wireless signal includes first information and second information, or the Q first type wireless signals include Q first type sub-information, the first information is composed of the Q first type sub-information, and the second information Jointly determined by the Q first-type wireless signals and Q first-type sub-information; the first information is used by the first node U2 to indicate a first symbol set and a second symbol set;
  • the symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in the first time unit format, and the second Each multi-carrier in the symbol set Number corresponds to
  • the first node U2 is a user equipment.
  • the first node U2 is a relay node.
  • the first node U2 includes SyncRefUE (Synchronization Reference User Equipment).
  • SyncRefUE Synchronization Reference User Equipment
  • the first node U2 includes a SynRef UE that is in coverage.
  • the first node U2 includes a SyncRefUE that is not in coverage.
  • the second node U3 is a user equipment.
  • the second node U3 is a relay node.
  • the second node U3 includes a SyncRefUE (Synchronization Reference User Equipment).
  • SyncRefUE Synchronization Reference User Equipment
  • the second node U3 includes a SynRef UE that is in coverage.
  • the second node U3 includes a SyncRefUE that is not in coverage.
  • the first symbol set corresponds to the first time in the first time unit set.
  • the unit format is composed of all multi-carrier symbols of the first type of symbols.
  • the second symbol set corresponds to the first time in the first time unit set.
  • the unit format is composed of all multi-carrier symbols of the second type of symbols.
  • the first node U2 receives the first signaling, the first node U2 receives the second signaling.
  • the base station N1 includes a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the base station N1 includes a cell.
  • the base station N1 includes a serving cell (Serving Cell).
  • serving Cell Serving Cell
  • the base station N1 includes a primary cell (Primary Cell, PCell).
  • the base station N1 includes a secondary cell (SCell).
  • SCell secondary cell
  • the base station N1 includes a SyncRefUE (Synchronization Reference User Equipment).
  • SyncRefUE Synchronization Reference User Equipment
  • the base station N1 includes a SynRef UE that is in coverage.
  • the base station N1 includes a SyncRefUE that is not in coverage.
  • the first information is used to indicate a time domain resource occupied by the second wireless signal.
  • the time domain resource includes a positive integer number of multi-carrier symbols.
  • the time domain resource belongs to the first symbol set.
  • the time domain resource belongs to the second symbol set.
  • the second information is used to indicate an airspace resource occupied by the second wireless signal.
  • the airspace resource includes a space receiving parameter group.
  • the airspace resource includes a positive integer number of space receiving parameters.
  • the airspace resource includes a positive integer number of antenna ports.
  • the airspace resource belongs to a space receiving parameter group.
  • At least one of the Q first type wireless signals is SLSS (Sidelink Synchronization Signals).
  • the Q first-type wireless signals are transmitted on a SL-BCH (Sidelink Broadcast Channel).
  • SL-BCH Seglink Broadcast Channel
  • the Q first type wireless signals are transmitted on a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the Q first type wireless signals are transmitted on a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • the Q first type wireless signals are transmitted on a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the Q first type wireless signals are transmitted on a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • At least one of the first wireless signals of the first type includes a third data bit block, and the third data bit block includes a positive integer number of sequentially arranged bits.
  • the third data bit block includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the third data bit block includes one or more fields (Fields) in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the third data bit block includes one or more fields (fields) in an SIB (System Information Block).
  • SIB System Information Block
  • the third data bit block includes all or part of bits in a TB (Transport Block).
  • the third data bit block includes all or part of bits in a CB (Code Block).
  • all or part of the third data bit block passes through a transmission block level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment (Attachment), LDPC (Low-Density Parity-Check Code) basis Pattern selection (base graph selection), code block segmentation (code block segmentation), code block level CRC attachment, channel coding (channel coding), rate matching (rate matching), code block concatenation (concatenation), scrambling (scrambling) , Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks Resource Blocks), Baseband Signal Generation, Modulation and Upconversion to obtain one first type wireless signal among the Q first type wireless signals.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • LDPC Low-Density Parity-Check Code
  • At least one of the first type of wireless signals of the first type of wireless signals passes a transmission block level CRC (Cyclic Redundancy Check, all or part of the third data bit block, cyclic redundancy) Check) Attachment, Low-Density Parity-Check Code (LDPC), base graph selection, Code Block Segmentation, code block-level CRC attachment, channel coding (Channel Coding), Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks Resource Blocks, output from at least one of mapping from virtual resource blocks to physical resource blocks, Baseband Signal Generation, Modulation and Upconversion.
  • CRC Cyclic Redundancy Check, all or part of the third data bit block, cyclic redundancy
  • LDPC Low-Density Parity-Check Code
  • base graph selection Code Block Segmentation
  • code block-level CRC attachment channel coding (Channel Coding), Rate Matching
  • Code Block Concatenation Sc
  • the third data bit block includes the first information.
  • the third data bit block includes the second information.
  • the third data bit block includes the first information and the second information.
  • the first information indicates the first symbol set and the second symbol set with a bitmap.
  • the first information is used to indicate a first time-frequency resource group and a second time-frequency resource group, and the first time-frequency resource group is orthogonal to the second time-frequency resource group;
  • the first time-frequency resource group includes a positive integer of the first type of time-frequency resources, and each of the positive integer of the first type of time-frequency resources includes a positive number of REs (Resource Element).
  • the first time-frequency resource group includes a positive integer of the first type of time-frequency resources, and each of the positive integer of the first type of time-frequency resources includes a positive number of integers. Carrier symbol.
  • the second time-frequency resource group includes a positive integer of the second type of time-frequency resources, and each of the positive integer of the second type of time-frequency resources includes a positive number of REs. (Resource Element).
  • the second time-frequency resource group includes a positive integer number of second-type time-frequency resources, and each of the positive integer second-type time-frequency resources includes a positive integer number Carrier symbol.
  • the first symbol set is sent on the first time-frequency resource group.
  • the second symbol set is sent on the second time-frequency resource group.
  • the second information is used to indicate a first spatial receiving parameter group associated with the first time-frequency resource group.
  • the second time-frequency resource group is associated with a second spatial receiving parameter group.
  • the Q first-type wireless signals are sent on Q third-type time-frequency resources among N third-type time-frequency resources, where N is a positive integer and N is not less than ⁇ Q ⁇ Said Q.
  • each of the N third-type time-frequency resources includes a positive integer number of multi-carrier symbols.
  • each of the N third-type time-frequency resources includes a positive integer RE (Resource Element).
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 6.
  • the base station N4 is a maintaining base station of the serving cell of the first node U5
  • the second node U6 is a communication node transmitted by the first node U5 through the secondary link.
  • the steps in the dashed box F1 are optional.
  • the base station N4 the target specific signal transmitted in step S41.
  • step S51 the target receives the specific signal; determination in step S52 is not the first node is within the coverage U5; determining a first time unit format itself in step S53; self-determining a first time in step S54 Unit set; Q first wireless signals are sent in step S55; second wireless signals are received in step S56.
  • the first node U5 determines whether the first node U5 is in coverage according to the target reception quality of the target specific signal; if the first node U5 is not in coverage, the first node U5 The node U5 determines the first time unit format by itself; if the first node U5 is not in coverage, the first node U5 determines the first time unit set by itself; each of the Q first type wireless signals is A type of wireless signal includes first information and second information, or the Q first type wireless signals include Q first type sub-information, respectively, and the first information is composed of the Q first type sub-information.
  • Two pieces of information are jointly determined by the Q first type wireless signals and Q first type sub-information; the first information is used by the first node U5 to indicate a first symbol set and a second symbol set; the The first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in the first time unit format, and the In the second set of symbols Multi-carrier symbols correspond to the second type of symbols in the first time unit format; the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; the second information is received by the first node U5 is used to indicate a first spatial receiving parameter group associated with the first symbol set; the first time unit set includes a positive integer time unit; each time unit in the positive integer time unit includes a positive integer Multi-carrier symbols; the first symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the first type of symbols in the first time unit format, and the second symbol set is composed of all The first
  • the first node U5 is a user equipment.
  • the first node U5 is a relay node.
  • the first node U5 includes a SyncRefUE (Synchronization Reference User Equipment).
  • SyncRefUE Synchronization Reference User Equipment
  • the first node U5 includes a SynRef UE that is in coverage.
  • the first node U5 includes a SyncRefUE that is not in coverage.
  • the second node U6 is a user equipment.
  • the second node U6 is a relay node.
  • the second node U6 includes SyncRefUE (Synchronization Reference User Equipment).
  • the second node U6 includes a SynRef UE that is in coverage.
  • the second node U6 includes a SyncRefUE that is not in coverage.
  • the first node U5 determines the first time unit set by itself.
  • the base station N4 includes a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the base station N4 includes a cell.
  • the base station N4 includes a serving cell (Serving Cell).
  • serving Cell Serving Cell
  • the base station N4 includes a Primary Cell (PCell).
  • PCell Primary Cell
  • the base station N4 includes a secondary cell (SCell).
  • SCell secondary cell
  • the base station N4 includes a SyncRefUE (Synchronization Reference User Equipment).
  • SyncRefUE Synchronization Reference User Equipment
  • the base station N4 includes a SynRef UE that is in coverage.
  • the base station N4 includes a SyncRefUE that is not in coverage.
  • the second wireless signal is SLSS (Sidelink Synchronization Signals).
  • the second wireless signal is transmitted on a SL-BCH (Sidelink Broadcast Channel).
  • SL-BCH Seglink Broadcast Channel
  • the second wireless signal is transmitted on a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the second wireless signal is transmitted on a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • the second wireless signal is transmitted on a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the second wireless signal is transmitted on a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • the second wireless signal includes a second data bit block, and the second data bit block includes a positive integer number of sequentially arranged bits.
  • the second data bit block includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second data bit block includes one or more fields (Fields) in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the second data bit block includes one or more fields (fields) in an SIB (System Information Block).
  • SIB System Information Block
  • the second data bit block includes all or part of bits in a TB (Transport Block).
  • the second data bit block includes all or part of bits in a CB (Code Block).
  • all or part of the bits of the second data bit block are sequentially passed through a transmission block level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment (Attachment), LDPC (Low-Density Parity-Check Code) Pattern selection (base graph selection), code block segmentation (code block segmentation), code block level CRC attachment, channel coding (channel coding), rate matching (rate matching), code block concatenation (concatenation), scrambling (scrambling) , Modulation, Layer Mapping, Antenna Port Mapping, Mapping to Virtual Resource Blocks, Mapping from Virtual Resource Blocks to Physical Resource Blocks Resource Blocks), Baseband Signal Generation, Modulation and Upconversion to obtain the second wireless signal.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • LDPC Low-Density Parity-Check Code
  • Pattern selection base graph selection
  • code block segmentation code block segmentation
  • code block level CRC attachment channel coding (channel coding), rate
  • the second wireless signal is obtained by transmitting all or part of the second data bit block through a transmission block level CRC (Cyclic Redundancy Check, Cyclic Redundancy Check, Attachment), LDPC (Low- Density, Parity-Check Code, base graph selection, Code Block Segmentation, code block level CRC attachment, channel coding (Channel Coding), rate matching (Rate, Matching), code block concatenation (Concatenation) ), Scrambling, modulation, layer mapping, antenna port mapping, mapping to virtual resource blocks (Mapping to Virtual Resource Blocks), mapping from virtual resource blocks to physical resources Outputs of at least one of Blocks (Mapping, Virtual, Physical, Resource, and Blocks), Baseband Signal Generation (Baseband, Signal Generation), Modulation, and Upconversion.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check, Attachment
  • LDPC Low- Density, Parity-Check Code, base graph selection, Code Block Segmentation, code block level CRC attachment, channel coding (
  • a time domain resource of the second wireless signal is determined according to the first information.
  • the multi-carrier symbols occupied by the time domain resources of the second wireless signal belong to the first symbol set.
  • the multi-carrier symbols occupied by the time domain resources of the second wireless signal include the first symbol set.
  • the multi-carrier symbols occupied by the time domain resources of the second wireless signal belong to the second symbol set.
  • the airspace resource of the second wireless signal is determined according to the second information.
  • the airspace resources of the second wireless signal belong to the first space receiving parameter group.
  • the airspace resource of the second wireless signal includes the first space receiving parameter group.
  • the first time domain resource is a time domain resource corresponding to the first symbol set.
  • an airspace resource occupied by a wireless signal transmitted on the first time domain resource belongs to the first space receiving parameter group.
  • an airspace resource occupied by a wireless signal transmitted on the first time domain resource includes the first space receiving parameter group.
  • an airspace resource occupied by a wireless signal sent on the first time domain resource belongs to an antenna port corresponding to the first space receiving parameter group.
  • an airspace resource occupied by a wireless signal transmitted on the first time domain resource includes an antenna port corresponding to the first space receiving parameter group.
  • Embodiment 7 illustrates a flowchart for determining a first time unit format and a first time unit set according to an embodiment of the present application, as shown in FIG. 7.
  • the first node in the present application receives a target specific signal, and determines whether the first node is in coverage according to the target reception quality of the target specific signal;
  • the first node receives first signaling and second signaling, the first signaling is used to indicate a first time unit format, and the second signaling is used to indicate a first time unit set; if The first node is not in coverage, and the first node determines a first time unit format and a first time unit set by itself.
  • the second signaling is used to indicate the first set of time units.
  • the second signaling is dynamically configured.
  • the second signaling is configured semi-statically.
  • the second signaling includes all or part of a higher layer signaling.
  • the second signaling includes all or part of an RRC layer (Radio Resource Control Layer) signaling.
  • RRC layer Radio Resource Control Layer
  • the second signaling includes one or more fields in an RRC (Information Element, Information Element).
  • the second signaling includes all or part of a MAC layer (Multimedia Access Control Layer) signaling.
  • MAC layer Multimedia Access Control Layer
  • the second signaling includes one or more fields in a MAC CE (Control Element).
  • the second signaling includes one or more domains in a PHY layer (Physical Layer).
  • PHY layer Physical Layer
  • the second signaling includes one or more domains in a DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the second signaling is transmitted on a PBCH (Physical Broadcast Channel, Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel, Physical Broadcast Channel
  • the second signaling includes a second control bit block, and the second control bit block includes a positive integer number of sequentially arranged bits.
  • the second control bit block includes one or more fields (Fields) in a MIB (Master Information Block).
  • the second control bit block includes one or more fields (Fields) in a MIB-SL (Master Information Block-Sidelink).
  • MIB-SL Master Information Block-Sidelink
  • the second control bit block includes one or more fields (fields) in an SIB (System Information Block).
  • SIB System Information Block
  • all or part of the bits of the second control bit block are sequentially subjected to scrambling, transmission block-level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment, and channel coding ( Channel Coding), Rate Matching, Secondary Scrambling, Modulation, Layer Mapping, Transform Precoding, Precoding, Mapping to Physical Resources Resources), baseband signal generation (Baseband Signal Generation), modulation and up conversion (Modulation and Upconversion) to obtain the second signaling.
  • all or part of the second control bit block undergoes segmentation, channel coding, rate matching, concatenation, scrambling, modulation, and layer mapping. , Spreading, transforming precoding, precoding, mapping to physical resources, output after baseband signal generation, and at least one of modulation and upconversion.
  • the second control bit block includes the first set of time units.
  • the first set of time units is indicated by a bitmap.
  • the first set of time units is used to generate a scrambling sequence of the first control bit block.
  • the second signaling is transmitted through a PDCCH identified by SI-RNTI (System Information Radio Network Temporary Identity).
  • SI-RNTI System Information Radio Network Temporary Identity
  • the second signaling is transmitted through a PDCCH identified by a C-RNTI (Cell Radio Network Temporary Identity).
  • C-RNTI Cell Radio Network Temporary Identity
  • the second signaling is transmitted through a SI-RNTI PDCCH scrambled on a CRC (Cyclic Redundancy Check, cyclic redundancy check).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the second signaling is transmitted through a C-RNTI on a PDCCH that is scrambled on a CRC (Cyclic Redundancy Check, cyclic redundancy check).
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the sender of the second signaling is a synchronization reference source (Synchronization Reference Source) of the first node.
  • the timing of the synchronization reference source is used for receiving the target specific signal.
  • the timing of the synchronization reference source is used for receiving the second signaling.
  • the timing of the synchronization reference source is used for sending the Q first type wireless signals.
  • the first time unit format is configured by the first pre-configuration information.
  • the first set of time units is configured by first pre-configuration information.
  • the sender of the first pre-configuration information is not the synchronization reference source of the first node.
  • the first pre-configuration information includes one or more fields in SL-Preconfiguration IE (Information Element, Information Element) in 3GPP TS38.331.
  • SL-Preconfiguration IE Information Element, Information Element
  • the first pre-configuration information includes one or more domains in SL-V2X-Preconfiguration IE (Information Element, Information Element) in 3GPP TS38.331.
  • the first pre-configuration information includes a secondary link resource pool, and the secondary link resource pool is used for secondary link transmission.
  • the first time unit format is predefined, that is, no signaling configuration is required.
  • the first set of time units is predefined, that is, no signaling configuration is required.
  • Embodiment 8 illustrates a schematic diagram of a relationship between a first time unit set and a time unit according to an embodiment of the present application, as shown in FIG. 8.
  • a box filled with oblique squares represents a time unit, and all the boxes filled with oblique squares constitute a first set of time units.
  • the first set of time units in the present application includes a positive integer number of time units.
  • the time unit includes a positive integer number of radio frames in a time domain.
  • the time unit belongs to a radio frame in the time domain.
  • the time unit is equal to one radio frame in the time domain.
  • the time unit includes a positive integer half-frame in a time domain.
  • the time unit belongs to a half-frame in the time domain.
  • the time unit is equal to one half-frame in the time domain.
  • the time unit includes a positive integer number of subframes in a time domain.
  • the time unit belongs to one subframe in the time domain.
  • the time unit is equal to one subframe in the time domain.
  • the time unit includes a positive integer half-subframe in the time domain.
  • the time unit belongs to a half-subframe in the time domain.
  • the time unit is equal to one half-subframe in the time domain.
  • the time unit includes a positive integer number of time slots (Slots) in the time domain.
  • the time unit belongs to a slot in the time domain.
  • the time unit is equal to one slot in the time domain.
  • the time unit includes a mini-slot in the time domain.
  • the time unit belongs to a mini-slot in the time domain.
  • the time unit is equal to one mini-slot in the time domain.
  • the time unit is equal to 10 milliseconds in the time domain.
  • the time unit is equal to 5 milliseconds in the time domain.
  • the time unit is equal to 1 millisecond in the time domain.
  • the time unit includes a positive integer number of multi-carrier symbols in the time domain.
  • the time unit includes 14 multi-carrier symbols in the time domain.
  • the time unit belongs to a multi-carrier symbol (Symbol) in the time domain.
  • the time unit is equal to one multi-carrier symbol in the time domain.
  • the time unit includes a downlink multi-carrier symbol (Symbol) in the time domain.
  • Symbol downlink multi-carrier symbol
  • the time unit includes an uplink multi-carrier symbol (Symbol) in the time domain.
  • Symbol uplink multi-carrier symbol
  • the time unit includes a flexible multi-carrier symbol in a time domain.
  • the time unit is used for Sidelink transmission.
  • the time unit is used for downlink transmission.
  • the time unit is used for uplink transmission.
  • the time unit belongs to a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the time unit belongs to a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the time unit belongs to a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • the time unit belongs to PSSCH (Physical Sidelink Shared Channel).
  • the time unit belongs to PSSS (Primary, Sidelink, Synchronization, Signal).
  • the time unit belongs to SSSS (Secondary, Sidelink, Synchronization, Signal).
  • the time unit belongs to a PBCH (Physical Broadcast Channel, Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel, Physical Broadcast Channel
  • the time unit belongs to a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the time unit belongs to PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the time unit belongs to PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • the time unit belongs to PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the time unit belongs to PRACH (Phyisical Random Access Channel, Physical Random Access Channel).
  • the time unit belongs to SPDCCH (Short Physical Downlink Control Channel, Short Physical Downlink Control Channel).
  • the time unit belongs to SPUCCH (Short Physical Uplink Control Channel, Short Physical Downlink Control Channel).
  • the time unit belongs to NPBCH (Narrowband Physical Broadcast Channel, Narrowband Physical Broadcast Channel).
  • NPBCH Nearband Physical Broadcast Channel, Narrowband Physical Broadcast Channel
  • the time unit belongs to NPDCCH (Narrowband Physical Control Channel, Narrowband Physical Control Channel).
  • the time unit belongs to NPDSCH (Narrowband Physical Downlink Shared Channel, Narrowband Physical Downlink Shared Channel).
  • the time unit belongs to NPRACH (Narrowband Physical Access and Narrowband Physical Random Access Channel).
  • the time unit belongs to NPUSCH (Narrowband Physical Uplink Shared Channel, Narrowband Physical Uplink Shared Channel).
  • the time unit does not include a resource element (RE) that is allocated to a reference signal (RS).
  • RE resource element
  • RS reference signal
  • the time unit includes a resource element (RE) that is allocated to a guard interval (GP).
  • RE resource element
  • GP guard interval
  • the positive integer number of the time units included in the first time unit set are discontinuous in time.
  • At least two adjacent time units in the first set of time units are discontinuous in time.
  • At least one of the time units between at least two adjacent time units in the first time unit set does not belong to the first time unit set.
  • Embodiment 9 illustrates a schematic diagram of a first time unit format case A according to an embodiment of the present application, as shown in FIG. 9.
  • the box marked with the letter “D” represents the first type of symbols
  • the box marked with the letter “U” represents the second type of symbols.
  • X0 consecutive multicarrier symbols are arranged in ascending order in the time domain, and the serial numbers of the multicarrier symbols are symbol # 0, symbol # 1, Symbols # 2, ..., symbol # (X0-1), where X0 is a positive integer;
  • the first time unit format includes X1 multi-carrier symbols are a first type of symbol, and the first time unit format includes X2 Multi-carrier symbols are symbols of the second type, and X1 and X2 are both positive integers.
  • any one of the multi-carrier symbols in the first time unit format is the first-type symbol.
  • any one of the multi-carrier symbols in the first time unit format is a downlink symbol.
  • X1 is equal to 14 and X2 is equal to 0.
  • any one of the multi-carrier symbols in the first time unit format is the second type of symbol.
  • any one of the multi-carrier symbols in the first time unit format is an uplink symbol.
  • X1 is equal to 0, and X2 is equal to 14.
  • the first type of symbols include flexible symbols.
  • the second type of symbols include flexible symbols.
  • the first-type symbols include downlink symbols and flexible symbols.
  • the second type of symbols include uplink symbols and flexible symbols.
  • the first time unit format includes Y1 downlink symbols, Y2 uplink symbols, and Y3 flexible symbols.
  • the Y1, Y2, and Y3 are all positive integers.
  • any one of the multi-carrier symbols in the first time unit format is a flexible symbol.
  • the Y1 is equal to 0, the Y2 is equal to 0, and the Y3 is equal to 14.
  • the specific definition of the first time unit format participates in section 4.3.2 of 3GPP TS38.211.
  • At least one of the time units in the first set of time units corresponds to the first time unit format.
  • the time unit belongs to a downlink frame.
  • the time unit belongs to an uplink frame.
  • the first set of time units includes a positive integer number of downlink frames and a positive integer number of uplink frames.
  • the time unit belongs to a downlink subframe.
  • the time unit belongs to an uplink subframe.
  • the first set of time units includes a positive integer number of downlink subframes and a positive integer number of uplink subframes.
  • the time unit belongs to a downlink time slot (Downlink slot).
  • the time unit belongs to an uplink slot.
  • the first set of time units includes a positive integer number of downlink time slots and a positive integer number of uplink time slots.
  • the first time unit is one of the time units belonging to a downlink frame among the positive integer number of the time units included in the first time unit set.
  • the first time unit is one of the time units belonging to a downlink subframe among the positive integer number of the time units included in the first time unit set.
  • the first time unit is one of the time units belonging to a downlink time slot among the positive integer number of the time units included in the first time unit set.
  • the second time unit is one of the time units belonging to an uplink frame among the positive integer number of time units included in the first time unit set.
  • the second time unit is one of the time units belonging to an uplink subframe among the positive integer number of the time units included in the first time unit set.
  • the second time unit is one of the time units belonging to an uplink time slot among the positive integer number of the time units included in the first time unit set.
  • the multi-carrier symbol corresponding to the first-type symbol in the first time unit format in the first time unit is used for downlink transmission.
  • a multi-carrier symbol corresponding to the second-type symbol in the first time unit format in the first time unit is used for sub-link transmission.
  • the multi-carrier symbol corresponding to the second-type symbol in the first time unit format in the second time unit is used for uplink transmission.
  • the second type of symbols in the second time unit corresponding to the first time unit format is used for secondary link transmission.
  • the first symbol set includes all multi-carrier symbols in the first time unit set that correspond to the first type of symbols in the first time unit format.
  • the multi-carrier symbols corresponding to the first-type symbols in the first time unit format in the first time unit belong to the first symbol set.
  • the multi-carrier symbols corresponding to the second type of symbols in the first time unit format in the first time unit belong to the first symbol set.
  • the multi-carrier symbols corresponding to the first-type symbols in the first time unit format in the second time unit belong to the first symbol set.
  • all multi-carrier symbols in the first time unit set that correspond to the first type of symbols in the first time unit format belong to the first symbol set.
  • the second symbol set includes all multi-carrier symbols in the first time unit set that correspond to the second type of symbols in the first time unit format.
  • the multi-carrier symbols corresponding to the second-type symbols in the first time unit format in the second time unit belong to the second symbol set.
  • the multi-carrier symbols corresponding to the first-type symbols in the first time unit format in the second time unit belong to the second symbol set.
  • the multi-carrier symbols corresponding to the second type of symbols in the first time unit format in the first time unit belong to the second symbol set.
  • all multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format belong to the second symbol set.
  • the second symbol set does not include any multi-carrier symbol in the first symbol set.
  • Embodiment 10 illustrates a schematic diagram of a first time unit format case B according to an embodiment of the present application, as shown in FIG. 10.
  • the box filled with diagonal lines represents the first type of sub-time unit
  • the box filled with dots represents the second type of sub-time unit
  • the box marked with the letter “D” represents the first type of symbol
  • the box with the letter "U” represents the second type of symbol.
  • the first time unit format includes T0 consecutive sub-time units, and each sub-time unit in the T0 consecutive sub-time units includes a positive integer number of multi-carrier symbols; in the first time unit In the format, the T0 consecutive sub-time units are arranged in ascending order in the time domain.
  • the serial numbers of the T0 consecutive sub-time units are, in order, sub-time unit # 0, sub-time unit # 1, and sub-time unit # 2. ..., a sub-time unit # (T0-1), where T0 is a positive integer; the first time unit format includes T1, the sub-time unit is a first-type sub-time unit format, and the first time unit The format includes T2.
  • the sub-time units are second-type sub-time units, and both T1 and T2 are positive integers.
  • the sub-time unit belongs to a radio frame.
  • the sub-time unit belongs to one field.
  • the sub-time unit belongs to one sub-frame.
  • the sub-time unit is equal to one sub-frame.
  • the sub-time unit belongs to one half sub-frame.
  • the sub-time unit belongs to one time slot.
  • the sub-time unit belongs to a small time slot.
  • the sub-time unit is equal to 20 time slots.
  • the sub-time unit includes a positive integer number of multi-carrier symbols.
  • the sub-time unit belongs to a positive integer number of multi-carrier symbols.
  • the sub-time unit is composed of a positive integer number of multi-carrier symbols.
  • the first-type sub-time unit includes a positive integer number of multi-carrier symbols, and the multi-carrier symbols included in the first-type sub-time unit format are all the first-type symbols.
  • the second-type sub-time unit includes a positive integer number of multi-carrier symbols, and the multi-carrier symbols included in the second-type sub-time unit are all the second-type symbols.
  • any one of the sub-time units in the first time unit format is the first type of sub-time unit format.
  • any one of the sub-time units in the first time unit format is a downlink frame.
  • any one of the sub-time units in the first time unit format is a downlink sub-frame.
  • any one of the sub-time units in the first time unit format is a downlink time slot.
  • the T1 is equal to 20 and the T2 is equal to 0.
  • any one of the sub-time units in the first time unit format is the second type of sub-time unit format.
  • any one of the sub-time units in the first time unit format is an uplink frame.
  • any one of the sub-time units in the first time unit format is an uplink sub-frame.
  • any one of the sub-time units in the first time unit format is an uplink time slot.
  • At least one of the time units in the first set of time units corresponds to the first time unit format.
  • the T1 is equal to 0 and the T2 is equal to 20.
  • At least one of the time units included in the first time unit set includes a multi-carrier symbol corresponding to the first type of sub-time unit format of the first time unit format for downlink transmission.
  • At least one of the time units included in the first time unit set includes a multi-carrier symbol corresponding to the second type of sub-time unit format of the first time unit format, which is used for secondary link transmission.
  • At least one of the time units included in the first time unit set includes a multi-carrier symbol corresponding to the second type of sub-time unit format of the first time unit format for uplink transmission.
  • At least one of the time units included in the first time unit set includes a multi-carrier symbol corresponding to the first type of sub-time unit format of the first time unit format and used for secondary link transmission.
  • the first symbol set includes the multi-carrier symbols included in all the time units in the first type of sub-time unit format corresponding to the first time unit format in the first time unit set.
  • the second symbol set includes the multi-carrier symbols included in all the time units in the second type of sub-time unit format corresponding to the first time unit format in the first time unit set.
  • Embodiment 11 illustrates a schematic diagram of a relationship between an antenna port and an antenna port group according to an embodiment of the present application, as shown in FIG. 11.
  • one antenna port group includes positive integer antenna ports; one antenna port is formed by stacking antennas of the positive integer antenna group through antenna virtualization; and one antenna group includes positive integer antennas.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a given antenna port is an antenna port in the one antenna port group; a mapping coefficient of all antennas in the positive integer antenna group included in the given antenna port to the given antenna port constitutes the given antenna The beamforming vector corresponding to the port.
  • the mapping coefficients of multiple antennas included in any given antenna group to the given antenna port within the positive integer number of antenna groups included in the given antenna port constitute an analog beamforming vector for the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer antenna groups included in the given antenna port are arranged diagonally to form the analog beamforming matrix corresponding to the given antenna port.
  • a mapping coefficient of a positive integer number of antenna groups included in the given antenna port to the given antenna port forms a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by a product of an analog beamforming matrix and a digital beamforming vector corresponding to the given antenna port.
  • antenna port # 0 and antenna port # 1 Two antenna ports are shown in FIG. 11: antenna port # 0 and antenna port # 1.
  • the antenna port # 0 is composed of an antenna group # 0
  • the antenna port # 1 is composed of an antenna group # 1 and an antenna group # 2.
  • the mapping coefficients of the multiple antennas in the antenna group # 0 to the antenna port # 0 constitute an analog beamforming vector # 0; the mapping coefficients of the antenna group # 0 to the antenna port # 0 constitute a digital beamforming.
  • the pattern vector # 0; the beam forming vector corresponding to the antenna port # 0 is obtained by a product of the analog beam forming vector # 0 and the digital beam forming vector # 0.
  • the mapping coefficients of the multiple antennas in the antenna group # 1 and the multiple antennas in the antenna group # 2 to the antenna port # 1 constitute an analog beam forming vector # 1 and an analog beam forming vector # 2, respectively.
  • the mapping coefficients of the antenna group # 1 and the antenna group # 2 to the antenna port # 1 constitute a digital beam forming vector # 1; the beam forming vector corresponding to the antenna port # 1 is formed by the The product of the analog beamforming matrix # 1 formed by diagonally arranging the analog beamforming vector # 1 and the analog beamforming vector # 2 and the digital beamforming vector # 1.
  • an antenna port includes only one antenna group, that is, an RF chain, for example, the antenna port # 0 in FIG. 11.
  • the analog beamforming matrix corresponding to the one antenna port is reduced to an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to the one antenna port is equal to its corresponding analog beamforming vector.
  • the antenna port # 0 in FIG. 11 includes only the antenna group # 0, and the digital beamforming vector # 0 in FIG. 11 is reduced to a scalar, and the antenna port # 0 corresponds to The beamforming vector of is the analog beamforming vector # 0.
  • one antenna port includes a positive integer number of antenna groups, that is, a positive integer number of RF chains, for example, antenna port # 1 in FIG. 11.
  • an antenna port is an antenna port; for the specific definition of antenna port, see sections 5.2 and 6.2 in 3GPP TS36.211, or see section 4.4 in 3GPP TS38.211.
  • the small-scale channel parameters experienced by one wireless signal transmitted on one antenna port may be inferred from the small-scale channel parameters experienced by another wireless signal transmitted on the one antenna port.
  • the small-scale channel parameters include ⁇ CIR (Channel Impulse Response), PMI (Precoding Matrix Indicator, Precoding Matrix Identifier), and CQI (Channel Quality Indicator, Channel Quality Identification), RI (Rank Indicator, rank identification) ⁇ .
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator, Precoding Matrix Identifier
  • CQI Channel Quality Indicator, RI (Rank Indicator, rank identification) ⁇ .
  • two antenna ports QCL (Quasi Co-Located, quasi co-location) refers to: all or part of a large-scale (large-scale) wireless signal that can be sent from one of the two antenna ports.
  • Scale properties deduces all or part of a large-scale characteristic of a wireless signal transmitted on the other antenna port of the two antenna ports.
  • the large-scale characteristics of a wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • Time average delay
  • spatial receiving parameters Spatial Rx parameters
  • the specific definition of QCL can be found in section 6.2 of 3GPP TS36.211, section 4.4 of 3GPP TS38.211 or section 5.1.5 of 3GPP TS38.214.
  • the QCL type (QCL type) between one antenna port and another antenna port is QCL-TypeD, which refers to: spatial reception parameters (spatial parameters) that can be transmitted from the wireless signal transmitted on the one antenna port A spatial reception parameter of a wireless signal transmitted on the another antenna port is inferred.
  • the QCL type (QCL type) between one antenna port and another antenna port is QCL-TypeD, which means that the same spatial receiving parameters (Spatial Rx parameters) can be used to receive wireless signals sent by the one antenna port. A signal and a wireless signal sent by said another antenna port.
  • the spatial reception parameters include ⁇ receive beam, receive analog beamforming matrix, receive analog beamforming vector, receive digital beamforming vector, receive beamforming vector, and spatial receive filter. Domain (Receive Filter) ⁇ .
  • the first spatial receiving parameter group includes a positive integer number of spatial receiving parameters.
  • the first spatial receiving parameter group corresponds to a positive integer number of antenna port groups.
  • each spatial receiving parameter in the first spatial receiving parameter group corresponds to an antenna port group.
  • the first spatial receiving parameter group corresponds to an antenna port group.
  • the first spatial receiving parameter group corresponds to one antenna port.
  • the second spatial receiving parameter group includes a positive integer number of spatial receiving parameters.
  • the second spatial receiving parameter group corresponds to a positive integer number of antenna port groups.
  • each of the second spatial receiving parameter groups corresponds to an antenna port group.
  • the second space receiving parameter group corresponds to an antenna port group.
  • the second space receiving parameter group corresponds to one antenna port.
  • the second space receiving parameter group includes a space receiving parameter included in the first space receiving parameter group.
  • Embodiment 12 illustrates a schematic diagram of a relationship between a first symbol set and a first spatial receiving parameter group according to an embodiment of the present application, as shown in FIG. 12.
  • the ellipse represents a spatial reception parameter.
  • a positive integer included in a time unit corresponds to a multi-carrier symbol of the first type of symbols in the first time unit format, which belongs to the first symbol set in the present application; the first symbol set Associate the first space receiving parameter group.
  • case B of FIG. 12 it is shown that a positive integer included in a time unit corresponds to a first time unit format, and all multi-carrier symbols included in a sub-time unit of a first time unit format belong to One symbol collection.
  • the first symbol set is associated with a first space receiving parameter group, and the first space receiving parameter group includes a positive integer number of space receiving parameters.
  • all multi-carrier symbols in the first symbol set associated with the first spatial reception parameter group are used for side link communication (Sidelink Communication).
  • At least one multi-carrier symbol in the first symbol set associated with the first spatial reception parameter group is used for a side link communication (Sidelink Communication).
  • all multi-carrier symbols in the first symbol set associated with the first spatial receiving parameter group are used for Sidelink Discovery.
  • At least one multi-carrier symbol in the first symbol set associated with the first spatial receiving parameter group is used for Sidelink Discovery.
  • all multi-carrier symbols in the first symbol set associated with the first spatial receiving parameter group are used by the first node for side link reception.
  • At least one multi-carrier symbol in the first symbol set associated with the first spatial reception parameter group is used by the first node for side link reception.
  • the first node receives on at least one multi-carrier symbol in the first symbol set with at least one spatial receiving parameter in the corresponding first spatial receiving parameter group.
  • all multi-carrier symbols in the first symbol set associated with the first spatial reception parameter group are used by the second node for side link transmission.
  • any one multi-carrier symbol in the first symbol set is associated with at least one spatial receiving parameter in the first spatial receiving parameter group.
  • any one of the multi-carrier symbols in the first symbol set is associated with all the spatial receiving parameters in the first spatial receiving parameter group.
  • all multi-carrier symbols corresponding to any one sub-time unit in the first symbol set are associated with at least one spatial receiving parameter in the first spatial receiving parameter group.
  • all multi-carrier symbols corresponding to any one sub-time unit in the first symbol set are associated with all the spatial receiving parameters in the first spatial receiving parameter group.
  • all the sub-time units in the first symbol set associated with the first spatial receiving parameter group are used for a side link communication (Sidelink Communication).
  • At least one sub-time unit in the first symbol set associated with the first spatial receiving parameter group is used for a side link communication (Sidelink Communication).
  • all sub-time units in the first symbol set associated with the first spatial receiving parameter group are used for side link discovery (Sidelink Discovery).
  • At least one sub-time unit in the first symbol set associated with the first spatial receiving parameter group is used for Sidelink Discovery.
  • the second symbol set is associated with a second spatial receiving parameter group.
  • all multi-carrier symbols in the second symbol set associated with the second spatial reception parameter group are used for secondary link transmission.
  • At least one multi-carrier symbol in the second symbol set associated with the second spatial reception parameter group is used for secondary link transmission.
  • all multi-carrier symbols in the second symbol set associated with the second spatial reception parameter group are used by the first node for side link reception.
  • At least one multi-carrier symbol in the second symbol set associated with the second spatial reception parameter group is used by the first node for side link reception.
  • the first node receives on at least one multi-carrier symbol in the second symbol set with at least one spatial receiving parameter in the corresponding second spatial receiving parameter group.
  • all multi-carrier symbols in the second symbol set associated with the second spatial reception parameter group are used by the second node for side link transmission.
  • any one multi-carrier symbol in the second symbol set is associated with at least one spatial receiving parameter in the second spatial receiving parameter group.
  • any one multi-carrier symbol in the second symbol set is associated with all the spatial receiving parameters in the second spatial receiving parameter group.
  • Embodiment 13 illustrates a positional relationship between a first node and a second node according to an embodiment of the present application, as shown in FIG. 13.
  • the first node in the present application receives a target specific signal, and determines whether it is within coverage according to a target reception quality of the target specific signal.
  • the first node in the present application is in coverage, and the second node in the present application is not in coverage.
  • the first node if the target reception quality of the target specific signal received by the first node is not less than a target threshold, the first node is within coverage.
  • the first node if the target reception quality of the target specific signal received by the first node is less than a target threshold, the first node is not in coverage.
  • the target specific signal includes an SS (Synchronization Signal).
  • the target specific signal includes a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the target specific signal includes a Secondary Synchronization Signal (SSS).
  • SSS Secondary Synchronization Signal
  • the target specific signal includes a physical broadcast signal (Physical Broadcast Signal).
  • the target specific signal includes a signal transmitted on a PBCH (Physical Broadcast Channel, Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel, Physical Broadcast Channel
  • the target specific signal includes a PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • the target specific signal includes an SSB (SS / PBCH block).
  • the target specific signal includes an RS (Reference Signal).
  • the target specific signal includes a DRS (Discovery Reference Signal).
  • DRS Data Reference Signal
  • the target specific signal includes a signal transmitted on a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the target specific signal includes a signal transmitted on a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the target reception quality includes RSRP (Reference Signal Received Power).
  • the target receiving quality includes S-RSRP (Sidelink Reference Signal Received Power).
  • the target reception quality includes SCH_RP (Received (linear) average power of the resource elements that carry the E-UTRA synchronisation, measured at the UE antenna antenna connector, and the linear average power of the synchronization signal).
  • SCH_RP Receiveived (linear) average power of the resource elements that carry the E-UTRA synchronisation, measured at the UE antenna antenna connector, and the linear average power of the synchronization signal.
  • the target receiving quality includes RSRQ (Reference, Signal, Received, Quality).
  • the target reception quality includes RSSI (Reference Signal Strength Indicator).
  • the target reception quality includes an SNR (Signal, Noise, Ratio).
  • the target reception quality includes SINR (Signal Interference Plus Noise Ratio).
  • the target receiving quality includes BLER (Block Error Rate).
  • the target receiving quality includes BER (Bit Error Rate).
  • the target receiving quality includes PER (Packet Error Rate).
  • the unit of the target threshold is dB (decibel).
  • a unit of the target threshold is dBm (milli-decibel).
  • the target threshold unit is W (milliwatts).
  • the unit of the target threshold is mW (milliwatt).
  • the target threshold is predefined, that is, no signaling configuration is required.
  • the target threshold is configured by a higher layer signaling.
  • the target threshold is configured by system information.
  • the target threshold is configured by an SIB.
  • the target threshold is configured by RRC layer signaling.
  • the target threshold is configured by MAC layer signaling.
  • the target threshold is configured by physical layer signaling.
  • each of the Q second type wireless signals includes second information, and the second information is used to indicate whether the first node is within cell coverage.
  • the first receiving quality of the first specific signal received by the first node of at least one serving cell is greater than a first threshold, the first node is within cell coverage
  • the first specific signal includes an SS (Synchronization Signal).
  • the first specific signal includes a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the first specific signal includes a Secondary Synchronization Signal (SSS).
  • SSS Secondary Synchronization Signal
  • the first specific signal includes a physical broadcast signal (Physical Broadcast Signal).
  • the first specific signal includes a signal transmitted on a PBCH (Physical Broadcast Channel, Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel, Physical Broadcast Channel
  • the first specific signal includes a PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • the first specific signal includes an SSB (SS / PBCH block).
  • the first specific signal includes an RS (Reference Signal).
  • the first specific signal includes a DRS (Discovery Reference Signal).
  • DRS Digital Reference Signal
  • the first specific signal includes a signal transmitted on a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first target specific signal includes a signal transmitted on a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the first reception quality includes RSRP (Reference Signal Received Power).
  • the first reception quality includes SCH_RP (Received (linear) average power of the resource elements, E-UTRA synchronisation, measured at the UE antenna antenna connector, and linear average power of the synchronization signal).
  • SCH_RP Receiveived (linear) average power of the resource elements
  • E-UTRA synchronisation measured at the UE antenna antenna connector
  • linear average power of the synchronization signal linear average power of the synchronization signal
  • the first receiving quality includes RSRQ (Reference Signal Received Quality).
  • the first reception quality includes RSSI (Reference Signal Strength Indicator).
  • the first reception quality includes a Signal to Noise Ratio (SNR).
  • SNR Signal to Noise Ratio
  • the first reception quality includes SINR (Signal Interference Plus Noise Ratio).
  • the first reception quality includes BLER (Block Error Rate).
  • the first receiving quality includes a BER (Bit Error Rate).
  • the first reception quality includes PER (Packet Error Rate).
  • the unit of the first threshold is dBm (milli-decibel).
  • the unit of the first threshold is mW (milliwatt).
  • the first threshold is predefined, that is, no signaling configuration is required.
  • the first threshold is configured by a higher layer signaling.
  • the first threshold is configured by system information.
  • the first threshold is configured by an SIB.
  • the first threshold is configured by RRC layer signaling.
  • the first threshold is configured by MAC layer signaling.
  • the first threshold is configured by physical layer signaling.
  • each of the second wireless signals of the Q second type wireless signals includes second information, and the second information is used to indicate whether the first node is in a GNSS (Global Navigation Satellite System , Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System , Global Navigation Satellite System
  • the GNSS includes GPS (Global Positioning System, US Global Positioning System), Galileo (European Union Galileo Positioning System), Compass (China Beidou Satellite Navigation System), GLONASS (GLONASS Global Navigation Satellite System) , One or more of IRNSS (Indian Regional Navigation Satellite System), QZSS (Quasi-Zenith Satellite System, Japan Quasi-Zenith Satellite System).
  • the first node if the second receiving quality of the second specific signal of the GNSS received by the first node is greater than a second threshold, the first node is within GNSS coverage.
  • the second specific signal includes an SS (Synchronization Signal).
  • the second specific signal includes a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the second specific signal includes a Secondary Synchronization Signal (SSS).
  • SSS Secondary Synchronization Signal
  • the second specific signal includes a physical broadcast signal (Physical Broadcast Signal).
  • the second specific signal includes a signal transmitted on a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the second specific signal includes PBCH-DMRS (PBCH Demodulation Reference Signal).
  • PBCH-DMRS PBCH Demodulation Reference Signal
  • the second specific signal includes an SSB (SS / PBCH block).
  • the second specific signal includes an RS (Reference Signal).
  • the second specific signal includes a DRS (Discovery Reference Signal).
  • DRS Digital Reference Signal
  • the second specific signal includes a signal transmitted on a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the second target specific signal includes a signal transmitted on a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the second reception quality includes RSRP (Reference Signal Received Power).
  • the second reception quality includes SCH_RP (Received (linear) average power of the resource elements (e-UTRA synchronisation, measured at the UE, antenna average connector, synchronization average linear power)).
  • SCH_RP Received (linear) average power of the resource elements (e-UTRA synchronisation, measured at the UE, antenna average connector, synchronization average linear power)).
  • the second receiving quality includes RSRQ (Reference Signal Received Quality).
  • the second reception quality includes RSSI (Reference Signal Strength Indicator).
  • the second reception quality includes a Signal to Noise Ratio (SNR).
  • SNR Signal to Noise Ratio
  • the second receiving quality includes SINR (Signal Interference Plus Noise Ratio).
  • the second reception quality includes BLER (Block Error Rate).
  • the second reception quality includes a BER (Bit Error Rate).
  • the second reception quality includes PER (Packet Error Rate).
  • the unit of the second threshold is dBm (milli-decibel).
  • the unit of the second threshold is mW (milliwatt).
  • the second threshold is predefined, that is, no signaling configuration is required.
  • the second threshold is configured by a higher layer signaling.
  • the second threshold is configured by system information.
  • the second threshold is configured by an SIB.
  • the second threshold is configured by RRC layer signaling.
  • the second threshold is configured by MAC layer signaling.
  • the second threshold is configured by physical layer signaling.
  • the first node if the first node fails to detect that a first reception quality of a first specific signal of a serving cell is greater than a first threshold, the first node is out of cell coverage.
  • the first node if the first node fails to detect that the second reception quality of a second specific signal of a GNSS is greater than a second threshold, the first node is out of GNSS coverage.
  • the first node fails to detect a first reception quality of a first specific signal of a serving cell is greater than a first threshold, or if the first node fails to detect a second GNSS signal, The second reception quality of the specific signal is greater than a second threshold, and the first node is out of coverage.
  • the first node fails to detect a first reception quality of a first specific signal of a serving cell that is greater than a first threshold, and if the first node fails to detect a second GNSS signal, The second reception quality of the specific signal is greater than a second threshold, and the first node is out of coverage.
  • Embodiment 14 illustrates a schematic diagram of a relationship between a first type of sub-information and a first type of spatial receiving parameter group according to an embodiment of the present application, as shown in FIG. 14.
  • the Q first-type wireless signals include Q first-type sub-information
  • the sequence numbers of the Q first-type wireless signals are, in order, the first-type wireless signal # 0, and the first-type wireless signal.
  • the sequence numbers of the Q first type sub-information are, in order, first type sub-information # 0, first type sub-information # 1, ..., first One type of sub-information # (Q-1).
  • FIG. 14 the Q first-type wireless signals include Q first-type sub-information
  • the sequence numbers of the Q first-type wireless signals are, in order, the first-type wireless signal # 0, and the first-type wireless signal.
  • the sequence numbers of the Q first type sub-information are, in order, first type sub
  • the Q first-class wireless signals are associated with Q first-class spatial receiving parameter subgroups respectively, and the serial numbers of the Q first-class spatial receiving parameter subgroups are sequentially the first-class spatial receiving parameters.
  • Subgroup # 0 the first type of space receiving parameter subgroup # 1, ..., the first type of space receiving parameter subgroup # (Q-1); the Q first type of sub-information are used to indicate the Q, respectively
  • the Q first type spatial receiving parameter subgroups associated with the first type wireless signals are associated with Q first-class spatial receiving parameter subgroups respectively, and the serial numbers of the Q first-class spatial receiving parameter subgroups are sequentially the first-class spatial receiving parameters.
  • Subgroup # 0 the first type of space receiving parameter subgroup # 1, ..., the first type of space receiving parameter subgroup # (Q-1); the Q first type of sub-information are used to indicate the Q, respectively
  • the Q first type spatial receiving parameter subgroups associated with the first type wireless signals are used to indicate the Q, respectively.
  • the Q first-class wireless signals are associated with Q first-class spatial receiving parameter subgroups, respectively, and any one of the Q first-class spatial receiving parameter subgroups is a first-class spatial receiving parameter subgroup. Including non-negative integer space receiving parameters.
  • the first space receiving parameter group includes at least one first-type space receiving parameter sub-group among the Q first-type space receiving parameter sub-groups.
  • the second space receiving parameter group includes at least one first-type space receiving parameter sub-group among the Q first-type space receiving parameter sub-groups.
  • the second spatial receiving parameter group includes the Q first type spatial receiving parameter subgroups.
  • each of the Q first type symbol groups includes a non-negative integer number of multi-carrier symbols corresponding to the first type symbols.
  • the multi-carrier symbols included in each of the Q first type symbol groups belong to the first symbol set.
  • the first target sub-information is one of the first type sub-information among the Q first-type sub-information
  • the first target wireless signal is the Q first-type wireless signal including the first target sub-information.
  • a first type wireless signal is one of the first type sub-information among the Q first-type sub-information
  • the first target wireless signal is the Q first-type wireless signal including the first target sub-information.
  • the first target space reception parameter subgroup is a first type space reception parameter subgroup that is associated with the first target wireless signal among the Q first type space reception parameter subgroups.
  • the first target sub-information is used to indicate a first type of symbol group associated with the first target space receiving parameter sub-group among the Q first type symbol groups.
  • the first data bit block includes the first target sub-information.
  • the first information includes the first target sub-information.
  • the first information is composed of the Q first-type sub-information.
  • Embodiment 15 illustrates a structural block diagram of a processing apparatus used in a first node device, as shown in FIG. 15.
  • the first node device processing apparatus 1500 is mainly composed of a first receiver 1501 and a first transmitter 1503.
  • the first receiver 1501 includes an antenna 452, a transmitter / receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller / processor 459, a memory 460, and At least one of the data sources 467.
  • the first transmitter 1502 includes the antenna 452, the transmitter / receiver 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller / processor 459, and the memory 460 in FIG. 4 of the present application. And at least one of the data sources 467.
  • the first receiver 1501 receives the first signaling, and the first signaling is used to indicate the first time unit format in the present application; the first transmitter 1502 sends the first information and the second information ;
  • the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; the first symbol set Each multi-carrier symbol in corresponds to a first type of symbol in the first time unit format, and each multi-carrier symbol in the second symbol set corresponds to a second type of symbol in the first time unit format;
  • the first type of symbols include downlink symbols, and the second type of symbols include uplink symbols;
  • the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the first receiver 1501 determines a first time unit format by itself; the first transmitter 1502 sends first information and second information; wherein the first information is used to indicate a first symbol set And a second symbol set; the first symbol set and the second symbol set respectively include positive integer multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to the first time unit format
  • the first type of symbols, each multi-carrier symbol in the second symbol set corresponds to the second type of symbols in the first time unit format; the first type of symbols include downlink symbols, and the second type of symbols Including uplink symbols; the second information is used to indicate a first spatial reception parameter group associated with the first symbol set.
  • the first receiver 1501 receives and receives second signaling, where the second signaling is used to indicate a first set of time units; wherein the first set of time units includes a positive integer number of time units ; Each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; the first symbol set includes the first time unit set corresponding to the first time unit format of the first time unit All multi-carrier symbols of a class symbol are composed, and the second symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format.
  • the first receiver 1501 determines a first time unit set by itself; wherein the first time unit set includes a positive integer number of time units; each time unit in the positive integer number of time units includes A positive integer number of multi-carrier symbols; the first symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the first type of symbols in the first time unit format, and the second symbol set It is composed of all multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format.
  • the first receiver 1501 determines whether the first node is within coverage.
  • the first transmitter 1502 sends Q first-type wireless signals, where Q is a positive integer; wherein each of the Q first-type wireless signals includes all Said first information and said second information.
  • the first transmitter 1502 sends Q first type wireless signals, where Q is a positive integer; wherein the first information is composed of Q first type sub-information, and the Q first A type of wireless signal includes the Q first-type sub-information, and the second information is jointly determined by the Q first-type wireless signals and the Q first-type sub-information.
  • the first receiver 1501 receives a target specific signal, and determines whether the first node is located within coverage according to a target reception quality of the target specific signal.
  • the first receiver 1501 receives a second wireless signal; wherein the first information and the second information are used to determine a time domain resource and a space domain resource occupied by the second wireless signal. At least one of them.
  • the first node is a user equipment.
  • the first node is a relay node.
  • Embodiment 16 illustrates a structural block diagram of a processing device used in a second node device, as shown in FIG. 16.
  • the second node device processing apparatus 1600 is mainly composed of a second receiver 1601 and a second transmitter 1602.
  • the second receiver 1601 includes an antenna 420, a transmitter / receiver 418, a multi-antenna receiving processor 472, a receiving processor 470, a controller / processor 475, and a memory 476 in FIG. 4 of the present application. At least one of them.
  • the second transmitter 1602 includes the antenna 420, the transmitter / receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller / processor 475, and the memory 476 in FIG. 4 of the present application. At least one of them.
  • the second receiver 1601 receives the first information and the second information; wherein the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set
  • the second symbol set includes a positive integer number of multi-carrier symbols.
  • Each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in a first time unit format.
  • Carrier symbols correspond to the second type of symbols in the first time unit format; the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; and the second information is used to indicate that the symbols are the same as the first symbols.
  • the first spatial receiving parameter group associated with the set is set; the first time unit format is indicated by the first signaling.
  • the second receiver 1601 receives the first information and the second information; wherein the first information is used to indicate a first symbol set and a second symbol set; the first symbol set and the second symbol set
  • the second symbol set includes a positive integer number of multi-carrier symbols.
  • Each multi-carrier symbol in the first symbol set corresponds to a first type of symbol in a first time unit format.
  • Carrier symbols correspond to the second type of symbols in the first time unit format; the first type of symbols include downlink symbols, the second type of symbols include uplink symbols; and the second information is used to indicate that the symbols are the same as the first symbols.
  • the associated first spatial receiving parameter group is set; the first time unit format is determined by the sender of the first information and the second information.
  • the first set of time units is indicated by the second signaling;
  • the first set of time units includes a positive integer number of time units; each of the positive integer time units includes a positive integer number of time units Multi-carrier symbols;
  • the first symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the first type of symbols in the first time unit format, and the second symbol set is composed of the The first time unit set is composed of all multi-carrier symbols corresponding to the second type of symbols in the first time unit format.
  • the first set of time units is determined by the sender of the first information and the second information; the first set of time units includes a positive integer number of time units; and the positive integer number of times Each time unit in the unit includes a positive integer number of multi-carrier symbols; the first symbol set includes all multi-carrier symbols in the first time unit set corresponding to the first type of symbols in the first time unit format.
  • the second symbol set is composed of all multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format.
  • the first time unit format is indicated by the first signaling; otherwise, the first time unit format Be determined by yourself.
  • the second receiver 1601 receives Q0 first-type wireless signals from the Q first-type wireless signals, and the Q and the Q0 are both positive integers; wherein the Q first-type wireless signals are Each of the first-type wireless signals includes the first information and the second information.
  • the second receiver 1601 receives Q0 first-type wireless signals among the Q first-type wireless signals, and the Q and the Q0 are both positive integers; wherein the first information is provided by Composed of Q first-type sub-information, the Q first-type wireless signals include the Q first-type sub-information, and the second information is composed of the Q first-type wireless signals and Q first Class sub-information is jointly determined.
  • the reception quality of the received target specific signal is used by the sender of the first information and the second information to determine whether it is within coverage.
  • the second transmitter 1602 sends a second wireless signal; wherein the first information and the second information are used to determine a time domain resource and a space domain resource occupied by the second wireless signal. At least one of them.
  • the second node is a user equipment.
  • the second node is a relay node.
  • Embodiment 17 illustrates a structural block diagram of a processing apparatus used in a base station device, as shown in FIG. 17.
  • the base station equipment processing apparatus 1700 is mainly composed of a third transmitter 1701.
  • the third transmitter 1701 includes the antenna 420, the transmitter / receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller / processor 475, and the memory 476 in FIG. 4 of the present application. At least one of them.
  • the third transmitter 1701 sends first signaling, where the first signaling is used to indicate a first time unit format; wherein the first information is used to indicate a first symbol set and a second symbol A set; the first symbol set and the second symbol set each include a positive integer number of multi-carrier symbols; each multi-carrier symbol in the first symbol set corresponds to a first type in the first time unit format Symbol, each multi-carrier symbol in the second symbol set corresponds to a second type of symbol in the first time unit format; the first type of symbols includes a downlink symbol, and the second type of symbols includes an uplink symbol;
  • the second information is used to indicate a first spatial reception parameter group associated with the first symbol set; the first information and the second information are sent by a receiver of the first signaling.
  • the third transmitter 1701 sends second signaling, where the second signaling is used to indicate a first set of time units; wherein the first set of time units includes a positive integer number of time units; Each time unit in the positive integer number of time units includes a positive integer number of multi-carrier symbols; the first symbol set is the first type in the first time unit set corresponding to the first time unit format The symbol is composed of all multi-carrier symbols, and the second symbol set is composed of all the multi-carrier symbols in the first time unit set corresponding to the second type of symbols in the first time unit format.
  • the first time unit format is indicated by the first signaling; otherwise, the first time unit format is determined by itself.
  • each of the Q first-type wireless signals includes the first information and the second information, and Q is a positive integer.
  • the first information is composed of Q first-type sub-information
  • the Q first-type wireless signals include the Q first-type sub-information, respectively
  • the second information is composed of the Q
  • the first type wireless signals and Q first type sub-information are jointly determined, where Q is a positive integer.
  • the third transmitter 1701 sends a target specific signal, and determines whether a receiver of the first signaling is located within a coverage according to a target reception quality of the target specific signal.
  • the first node device in this application includes, but is not limited to, a mobile phone, a tablet computer, a notebook, a network card, a low power consumption device, an eMTC device, a NB-IoT device, a vehicle communication device, an aircraft, an aircraft, a drone, a remotely controlled aircraft, etc Wireless communication equipment.
  • the second node device in this application includes, but is not limited to, a mobile phone, a tablet computer, a notebook, a network card, a low power consumption device, an eMTC device, a NB-IoT device, a vehicle-mounted communication device, an aircraft, an aircraft, a drone, a remotely controlled aircraft, etc Wireless communication equipment.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote controls Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes, but is not limited to, macrocell base stations, microcell base stations, home base stations, relay base stations, eNB, gNB, transmitting and receiving nodes TRP, relay satellites, satellite base stations, air base stations, etc. Wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令被用于指示第一时间单元格式;发送第一信息和第二信息;其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。本申请扩展了副链路的传输资源。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中多天线相关的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务识别和定义了4大用例组(Use Case Group),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(Extended Sensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。
发明内容
为了满足新的业务需求,相比LTE V2X系统,NR V2X系统具有更高吞吐量,更高可靠性,更低延时,更远传输距离,更精准定位,数据包大小和发送周期可变性更强,以及与现有3GPP技术和非3GPP技术更有效共存的关键技术特征。进一步的,NR V2X将被应用于更高频段。目前,3GPP正在讨论6GHz以上的副链路(Sidelink)信道模型。同时,NR系统将支持更加灵活的上下行资源配置,配置精度将达到符号级别。
现有LTE D2D/V2X的Sidelink传输占用的是上行资源,由于NR系统中时隙格式(Slot format)的引入,以及灵活的子载波间隔(Subcarrier Spacing,SCS)配置,NR系统的上下行资源将更加碎片化,使D2D/V2X业务很难找到连续的上行资源,从而降低了D2D/V2X业务的传输机会。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对基于多天线的传输,但本申请也能被用于单天线传输。更进一步的,虽然本申请的初衷是针对高频段通信,但本申请也能被用于低频段通信。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于指示第一时间单元格式;
发送第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
自行确定第一时间单元格式;
发送第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合 和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
作为一个实施例,本申请要解决的问题是:在5G NR系统中,碎片化的上下行资源配置导致副链路传输资源受限的问题。上述方法在高频或者多天线场景下,通过波束空域正交,在下行符号的特定波束方向上进行副链路传输,从而扩展了副链路传输资源,并且不对现有系统产生影响。
作为一个实施例,上述方法的特质在于,在时域资源和空域资源之间建立关联。
作为一个实施例,上述方法的特质在于,在第一符号集合和第一空间接收参数组之间建立关联。
作为一个实施例,上述方法的好处在于,在第一符号集合的空闲波束方向上进行副链路传输,从而获得更多的副链路传输机会。
作为一个实施例,上述方法的特质在于,所述第一节点处于覆盖内,所述第一信息和所述第二信息由基站配置。
作为一个实施例,上述方法的特质在于,所述第一节点不处于覆盖,所述第一信息和所述第二信息是所述第一节点自行确定的。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信令,所述第二信令被用于指示第一时间单元集合;
其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述方法的特征在于,包括:
自行确定第一时间单元集合;
其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述方法的特征在于,包括:
判断所述第一节点是否处于覆盖内;
其中,如果所述第一节点处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
根据本申请的一个方面,上述方法的特征在于,包括:
发送Q个第一类无线信号,所述Q为正整数;
其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息。
根据本申请的一个方面,上述方法的特征在于,包括:
发送Q个第一类无线信号,所述Q为正整数;
其中,所述第一信息由Q个第一类子信息组成;所述Q个第一类无线信号分别包括所述Q个第一类子信息;所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
根据本申请的一个方面,上述方法的特征在于,包括:
接收目标特定信号,根据所述目标特定信号的目标接收质量判断所述第一节点是否位于覆盖内。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二无线信号;
其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被所述第一信息和所述第二信息的发送者自行确定的。
根据本申请的一个方面,上述方法的特征在于,第一时间单元集合是被第二信令指示的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述方法的特征在于,第一时间单元集合是被所述第一信息和所述第二信息的发送者自行确定的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述方法的特征在于,如果所述所述第一信息和所述第二信息的发送者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
根据本申请的一个方面,上述方法的特征在于,包括:
接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;
其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息。
根据本申请的一个方面,上述方法的特征在于,包括:
接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;
其中,所述第一信息由Q个第一类子信息组成;所述Q个第一类无线信号分别包括 所述Q个第一类子信息;所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
根据本申请的一个方面,上述方法的特征在于,接收到的目标特定信号的接收质量被所述所述第一信息和所述第二信息的发送者用于判断所述所述第一信息和所述第二信息的发送者是否位于覆盖内。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二无线信号;
其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于指示第一时间单元格式;
其中,第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信令,所述第二信令被用于指示第一时间单元集合;
其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述方法的特征在于,如果所述所述第一信令的接收者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
根据本申请的一个方面,上述方法的特征在于,Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息;所述Q为正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信息由Q个第一类子信息组成;Q个第一类无线信号分别包括所述Q个第一类子信息;所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定;所述Q为正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
发送目标特定信号,根据所述目标特定信号的目标接收质量判断所述所述第一信令的接收者是否位于覆盖内。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机:接收第一信令,所述第一信令被用于指示第一时间单元格式;
第一发射机:发送第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机:自行确定第一时间单元格式;
第一发射机:发送第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一接收机接收第二信令,所述第二信令被用于指示第一时间单元集合;
其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一接收机自行确定第一时间单元集合;
其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一接收机判断所述第一节点是否处于覆盖内;
其中,如果所述第一节点处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一发射机发送Q个第一类无线信号,所述Q为正整数;
其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一发射机发送Q个第一类无线信号,所述Q为正整数;
其中,所述第一信息由Q个第一类子信息组成;所述Q个第一类无线信号分别包括所述Q个第一类子信息;所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一接收机接收目标特定信号,根据所述目标特定信号的目标接收质量判断所述第一节点是否位于覆盖内。
根据本申请的一个方面,上述第一节点设备的特征在于,包括:
所述第一接收机接收第二无线信号;
其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
根据本申请的一个方面,上述第一节点设备的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述第一节点设备的特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机:接收第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所 述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机:接收第一信息和第二信息;
其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被所述第一信息和所述第二信息的发送者自行确定的。
根据本申请的一个方面,上述第二节点设备的特征在于,第一时间单元集合是被第二信令指示的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述第二节点设备的特征在于,第一时间单元集合是被所述第一信息和所述第二信息的发送者自行确定的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述第二节点设备的特征在于,如果所述所述第一信息和所述第二信息的发送者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
根据本申请的一个方面,上述第二节点设备的特征在于,包括:
所述第二接收机接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;
其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息。
根据本申请的一个方面,上述第二节点设备的特征在于,包括:
所述第二接收机接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;
其中,所述第一信息由Q个第一类子信息组成;所述Q个第一类无线信号分别包括所述Q个第一类子信息;所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
根据本申请的一个方面,上述第二节点设备的特征在于,接收到的目标特定信号的接收质量被所述所述第一信息和所述第二信息的发送者用于判断所述所述第一信息和所述第二信息的发送者是否位于覆盖内。
根据本申请的一个方面,上述第二节点设备的特征在于,包括:
第二发射机:发送第二无线信号;
其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
根据本申请的一个方面,上述第二节点设备的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述第二节点设备的特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的基站设备,其特征在于,包括:
第三发射机:发送第一信令,所述第一信令被用于指示第一时间单元格式;
其中,第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
根据本申请的一个方面,上述基站设备的特征在于,包括:
所述第三发射机发送第二信令,所述第二信令被用于指示第一时间单元集合;
其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
根据本申请的一个方面,上述基站设备的特征在于,如果所述所述第一信令的接收者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
根据本申请的一个方面,上述基站设备的特征在于,Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息;所述Q为正整数。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信息由Q个第一类子信息组成;所述Q个第一类无线信号分别包括所述Q个第一类子信息;所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定;所述Q为正整数。
根据本申请的一个方面,上述基站设备的特征在于,包括:
所述第三发射机发送目标特定信号,根据所述目标特定信号的目标接收质量判断所述所述第一信令的接收者是否位于覆盖内。
作为一个实施例,本申请具备如下优势:
-本申请在时域资源和空域资源之间建立关联。
-本申请在第一符号集合和第一空间接收参数组之间建立关联。
-本申请在第一符号集合的空闲波束方向上进行副链路传输,从而获得更多的副链路传输机会。
-本申请对于处于覆盖内的所述第一节点,所述第一信息和所述第二信息由基站配置。
-本申请对于不处于覆盖内的所述第一节点,所述第一信息和所述第二信息是所述第一节点自行确定的。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第一信息和第二信息传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的确定第一时间单元格式和第一时间单元集合的流程图;
图8示出了根据本申请的一个实施例的第一时间单元集合与时间单元之间关系的示意图;
图9示出了根据本申请的一个实施例的第一时间单元格式情况A的示意图;
图10示出了根据本申请的一个实施例的第一时间单元格式情况B的示意图;
图11示出了根据本申请的一个实施例的天线端口和天线端口组之间关系的示意图;
图12示出了根据本申请的一个实施例的第一符号集合与第一空间接收参数组之间关系的示意图;
图13示出了根据本申请的一个实施例的第一节点与第二节点之间的位置关系的示意图;
图14示出了根据本申请的一个实施例的第一类子信息与第一类空间接收参数组之间关系的示意图;
图15示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图16示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;
图17示出了根据本申请的一个实施例的用于基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一信令,第一信息和第二信息传输的流程图,如附图1所示。
在实施例1中,如果本申请中的第一节点处于覆盖内,本申请中的第一节点接收第一信令,所述第一信令被用于指示本申请中的第一时间单元格式;发送第一信息和第二信息;所述第一信息被用于指示本申请中的第一符号集合和本申请中的第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
作为一个实施例,所述第一时间格式包括下行符号,上行符号和灵活符号。
作为一个实施例,所述第一时间格式包括第一类符号和第二类符号。
作为一个实施例,所述第一类符号包括灵活符号。
作为一个实施例,所述第二类符号包括灵活符号。
作为一个实施例,所述灵活符号被用于下行(Downlink)发送。
作为一个实施例,所述灵活符号被用于上行(Uplink)发送。
作为一个实施例,所述灵活符号被用于副链路(Sidelink)发送。
作为一个实施例,在一个上行子帧中的一个时隙内,所述灵活符号被所述第一节点用于发送。
作为一个实施例,在一个下行子帧中的一个时隙内,所述灵活符号被所述第一节点用于接收。
作为一个实施例,所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号,OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分多址),DFTS-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号,FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号,IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号中的至少之一。
作为一个实施例,所述第一信令被用于指示所述第一时间单元格式。
作为一个实施例,如果所述第一节点处于覆盖内,所述第一信令被用于指示所述第一时间单元格式。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是半静态配置的。
作为一个实施例,所述第一信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC层(Radio Resource Control Layer,无线资源控制层)信令中的全部或部分。
作为一个实施例,所述第一信令包括一个RRC IE(Information Element,信息元素)中的一个或多个域。
作为一个实施例,所述第一信令包括一个MAC层(Multimedia Access Control Layer,多媒体接入控制层)信令中的全部或部分。
作为一个实施例,所述第一信令包括一个MAC CE(Control Element,控制元素)中的一个或多个域。
作为一个实施例,所述第一信令包括一个PHY层(Physical Layer,物理层)中的一个或多个域。
作为一个实施例,所述第一信令包括一个DCI(Downlink Control Information,下行控制信息)中的一个或多个域。
作为一个实施例,所述第一信令在PBCH(Physical Broadcast Channel,物理广播信道)上传输。
作为一个实施例,所述第一信令包括第一控制比特块,所述第一控制比特块包括正整数个依次排列的比特。
作为一个实施例,所述第一控制比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一控制比特块包括一个MIB-SL(Master Information Block-Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第一控制比特块包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一控制比特块的全部或部分比特依次经过一级加扰(scrambling),传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),二级加扰,调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到物理资源(Mapping to Physical Resources),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第一信令。
作为一个实施例,所述第一信令是由所述第一控制比特块的全部或部分比特经过分段(Segmentation),信道编码,速率匹配,串联(Concatenation),加扰,调制,层映射,扩频(Spreading),变换预编码,预编码,映射到物理资源,基带信号发生以及调制和上变频中的至少之一之后的输出。
作为一个实施例,所述第一控制比特块包括所述第一时间单元格式。
作为一个实施例,所述第一时间单元格式被用于生成所述第一控制比特块的加扰序列。
作为一个实施例,所述第一信令包括时隙格式指示(slot format indicator,SFI)。
作为一个实施例,所述第一信令参考3GPP TS38.331中的TDD-UL-DL-Config IE(Information Element,信息元素)中一个或多个域。
作为一个实施例,所述第一信令参考3GPP TS38.212中DCI format 2_0中的一个或多个域。
作为一个实施例,所述第一信令通过SI-RNTI(System Information Radio Network  Temporary Identity,系统信息无线网络临时标识)标识的PDCCH传输。
作为一个实施例,所述第一信令通过SFI-RNTI(Slot Format Indicator-Radio Network Temporary Identity,时隙格式指示-无线网络临时标识)标识的PDCCH传输。
作为一个实施例,所述第一信令通过C-RNTI(Cell-Radio Network Temporary Identity,系统信息无线网络临时标识)标识的PDCCH传输。
作为一个实施例,所述第一信令通过SI-RNTI在CRC(Cyclic Redundancy Check,循环冗余校验)上加扰的PDCCH传输。
作为一个实施例,所述第一信令通过SFI-RNTI在CRC(Cyclic Redundancy Check,循环冗余校验)上加扰的PDCCH传输。
作为一个实施例,所述第一信令通过C-RNTI在CRC(Cyclic Redundancy Check,循环冗余校验)上加扰的PDCCH传输。
作为一个实施例,所述第一信令的发送者是所述第一节点的同步参考源(Synchronization Reference Source)。
作为一个实施例,所述第一节点的所述同步参考源包括GNSS(Global Navigation Satellite System,全球导航卫星系统),小区和SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)中的至少之一。
作为一个实施例,所述SyncRefUE参考3GPP TS36.331。
作为一个实施例,所述第一信息包括时分双工(Time-Division Duplex,TDD)的上下行配置。
作为一个实施例,所述第一信息包括时隙格式指示(Slot Format Indicator,SFI)。
作为一个实施例,所述第一信息包括3GPP TS38.331中的TDD-UL-DL-Config IE(Information Element,信息元素)中一个或多个域。
作为一个实施例,所述第一信息包括3GPP TS38.212中DCI format 2_0中的一个或多个域。
作为一个实施例,所述第一信息包括第一数据比特块,所述第一数据比特块包括正整数个依次排列的比特。
作为一个实施例,所述第一数据比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一数据比特块包括一个MIB-SL(Master Information Block–Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第一数据比特块包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一数据比特块包括一个TB(Transport Block,传输块)中的全部或部分比特。
作为一个实施例,所述第一数据比特块包括一个CB(Code Block,码块)中的全部或部分比特。
作为一个实施例,所述第一数据比特块的全部或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第一信息。
作为一个实施例,所述第一信息是由所述第一数据比特块的全部或部分比特经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)中的至少之一之后的输出。
作为一个实施例,所述第一数据比特块包括所述第一信息。
作为一个实施例,所述第一信息用比特图(bitmap)指示所述第一符号集合和所述第二符号集合。
作为一个实施例,所述第二信息包括第一空间接收参数组,所述第一空间接收参数组包括正整数个空间接收参数。
作为一个实施例,所述第二信息包括第二数据比特块,所述第二数据比特块包括正整数个依次排列的比特。
作为一个实施例,所述第二数据比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二数据比特块包括一个MIB-SL(Master Information Block–Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第二数据比特块包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二数据比特块包括一个TB(Transport Block,传输块)中的全部或部分比特。
作为一个实施例,所述第二数据比特块包括一个CB(Code Block,码块)中的全部或部分比特。
作为一个实施例,所述第二数据比特块的全部或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第二信息。
作为一个实施例,所述第二信息是由所述第二数据比特块的全部或部分比特经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)中的至少之一之 后的输出。
作为一个实施例,所述第二数据比特块包括所述第二信息。
作为一个实施例,所述第二信息用比特图(bitmap)指示与所述第一符号集合关联的所述第一空间接收参数组。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述用户设备包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,本申请中的所述用户设备包括所述UE241。
作为一个实施例,本申请中的所述基站包括所述gNB203。
作为一个实施例,所述UE201支持副链路传输。
作为一个实施例,所述UE241支持副链路传输。
作为一个实施例,所述UE201支持基于波束赋形(Beamforming)的副链路传输。
作为一个实施例,所述UE241支持基于波束赋形(Beamforming)的副链路传输。
作为一个实施例,所述gNB203支持基于波束赋形的下行(Downlink)传输。
作为一个实施例,所述UE201支持基于大规模阵列天线(Massive MIMO)的副链路传输。
作为一个实施例,所述UE241支持基于大规模阵列天线(Massive MIMO)的副链路传输。
作为一个实施例,所述gNB203支持基于大规模阵列天线的下行传输。
作为一个实施例,本申请中的目标特定信号的发送者包括GNSS(Global Navigation Satellite System,全球导航卫星系统)。
作为一个实施例,本申请中的目标特定信号的发送者包括所述gNB203。
作为一个实施例,所述UE201支持基于所述目标特定信号判断所述UE201是否处于本申请中的覆盖内。
作为一个实施例,所述UE201支持基于本申请中的所述第一时间单元格式和本申请中的第一时间单元集合确定副链路的传输资源。
作为一个实施例,所述UE241支持基于本申请中的所述第一时间单元格式和本申请中的第一时间单元集合确定副链路的传输资源。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信息和所述第二信息的接收者包括所述UE241。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能,层1之上的层属于更高层。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在用户设备与基站设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的基站设备处。虽然未图示,但用户设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供基站设备之间的对用户设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在用户设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于用户设备和基站设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306。RRC子层306负责获得无线资源(即,无线承载)且使用基站设备与用户设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述目标特定信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请的所述第一控制比特块生成于所述RRC子层306。
作为一个实施例,本申请的所述第一控制比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请的所述第二控制比特块生成于所述RRC子层306。
作为一个实施例,本申请的所述第二控制比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一数据比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一数据比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第二数据比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二数据比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第三数据比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三数据比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述Q个第一类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述Q个第一类子信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述Q个第一类子信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述Q个第一类子信息生成于所述PHY301。
作为一个实施例,本申请中的所述Q个第一类子信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述Q个第一类子信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二数据比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二数据比特块是由所述L2层传递给所述PHY301的。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促 进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
作为一个实施例,本申请中的所述基站包括所述第一通信设备410,本申请中的所述第一节点包括所述第二通信设备450。
作为上述实施例的一个子实施例,所述第一节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点和所述第二节点分别是用户设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点分别是用户设备。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收本申请中的所述第一信令;所述第一信令被用于指示本申请中的所述第一时间单元格式;发送本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令;所述第一信令被用于指示本申请中的所述第一时间单元格式;发送本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:自行确定本申请中的所述第一时间单元格式;发送本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:自 行确定本申请中的所述第一时间单元格式;发送本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被所述第一信息和所述第二信息的发送者自行确定的。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信息和所述第二信息;所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被所述第一信息和所述第二信息的发送者自行确定的。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送本申请 中的所述第一信令;所述第一信令被用于指示本申请中的所述第一时间单元格式;本申请中的所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令;所述第一信令被用于指示本申请中的所述第一时间单元格式;本申请中的所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一信息和所述第二信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信息和所述第二信息。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于判断所述第二通信设备450是否处于覆盖内。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述Q个第一类无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述Q个第一类无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述目标特定信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述目标特定信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线 接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,基站N1是第一节点U2的服务小区的维持基站,第二节点U3是第一节点U2通过副链路传输的通信节点。在附图5中,虚线方框F0中的步骤是可选的。
对于 基站N1,在步骤S11中发送目标特定信号;在步骤S12中发送第一信令;在步骤S13中发送第二信令。
对于 第一节点U2,在步骤S21中接收目标特定信号;在步骤S22中判断第一节点U2处于覆盖内;在步骤S23中接收第一信令;在步骤S24中接收第二信令;在步骤S25中发送Q个第一类无线信号;在步骤S26中接收第二无线信号。
对于 第二节点U3,在步骤S31中接收Q个第一类无线信号中的Q0个第一类无线信号;在步骤S32中发送第二无线信号。
在实施例5中,所述第一节点U2根据所述目标特定信号的目标接收质量判断所述第一节点U2是否处于覆盖内;如果所述第一节点U2处于覆盖内,第一时间单元格式由所述第一信令指示;如果所述第一节点U2处于覆盖内,第一时间单元集合由所述第二信令指示;所述Q个第一类无线信号中的每一个第一类无线信号包括第一信息和第二信息,或者,所述Q个第一类无线信号分别包括Q个第一类子信息,第一信息由所述Q个第一类子信息组成,第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定;所述第一信息被所述第一节点U2用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被所述第一节点U2用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成;所述Q为正整数;所述Q0为正整数;所述第一信息和所述第二信息被所述第二节点U3用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
作为一个实施例,所述第一节点U2是用户设备。
作为一个实施例,所述第一节点U2是中继节点。
作为一个实施例,所述第一节点U2包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为一个实施例,所述第一节点U2包括处于覆盖内的SynRefUE。
作为一个实施例,所述第一节点U2包括不处于覆盖内的SyncRefUE。
作为一个实施例,所述第二节点U3是用户设备。
作为一个实施例,所述第二节点U3是中继节点。
作为一个实施例,所述第二节点U3包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为一个实施例,所述第二节点U3包括处于覆盖内的SynRefUE。
作为一个实施例,所述第二节点U3包括不处于覆盖内的SyncRefUE。
作为一个实施例,如果所述第一时间单元集合中的每个时间单元都对应所述第一时间单元格式,所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成。
作为一个实施例,如果所述第一时间单元集合中的每个时间单元都对应所述第一时间单元格式,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
作为一个实施例,如果所述第一节点U2接收所述第一信令,所述第一节点U2接收所述第二信令。
作为一个实施例,所述基站N1包括GNSS(Global Navigation Satellite System,全球导航卫星系统)。
作为一个实施例,所述基站N1包括小区(Cell)。
作为一个实施例,所述基站N1包括服务小区(Serving Cell)。
作为一个实施例,所述基站N1包括主小区(Primary Cell,PCell)。
作为一个实施例,所述基站N1包括辅小区(Secondary Cell,SCell)。
作为一个实施例,所述基站N1包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为一个实施例,所述基站N1包括处于覆盖内的SynRefUE。
作为一个实施例,所述基站N1包括不处于覆盖内的SyncRefUE。
作为一个实施例,所述第一信息被用于指示所述第二无线信号所占用的时域资源。
作为一个实施例,所述时域资源包括正整数个多载波符号。
作为一个实施例,所述时域资源属于所述第一符号集合。
作为一个实施例,所述时域资源属于所述第二符号集合。
作为一个实施例,所述第二信息被用于指示所述第二无线信号所占用的空域资源。
作为一个实施例,所述空域资源包括一个空间接收参数组。
作为一个实施例,所述空域资源包括正整数个空间接收参数。
作为一个实施例,所述空域资源包括正整数个天线端口。
作为一个实施例,所述空域资源属于一个空间接收参数组。
作为一个实施例,所述Q个第一类无线信号中的至少一个第一类无线信号是SLSS(Sidelink Synchronization Signals)。
作为一个实施例,所述Q个第一类无线信号在SL-BCH(Sidelink Broadcast Channel,副链路广播信道)上传输。
作为一个实施例,所述Q个第一类无线信号在PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)上传输。
作为一个实施例,所述Q个第一类无线信号在PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)上传输。
作为一个实施例,所述Q个第一类无线信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上传输。
作为一个实施例,所述Q个第一类无线信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上传输。
作为一个实施例,所述Q个第一类无线信号中的至少一个第一类无线信号包括第三数据比特块,所述第三数据比特块包括正整数个依次排列的比特。
作为一个实施例,所述第三数据比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三数据比特块包括一个MIB-SL(Master Information Block–Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第三数据比特块包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三数据比特块包括一个TB(Transport Block,传输块)中的全部或部分比特。
作为一个实施例,所述第三数据比特块包括一个CB(Code Block,码块)中的全部或部分比特。
作为一个实施例,所述第三数据比特块的全部或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述Q个第一类无线信号中的一个第一类无线信号。
作为一个实施例,所述Q个第一类无线信号中的至少一个第一类无线信号是由所述第三数据比特块的全部或部分比特经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)中的至少之一之后的输出。
作为一个实施例,所述第三数据比特块包括所述第一信息。
作为一个实施例,所述第三数据比特块包括所述第二信息。
作为一个实施例,所述第三数据比特块包括所述第一信息和所述第二信息。
作为一个实施例,所述第一信息用比特图(bitmap)指示所述第一符号集合和所述第二符号集合。
作为一个实施例,所述第一信息被用于指示第一时频资源组和第二时频资源组,所述第一时频资源组与所述第二时频资源组正交;
作为一个实施例,所述第一时频资源组包括正整数个第一类时频资源,所述正整数个第一类时频资源中的每一个第一类时频资源包括正整数个RE(Resource Element,资源粒子)。
作为一个实施例,所述第一时频资源组包括正整数个第一类时频资源,所述正整数个第一类时频资源中的每一个第一类时频资源包括正整数个多载波符号。
作为一个实施例,所述第二时频资源组包括正整数个第二类时频资源,所述正整数个第二类时频资源中的每一个第二类时频资源包括正整数个RE(Resource Element,资源粒子)。
作为一个实施例,所述第二时频资源组包括正整数个第二类时频资源,所述正整数个第二类时频资源中的每一个第二类时频资源包括正整数个多载波符号。
作为一个实施例,所述第一符号集合在所述第一时频资源组上发送。
作为一个实施例,所述第二符号集合在所述第二时频资源组上发送。
作为一个实施例,所述第二信息被用于指示与所述第一时频资源组关联的第一空间接 收参数组。
作为一个实施例,所述第二时频资源组与第二空间接收参数组关联。
作为一个实施例,所述Q个第一类无线信号分别在N个第三类时频资源中的Q个第三类时频资源上发送,所述N为正整数,所述N不小于所述Q。
作为一个实施例,所述N个第三类时频资源中的每一个第三类时频资源包括正整数个多载波符号。
作为一个实施例,所述N个第三类时频资源中的每一个第三类时频资源包括正整数个RE(Resource Element,资源粒子)。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。在附图6中,基站N4是第一节点U5的服务小区的维持基站,第二节点U6是第一节点U5通过副链路传输的通信节点。在附图6中,虚线方框F1中的步骤是可选的。
对于 基站N4,在步骤S41中发送目标特定信号。
对于 第一节点U5,在步骤S51中接收目标特定信号;在步骤S52中判断第一节点U5不处于覆盖内;在步骤S53中自行确定第一时间单元格式;在步骤S54中自行确定第一时间单元集合;在步骤S55中发送Q个第一类无线信号;在步骤S56中接收第二无线信号。
对于 第二节点U6,在步骤S61中接收Q个第一类无线信号中的Q0个第一类无线信号;在步骤S62中发送第二无线信号。
在实施例6中,所述第一节点U5根据所述目标特定信号的目标接收质量判断所述第一节点U5是否处于覆盖内;如果所述第一节点U5不处于覆盖内,所述第一节点U5自行确定第一时间单元格式;如果所述第一节点U5不处于覆盖内,所述第一节点U5自行确定第一时间单元集合;所述Q个第一类无线信号中的每一个第一类无线信号包括第一信息和第二信息,或者,所述Q个第一类无线信号分别包括Q个第一类子信息,第一信息由所述Q个第一类子信息组成,第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定;所述第一信息被所述第一节点U5用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被所述第一节点U5用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成;所述Q为正整数;所述Q0为正整数;所述第一信息和所述第二信息被所述第二节点U6用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
作为一个实施例,所述第一节点U5是用户设备。
作为一个实施例,所述第一节点U5是中继节点。
作为一个实施例,所述第一节点U5包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为一个实施例,所述第一节点U5包括处于覆盖内的SynRefUE。
作为一个实施例,所述第一节点U5包括不处于覆盖内的SyncRefUE。
作为一个实施例,所述第二节点U6是用户设备。
作为一个实施例,所述第二节点U6是中继节点。
作为一个实施例,所述第二节点U6包括SyncRefUE(Synchronization Reference User  Equipment,同步参考用户设备)。
作为一个实施例,所述第二节点U6包括处于覆盖内的SynRefUE。
作为一个实施例,所述第二节点U6包括不处于覆盖内的SyncRefUE。
作为一个实施例,如果所述第一节点U5自行确定第一时间单元格式,所述第一节点U5自行确定第一时间单元集合。
作为一个实施例,所述基站N4包括GNSS(Global Navigation Satellite System,全球导航卫星系统)。
作为一个实施例,所述基站N4包括小区(Cell)。
作为一个实施例,所述基站N4包括服务小区(Serving Cell)。
作为一个实施例,所述基站N4包括主小区(Primary Cell,PCell)。
作为一个实施例,所述基站N4包括辅小区(Secondary Cell,SCell)。
作为一个实施例,所述基站N4包括SyncRefUE(Synchronization Reference User Equipment,同步参考用户设备)。
作为一个实施例,所述基站N4包括处于覆盖内的SynRefUE。
作为一个实施例,所述基站N4包括不处于覆盖内的SyncRefUE。
作为一个实施例,所述第二无线信号是SLSS(Sidelink Synchronization Signals)。
作为一个实施例,所述第二无线信号在SL-BCH(Sidelink Broadcast Channel,副链路广播信道)上传输。
作为一个实施例,所述第二无线信号在PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)上传输。
作为一个实施例,所述第二无线信号在PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)上传输。
作为一个实施例,所述第二无线信号在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上传输。
作为一个实施例,所述第二无线信号在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上传输。
作为一个实施例,所述第二无线信号包括第二数据比特块,所述第二数据比特块包括正整数个依次排列的比特。
作为一个实施例,所述第二数据比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二数据比特块包括一个MIB-SL(Master Information Block–Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第二数据比特块包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二数据比特块包括一个TB(Transport Block,传输块)中的全部或部分比特。
作为一个实施例,所述第二数据比特块包括一个CB(Code Block,码块)中的全部或部分比特。
作为一个实施例,所述第二数据比特块的全部或部分比特依次经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal  Generation),调制和上变频(Modulation and Upconversion)之后得到所述第二无线信号。
作为一个实施例,所述第二无线信号是由所述第二数据比特块的全部或部分比特经过传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),LDPC(Low-Density Parity-Check Code)基础图样选择(base graph selection),码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),码块串联(Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)中的至少之一之的输出。
作为一个实施例,所述第二无线信号的时域资源是根据所述第一信息确定。
作为一个实施例,所述第二无线信号的时域资源所占用的多载波符号属于所述第一符号集合。
作为一个实施例,所述第二无线信号的时域资源所占用的多载波符号包括所述第一符号集合。
作为一个实施例,所述第二无线信号的时域资源所占用的多载波符号属于所述第二符号集合。
作为一个实施例,所述第二无线信号的空域资源是根据所述第二信息确定。
作为一个实施例,所述第二无线信号的空域资源属于所述第一空间接收参数组。
作为一个实施例,所述第二无线信号的空域资源包括所述第一空间接收参数组。
作为一个实施例,第一时域资源是对应所述第一符号集合的时域资源。
作为一个实施例,在所述第一时域资源上发送的无线信号所占用的空域资源属于所述第一空间接收参数组。
作为一个实施例,在所述第一时域资源上发送的无线信号所占用的空域资源包括所述第一空间接收参数组。
作为一个实施例,在所述第一时域资源上发送的无线信号所占用的空域资源属于所述第一空间接收参数组对应的天线端口。
作为一个实施例,在所述第一时域资源上发送的无线信号所占用的空域资源包括所述第一空间接收参数组对应的天线端口。
实施例7
实施例7示例了根据本申请的一个实施例的确定第一时间单元格式和第一时间单元集合的流程图,如附图7所示。
在实施例7中,本申请中的所述第一节点接收目标特定信号,根据所述目标特定信号的目标接收质量判断所述第一节点是否处于覆盖内;如果所述第一节点处于覆盖内,所述第一节点接收第一信令和第二信令,所述第一信令被用于指示第一时间单元格式,所述第二信令被用于指示第一时间单元集合;如果所述第一节点不处于覆盖内,所述第一节点自行确定第一时间单元格式和第一时间单元集合。
作为一个实施例,如果所述第一节点处于覆盖内,所述第二信令被用于指示所述第一时间单元集合。
作为一个实施例,所述第二信令是动态配置的。
作为一个实施例,所述第二信令是半静态配置的。
作为一个实施例,所述第二信令包括一个更高层信令中的全部或部分。
作为一个实施例,所述第二信令包括一个RRC层(Radio Resource Control Layer,无线资源控制层)信令中的全部或部分。
作为一个实施例,所述第二信令包括一个RRC IE(Information Element,信息元素)中的一个或多个域。
作为一个实施例,所述第二信令包括一个MAC层(Multimedia Access Control Layer,多媒体接入控制层)信令中的全部或部分。
作为一个实施例,所述第二信令包括一个MAC CE(Control Element,控制元素)中的一个或多个域。
作为一个实施例,所述第二信令包括一个PHY层(Physical Layer,物理层)中的一个或多个域。
作为一个实施例,所述第二信令包括一个DCI(Downlink Control Information,下行控制信息)中的一个或多个域。
作为一个实施例,所述第二信令在PBCH(Physical Broadcast Channel,物理广播信道)上传输。
作为一个实施例,所述第二信令包括第二控制比特块,所述第二控制比特块包括正整数个依次排列的比特。
作为一个实施例,所述第二控制比特块包括一个MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二控制比特块包括一个MIB-SL(Master Information Block-Sidelink,主信息块-副链路)中的一个或多个域(Field)。
作为一个实施例,所述第二控制比特块包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二控制比特块的全部或部分比特依次经过一级加扰(scrambling),传输块级CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),信道编码(Channel Coding),速率匹配(Rate Matching),二级加扰,调制(Modulation),层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding),映射到物理资源(Mapping to Physical Resources),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第二信令。
作为一个实施例,所述第二信令是由所述第二控制比特块的全部或部分比特经过分段(Segmentation),信道编码,速率匹配,串联(Concatenation),加扰,调制,层映射,扩频(Spreading),变换预编码,预编码,映射到物理资源,基带信号发生以及调制和上变频中的至少之一之后的输出。
作为一个实施例,所述第二控制比特块包括所述第一时间单元集合。
作为一个实施例,所述第一时间单元集合用比特图(bitmap)指示。
作为一个实施例,所述第一时间单元集合被用于生成所述第一控制比特块的加扰序列。
作为一个实施例,所述第二信令通过SI-RNTI(System Information Radio Network Temporary Identity,系统信息无线网络临时标识)标识的PDCCH传输。
作为一个实施例,所述第二信令通过C-RNTI(Cell Radio Network Temporary Identity,系统信息无线网络临时标识)标识的PDCCH传输。
作为一个实施例,所述第二信令通过SI-RNTI在CRC(Cyclic Redundancy Check,循环冗余校验)上加扰的PDCCH传输。
作为一个实施例,所述第二信令通过C-RNTI在CRC(Cyclic Redundancy Check,循环冗余校验)上加扰的PDCCH传输。
作为一个实施例,所述第二信令的发送者是所述第一节点的同步参考源(Synchronization Reference Source)。
作为一个实施例,所述同步参考源的定时被用于所述目标特定信号的接收。
作为一个实施例,所述同步参考源的定时被用于所述第二信令的接收。
作为一个实施例,所述同步参考源的定时被用于所述Q个第一类无线信号的发送。
作为一个实施例,如果所述第一节点不处于覆盖内,所述第一时间单元格式由第一预配置信息配置。
作为一个实施例,如果所述第一节点不处于覆盖内,所述第一时间单元集合由第一预配置信息配置。
作为一个实施例,所述第一预配置信息的发送者不是所述第一节点的所述同步参考源。
作为一个实施例,所述第一预配置信息包括3GPP TS38.331中SL-Preconfiguration IE(Information Element,信息元素)中的一个或多个域。
作为一个实施例,所述第一预配置信息包括3GPP TS38.331中SL-V2X-Preconfiguration IE(Information Element,信息元素)中的一个或多个域。
作为一个实施例,所述第一预配置信息包括副链路资源池,所述副链路资源池被用于副链路传输。
作为一个实施例,如果所述第一节点不处于覆盖内,所述第一时间单元格式是预定义的,即不需要信令配置。
作为一个实施例,如果所述第一节点不处于覆盖内,所述第一时间单元集合是预定义的,即不需要信令配置。
实施例8
实施例8示例了根据本申请的一个实施例的第一时间单元集合与时间单元之间关系的示意图,如附图8所示。在附图8中,斜方格填充的方框代表一个时间单元,所有斜方格填充的方框组成第一时间单元集合。
在实施例8中,本申请中的第一时间单元集合包括正整数个时间单元。
作为一个实施例,所述时间单元在时域上包括正整数个无线帧(Frame)。
作为一个实施例,所述时间单元在时域上属于一个无线帧(Frame)。
作为一个实施例,所述时间单元在时域上等于一个无线帧(Frame)。
作为一个实施例,所述时间单元在时域上包括正整数个半无线帧(Half-Frame)。
作为一个实施例,所述时间单元在时域上属于一个半无线帧(Half-Frame)。
作为一个实施例,所述时间单元在时域上等于一个半无线帧(Half-Frame)。
作为一个实施例,所述时间单元在时域上包括正整数个子帧(Subframe)。
作为一个实施例,所述时间单元在时域上属于一个子帧(Subframe)。
作为一个实施例,所述时间单元在时域上等于一个子帧(Subframe)。
作为一个实施例,所述时间单元在时域上包括正整数个半子帧(Half-Subframe)。
作为一个实施例,所述时间单元在时域上属于一个半子帧(Half-Subframe)。
作为一个实施例,所述时间单元在时域上等于一个半子帧(Half-Subframe)。
作为一个实施例,所述时间单元在时域上包括正整数个时隙(Slot)。
作为一个实施例,所述时间单元在时域上属于一个时隙(Slot)。
作为一个实施例,所述时间单元在时域上等于一个时隙(Slot)。
作为一个实施例,所述时间单元在时域上包括一个小时隙(Mini-slot)。
作为一个实施例,所述时间单元在时域上属于一个小时隙(Mini-Slot)。
作为一个实施例,所述时间单元在时域上等于一个小时隙(Mini-Slot)。
作为一个实施例,所述时间单元在时域上等于10毫秒。
作为一个实施例,所述时间单元在时域上等于5毫秒。
作为一个实施例,所述时间单元在时域上等于1毫秒。
作为一个实施例,所述时间单元在时域上包括正整数个多载波符号(Symbol)。
作为一个实施例,所述时间单元在时域上包括14个多载波符号(Symbol)。
作为一个实施例,所述时间单元在时域上属于一个多载波符号(Symbol)。
作为一个实施例,所述时间单元在时域上等于一个多载波符号(Symbol)。
作为一个实施例,所述时间单元在时域上包括下行多载波符号(Symbol)。
作为一个实施例,所述时间单元在时域上包括上行多载波符号(Symbol)。
作为一个实施例,所述时间单元在时域上包括灵活(Flexible)多载波符号(Symbol)。
作为一个实施例,所述时间单元被用于副链路(Sidelink)传输。
作为一个实施例,所述时间单元被用于下行(Downlink)传输。
作为一个实施例,所述时间单元被用于上行(Uplink)传输。
作为一个实施例,所述时间单元属于PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)。
作为一个实施例,所述时间单元属于PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述时间单元属于PSDCH(Physical Sidelink Discovery Channel,物理副链路发现信道)。
作为一个实施例,所述时间单元属于PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述时间单元属于PSSS(Primary Sidelink Synchronization Signal,主副链路同步信号)。
作为一个实施例,所述时间单元属于SSSS(Secondary Sidelink Synchronization Signal,辅副链路同步信号)。
作为一个实施例,所述时间单元属于PBCH(Physical Broadcast Channel,物理广播信道)。
作为一个实施例,所述时间单元属于PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述时间单元属于PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为一个实施例,所述时间单元属于PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述时间单元属于PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述时间单元属于PRACH(Phyisical Random Access Channel,物理随机接入信道)。
作为一个实施例,所述时间单元属于SPDCCH(Short Physical Downlink Control Channel,短物理下行控制信道)。
作为一个实施例,所述时间单元属于SPUCCH(Short Physical Uplink Control Channel,短物理下行控制信道)。
作为一个实施例,所述时间单元属于NPBCH(Narrowband Physical Broadcast Channel,窄带物理广播信道)。
作为一个实施例,所述时间单元属于NPDCCH(Narrowband Physical Control Channel,窄带物理控制信道)。
作为一个实施例,所述时间单元属于NPDSCH(Narrowband Physical Downlink Shared Channel,窄带物理下行共享信道)。
作为一个实施例,所述时间单元属于NPRACH(Narrowband Physical Random Access Channel,窄带物理随机接入信道)。
作为一个实施例,所述时间单元属于NPUSCH(Narrowband Physical Uplink Shared  Channel,窄带物理上行共享信道)。
作为一个实施例,所述时间单元不包括被分配给参考信号(Reference Signal,RS)的资源粒子(Resource Element,RE)。
作为一个实施例,所述时间单元包括被分配给保护间隔(Guard Period,GP)的资源粒子(Resource Element,RE)。
作为一个实施例,所述第一时间单元集合包括的所述正整数个所述时间单元在时间上是不连续的。
作为一个实施例,所述第一时间单元集合中至少两个相邻的所述时间单元在时间上是不连续的。
作为一个实施例,所述第一时间单元集合中至少两个相邻的所述时间单元之间存在至少一个所述时间单元不属于所述第一时间单元集合。
实施例9
实施例9示例了根据本申请的一个实施例的第一时间单元格式情况A的示意图,如附图9所示。在附图9中,标有字母“D”的方框代表第一类符号,标有字母“U”的方框代表第二类符号。
在实施例9中,在本申请中的所述第一时间单元格式中,X0个连续的多载波符号在时域上以升序排列,多载波符号的序号依次是符号#0,符号#1,符号#2,…,符号#(X0-1),所述X0为正整数;所述第一时间单元格式包括X1个多载波符号是第一类符号,所述第一时间单元格式包括X2个多载波符号是第二类符号,所述X1和所述X2均为正整数。
作为一个实施例,所述第一时间单元格式中的任意一个多载波符号是所述第一类符号。
作为一个实施例,所述第一时间单元格式中的任意一个多载波符号是下行符号。
作为一个实施例,所述X1等于14,所述X2等于0。
作为一个实施例,所述第一时间单元格式中的任意一个多载波符号是所述第二类符号。
作为一个实施例,所述第一时间单元格式中的任意一个多载波符号是上行符号。
作为一个实施例,所述X1等于0,所述X2等于14。
作为一个实施例,所述第一类符号包括灵活符号。
作为一个实施例,所述第二类符号包括灵活符号。
作为一个实施例,所述第一类符号包括下行符号和灵活符号。
作为一个实施例,所述第二类符号包括上行符号和灵活符号。
作为一个实施例,所述第一时间单元格式包括Y1个下行符号,Y2个上行符号和Y3个灵活符号,所述Y1,所述Y2和所述Y3均为正整数。
作为一个实施例,所述第一时间单元格式中的任意一个多载波符号是灵活符号。
作为一个实施例,所述Y1等于0,所述Y2等于0,所述Y3等于14。
作为一个实施例,所述第一时间单元格式的具体定义参加3GPP TS38.211中的4.3.2章节。
作为一个实施例,所述第一时间单元集合中的至少一个所述时间单元对应所述第一时间单元格式。
作为一个实施例,所述时间单元属于一个下行帧(Downlink frame)。
作为一个实施例,所述时间单元属于一个上行帧(Uplink frame)。
作为一个实施例,所述第一时间单元集合包括正整数个下行帧和正整数个上行帧。
作为一个实施例,所述时间单元属于一个下行子帧(Downlink subframe)。
作为一个实施例,所述时间单元属于一个上行子帧(Uplink subframe)。
作为一个实施例,所述第一时间单元集合包括正整数个下行子帧和正整数个上行子帧。
作为一个实施例,所述时间单元属于一个下行时隙(Downlink slot)。
作为一个实施例,所述时间单元属于一个上行时隙(Uplink slot)。
作为一个实施例,所述第一时间单元集合包括正整数个下行时隙和正整数个上行时隙。
作为一个实施例,第一时间单元是所述第一时间单元集合包括的所述正整数个所述时间单元中属于下行帧的一个所述时间单元。
作为一个实施例,第一时间单元是所述第一时间单元集合包括的所述正整数个所述时间单元中属于下行子帧的一个所述时间单元。
作为一个实施例,第一时间单元是所述第一时间单元集合包括的所述正整数个所述时间单元中属于下行时隙的一个所述时间单元。
作为一个实施例,第二时间单元是所述第一时间单元集合包括的所述正整数个所述时间单元中属于上行帧的一个所述时间单元。
作为一个实施例,第二时间单元是所述第一时间单元集合包括的所述正整数个所述时间单元中属于上行子帧的一个所述时间单元。
作为一个实施例,第二时间单元是所述第一时间单元集合包括的所述正整数个所述时间单元中属于上行时隙的一个所述时间单元。
作为一个实施例,所述第一时间单元中对应所述第一时间单元格式的所述第一类符号的多载波符号被用于下行传输。
作为一个实施例,所述第一时间单元中对应所述第一时间单元格式的所述第二类符号的多载波符号被用于副链路传输。
作为一个实施例,所述第二时间单元中对应所述第一时间单元格式的所述第二类符号的多载波符号被用于上行传输。
作为一个实施例,所述第二时间单元中对应所述第一时间单元格式的所述第二类符号被用于副链路传输。
作为一个实施例,第一符号集合包括所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号。
作为一个实施例,所述第一时间单元中对应所述第一时间单元格式的第一类符号的多载波符号属于所述第一符号集合。
作为一个实施例,所述第一时间单元中对应所述第一时间单元格式的第二类符号的多载波符号属于所述第一符号集合。
作为一个实施例,所述第二时间单元中对应所述第一时间单元格式的第一类符号的多载波符号属于所述第一符号集合。
作为一个实施例,所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号属于所述第一符号集合。
作为一个实施例,第二符号集合包括所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号。
作为一个实施例,所述第二时间单元中对应所述第一时间单元格式的第二类符号的多载波符号属于所述第二符号集合。
作为一个实施例,所述第二时间单元中对应所述第一时间单元格式的第一类符号的多载波符号属于所述第二符号集合。
作为一个实施例,所述第一时间单元中对应所述第一时间单元格式的第二类符号的多载波符号属于所述第二符号集合。
作为一个实施例,所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号属于所述第二符号集合。
作为一个实施例,所述第二符号集合不包括所述第一符号集合中的任一多载波符号。
实施例10
实施例10示例了根据本申请的一个实施例的第一时间单元格式情况B的示意图,如附图 10所示。在附图10中,斜纹填充的方框代表第一类子时间单元,圆点填充的方框代表第二类子时间单元,标有字母“D”的方框代表第一类符号,标有字母“U”的方框代表第二类符号。
在实施例10中,第一时间单元格式包括T0个连续的子时间单元,所述T0个连续的子时间单元中的每个子时间单元包括正整数个多载波符号;在所述第一时间单元格式中,所述T0个连续的子时间单元在时域上以升序排列,所述T0个连续的子时间单元的序号依次是子时间单元#0,子时间单元#1,子时间单元#2,…,子时间单元#(T0-1),所述T0为正整数;所述第一时间单元格式包括T1个所述子时间单元是第一类子时间单元格式,所述第一时间单元格式包括T2个所述子时间单元是第二类子时间单元,所述T1和所述T2均为正整数。
作为一个实施例,所述子时间单元属于一个无线帧。
作为一个实施例,所述子时间单元属于一个半帧。
作为一个实施例,所述子时间单元属于一个子帧。
作为一个实施例,所述子时间单元等于一个子帧。
作为一个实施例,所述子时间单元属于一个半子帧。
作为一个实施例,所述子时间单元属于一个时隙。
作为一个实施例,所述子时间单元属于一个小时隙。
作为一个实施例,所述子时间单元等于20个时隙。
作为一个实施例,所述子时间单元包括正整数个多载波符号。
作为一个实施例,所述子时间单元属于正整数个多载波符号。
作为一个实施例,所述子时间单元由正整数个多载波符号组成。
作为一个实施例,所述第一类子时间单元包括正整数个多载波符号,所述第一类子时间单元格式包括的多载波符号都是所述第一类符号。
作为一个实施例,所述第二类子时间单元包括正整数个多载波符号,所述第二类子时间单元包括的多载波符号都是所述第二类符号。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是所述第一类子时间单元格式。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是下行帧。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是下行子帧。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是下行时隙。
作为一个实施例,所述T1等于20,所述T2等于0。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是所述第二类子时间单元格式。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是上行帧。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是上行子帧。
作为一个实施例,所述第一时间单元格式中的任意一个所述子时间单元是上行时隙。
作为一个实施例,所述第一时间单元集合中的至少一个所述时间单元对应所述第一时间单元格式。
作为一个实施例,所述T1等于0,所述T2等于20。
作为一个实施例,所述第一时间单元集合包括的至少一个所述时间单元中对应所述第一时间单元格式的所述第一类子时间单元格式的多载波符号被用于下行传输。
作为一个实施例,所述第一时间单元集合包括的至少一个所述时间单元中对应所述第一时间单元格式的所述第二类子时间单元格式的多载波符号被用于副链路传输。
作为一个实施例,所述第一时间单元集合包括的至少一个所述时间单元中对应所述第一时间单元格式的所述第二类子时间单元格式的多载波符号被用于上行传输。
作为一个实施例,所述第一时间单元集合包括的至少一个所述时间单元中对应所述第一时间单元格式的所述第一类子时间单元格式的多载波符号被用于副链路传输。
作为一个实施例,第一符号集合包括所述第一时间单元集合中对应所述第一时间单元格式的所述第一类子时间单元格式的所有所述时间单元包括的多载波符号。
作为一个实施例,第二符号集合包括所述第一时间单元集合中对应所述第一时间单元格式的所述第二类子时间单元格式的所有所述时间单元包括的多载波符号。
实施例11
实施例11示例了根据本申请的一个实施例的天线端口和天线端口组之间关系的示意图,如附图11所示。
在实施例11中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口是所述一个天线端口组中的一个天线端口;所述给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述给定天线端口包括的正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述给定天线端口包括的正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到。
在附图11中示出了两个天线端口:天线端口#0和天线端口#1。其中,所述天线端口#0由天线组#0构成,所述天线端口#1由天线组#1和天线组#2构成。所述天线组#0中的多根天线到所述天线端口#0的映射系数组成模拟波束赋型向量#0;所述天线组#0到所述天线端口#0的映射系数组成数字波束赋型向量#0;所述天线端口#0所对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线组#1中的多根天线和所述天线组#2中的多根天线到所述天线端口#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2;所述天线组#1和所述天线组#2到所述天线端口#1的映射系数组成数字波束赋型向量#1;所述天线端口#1所对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口只包括一个天线组,即一个RF chain,例如,附图11中的所述天线端口#0。
作为上述实施例的一个子实施例,所述一个天线端口所对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口所对应的数字波束赋型向量降维成一个标量,所述一个天线端口所对应的波束赋型向量等于其对应的模拟波束赋型向量。例如,附图11中的所述天线端口#0只包括所述天线组#0,附图11中的所述数字波束赋型向量#0降维成一个标量,所述天线端口#0所对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口包括正整数个天线组,即正整数个RF chain,例如,附图11中的所述天线端口#1。
作为一个实施例,一个天线端口是一个antenna port;antenna port的具体定义参见3GPP TS36.211中的5.2和6.2章节,或者参见3GPP TS38.211中的4.4章节。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的小尺度信道参数可以推断出从所述一个天线端口上发送的另一个无线信号所经历的小尺度信道参数。
作为上述实施例的一个子实施例,所述小尺度信道参数包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI(Channel Quality Indicator,信道质量标识),RI(Rank Indicator,秩标识)}中的 一种或多种。
作为一个实施例,两个天线端口QCL(Quasi Co-Located,准共址)是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,一个无线信号的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,QCL的具体定义参见3GPP TS36.211中的6.2章节,3GPP TS38.211中的4.4章节或3GPP TS38.214中的5.1.5章节。
作为一个实施例,一个天线端口和另一个天线端口之间的QCL类型(QCL type)是QCL-TypeD是指:能够从所述一个天线端口上发送的无线信号的空间接收参数(Spatial Rx parameters)推断出所述另一个天线端口上发送的无线信号的空间接收参数。
作为一个实施例,一个天线端口和另一个天线端口之间的QCL类型(QCL type)是QCL-TypeD是指:能用相同的空间接收参数(Spatial Rx parameters)接收所述一个天线端口发送的无线信号和所述另一个天线端口发送的无线信号。
作为一个实施例,QCL-TypeD的具体定义参见3GPP TS38.214中的5.1.5章节。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收数字波束赋型向量,接收波束赋型向量,空域接收滤波(Spatial Domain Receive Filter)}中的一种或多种。
作为一个实施例,第一空间接收参数组包括正整数个空间接收参数。
作为一个实施例,所述第一空间接收参数组对应正整数个天线端口组。
作为一个实施例,所述第一空间接收参数组中的每一个空间接收参数对应一个天线端口组。
作为一个实施例,所述第一空间接收参数组对应一个天线端口组。
作为一个实施例,所述第一空间接收参数组对应一个天线端口。
作为一个实施例,第二空间接收参数组包括正整数个空间接收参数。
作为一个实施例,所述第二空间接收参数组对应正整数个天线端口组。
作为一个实施例,所述第二空间接收参数组中的每一个空间接收参数对应一个天线端口组。
作为一个实施例,所述第二空间接收参数组对应一个天线端口组。
作为一个实施例,所述第二空间接收参数组对应一个天线端口。
作为一个实施例,所述第二空间接收参数组包括所述第一空间接收参数组所包括的空间接收参数。
实施例12
实施例12示例了根据本申请的一个实施例的第一符号集合与第一空间接收参数组之间关系示意图,如附图12所示。在附图12中,椭圆代表一个空间接收参数。在附图12的情况A中示出了一个时间单元包括的正整数个对应第一时间单元格式的第一类符号的多载波符号属于本申请中的第一符号集合;所述第一符号集合关联第一空间接收参数组。在附图12的情况B中示出了一个时间单元包括的正整数个对应第一时间单元格式的第一类子时间单元格式的子时间单元所包括的所有多载波符号属于本申请中的第一符号集合。
在实施例12中,所述第一符号集合关联第一空间接收参数组,所述第一空间接收参数组包括正整数个空间接收参数。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的所有多载波 符号被用于副链路传输(Sidelink Communication)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的至少一个多载波符号被用于副链路传输(Sidelink Communication)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的所有多载波符号被用于副链路发现(Sidelink Discovery)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的至少一个多载波符号被用于副链路发现(Sidelink Discovery)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的所有多载波符号被所述第一节点用于副链路接收(Sidelink reception)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的至少一个多载波符号被所述第一节点用于副链路接收(Sidelink reception)。
作为一个实施例,所述第一节点在所述第一符号集合中的至少一个多载波符号上以对应的所述第一空间接收参数组中至少一个空间接收参数接收。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的所有多载波符号被所述第二节点用于副链路发送(Sidelink transmission)。
作为一个实施例,所述第一符号集合中的任意一个多载波符号关联所述第一空间接收参数组中的至少一个空间接收参数。
作为一个实施例,所述第一符号集合中的任意一个多载波符号关联所述第一空间接收参数组中的所有空间接收参数。
作为一个实施例,所述第一符号集合中对应任意一个子时间单元的所有多载波符号关联所述第一空间接收参数组中的至少一个空间接收参数。
作为一个实施例,所述第一符号集合中对应任意一个子时间单元的所有多载波符号关联所述第一空间接收参数组中的所有空间接收参数。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的所有子时间单元被用于副链路传输(Sidelink Communication)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的至少一个子时间单元被用于副链路传输(Sidelink Communication)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的所有子时间单元被用于副链路发现(Sidelink Discovery)。
作为一个实施例,与所述第一空间接收参数组关联的所述第一符号集合中的至少一个子时间单元被用于副链路发现(Sidelink Discovery)。
作为一个实施例,所述第二符号集合关联第二空间接收参数组。
作为一个实施例,与所述第二空间接收参数组关联的所述第二符号集合中的所有多载波符号被用于副链路传输。
作为一个实施例,与所述第二空间接收参数组关联的所述第二符号集合中的至少一个多载波符号被用于副链路传输。
作为一个实施例,与所述第二空间接收参数组关联的所述第二符号集合中的所有多载波符号被所述第一节点用于副链路接收(Sidelink reception)。
作为一个实施例,与所述第二空间接收参数组关联的所述第二符号集合中的至少一个多载波符号被所述第一节点用于副链路接收(Sidelink reception)。
作为一个实施例,所述第一节点在所述第二符号集合中的至少一个多载波符号上以对应的所述第二空间接收参数组中至少一个空间接收参数接收。
作为一个实施例,与所述第二空间接收参数组关联的所述第二符号集合中的所有多载波符号被所述第二节点用于副链路发送(Sidelink transmission)。
作为一个实施例,所述第二符号集合中的任意一个多载波符号关联所述第二空间接 收参数组中的至少一个空间接收参数。
作为一个实施例,所述第二符号集合中的任意一个多载波符号关联所述第二空间接收参数组中的所有空间接收参数。
实施例13
实施例13示例了根据本申请的一个实施例的第一节点与第二节点之间的位置关系的示意图,如附图13所示。
在附图13中,椭圆虚线框以内代表处于覆盖内,椭圆虚线框以外代表不处于覆盖内。
在实施例13中,本申请中的所述第一节点接收目标特定信号,根据所述目标特定信号的目标接收质量判断是否处于覆盖内。
在实施例13中,本申请中的所述第一节点处于覆盖内,本申请中的所述第二节点不处于覆盖内。
作为一个实施例,如果所述第一节点接收到的目标特定信号的目标接收质量不小于目标阈值,所述第一节点处于覆盖内。
作为一个实施例,如果所述第一节点接收到的目标特定信号的目标接收质量小于目标阈值,所述第一节点不处于覆盖内。
作为一个实施例,所述目标特定信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述目标特定信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述目标特定信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述目标特定信号包括物理广播信号(Physical Broadcast Signal,物理广播信号)。
作为一个实施例,所述目标特定信号包括在PBCH(Physical Broadcast Channel,物理广播信道)上传输的信号。
作为一个实施例,所述目标特定信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,PBCH解调参考信号)。
作为一个实施例,所述目标特定信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述目标特定信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述目标特定信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述目标特定信号包括在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输的信号。
作为一个实施例,所述目标特定信号包括在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输的信号。
作为一个实施例,所述目标接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述目标接收质量包括S-RSRP(Sidelink Reference Signal Received Power,副链路参考信号接收功率)。
作为一个实施例,所述目标接收质量包括SCH_RP(Received(linear)average power of the resource elements that carry E-UTRA synchronisation signal,measured at the UE antenna connector,同步信号线性平均功率)。
作为一个实施例,所述目标接收质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述目标接收质量包括RSSI(Reference Signal Strength  Indicator,参考信号强度指示)。
作为一个实施例,所述目标接收质量包括SNR(Signal to Noise Ratio,信噪比)。
作为一个实施例,所述目标接收质量包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述目标接收质量包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述目标接收质量包括BER(Bit Error Rate,误比特率)。
作为一个实施例,所述目标接收质量包括PER(Packet Error Rate,误包率)。
作为一个实施例,所述目标阈值的单位是dB(分贝)。
作为一个实施例,所述目标阈值的单位是dBm(毫分贝)。
作为一个实施例,所述目标阈值的单位是W(毫瓦)。
作为一个实施例,所述目标阈值的单位是mW(毫瓦)。
作为一个实施例,所述目标阈值是预定义的,即不需要信令配置。
作为一个实施例,所述目标阈值是由一个更高层信令配置的。
作为一个实施例,所述目标阈值是由系统信息配置的。
作为一个实施例,所述目标阈值是由一个SIB配置的。
作为一个实施例,所述目标阈值是由RRC层信令配置的。
作为一个实施例,所述目标阈值是由MAC层信令配置的。
作为一个实施例,所述目标阈值是由物理层信令配置的。
作为一个实施例,所述Q个第二类无线信号中的每个第二无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于小区覆盖内。
作为一个实施例,如果所述第一节点接收到至少一个服务小区的第一特定信号的第一接收质量大于第一阈值,所述第一节点处于小区覆盖内;
作为一个实施例,所述第一特定信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第一特定信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第一特定信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第一特定信号包括物理广播信号(Physical Broadcast Signal,物理广播信号)。
作为一个实施例,所述第一特定信号包括在PBCH(Physical Broadcast Channel,物理广播信道)上传输的信号。
作为一个实施例,所述第一特定信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,PBCH解调参考信号)。
作为一个实施例,所述第一特定信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述第一特定信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述第一特定信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述第一特定信号包括在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输的信号。
作为一个实施例,所述第一标特定信号包括在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输的信号。
作为一个实施例,所述第一接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一接收质量包括SCH_RP(Received(linear)average power of the resource elements that carry E-UTRA synchronisation signal,measured at the UE antenna connector,同步信号线性平均功率)。
作为一个实施例,所述第一接收质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述第一接收质量包括RSSI(Reference Signal Strength Indicator,参考信号强度指示)。
作为一个实施例,所述第一接收质量包括SNR(Signal to Noise Ratio,信噪比)。
作为一个实施例,所述第一接收质量包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述第一接收质量包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述第一接收质量包括BER(Bit Error Rate,误比特率)。
作为一个实施例,所述第一接收质量包括PER(Packet Error Rate,误包率)。
作为一个实施例,所述第一阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一阈值的单位是mW(毫瓦)。
作为一个实施例,所述第一阈值是预定义的,即不需要信令配置。
作为一个实施例,所述第一阈值是由一个更高层信令配置的。
作为一个实施例,所述第一阈值是由系统信息配置的。
作为一个实施例,所述第一阈值是由一个SIB配置的。
作为一个实施例,所述第一阈值是由RRC层信令配置的。
作为一个实施例,所述第一阈值是由MAC层信令配置的。
作为一个实施例,所述第一阈值是由物理层信令配置的。
作为一个实施例,所述Q个第二类无线信号中的每个第二无线信号都包括第二信息,所述第二信息被用于指示所述第一节点是否处于GNSS(Global Navigation Satellite System,全球导航卫星系统)覆盖内。
作为一个实施例,所述GNSS包括GPS(Global Positioning System,美国全球定位系统),Galileo(欧盟伽利略定位系统),Compass(中国北斗卫星导航系统),GLONASS(俄罗斯格洛纳斯全球导航卫星系统),IRNSS(Indian Regional Navigation Satellite System,印度局部导航卫星系统),QZSS(Quasi-Zenith Satellite System,日本准天顶卫星系统)中的一种或多种。
作为一个实施例,如果所述第一节点接收到GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于GNSS覆盖内。
作为一个实施例,所述第二特定信号包括SS(Synchronization Signal,同步信号)。
作为一个实施例,所述第二特定信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第二特定信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第二特定信号包括物理广播信号(Physical Broadcast Signal,物理广播信号)。
作为一个实施例,所述第二特定信号包括在PBCH(Physical Broadcast Channel,物理广播信道)上传输的信号。
作为一个实施例,所述第二特定信号包括PBCH-DMRS(PBCH Demodulation Reference Signal,PBCH解调参考信号)。
作为一个实施例,所述第二特定信号包括SSB(SS/PBCH block,同步广播信号块)。
作为一个实施例,所述第二特定信号包括RS(Reference Signal,参考信号)。
作为一个实施例,所述第二特定信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述第二特定信号包括在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输的信号。
作为一个实施例,所述第二标特定信号包括在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输的信号。
作为一个实施例,所述第二接收质量包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第二接收质量包括SCH_RP(Received(linear)average power of the resource elements that carry E-UTRA synchronisation signal,measured at the UE antenna connector,同步信号线性平均功率)。
作为一个实施例,所述第二接收质量包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述第二接收质量包括RSSI(Reference Signal Strength Indicator,参考信号强度指示)。
作为一个实施例,所述第二接收质量包括SNR(Signal to Noise Ratio,信噪比)。
作为一个实施例,所述第二接收质量包括SINR(Signal to Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述第二接收质量包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述第二接收质量包括BER(Bit Error Rate,误比特率)。
作为一个实施例,所述第二接收质量包括PER(Packet Error Rate,误包率)。
作为一个实施例,所述第二阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第二阈值的单位是mW(毫瓦)。
作为一个实施例,所述第二阈值是预定义的,即不需要信令配置。
作为一个实施例,所述第二阈值是由一个更高层信令配置的。
作为一个实施例,所述第二阈值是由系统信息配置的。
作为一个实施例,所述第二阈值是由一个SIB配置的。
作为一个实施例,所述第二阈值是由RRC层信令配置的。
作为一个实施例,所述第二阈值是由MAC层信令配置的。
作为一个实施例,所述第二阈值是由物理层信令配置的。
作为一个实施例,如果所述第一节点未能检测到一个服务小区的第一特定信号的第一接收质量大于第一阈值,所述第一节点处于小区覆盖外。
作为一个实施例,如果所述第一节点未能检测到一个GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于GNSS覆盖外。
作为一个实施例,如果所述第一节点未能检测到一个服务小区的第一特定信号的第一接收质量大于第一阈值,或者,如果所述第一节点未能检测到一个GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于覆盖外。
作为一个实施例,如果所述第一节点未能检测到一个服务小区的第一特定信号的第一接收质量大于第一阈值,并且,如果所述第一节点未能检测到一个GNSS的第二特定信号的第二接收质量大于第二阈值,所述第一节点处于覆盖外。
实施例14
实施例14示例了根据本申请的一个实施例的第一类子信息与第一类空间接收参数组之间关系的示意图,如附图14所示。在附图14中,所述Q个第一类无线信号分别包括Q个第一类子信息,所述Q个第一类无线信号的序号依次是第一类无线信号#0,第一类无线信号#1,…,第一类无线信号#(Q-1);所述Q个第一类子信息的序号依次是第一类子信息#0,第一类子信息#1,…,第一类子信息#(Q-1)。在附图14中,所述Q个第一类无线信号分别关联Q个第一类空间接收参数子组,所述Q个第一类空间接收参数子组的序号依次是第一类空间接收参数子组#0,第一类空间接收参数子组#1,…,第一类空间接收参数子组#(Q-1);所述Q个第一类子信息分别被用于指示所述Q个第一类无线信号所关联的所述Q个第一类空间接 收参数子组。
作为一个实施例,所述Q个第一类无线信号分别关联Q个第一类空间接收参数子组,所述Q个第一类空间接收参数子组中任意一个第一类空间接收参数子组包括非负整数个空间接收参数。
作为一个实施例,第一空间接收参数组包括所述Q个第一类空间接收参数子组中的至少一个第一类空间接收参数子组。
作为一个实施例,第二空间接收参数组包括所述Q个第一类空间接收参数子组中的至少一个第一类空间接收参数子组。
作为一个实施例,第二空间接收参数组包括所述Q个第一类空间接收参数子组。
作为一个实施例,Q个第一类符号组中的每一个第一类符号组包括非负整数个对应第一类符号的多载波符号。
作为一个实施例,所述Q个第一类符号组中每一个第一类符号组所包括的多载波符号属于所述第一符号集合。
作为一个实施例,第一目标子信息是Q个第一类子信息中的一个第一类子信息,第一目标无线信号是Q个第一类无线信号中包括所述第一目标子信息的一个第一类无线信号。
作为一个实施例,第一目标空间接收参数子组是所述Q个第一类空间接收参数子组中与所述第一目标无线信号关联的一个第一类空间接收参数子组。
作为一个实施例,所述第一目标子信息被用于指示在Q个第一类符号组中与所述第一目标空间接收参数子组关联的一个第一类符号组。
作为一个实施例,所述第一数据比特块包括所述第一目标子信息。
作为一个实施例,所述第一信息包括所述第一目标子信息。
作为一个实施例,所述第一信息由所述Q个第一类子信息组成。
实施例15
实施例15示例了一个用于第一节点设备中的处理装置的结构框图,如附图15所示。在实施例15中,第一节点设备处理装置1500主要由第一接收机1501和第一发射机1503组成。
作为一个实施例,第一接收机1501包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一发射机1502包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例15中,第一接收机1501接收第一信令,所述第一信令被用于指示本申请中的第一时间单元格式;第一发射机1502发送第一信息和第二信息;其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
在实施例15中,第一接收机1501自行确定第一时间单元格式;所述第一发射机1502发送第一信息和第二信息;其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接 收参数组。
作为一个实施例,所述第一接收机1501接收接收第二信令,所述第二信令被用于指示第一时间单元集合;其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
作为一个实施例,所述第一接收机1501自行确定第一时间单元集合;其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
作为一个实施例,所述第一接收机1501判断所述第一节点是否处于覆盖内。
作为一个实施例,所述第一发射机1502发送Q个第一类无线信号,所述Q为正整数;其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息。
作为一个实施例,所述第一发射机1502发送Q个第一类无线信号,所述Q为正整数;其中,所述第一信息由Q个第一类子信息组成,所述Q个第一类无线信号分别包括所述Q个第一类子信息,所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
作为一个实施例,所述第一接收机1501接收目标特定信号,根据所述目标特定信号的目标接收质量判断所述第一节点是否位于覆盖内。
作为一个实施例,所述第一接收机1501接收第二无线信号;其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
作为一个实施例,所述第一节点是用户设备。
作为一个实施例,所述第一节点是中继节点。
实施例16
实施例16示例了一个用于第二节点设备中的处理装置的结构框图,如附图16所示。在附图16中,第二节点设备处理装置1600主要由第二接收机1601和第二发射机1602组成。
作为一个实施例,第二接收机1601包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,第二发射机1602包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
在实施例16中,第二接收机1601接收第一信息和第二信息;其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示。
在实施例16中,第二接收机1601接收第一信息和第二信息;其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被所述第一信息和所述 第二信息的发送者自行确定的。
作为一个实施例,第一时间单元集合是被第二信令指示的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
作为一个实施例,第一时间单元集合是被所述第一信息和所述第二信息的发送者自行确定的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
作为一个实施例,如果所述所述第一信息和所述第二信息的发送者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
作为一个实施例,所述第二接收机1601接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息。
作为一个实施例,所述第二接收机1601接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;其中,所述第一信息由Q个第一类子信息组成,所述Q个第一类无线信号分别包括所述Q个第一类子信息,所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
作为一个实施例,接收到的目标特定信号的接收质量被所述所述第一信息和所述第二信息的发送者用于判断是否位于覆盖内。
作为一个实施例,所述第二发射机1602发送第二无线信号;其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
作为一个实施例,所述第二节点是用户设备。
作为一个实施例,所述第二节点是中继节点。
实施例17
实施例17示例了一个用于基站设备中的处理装置的结构框图,如附图17所示。在附图17中,基站设备处理装置1700主要由第三发射机1701组成。
作为一个实施例,第三发射机1701包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
在实施例17中,第三发射机1701发送第一信令,所述第一信令被用于指示第一时间单元格式;其中,第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
作为一个实施例,所述第三发射机1701发送第二信令,所述第二信令被用于指示第一时间单元集合;其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
作为一个实施例,如果所述所述第一信令的接收者处于覆盖内,所述第一时间单元格式 由所述第一信令指示;否则所述第一时间单元格式被自行确定。
作为一个实施例,Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息,所述Q为正整数。
作为一个实施例,所述第一信息由Q个第一类子信息组成,所述Q个第一类无线信号分别包括所述Q个第一类子信息,所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定,所述Q为正整数。
作为一个实施例,所述第三发射机1701发送目标特定信号,根据所述目标特定信号的目标接收质量判断所述所述第一信令的接收者是否位于覆盖内。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于指示第一时间单元格式;或者,自行确定第一时间单元格式;
    发送第一信息和第二信息;
    其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    接收第二信令,所述第二信令被用于指示第一时间单元集合;或者,自行确定第一时间单元集合;
    其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
  3. 根据权利要求1或2所述的方法,其特征在于,包括:
    判断所述第一节点是否处于覆盖内;
    其中,如果所述第一节点处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,包括:
    发送Q个第一类无线信号,所述Q为正整数;
    其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息;
    或者,所述第一信息由Q个第一类子信息组成,所述Q个第一类无线信号分别包括所述Q个第一类子信息,所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,包括:
    接收目标特定信号,根据所述目标特定信号的目标接收质量判断所述第一节点是否处于覆盖内。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,包括:
    接收第二无线信号;
    其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
  7. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第一信息和第二信息;
    其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示,或者,所述第一时间单元格式是被所述第一信息和所述第二信息的发送者自行确定的。
  8. 根据权利7所述的方法,其特征在于,
    第一时间单元集合是被第二信令指示的,或者,第一时间单元集合是被所述第一信息 和所述第二信息的发送者自行确定的;所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
  9. 根据权利要求7或8所述的方法,其特征在于,
    如果所述所述第一信息和所述第二信息的发送者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,包括:
    接收Q个第一类无线信号中的Q0个第一类无线信号,所述Q和所述Q0均为正整数;
    其中,所述Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息;
    或者,所述第一信息由Q个第一类子信息组成,所述Q个第一类无线信号分别包括所述Q个第一类子信息,所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,
    接收到的目标特定信号的接收质量被所述所述第一信息和所述第二信息的发送者用于判断所述第一信息和所述第二信息的发送者是否位于覆盖内。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,包括:
    发送第二无线信号;
    其中,所述第一信息和所述第二信息被用于确定所述第二无线信号所占用的时域资源和空域资源中的至少之一。
  13. 一种被用于无线通信的基站中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于指示第一时间单元格式;
    其中,第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
  14. 根据权利要求13所述的方法,其特征在于,包括:
    发送第二信令,所述第二信令被用于指示第一时间单元集合;
    其中,所述第一时间单元集合包括正整数个时间单元;所述正整数个时间单元中的每个时间单元包括正整数个多载波符号;所述第一符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第一类符号的所有多载波符号组成,所述第二符号集合由所述第一时间单元集合中对应所述第一时间单元格式的所述第二类符号的所有多载波符号组成。
  15. 根据权利要求13或14所述的方法,其特征在于,
    如果所述所述第一信令的接收者处于覆盖内,所述第一时间单元格式由所述第一信令指示;否则所述第一时间单元格式被自行确定。
  16. 根据权利要求13至15中任一权利要求所述的方法,其特征在于,
    Q个第一类无线信号中的每一个第一类无线信号包括所述第一信息和所述第二信息,所述Q为正整数;
    或者,所述第一信息由Q个第一类子信息组成,Q个第一类无线信号分别包括所述Q个第一类子信息,所述第二信息由所述Q个第一类无线信号和Q个第一类子信息联合确定,所述Q为正整数。
  17. 根据权利要求13至16中任一权利要求所述的方法,其特征在于,包括:
    发送目标特定信号,根据所述目标特定信号的目标接收质量判断所述所述第一信令的接收者是否位于覆盖内。
  18. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机:接收第一信令,所述第一信令被用于指示第一时间单元格式;或者,自行确定第一时间单元格式;
    第一发射机:发送第一信息和第二信息;
    其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组。
  19. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二接收机:接收第一信息和第二信息;
    其中,所述第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;所述第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一时间单元格式是被第一信令指示,或者,所述第一时间单元格式是被所述第一信息和所述第二信息的发送者自行确定的。
  20. 一种被用于无线通信的基站设备,其特征在于,包括:
    第三发射机:发送第一信令,所述第一信令被用于指示第一时间单元格式;
    其中,第一信息被用于指示第一符号集合和第二符号集合;所述第一符号集合和所述第二符号集合分别包括正整数个多载波符号;所述第一符号集合中的每个多载波符号对应所述第一时间单元格式中的第一类符号,所述第二符号集合中的每个多载波符号对应所述第一时间单元格式中的第二类符号;所述第一类符号包括下行符号,所述第二类符号包括上行符号;第二信息被用于指示与所述第一符号集合关联的第一空间接收参数组;所述第一信息和所述第二信息被所述第一信令的接收者发送。
PCT/CN2019/085631 2018-05-29 2019-05-06 一种被用于无线通信的节点中的方法和装置 WO2019228145A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/022,109 US11469851B2 (en) 2018-05-29 2020-09-16 Method and device used in wireless communication node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810528415.4A CN110545581B (zh) 2018-05-29 2018-05-29 一种被用于无线通信的节点中的方法和装置
CN201810528415.4 2018-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/022,109 Continuation US11469851B2 (en) 2018-05-29 2020-09-16 Method and device used in wireless communication node

Publications (1)

Publication Number Publication Date
WO2019228145A1 true WO2019228145A1 (zh) 2019-12-05

Family

ID=68696834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085631 WO2019228145A1 (zh) 2018-05-29 2019-05-06 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US11469851B2 (zh)
CN (1) CN110545581B (zh)
WO (1) WO2019228145A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660631A (zh) * 2020-05-12 2021-11-16 上海朗帛通信技术有限公司 用于中继传输的方法和装置
CN112153752A (zh) * 2020-09-29 2020-12-29 王喻 一种基于5g固定群组的上下行解耦的随机接入方法
CN115134051B (zh) * 2021-03-25 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103307A1 (en) * 2009-11-05 2011-05-05 Samsung Electronics Co. Ltd. Method and apparatus for transmitting/receiving reference signal for positioning in wireless communication system
US20120195272A1 (en) * 2011-01-31 2012-08-02 Samsung Electronics Co., Ltd. Apparatus and method for avoiding downlink interference from interfering base station in mobile communication system
CN103959876A (zh) * 2011-08-15 2014-07-30 黑莓有限公司 在lte tdd系统中通知ul/dl配置
WO2017106045A1 (en) * 2015-12-15 2017-06-22 Qualcomm Incorporated Partitioned control channel techniques for time division duplexing subframe processing
WO2017194705A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Granting resources to a wireless device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072106B2 (en) * 2011-03-24 2015-06-30 Blackberry Limited Device-empowered radio resource selection
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US10219292B2 (en) * 2014-10-24 2019-02-26 Qualcomm Incorporated Flexible multiplexing and feedback for variable transmission time intervals
US9906347B2 (en) * 2015-04-09 2018-02-27 Samsung Electronics Co, Ltd Method and system for hybrid automatic repeat request operation in a semi-persistent scheduling (SPS) interval
US10277367B2 (en) * 2016-04-01 2019-04-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
US11012204B2 (en) * 2016-06-08 2021-05-18 Lg Electronics Inc. Communication method of using full duplex in NR
US10205581B2 (en) * 2016-09-22 2019-02-12 Huawei Technologies Co., Ltd. Flexible slot architecture for low latency communication
WO2018062937A1 (ko) * 2016-09-29 2018-04-05 엘지전자(주) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
CN108809614B9 (zh) * 2017-11-17 2019-09-06 华为技术有限公司 信息传输方法及设备
CN109905160B (zh) * 2017-12-08 2022-03-29 华为技术有限公司 一种资源配置方法和装置
US11350410B2 (en) * 2018-04-06 2022-05-31 Lg Electronics Inc. Method for slot format for backhaul and access link in wireless communication system and terminal using same method
CN110972279B (zh) * 2018-09-28 2022-07-26 成都华为技术有限公司 传输数据的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103307A1 (en) * 2009-11-05 2011-05-05 Samsung Electronics Co. Ltd. Method and apparatus for transmitting/receiving reference signal for positioning in wireless communication system
US20120195272A1 (en) * 2011-01-31 2012-08-02 Samsung Electronics Co., Ltd. Apparatus and method for avoiding downlink interference from interfering base station in mobile communication system
CN103959876A (zh) * 2011-08-15 2014-07-30 黑莓有限公司 在lte tdd系统中通知ul/dl配置
WO2017106045A1 (en) * 2015-12-15 2017-06-22 Qualcomm Incorporated Partitioned control channel techniques for time division duplexing subframe processing
WO2017194705A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Granting resources to a wireless device

Also Published As

Publication number Publication date
CN110545581A (zh) 2019-12-06
CN110545581B (zh) 2021-12-24
US11469851B2 (en) 2022-10-11
US20210006350A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
CN110972110B (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11469851B2 (en) Method and device used in wireless communication node
WO2021052166A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019213891A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113556826B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113395764B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811853

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19811853

Country of ref document: EP

Kind code of ref document: A1