WO2023005963A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023005963A1
WO2023005963A1 PCT/CN2022/108193 CN2022108193W WO2023005963A1 WO 2023005963 A1 WO2023005963 A1 WO 2023005963A1 CN 2022108193 W CN2022108193 W CN 2022108193W WO 2023005963 A1 WO2023005963 A1 WO 2023005963A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
sub
value
serving cell
Prior art date
Application number
PCT/CN2022/108193
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023005963A1 publication Critical patent/WO2023005963A1/zh
Priority to US18/423,305 priority Critical patent/US20240172139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for flexible transmission direction configuration in wireless communication.
  • Uplink power control is an important technical means of 3GPP LTE (Long-term Evolution, long-term evolution) and NR systems.
  • the uplink transmission power is adjusted through the open loop and closed loop methods, and the interference to other users is minimized while meeting the requirements of the received power.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the second serving cell is a second cell group A serving cell in
  • the first transmission opportunity and the second transmission opportunity respectively include at least one symbol; the transmission power of the first signal is equal to a first power value; the transmission power of the second signal is equal to a second power value, and the transmission power of the first signal is equal to a second power value.
  • the second signal includes the second sub-signal; whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than the first threshold is used to determine Whether to transmit the second sub-signal in the second transmission opportunity in the second serving cell; when the sum of the linear value of the first power value and the linear value of the second power value minus the When the linear value of the first maximum transmission power is greater than the first threshold, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the first power value When the sum of the linear value of the linear value and the linear value of the second power value minus the linear value of the first maximum transmit power is not greater than the first threshold, the second sub-signal is in the second serving cell is sent in the second sending opportunity; whether the second sending opportunity overlaps with the first time domain resource is used to determine the first threshold.
  • the problem to be solved in this application includes: how to meet the requirements of different duplex modes for uplink transmission power.
  • the characteristics of the above method include: determining the maximum limit range of the transmission power of the second signal according to a duplex mode.
  • the advantages of the above method include: meeting the requirements of different duplex modes for uplink transmission power.
  • the advantages of the above method include: avoiding that the transmission performance cannot be guaranteed in a full-duplex severe interference environment due to the excessive limitation of the transmission power of the second signal.
  • the first signaling configures symbols in the first time domain resource as a first type.
  • the second sub-signal is not sent in the second sending opportunity in the second serving cell;
  • the third serving cell is a serving cell in the second cell group, and the first The second signal includes the third sub-signal.
  • the advantages of the above method include: when the total transmission power of the second cell group needs to be limited to exceed the first threshold, there is no need to give up sending all wireless signals in the second cell group, The efficiency of uplink transmission is improved.
  • the first information block indicates a first candidate threshold and a second candidate threshold; when the second transmission opportunity overlaps with the first time domain resource, the first threshold is the first candidate threshold ; When the second sending opportunity does not overlap with the first time domain resource, the first threshold is the second candidate threshold; the first candidate threshold is not equal to the second candidate threshold.
  • the transmission power of the second sub-signal is equal to a second sub-power value, and the second sub-power value is used to determine the second power value; the second sub-signal The power value is equal to the minimum value between the second reference power value and the second power threshold.
  • the first signal includes a first sub-signal, and the transmission power of the first sub-signal is equal to a first sub-power value; the first sub-power value is used to determine the The first power value; the first sub-power value is equal to the minimum value between the first reference power value and the first power threshold.
  • the first power parameter set is used to calculate the second power value; whether the second transmission opportunity overlaps with the first time domain resource is used to determine the A first set of power parameters.
  • the advantages of the above method include: flexibly adjusting uplink power control parameters according to the duplex mode to meet different power requirements of full-duplex and half-duplex respectively.
  • the first node is a user equipment.
  • the first node is a relay node.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the target recipient of the first signaling sends the first signal in a first sending opportunity in a first cell group, and the first cell group includes at least one serving cell; the first sending opportunity and the The second sending opportunities respectively include at least one symbol; the sending power of the first signal is equal to the first power value; the sending power of the second signal is equal to the second power value, and the second signal includes the second sub-signal; Whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than a first threshold is used to determine whether the second sub-signal is in the second In the second serving cell, it is transmitted in the second transmission opportunity; when the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than When the first threshold is set, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the linear value of the first power value and the second power value When the sum of the linear values of the first
  • the first signaling configures symbols in the first time domain resource as a first type.
  • the second sub-signal is not sent in the second sending opportunity in the second serving cell;
  • the third serving cell is a serving cell in the second cell group, and the first The second signal includes the third sub-signal.
  • the first information block indicates a first candidate threshold and a second candidate threshold; when the second transmission opportunity overlaps with the first time domain resource, the first threshold is the first candidate threshold ; When the second sending opportunity does not overlap with the first time domain resource, the first threshold is the second candidate threshold; the first candidate threshold is not equal to the second candidate threshold.
  • the transmission power of the second sub-signal is equal to a second sub-power value, and the second sub-power value is used to determine the second power value; the second sub-signal The power value is equal to the minimum value between the second reference power value and the second power threshold.
  • the first power parameter set is used to calculate the second power value; whether the second transmission opportunity overlaps with the first time domain resource is used to determine the A first set of power parameters.
  • the second node is a base station.
  • the second node is a user equipment.
  • the second node is a relay node.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving first signaling, where the first signaling is used to determine a first time domain resource
  • a first transmitter transmitting a first signal in a first transmission opportunity in a first cell group, the first cell group including at least one serving cell;
  • the first transmitter transmits the second sub-signal in the second sending opportunity in the second serving cell, or refrains from sending the second sub-signal in the second sending opportunity in the second serving cell;
  • the second The serving cell is a serving cell in the second cell group;
  • the first transmission opportunity and the second transmission opportunity respectively include at least one symbol; the transmission power of the first signal is equal to a first power value; the transmission power of the second signal is equal to a second power value, and the transmission power of the first signal is equal to a second power value.
  • the second signal includes the second sub-signal; whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than the first threshold is used to determine Whether to transmit the second sub-signal in the second transmission opportunity in the second serving cell; when the sum of the linear value of the first power value and the linear value of the second power value minus the When the linear value of the first maximum transmission power is greater than the first threshold, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the first power value When the sum of the linear value of the linear value and the linear value of the second power value minus the linear value of the first maximum transmit power is not greater than the first threshold, the second sub-signal is in the second serving cell is sent in the second sending opportunity; whether the second sending opportunity overlaps with the first time domain resource is used to determine the first threshold.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second sender sending first signaling, where the first signaling is used to determine a first time domain resource
  • a second receiver monitoring a second sub-signal in a second transmission opportunity in a second serving cell, the second serving cell being a serving cell in a second group of cells;
  • the target recipient of the first signaling sends the first signal in a first sending opportunity in a first cell group, and the first cell group includes at least one serving cell; the first sending opportunity and the The second sending opportunities respectively include at least one symbol; the sending power of the first signal is equal to the first power value; the sending power of the second signal is equal to the second power value, and the second signal includes the second sub-signal; Whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than a first threshold is used to determine whether the second sub-signal is in the second In the second serving cell, it is transmitted in the second transmission opportunity; when the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than When the first threshold is set, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the linear value of the first power value and the second power value When the sum of the linear values of the first
  • the present application discloses a method used in a third node of wireless communication, which is characterized in that it includes:
  • the sender of the first signal sends or abstains from sending the second sub-signal in the second sending opportunity in the second serving cell;
  • the second serving cell is a serving cell in the second cell group;
  • the The first sending opportunity and the second sending opportunity respectively include at least one symbol;
  • the sending power of the first signal is equal to a first power value;
  • the sending power of a second signal is equal to a second power value, and the second signal includes the The second sub-signal; whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than the first threshold is used to determine whether the second Whether the sub-signal is transmitted in the second transmission opportunity in the second serving cell; when the sum of the linear value of the first power value and the linear value of the second power value minus the first When the linear value of the maximum transmission power is greater than the first threshold, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the linear value of the first power value is When
  • the first signaling configures symbols in the first time domain resource as a first type.
  • the first threshold is a first candidate threshold or a second candidate threshold; when the second sending opportunity overlaps with the first time domain resource, the first The threshold is the first candidate threshold; when the second sending opportunity does not overlap with the first time domain resource, the first threshold is the second candidate threshold; the first candidate threshold and the The second candidate thresholds are not equal.
  • the first information block indicates the first candidate threshold and the second candidate threshold.
  • the first signal includes a first sub-signal, and the transmission power of the first sub-signal is equal to a first sub-power value; the first sub-power value is used to determine the The first power value; the first sub-power value is equal to the minimum value between the first reference power value and the first power threshold.
  • the third node is a base station.
  • the third node is a user equipment.
  • the third node is a relay node.
  • the present application discloses a third node device used for wireless communication, which is characterized in that it includes:
  • a first processor receiving a first signal in a first transmission opportunity in a first cell group, the first cell group including at least one serving cell;
  • the sender of the first signal sends or abstains from sending the second sub-signal in the second sending opportunity in the second serving cell;
  • the second serving cell is a serving cell in the second cell group;
  • the The first sending opportunity and the second sending opportunity respectively include at least one symbol;
  • the sending power of the first signal is equal to a first power value;
  • the sending power of a second signal is equal to a second power value, and the second signal includes the The second sub-signal; whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than the first threshold is used to determine whether the second Whether the sub-signal is transmitted in the second transmission opportunity in the second serving cell; when the sum of the linear value of the first power value and the linear value of the second power value minus the first When the linear value of the maximum transmission power is greater than the first threshold, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the linear value of the first power value is When
  • this application has the following advantages:
  • FIG. 1 shows a flowchart of first signaling, a first signal and a second sub-signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of wireless transmission according to an embodiment of the present application
  • FIG. 6 shows whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than the first threshold is used to determine whether A schematic diagram of sending a second sub-signal in a second sending opportunity in a second serving cell;
  • FIG. 7 shows a schematic diagram of first signaling configuring symbols in a first time domain resource as a first type according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of whether the second transmission opportunity overlaps with the first time domain resource and is used to determine the first threshold according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram in which the second sub-power value is used to determine the second power value according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a second sub-power value according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram in which the first sub-power value is used to determine the first power value according to an embodiment of the present application
  • Fig. 12 shows a schematic diagram of a first sub-power value according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of whether the second transmission opportunity overlaps with the first time domain resource and is used to determine the first power parameter set according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Fig. 15 shows a structural block diagram of a processing device used in a second node device according to an embodiment of the present application
  • Fig. 16 shows a structural block diagram of a processing device used in a third node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signaling, the first signal and the second sub-signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step.
  • the order of the steps in the blocks does not represent a specific chronological relationship between the various steps.
  • the first node in this application receives the first signaling in step 101, and the first signaling is used to determine the first time domain resource; in step 102, the first cell group In the first transmission opportunity, the first signal is transmitted, the first cell group includes at least one serving cell; in step 103, the second sub-signal is transmitted in the second transmission opportunity in the second serving cell, or, in the The second serving cell gives up sending the second sub-signal in the second sending opportunity.
  • the second serving cell is a serving cell in the second cell group; the first sending opportunity and the second sending opportunity respectively include at least one symbol; the sending power of the first signal is equal to the first power value; the transmission power of the second signal is equal to the second power value, and the second signal includes the second sub-signal; the sum of the linear value of the first power value and the linear value of the second power value is subtracted Whether the linear value of the first maximum transmission power is greater than a first threshold is used to determine whether to transmit the second sub-signal in the second transmission opportunity in the second serving cell; when the first power value is When the sum of the linear value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than the first threshold, the second sub-signal is in the second serving cell at the The transmission is abandoned in the second transmission opportunity; when the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is not greater than the first threshold, the second sub-signal is sent in the
  • the first signaling includes higher layer (higher layer) signaling.
  • the first signaling includes RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling includes information in all or part of fields in an IE (Information Element, information element).
  • IE Information Element, information element
  • the first signaling includes information in all or part of fields in the TDD-UL-DL-ConfigCommon IE.
  • the first signaling includes information in all or part of fields in the TDD-UL-DL-ConfigDedicated IE.
  • the first signaling is carried by one IE.
  • the name of the IE carrying the first signaling includes "TDD-UL-DL".
  • the name of the IE carrying the first signaling includes "TDD”.
  • the first signaling includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signaling includes physical layer signaling.
  • the first signaling includes Layer 1 (L1) signaling.
  • the first signaling includes DCI (Downlink control information, downlink control information).
  • the first signaling is DCI.
  • the first signaling includes one or more fields (fields) in one DCI.
  • the first signaling is DCI
  • the format (format) of the first signaling is DCI format2_0.
  • the first time domain resource includes at least one symbol.
  • the first time domain resource includes a symbol.
  • the first time domain resource includes multiple consecutive symbols.
  • the first time domain resource includes multiple discontinuous symbols.
  • the first time domain resource includes at least one time slot (slot).
  • the first time domain resource includes at least one subframe (subframe).
  • the first signaling is applicable to serving cells in the first cell group and the second cell group.
  • the first signaling is applicable to all serving cells in the second cell group.
  • the first signaling is only applicable to serving cells in the second cell group.
  • the first signaling is only applicable to the second serving cell.
  • the first signaling is only applicable to one BWP (BandWidth Part, bandwidth interval) of the second serving cell.
  • the first signaling is only applicable to the BWP occupied by the second sub-signal in the second serving cell.
  • the first signaling is used to determine the first time domain resource in the second cell group.
  • the first signaling is used to determine the first time domain resource in the second serving cell.
  • the sender of the first signaling simultaneously receives and sends wireless signals in the first time domain resource.
  • the sender of the first signaling simultaneously receives and sends wireless signals in the second serving cell in the first time domain resource.
  • the sender of the first signaling simultaneously receives and sends wireless signals in a BWP of the second serving cell in the first time domain resource.
  • the sender of the first signaling simultaneously receives and sends wireless signals in the BWP occupied by the second sub-signal of the second serving cell in the first time domain resource.
  • the first signaling indicates the first time domain resource.
  • the first time domain resource belongs to a first time domain resource pool
  • the first signaling indicates the first time domain resource from the first time domain resource pool.
  • the first time-domain resource pool includes multiple consecutive symbols.
  • the first time domain resource pool includes at least one time slot.
  • the first time domain resource pool includes at least one subframe.
  • At least one symbol in the first time domain resource pool does not belong to the first time domain resource.
  • the first signaling indicates that: the sender of the first signaling simultaneously receives and sends wireless signals in the first time domain resource.
  • the first signaling indicates that: the sender of the first signaling simultaneously receives and sends wireless signals in the first time domain resource in the second serving cell.
  • the first signaling indicates that: the sender of the first signaling simultaneously receives and sends wireless signals in the first time domain resource in a BWP of the second serving cell.
  • the symbols include OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the symbols include DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first cell group includes only one serving cell.
  • the first cell group includes multiple serving cells.
  • the second cell group includes at least one serving cell.
  • the second cell group only includes the second serving cell.
  • the second cell group includes at least one serving cell other than the second serving cell.
  • the first cell group and the second cell group are respectively MCG (Master Cell Group, primary cell group) and SCG (Secondary Cell Group, secondary cell group).
  • the first cell group includes a PCell (Primary Cell) and optionally (optionally) one or more SCells (Secondary Cell);
  • the second cell group includes a PSCell ( Primary Secondary Cell) and optionally one or more SCells.
  • the first cell group and the second cell group are SCG and MCG respectively.
  • the first cell group includes a PSCell and optionally one or more SCells (Secondary Cells); the second cell group includes a PCell and optionally one or more SCell.
  • SCells Secondary Cells
  • no serving cell belongs to the first cell group and the second cell group at the same time.
  • each serving cell in the first cell group is maintained by the same MN (Master Node, master node), and each serving cell in the second cell group is maintained by the same SN (Secondary Node). Node, secondary node) is maintained.
  • the target receiver of the first signal is the same MN.
  • the target recipient of the second signal is the same SN.
  • each serving cell in the first cell group is maintained by the same SN, and each serving cell in the second cell group is maintained by the same MN.
  • the target recipient of the first signal is the same SN.
  • the target receiver of the second signal is the same MN.
  • the second serving cell is a PCell (Primary cell).
  • the second serving cell is a PSCell (Primary secondary cell).
  • the second serving cell is a serving cell in the second cell group that is different from the PCell.
  • the second serving cell is a serving cell in the second cell group that is different from the PSCell.
  • the first cell group adopts E-UTRA (Evolved Universal Terrestrial Radio Access) wireless access
  • the second cell group adopts NR (New Radio, new radio) wireless access.
  • the first cell group adopts NR radio access
  • the second cell group adopts E-UTRA radio access.
  • both the first cell group and the second cell group use E-UTRA wireless access.
  • both the first cell group and the second cell group use NR wireless access.
  • the first cell group and the second cell group are MCG and SCG respectively; the first cell group and the second cell group adopt E-UTRA wireless access and NR wireless access respectively .
  • the first node performs addition of a secondary serving cell for each serving cell in the first cell group and the second cell group.
  • each serving cell in the first cell group and the second cell group is included in the latest sCellToAddModList or sCellToAddModListSCG received by the first node.
  • the first node is assigned an SCellIndex or a ServCellIndex for each serving cell in the first cell group and the second cell group.
  • the SCellIndex is a positive integer not greater than 31.
  • the ServCellIndex is a non-negative integer not greater than 31.
  • an RRC connection has been established between the first node and each serving cell in the first cell group and the second cell group.
  • an RRC connection has been established between the first node and a serving cell in the first cell group and a serving cell in the second cell group respectively.
  • the first cell group and the second cell group respectively allocate a C (Cell, cell)-RNTI (Radio Network Temporary Identifier, radio network temporary identifier) to the first node.
  • C Cell, cell
  • RTI Radio Network Temporary Identifier, radio network temporary identifier
  • any serving cell in the first cell group is orthogonal to any serving cell in the second cell group in the frequency domain.
  • a serving cell in the first cell group overlaps in a frequency domain with a serving cell in the second cell group.
  • any two serving cells in the first cell group are orthogonal in the frequency domain.
  • any two serving cells in the second cell group are orthogonal in the frequency domain.
  • the first sending opportunity is a continuous time period.
  • the first sending opportunity includes a time slot (slot).
  • the first sending opportunity is a time slot.
  • the first sending opportunity includes a subframe (subframe).
  • the first sending opportunity is a subframe.
  • the first sending opportunity includes multiple time slots.
  • the first sending opportunity includes multiple subframes.
  • the first sending opportunity includes at least one symbol.
  • the first sending opportunity includes multiple consecutive symbols.
  • the first signal occupies all time domain resources in the first sending opportunity.
  • the first signal only occupies part of time domain resources in the first sending opportunity.
  • the first signal does not occupy time domain resources other than the first sending opportunity.
  • the first signal occupies time domain resources other than the first sending opportunity.
  • the second sending opportunity is a continuous time period.
  • the second sending opportunity includes a time slot (slot).
  • the second sending opportunity is a time slot.
  • the second sending opportunity includes a subframe (subframe).
  • the second sending opportunity is a subframe.
  • the second sending opportunity includes multiple time slots.
  • the second sending opportunity includes multiple subframes.
  • the second sending opportunity includes at least one symbol.
  • the second sending opportunity includes multiple consecutive symbols.
  • the second sub-signal occupies all time domain resources in the second sending opportunity.
  • the second sub-signal only occupies part of time domain resources in the second sending opportunity.
  • the second sub-signal does not occupy time domain resources other than the second sending opportunity.
  • the second sub-signal occupies time domain resources other than the second sending opportunity.
  • the first sending opportunity and the second sending opportunity overlap in time domain.
  • the first signal and the second signal respectively include baseband signals.
  • the first signal and the second signal respectively include wireless signals.
  • the first signal and the second signal respectively include radio frequency signals.
  • the target recipient of the first signal is different from the target recipient of the second signal.
  • the target receiver of the second signal is a MN
  • the target receiver of the first signal is an SN
  • the target receiver of the first signal is a MN
  • the target receiver of the second signal is an SN
  • the target receiver of the first signal is different from the sender of the first signaling.
  • the target receiver of the first signal is the sender of the first signaling.
  • the target receiver of the second signal is different from the sender of the first signaling.
  • the target receiver of the second signal is the sender of the first signaling.
  • the first signal includes a signal transmitted in a PRACH (Physical Random Access CHannel, a physical random access channel), a signal transmitted in a PUSCH (Physical Uplink Shared CHannel, a physical uplink shared channel), and a signal transmitted in a PUCCH (Physical Uplink Control Channel, physical uplink control channel), or one or more of SRS (Sounding Reference Signal, sounding reference signal).
  • PRACH Physical Random Access CHannel, a physical random access channel
  • PUSCH Physical Uplink Shared CHannel, a physical uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the second signal only includes the second sub-signal.
  • the second signal includes at least one other sub-signal other than the second sub-signal.
  • the second signal includes one or more of a signal transmitted on a PRACH, a signal transmitted on a PUSCH, a signal transmitted on a PUCCH, or an SRS.
  • the second sub-signal includes one of a signal transmitted on a PRACH, a signal transmitted on a PUSCH, a signal transmitted on a PUCCH, or an SRS.
  • the second sub-signal includes one of a signal transmitted in the PUSCH, a signal transmitted in the PUCCH, or an SRS.
  • the first signal and the second sub-signal overlap in time domain.
  • the first signal and the second signal overlap in time domain.
  • the first signal only includes one sub-signal, and the one sub-signal is sent on one serving cell in the first cell group.
  • the one sub-signal overlaps with the second sub-signal in the time domain.
  • the first signal includes Q1 sub-signals, the Q1 sub-signals are respectively sent on the Q1 serving cells in the first cell group, and the Q1 is a positive integer greater than 1.
  • each sub-signal of the Q1 sub-signals overlaps with the second sub-signal in time domain.
  • the time-domain resource occupied by any sub-signal in the Q1 sub-signals belongs to the first sending opportunity.
  • the time-domain resource occupied by any one of the Q1 sub-signals overlaps with the first sending opportunity.
  • the Q1 sub-signals occupy the same time slot.
  • the Q1 sub-signals occupy the same sub-frame.
  • the second signal includes Q2 sub-signals, and the Q2 sub-signals are respectively sent on the Q2 serving cells in the second cell group; the second sub-signals are the Q2 sub-signals One of them, the Q2 is a positive integer greater than 1.
  • any sub-signal of the Q1 sub-signals overlaps with any sub-signal of the Q2 sub-signals in the time domain.
  • the time-domain resource occupied by any sub-signal in the Q2 sub-signals belongs to the second sending opportunity.
  • the time-domain resource occupied by any sub-signal of the Q2 sub-signals overlaps with the second sending opportunity.
  • the Q2 sub-signals occupy the same time slot.
  • the Q2 sub-signals occupy the same sub-frame.
  • the unit of the first power value is dBm (millidb), and the unit of the second power value is dBm.
  • the linear value of the first power value is equal to 10 to the x1 power, and the x1 is equal to dividing the first power value by 10; the linear value of the second power value is equal to 10 to the x2 power , the x2 is equal to dividing the second power value by 10.
  • the actual sending power of the first signal is equal to the first power value
  • the expected sending power of the second signal is equal to the second power value
  • the actual sending power of the first signal is equal to the first power value
  • the unreduced sending power of the second signal is equal to the second power value
  • the actual sending power of the second signal is equal to the second power value.
  • the actual sending power of the second signal is smaller than the second power value.
  • the linear value of the actual transmit power of the second signal is less than or equal to the linear value of the first maximum transmit power minus the linear value of the first power value.
  • the The linear value of the actual transmit power of the second signal is equal to the linear value of the first maximum transmit power minus the linear value of the first power value.
  • the first power value and the second power value are respectively calculated according to the methods in Section 7.1-7.5 of 3GPP TS38.213.
  • the first signal is sent with equal power in the first sending opportunity.
  • the sending power of the first signal changes during the first sending opportunity.
  • the transmission power of the first signal at any part of the first transmission opportunity is less than or equal to the first power value.
  • the maximum transmission power of the first signal in the first transmission opportunity is equal to the first power value.
  • the second signal is sent with equal power in the second sending opportunity.
  • the sending power of the second signal changes during the second sending opportunity.
  • the transmission power of the second signal at any part of the second transmission opportunity is less than or equal to the second power value.
  • the maximum transmission power of the second signal in the second transmission opportunity is equal to the second power value.
  • the expected transmission power of the second signal at any part of the second transmission opportunity is less than or equal to the second power value.
  • the unreduced transmission power of the second signal at any part of the second transmission opportunity is less than or equal to the second power value.
  • a maximum value of expected transmission power of the second signal in the second transmission opportunity is equal to the second power value.
  • a maximum value of unreduced transmission power of the second signal in the second transmission opportunity is equal to the second power value.
  • the sum of the linear value of the actual transmission power of the second signal at any part of the second transmission opportunity and the linear value of the first power value is less than or equal to the first maximum transmission power linear value.
  • the first power value is the total transmission power of the first node in the first transmission opportunity in the first cell group; the second power value is the total transmission power of the first node in the first cell group total transmit power in the second transmit opportunity in the second group of cells.
  • the first power value is the total transmission power of the first node in the first transmission opportunity in the first cell group;
  • the second power value is the total transmission power of the first node in the first cell group The unreduced total transmit power in the second transmit opportunity in the second group of cells.
  • the sum of the linear value of the actual total transmission power of the first node in any part of the second transmission opportunity in the second cell group and the linear value of the first power value is less than or is equal to the linear value of the first maximum transmit power.
  • the first power value is less than or equal to the second maximum transmission power.
  • the unit of the second maximum transmit power is dBm.
  • the second maximum transmit power is configurable (Configurable).
  • the second maximum transmit power is a fixed constant (that is, not configurable).
  • the second maximum transmission power is PCMAX (i), and the first transmission opportunity is transmission opportunity i.
  • the second maximum transmit power is for the first cell group.
  • the second maximum transmit power is not less than the first reference threshold and not greater than the second reference threshold.
  • the first reference threshold and the second reference threshold are configurable.
  • the first reference threshold and the second reference threshold are respectively related to a power class (power class) of the first node.
  • the second power value is less than or equal to the third maximum transmission power.
  • the unit of the third maximum transmit power is dBm.
  • the third maximum transmit power is configurable (Configurable).
  • the third maximum transmit power is a fixed constant (that is, not configurable).
  • the third maximum transmission power is PCMAX (i), and the second transmission opportunity is transmission opportunity i.
  • the third maximum transmit power is for the second cell group.
  • the third maximum transmit power is not less than a third reference threshold and not greater than a fourth reference threshold.
  • the third reference threshold and the fourth reference threshold are configurable.
  • the third reference threshold and the fourth reference threshold are respectively related to the power level of the first node.
  • the first maximum transmit power is configurable (Configurable).
  • the first maximum transmit power is a fixed constant (that is, not configurable).
  • the first maximum transmit power is a maximum transmit power configured for dual connectivity (Dual connectivity).
  • the unit of the first maximum transmit power is dBm.
  • the first maximum transmission power is equal to a sum of a first power component and a second power component, the first power component is configurable, and the second power component is a fixed constant.
  • the first power component is related to the power level of the first node.
  • the first power component is equal to the minimum value of the first sub-component and the second sub-component, the first sub-component is configured by RRC, the second sub-component and the related to the power level of the first node.
  • the first maximum transmit power is the first maximum transmit power
  • the first maximum transmit power is the first maximum transmit power
  • the first maximum transmit power is the first maximum transmit power
  • the first threshold is a non-negative real number.
  • the first threshold is a non-negative integer.
  • the first threshold is configurable.
  • the unit of the first threshold is dB.
  • the first threshold is a linear value.
  • the first threshold is X SCALE .
  • the first threshold is configured by RRC.
  • the first threshold is configured by one IE.
  • the dB value of the first threshold is configured by RRC.
  • the dB value of the first threshold is configured by one IE.
  • the name of the IE for configuring the first threshold includes "PhysicalCellGroupConfig".
  • the name of the IE for configuring the first threshold includes "CellGroupConfig”.
  • whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power in the sentence is greater than the first threshold refers to: the first Whether the sum of the linear value of a power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than the linear value of the first threshold, where the unit of the first threshold is dB .
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • LTE Long-Term Evolution, long-term evolution
  • LTE-A Long-Term Evolution Advanced, enhanced long-term evolution
  • EPS Evolved Packet System
  • 5GS 5G System
  • EPS Evolved Packet System, Evolved Packet System
  • 5GS/EPS 200 may include one or more UEs (User Equipment, User Equipment) 201, a UE241 performing Sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS200 May be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN202 includes NR (New Radio, new radio) node B (gNB) 203 and other gNB204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • the gNB 204 provides user plane protocol termination towards the UE 201 .
  • gNB 203 and gNB 204 may also be referred to as base stations, base transceiver stations, radio base stations, radio transceivers, transceiver functions, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology .
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • SMF Session Management Function, session management function
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general the MME/AMF/SMF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the second node in this application includes the gNB204.
  • the third node in this application includes the gNB203.
  • the third node in this application includes the gNB204.
  • the wireless link between the UE201 and the gNB203 is a cellular network link.
  • the sender of the first signaling includes the gNB203 or gNB204.
  • the recipient of the first signaling includes the UE201.
  • the sender of the first signal includes the UE201.
  • the receiver of the first signal includes the gNB203 or gNB204.
  • the sender of the second sub-signal includes the UE201.
  • the receiver of the second sub-signal includes the gNB203 or gNB204.
  • the UE201 supports dual connectivity.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the third node in this application.
  • the first signaling is generated by the PHY301 or the PHY351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • the first signaling is generated in the RRC sublayer 306 .
  • the first signal is generated by the PHY301 or the PHY351.
  • the second sub-signal is generated by the PHY301 or the PHY351.
  • the third sub-signal is generated by the PHY301 or the PHY351.
  • the first information block is generated in the RRC sublayer 306 .
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and routing to the second communication device 450 based on various priority metrics. Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • modulation schemes e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M Phase Shift Keying
  • M-QAM M Quadrature Amplitude Modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding,
  • the transmit processor 416 then maps each parallel stream to subcarriers, multiplexes the modulated symbols with reference signals (e.g., pilots) in the time and/or frequency domains, and then uses an inverse fast Fourier transform (IFFT) to ) to generate a physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456.
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the second Communication device 450 is the destination for any parallel streams.
  • the symbols on each parallel stream are demodulated and recovered in receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium. In DL, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operation.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer. Similar to the transmit function at the first communication device 410 described in DL, the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the radio resource allocation of the first communication device 410. Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane. The controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which are provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the second communication device 450 .
  • Upper layer packets from controller/processor 475 may be provided to the core network.
  • Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operation.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving the first signaling; sending the first signal in the first sending opportunity in the first cell group; in the second serving cell in the Sending or not sending the second sub-signal in the second sending opportunity.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the the first signaling; send the first signal in the first sending opportunity in the first cell group; send or abstain from sending the first signal in the second sending opportunity in the second serving cell Describe the second sub-signal.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending the first signaling; and monitoring the second sub-signal in the second sending opportunity in the second serving cell.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the The first signaling; monitoring the second sub-signal in the second sending opportunity in the second serving cell.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: receiving the first signal in the first transmission opportunity in the first cell group.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signal is received in the first transmission opportunity in the first group of cells.
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • the third node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling;
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first signal in the first transmission opportunity in the first cell group; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multiple At least one of the antenna transmit processor 457, the controller/processor 459, the memory 460, the data source 467 ⁇ is used in the first transmission opportunity in the first cell group sending the first signal.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the second sub-signal in the second transmission opportunity in the second serving cell; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the At least one of the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for the second transmission opportunity in the second serving cell Send the second sub-signal in.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the third sub-signal in the second transmission opportunity in the second serving cell; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the At least one of the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used for the second transmission opportunity in the second serving cell Send the third sub-signal in.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of sources 467 ⁇ is used to receive the first information block;
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application; as shown in FIG. 5 .
  • the second node U1, the first node U2 and the third node U3 are communication nodes respectively, between the second node U1 and the first node U2 and between the third node U3 and the first node U2 through the air interface transmission.
  • the steps in blocks F51 to F55 are optional, and the steps in blocks F51 and F52 cannot exist at the same time.
  • step S5101 For the second node U1, send the first information block in step S5101; send the first signaling in step S511; monitor the second sub-signal in the second sending opportunity in the second serving cell in step S512; In S5102, the third sub-signal is monitored and received in the second sending opportunity in the third serving cell.
  • the first information block is received in step S5201; the first information block is received in step S5202; the first signaling is received in step S521; Whether to send the second sub-signal in the sending opportunity; in step S522, in the first cell group, send the first signal in the first sending opportunity; in step S5204, in the second serving cell, in the second sending opportunity Send the second sub-signal in step S5205; send the third sub-signal in the second sending opportunity in the third serving cell in step S5205.
  • step S5301 the first information block is sent; in step S531, the first signal is received in the first sending opportunity in the first cell group.
  • the first signaling is used by the first node U2 to determine a first time domain resource; the first cell group includes at least one serving cell; the second serving cell is a second cell A serving cell in the group; the first transmission opportunity and the second transmission opportunity respectively include at least one symbol; the transmission power of the first signal is equal to the first power value; the transmission power of the second signal is equal to the second power value, the second signal includes the second sub-signal; whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than the first
  • the threshold is used to determine whether to transmit the second sub-signal in the second transmission opportunity in the second serving cell; when the linear value of the first power value and the linear value of the second power value When the linear value of the sum minus the first maximum transmission power is greater than the first threshold, the second sub-signal is received by the first node in the second transmission opportunity in the second serving cell U2 gives up sending; when the sum of the linear value of the first power value
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the third node U3 is the third node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U1 and the first node U2 includes a user equipment-to-user wireless interface.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the third node U3 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the second node U1 is a serving cell maintenance base station of the first node U2.
  • the third node U3 is a serving cell maintenance base station of the first node U2.
  • the second node is a maintenance base station of each serving cell in the second cell group.
  • the second node is not a maintenance base station of any serving cell in the first cell group.
  • the second cell group is an MCG
  • the second node is an MN
  • the second cell group is an SCG
  • the second node is an SN
  • the third node is a maintenance base station of each serving cell in the first cell group.
  • the third node is not a maintenance base station of any serving cell in the second cell group.
  • the first cell group is an MCG
  • the third node is an MN
  • the first cell group is an SCG
  • the third node is an SN
  • the monitoring includes blind decoding, that is, receiving a signal and performing a decoding operation; if it is determined that the decoding is correct according to the CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) bit, then it is judged that the second sub-signal; otherwise, it is determined that the second sub-signal is not received.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the monitoring includes coherent detection, that is, performing coherent reception and measuring the energy of the signal obtained after the coherent reception; if the energy of the signal is greater than a first given threshold, it is judged that the second a sub-signal; if the energy of the signal is less than the first given threshold, it is judged that the second sub-signal is not received.
  • the monitoring includes energy detection, that is, the energy of the wireless signal is sensed and averaged to obtain received energy; if the received energy is greater than a second given threshold, it is judged that the second sub-signal is received ; If the received energy is less than the second given threshold, judging that the second sub-signal is not received.
  • the meaning of the sentence monitoring the second sub-signal includes: determining whether the second sub-signal is sent according to the CRC; determining whether the second sub-signal is correct before judging whether the decoding is correct according to the CRC is sent.
  • the meaning of the sentence monitoring the second sub-signal includes: determining whether the second sub-signal is sent according to coherent detection; determining whether the second sub-signal is sent before the coherent detection.
  • the meaning of the sentence monitoring the second sub-signal includes: determining whether the second sub-signal is sent according to energy detection; not determining whether the second sub-signal is sent before the energy detection.
  • the second node receives the second sub-signal in the second sending opportunity in the second serving cell.
  • the second node does not receive the second sub-signal in the second sending opportunity in the second serving cell.
  • the step in block F54 in Fig. 5 exists; the first node sends the second sub-signal in the second sending opportunity in the second serving cell.
  • the step in block F54 in FIG. 5 does not exist; the first node abstains from sending the second sub-signal in the second sending opportunity in the second serving cell.
  • the first node abstains from sending the second signal in the second sending opportunity in the second serving cell.
  • the first signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to bear physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to bear physical layer data.
  • the first signaling is transmitted on a PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared CHannel, physical downlink shared channel
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to bear physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to bear physical layer signaling.
  • the first signaling is transmitted on a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the physical channel occupied by the first signal includes one or more of PRACH, PUSCH or PUCCH.
  • the physical channel occupied by the second sub-signal includes one of PRACH, PUSCH or PUCCH.
  • the physical channel occupied by the second signal includes one or more of PRACH, PUSCH or PUCCH.
  • the steps in the block F51 in accompanying drawing 5 exist, and the steps in the block F52 do not exist; the first information block indicates the first candidate threshold and the second candidate threshold; when the second sending When the opportunity overlaps with the first time domain resource, the first threshold is the first candidate threshold; when the second transmission opportunity does not overlap with the first time domain resource, the first The threshold is the second candidate threshold; the first candidate threshold and the second candidate threshold are not equal.
  • the steps in the block F52 in accompanying drawing 5 exist, and the steps in the block F51 do not exist; the first information block indicates the first candidate threshold and the second candidate threshold; when the second sending When the opportunity overlaps with the first time domain resource, the first threshold is the first candidate threshold; when the second transmission opportunity does not overlap with the first time domain resource, the first The threshold is the second candidate threshold; the first candidate threshold and the second candidate threshold are not equal.
  • the first information block is carried by higher layer signaling.
  • the first information block is carried by RRC signaling.
  • the first information block is carried by MAC CE signaling.
  • the first information block includes information in all or part of fields in an IE.
  • the first information block includes information in different fields in one IE.
  • the first information block is carried by one IE.
  • the first information block is carried by two different IEs.
  • the name of the IE carrying the first information block includes "PhysicalCellGroupConfig".
  • the name of the IE carrying the first information block includes "CellGroupConfig”.
  • the first information block is earlier than the first signaling in the time domain.
  • the first information block is later than the first signaling in the time domain.
  • the first information block is transmitted on the PDSCH.
  • the steps in block F53 in FIG. 5 exist, and the method used in the first node for wireless communication includes: judging the second sending opportunity in the second serving cell whether to send the second sub-signal.
  • the first node sums the first It is judged whether to send the second sub-signal in the second sending opportunity in the second serving cell based on the magnitude relationship between the thresholds.
  • the steps in the block F55 in FIG. 5 exist, and the steps in the block F54 do not exist; the second sub-signal is received in the second sending opportunity in the second serving cell Giving up sending: the third serving cell is a serving cell in the second cell group, and the second signal includes the third sub-signal.
  • the second sub-signal and the third sub-signal respectively include baseband signals.
  • the second sub-signal and the third sub-signal respectively include wireless signals.
  • the second sub-signal and the third sub-signal respectively include radio frequency signals.
  • the third sub-signal includes one of a signal transmitted on a PRACH, a signal transmitted on a PUSCH, a signal transmitted on a PUCCH, or an SRS.
  • the priority of the third sub-signal is higher than that of the second sub-signal.
  • the priority of the third sub-signal is higher than that of the second sub-signal.
  • the third serving cell is different from the second serving cell.
  • the third serving cell and the second serving cell correspond to different SCellIndexes.
  • the third serving cell and the second serving cell correspond to different ServCellIndexes.
  • the third serving cell is different from the second serving cell, and the first signaling is only applicable to the second serving cell.
  • the third serving cell is a PCell of the second cell group.
  • the third serving cell is a PSCell of the second cell group.
  • the third serving cell is a serving cell in the second cell group that is different from the PCell.
  • the third serving cell is a serving cell in the second cell group that is different from the PSCell.
  • the third sub-signal is transmitted on a BWP other than the BWP occupied by the second sub-signal.
  • the third sub-signal is transmitted on a BWP other than the BWP occupied by the second sub-signal, and the first signaling is only applicable to the BWP occupied by the second sub-signal.
  • the third sub-signal occupies all time domain resources in the second sending opportunity.
  • the third sub-signal only occupies part of time domain resources in the second sending opportunity.
  • the third sub-signal does not occupy time domain resources other than the second sending opportunity.
  • the third sub-signal occupies time domain resources other than the second sending opportunity.
  • the physical channel occupied by the third sub-signal includes one of PRACH, PUSCH or PUCCH.
  • Embodiment 6 illustrates whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than the first threshold is used to determine whether A schematic diagram of sending the second sub-signal in the second sending opportunity in the second serving cell; as shown in FIG. 6 .
  • Embodiment 6 when the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than the first threshold, the The first node gives up sending the second sub-signal in the second sending opportunity in the second serving cell; when the sum of the linear value of the first power value and the linear value of the second power value When the linear value minus the first maximum transmission power is not greater than the first threshold, the first node transmits the second sub-signal in the second transmission opportunity in the second serving cell.
  • the second The sub-signal is not sent in the second transmission opportunity in the second serving cell; if the sum of the linear value of the first power value and the linear value of the second power value minus the first The linear value of the maximum transmission power is not greater than the first threshold, and the second sub-signal is transmitted in the second transmission opportunity in the second serving cell.
  • the first node is configured to determine whether to transmit a second signal in the second transmission opportunity in the second group of cells.
  • the second A node when the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than the first threshold, the second A node abstains from sending the second signal in the second sending opportunity in the second cell group.
  • the second signal includes at least one sub-signal other than the second sub-signal; when the sum of the linear value of the first power value and the linear value of the second power value is subtracted from When the linear value of the first maximum transmit power is greater than the first threshold, the first node gives up sending all sub-signals in the second signal in the second sending opportunity in the second cell group Signal.
  • the second signal includes at least one sub-signal other than the second sub-signal; when the sum of the linear value of the first power value and the linear value of the second power value is subtracted from When the linear value of the first maximum transmission power is greater than the first threshold, the first node gives up sending all or all of the second signals in the second transmission opportunity in the second cell group some sub-signals.
  • the The first node transmits the second signal in the second transmission opportunity in the second group of cells.
  • the second signal includes at least one sub-signal other than the second sub-signal; when the sum of the linear value of the first power value and the linear value of the second power value is subtracted from When the linear value of the first maximum transmission power is not greater than the first threshold, the first node transmits all sub-signals in the second signal in the second transmission opportunity in the second cell group Signal.
  • the second A node when the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmit power is greater than the first threshold, the second A node abstains from transmitting radio signals in the second transmission opportunity in the second group of cells.
  • Embodiment 7 illustrates a schematic diagram of first signaling configuring symbols in the first time domain resource as the first type according to an embodiment of the present application; as shown in FIG. 7 .
  • the first signaling configures symbols in the first time domain resource to be the first type in the second cell group.
  • the first signaling configures symbols in the first time domain resource as the first type in the second serving cell.
  • the first signaling configures symbols in the first time domain resource as the first type in a BWP of the second serving cell.
  • the first signaling configures symbols in the first time domain resource as the first type in the BWP occupied by the second sub-signal of the second serving cell.
  • the first signaling configures the any symbol as the first time domain resource in at least one serving cell in the second cell group one type.
  • the first signaling configures the any symbol in at least one BWP of at least one serving cell in the second cell group for the first type.
  • the meaning of configuring the symbols in the first time domain resource as the first type in the sentence includes: configuring each symbol in the first time domain resource as the first type.
  • the meaning of configuring the symbols in the first time domain resource as the first type in the sentence includes: configuring at least one symbol in the first time domain resource as the first type.
  • the meaning of configuring the symbols in the first time domain resource as the first type in the sentence includes: configuring the type of the symbols in the first time domain resource as the first type.
  • the meaning of configuring the symbols in the first time domain resource as the first type in the sentence includes: configuring the type of each symbol in the first time domain resource as the first type type.
  • the meaning of the sentence that the first signaling is used to determine the first time domain resource includes: the first signaling configures symbols in the first time domain resource as the first type.
  • the meaning of the sentence that the first signaling is used to determine the first time domain resource includes: the first signaling configures each symbol in the first time domain resource as the Describe the first type.
  • the meaning of the sentence that the first signaling is used to determine the first time domain resource includes: the first signaling indicates the type of each symbol in the first time domain resource.
  • the meaning of the sentence that the first signaling is used to determine the first time domain resource includes: the first signaling indicates that the type of each symbol in the first time domain resource is The first type.
  • the sender of the first signaling simultaneously receives and sends wireless signals on the one symbol; if a symbol is not configured as the first type, the sender of the first signaling only receives wireless signals or only sends wireless signals on the one symbol.
  • the first type is a type in the first type set, any symbol is configured as a type in the first type set, and the types in the first type set include the first One type, uplink and downlink.
  • the types in the first type set include flexible.
  • the first type is different from uplink and downlink.
  • the first type is different from uplink, downlink and flexible.
  • the meaning of whether the second sending opportunity overlaps with the first time domain resource in the sentence includes: whether there is a symbol configured as the first type in the second sending opportunity.
  • the second sending opportunity overlaps with the first time domain resource, at least one symbol in the second sending opportunity is configured as the first type; if the second sending opportunity Not overlapping with the first time domain resource, each symbol in the second transmission opportunity is not configured as the first type.
  • the second sending opportunity is orthogonal to the first time domain resource in the time domain.
  • the first time-domain resource belongs to a first time-domain resource pool
  • the first signaling indicates the first time-domain resource from the first time-domain resource pool
  • sends the first time-domain resource to Symbols in a time domain resource are configured as the first type.
  • the first signaling indicates that only symbols in the first time-domain resource in the first time-domain resource pool are configured as the first type.
  • Embodiment 8 illustrates a schematic diagram in which whether the second transmission opportunity overlaps with the first time domain resource is used to determine the first threshold according to an embodiment of the present application; as shown in FIG. 8 .
  • the first threshold is the first candidate threshold; when the second sending opportunity overlaps with the first When time domain resources do not overlap, the first threshold is the second candidate threshold.
  • the first threshold is the first candidate threshold; if the second sending opportunity overlaps with the first time domain resource The resources do not overlap, and the first threshold is the second candidate threshold.
  • the first threshold is the first candidate threshold or the second candidate threshold.
  • whether the second sending opportunity overlaps with the first time domain resource is used by the first node to determine the first candidate threshold from the first candidate threshold and the second candidate threshold. threshold.
  • whether there is a symbol configured as the first type in the second sending opportunity is used to determine the first threshold.
  • the first threshold when there is a symbol configured as the first type in the second sending opportunity, the first threshold is the first candidate threshold; when each of the second sending opportunities When none of the symbols are configured as the first type, the first threshold is the second candidate threshold.
  • the first candidate threshold and the second candidate threshold are non-negative real numbers respectively.
  • the first candidate threshold and the second candidate threshold are non-negative integers respectively.
  • a unit of the first candidate threshold and a unit of the second candidate threshold are respectively dB.
  • a unit of the first candidate threshold and a unit of the second candidate threshold are milliwatts, respectively.
  • the first candidate threshold and the second candidate threshold are linear values respectively.
  • the first candidate threshold is smaller than the second candidate threshold.
  • Embodiment 9 illustrates a schematic diagram in which the second sub-power value is used to determine the second power value according to an embodiment of the present application; as shown in FIG. 9 .
  • the second sub-power value is used by the first node to determine the second power value.
  • the second power value is linearly related to the second sub-power value, and a linear coefficient between the second power value and the second sub-power value is equal to 1.
  • the second signal only includes the second sub-signal; the second power value is equal to the second sub-power value.
  • the second signal includes the Q2 sub-signals, and the transmission powers of the Q2 sub-signals are respectively equal to Q2 sub-power values; the second sub-power value is the sum of the Q2 sub-power values and the The sub-power value corresponding to the second sub-signal; the sum of the linear values of the Q2 sub-power values is used to determine the second power value.
  • the units of the Q2 sub-power values are respectively dBm.
  • the Q2 sub-power values are respectively calculated according to a method in one of chapters 7.1, 7.2, 7.3 or 7.4 of 3GPP TS38.213.
  • the linear value of the second power value is equal to the sum of the linear values of the Q2 sub-power values.
  • the linear value of the second power value is equal to the sum of the linear values of the Q4 sub-power values among the Q2 sub-power values, and the Q4 sub-power values are respectively equal to the Q2 sub-power values.
  • the sum of the linear values of the Q4 sub-power values is not greater than the linear value of the third maximum transmit power, and the sum of the linear values of the (Q4+1) sub-power values is greater than the The linear value of the third maximum transmission power; the (Q4+1) sub-power values are respectively corresponding to the (Q4+1) sub-signals with the highest priority among the Q2 sub-signals; Q4 is a positive integer smaller than the Q2 .
  • Embodiment 10 illustrates a schematic diagram of the second sub-power value according to an embodiment of the present application; as shown in FIG. 10 .
  • the second sub-power value is equal to a minimum value between the second reference power value and the second power threshold.
  • a unit of the second sub-power value is dBm.
  • the unit of the second reference power value is dBm.
  • the unit of the second power threshold is dBm.
  • the expected sending power of the second sub-signal is equal to the second sub-power value.
  • the unreduced sending power of the second sub-signal is equal to the second sub-power value.
  • the actual sending power of the second sub-signal is equal to the second sub-power value.
  • the actual sending power of the second sub-signal is smaller than the second sub-power value.
  • the second sub-power value is calculated according to a method in one of chapters 7.1, 7.2, 7.3 or 7.4 of 3GPP TS38.213.
  • the second power threshold is PCMAX,f,c (i), and the PCMAX,f,c (i) is the maximum output power of the transmission opportunity i on the carrier f of the serving cell c,
  • the second sub-signal is transmitted in a transmission opportunity i on a carrier f of a serving cell c; the second serving cell is the serving cell c, and the second transmission opportunity is a transmission opportunity i.
  • the second reference power value is linearly related to the sum of R2 offsets, and R2 is a positive integer; the linear coefficient between the second reference power value and the sum of the R2 offsets is 1; any one of the R2 offsets is indicated by TPC (Transmitter Power Control, transmit power control).
  • TPC Transmitter Power Control, transmit power control
  • the sum of the R2 offsets is a power control adjustment state.
  • the second reference power value is linearly related to the first component, and a linear coefficient between the second reference power value and the first component is 1.
  • the first component is target power.
  • the first component is P 0 .
  • the second reference power value is linearly related to the second component, and the second component is related to the bandwidth in units of resource blocks (Resource Block) to which the second sub-signal is allocated, and the A linear coefficient between the second reference power value and the second component is one.
  • the second reference power value is linearly related to the second path loss, and the linear coefficient between the second reference power value and the second path loss is a non-linear coefficient less than or equal to 1. negative real numbers.
  • the unit of the second path loss is dB.
  • a linear coefficient between the second reference power value and the second path loss is equal to 1.
  • a linear coefficient between the second reference power value and the second path loss is less than 1.
  • the second reference power value is linearly related to the third component
  • the third component is related to the MCS (Modulation and Coding Scheme, modulation and coding scheme) of the second sub-signal
  • the second reference The coefficient of linearity between the power value and the third component is 1.
  • the second reference power value is linearly related to the fourth component, and the linear coefficient between the second reference power value and the fourth component is 1; the fourth component and the second It is related to the number of symbols occupied by sub-signals.
  • the second reference power value is linearly related to the fifth component, and the linear coefficient between the second reference power value and the fifth component is 1; the fifth component and the second The PUCCH format corresponding to the sub-signal is related.
  • the second reference power value is linearly related to the first component, the second component, the third component, the sum of the R2 offsets, and the second path loss ;
  • the linear coefficient between the second reference power value and the first component, the second component, the third component and the sum of the R2 offsets is 1, and the second reference A linear coefficient between the power value and the second path loss is a non-negative real number not greater than 1.
  • the second reference power value and the sum of the first component, the second component, the fourth component, the fifth component, the R2 offsets, and the first The two path losses are linearly correlated respectively; the second reference power value is related to the first component, the second component, the fourth component, the fifth component, the sum of the R2 offsets and the The linear coefficients between the second path losses are all 1.
  • the second reference power value is linearly related to the first component, the second component, the sum of the R2 offsets, and the second path loss; the second reference The linear coefficients between the power value and the first component, the second component, and the sum of the R2 offsets are all 1, and the linear coefficient between the second reference power value and the second path loss The linear coefficient is a non-negative real number not greater than 1.
  • the second reference power value is linearly related to the first component and the second path loss; the second reference power value is related to the first component and the second path loss
  • the linear coefficients are all 1.
  • Embodiment 11 illustrates a schematic diagram in which the first sub-power value is used to determine the first power value according to an embodiment of the present application; as shown in FIG. 11 .
  • the first signal includes the first sub-signal, and the transmission power of the first sub-signal is equal to the first sub-power value; the first sub-power value is determined by the first node used to determine the first power value.
  • the first sub-signal is transmitted in a serving cell in the first cell group.
  • the first sub-signal is transmitted on the PCell of the first cell group.
  • the first sub-signal is transmitted on the PSCell of the first cell group.
  • the first sub-signal is transmitted on a serving cell in the first cell group that is different from the PCell.
  • the first sub-signal is transmitted on a serving cell in the first cell group that is different from the PSCell.
  • the first signal only includes the first sub-signal.
  • the first signal includes at least one other sub-signal other than the first sub-signal.
  • the first power value is linearly related to the first sub-power value, and a linear coefficient between the first power value and the first sub-power value is equal to 1.
  • the first signal only includes the first sub-signal; the first power value is equal to the first sub-power value.
  • the first signal includes the Q1 sub-signals, and the transmission powers of the Q1 sub-signals are respectively equal to Q1 sub-power values; the first sub-power value is the sum of the Q1 sub-power values and the The sub-power value corresponding to the first sub-signal; the sum of the linear values of the Q1 sub-power values is used to determine the first power value.
  • the units of the Q1 sub-power values are respectively dBm.
  • the Q1 sub-power values are respectively calculated according to methods in one of Chapters 7.1, 7.2, 7.3 or 7.4 of 3GPPTS38.213.
  • the linear value of the first power value is equal to the sum of the linear values of the Q1 sub-power values.
  • the linear value of the first power value is equal to the sum of the linear values of the Q3 sub-power values in the Q1 sub-power values, and the Q3 sub-power values are respectively equal to the Q1 sub-power values
  • the Q3 sub-signals with the highest priority in the signal correspond; the sum of the linear values of the Q3 sub-power values is not greater than the linear value of the second maximum transmit power, and the sum of the linear values of the (Q3+1) sub-power values is greater than the specified
  • the linear value of the second maximum transmission power; the (Q3+1) sub-power values are respectively corresponding to the (Q3+1) sub-signals with the highest priority among the Q1 sub-signals;
  • Q3 is a positive integer smaller than the Q1 .
  • Embodiment 12 illustrates a schematic diagram of the first sub-power value according to an embodiment of the present application; as shown in FIG. 12 .
  • the first sub-power value is equal to a minimum value between the first reference power value and the first power threshold.
  • the actual sending power of the first sub-signal is equal to the first sub-power value.
  • the unit of the first sub-power value is dBm.
  • the unit of the first reference power value is dBm.
  • the unit of the first power threshold is dBm.
  • the first sub-power value is calculated according to a method in one of chapters 7.1, 7.2, 7.3 or 7.4 of 3GPP TS38.213.
  • the first power threshold is PCMAX,f,c (i), and the PCMAX,f,c (i) is the maximum output power of the transmission opportunity i on the carrier f of the serving cell c,
  • the first sub-signal is transmitted in a transmission opportunity i on the carrier f of the serving cell c; the serving cell c is a serving cell in the first cell group, and the first transmission opportunity is the transmission opportunity i opportunity i.
  • the first reference power value is linearly related to the sum of R1 offsets, and R1 is a positive integer; the linear coefficient between the first reference power value and the sum of the R1 offsets is 1; any one of the R1 offsets is indicated by the TPC.
  • the sum of the R1 offsets is a power control adjustment state.
  • the first reference power value is linearly related to the sixth component, and a linear coefficient between the first reference power value and the sixth component is 1.
  • the sixth component is target power.
  • the sixth component is P 0 .
  • the first reference power value is linearly related to the seventh component
  • the seventh component is related to the bandwidth in resource block unit to which the first sub-signal is allocated
  • the first reference power The coefficient of linearity between the value and the seventh component is 1.
  • the first reference power value is linearly related to the first path loss, and a linear coefficient between the first reference power value and the first path loss is a non-negative real number less than or equal to 1.
  • the unit of the first path loss is dB.
  • the first reference power value is linearly correlated with the eighth component
  • the eighth component is correlated with the MCS of the first sub-signal
  • the relationship between the first reference power value and the eighth component The linear coefficient of is 1.
  • the first reference power value is linearly related to the ninth component, and the linear coefficient between the first reference power value and the ninth component is 1; the ninth component and the first It is related to the number of symbols occupied by sub-signals.
  • the first reference power value is linearly related to the tenth component, and the linear coefficient between the first reference power value and the tenth component is 1; the tenth component and the tenth component It is related to the PUCCH format corresponding to the first sub-signal.
  • the first reference power value is linearly related to the sixth component, the seventh component, the eighth component, the sum of the R1 offsets, and the first path loss ;
  • the linear coefficients between the first reference power value and the sixth component, the seventh component, the eighth component and the sum of the R1 offsets are all 1, and the first reference
  • the linear coefficient between the power value and the first path loss is a non-negative real number not greater than 1.
  • the first reference power value and the sixth component, the seventh component, the ninth component, the tenth component, the sum of the R1 offsets and the The first path loss is linearly correlated; the first reference power value and the sixth component, the seventh component, the ninth component, the tenth component, and the sum of the R1 offsets And the linear coefficients between the first path losses are all 1.
  • the first reference power value is linearly related to the sixth component, the seventh component, the sum of the R1 offsets, and the first path loss; the first reference The linear coefficient between the sixth component of the power value, the seventh component, and the sum of the R1 offsets is 1, and the linear coefficient between the first reference power value and the first path loss The linear coefficient is a non-negative real number not greater than 1.
  • the first reference power value is linearly related to the sixth component and the first path loss; the first reference power value is related to the sixth component and the first path loss
  • the linear coefficients are all 1.
  • Embodiment 13 illustrates a schematic diagram in which whether the second transmission opportunity overlaps with the first time domain resource is used to determine the first power parameter set according to an embodiment of the present application; as shown in FIG. 13 .
  • the first power parameter set is used by the first node to calculate the second power value; whether the second transmission opportunity overlaps with the first time domain resource is determined by the second A node is used to determine the first set of power parameters.
  • the first power parameter set includes the first component.
  • the first power parameter set only includes the first component.
  • the first power parameter set includes the second power threshold.
  • the first power parameter set only includes the second power threshold.
  • the first power parameter set includes the first component and the second power threshold.
  • the first power parameter set includes a linear coefficient between the second reference power value and the second path loss.
  • whether there is a symbol configured as the first type in the second transmission opportunity is used to determine the first power parameter set.
  • the first power parameter set is one of the first candidate power parameter set or the second candidate power parameter set; when the second sending opportunity overlaps with the first time domain resource, the The first power parameter set is the first candidate power parameter set; when the second transmission opportunity does not overlap with the first time domain resource, the first power parameter set is the second candidate power parameter set collection of parameters.
  • the first power parameter set is one of the first candidate power parameter set or the second candidate power parameter set; when there is a symbol configured as the first type in the second transmission opportunity , the first power parameter set is the first candidate power parameter set; when each symbol in the second transmission opportunity is not configured as the first type, the first power parameter set is The second set of candidate power parameters.
  • the first set of candidate power parameters and the second set of candidate power parameters are respectively configurable.
  • a value of at least one power parameter in the first candidate power parameter set is not equal to a value of a corresponding power parameter in the second candidate power parameter set.
  • the first power parameter set includes the first component; when the second sending opportunity overlaps with the first time domain resource, the value of the first component is greater than when the first time domain resource The value of the first component when the second sending opportunity does not overlap with the first time domain resource.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1400 in the first node device includes a first receiver 1401 and a first transmitter 1402 .
  • the first receiver 1401 receives the first signaling; the first transmitter 1402 transmits the first signal in the first transmission opportunity in the first cell group; the first transmitter 1402 transmits the first signal in the second service
  • the second sub-signal is sent in the second sending opportunity in the cell, or the second sub-signal is not sent in the second sending opportunity in the second serving cell.
  • the first signaling is used to determine the first time domain resource; the first cell group includes at least one serving cell; the second serving cell is a serving cell in the second cell group ; the first transmission opportunity and the second transmission opportunity respectively include at least one symbol; the transmission power of the first signal is equal to a first power value; the transmission power of the second signal is equal to a second power value, and the second The signal includes the second sub-signal; whether the sum of the linear value of the first power value and the linear value of the second power value minus the linear value of the first maximum transmission power is greater than a first threshold is used to determine whether The second sub-signal is transmitted in the second transmission opportunity in the second serving cell; when the sum of the linear value of the first power value and the linear value of the second power value minus the When the linear value of the first maximum transmit power is greater than the first threshold, the second sub-signal is not sent in the second transmission opportunity in the second serving cell; when the linear value of the first power value is When the sum of the linear value and the linear value of the second power value
  • the first signaling configures symbols in the first time domain resource as a first type.
  • the first transmitter 1402 transmits a third sub-signal in the second sending opportunity in the third serving cell; wherein, the second sub-signal is in the second serving cell in the The transmission is abandoned in the second transmission opportunity; the third serving cell is a serving cell in the second cell group, and the second signal includes the third sub-signal.
  • the first receiver 1401 receives a first information block; wherein, the first information block indicates a first candidate threshold and a second candidate threshold; when the second sending opportunity is the same as the first When domain resources overlap, the first threshold is the first candidate threshold; when the second sending opportunity does not overlap with the first time domain resource, the first threshold is the second candidate Threshold; the first candidate threshold and the second candidate threshold are not equal.
  • the transmission power of the second sub-signal is equal to a second sub-power value, and the second sub-power value is used to determine the second power value; the second sub-power value is equal to a second reference The minimum value between the power value and the second power threshold.
  • the first signal includes a first sub-signal, and the transmission power of the first sub-signal is equal to a first sub-power value; the first sub-power value is used to determine the first power value; The first sub-power value is equal to the minimum value between the first reference power value and the first power threshold.
  • the first power parameter set is used to calculate the second power value; whether the second transmission opportunity overlaps with the first time domain resource is used to determine the first power parameter set.
  • the first transmitter 1402 determines whether to send the second sub-signal in the second sending opportunity in the second serving cell.
  • the first time domain resource includes at least one symbol; the symbol is an OFDM symbol or a DFT-S-OFDM symbol; the sender of the first signaling is simultaneously in the first time domain resource receiving and sending wireless signals; the first sending opportunity and the second sending opportunity overlap in the time domain; the first signal and the second sub-signal overlap in the time domain; the second signal only includes The second sub-signal, or, the second signal includes Q2 sub-signals, where Q2 is a positive integer greater than 1, and the Q2 sub-signals are respectively transmitted on the Q2 serving cells in the second cell group sending, the second sub-signal is one of the Q2 sub-signals.
  • the meaning of whether the second sending opportunity overlaps with the first time domain resource in the sentence includes: whether there is a symbol configured as the first type in the second sending opportunity.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1401 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one of.
  • the first transmitter 1402 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one of.
  • Embodiment 15 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 15 .
  • the processing device 1500 in the second node device includes a second transmitter 1501 and a second receiver 1502 .
  • the second transmitter 1501 sends the first signaling; the second receiver 1502 monitors the second sub-signal in the second sending opportunity in the second serving cell.
  • the first signaling is used to determine the first time domain resource; the second serving cell is a serving cell in the second cell group; the target receiver of the first signaling is in A first signal is sent in a first sending opportunity in a first cell group, where the first cell group includes at least one serving cell; the first sending opportunity and the second sending opportunity include at least one symbol respectively; the second sending opportunity includes at least one symbol;
  • the transmission power of a signal is equal to a first power value;
  • the transmission power of a second signal is equal to a second power value, and the second signal includes the second sub-signal;
  • the linear value of the first power value and the second Whether the sum of the linear values of the power values minus the linear value of the first maximum transmit power is greater than a first threshold is used to determine whether the second sub-signal is transmitted in the second transmission opportunity in the second serving cell
  • the first signaling configures symbols in the first time domain resource as a first type.
  • the second receiver 1502 monitors and receives a third sub-signal in the second transmission opportunity in the third serving cell; wherein, the second sub-signal is in the second serving cell The transmission is abandoned in the second transmission opportunity; the third serving cell is a serving cell in the second cell group, and the second signal includes the third sub-signal.
  • the second transmitter 1501 sends a first information block; wherein, the first information block indicates a first candidate threshold and a second candidate threshold; when the second sending opportunity is the same as the first When domain resources overlap, the first threshold is the first candidate threshold; when the second sending opportunity does not overlap with the first time domain resource, the first threshold is the second candidate Threshold; the first candidate threshold and the second candidate threshold are not equal.
  • the transmission power of the second sub-signal is equal to a second sub-power value, and the second sub-power value is used to determine the second power value; the second sub-power value is equal to a second reference The minimum value between the power value and the second power threshold.
  • the first power parameter set is used to calculate the second power value; whether the second transmission opportunity overlaps with the first time domain resource is used to determine the first power parameter set.
  • the first time domain resource includes at least one symbol; the symbol is an OFDM symbol or a DFT-S-OFDM symbol; the sender of the first signaling is simultaneously in the first time domain resource receiving and sending wireless signals; the first sending opportunity and the second sending opportunity overlap in the time domain; the first signal and the second sub-signal overlap in the time domain; the second signal only includes The second sub-signal, or, the second signal includes Q2 sub-signals, where Q2 is a positive integer greater than 1, and the Q2 sub-signals are respectively transmitted on the Q2 serving cells in the second cell group sending, the second sub-signal is one of the Q2 sub-signals.
  • the meaning of whether the second sending opportunity overlaps with the first time domain resource in the sentence includes: whether there is a symbol configured as the first type in the second sending opportunity.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1501 includes ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the second receiver 1502 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • Embodiment 16 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 16 .
  • the processing device 1600 in the second node device includes a first processor 1601 .
  • the first processor 1601 receives the first signal in the first transmission opportunity in the first cell group.
  • the first cell group includes at least one serving cell; the sender of the first signal sends or abstains from sending the second sub-signal in the second sending opportunity in the second serving cell; the second sub-signal
  • the second serving cell is a serving cell in the second cell group; the first transmission opportunity and the second transmission opportunity respectively include at least one symbol; the transmission power of the first signal is equal to the first power value; the second signal The transmit power is equal to the second power value, the second signal includes the second sub-signal; the sum of the linear value of the first power value and the linear value of the second power value minus the first maximum transmit power Whether the linear value of the power value is greater than the first threshold is used to determine whether the second sub-signal is transmitted in the second transmission opportunity in the second serving cell; when the linear value of the first power value and the When the sum of the linear values of the second power values minus the linear value of the first maximum transmit power is greater than the first threshold, the second sub-signal is transmitted in the second serving cell in the second The transmission is abandoned during the opportunity; when the
  • the first signaling configures symbols in the first time domain resource as a first type.
  • the first threshold is a first candidate threshold or a second candidate threshold; when the second sending opportunity overlaps with the first time domain resource, the first threshold is the first A candidate threshold; when the second sending opportunity does not overlap with the first time domain resource, the first threshold is the second candidate threshold; the first candidate threshold and the second candidate threshold are not equal.
  • the first processor 1601 sends a first information block; where the first information block indicates the first candidate threshold and the second candidate threshold.
  • the first signal includes a first sub-signal, and the transmission power of the first sub-signal is equal to a first sub-power value; the first sub-power value is used to determine the first power value; The first sub-power value is equal to the minimum value between the first reference power value and the first power threshold.
  • the third node device is a base station device.
  • the third node device is user equipment.
  • the third node device is a relay node device.
  • the first processor 1601 includes ⁇ antenna 420, transmitter/receiver 418, transmit processor 416, receive processor 470, multi-antenna transmit processor 471, multi-antenna receive processing in Embodiment 4 device 472, controller/processor 475, memory 476 ⁇ at least one.
  • the user equipment, terminal and UE in this application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, vehicles, vehicles, RSU, wireless sensor, network card, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle Communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, TRP (Transmitter Receiver Point, sending and receiving node), GNSS, relay Satellites, satellite base stations, aerial base stations, RSU (Road Side Unit, roadside unit), drones, test equipment, such as wireless communication equipment such as transceivers or signaling testers that simulate some functions of base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令;在第一小区组中在第一发送机会中发送第一信号;在第二服务小区中在第二发送机会中发送或放弃发送第二子信号。所述第一信令被用于确定第一时域资源;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值和所述第二功率值之和减去第一最大发送功率是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。上述方法满足了不同双工模式对上行发送功率的需求。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的灵活的传输方向配置的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对NR(New Radio)(或5G)系统进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。在3GPP RAN#86次全会上决定开始NR R(release)-17的SI(Study Item,研究项目)和WI(Work Item,工作项目)的工作并且预计在3GPP RAN#94e次全会上对NR R-18的SI和WI进行立项。
上行功率控制是3GPP LTE(Long-term Evolution,长期演进)和NR系统的重要技术手段。通过开环和闭环的方式调节上行发送功率,在满足接收功率要求的同时尽量降低对其他用户的干扰。
发明内容
在现有的NR系统中,频谱资源被静态地划分为FDD频谱和TDD频谱。而对于TDD频谱,基站和UE(User Equipment,用户设备)都工作在半双工模式。这种半双工模式避免了自干扰并能够缓解跨链路(Cross Link)干扰的影响,但是也带来了资源利用率的下降和延时的增大。针对这些问题,在TDD频谱或FDD频谱上支持灵活的双工模式或可变的链路方向(上行或下行或灵活)成为一种可能的解决方案。在3GPP RAN#88e次会议和3GPP R-18 workshop中,在NRR-18中支持全双工通信得到了广泛的关注和讨论。
在全双工模式下的通信会收到严重的干扰,包括自干扰和跨链路干扰。这种严重的干扰环境对上行功率控制会有什么影响,是需要解决的问题。针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用全双工和蜂窝网作为例子,本申请也适用于其他场景比如其他灵活的双工模式或可变的链路方向的技术,V2X(Vehicle-to-Everything)和副链路(sidelink)传输,并取得类似在全双工和蜂窝网中的技术效果。此外,不同场景(包括但不限于全双工,如其他灵活的双工模式或可变的链路方向的技术,蜂窝网,V2X和副链路传输)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于确定第一时域资源;
在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;
在第二服务小区中在第二发送机会中发送第二子信号,或者,在第二服务小区中在第二发送机会中放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;
其中,所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所 述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
作为一个实施例,本申请要解决的问题包括:如何满足不同双工模式对上行发送功率的需求。
作为一个实施例,上述方法的特质包括:根据双工模式确定所述第二信号的发送功率的最大限缩幅度。
作为一个实施例,上述方法的好处包括:满足了不同双工模式对上行发送功率的需求。
作为一个实施例,上述方法的好处包括:避免了由于所述第二信号的发送功率被过度限缩从而导致在全双工的严重干扰环境下无法保证传输性能。
根据本申请的一个方面,其特征在于,所述第一信令将所述第一时域资源中的符号配置为第一类型。
根据本申请的一个方面,其特征在于,包括:
在第三服务小区中在所述第二发送机会中发送第三子信号;
其中,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;所述第三服务小区是所述第二小区组中的一个服务小区,所述第二信号包括所述第三子信号。
作为一个实施例,上述方法的好处包括:当所述第二小区组的总发送功率需要被限缩超过所述第一阈值时,不需要放弃发送所述第二小区组中的所有无线信号,提高了上行传输的效率。
根据本申请的一个方面,其特征在于,包括:
接收第一信息块;
其中,所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
根据本申请的一个方面,其特征在于,所述第二子信号的发送功率等于第二子功率值,所述第二子功率值被用于确定所述第二功率值;所述第二子功率值等于第二参考功率值和第二功率阈值之间的最小值。
根据本申请的一个方面,其特征在于,所述第一信号包括第一子信号,所述第一子信号的发送功率等于第一子功率值;所述第一子功率值被用于确定所述第一功率值;所述第一子功率值等于第一参考功率值和第一功率阈值之间的最小值。
根据本申请的一个方面,其特征在于,第一功率参数集合被用于计算所述第二功率值;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一功率参数集合。
作为一个实施例,上述方法的好处包括:根据双工模式灵活调节上行功率控制参数,分别满足全双工和半双工不同的功率需求。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于确定第一时域资源;
在第二服务小区中在第二发送机会中监测第二子信号,所述第二服务小区是第二小区组中的一个服务小区;
其中,所述第一信令的目标接收者在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被 用于确定所述第一阈值。
根据本申请的一个方面,其特征在于,所述第一信令将所述第一时域资源中的符号配置为第一类型。
根据本申请的一个方面,其特征在于,包括:
在第三服务小区中在所述第二发送机会中监测并接收到第三子信号;
其中,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;所述第三服务小区是所述第二小区组中的一个服务小区,所述第二信号包括所述第三子信号。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块;
其中,所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
根据本申请的一个方面,其特征在于,所述第二子信号的发送功率等于第二子功率值,所述第二子功率值被用于确定所述第二功率值;所述第二子功率值等于第二参考功率值和第二功率阈值之间的最小值。
根据本申请的一个方面,其特征在于,第一功率参数集合被用于计算所述第二功率值;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一功率参数集合。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一时域资源;
第一发送机,在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;
所述第一发送机,在第二服务小区中在第二发送机会中发送第二子信号,或者,在第二服务小区中在第二发送机会中放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;
其中,所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,发送第一信令,所述第一信令被用于确定第一时域资源;
第二接收机,在第二服务小区中在第二发送机会中监测第二子信号,所述第二服务小区是第二小区组中的一个服务小区;
其中,所述第一信令的目标接收者在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被 用于确定所述第一阈值。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于,包括:
在第一小区组中在第一发送机会中接收第一信号,所述第一小区组包括至少一个服务小区;
其中,所述第一信号的发送者在第二服务小区中在第二发送机会中发送或者放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;第一信令被用于确定第一时域资源;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
根据本申请的一个方面,其特征在于,所述第一信令将所述第一时域资源中的符号配置为第一类型。
根据本申请的一个方面,其特征在于,所述第一阈值是第一候选阈值或第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块;
其中,所述第一信息块指示所述第一候选阈值和所述第二候选阈值。
根据本申请的一个方面,其特征在于,所述第一信号包括第一子信号,所述第一子信号的发送功率等于第一子功率值;所述第一子功率值被用于确定所述第一功率值;所述第一子功率值等于第一参考功率值和第一功率阈值之间的最小值。
根据本申请的一个方面,其特征在于,所述第三节点是基站。
根据本申请的一个方面,其特征在于,所述第三节点是用户设备。
根据本申请的一个方面,其特征在于,所述第三节点是中继节点。
本申请公开了一种被用于无线通信的第三节点设备,其特征在于,包括:
第一处理器,在第一小区组中在第一发送机会中接收第一信号,所述第一小区组包括至少一个服务小区;
其中,所述第一信号的发送者在第二服务小区中在第二发送机会中发送或者放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;第一信令被用于确定第一时域资源;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
作为一个实施例,和传统方案相比,本申请具备如下优势:
—根据双工模式调整上行总发送功率的最大限缩幅度;
—满足了不同双工模式对上行发送功率的需求。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第一信号和第二子信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的第一功率值的线性值和第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在第二服务小区中在第二发送机会中发送第二子信号的示意图;
图7示出了根据本申请的一个实施例的第一信令将第一时域资源中的符号配置为第一类型的示意图;
图8示出了根据本申请的一个实施例的第二发送机会与第一时域资源是否交叠被用于确定第一阈值的示意图;
图9示出了根据本申请的一个实施例的第二子功率值被用于确定第二功率值的示意图;
图10示出了根据本申请的一个实施例的第二子功率值的示意图;
图11示出了根据本申请的一个实施例的第一子功率值被用于确定第一功率值的示意图;
图12示出了根据本申请的一个实施例的第一子功率值的示意图;
图13示出了根据本申请的一个实施例的第二发送机会与第一时域资源是否交叠被用于确定第一功率参数集合的示意图;
图14示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;
图16示出了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令,第一信号和第二子信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令,所述第一信令被用于确定第一时域资源;在步骤102中在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;在步骤103中在第二服务小区中在第二发送机会中发送第二子信号,或者,在第二服务小区中在第二发送机会中放弃发送第二子信号。其中,所述第二服务小区是第二小区组中的一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
作为一个实施例,所述第一信令包括更高层(higher layer)信令。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息单元)中全部或部分域中的信息。
作为一个实施例,所述第一信令包括TDD-UL-DL-ConfigCommon IE中全部或部分域中的信息。
作为一个实施例,所述第一信令包括TDD-UL-DL-ConfigDedicated IE中全部或部分域中的信息。
作为一个实施例,所述第一信令由一个IE携带。
作为一个实施例,携带所述第一信令的IE的名称里包括“TDD-UL-DL”。
作为一个实施例,携带所述第一信令的IE的名称里包括“TDD”。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括DCI(Downlink control information,下行控制信息)。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域(field)。
作为一个实施例,所述第一信令是DCI,所述第一信令的格式(format)是DCI format2_0。
作为一个实施例,所述第一时域资源包括至少一个符号。
作为一个实施例,所述第一时域资源包括一个符号。
作为一个实施例,所述第一时域资源包括多个连续的符号。
作为一个实施例,所述第一时域资源包括多个不连续的符号。
作为一个实施例,所述第一时域资源包括至少一个时隙(slot)。
作为一个实施例,所述第一时域资源包括至少一个子帧(subframe)。
作为一个实施例,所述第一信令不适用于所述第一小区组中的服务小区。
作为一个实施例,所述第一信令适用于所述第一小区组和所述第二小区组中的服务小区。
作为一个实施例,所述第一信令适用于所述第二小区组中的所有服务小区。
作为一个实施例,所述第一信令仅适用于所述第二小区组中的服务小区。
作为一个实施例,所述第一信令仅适用于所述第二服务小区。
作为一个实施例,所述第一信令仅适用于所述第二服务小区的一个BWP(BandWidth Part,带宽区间)。
作为一个实施例,所述第一信令仅适用于所述第二服务小区中所述第二子信号所占用的BWP。
作为一个实施例,所述第一信令被用于在所述第二小区组中确定所述第一时域资源。
作为一个实施例,所述第一信令被用于在所述第二服务小区中确定所述第一时域资源。
作为一个实施例,所述第一信令的发送者在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信令的发送者在所述第一时域资源中在所述第二服务小区中同时接收和发送无线信号。
作为一个实施例,所述第一信令的发送者在所述第一时域资源中在所述第二服务小区的一个BWP中同时接收和发送无线信号。
作为一个实施例,所述第一信令的发送者在所述第一时域资源中在所述第二服务小区的所述第二子信号所占用的BWP中同时接收和发送无线信号。
作为一个实施例,所述第一信令指示所述第一时域资源。
作为一个实施例,所述第一时域资源属于第一时域资源池,所述第一信令从所述第一时域资源池中指示所述第一时域资源。
作为一个实施例,所述第一时域资源池包括多个连续的符号。
作为一个实施例,所述第一时域资源池包括至少一个时隙。
作为一个实施例,所述第一时域资源池包括至少一个子帧。
作为一个实施例,所述第一时域资源池中的至少一个符号不属于所述第一时域资源。
作为一个实施例,所述第一信令指示:所述第一信令的发送者在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信令指示:所述第一信令的发送者在所述第二服务小区中在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述第一信令指示:所述第一信令的发送者在所述第二服务小区的一个BWP中在所述第一时域资源中同时接收和发送无线信号。
作为一个实施例,所述符号包括OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述符号包括DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一小区组仅包括一个服务小区。
作为一个实施例,所述第一小区组包括多个服务小区。
作为一个实施例,所述第二小区组包括至少一个服务小区。
作为一个实施例,所述第二小区组仅包括所述第二服务小区。
作为一个实施例,所述第二小区组包括除所述第二服务小区外的至少一个服务小区。
作为一个实施例,所述第一小区组和所述第二小区组分别是MCG(Master Cell Group,主小区组)和SCG(Secondary Cell Group,辅小区组)。
作为上述实施例的一个子实施例,所述第一小区组包括一个PCell(Primary Cell)和可选的(optionally)一个或多个SCell(Secondary Cell);所述第二小区组包括一个PSCell(Primary Secondary Cell)和可选的一个或多个SCell。
作为一个实施例,所述第一小区组和所述第二小区组分别是SCG和MCG。
作为上述实施例的一个子实施例,所述第一小区组包括一个PSCell和可选的一个或多个SCell(Secondary Cell);所述第二小区组包括一个PCell和可选的一个或多个SCell。
作为一个实施例,不存在一个服务小区同时属于所述第一小区组和所述第二小区组。
作为一个实施例,所述第一小区组中的每个服务小区均被同一个MN(Master Node,主节点)维持,所述第二小区组中的每个服务小区均被同一个SN(Secondary Node,辅节点)维持。
作为上述实施例的一个子实施例,所述第一信号的目标接收者是所述同一个MN。
作为上述实施例的一个子实施例,所述第二信号的目标接收者是所述同一个SN。
作为一个实施例,所述第一小区组中的每个服务小区均被同一个SN维持,所述第二小区组中的每个服务小区均被同一个MN维持。
作为上述实施例的一个子实施例,所述第一信号的目标接收者是所述同一个SN。
作为上述实施例的一个子实施例,所述第二信号的目标接收者是所述同一个MN。
作为一个实施例,所述第二服务小区是一个PCell(Primary cell)。
作为一个实施例,所述第二服务小区是一个PSCell(Primary secondary cell)。
作为一个实施例,所述第二服务小区是所述第二小区组中不同于PCell的一个服务小区。
作为一个实施例,所述第二服务小区是所述第二小区组中不同于PSCell的一个服务小区。
作为一个实施例,所述第一小区组采用E-UTRA(Evolved Universal Terrestrial Radio Access)无线接入,所述第二小区组采用NR(New Radio,新无线)无线接入。
作为一个实施例,所述第一小区组采用NR无线接入,所述第二小区组采用E-UTRA无线接入。
作为一个实施例,所述第一小区组和所述第二小区组均采用E-UTRA无线接入。
作为一个实施例,所述第一小区组和所述第二小区组均采用NR无线接入。
作为一个实施例,所述第一小区组和所述第二小区组分别是MCG和SCG;所述第一小区组和所述第二小区组分别采用E-UTRA无线接入和NR无线接入。
作为一个实施例,所述第一节点针对所述第一小区组和所述第二小区组中的每个服务小区执行了辅服务小区添加。
作为一个实施例,所述第一小区组和所述第二小区组中的每个服务小区都被包括在所述第一节点最新接收到的sCellToAddModList或sCellToAddModListSCG中。
作为一个实施例,所述第一节点被分配了针对所述第一小区组和所述第二小区组中的每个服务小区的SCellIndex或ServCellIndex。
作为一个实施例,所述SCellIndex是不大于31的正整数。
作为一个实施例,所述ServCellIndex是不大于31的非负整数。
作为一个实施例,所述第一节点与所述第一小区组和所述第二小区组中的每个服务小区之间已建立 RRC连接。
作为一个实施例,所述第一节点与所述第一小区组中的一个服务小区和所述第二小区组中的一个服务小区之间分别已建立RRC连接。
作为一个实施例,所述第一小区组和所述第二小区组分别为所述第一节点分配了C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第一小区组中的任一服务小区和所述第二小区组中的任一服务小区在频域正交。
作为一个实施例,所述第一小区组中的存在一个服务小区和所述第二小区组中的一个服务小区在频域交叠。
作为一个实施例,所述第一小区组中的任意两个服务小区在频域正交。
作为一个实施例,所述第一小区组中存在两个服务小区在频域交叠。
作为一个实施例,所述第二小区组中的任意两个服务小区在频域正交。
作为一个实施例,所述第二小区组中存在两个服务小区在频域交叠。
作为一个实施例,所述第一发送机会是一个连续的时间段。
作为一个实施例,所述第一发送机会包括一个时隙(slot)。
作为一个实施例,所述第一发送机会是一个时隙。
作为一个实施例,所述第一发送机会包括一个子帧(subframe)。
作为一个实施例,所述第一发送机会是一个子帧。
作为一个实施例,所述第一发送机会包括多个时隙。
作为一个实施例,所述第一发送机会包括多个子帧。
作为一个实施例,所述第一发送机会包括至少一个符号。
作为一个实施例,所述第一发送机会包括多个连续的符号。
作为一个实施例,所述第一信号占用所述第一发送机会中的所有时域资源。
作为一个实施例,所述第一信号仅占用所述第一发送机会中的部分时域资源。
作为一个实施例,所述第一信号不占用所述第一发送机会以外的时域资源。
作为一个实施例,所述第一信号占用所述第一发送机会以外的时域资源。
作为一个实施例,所述第二发送机会是一个连续的时间段。
作为一个实施例,所述第二发送机会包括一个时隙(slot)。
作为一个实施例,所述第二发送机会是一个时隙。
作为一个实施例,所述第二发送机会包括一个子帧(subframe)。
作为一个实施例,所述第二发送机会是一个子帧。
作为一个实施例,所述第二发送机会包括多个时隙。
作为一个实施例,所述第二发送机会包括多个子帧。
作为一个实施例,所述第二发送机会包括至少一个符号。
作为一个实施例,所述第二发送机会包括多个连续的符号。
作为一个实施例,所述第二子信号占用所述第二发送机会中的所有时域资源。
作为一个实施例,所述第二子信号仅占用所述第二发送机会中的部分时域资源。
作为一个实施例,所述第二子信号不占用所述第二发送机会以外的时域资源。
作为一个实施例,所述第二子信号占用所述第二发送机会以外的时域资源。
作为一个实施例,所述第一发送机会和所述第二发送机会在时域交叠。
作为一个实施例,所述第一信号和所述第二信号分别包括基带信号。
作为一个实施例,所述第一信号和所述第二信号分别包括无线信号。
作为一个实施例,所述第一信号和所述第二信号分别包括射频信号。
作为一个实施例,所述第一信号的目标接收者不同于所述第二信号的目标接收者。
作为一个实施例,所述第二信号的目标接收者是一个MN,所述第一信号的目标接收者是一个SN。
作为一个实施例,所述第一信号的目标接收者是一个MN,所述第二信号的目标接收者是一个SN。
作为一个实施例,所述第一信号的目标接收者不同于所述第一信令的发送者。
作为一个实施例,所述第一信号的目标接收者是所述第一信令的发送者。
作为一个实施例,所述第二信号的目标接收者不同于所述第一信令的发送者。
作为一个实施例,所述第二信号的目标接收者是所述第一信令的发送者。
作为一个实施例,所述第一信号包括在PRACH(Physical Random Access CHannel,物理随机接入信道)中传输的信号,在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)中传输的信号,在PUCCH(Physical Uplink Control Channel,物理上行控制信道)中传输的信号,或SRS(Sounding Reference Signal,探测参考信号)中的一种或多种。
作为一个实施例,所述第二信号仅包括所述第二子信号。
作为一个实施例,所述第二信号包括除所述第二子信号以外的至少一个其他子信号。
作为一个实施例,所述第二信号包括在PRACH中传输的信号,在PUSCH中传输的信号,在PUCCH中传输的信号,或SRS中的一种或多种。
作为一个实施例,所述第二子信号包括在PRACH中传输的信号,在PUSCH中传输的信号,在PUCCH中传输的信号,或SRS中之一。
作为一个实施例,所述第二子信号包括在PUSCH中传输的信号,在PUCCH中传输的信号,或SRS中之一。
作为一个实施例,所述第一信号与所述第二子信号在时域交叠。
作为一个实施例,所述第一信号与所述第二信号在时域交叠。
作为一个实施例,所述第一信号仅包括一个子信号,所述一个子信号在所述第一小区组中的一个服务小区上被发送。
作为上述实施例的一个子实施例,所述一个子信号与所述第二子信号在时域交叠。
作为一个实施例,所述第一信号包括Q1个子信号,所述Q1个子信号分别在所述第一小区组中的Q1个服务小区上被发送,所述Q1是大于1的正整数。
作为一个实施例,所述Q1个子信号中的每个子信号与所述第二子信号在时域交叠。
作为一个实施例,所述Q1个子信号中的任一子信号所占用的时域资源属于所述第一发送机会。
作为一个实施例,所述Q1个子信号中的任一子信号所占用的时域资源和所述第一发送机会交叠。
作为一个实施例,所述Q1个子信号占用相同的时隙。
作为一个实施例,所述Q1个子信号占用相同的子帧。
作为一个实施例,所述第二信号包括Q2个子信号,所述Q2个子信号分别在所述第二小区组中的Q2个服务小区上被发送;所述第二子信号是所述Q2个子信号中之一,所述Q2是大于1的正整数。
作为一个实施例,所述Q1个子信号中任一子信号与所述Q2个子信号中的任一子信号在时域交叠。
作为一个实施例,所述Q2个子信号中的任一子信号所占用的时域资源属于所述第二发送机会。
作为一个实施例,所述Q2个子信号中的任一子信号所占用的时域资源和所述第二发送机会交叠。
作为一个实施例,所述Q2个子信号占用相同的时隙。
作为一个实施例,所述Q2个子信号占用相同的子帧。
作为一个实施例,所述第一功率值的单位是dBm(毫分贝),所述第二功率值的单位是dBm。
作为一个实施例,所述第一功率值的线性值等于10的x1次方,所述x1等于所述第一功率值除以10;所述第二功率值的线性值等于10的x2次方,所述x2等于所述第二功率值除以10。
作为一个实施例,所述第一信号的实际发送功率等于所述第一功率值,所述第二信号的预期发送功率等于所述第二功率值。
作为一个实施例,所述第一信号的实际发送功率等于所述第一功率值,所述第二信号的未经缩减的发送功率等于所述第二功率值。
作为一个实施例,所述第二信号的实际发送功率等于所述第二功率值。
作为一个实施例,所述第二信号的实际发送功率小于所述第二功率值。
作为一个实施例,所述第二信号的实际发送功率的线性值小于或等于所述第一最大发送功率的线性值减去所述第一功率值的线性值。
作为一个实施例,当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送 功率的线性值不大于所述第一阈值时,所述第二信号的实际发送功率的线性值等于所述第一最大发送功率的线性值减去所述第一功率值的线性值。
作为一个实施例,所述第一功率值和所述第二功率值分别是根据3GPP TS38.213的7.1-7.5章节中的方法计算得到的。
作为一个实施例,所述第一信号在所述第一发送机会中是等功率发送的。
作为一个实施例,所述第一信号的发送功率在所述第一发送机会中发生变化。
作为一个实施例,所述第一信号在所述第一发送机会的任意部分的发送功率小于或等于所述第一功率值。
作为一个实施例,所述第一信号在所述第一发送机会中的最大发送功率等于所述第一功率值。
作为一个实施例,所述第二信号在所述第二发送机会中是等功率发送的。
作为一个实施例,所述第二信号的发送功率在所述第二发送机会中发生变化。
作为一个实施例,所述第二信号在所述第二发送机会的任意部分的发送功率小于或等于所述第二功率值。
作为一个实施例,所述第二信号在所述第二发送机会中的最大发送功率等于所述第二功率值。
作为一个实施例,所述第二信号在所述第二发送机会的任意部分的预期发送功率小于或等于所述第二功率值。
作为一个实施例,所述第二信号在所述第二发送机会的任意部分的未经缩减的发送功率小于或等于所述第二功率值。
作为一个实施例,所述第二信号在所述第二发送机会中的预期发送功率的最大值等于所述第二功率值。
作为一个实施例,所述第二信号在所述第二发送机会中的未被缩减的发送功率的最大值等于所述第二功率值。
作为一个实施例,所述第二信号在所述第二发送机会的任意部分的实际发送功率的线性值与所述第一功率值的线性值之和小于或等于所述第一最大发送功率的线性值。
作为一个实施例,所述第一功率值是所述第一节点在所述第一小区组中在所述第一发送机会中的总发送功率;所述第二功率值是所述第一节点在所述第二小区组中在所述第二发送机会中的总发送功率。
作为一个实施例,所述第一功率值是所述第一节点在所述第一小区组中在所述第一发送机会中的总发送功率;所述第二功率值是所述第一节点在所述第二小区组中在所述第二发送机会中未经缩减的总发送功率。
作为一个实施例,所述第一节点在所述第二小区组中在所述第二发送机会的任意部分的实际总发送功率的线性值与所述第一功率值的线性值之和小于或等于所述第一最大发送功率的线性值。
作为一个实施例,所述第一功率值小于或等于第二最大发送功率。
作为一个实施例,所述第二最大发送功率的单位是dBm。
作为一个实施例,所述第二最大发送功率是可配置的(Configurable)。
作为一个实施例,所述第二最大发送功率是固定的常数(即不可配置)。
作为一个实施例,所述第二最大发送功率是P CMAX(i),所述第一发送机会是发送机会i。
作为一个实施例,所述第二最大发送功率是针对所述第一小区组的。
作为一个实施例,所述第二最大发送功率不小于第一参考阈值且不大于第二参考阈值。
作为上述实施例的一个子实施例,所述第一参考阈值和所述第二参考阈值是可配置的。
作为上述实施例的一个子实施例,所述第一参考阈值和所述第二参考阈值分别与所述第一节点的功率等级(power class)有关。
作为一个实施例,所述第二功率值小于或等于第三最大发送功率。
作为一个实施例,所述第三最大发送功率的单位是dBm。
作为一个实施例,所述第三最大发送功率是可配置的(Configurable)。
作为一个实施例,所述第三最大发送功率是固定的常数(即不可配置)。
作为一个实施例,所述第三最大发送功率是P CMAX(i),所述第二发送机会是发送机会i。
作为一个实施例,所述第三最大发送功率是针对所述第二小区组的。
作为一个实施例,所述第三最大发送功率不小于第三参考阈值且不大于第四参考阈值。
作为上述实施例的一个子实施例,所述第三参考阈值和所述第四参考阈值是可配置的。
作为上述实施例的一个子实施例,所述第三参考阈值和所述第四参考阈值分别与所述第一节点的功率等级有关。
作为一个实施例,所述第一最大发送功率是可配置的(Configurable)。
作为一个实施例,所述第一最大发送功率是固定的常数(即不可配置)。
作为一个实施例,所述第一最大发送功率是为双链接(Dual connectivity)配置的最大发送功率。
作为一个实施例,所述第一最大发送功率的单位是dBm。
作为一个实施例,所述第一最大发送功率等于第一功率分量和第二功率分量之和,所述第一功率分量是可配置的,所述第二功率分量是固定的常数。
作为上述实施例的一个子实施例,所述第一功率分量和所述第一节点的功率等级有关。
作为上述实施例的一个子实施例,所述第一功率分量等于第一子分量和第二子分量中的最小值,所述第一子分量由RRC配置,所述第二子分量和所述第一节点的功率等级有关。
作为一个实施例,所述第一最大发送功率是
Figure PCTCN2022108193-appb-000001
作为一个实施例,所述第一最大发送功率是
Figure PCTCN2022108193-appb-000002
作为一个实施例,所述第一最大发送功率是
Figure PCTCN2022108193-appb-000003
作为一个实施例,
Figure PCTCN2022108193-appb-000004
Figure PCTCN2022108193-appb-000005
的定义参见3GPP TS38.213的7.6章节。
作为一个实施例,所述第一阈值是非负实数。
作为一个实施例,所述第一阈值是非负整数。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第一阈值的单位是dB。
作为一个实施例,所述第一阈值是线性值。
作为一个实施例,所述第一阈值是X SCALE
作为一个实施例,X SCALE的定义参见3GPP TS38.213的7.6章节。
作为一个实施例,所述第一阈值由RRC配置。
作为一个实施例,所述第一阈值由一个IE配置。
作为一个实施例,所述第一阈值的dB值由RRC配置。
作为一个实施例,所述第一阈值的dB值由一个IE配置。
作为一个实施例,配置所述第一阈值的IE的名称里包括“PhysicalCellGroupConfig”。
作为一个实施例,配置所述第一阈值的IE的名称里包括“CellGroupConfig”。
作为一个实施例,所述句子所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值是指:所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值是否大于所述第一阈值的线性值,所述第一阈值的单位是dB。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。 gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB204提供朝向UE201的用户平面协议终止。gNB203和gNB204也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第二节点包括所述gNB204。
作为一个实施例,本申请中的所述第三节点包括所述gNB203。
作为一个实施例,本申请中的所述第三节点包括所述gNB204。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述第一信令的发送者包括所述gNB203或gNB204。
作为一个实施例,所述第一信令的接收者包括所述UE201。
作为一个实施例,所述第一信号的发送者包括所述UE201。
作为一个实施例,所述第一信号的接收者包括所述gNB203或gNB204。
作为一个实施例,所述第二子信号的发送者包括所述UE201。
作为一个实施例,所述第二子信号的接收者包括所述gNB203或gNB204。
作为一个实施例,所述UE201支持双链接(dual connectivity)。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层 303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一信令生成于所述RRC子层306。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二子信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第三子信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信息块生成于所述RRC子层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化 成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收所述第一信令;在所述第一小区组中在所述第一发送机会中发送所述第一信号;在所述第二服务小区中在所述第二发送机会中发送或者放弃发送所述第二子信号。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信令;在所述第一小区组中在所述第一发送机会中发送所述第一信号;在所述第二服务小区中在所述第二发送机会中发送或者放弃发送所述第二子信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送所述第一信令;在所述第二服务小区中在所述第二发送机会中监测所述第二子信号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信令;在所述第二服务 小区中在所述第二发送机会中监测所述第二子信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在所述第一小区组中在所述第一发送机会中接收所述第一信号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在所述第一小区组中在所述第一发送机会中接收所述第一信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第三节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第一小区组中在所述第一发送机会中接收所述第一信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在所述第一小区组中在所述第一发送机会中发送所述第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第二服务小区中在所述第二发送机会中接收所述第二子信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在所述第二服务小区中在所述第二发送机会中发送所述第二子信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第二服务小区中在所述第二发送机会中接收所述第三子信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在所述第二服务小区中在所述第二发送机会中发送所述第三子信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图;如附图5所示。在附图5中,第二节点U1,第一节点U2和第三节点U3分别是通信节点,第二节点U1和第一节点U2之间以及第三节点U3和第一节点U2之间通过空中接口传输。附图5中,方框F51至F55中的步骤分别是可选的,其中方框F51和方框F52中的步骤不能同时存在。
对于第二节点U1,在步骤S5101中发送第一信息块;在步骤S511中发送第一信令;在步骤S512中在第二服务小区中在第二发送机会中监测第二子信号;在步骤S5102中在第三服务小区中在所述第二发送机会中监测并接收到第三子信号。
对于第一节点U2,在步骤S5201中接收第一信息块;在步骤S5202中接收第一信息块;在步骤S521中接收第一信令;在步骤S5203中判断在第二服务小区中在第二发送机会中是否发送第二子信号;在步骤S522中在第一小区组中在第一发送机会中发送第一信号;在步骤S5204中在所述第二服务小区中在所述第 二发送机会中发送所述第二子信号;在步骤S5205中在第三服务小区中在所述第二发送机会中发送第三子信号。
对于第三节点U3,在步骤S5301中发送第一信息块;在步骤S531中在第一小区组中在第一发送机会中接收第一信号。
在实施例5中,所述第一信令被所述第一节点U2用于确定第一时域资源;所述第一小区组包括至少一个服务小区;所述第二服务小区是第二小区组中的一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被所述第一节点U2放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被所述第一节点U2发送;所述第二发送机会与所述第一时域资源是否交叠被所述第一节点U2用于确定所述第一阈值。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第三节点U3是本申请中的所述第三节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第三节点U3和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第三节点U3是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第二节点是所述第二小区组中的每个服务小区的维持基站。
作为一个实施例,所述第二节点不是所述第一小区组中的任一服务小区的维持基站。
作为一个实施例,所述第二小区组是一个MCG,所述第二节点是一个MN。
作为一个实施例,所述第二小区组是一个SCG,所述第二节点是一个SN。
作为一个实施例,所述第三节点是所述第一小区组中的每个服务小区的维持基站。
作为一个实施例,所述第三节点不是所述第二小区组中的任一服务小区的维持基站。
作为一个实施例,所述第一小区组是一个MCG,所述第三节点是一个MN。
作为一个实施例,所述第一小区组是一个SCG,所述第三节点是一个SN。
作为一个实施例,所述监测包括盲译码,即接收信号并执行译码操作;如果根据CRC(Cyclic Redundancy Check,循环冗余校验)比特确定译码正确,则判断接收到所述第二子信号;否则判断未接收到所述第二子信号。
作为一个实施例,所述监测包括相干检测,即进行相干接收并测量所述相干接收后得到的信号的能量;如果所述信号的能量大于第一给定阈值,则判断接收到所述第二子信号;如果所述信号的能量小于所述第一给定阈值,则判断未接收到所述第二子信号。
作为一个实施例,所述监测包括能量检测,即感知(Sense)无线信号的能量并平均以获得接收能量;如果所述接收能量大于第二给定阈值,则判断接收到所述第二子信号;如果所述接收能量小于所述第二给定阈值,则判断未接收到所述第二子信号。
作为一个实施例,所述句子监测第二子信号的意思包括:根据CRC确定所述第二子信号是否被发送; 在根据所述CRC判断译码是否正确之前不确定所述第二子信号是否被发送。
作为一个实施例,所述句子监测第二子信号的意思包括:根据相干检测确定所述第二子信号是否被发送;在所述相干检测之前不确定所述第二子信号是否被发送。
作为一个实施例,所述句子监测第二子信号的意思包括:根据能量检测确定所述第二子信号是否被发送;在所述能量检测之前不确定所述第二子信号是否被发送。
作为一个实施例,所述第二节点在所述第二服务小区中在所述第二发送机会中接收到所述第二子信号。
作为一个实施例,所述第二节点在所述第二服务小区中在所述第二发送机会中未接收到所述第二子信号。
作为一个实施例,附图5中的方框F54中的步骤存在;所述第一节点在所述第二服务小区中在所述第二发送机会中发送所述第二子信号。
作为一个实施例,附图5中的方框F54中的步骤不存在;所述第一节点在所述第二服务小区中在所述第二发送机会中放弃发送所述第二子信号。
作为上述实施例的一个子实施例,所述第一节点在所述第二服务小区中在所述第二发送机会中放弃发送所述第二信号。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上被传输。
作为一个实施例,所述第一信令在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上被传输。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上被传输。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上被传输。
作为一个实施例,所述第一信号所占用的物理信道包括PRACH,PUSCH或PUCCH中的一种或多种。
作为一个实施例,所述第二子信号所占用的物理信道包括PRACH,PUSCH或PUCCH中之一。
作为一个实施例,所述第二信号所占用的物理信道包括PRACH,PUSCH或PUCCH中的一种或多种。
作为一个实施例,附图5中的方框F51中的步骤存在,方框F52中的步骤不存在;所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
作为一个实施例,附图5中的方框F52中的步骤存在,方框F51中的步骤不存在;所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
作为一个实施例,所述第一信息块由更高层信令携带。
作为一个实施例,所述第一信息块由RRC信令携带。
作为一个实施例,所述第一信息块由MAC CE信令携带。
作为一个实施例,所述第一信息块包括一个IE中全部或部分域中的信息。
作为一个实施例,所述第一信息块包括一个IE中不同域中的信息。
作为一个实施例,所述第一信息块由一个IE携带。
作为一个实施例,所述第一信息块由两个不同的IE携带。
作为一个实施例,携带所述第一信息块的IE的名称里包括“PhysicalCellGroupConfig”。
作为一个实施例,携带所述第一信息块的IE的名称里包括“CellGroupConfig”。
作为一个实施例,所述第一信息块在时域早于所述第一信令。
作为一个实施例,所述第一信息块在时域晚于所述第一信令。
作为一个实施例,所述第一信息块在PDSCH上被传输。
作为一个实施例,附图5中的方框F53中的步骤存在,所述被用于无线通信的第一节点中的方法包括: 判断在所述第二服务小区中在所述第二发送机会中是否发送所述第二子信号。
作为一个实施例,所述第一节点根据所述第一功率值的线性值和所述第二功率值的线性值之和与所述第一最大发送功率的线性值的差和所述第一阈值之间的大小关系来判断在所述第二服务小区中在所述第二发送机会中是否发送所述第二子信号。
作为一个实施例,附图5中的方框F55中的步骤存在,方框F54中的步骤不存在;所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;所述第三服务小区是所述第二小区组中的一个服务小区,所述第二信号包括所述第三子信号。
作为一个实施例,所述第二子信号和所述第三子信号分别包括基带信号。
作为一个实施例,所述第二子信号和所述第三子信号分别包括无线信号。
作为一个实施例,所述第二子信号和所述第三子信号分别包括射频信号。
作为一个实施例,所述第三子信号包括在PRACH中传输的信号,在PUSCH中传输的信号,在PUCCH中传输的信号,或SRS中之一。
作为一个实施例,所述第三子信号的优先级高于所述第二子信号。
作为上述实施例的一个子实施例,根据3GPP TS38.213的7.5章节中的优先级顺序,所述第三子信号的优先级高于所述第二子信号。
作为一个实施例,所述第三服务小区不同于所述第二服务小区。
作为一个实施例,所述第三服务小区和所述第二服务小区对应不同的SCellIndex。
作为一个实施例,所述第三服务小区和所述第二服务小区对应不同的ServCellIndex。
作为一个实施例,所述第三服务小区不同于所述第二服务小区,所述第一信令仅适用于所述第二服务小区。
作为一个实施例,所述第三服务小区是所述第二小区组的PCell。
作为一个实施例,所述第三服务小区是所述第二小区组的PSCell。
作为一个实施例,所述第三服务小区是所述第二小区组中不同于PCell的一个服务小区。
作为一个实施例,所述第三服务小区是所述第二小区组中不同于PSCell的一个服务小区。
作为一个实施例,所述第三子信号在所述第二子信号占用的BWP之外的BWP上被传输。
作为一个实施例,所述第三子信号在所述第二子信号占用的BWP之外的BWP上被传输,所述第一信令仅适用于所述第二子信号占用的所述BWP。
作为一个实施例,所述第三子信号占用所述第二发送机会中的所有时域资源。
作为一个实施例,所述第三子信号仅占用所述第二发送机会中的部分时域资源。
作为一个实施例,所述第三子信号不占用所述第二发送机会以外的时域资源。
作为一个实施例,所述第三子信号占用所述第二发送机会以外的时域资源。
作为一个实施例,所述第三子信号所占用的物理信道包括PRACH,PUSCH或PUCCH中之一。
实施例6
实施例6示例了根据本申请的一个实施例的第一功率值的线性值和第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在第二服务小区中在第二发送机会中发送第二子信号的示意图;如附图6所示。在实施例6中,当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第一节点在所述第二服务小区中在所述第二发送机会中放弃发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第一节点在所述第二服务小区中在所述第二发送机会中发送所述第二子信号。
作为一个实施例,如果所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;如果所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送。
作为一个实施例,所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功 率的线性值是否大于所述第一阈值被所述第一节点用于确定是否在所述第二小区组中在所述第二发送机会中发送第二信号。
作为一个实施例,当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第一节点在所述第二小区组中在所述第二发送机会中放弃发送所述第二信号。
作为一个实施例,所述第二信号包括除所述第二子信号外的至少一个其他子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第一节点在所述第二小区组中在所述第二发送机会中放弃发送所述第二信号中的所有子信号。
作为一个实施例,所述第二信号包括除所述第二子信号外的至少一个其他子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第一节点在所述第二小区组中在所述第二发送机会中放弃发送所述第二信号中的全部或部分子信号。
作为一个实施例,当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第一节点在所述第二小区组中在所述第二发送机会中发送所述第二信号。
作为一个实施例,所述第二信号包括除所述第二子信号外的至少一个其他子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第一节点在所述第二小区组中在所述第二发送机会中发送所述第二信号中的所有子信号。
作为一个实施例,当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第一节点在所述第二小区组中在所述第二发送机会中放弃发送无线信号。
实施例7
实施例7示例了根据本申请的一个实施例的第一信令将第一时域资源中的符号配置为第一类型的示意图;如附图7所示。
作为一个实施例,所述第一信令在所述第二小区组中将所述第一时域资源中的符号配置为所述第一类型。
作为一个实施例,所述第一信令在所述第二服务小区中将所述第一时域资源中的符号配置为所述第一类型。
作为一个实施例,所述第一信令在所述第二服务小区的一个BWP中将所述第一时域资源中的符号配置为所述第一类型。
作为一个实施例,所述第一信令在所述第二服务小区的所述第二子信号所占用的BWP中将所述第一时域资源中的符号配置为所述第一类型。
作为一个实施例,对于所述第一时域资源中的任一符号,所述第一信令在所述第二小区组中的至少一个服务小区中将所述任一符号配置为所述第一类型。
作为一个实施例,对于所述第一时域资源中的任一符号,所述第一信令在所述第二小区组中的至少一个服务小区的至少一个BWP中将所述任一符号配置为所述第一类型。
作为一个实施例,所述句子将所述第一时域资源中的符号配置为第一类型的意思包括:将所述第一时域资源中的每个符号都配置为所述第一类型。
作为一个实施例,所述句子将所述第一时域资源中的符号配置为第一类型的意思包括:将所述第一时域资源中的至少一个符号配置为所述第一类型。
作为一个实施例,所述句子将所述第一时域资源中的符号配置为第一类型的意思包括:将所述第一时域资源中的符号的类型配置为所述第一类型。
作为一个实施例,所述句子将所述第一时域资源中的符号配置为第一类型的意思包括:将所述第一时域资源中的每个符号的类型都配置为所述第一类型。
作为一个实施例,所述句子所述第一信令被用于确定第一时域资源的意思包括:所述第一信令将所述第一时域资源中的符号配置为所述第一类型。
作为一个实施例,所述句子所述第一信令被用于确定第一时域资源的意思包括:所述第一信令将所述第一时域资源中的每个符号都配置为所述第一类型。
作为一个实施例,所述句子所述第一信令被用于确定第一时域资源的意思包括:所述第一信令指示所述第一时域资源中的每个符号的类型。
作为一个实施例,所述句子所述第一信令被用于确定第一时域资源的意思包括:所述第一信令指示所述第一时域资源中的每个符号的类型都为所述第一类型。
作为一个实施例,如果一个符号被配置为所述第一类型,所述第一信令的发送者在所述一个符号上同时接收和发送无线信号;如果一个符号不被配置为所述第一类型,所述第一信令的发送者在所述一个符号上仅接收无线信号或仅发送无线信号。
作为一个实施例,所述第一类型是第一类型集合中的一个类型,任意一个符号被配置为所述第一类型集合中的一个类型,所述第一类型集合中的类型包括所述第一类型,上行和下行。
作为上述实施例的一个子实施例,所述第一类型集合中的类型包括flexible。
作为一个实施例,所述第一类型不同于上行和下行。
作为一个实施例,所述第一类型不同于上行,下行和flexible。
作为一个实施例,所述句子所述第二发送机会与所述第一时域资源是否交叠的意思包括:所述第二发送机会中是否存在一个符号被配置为所述第一类型。
作为一个实施例,如果所述第二发送机会与所述第一时域资源交叠,所述第二发送机会中的至少一个符号被配置为所述第一类型;如果所述第二发送机会与所述第一时域资源不交叠,所述第二发送机会中的每个符号都不被配置为所述第一类型。
作为一个实施例,如果所述第二发送机会与所述第一时域资源不交叠,所述第二发送机会与所述第一时域资源在时域正交。
作为一个实施例,所述第一时域资源属于第一时域资源池,所述第一信令从所述第一时域资源池中指示所述第一时域资源,并将所述第一时域资源中的符号配置为所述第一类型。
作为上述实施例的一个子实施例,所述第一信令指示在所述第一时域资源池中仅所述第一时域资源中的符号被配置为所述第一类型。
实施例8
实施例8示例了根据本申请的一个实施例的第二发送机会与第一时域资源是否交叠被用于确定第一阈值的示意图;如附图8所示。在实施例8中,当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值。
作为一个实施例,如果所述第二发送机会与所述第一时域资源交叠,所述第一阈值是所述第一候选阈值;如果所述第二发送机会与所述第一时域资源不交叠,所述第一阈值是所述第二候选阈值。
作为一个实施例,所述第一阈值是所述第一候选阈值或所述第二候选阈值。
作为一个实施例,所述第二发送机会与所述第一时域资源是否交叠被所述第一节点用于从所述第一候选阈值和所述第二候选阈值中确定所述第一阈值。
作为一个实施例,所述第二发送机会中是否存在一个符号被配置为所述第一类型被用于确定所述第一阈值。
作为一个实施例,当所述第二发送机会中存在一个符号被配置为所述第一类型时,所述第一阈值是所述第一候选阈值;当所述第二发送机会中的每个符号都被不配置为所述第一类型时,所述第一阈值是所述第二候选阈值。
作为一个实施例,所述第一候选阈值和所述第二候选阈值分别是非负实数。
作为一个实施例,所述第一候选阈值和所述第二候选阈值分别是非负整数。
作为一个实施例,所述第一候选阈值的单元和所述第二候选阈值的单位分别是dB。
作为一个实施例,所述第一候选阈值的单元和所述第二候选阈值的单位分别是毫瓦。
作为一个实施例,所述第一候选阈值和所述第二候选阈值分别是线性值。
作为一个实施例,所述第一候选阈值小于所述第二候选阈值。
实施例9
实施例9示例了根据本申请的一个实施例的第二子功率值被用于确定第二功率值的示意图;如附图9所示。在实施例9中,所述第二子功率值被所述第一节点用于确定所述第二功率值。
作为一个实施例,所述第二功率值和所述第二子功率值线性相关,所述第二功率值和所述第二子功率值之间的线性系数等于1。
作为一个实施例,所述第二信号仅包括所述第二子信号;所述第二功率值等于所述第二子功率值。
作为一个实施例,所述第二信号包括所述Q2个子信号,所述Q2个子信号的发送功率分别等于Q2个子功率值;所述第二子功率值是所述Q2个子功率值中和所述第二子信号对应的子功率值;所述Q2个子功率值的线性值之和被用于确定所述第二功率值。
作为上述实施例的一个子实施例,所述Q2个子功率值的单位分别是dBm。
作为上述实施例的一个子实施例,所述Q2个子功率值分别是根据3GPP TS38.213的7.1,7.2,7.3或7.4章节中的一个章节中的方法计算得到的。
作为上述实施例的一个子实施例,所述第二功率值的线性值等于所述Q2个子功率值的线性值之和。
作为上述实施例的一个子实施例,所述第二功率值的线性值等于所述Q2个子功率值中的Q4个子功率值的线性值之和,所述Q4个子功率值分别和所述Q2个子信号中优先级最高的Q4个子信号对应;所述Q4个子功率值的线性值之和不大于所述第三最大发送功率的线性值,(Q4+1)个子功率值的线性值之和大于所述第三最大发送功率的线性值;所述(Q4+1)个子功率值分别和所述Q2个子信号中优先级最高的(Q4+1)个子信号对应;Q4是小于所述Q2的正整数。
实施例10
实施例10示例了根据本申请的一个实施例的第二子功率值的示意图;如附图10所示。在实施例10中,所述第二子功率值等于所述第二参考功率值和所述第二功率阈值之间的最小值。
作为一个实施例,所述第二子功率值的单位是dBm。
作为一个实施例,所述第二参考功率值的单位是dBm。
作为一个实施例,所述第二功率阈值的单位是dBm。
作为一个实施例,所述第二子信号的预期发送功率等于所述第二子功率值。
作为一个实施例,所述第二子信号的未经缩减的发送功率等于所述第二子功率值。
作为一个实施例,所述第二子信号的实际发送功率等于所述第二子功率值。
作为一个实施例,所述第二子信号的实际发送功率小于所述第二子功率值。
作为一个实施例,所述第二子功率值是根据3GPPTS38.213的7.1,7.2,7.3或7.4章节中的一个章节中的方法计算得到的。
作为一个实施例,所述第二功率阈值是P CMAX,f,c(i),所述P CMAX,f,c(i)是服务小区c的载波f上的发送机会i的最大输出功率,所述第二子信号在服务小区c的载波f上的发送机会i中被传输;所述第二服务小区是所述服务小区c,所述第二发送机会是发送机会i。
作为一个实施例,所述第二参考功率值和R2个偏移量的和线性相关,R2是正整数;所述第二参考功率值与所述R2个偏移量的和之间的线性系数是1;所述R2个偏移量中的任一偏移量是由TPC(Transmitter Power Control,发送功率控制)所指示的。
作为上述实施例的一个子实施例,所述R2个偏移量的和是功率控制调整状态。
作为一个实施例,所述第二参考功率值和第一分量线性相关,所述第二参考功率值与所述第一分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第一分量是目标功率。
作为上述实施例的一个子实施例,所述第一分量是P 0
作为一个实施例,所述第二参考功率值和第二分量线性相关,所述第二分量和所述第二子信号被分配 到的以资源块(Resource Block)为单位的带宽有关,所述第二参考功率值和所述第二分量之间的线性系数是1。
作为一个实施例,所述第二参考功率值和第二路损(path loss)线性相关,所述第二参考功率值和所述第二路损之间的线性系数是小于或者等于1的非负实数。
作为上述实施例的一个子实施例,所述第二路损的单位是dB。
作为上述实施例的一个子实施例,所述第二参考功率值和所述第二路损之间的线性系数等于1。
作为上述实施例的一个子实施例,所述第二参考功率值和所述第二路损之间的线性系数小于1。
作为一个实施例,所述第二参考功率值和第三分量线性相关,所述第三分量和所述第二子信号的MCS(Modulation and Coding Scheme,调制编码方式)相关,所述第二参考功率值和所述第三分量之间的线性系数是1。
作为一个实施例,所述第二参考功率值和第四分量线性相关,所述第二参考功率值与所述第四分量之间的线性系数是1;所述第四分量和所述第二子信号所占用的符号的数量有关。
作为一个实施例,所述第二参考功率值和第五分量线性相关,所述第二参考功率值与所述第五分量之间的线性系数是1;所述第五分量和所述第二子信号对应的PUCCH格式有关。
作为一个实施例,所述第二参考功率值与所述第一分量,所述第二分量,所述第三分量,所述R2个偏移量的和以及所述第二路损分别线性相关;所述第二参考功率值与所述第一分量,所述第二分量,所述第三分量以及所述R2个偏移量的和之间的线性系数均为1,所述第二参考功率值与所述第二路损之间的线性系数是不大于1的非负实数。
作为一个实施例,所述第二参考功率值与所述第一分量,所述第二分量,所述第四分量,所述第五分量,所述R2个偏移量的和以及所述第二路损分别线性相关;所述第二参考功率值与所述第一分量,所述第二分量,所述第四分量,所述第五分量,所述R2个偏移量的和以及所述第二路损之间的线性系数均为1。
作为一个实施例,所述第二参考功率值与所述第一分量,所述第二分量,所述R2个偏移量的和以及所述第二路损分别线性相关;所述第二参考功率值与所述第一分量,所述第二分量以及所述R2个偏移量的和之间的线性系数均为1,所述第二参考功率值与所述第二路损之间的线性系数是不大于1的非负实数。
作为一个实施例,所述第二参考功率值与所述第一分量和所述第二路损分别线性相关;所述第二参考功率值与所述第一分量和所述第二路损之间的线性系数均为1。
实施例11
实施例11示例了根据本申请的一个实施例的第一子功率值被用于确定第一功率值的示意图;如附图11所示。在实施例11中,所述第一信号包括所述第一子信号,所述第一子信号的发送功率等于所述第一子功率值;所述第一子功率值被所述第一节点用于确定所述第一功率值。
作为一个实施例,所述第一子信号在所述第一小区组中的一个服务小区中被传输。
作为一个实施例,所述第一子信号在所述第一小区组的PCell上被传输。
作为一个实施例,所述第一子信号在所述第一小区组的PSCell上被传输。
作为一个实施例,所述第一子信号在所述第一小区组中不同于PCell的一个服务小区上被传输。
作为一个实施例,所述第一子信号在所述第一小区组中不同于PSCell的一个服务小区上被传输。
作为一个实施例,所述第一信号仅包括所述第一子信号。
作为一个实施例,所述第一信号包括除所述第一子信号以外的至少一个其他子信号。
作为一个实施例,所述第一功率值和所述第一子功率值线性相关,所述第一功率值和所述第一子功率值之间的线性系数等于1。
作为一个实施例,所述第一信号仅包括所述第一子信号;所述第一功率值等于所述第一子功率值。
作为一个实施例,所述第一信号包括所述Q1个子信号,所述Q1个子信号的发送功率分别等于Q1个子功率值;所述第一子功率值是所述Q1个子功率值中和所述第一子信号对应的子功率值;所述Q1个子功率值的线性值之和被用于确定所述第一功率值。
作为上述实施例的一个子实施例,所述Q1个子功率值的单位分别是dBm。
作为上述实施例的一个子实施例,所述Q1个子功率值分别是根据3GPPTS38.213的7.1,7.2,7.3或7.4章节中的一个章节中的方法计算得到的。
作为上述实施例的一个子实施例,所述第一功率值的线性值等于所述Q1个子功率值的线性值之和。
作为上述实施例的一个子实施例,所述第一功率值的线性值等于所述Q1个子功率值中的Q3个子功率值的线性值之和,所述Q3个子功率值分别和所述Q1个子信号中优先级最高的Q3个子信号对应;所述Q3个子功率值的线性值之和不大于所述第二最大发送功率的线性值,(Q3+1)个子功率值的线性值之和大于所述第二最大发送功率的线性值;所述(Q3+1)个子功率值分别和所述Q1个子信号中优先级最高的(Q3+1)个子信号对应;Q3是小于所述Q1的正整数。
实施例12
实施例12示例了根据本申请的一个实施例的第一子功率值的示意图;如附图12所示。在实施例12中,所述第一子功率值等于所述第一参考功率值和所述第一功率阈值之间的最小值。
作为一个实施例,所述第一子信号的实际发送功率等于所述第一子功率值。
作为一个实施例,所述第一子功率值的单位是dBm。
作为一个实施例,所述第一参考功率值的单位是dBm。
作为一个实施例,所述第一功率阈值的单位是dBm。
作为一个实施例,所述第一子功率值是根据3GPP TS38.213的7.1,7.2,7.3或7.4章节中的一个章节中的方法计算得到的。
作为一个实施例,所述第一功率阈值是P CMAX,f,c(i),所述P CMAX,f,c(i)是服务小区c的载波f上的发送机会i的最大输出功率,所述第一子信号在服务小区c的载波f上的发送机会i中被传输;所述服务小区c是所述第一小区组中的一个服务小区,所述第一发送机会是所述发送机会i。
作为一个实施例,所述第一参考功率值和R1个偏移量的和线性相关,R1是正整数;所述第一参考功率值与所述R1个偏移量的和之间的线性系数是1;所述R1个偏移量中的任一偏移量是由TPC所指示的。
作为上述实施例的一个子实施例,所述R1个偏移量的和是功率控制调整状态。
作为一个实施例,所述第一参考功率值和第六分量线性相关,所述第一参考功率值与所述第六分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第六分量是目标功率。
作为上述实施例的一个子实施例,所述第六分量是P 0
作为一个实施例,所述第一参考功率值和第七分量线性相关,所述第七分量和所述第一子信号被分配到的以资源块为单位的带宽有关,所述第一参考功率值和所述第七分量之间的线性系数是1。
作为一个实施例,所述第一参考功率值和第一路损线性相关,所述第一参考功率值和所述第一路损之间的线性系数是小于或者等于1的非负实数。
作为上述实施例的一个子实施例,所述第一路损的单位是dB。
作为一个实施例,所述第一参考功率值和第八分量线性相关,所述第八分量和所述第一子信号的MCS相关,所述第一参考功率值和所述第八分量之间的线性系数是1。
作为一个实施例,所述第一参考功率值和第九分量线性相关,所述第一参考功率值与所述第九分量之间的线性系数是1;所述第九分量和所述第一子信号所占用的符号的数量有关。
作为一个实施例,所述第一参考功率值和第十分量线性相关,所述第一参考功率值与所述第十分量之间的线性系数是1;所述第十分量和所述第一子信号对应的PUCCH格式有关。
作为一个实施例,所述第一参考功率值与所述第六分量,所述第七分量,所述第八分量,所述R1个偏移量的和以及所述第一路损分别线性相关;所述第一参考功率值与所述第六分量,所述第七分量,所述第八分量以及所述R1个偏移量的和之间的线性系数均为1,所述第一参考功率值与所述第一路损之间的线性系数是不大于1的非负实数。
作为一个实施例,所述第一参考功率值与所述第六分量,所述第七分量,所述第九分量,所述第十分量,所述R1个偏移量的和以及所述第一路损分别线性相关;所述第一参考功率值与所述第六分量,所述 第七分量,所述第九分量,所述第十分量,所述R1个偏移量的和以及所述第一路损之间的线性系数均为1。
作为一个实施例,所述第一参考功率值与所述第六分量,所述第七分量,所述R1个偏移量的和以及所述第一路损分别线性相关;所述第一参考功率值所述第六分量,所述第七分量,以及所述R1个偏移量的和之间的线性系数均为1,所述第一参考功率值与所述第一路损之间的线性系数是不大于1的非负实数。
作为一个实施例,所述第一参考功率值与所述第六分量和所述第一路损分别线性相关;所述第一参考功率值与所述第六分量和所述第一路损之间的线性系数均为1。
实施例13
实施例13示例了根据本申请的一个实施例的第二发送机会与第一时域资源是否交叠被用于确定第一功率参数集合的示意图;如附图13所示。在实施例13中,所述第一功率参数集合被所述第一节点用于计算所述第二功率值;所述第二发送机会与所述第一时域资源是否交叠被所述第一节点用于确定所述第一功率参数集合。
作为一个实施例,所述第一功率参数集合包括所述第一分量。
作为一个实施例,所述第一功率参数集合仅包括所述第一分量。
作为一个实施例,所述第一功率参数集合包括所述第二功率阈值。
作为一个实施例,所述第一功率参数集合仅包括所述第二功率阈值。
作为一个实施例,所述第一功率参数集合包括所述第一分量和所述第二功率阈值。
作为一个实施例,所述第一功率参数集合包括所述第二参考功率值和所述第二路损之间的线性系数。
作为一个实施例,所述第二发送机会中是否存在一个符号被配置为所述第一类型被用于确定所述第一功率参数集合。
作为一个实施例,所述第一功率参数集合是第一候选功率参数集合或第二候选功率参数集合中之一;当所述第二发送机会与所述第一时域资源交叠时,所述第一功率参数集合是所述第一候选功率参数集合;当所述第二发送机会与所述第一时域资源不交叠时,所述第一功率参数集合是所述第二候选功率参数集合。
作为一个实施例,所述第一功率参数集合是第一候选功率参数集合或第二候选功率参数集合中之一;当所述第二发送机会中存在一个符号被配置为所述第一类型时,所述第一功率参数集合是所述第一候选功率参数集合;当所述第二发送机会中的每个符号都不被配置为所述第一类型时,所述第一功率参数集合是所述第二候选功率参数集合。
作为一个实施例,所述第一候选功率参数集合和所述第二候选功率参数集合分别是可配置的。
作为一个实施例,所述第一候选功率参数集合中至少一个功率参数的值不等于所述第二候选功率参数集合中对应的功率参数的值。
作为一个实施例,所述第一功率参数集合包括所述第一分量;当所述第二发送机会与所述第一时域资源交叠时,所述第一分量的值大于当所述第二发送机会与所述第一时域资源不交叠时所述第一分量的值。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第一节点设备中的处理装置1400包括第一接收机1401和第一发送机1402。
在实施例14中,第一接收机1401接收第一信令;第一发送机1402在第一小区组中在第一发送机会中发送第一信号;所述第一发送机1402在第二服务小区中在第二发送机会中发送第二子信号,或者,在第二服务小区中在第二发送机会中放弃发送第二子信号。
在实施例14中,所述第一信令被用于确定第一时域资源;所述第一小区组包括至少一个服务小区;所述第二服务小区是第二小区组中的一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值 大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
作为一个实施例,所述第一信令将所述第一时域资源中的符号配置为第一类型。
作为一个实施例,所述第一发送机1402在第三服务小区中在所述第二发送机会中发送第三子信号;其中,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;所述第三服务小区是所述第二小区组中的一个服务小区,所述第二信号包括所述第三子信号。
作为一个实施例,所述第一接收机1401接收第一信息块;其中,所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
作为一个实施例,所述第二子信号的发送功率等于第二子功率值,所述第二子功率值被用于确定所述第二功率值;所述第二子功率值等于第二参考功率值和第二功率阈值之间的最小值。
作为一个实施例,所述第一信号包括第一子信号,所述第一子信号的发送功率等于第一子功率值;所述第一子功率值被用于确定所述第一功率值;所述第一子功率值等于第一参考功率值和第一功率阈值之间的最小值。
作为一个实施例,第一功率参数集合被用于计算所述第二功率值;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一功率参数集合。
作为一个实施例,所述第一发送机1402判断在所述第二服务小区中在所述第二发送机会中是否发送所述第二子信号。
作为一个实施例,所述第一时域资源包括至少一个符号;所述符号是OFDM符号或DFT-S-OFDM符号;所述第一信令的发送者在所述第一时域资源中同时接收和发送无线信号;所述第一发送机会和所述第二发送机会在时域交叠;所述第一信号与所述第二子信号在时域交叠;所述第二信号仅包括所述第二子信号,或者,所述第二信号包括Q2个子信号,所述Q2是大于1的正整数,所述Q2个子信号分别在所述第二小区组中的Q2个服务小区上被发送,所述第二子信号是所述Q2个子信号中之一。
作为一个实施例,所述句子所述第二发送机会与所述第一时域资源是否交叠的意思包括:所述第二发送机会中是否存在一个符号被配置为所述第一类型。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1401包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1402包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图15所示。在附图15中,第二节点设备中的处理装置1500包括第二发送机1501和第二接收机1502。
在实施例15中,第二发送机1501发送第一信令;第二接收机1502在第二服务小区中在第二发送机会中监测第二子信号。
在实施例15中,所述第一信令被用于确定第一时域资源;所述第二服务小区是第二小区组中的一个服务小区;所述第一信令的目标接收者在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率 值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
作为一个实施例,所述第一信令将所述第一时域资源中的符号配置为第一类型。
作为一个实施例,所述第二接收机1502在第三服务小区中在所述第二发送机会中监测并接收到第三子信号;其中,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;所述第三服务小区是所述第二小区组中的一个服务小区,所述第二信号包括所述第三子信号。
作为一个实施例,所述第二发送机1501发送第一信息块;其中,所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
作为一个实施例,所述第二子信号的发送功率等于第二子功率值,所述第二子功率值被用于确定所述第二功率值;所述第二子功率值等于第二参考功率值和第二功率阈值之间的最小值。
作为一个实施例,第一功率参数集合被用于计算所述第二功率值;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一功率参数集合。
作为一个实施例,所述第一时域资源包括至少一个符号;所述符号是OFDM符号或DFT-S-OFDM符号;所述第一信令的发送者在所述第一时域资源中同时接收和发送无线信号;所述第一发送机会和所述第二发送机会在时域交叠;所述第一信号与所述第二子信号在时域交叠;所述第二信号仅包括所述第二子信号,或者,所述第二信号包括Q2个子信号,所述Q2是大于1的正整数,所述Q2个子信号分别在所述第二小区组中的Q2个服务小区上被发送,所述第二子信号是所述Q2个子信号中之一。
作为一个实施例,所述句子所述第二发送机会与所述第一时域资源是否交叠的意思包括:所述第二发送机会中是否存在一个符号被配置为所述第一类型。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发送机1501包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1502包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
实施例16
实施例16示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图16所示。在附图16中,第二节点设备中的处理装置1600包括第一处理器1601。
在实施例16中,第一处理器1601在第一小区组中在第一发送机会中接收第一信号。
在实施例16中,所述第一小区组包括至少一个服务小区;所述第一信号的发送者在第二服务小区中在第二发送机会中发送或者放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;第一信令被用于确定第一时域资源;所述第二发送机会与所述第一时域资源是 否交叠被用于确定所述第一阈值。
作为一个实施例,所述第一信令将所述第一时域资源中的符号配置为第一类型。
作为一个实施例,所述第一阈值是第一候选阈值或第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
作为一个实施例,所述第一处理器1601发送第一信息块;其中,所述第一信息块指示所述第一候选阈值和所述第二候选阈值。
作为一个实施例,所述第一信号包括第一子信号,所述第一子信号的发送功率等于第一子功率值;所述第一子功率值被用于确定所述第一功率值;所述第一子功率值等于第一参考功率值和第一功率阈值之间的最小值。
作为一个实施例,所述第三节点设备是基站设备。
作为一个实施例,所述第三节点设备是用户设备。
作为一个实施例,所述第三节点设备是中继节点设备。
作为一个实施例,所述第一处理器1601包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于确定第一时域资源;
    第一发送机,在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;
    所述第一发送机,在第二服务小区中在第二发送机会中发送第二子信号,或者,在第二服务小区中在第二发送机会中放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;
    其中,所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一信令将所述第一时域资源中的符号配置为第一类型。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,所述第一发送机在第三服务小区中在所述第二发送机会中发送第三子信号;其中,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;所述第三服务小区是所述第二小区组中的一个服务小区,所述第二信号包括所述第三子信号。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第一信息块;其中,所述第一信息块指示第一候选阈值和第二候选阈值;当所述第二发送机会与所述第一时域资源交叠时,所述第一阈值是所述第一候选阈值;当所述第二发送机会与所述第一时域资源不交叠时,所述第一阈值是所述第二候选阈值;所述第一候选阈值和所述第二候选阈值不相等。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第二子信号的发送功率等于第二子功率值,所述第二子功率值被用于确定所述第二功率值;所述第二子功率值等于第二参考功率值和第二功率阈值之间的最小值。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一信号包括第一子信号,所述第一子信号的发送功率等于第一子功率值;所述第一子功率值被用于确定所述第一功率值;所述第一子功率值等于第一参考功率值和第一功率阈值之间的最小值。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,第一功率参数集合被用于计算所述第二功率值;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一功率参数集合。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,发送第一信令,所述第一信令被用于确定第一时域资源;
    第二接收机,在第二服务小区中在第二发送机会中监测第二子信号,所述第二服务小区是第二小区组中的一个服务小区;
    其中,所述第一信令的目标接收者在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之 和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于确定第一时域资源;
    在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;
    在第二服务小区中在第二发送机会中发送第二子信号,或者,在第二服务小区中在第二发送机会中放弃发送第二子信号;所述第二服务小区是第二小区组中的一个服务小区;
    其中,所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定是否在所述第二服务小区中在所述第二发送机会中发送所述第二子信号;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于确定第一时域资源;
    在第二服务小区中在第二发送机会中监测第二子信号,所述第二服务小区是第二小区组中的一个服务小区;
    其中,所述第一信令的目标接收者在第一小区组中在第一发送机会中发送第一信号,所述第一小区组包括至少一个服务小区;所述第一发送机会和所述第二发送机会分别包括至少一个符号;所述第一信号的发送功率等于第一功率值;第二信号的发送功率等于第二功率值,所述第二信号包括所述第二子信号;所述第一功率值的线性值和所述第二功率值的线性值之和减去第一最大发送功率的线性值是否大于第一阈值被用于确定所述第二子信号是否在所述第二服务小区中在所述第二发送机会中被发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被放弃发送;当所述第一功率值的线性值和所述第二功率值的线性值之和减去所述第一最大发送功率的线性值不大于所述第一阈值时,所述第二子信号在所述第二服务小区中在所述第二发送机会中被发送;所述第二发送机会与所述第一时域资源是否交叠被用于确定所述第一阈值。
PCT/CN2022/108193 2021-07-30 2022-07-27 一种被用于无线通信的节点中的方法和装置 WO2023005963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/423,305 US20240172139A1 (en) 2021-07-30 2024-01-26 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110869235.4A CN115696535A (zh) 2021-07-30 2021-07-30 一种被用于无线通信的节点中的方法和装置
CN202110869235.4 2021-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,305 Continuation US20240172139A1 (en) 2021-07-30 2024-01-26 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2023005963A1 true WO2023005963A1 (zh) 2023-02-02

Family

ID=85058689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108193 WO2023005963A1 (zh) 2021-07-30 2022-07-27 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20240172139A1 (zh)
CN (1) CN115696535A (zh)
WO (1) WO2023005963A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104902559A (zh) * 2014-03-08 2015-09-09 上海朗帛通信技术有限公司 一种双连接通信的方法和装置
CN108206711A (zh) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN109983808A (zh) * 2016-09-28 2019-07-05 Idac控股公司 上行链路功率控制
CN111357334A (zh) * 2017-11-17 2020-06-30 联想(新加坡)私人有限公司 多个上行链路传输的功率控制
US10873915B1 (en) * 2018-09-18 2020-12-22 Sprint Communications Company L.P. Dual connectivity (DC) power control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104902559A (zh) * 2014-03-08 2015-09-09 上海朗帛通信技术有限公司 一种双连接通信的方法和装置
CN109983808A (zh) * 2016-09-28 2019-07-05 Idac控股公司 上行链路功率控制
CN108206711A (zh) * 2016-12-17 2018-06-26 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN111357334A (zh) * 2017-11-17 2020-06-30 联想(新加坡)私人有限公司 多个上行链路传输的功率控制
US10873915B1 (en) * 2018-09-18 2020-12-22 Sprint Communications Company L.P. Dual connectivity (DC) power control

Also Published As

Publication number Publication date
CN115696535A (zh) 2023-02-03
US20240172139A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2018130125A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11665648B2 (en) Method and device in a node used for wireless communication
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244381A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11445449B2 (en) Power control method and device to trade off desired signal power and interference among multiple wireless devices
WO2023005963A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023025014A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160320A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023109536A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138555A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023169323A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023241548A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE