WO2023138555A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023138555A1
WO2023138555A1 PCT/CN2023/072521 CN2023072521W WO2023138555A1 WO 2023138555 A1 WO2023138555 A1 WO 2023138555A1 CN 2023072521 W CN2023072521 W CN 2023072521W WO 2023138555 A1 WO2023138555 A1 WO 2023138555A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mcs
reference signal
target
factor
Prior art date
Application number
PCT/CN2023/072521
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海推络通信科技合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海推络通信科技合伙企业(有限合伙) filed Critical 上海推络通信科技合伙企业(有限合伙)
Publication of WO2023138555A1 publication Critical patent/WO2023138555A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • the 5G NR New Radio, new wireless
  • the NR Rel-16 standard can already support the base station to transmit wireless signals through multiple antenna panels at the same time, but even if the terminal device is equipped with multiple antenna panels, it only supports transmission based on antenna panel selection, that is, only one antenna panel is allowed to perform wireless transmission at the same time.
  • the future evolution of the 5G NR system in order to improve the system capacity, it is an important technical direction to support simultaneous transmission of wireless signals on multiple antenna panels on both the base station and terminal equipment.
  • the inventor found through research that how to support the transmission of multiple signals is a key problem to be solved.
  • the present application discloses a solution. It should be noted that although the above description uses the uplink and downlink as an example, the present application is also applicable to other scenarios such as accompanying links, and achieves similar technical effects in the uplink and downlink. In addition, adopting a unified solution for different scenarios (including but not limited to downlink, uplink and accompanying link) also helps to reduce hardware complexity and cost. In the case of no conflict, the embodiments and features in any node of the present application can be applied to any other node, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for transmitting the first signal, and the second reference signal resource group is used to determine the antenna port for transmitting the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the second reference signal are related to whether the first signal and the second signal carry The same transport block is concerned.
  • the problem to be solved in this application includes: time density of multi-reference signal transmission.
  • the first signaling indicates a target MCS
  • the MCS of the first signal and the MCS of the second signal are both the target MCS
  • the target MCS is used to determine a target time density
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density
  • the first signaling indicates the first MCS and the second MCS
  • the MCS of the first signal is The first MCS
  • the MCS of the second signal is the second MCS
  • the first MCS is used to determine the time density of the first reference signal
  • the second MCS is used to determine the time density of the second reference signal.
  • the time density of the first reference signal and the time density of the second reference signal are both equal to a target time density; when the first signal and the second signal carry the same transport block, the first signaling indicates a target MCS, the MCS of the first signal and the MCS of the second signal are both the target MCS, and the target MCS is used to determine the target time density; when the first signal and the second signal carry different transport blocks, the first signaling indicates the first MCS and the second MCS, The MCS of the first signal is the first MCS, the MCS of the second signal is the second MCS, the first MCS is used to determine a first time density, the second MCS is used to determine a second time density, and at least one of the first time density or the second time density is used to determine the target time density.
  • the transmission power of the first reference signal per RE is linearly related to the linear value of the first target factor
  • the transmission power of the second reference signal per RE is linearly related to the linear value of the second target factor
  • the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block.
  • the present application is characterized in that, when the first signal and the second signal carry the same transport block and the first signal and the second signal are orthogonal in the time domain, the first target factor is equal to the second factor, and the second target factor is equal to the fourth factor; when the first signal and the second signal carry different transport blocks and the time-frequency resource occupied by the first signal overlaps with the time-frequency resource occupied by the second signal, the first target factor is equal to the sum of the second factor and the third factor, and the second target factor is equal to the sum of the fourth factor and the fifth factor;
  • the number of layers of the signal is related, and the fourth factor is related to the number of layers of the second signal.
  • the present application is characterized in that, when the first signal and the second signal carry the same transport block, neither the number of layers of the first signal nor the number of layers of the second signal is greater than the number of reference layers; when the first signal and the second signal carry different transport blocks, the sum of the number of layers of the first signal and the number of layers of the second signal is not greater than the number of reference layers.
  • the first signal and the second signal carry the same transmission block, and the time-domain resources occupied by the first signal are orthogonal to the time-domain resources occupied by the second signal; or, the first signal and the second signal carry different transmission blocks, and the time-frequency resources occupied by the first signal overlap with the time-frequency resources occupied by the second signal.
  • the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal; the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for transmitting the first signal, and the second reference signal resource group is used to determine the antenna port for transmitting the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the second reference signal are related to whether the first signal and the second signal carry The same transport block is concerned.
  • the first signaling indicates a target MCS
  • the MCS of the first signal and the MCS of the second signal are both the target MCS
  • the target MCS is used to determine a target time density
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density
  • the first signaling indicates the first MCS and the second MCS
  • the MCS of the first signal is The first MCS
  • the MCS of the second signal is the second MCS
  • the first MCS is used to determine the time density of the first reference signal
  • the second MCS is used to determine the time density of the second reference signal.
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density; when the first signal and the second signal carry the same transport block, the first signaling indicates a target MCS, the MCS of the first signal and the MCS of the second signal are both the target MCS, and the target MCS is used to determine the target time density; when the first signal and the second signal carry different transport blocks, the first signaling indicates the first MCS and the second MCS, and the MCS of the first signal is The first MCS, the MCS of the second signal is the second MCS, the first MCS is used to determine a first time density, the second MCS is used to determine a second time density, at least one of the first time density or the second time density is used to determine the target time density.
  • the transmission power of the first reference signal per RE is linearly related to the linear value of the first target factor
  • the transmission power of the second reference signal per RE is linearly related to the linear value of the second target factor
  • the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block.
  • the present application is characterized in that, when the first signal and the second signal carry the same transport block and the first signal and the second signal are orthogonal in the time domain, the first target factor is equal to the second factor, and the second target factor is equal to the fourth factor; when the first signal and the second signal carry different transport blocks and the time-frequency resource occupied by the first signal overlaps with the time-frequency resource occupied by the second signal, the first target factor is equal to the sum of the second factor and the third factor, and the second target factor is equal to the sum of the fourth factor and the fifth factor;
  • the number of layers of the signal is related, and the fourth factor is related to the number of layers of the second signal.
  • the present application is characterized in that, when the first signal and the second signal carry the same transport block, neither the number of layers of the first signal nor the number of layers of the second signal is greater than the number of reference layers; when the first signal and the second signal carry different transport blocks, the sum of the number of layers of the first signal and the number of layers of the second signal is not greater than the number of reference layers.
  • the first signal and the second signal carry the same transmission block, and the time-domain resources occupied by the first signal are orthogonal to the time-domain resources occupied by the second signal; or, the first signal and the second signal carry different transmission blocks, and the time-frequency resources occupied by the first signal overlap with the time-frequency resources occupied by the second signal.
  • the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal; the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signaling
  • the first transmitter transmits the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block;
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for transmitting the first signal, and the second reference signal resource group is used to determine the antenna port for transmitting the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the second reference signal are related to whether the first signal and the second signal carry The same transport block is concerned.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • the second transmitter sends the first signaling
  • the second receiver receives the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block;
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for transmitting the first signal, and the second reference signal resource group is used to determine the antenna port for transmitting the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the second reference signal are related to whether the first signal and the second signal carry The same transport block is concerned.
  • this application has the following advantages:
  • the proposed transmit power scheme takes into account the factors of beam direction/antenna panel/sending and receiving nodes, and is suitable for transmission under multiple beam directions/multiple antenna panels/multiple transmitting and receiving nodes.
  • FIG. 1 shows a flow chart of first signaling, a first signal, a second signal, a first reference signal and a second reference signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to one embodiment of the present application
  • FIG. 6 shows a schematic diagram of the time density of the first reference signal and the time density of the second reference signal and whether the first signal and the second signal carry the same transmission block according to an embodiment of the present application;
  • Fig. 7 shows a schematic diagram of the time density of the first reference signal and the time density of the second reference signal and whether the first signal and the second signal carry the same transport block according to another embodiment of the present application;
  • FIG. 8 shows a schematic diagram of the transmission power of the first reference signal on each RE and the transmission power of the second reference signal on each RE according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of the relationship between the first target factor and the second target factor and whether the first signal and the second signal carry the same transport block according to an embodiment of the present application
  • Fig. 10 shows a schematic diagram of the number of layers of the first signal and the number of layers of the second signal according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of the relationship between the first signal and the second signal according to an embodiment of the present application
  • FIG. 12 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of first signaling, a first signal, a second signal, a first reference signal and a second reference signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application receives first signaling in step 101; in step 102, a first signal, a second signal, a first reference signal, and a second reference signal are sent in a target time-frequency resource block; wherein, the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for sending the first signal, and the second reference signal resource group is used to determine the antenna port for sending the second signal;
  • the first reference signal is associated to the first reference signal resource group, and the second reference signal is associated to the second reference signal resource group; the time density of the first reference signal and the time density of the second reference signal are related to whether the first signal and the second signal carry the same transport block.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (downlink control information, Downlink Control Information) signaling.
  • the first signaling is DCI signaling used to schedule a PUSCH (Physical Uplink Shared CHannel, Physical Uplink Shared CHannel).
  • the first signaling is transmitted on a PDCCH (Physical Downlink Control CHannel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control CHannel, Physical Downlink Control Channel
  • the target time-frequency resource block includes multiple resource elements (Resource Element, RE).
  • one resource element occupies one subcarrier in the frequency domain and one symbol in the time domain.
  • the symbols are single carrier symbols.
  • the symbols are multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Breast Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol includes a CP (Cyclic Prefix, cyclic prefix).
  • the first signaling indicates the frequency domain resource occupied by the target time-frequency resource block and the frequency domain resource occupied by the target time-frequency resource block time-domain resources.
  • the first signaling includes a first field and a second field, the first field included in the first signaling includes at least one bit, and the second field includes at least one bit; the first field included in the first signaling indicates the frequency domain resource occupied by the target time-frequency resource block; the second field included in the first signaling indicates the time domain resource occupied by the target time-frequency resource block.
  • the first domain is a Frequency domain resource assignment domain
  • the second domain is a Time domain resource assignment domain
  • occupied frequency domain resources refers to: occupied resource blocks (Resource Block, RB).
  • occupied frequency domain resources refers to: occupied subcarriers.
  • occupied time domain resources refers to: occupied symbols.
  • both the first signal and the second signal are transmitted on a PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the first signal and the second signal carry the same transport block (Transport Block, TB), or the first signal and the second signal carry different transport blocks.
  • Transport Block Transport Block
  • the first signal and the second signal carry the same transport block
  • the first signal and the second signal respectively include two PUSCH repetitions of the same transport block.
  • the first signal and the second signal carry the same transport block
  • the first signal and the second signal are two PUSCHs respectively.
  • the first signal and the second signal carry the same transport block
  • the first signal occupies all layers of a PUSCH
  • the second signal occupies all layers of a PUSCH
  • the first signal and the second signal carry different transport blocks
  • the first signal and the second signal together form a PUSCH.
  • the first signal and the second signal carry different transport blocks
  • the first signal and the second signal respectively include two codewords (codewords) of the same PUSCH.
  • the first signal and the second signal carry different transport blocks
  • the first signal and the second signal respectively occupy different layers (layer(s)) of a PUSCH.
  • the first signal and the second signal carry the same transmission block, and the first signal and the second signal are two PUSCHs respectively; or, the first signal and the second signal carry different transmission blocks, and the first signal and the second signal together form a PUSCH.
  • the first signal and the second signal carry the same transmission block, and the first signal and the second signal are time-division multiplexed; or, the first signal and the second signal carry different transmission blocks, and the first signal and the second signal are space-division multiplexed.
  • the first signal and the second signal carry the same transport block
  • the first signal and the second signal respectively include two PUSCH repetitions of the same transport block; or, the first signal and the second signal carry different transport blocks, and the first signal and the second signal together form a PUSCH.
  • the first signal and the second signal carry the same transmission block
  • the number of layers of the first signal is equal to the number of layers of the PUSCH occupied by the first signal
  • the number of layers of the second signal is equal to the number of layers of the PUSCH occupied by the second signal
  • the first signal and the second signal carry different transmission blocks, and the first signal and the second signal together form a PUSCH.
  • the first signal and the second signal carry the same transmission block, and the number of layers of the first signal is the same as that of the second signal; or, the first signal and the second signal carry different transmission blocks, and the first signal and the second signal together form a PUSCH.
  • the meaning of the sentence "the first signal and the second signal together form a PUSCH" includes: the first signal and the second signal respectively include two codewords (codewords) of the same PUSCH.
  • the meaning of the sentence "the first signal and the second signal together form a PUSCH" includes: the first signal and the second signal respectively occupy different layers (layer(s)) of a PUSCH.
  • the sentence "the first signal and the second signal together form a PUSCH” includes: the number of layers of the PUSCH formed by the first signal and the second signal is equal to the sum of the number of layers of the first signal and the number of layers of the second signal.
  • time-frequency resources respectively occupied by the first reference signal and the second reference signal are orthogonal.
  • occupied time-frequency resources refers to: all occupied resource elements.
  • both the first reference signal and the second reference signal are uplink reference signals.
  • the names of the first reference signal and the second reference signal both include phase.
  • the names of the first reference signal and the second reference signal both include tracking.
  • both the first reference signal and the second reference signal are reference signals used for phase tracking (Phase Tracking).
  • both the first reference signal and the second reference signal are PTRS (Phase-Tracking Reference Signal, phase-tracking reference signal).
  • the first reference signal is a PTRS of the first signal
  • the second reference signal is a PTRS of the second signal
  • At least one field in the first signaling indicates the first reference signal resource group and the second reference signal resource group.
  • the first signaling includes a third field, and the third field included in the first signaling indicates the first reference signal resource group and the second reference signal resource group; the third field includes at least one bit.
  • the first signaling includes a third field and a fourth field
  • the third field included in the first signaling indicates the first reference signal resource group
  • the fourth field included in the first signaling indicates the second reference signal resource group
  • the third field includes at least one bit
  • the fourth field includes at least one bit
  • the third field is an SRS resource indicator field.
  • the fourth field is an SRS resource indicator field.
  • the name of the third domain includes SRS
  • the name of the fourth domain includes SRS
  • any reference signal resource in the first reference signal resource group and the second reference signal resource group is an SRS (Sounding Reference Signal, sounding reference signal) resource.
  • SRS Sounding Reference Signal, sounding reference signal
  • any reference signal resource in the first reference signal resource group and the second reference signal resource group is a CSI-RS (Channel State Information-Reference Signal, channel state information reference signal) resource.
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the first reference signal resource group includes at least one SRS resource in a first SRS resource set
  • the second reference signal resource group includes at least one SRS resource in a second SRS resource set
  • the first SRS resource set includes multiple SRS resources
  • the second SRS resource set includes multiple SRS resources.
  • the first reference signal resource group includes at least one reference signal resource in a first reference signal resource set
  • the second reference signal resource group includes at least one reference signal resource in a second reference signal resource set
  • the first reference signal resource set includes multiple reference signal resources
  • the second reference signal resource set includes multiple reference signal resources
  • the first reference signal resource set and the second reference signal resource set are indicated by higher layer signaling.
  • the first reference signal resource set and the second reference signal resource set are indicated by the srs-ResourceSetToAddModList parameter.
  • the first reference signal resource set and the second reference signal resource set are indicated by IESRS-Config.
  • any reference signal resource in the first reference signal resource set is an SRS resource or a CSI-RS resource
  • any reference signal resource in the second reference signal resource set is an SRS resource or a CSI-RS resource
  • any reference signal resource in the first reference signal resource set is an SRS resource
  • any reference signal resource in the second reference signal resource set is an SRS resource
  • the transmission scheme of the first signal is uplink transmission based on a codebook (Codebook based), and the first reference signal resource group includes only one reference signal resource in the first reference signal resource set.
  • the transmission scheme (transmission scheme) of the first signal is uplink transmission based on a codebook (Codebook based), and the first reference signal resource group includes only one reference signal resource.
  • the transmission scheme (transmission scheme) of the second signal is uplink transmission based on a codebook (Codebook based), and the second reference signal resource group includes only one reference signal resource.
  • the transmission scheme of the second signal is codebook based uplink transmission
  • the second reference signal resource group includes only one reference signal resource in the second reference signal resource set.
  • the transmission scheme of the first signal is non-codebook based uplink transmission, and the number of reference signal resources included in the first reference signal resource group is equal to the number of layers of the first signal.
  • the transmission scheme of the second signal is non-codebook based uplink transmission, and the number of reference signal resources included in the second reference signal resource group is equal to the number of layers of the second signal.
  • the meaning of the sentence "the first reference signal resource group is used to determine the antenna port (port(s)) for sending the first signal” includes: the antenna port (port(s)) for sending the first signal is the same as the antenna port (port(s)) of the first reference signal resource group; the sentence "the second reference signal resource group is used for determining the antenna port (port(s)) for sending the second signal” includes: the antenna port (port(s)) for sending the second signal and the antenna port (port( s)) same.
  • the meaning of the sentence "the first reference signal resource group is used to determine the antenna port (port(s)) for sending the first signal” includes: the first node uses the same antenna port (port(s)) as the antenna port (port(s)) of the first reference signal resource group to send the first signal; An antenna port (port(s)) transmits the second signal.
  • the sentence “the first reference signal resource group is used to determine the antenna port (port(s)) for sending the first signal” includes: the number of antenna ports for sending the first signal is the same as the number of antenna ports for the first reference signal resource group; the sentence “the second reference signal resource group is used for determining the antenna port (port(s)) for sending the second signal” includes: the number of antenna ports for sending the second signal is the same as the number of antenna ports for the second reference signal resource group.
  • the meaning of the sentence "the first reference signal resource group is used to determine the antenna port (port(s)) for sending the first signal” includes: the antenna port for sending the first signal and the antenna port of the first reference signal resource group have the same spatial relationship (spatial relation); the sentence "the second reference signal resource group is used for determining the antenna port (port(s)) for sending the second signal” includes: the antenna port for sending the second signal and the antenna port of the second reference signal resource group have the same spatial relationship (spatial relation) ial relation).
  • the meaning of the sentence "the first reference signal resource group is used to determine the antenna port (port(s)) for sending the first signal” includes: the antenna port for sending the first signal and the antenna port of the first reference signal resource group have the same spatial relationship (spatial relation); the sentence "the second reference signal resource group is used for determining the antenna port (port(s)) for sending the second signal” includes: the antenna port for sending the second signal and the antenna port of the second reference signal resource group have the same spatial relationship (spatial relation) ial relation).
  • the spatial relationship includes: a spatial transmission parameter (Spatial Tx parameter).
  • the spatial relationship includes: a spatial domain transmission filter (spatial domain transmission filter).
  • the spatial relationship includes: precoding.
  • the spatial relationship includes: beamforming.
  • the meaning of the sentence “the first reference signal is associated with the first reference signal resource group” includes: the antenna port (port(s)) of the first reference signal resource group is used to send the first reference signal; the meaning of the sentence “the second reference signal is associated with the second reference signal resource group” includes: the antenna port (port(s)) of the second reference signal resource group is used to send the second reference signal.
  • the meaning of the sentence “the first reference signal is associated with the first reference signal resource group” includes: the precoded antenna port (port(s)) of the first reference signal belongs to the antenna port (port(s)) of the first reference signal resource group; the meaning of the sentence “the second reference signal is associated with the second reference signal resource group” includes: the precoded antenna port of the second reference signal belongs to the antenna port (port(s)) of the second reference signal resource group.
  • the meaning of the sentence “the first reference signal is associated with the first reference signal resource group” includes: the The precoded antenna port (port(s)) of the first reference signal is the same as the antenna port (port(s)) of the first reference signal resource group; the meaning of the sentence “the second reference signal is associated with the second reference signal resource group” includes: the precoded antenna port of the second reference signal is the same as the antenna port (port(s)) of the second reference signal resource group.
  • the sentence “the first reference signal is associated with the first reference signal resource group” means that: the configuration information of one reference signal resource in the first reference signal resource group includes the antenna port number of the first reference signal; the sentence “the second reference signal is associated with the second reference signal resource group” means that: the configuration information of one reference signal resource in the second reference signal resource group includes the antenna port number of the second reference signal.
  • the meaning of the sentence “the first reference signal is associated with the first reference signal resource group” includes: the first reference signal resource group is used to determine the precoded antenna port of the first reference signal; the meaning of the sentence “the second reference signal is associated with the second reference signal resource group” includes: the second reference signal resource group is used to determine the precoded antenna port of the second reference signal.
  • the meaning of the sentence "the first reference signal is associated with the first reference signal resource group” includes: the first reference signal resource group is used to determine the antenna port (port(s)) that transmits the first signal, and the antenna port after the precoding of the first reference signal belongs to the antenna port of the first signal; port belongs to the antenna port of said second signal.
  • the meaning of the sentence “the first reference signal is associated with the first reference signal resource group” includes: the precoded antenna port of the first reference signal has the same spatial relation as the antenna port of the first reference signal resource group; the meaning of the sentence “the second reference signal is associated with the second reference signal resource group” includes: the precoded antenna port of the second reference signal has the same spatial relation as the antenna port of the second reference signal resource group.
  • the meaning of the sentence “the first reference signal is associated with the first reference signal resource group” includes: the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal; the meaning of the sentence “the second reference signal is associated with the second reference signal resource group” includes: the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal.
  • the antenna port of the first reference signal is j is a non-negative integer; the precoded antenna ports of the first reference signal are p 0 , p 1 ,...,p ⁇ -1 , where ⁇ is a non-negative integer.
  • the antenna port of the second reference signal is j is a non-negative integer; the precoded antenna ports of the second reference signal are p 0 , p 1 ,...,p ⁇ -1 , where ⁇ is a non-negative integer.
  • the time density is a positive integer.
  • the time density of the first reference signal is a positive integer
  • the time density of the second reference signal is a positive integer
  • the time density of one reference signal is equal to the time interval between two adjacent symbols occupied by the one reference signal.
  • the time density of one reference signal is equal to the number of symbols spaced between two adjacent symbols occupied by the one reference signal.
  • the time density of one reference signal is equal to the index difference of two adjacent symbols occupied by the one reference signal.
  • the time interval between two symbols is the number of symbols included between the two symbols
  • the meaning of the sentence "the time density of the first reference signal and the time density of the second reference signal is related to whether the first signal and the second signal carry the same transport block" includes: when the first signal and the second signal carry the same transport block, the time density of the first reference signal is the same as that of the second reference signal; when the first signal and the second signal carry different transport blocks, the time density of the first reference signal is different from the time density of the second reference signal.
  • the sentence "the time density of the first reference signal and the time density of the second reference signal are the same as the time density of the first reference signal Whether a signal and the second signal carry the same transport block” means that: when the first signal and the second signal carry the same transport block, the time density of the first reference signal is the same as the time density of the second reference signal; when the first signal and the second signal carry different transport blocks, the time density of the first reference signal and the time density of the second reference signal are determined separately.
  • the meaning of the sentence "the time density of the first reference signal and the time density of the second reference signal is related to whether the first signal and the second signal carry the same transmission block" includes: when the first signal and the second signal carry the same transmission block, the time density of the first reference signal is the same as the time density of the second reference signal; when the first signal and the second signal carry different transmission blocks, the MCS (Modulation and coding scheme, modulation and coding scheme) of the first signal is used to determine the Time density, the MCS of the second signal is used to determine the time density of the second reference signal.
  • MCS Modulation and coding scheme, modulation and coding scheme
  • the sentence "the time density of the first reference signal and the time density of the second reference signal is related to whether the first signal and the second signal carry the same transport block” includes: the time density of the first reference signal and the time density of the second reference signal are related to whether the MCS of the first signal is the same as the MCS of the second signal, and whether the MCS of the first signal and the MCS of the second signal are the same is related to whether the first signal and the second signal carry the same transport block.
  • the meaning of the sentence "whether the MCS of the first signal and the MCS of the second signal are the same is related to whether the first signal and the second signal carry the same transport block" includes: when the first signal and the second signal carry the same transport block, the MCS of the first signal is the same as the MCS of the second signal; when the first signal and the second signal carry different transport blocks, the MCS of the first signal and the MCS of the second signal are the same or different.
  • the sentence "whether the MCS of the first signal and the MCS of the second signal are the same is related to whether the first signal and the second signal carry the same transport block" includes: when the first signal and the second signal carry the same transport block, the first signaling indicates the target MCS, and the MCS of the first signal and the MCS of the second signal are both the target MCS; when the first signal and the second signal carry different transport blocks, the first signaling indicates the first MCS and the second MCS, and the MCS of the first signal is the target MCS.
  • the first MCS, the MCS of the second signal is the second MCS.
  • the meaning of the sentence "the time density of the first reference signal and the time density of the second reference signal is related to whether the MCS of the first signal and the MCS of the second signal are the same” includes: when the MCS of the first signal and the MCS of the second signal are the same, the time density of the first reference signal is the same as the time density of the second reference signal; when the MCS of the first signal is different from the MCS of the second signal, the time density of the first reference signal is the same or different from the time density of the second reference signal.
  • the meaning of the sentence "the time density of the first reference signal and the time density of the second reference signal is related to whether the MCS of the first signal and the MCS of the second signal are the same" includes: when the MCS of the first signal and the MCS of the second signal are the same, the time density of the first reference signal is the same as the time density of the second reference signal; when the MCS of the first signal is different from the MCS of the second signal, the time density of the first reference signal is different from the time density of the second reference signal.
  • the meaning of the sentence "the time density of the first reference signal and the time density of the second reference signal is related to whether the MCS of the first signal and the MCS of the second signal are the same" includes: when the MCS of the first signal and the MCS of the second signal are the same, the time density of the first reference signal is the same as the time density of the second reference signal; Time density of the second reference signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates LTE (Long-Term Evolution, long-term evolution), LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) and a network architecture 200 of a future 5G system.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 may include one or more UE (User Equipment, User Equipment) 201, a UE241 for Sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server) /UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • the 5GS/EPS 200 may interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN 202 includes NR (New Radio, New Radio) Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF 213 .
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general the MME/AMF/SMF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes Internet protocol services corresponding to operators, and may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X), or between two UEs, with three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, an RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, and these sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using RRC signaling between the second communication node device and the first communication node device to configure lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355.
  • the CP sublayer 354 also provides header compression for upper layer packets to reduce radio transmission overhead. Also in the L2 layer 355 in the user plane 350 Including SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, SDAP sublayer 356 is responsible for mapping between QoS flow and data radio bearer (DRB, Data Radio Bearer), so as to support service diversity.
  • SDAP Service Data Adaptation Protocol
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and an application layer terminating at the other end of the connection (e.g., a remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signaling is generated by the PHY301 or the PHY351.
  • the first signal is generated by the PHY301 or the PHY351.
  • the second signal is generated by the PHY301 or the PHY351.
  • the first reference signal is generated by the PHY301 or the PHY351.
  • the second reference signal is generated by the PHY301 or the PHY351.
  • the first demodulation reference signal and the second demodulation reference signal are generated by the PHY301 or the PHY351.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communications device 450 includes controller/processor 459 , memory 460 , data source 467 , transmit processor 468 , receive processor 456 , multiple antenna transmit processor 457 , multiple antenna receive processor 458 , transmitter/receiver 454 and antenna 452 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as constellation mapping based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (e.g., a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying the multicarrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • a reference signal e.g., a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered from any parallel streams destined for the second communication device 450 after multi-antenna detection in the multi-antenna receive processor 458.
  • the symbols on each parallel stream are demodulated and recovered in receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing, and Recover upper layer packets from core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing. Controller/processor 459 is also responsible for error detection using acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operation.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the first communication device 410, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then the transmit processor 468 modulates the generated parallel streams into multi-carrier/single-carrier symbol streams, which are provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the second communication device 450 .
  • Upper layer packets from controller/processor 475 may be provided to the core network.
  • Controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operation.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 450 means at least: receiving first signaling; sending a first signal, a second signal, a first reference signal, and a second reference signal in a target time-frequency resource block; wherein, the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port that sends the first signal, and the second reference signal resource group is used to determine the antenna port that sends the second signal;
  • a second reference signal is associated to the second reference signal resource group; the time density of the first reference signal and the time density of the second reference signal are related to whether the first signal and the second signal carry the same transport block.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, the actions include: receiving first signaling; sending a first signal, a second signal, a first reference signal, and a second reference signal in a target time-frequency resource block; wherein, the first signaling is used to indicate the target time-frequency resource block; , the second reference signal resource group is used to determine the antenna port for sending the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the time density of the second reference signal are related to whether the first signal and the second signal carry the same transport block.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the first communication device 410 means at least: sending first signaling; receiving a first signal, a second signal, a first reference signal, and a second reference signal in a target time-frequency resource block; wherein, the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port that sends the first signal, and the second reference signal resource group is used to determine the antenna port that sends the second signal;
  • the second reference signal is associated to the second reference signal resource group; the first reference signal
  • the time density of the reference signal and the time density of the second reference signal are related to whether the first signal and the second signal carry the same transport block.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action includes: sending a first signaling; receiving a first signal, a second signal, a first reference signal, and a second reference signal in a target time-frequency resource block; wherein, the first signaling is used to indicate the target time-frequency resource block; , the second reference signal resource group is used to determine the antenna port for sending the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the time density of the second reference signal are related to whether the first signal and the second signal carry the same transport block.
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first signaling in this application; The first signaling in the application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, and the memory 460 ⁇ is used to transmit the first signal, the second signal, the first reference signal, and the second reference signal in the target time-frequency resource block in this application;
  • ⁇ the antenna 420, the receiver 418, the reception processor 470, the multi-antenna reception processor 472, the controller/processor 475 , at least one of the memory 476 ⁇ is used to receive the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block in this application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, and the memory 460 ⁇ is used to send the first demodulation reference signal and the second demodulation reference signal in the target time-frequency resource block in this application; ⁇ the antenna 420, the receiver 418, the reception processor 470, the multi-antenna reception processor 472, the controller/processor 475, the memory 4 At least one of 76 ⁇ is used to receive the first demodulation reference signal and the second demodulation reference signal in the target time-frequency resource block in this application.
  • Embodiment 5 illustrates a flow chart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U01 and the second node N02 are two communication nodes transmitted through the air interface respectively; in FIG. 5, the steps in block F1 are optional.
  • For the first node U01 receive the first signaling in step S5101; send the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block in step S5102; send the first demodulation reference signal and the second demodulation reference signal in the target time-frequency resource block in step S5103;
  • For the second node N02 send the first signaling in step S5201; receive the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block in step S5202; receive the first demodulation reference signal and the second demodulation reference signal in the target time-frequency resource block in step S5203.
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for sending the first signal, and the second reference signal resource group is used to determine the antenna port for sending the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; It is relevant whether the second signal carries the same transport block.
  • the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal; the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal.
  • the meaning of the sentence "the target MCS is used to determine the target time density” includes: the target time density is obtained by looking up a table according to the target MCS; the meaning of the sentence "the first MCS is used to determine the time density of the first reference signal” includes: The time density of the first reference signal is obtained by looking up a table according to the first MCS; the meaning of the sentence "the second MCS is used to determine the time density of the second reference signal” includes: the time density of the second reference signal is obtained by looking up a table according to the second MCS; the meaning of the sentence “the MCS of the first signal is used to determine the time density of the first reference signal” includes: the time density of the first reference signal is obtained by looking up a table according to the MCS of the first signal; the meaning of the sentence "the MCS of the second signal is used to determine the time density of the second reference signal” includes: The MCS of the second signal obtains the time density of the second reference signal through a table lookup; the meaning of the sentence "the first MCS is used
  • the meaning of the sentence "the target MCS is used to determine the target time density” includes: the target time density is obtained through function operations according to the target MCS; the meaning of the sentence “the first MCS is used to determine the time density of the first reference signal” includes: the time density of the first reference signal is obtained through function operations according to the first MCS; the meaning of the sentence “the second MCS is used to determine the time density of the second reference signal” includes: the time density of the second reference signal is obtained through function operations according to the second MCS; the sentence “the MCS of the first signal is used to determine the time density of the first reference signal”
  • the meaning of the time density of the first reference signal includes: the time density of the first reference signal is obtained through a function operation according to the MCS of the first signal; the meaning of the sentence “the MCS of the second signal is used to determine the time density of the second reference signal” includes: the time density of the second reference signal is obtained through a function operation according to the MCS of the second signal; the meaning of the sentence "the first MCS is
  • the meaning of the sentence "the target MCS is used to determine the target time density” includes: obtaining the target time density through a mapping relationship according to the target MCS; the meaning of the sentence "the first MCS is used to determine the time density of the first reference signal” includes: obtaining the time density of the first reference signal according to the first MCS through a mapping relationship; the meaning of the sentence "the second MCS is used to determine the time density of the second reference signal” includes: obtaining the time density of the second reference signal through a mapping relationship according to the second MCS;
  • the meaning of the "time density of the first reference signal” includes: obtaining the time density of the first reference signal according to the MCS of the first signal through a mapping relationship; the meaning of the sentence "the MCS of the second signal is used to determine the time density of the second reference signal” includes: obtaining the time density of the second reference signal according to the MCS of the second signal through a mapping relationship; the meaning of the sentence "the first MCS is used to determine the first time density” includes: obtaining the first
  • the meaning of the sentence "the target MCS is used to determine the target time density” includes: N MCS sets are in one-to-one correspondence with the N time densities, and N is a positive integer greater than 1; one of the N MCS sets including the target MCS corresponds to the target time density, and the target time density is one of the N time densities.
  • the meaning of the sentence "the first MCS is used to determine the time density of the first reference signal” includes: N1 MCS sets correspond to the N1 time densities respectively, and N1 is a positive integer greater than 1; one MCS set including the first MCS in the N1 MCS sets corresponds to the time density of the first reference signal, and the time density of the first reference signal is one of the N1 time densities; the meaning of the sentence "the second MCS is used to determine the time density of the second reference signal” includes: N2 MCS The CS sets are in one-to-one correspondence with N2 time densities, and N2 is a positive integer greater than 1; one of the N2 MCS sets including the second MCS corresponds to the time density of the second reference signal, and the time density of the second reference signal is one of the N2 time densities.
  • the meaning of the sentence "the MCS of the first signal is used to determine the time density of the first reference signal” includes: N1 MCS sets correspond to the N1 time densities respectively, and N1 is a positive integer greater than 1; one of the N1 MCS sets including the MCS of the first signal corresponds to the time density of the first reference signal, and the time density of the first reference signal is one of the N1 time densities; the meaning of the sentence "the MCS of the second signal is used to determine the time density of the second reference signal” Including: N2 MCS sets correspond to N2 time densities respectively, and N2 is a positive integer greater than 1; one MCS set including the MCS of the second signal in the N2 MCS sets corresponds to the time density of the second reference signal, and the time density of the second reference signal is one of the N2 time densities.
  • the meaning of the sentence "the first MCS is used to determine the first time density” includes: N1 MCS sets are in one-to-one correspondence with N1 time densities, N1 is a positive integer greater than 1; the N1 MCS sets include one MCS set of the first MCS Corresponding to the first time density, the first time density is one of the N1 time densities; the meaning of the sentence "the second MCS is used to determine the second time density” includes: N2 MCS sets correspond to the N2 time densities respectively, and N2 is a positive integer greater than 1; one MCS set including the second MCS in the N2 MCS sets corresponds to the second time density, and the second time density is one of the N2 time densities.
  • the N, the N1 and the N2 are all the same.
  • At least two of the N, the N1 and the N2 are different.
  • measurements on the first demodulation reference signal and the second demodulation reference signal are used for demodulation of the first signal and the second signal.
  • channels estimated from measurements of the first demodulation reference signal and the second demodulation reference signal are used for demodulation of the first signal and the second signal.
  • the measurement for the first demodulation reference signal is used for demodulation of the first signal
  • the measurement for the second demodulation reference signal is used for demodulation of the second signal
  • measurement of at least the first demodulation reference signal in the first demodulation reference signal or the second demodulation reference signal is used for demodulation of the first signal
  • measurement of at least the second demodulation reference signal in the first demodulation reference signal or the second demodulation reference signal is used for demodulation of the second signal
  • the channel estimated from the measurement of the first demodulation reference signal is used for demodulation of the first signal
  • the channel estimated from the measurement of the second demodulation reference signal is used for demodulation of the second signal
  • the first demodulation reference signal includes a DMRS (DeModulation Reference Signals, demodulation reference signal) of the first signal
  • the second demodulation reference signal includes a DMRS of the second signal
  • the first reference signal resource group is used to determine a precoded antenna port (port(s)) of the first demodulation reference signal
  • the second reference signal resource group is used to determine a precoded antenna port of the second demodulation reference signal
  • antenna ports of the first reference signal resource group are used to send the first demodulation reference signal
  • antenna ports of the second reference signal resource group are used to send the second demodulation reference signal
  • the antenna port for sending the first signal is the same as the precoded antenna port (port(s)) for the first demodulation reference signal
  • the antenna port for sending the second signal is the same as the precoded antenna port (port(s)) for the second demodulation reference signal
  • the antenna port that sends the first signal is used to send the first demodulation reference signal
  • the antenna port that sends the second signal is used to send the second demodulation reference signal
  • the first signaling indicates which antenna port of the first demodulation reference signal is associated with the antenna port of the first reference signal, and which antenna port of the second demodulation reference signal is associated with the antenna port of the second reference signal.
  • the first signaling indicates which antenna port of the first demodulation reference signal the antenna port of the first reference signal is associated with.
  • the first signaling includes a fifth field
  • the fifth field included in the first signaling indicates which antenna port of the first demodulation reference signal the antenna port of the first reference signal is associated with; the fifth field includes at least one bit.
  • the first signaling includes a fifth field
  • the fifth field included in the first signaling indicates which antenna port of the first demodulation reference signal the antenna port of the first reference signal is associated with and which antenna port of the second demodulation reference signal is associated with the antenna port of the second reference signal; the fifth field includes at least one bit.
  • the first signaling includes a fifth field and a sixth field
  • the fifth field included in the first signaling indicates which antenna port of the first demodulation reference signal is associated with the antenna port of the first reference signal
  • the sixth field included in the first signaling indicates which antenna port of the second demodulation reference signal is associated with the antenna port of the second reference signal
  • the fifth field includes at least one bit
  • the sixth field includes at least one bit
  • the fifth domain is a PTRS-DMRS association domain.
  • the sixth domain is a PTRS-DMRS association domain.
  • the meaning of the sentence "the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the frequency domain resource occupied by the first reference signal belongs to one antenna port of the first demodulation reference signal
  • the frequency domain resource used; the sentence "the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal” includes: the frequency domain resource occupied by the second reference signal belongs to the frequency domain resource occupied by one antenna port of the second demodulation reference signal.
  • the meaning of the sentence "the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the subcarrier occupied by the first reference signal belongs to the subcarrier occupied by one antenna port of the first demodulation reference signal; the meaning of the sentence "the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal” includes: the subcarrier occupied by the second reference signal belongs to the subcarrier occupied by one antenna port of the second demodulation reference signal.
  • the meaning of the sentence “the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the antenna port of the first reference signal is used to compensate the phase noise of the first demodulation reference signal;
  • the meaning of the sentence "the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal” includes: the antenna port of the second reference signal is used to compensate the phase noise of the second demodulation reference signal.
  • the meaning of the sentence “the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the antenna port of the first reference signal is used to compensate the phase noise of the first signal; the meaning of the sentence "the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal” includes: the antenna port of the second reference signal is used to compensate the phase noise of the second signal.
  • the meaning of the sentence "the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the precoded antenna port (port(s)) of the first reference signal is the same as the precoded antenna port of the first demodulation reference signal; The antenna ports are the same.
  • the meaning of the sentence “the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the first reference signal and the first demodulation reference signal have the same precoding; the meaning of the sentence “the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal” includes: the first reference signal and the second demodulation reference signal have the same precoding.
  • the meaning of the sentence "the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal” includes: the small-scale channel fading parameter experienced by one antenna port of the first demodulation reference signal can be used to deduce the small-scale channel fading parameter experienced by the antenna port of the first reference signal;
  • the meaning of the sentence "the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal” includes: the small-scale channel fading parameter experienced by one antenna port of the second demodulation reference signal It can be used to deduce the small-scale channel fading parameters experienced by the antenna port of the second reference signal.
  • Embodiment 6 illustrates a schematic diagram of the time density of the first reference signal and the time density of the second reference signal and whether the first signal and the second signal carry the same transport block according to an embodiment of the present application; as shown in FIG. 6 .
  • the first signaling indicates a target MCS
  • the MCS of the first signal and the MCS of the second signal are both the target MCS
  • the target MCS is used to determine a target time density
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density
  • the first signaling indicates the first MCS and the second MCS
  • the MCS of the first signal is the first MCS
  • the MCS of the second signal is the second MCS
  • the first MCS is used to determine the time density of the first reference signal
  • the second MCS is used to determine the time density of the second reference signal.
  • the time-frequency resource occupied by the first signal includes part or all of the time-frequency resource occupied by the second reference signal.
  • the time-frequency resource occupied by the second signal includes part or all of the time-frequency resource occupied by the first reference signal.
  • the time-frequency resources occupied by the first signal include part or all of the time-frequency resources occupied by the second reference signal
  • the time-frequency resources occupied by the second signal include part or all of the time-frequency resources occupied by the first reference signal.
  • the time-frequency resource occupied by the first signal is orthogonal to the time-frequency resource occupied by the second reference signal.
  • the time-frequency resource occupied by the second signal is orthogonal to the time-frequency resource occupied by the first reference signal.
  • the time-frequency resource occupied by the first signal is orthogonal to the time-frequency resource occupied by the second reference signal, and the second The time-frequency resource occupied by the signal is orthogonal to the time-frequency resource occupied by the first reference signal.
  • the first signaling indicates the index of the target MCS.
  • the first signal includes a seventh field, and the seventh field in the first signal indicates a target MCS; the seventh field includes at least one bit.
  • the seventh field includes 5 bits.
  • the seventh domain is the Modulation and coding scheme domain.
  • the MCS includes a modulation order and a target code rate.
  • the MCS includes modulation order (modulation order), target code rate (target code rate) and spectral efficiency (spectral efficiency).
  • the first signaling indicates the index of the first MCS and the index of the second MCS.
  • the first signal includes a seventh field and an eighth field, the seventh field in the first signal indicates a first MCS, and the eighth field in the first signal indicates a second MCS; the seventh field includes at least one bit, and the eighth field includes at least one bit.
  • the seventh field includes 5 bits.
  • the eighth field includes 5 bits.
  • the seventh domain is a Modulation and coding scheme domain
  • the eighth domain is a Modulation and coding scheme domain.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the time density of the first reference signal and the time density of the second reference signal and whether the first signal and the second signal carry the same transport block according to another embodiment of the present application; as shown in FIG. 7 .
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density; when the first signal and the second signal carry the same transport block, the first signaling indicates a target MCS, the MCS of the first signal and the MCS of the second signal are both the target MCS, and the target MCS is used to determine the target time density; when the first signal and the second signal carry different transport blocks, the first signaling indicates the first MCS and the second MCS, and the MCS of the first signal is the first MCS, The MCS of the second signal is the second MCS, the first MCS is used to determine a first time density, the second MCS is used to determine a second time density, at least one of the first time density or the second time density is used to determine the target time density.
  • the first time density is a positive integer
  • the second time density is a positive integer
  • the meaning of the sentence "at least one of the first time density or the second time density is used to determine the target time density” includes: the first time density or the second time density is used to determine the target time density.
  • the meaning of the sentence "at least one of the first time density or the second time density is used to determine the target time density” includes: the target time density is the first time density or the second time density.
  • the meaning of the sentence "at least one of the first time density or the second time density is used to determine the target time density” includes: the magnitude relationship between the first time density and the second time density is used to determine the target time density.
  • the sentence "at least one of the first time density or the second time density is used to determine the target time density” includes: the target time density is the smaller of the first time density and the second time density.
  • the target time density is the first time density.
  • the target time density is the first time density.
  • the target time density is the second time density.
  • the sentence "at least one of the first time density or the second time density is used to determine the The meaning of "marked time density” includes: when the first time density and the second time density are the same, the target time density is equal to the first time density; when the first time density is different from the second time density, the target time density is equal to the reference time density.
  • the reference time density is a positive integer.
  • the reference time density is 1.
  • the reference time density is not greater than the first time density and the second time density.
  • the reference time density is predefined.
  • the reference time density is fixed.
  • the reference time density is configurable.
  • the meaning of the sentence "at least one of the first time density or the second time density is used to determine the target time density” includes: the first time density and the second time density are jointly used to determine the target time density.
  • the sentence "the first time density and the second time density are jointly used to determine the target time density” includes: the magnitude relationship between the first time density and the second time density is used to determine the target time density.
  • the sentence "the first time density and the second time density are jointly used to determine the target time density” includes: the target time density is the smaller of the first time density and the second time density.
  • the meaning of the sentence "the first time density and the second time density are jointly used to determine the target time density” includes: obtaining the target time density by looking up a table according to the first time density and the second time density.
  • the meaning of the sentence "the first time density and the second time density are jointly used to determine the target time density” includes: obtaining the target time density through a function operation according to the first time density and the second time density.
  • the meaning of the sentence "the first time density and the second time density are jointly used to determine the target time density” includes: obtaining the target time density through a mapping relationship according to the first time density and the second time density.
  • the function operation is a linear transformation.
  • the function operation is a nonlinear transformation.
  • Embodiment 8 illustrates a schematic diagram of the transmission power of the first reference signal per RE and the transmission power of the second reference signal per RE according to an embodiment of the present application; as shown in FIG. 8 .
  • the transmission power of the first reference signal per RE is linearly related to the linear value of the first target factor
  • the transmission power of the second reference signal per RE is linearly related to the linear value of the second target factor
  • the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block.
  • the first target factor is a positive real number
  • the second target factor is a positive real number
  • the unit of the first target factor is dB (decibel), and the unit of the second target factor is dB.
  • the first target factor is equal to the base 10 logarithm of the linear value of the first target factor multiplied by 10
  • the second target factor is equal to the base 10 logarithm of the linear value of the second target factor multiplied by 10.
  • the linear value of the first target factor is c, and the first target factor is 10log 10 c.
  • the linear value of the second target factor is c, and the second target factor is 10log 10 c.
  • the first target factor is ⁇
  • the linear value of the first target factor is
  • the second target factor is ⁇
  • the linear value of the second target factor is
  • the first target factor is
  • the second target factor is
  • the unit of the transmit power of the first reference signal per RE is mW (milliwatt, milliwatt)
  • the unit of the transmit power of the second reference signal per RE is mW (milliwatt, milliwatt).
  • the transmission power of the first reference signal per RE is equal to the product of the first reference power and the linear value of the first target factor
  • the transmission power of the second reference signal per RE is equal to the second reference power and the first target factor The product of the linear values of .
  • the first reference power is the transmission power of the first signal on each layer (layer) per RE
  • the second reference power is the transmission power of the second signal on each layer (layer) per RE.
  • the first reference power is the transmit power per antenna port per RE of the first demodulation reference signal
  • the second reference power is the transmit power per antenna port per RE of the second demodulation reference signal
  • the first reference power is predefined or configurable
  • the second reference power is predefined or configurable
  • the unit of the first reference power is mW
  • the unit of the second reference power is mW
  • the ratio of the transmit power of the first reference signal per RE to the transmit power of the first signal per layer (layer) per RE is equal to the linear value of the first target factor
  • the ratio of the transmit power of the second reference signal per RE to the transmit power of the second signal per layer per RE is equal to the linear value of the second target factor
  • the unit of the transmit power of the first signal on each layer (layer) per RE is mW
  • the unit of the unit of the second signal’s transmit power on each layer (layer) per RE is mW
  • the ratio of the transmit power of the first reference signal per RE to the transmit power of the first signal per layer (layer) per RE is a value obtained by dividing the first reference signal transmit power per RE by the first signal transmit power per layer (layer) per RE.
  • the transmit power of the first signal on each layer per RE is equal to the value obtained by dividing the total transmit power of the first signal by the number of layers of the first signal divided by the number of occupied REs;
  • the transmit power of the second signal on each layer per RE is equal to the value obtained by dividing the total transmit power of the second signal by the number of layers of the second signal divided by the number of occupied REs.
  • the transmit power of the first signal on each RE in each layer is equal to the value obtained by dividing the transmit power of the first signal on each RE by the number of layers of the first signal;
  • the transmit power of the second signal on each layer per RE is equal to the value obtained by dividing the transmit power of the second signal on each RE on each RE by the number of layers of the second signal.
  • the meaning of the sentence "the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block" includes: the first target factor and the second target factor are related to whether the first signal and the second signal are space-division multiplexed, and whether the first signal and the second signal carry the same transport block is related to whether the first signal and the second signal are space-division multiplexed.
  • the sentence "the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block" includes: when the first signal and the second signal are time-division multiplexed, the first target factor is equal to the second factor, and the second target factor is equal to the fourth factor; when the first signal and the second signal are space-division multiplexed, the first target factor is equal to the sum of the second factor and the third factor, and the second target factor is equal to the sum of the fourth factor and the fifth factor; the second factor is related to the number of layers of the first signal, and the The fourth factor is related to the number of layers of the second signal.
  • the meaning of the sentence "the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block" includes: the first target factor and the second target factor are related to whether the MCS of the first signal and the MCS of the second signal are the same, and whether the MCS of the first signal and the MCS of the second signal are the same is related to whether the first signal and the second signal carry the same transport block.
  • the meaning of the sentence "the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block" includes: when the MCS of the first signal and the MCS of the second signal are the same and the first signal and the second signal are orthogonal in the time domain, the first target factor is equal to the second factor, and the second target factor is equal to the fourth factor; when the first signaling indicates the first MCS and the second MCS, and the time-frequency resources occupied by the first signal and the time-frequency resources occupied by the second signal overlap,
  • the MCS of the second signal is the first MCS
  • the MCS of the second signal is the second MCS
  • the first target factor is equal to the sum of the second factor and the third factor
  • the second target factor is equal to the sum of the fourth factor and the fifth factor
  • the second factor is related to the layer number of the first signal
  • the fourth factor is related to the layer number of the second signal.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the first target factor and the second target factor and whether the first signal and the second signal carry the same transport block according to an embodiment of the present application; as shown in FIG. 9 .
  • the first target factor is equal to the second factor
  • the second target factor is equal to the fourth factor
  • the first target factor is equal to the sum of the second factor and the third factor
  • the second target factor is equal to the sum of the fourth factor and the fifth factor
  • the second factor is related to the number of layers of the first signal
  • the fourth factor is related to the number of layers of the second signal.
  • the second factor is a positive real number
  • the third factor is a positive real number
  • the fourth factor is a positive real number
  • the fifth factor is a positive real number
  • the unit of the second factor is dB (decibel)
  • the unit of the third factor is dB (decibel)
  • the unit of the fourth factor is dB
  • the unit of the fifth factor is dB (decibel).
  • the meaning of the sentence “the second factor is related to the number of layers of the first signal” includes: the linear value of the second factor is equal to the number of layers of the first signal; the meaning of the sentence “the fourth factor is related to the number of layers of the second signal” includes: the linear value of the fourth factor is equal to the number of layers of the second signal.
  • the second factor is also related to the transmission scheme of the first signal
  • the fourth factor is also related to the transmission scheme of the second signal
  • the second factor is at least functionally related to the transmission scheme of the first signal
  • the fourth factor is at least functionally related to the transmission scheme of the second signal
  • the second factor is at least in a mapping relationship with the transmission scheme of the first signal
  • the fourth factor is at least in a mapping relationship with the transmission scheme of the second signal
  • the first node obtains the second factor by looking up a table according to at least the transmission scheme of the first signal, and the first node obtains the fourth factor by looking up a table according to at least the transmission scheme of the second signal.
  • the meaning of the sentence "the given factor is related to the number of layers of the given signal” includes: the given factor is at least in a functional relationship with the number of layers of the given signal.
  • the meaning of the sentence "the given factor is related to the number of layers of the given signal” includes: the given factor is at least in a mapping relationship with the number of layers of the given signal.
  • the meaning of the sentence "the given factor is related to the number of layers of the given signal” includes: the first node obtains the given factor by looking up a table according to at least the number of layers of the given signal.
  • the meaning of the sentence "a given factor is related to the number of layers of a given signal” includes: when the numbers of layers of the given signal are respectively equal to 1, 2, 3, and 4, the given factors are respectively equal to 0, 3, 4.77, and 6.
  • the meaning of the sentence "the given factor is related to the number of layers of the given signal” includes: the transmission scheme of the given signal is full coherent (full coherent) uplink transmission based on a codebook;
  • the meaning of the sentence "a given factor is related to the number of layers of a given signal” includes: the transmission scheme of the given signal is a partial coherent (partial coherent) codebook-based uplink transmission; when the number of layers of the given signal is equal to 1, 2, 3, and 4 respectively, the given factors are respectively equal to 0, 3Q p -3, 3Q p -3, and 3Q p .
  • the meaning of the sentence "the given factor is related to the number of layers of a given signal” includes: the transmission scheme of the given signal is non-coherent uplink transmission based on a codebook or uplink transmission based on a non-codebook; when the number of layers of the given signal is equal to 1, 2, 3, and 4 respectively, the given factors are respectively equal to 0, 3Qp-3 , 3Qp - 3, and 3Qp- 3.
  • the meaning of the sentence "the given factor is related to the number of layers of the given signal” includes: the given factor is equal to the dB value of the number of layers of the given signal.
  • the transmission scheme of the given signal is a full coherent (full coherent) codebook-based uplink transmission.
  • the meaning of the sentence "the given factor is related to the number of layers of the given signal” includes: the given factor is linearly related to the dB value of the number of layers of the given signal.
  • the transmission scheme of the given signal is a full coherent (full coherent) codebook-based uplink transmission.
  • the given factor is the second factor
  • the given signal is the first signal
  • the given factor is the fourth factor
  • the given signal is the second signal
  • P1 is the number of antenna ports of the first reference signal
  • P2 is the number of antenna ports of the second reference signal
  • P is equal to the sum of the P1 and the P2
  • the third factor is related to P and the P1
  • the fifth factor is related to P and the P2.
  • P1 is the number of antenna ports of the first reference signal
  • P2 is the number of antenna ports of the second reference signal
  • P is equal to the sum of the P1 and the P2
  • the third factor is related to the ratio of P to the P1
  • the fifth factor is related to the ratio of P to the P2.
  • the meaning of the sentence "the third factor is related to P and the P1" includes: the third factor is related to the ratio of the P to the P1; the meaning of the sentence "the fifth factor is related to P and the P2" includes: the fifth factor is related to the ratio of the P to the P2.
  • the meaning of the sentence "the third factor is related to P and the P1" includes: the third factor is a functional relationship with the P and the P1; the meaning of the sentence "the fifth factor is related to P and the P2" includes: the fifth factor is a functional relationship with the P and the P2.
  • the meaning of the sentence "the third factor is related to P and the P1" includes: the third factor is in a mapping relationship with the P and the P1; the meaning of the sentence "the fifth factor is related to P and the P2" includes: the fifth factor is in a mapping relationship with the P and the P2.
  • the meaning of the sentence "the third factor is related to P and the P1" includes: the first node obtains the third factor by looking up a table according to the P and the P1; the meaning of the sentence "the fifth factor is related to P and the P2" includes: the first node obtains the fifth factor according to the P and the P2 through a table lookup.
  • the meaning of the sentence "the third factor is related to the ratio of the P to the P1" includes: the third factor is linearly related to the ratio of the P to the P1; the sentence “the fifth factor is related to the ratio of the P to the P2" means: the fifth factor is linearly related to the ratio of the P to the P2.
  • the meaning of the sentence “the third factor is related to the ratio of the P to the P1” includes: the third factor is equal to the ratio of the P to the P1; the meaning of the sentence “the fifth factor is related to the ratio of the P to the P2” includes: the fifth factor is equal to the ratio of the P to the P2.
  • the meaning of the sentence "the third factor is related to the ratio of the P to the P1" includes: the third factor is a functional relationship to the ratio of the P to the P1; the sentence "the fifth factor is related to the ratio of the P to the P2" means: the fifth factor is a functional relationship to the ratio of the P to the P2.
  • the meaning of the sentence "the third factor is related to the ratio of the P to the P1" includes: the ratio of the third factor to the P to the P1 is a mapping relationship; the sentence "the fifth factor is related to the ratio of the P to the P2" means: the fifth factor is a mapping relationship to the ratio of the P to the P2.
  • the meaning of the sentence "the third factor is related to the ratio of the P to the P1" includes: the first node obtains the third factor by looking up a table according to the ratio of the P to the P1; the sentence "the fifth factor is related to the ratio of the P to the P2" means: the first node obtains the fifth factor by looking up a table according to the ratio of the P to the P2.
  • P1 is the number of antenna ports of the first reference signal
  • P2 is the number of antenna ports of the second reference signal
  • the third factor is related to the P1 and the P2
  • the fifth factor is related to the P1 and the P2.
  • the meaning of the sentence "the third factor is related to the P1 and the P2" includes: the third factor is a functional relationship with the P1 and the P2; the meaning of the sentence "the fifth factor is related to the P1 and the P2" includes: the fifth factor is a functional relationship with the P1 and the P2.
  • the meaning of the sentence "the third factor is related to the P1 and the P2" includes: the third factor is in a mapping relationship with the P1 and the P2; the meaning of the sentence "the fifth factor is related to the P1 and the P2" includes: the fifth factor is in a mapping relationship with the P1 and the P2.
  • the meaning of the sentence "the third factor is related to the P1 and the P2" includes: the first node obtains the third factor by looking up a table according to the P1 and the P2; the meaning of the sentence "the fifth factor is related to the P1 and the P2" includes: the first node obtains the fifth factor according to the P1 and the P2 through a table lookup.
  • the P1 is equal to 1
  • the P2 is equal to 1
  • the second factor is equal to 0, and the third factor is equal to 3.
  • the P1 is equal to 1
  • the P2 is equal to 1
  • the fourth factor is equal to 0, and the fifth factor is equal to 3.
  • the P1 is equal to 2
  • the P2 is equal to 1
  • the second factor is equal to 0
  • the third factor is equal to 1.76.
  • the P1 is equal to 2
  • the P2 is equal to 1
  • the fourth factor is equal to 0, and the fifth factor is equal to 4.77.
  • the second factor is equal to 0
  • the third factor is equal to 4.77.
  • the fourth factor is equal to 0, and the fifth factor is equal to 1.76.
  • the layer number of the first signal is equal to 1
  • the P1 is equal to 2
  • the P2 is equal to 2
  • the second factor is equal to 0, and the third factor is equal to 3.
  • the P1 is equal to 2
  • the P2 is equal to 2
  • the fourth factor is equal to 0, and the fifth factor is equal to 3.
  • the P1 is equal to 1
  • the P2 is equal to 1
  • the second factor is equal to 3
  • the third factor is equal to 3.
  • the P1 is equal to 1
  • the P2 is equal to 1
  • the fourth factor is equal to 3
  • the fifth factor is equal to 3.
  • the P1 is equal to 2
  • the P2 is equal to 1
  • the second factor is equal to 3
  • the third factor is equal to 1.76.
  • the P1 is equal to 2
  • the P2 is equal to 1
  • the fourth factor is equal to 3
  • the fifth factor is equal to 4.77.
  • the P1 is equal to 1
  • the P2 is equal to 2
  • the second factor is equal to 3
  • the third factor is equal to 4.77.
  • the P1 is equal to 1
  • the P2 is equal to 2
  • the fourth factor is equal to 3
  • the fifth factor is equal to 1.76.
  • the P1 is equal to 2
  • the P2 is equal to 2
  • the second factor is equal to 3
  • the third factor is equal to 3.
  • the P1 is equal to 2
  • the P2 is equal to 2
  • the fourth factor is equal to 3
  • the fifth factor is equal to 3.
  • Embodiment 10 illustrates a schematic diagram of the number of layers of the first signal and the number of layers of the second signal according to an embodiment of the present application; as shown in FIG. 10 .
  • the relationship between the number of layers of the first signal, the number of layers of the second signal, and the number of reference layers is related to whether the first signal and the second signal carry the same transport block.
  • the reference number of layers is the maximum number of layers of the PUSCH.
  • the number of reference layers is fixed.
  • the number of reference layers is predefined.
  • the number of reference layers is configured by a higher layer parameter.
  • the number of reference layers is configured by a higher layer parameter maxMIMO-Layers.
  • the name of the higher layer parameter used to configure the number of reference layers includes maxMIMO-Layers.
  • the number of reference layers is not greater than 4.
  • the number of reference layers is equal to 4.
  • the number of reference layers is a positive integer.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first signal and the second signal according to an embodiment of the present application; as shown in FIG. 11 .
  • the first signal and the second signal carry the same transmission block, and the time-domain resources occupied by the first signal are orthogonal to the time-domain resources occupied by the second signal; or, the first signal and the second signal carry different transmission blocks, and the time-frequency resources occupied by the first signal overlap with the time-frequency resources occupied by the second signal.
  • the MCS of the first signal is the same as the MCS of the second signal.
  • the sentence "the time-frequency resource occupied by the first signal overlaps with the time-frequency resource occupied by the second signal" includes: the time-frequency resource occupied by the first signal and the time-frequency resource occupied by the second signal completely overlap.
  • the sentence "the time-frequency resource occupied by the first signal overlaps with the time-frequency resource occupied by the second signal" includes: the time-frequency resource occupied by the first signal and the time-frequency resource occupied by the second signal partially or completely overlap.
  • the meaning of the sentence "the time-frequency resource occupied by the first signal and the time-frequency resource occupied by the second signal overlap" includes: the time-frequency resource occupied by the first signal and the time-frequency resource occupied by the second signal include at least one same RE.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a first node device according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1200 in the first node device includes a first receiver 1201 and a first transmitter 1202 .
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • the first transmitter 1202 includes at least one of ⁇ antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • the first receiver 1201 receives the first signaling
  • the first transmitter 1202 transmits the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block;
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for sending the first signal, and the second reference signal resource group is used to determine the antenna port for sending the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the time density of the second reference signal are the same as the first signal and It is related whether the second signal carries the same transport block.
  • the first signaling indicates a target MCS
  • the MCS of the first signal and the MCS of the second signal are both the target MCS
  • the target MCS is used to determine a target time density
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density
  • the first signaling indicates the first MCS and the second MCS
  • the MCS of the first signal is the first MCS
  • the The MCS of the second signal is the second MCS
  • the first MCS is used to determine the time density of the first reference signal
  • the second MCS is used to determine the time density of the second reference signal.
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density; when the first signal and the second signal carry the same transmission block, the first signaling indicates a target MCS, the MCS of the first signal and the MCS of the second signal are both the target MCS, and the target MCS is used to determine the target time density; when the first signal and the second signal carry different transmission blocks, the first signaling indicates the first MCS and the second MCS, the MCS of the first signal is the first MCS, the The MCS of the second signal is the second MCS, the first MCS is used to determine a first time density, the second MCS is used to determine a second time density, at least one of the first time density or the second time density is used to determine Determine the target time density.
  • the transmission power of the first reference signal per RE is linearly related to the linear value of the first target factor
  • the transmission power of the second reference signal per RE is linearly related to the linear value of the second target factor
  • the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block.
  • the first target factor is equal to the second factor
  • the second target factor is equal to the fourth factor
  • the first target factor is equal to the sum of the second factor and the third factor
  • the second target factor is equal to the sum of the fourth factor and the fifth factor
  • the second factor is related to the number of layers of the first signal
  • the fourth factor is related to the number of layers of the second signal.
  • the first signal and the second signal carry the same transport block, neither the number of layers of the first signal nor the number of layers of the second signal is greater than the number of reference layers; when the first signal and the second signal carry different transport blocks, the sum of the number of layers of the first signal and the number of layers of the second signal is not greater than the number of reference layers.
  • the first signal and the second signal carry the same transmission block, and the time-domain resource occupied by the first signal is orthogonal to the time-domain resource occupied by the second signal; or, the first signal and the second signal carry different transmission blocks, and the time-frequency resource occupied by the first signal overlaps with the time-frequency resource occupied by the second signal.
  • the first transmitter 1202 transmits a first demodulation reference signal and a second demodulation reference signal in the target time-frequency resource block; wherein, the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal; the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a second node device according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the second node device includes a second transmitter 1301 and a second receiver 1302 .
  • the second node device is a base station device.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes at least one of ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second receiver 1302 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second transmitter 1301, sends the first signaling
  • the second receiver 1302 receives the first signal, the second signal, the first reference signal and the second reference signal in the target time-frequency resource block;
  • the first signaling is used to indicate the target time-frequency resource block; the first signaling is used to indicate a first reference signal resource group and a second reference signal resource group, the first reference signal resource group is used to determine the antenna port for sending the first signal, and the second reference signal resource group is used to determine the antenna port for sending the second signal; the first reference signal is associated with the first reference signal resource group, and the second reference signal is associated with the second reference signal resource group; the time density of the first reference signal and the time density of the second reference signal are the same as the first signal and It is related whether the second signal carries the same transport block.
  • the first signaling indicates a target MCS
  • the MCS of the first signal and the MCS of the second signal are both the target MCS
  • the target MCS is used to determine a target time density
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density
  • the first signaling indicates the first MCS and the second MCS
  • the MCS of the first signal is the first MCS
  • the The MCS of the second signal is the second MCS
  • the first MCS is used to determine the time density of the first reference signal
  • the second MCS is used to determine the time density of the second reference signal.
  • the time density of the first reference signal and the time density of the second reference signal are both equal to the target time density; when the first signal and the second signal carry the same transmission block, the first signaling indicates a target MCS, the MCS of the first signal and the MCS of the second signal are both the target MCS, and the target MCS is used to determine the target time density; when the first signal and the second signal carry different transmission blocks, the first signaling indicates the first MCS and the second MCS, the MCS of the first signal is the first MCS, the MCS of the second signal is the second MCS, the first MCS is used to determine the first time density, The second MCS is used to determine a second time density, and at least one of the first time density or the second time density is used to determine the target time density.
  • the transmission power of the first reference signal per RE is linearly related to the linear value of the first target factor
  • the transmission power of the second reference signal per RE is linearly related to the linear value of the second target factor
  • the first target factor and the second target factor are related to whether the first signal and the second signal carry the same transport block.
  • the first target factor is equal to the second factor
  • the second target factor is equal to the fourth factor
  • the first target factor is equal to the sum of the second factor and the third factor
  • the second target factor is equal to the sum of the fourth factor and the fifth factor
  • the second factor is related to the number of layers of the first signal
  • the fourth factor is related to the number of layers of the second signal.
  • the first signal and the second signal carry the same transport block, neither the number of layers of the first signal nor the number of layers of the second signal is greater than the number of reference layers; when the first signal and the second signal carry different transport blocks, the sum of the number of layers of the first signal and the number of layers of the second signal is not greater than the number of reference layers.
  • the first signal and the second signal carry the same transmission block, and the time-domain resource occupied by the first signal is orthogonal to the time-domain resource occupied by the second signal; or, the first signal and the second signal carry different transmission blocks, and the time-frequency resource occupied by the first signal overlaps with the time-frequency resource occupied by the second signal.
  • the second receiver 1302 receives the first demodulation reference signal and the second demodulation reference signal in the target time-frequency resource block; wherein, the antenna port of the first reference signal is associated with one antenna port of the first demodulation reference signal; the antenna port of the second reference signal is associated with one antenna port of the second demodulation reference signal.
  • User equipment, terminals and UE in this application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, network cards, IoT terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication, machine type communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, network cards, vehicle communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment .
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号。所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G NR(New Radio,新无线)系统中,无论是基站还是终端设备,均将会配置多个天线面板(Panel)。NR Rel-16标准已经可以支持基站通过多个天线面板同时发送无线信号,但是终端设备即使配置了多个天线面板也只支持基于天线面板选择的传输,即同一时刻只允许在一个天线面板上进行无线发送。在5G NR系统的未来演进中,为了提高系统容量,在基站和终端设备上都支持多个天线面板上同时发送无线信号是一个重要的技术方向。
发明内容
发明人通过研究发现,如何支持多个信号的传输是需要解决的关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用上下行链路作为例子,本申请也适用于其他场景比如伴随链路,并取得类似在上下行链路中的技术效果。此外,不同场景(包括但不限于下行链路,上行链路和伴随链路)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令;
在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;
其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,本申请要解决的问题包括:多参考信号传输的时间密度。
根据本申请的一个方面,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
根据本申请的一个方面,其特征在于,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS, 所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
根据本申请的一个方面,其特征在于,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
根据本申请的一个方面,其特征在于,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
根据本申请的一个方面,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
根据本申请的一个方面,其特征在于,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
根据本申请的一个方面,其特征在于,包括:
在所述目标时频资源块中发送第一解调参考信号和第二解调参考信号;
其中,所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联;所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令;
在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;
其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
根据本申请的一个方面,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
根据本申请的一个方面,其特征在于,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
根据本申请的一个方面,其特征在于,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
根据本申请的一个方面,其特征在于,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
根据本申请的一个方面,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
根据本申请的一个方面,其特征在于,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
根据本申请的一个方面,其特征在于,包括:
在所述目标时频资源块中接收第一解调参考信号和第二解调参考信号;
其中,所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联;所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令;
第一发射机,在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;
其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令;
第二接收机,在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;
其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-所提的发送功率方案考虑了波束方向/天线面板/发收节点因素,适用于多波束方向/多天线面板/多发收节点下的传输。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令、第一信号、第二信号、第一参考信号和第二参考信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关的示意图;
图7示出了根据本申请的另一个实施例的所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关的示意图;
图8示出了根据本申请的一个实施例的所述第一参考信号在每RE上的发送功率和所述第二参考信号在每RE上的发送功率的示意图;
图9示出了根据本申请的一个实施例的所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关的示意图;
图10示出了根据本申请的一个实施例的所述第一信号的层数和所述第二信号的层数的示意图;
图11示出了根据本申请的一个实施例的所述第一信号和所述第二信号的关系的示意图;
图12示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令、第一信号、第二信号、第一参考信号和第二参考信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令;在步骤102中在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是被用于调度PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)的DCI信令。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control CHannel,物理下行控制信道)上传输。
典型的,所述目标时频资源块包括多个资源粒子(Resource Element,RE)。
典型的,一个资源粒子在频域占用一个子载波,在时域占用一个符号。
作为一个实施例,所述符号是单载波符号。
作为一个实施例,所述符号是多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一信令指示所述目标时频资源块占用的频域资源和所述目标时频资源块占用 的时域资源。
作为一个实施例,所述第一信令包括第一域和第二域,所述第一信令包括的所述第一域,所述第一域包括至少一个比特,所述第二域包括至少一个比特;所述第一信令包括的所述第一域指示所述目标时频资源块占用的频域资源;所述第一信令包括的所述第二域指示所述目标时频资源块占用的时域资源。
作为一个实施例,所述第一域是Frequency domain resource assignment域,所述第二域是Time domain resource assignment域。
作为一个实施例,所述Frequency domain resource assignment域和所述Time domain resource assignment域的具体定义参见3GPP TS38.214中的第6.1.2章节。
作为一个实施例,所述短语“占用的频域资源”是指:占用的资源块(Resource Block,RB)。
作为一个实施例,所述短语“占用的频域资源”是指:占用的子载波。
典型的,所述短语“占用的时域资源”是指:占用的符号。
作为一个实施例,所述第一信号和所述第二信号都在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上传输。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块(Transport Block,TB),或者,所述第一信号和所述第二信号承载不同的传输块。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号和所述第二信号分别包括同一个传输块的两个PUSCH重复。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号和所述第二信号分别是两个PUSCH。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号占用一个PUSCH的所有层,所述第二信号占用一个PUSCH的所有层。
作为一个实施例,当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号和所述第二信号共同组成一个PUSCH。
作为一个实施例,当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号和所述第二信号分别包括同一个PUSCH的两个码字(codeword)。
作为一个实施例,当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号和所述第二信号分别占用一个PUSCH的不同层(layer(s))。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号和所述第二信号分别是两个PUSCH;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号和所述第二信号共同组成一个PUSCH。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号和所述第二信号是时分复用的;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号和所述第二信号是空分复用的。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号和所述第二信号分别包括同一个传输块的两个PUSCH重复;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号和所述第二信号共同组成一个PUSCH。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号的层数等于所述第一信号所占用的PUSCH的层数,所述第二信号的层数等于所述第二信号所占用的PUSCH的层数;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号和所述第二信号共同组成一个PUSCH。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号的层数和所述第二信号的层数相同;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号和所述第二信号共同组成一个PUSCH。
作为一个实施例,所述句子“所述第一信号和所述第二信号共同组成一个PUSCH”的意思包括:所述第一信号和所述第二信号分别包括同一个PUSCH的两个码字(codeword)。
作为一个实施例,所述句子“所述第一信号和所述第二信号共同组成一个PUSCH”的意思包括:所述第一信号和所述第二信号分别占用一个PUSCH的不同层(layer(s))。
作为一个实施例,所述句子“所述第一信号和所述第二信号共同组成一个PUSCH”的意思包括:所述第一信号和所述第二信号共同所组成的所述一个PUSCH的层数等于所述第一信号的层数和所述第二信号的层数之和。
作为一个实施例,所述第一参考信号和所述第二参考信号分别占用的时频资源是正交的。
典型的,所述短语“占用的时频资源”是指:占用的所有资源粒子。
作为一个实施例,所述第一参考信号和所述第二参考信号都是上行参考信号。
作为一个实施例,所述第一参考信号和所述第二参考信号的名称都包括相位。
作为一个实施例,所述第一参考信号和所述第二参考信号的名称都包括跟踪。
作为一个实施例,所述第一参考信号和所述第二参考信号都是被用于相位跟踪(Phase Tracking)的参考信号。
作为一个实施例,所述第一参考信号和所述第二参考信号都是PTRS(Phase-Tracking Reference Signal,相位跟踪参考信号)。
作为一个实施例,所述第一参考信号是所述第一信号的PTRS,所述第二参考信号是所述第二信号的PTRS。
作为一个实施例,所述第一信令中的至少一个域指示所述第一参考信号资源组和所述第二参考信号资源组。
作为一个实施例,所述第一信令包括第三域,所述第一信令包括的所述第三域指示所述第一参考信号资源组和所述第二参考信号资源组;所述第三域包括至少一个比特。
作为一个实施例,所述第一信令包括第三域和第四域,所述第一信令包括的所述第三域指示所述第一参考信号资源组,所述第一信令包括的所述第四域指示所述第二参考信号资源组;所述第三域包括至少一个比特,所述第四域包括至少一个比特。
作为一个实施例,所述第三域是SRS resource indicator域。
作为一个实施例,所述第四域是SRS resource indicator域。
作为一个实施例,所述第三域的名称包括SRS,所述第四域的名称包括SRS。
作为一个实施例,所述第一参考信号资源组和所述第二参考信号资源组中的任一参考信号资源是一个SRS(Sounding Reference Signal,探测参考信号)资源。
作为一个实施例,所述第一参考信号资源组和所述第二参考信号资源组中的任一参考信号资源是一个CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源。
作为一个实施例,所述第一参考信号资源组包括第一SRS资源集合中的至少一个SRS资源,所述第二参考信号资源组包括第二SRS资源集合中的至少一个SRS资源;所述第一SRS资源集合包括多个SRS资源,所述第二SRS资源集合包括多个SRS资源。
作为一个实施例,所述第一参考信号资源组包括第一参考信号资源集合中的至少一个参考信号资源,所述第二参考信号资源组包括第二参考信号资源集合中的至少一个参考信号资源;所述第一参考信号资源集合包括多个参考信号资源,所述第二参考信号资源集合包括多个参考信号资源。
作为上述实施例的一个子实施例,所述第一参考信号资源集合和所述第二参考信号资源集合是由更高层信令指示的。
作为上述实施例的一个子实施例,所述第一参考信号资源集合和所述第二参考信号资源集合是由srs-ResourceSetToAddModList参数指示的。
作为上述实施例的一个子实施例,所述第一参考信号资源集合和所述第二参考信号资源集合是由IE SRS-Config指示的。
作为上述实施例的一个子实施例,所述第一参考信号资源集合中的任一参考信号资源是SRS资源或者CSI-RS资源,所述第二参考信号资源集合中的任一参考信号资源是SRS资源或者CSI-RS资源。
作为上述实施例的一个子实施例,所述第一参考信号资源集合中的任一参考信号资源是SRS资源,所述第二参考信号资源集合中的任一参考信号资源是SRS资源。
作为上述实施例的一个子实施例,所述第一信号的传输方案是基于码本(Codebook based)的上行传输,所述第一参考信号资源组包括所述第一参考信号资源集合中的仅一个参考信号资源。
作为一个实施例,所述第一信号的传输方案(transmission scheme)是基于码本(Codebook based)的上行传输,所述第一参考信号资源组包括仅一个参考信号资源。
作为一个实施例,所述第二信号的传输方案(transmission scheme)是基于码本(Codebook based)的上行传输,所述第二参考信号资源组包括仅一个参考信号资源。
作为一个实施例,所述第二信号的传输方案是基于码本(Codebook based)的上行传输,所述第二参考信号资源组包括所述第二参考信号资源集合中的仅一个参考信号资源。
作为一个实施例,所述第一信号的传输方案是基于非码本(Non-codebook based)的上行传输,所述第一参考信号资源组包括的参考信号资源数量等于所述第一信号的层数。
作为一个实施例,所述第二信号的传输方案是基于非码本(Non-codebook based)的上行传输,所述第二参考信号资源组包括的参考信号资源数量等于所述第二信号的层数。
作为一个实施例,所述句子“所述第一参考信号资源组被用于确定发送所述第一信号的天线端口(port(s))”的意思包括:发送所述第一信号的天线端口(port(s))和所述第一参考信号资源组的天线端口(port(s))相同;所述句子“所述第二参考信号资源组被用于确定发送所述第二信号的天线端口(port(s))”的意思包括:发送所述第二信号的天线端口(port(s))和所述第二参考信号资源组的天线端口(port(s))相同。
作为一个实施例,所述句子“所述第一参考信号资源组被用于确定发送所述第一信号的天线端口(port(s))”的意思包括:所述第一节点采用与所述第一参考信号资源组的天线端口(port(s))相同的天线端口(port(s))发送所述第一信号;所述句子“所述第二参考信号资源组被用于确定发送所述第二信号的天线端口(port(s))”的意思包括:所述第一节点采用与所述第二参考信号资源组的天线端口(port(s))相同的天线端口(port(s))发送所述第二信号。
作为一个实施例,所述句子“所述第一参考信号资源组被用于确定发送所述第一信号的天线端口(port(s))”的意思包括:发送所述第一信号的天线端口的数量和所述第一参考信号资源组的天线端口的数量相同;所述句子“所述第二参考信号资源组被用于确定发送所述第二信号的天线端口(port(s))”的意思包括:发送所述第二信号的天线端口的数量和所述第二参考信号资源组的天线端口的数量相同。
作为一个实施例,所述句子“所述第一参考信号资源组被用于确定发送所述第一信号的天线端口(port(s))”的意思包括:发送所述第一信号的天线端口和所述第一参考信号资源组的天线端口具有相同的空间关系(spatial relation);所述句子“所述第二参考信号资源组被用于确定发送所述第二信号的天线端口(port(s))”的意思包括:发送所述第二信号的天线端口和所述第二参考信号资源组的天线端口具有相同的空间关系(spatial relation)。
作为一个实施例,所述句子“所述第一参考信号资源组被用于确定发送所述第一信号的天线端口(port(s))”的意思包括:发送所述第一信号的天线端口和所述第一参考信号资源组的天线端口具有相同的空间关系(spatial relation);所述句子“所述第二参考信号资源组被用于确定发送所述第二信号的天线端口(port(s))”的意思包括:发送所述第二信号的天线端口和所述第二参考信号资源组的天线端口具有相同的空间关系(spatial relation)。
作为一个实施例,所述空间关系包括:空间发送参数(Spatial Tx parameter)。
作为一个实施例,所述空间关系包括:空域发送滤波器(spatial domain transmission filter)。
作为一个实施例,所述空间关系包括:预编码。
作为一个实施例,所述空间关系包括:波束赋形。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号资源组的天线端口(port(s))被用于发送所述第一参考信号;所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号资源组的天线端口(port(s))被用于发送所述第二参考信号。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号经过预编码后的天线端口(port(s))属于所述第一参考信号资源组的天线端口(port(s));所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号经过预编码后的天线端口属于所述第二参考信号资源组的天线端口(port(s))。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所 述第一参考信号经过预编码后的天线端口(port(s))和所述第一参考信号资源组的天线端口(port(s))相同;所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号经过预编码后的天线端口和所述第二参考信号资源组的天线端口(port(s))相同。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号资源组中的一个参考信号资源的配置信息包括所述第一参考信号的天线端口号;所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号资源组中的一个参考信号资源的配置信息包括所述第二参考信号的天线端口号。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号资源组被用于确定所述第一参考信号经过预编码后的天线端口;所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号资源组被用于确定所述第二参考信号经过预编码后的天线端口。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号资源组被用于确定发送所述第一信号的天线端口(port(s)),所述第一参考信号经过预编码后的天线端口属于所述第一信号的天线端口;所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号资源组被用于确定发送所述第二信号的天线端口(port(s)),所述第二参考信号经过预编码后的天线端口属于所述第二信号的天线端口。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号经过预编码后的天线端口和所述第一参考信号资源组的天线端口具有相同的空间关系(spatial relation);所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号经过预编码后的天线端口和所述第二参考信号资源组的天线端口具有相同的空间关系(spatial relation)。
作为一个实施例,所述句子“所述第一参考信号被关联到所述第一参考信号资源组”的意思包括:所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联;所述句子“所述第二参考信号被关联到所述第二参考信号资源组”的意思包括:所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联。
作为一个实施例,所述第一参考信号的天线端口是j是非负整数;所述第一参考信号经过预编码后的天线端口是p0,p1,…,pρ-1,其中ρ是非负整数。
作为一个实施例,所述第二参考信号的天线端口是j是非负整数;所述第二参考信号经过预编码后的天线端口是p0,p1,…,pρ-1,其中ρ是非负整数。
典型的,所述和所述p0,p1,…,pρ-1的具体定义参见3GPP TS38.211的第6章节。
作为一个实施例,所述时间密度是正整数.
作为一个实施例,所述第一参考信号的时间密度是正整数,所述第二参考信号的时间密度是正整数。
作为一个实施例,一个参考信号的时间密度越小,所述一个参考信号在时间越密集;一个参考信号的时间密度越大,所述一个参考信号在时间越稀疏。
作为一个实施例,一个参考信号的时间密度等于所述一个参考信号占用的两个邻近符号之间的时间间隔。
作为一个实施例,一个参考信号的时间密度等于所述一个参考信号占用的两个邻近符号之间间隔的符号数。
作为一个实施例,一个参考信号的时间密度等于所述一个参考信号占用的两个邻近符号的索引之差。
作为一个实施例,两个符号之间的时间间隔是所述两个符号之间包括的符号数
作为一个实施例,所述句子“所述第一参考信号的时间密度(time density)和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号和所述第二信号承载相同的传输块时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同;当所述第一信号和所述第二信号承载不同的传输块时,所述第一参考信号的时间密度和所述第二参考信号的时间密度不同。
作为一个实施例,所述句子“所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第 一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号和所述第二信号承载相同的传输块时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同;当所述第一信号和所述第二信号承载不同的传输块时,所述第一参考信号的时间密度和所述第二参考信号的时间密度是分别被确定的。
作为一个实施例,所述句子“所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号和所述第二信号承载相同的传输块时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的MCS(Modulation and coding scheme,调制编码方案)被用于确定所述第一参考信号的时间密度,所述第二信号的MCS被用于确定所述第二参考信号的时间密度。
作为一个实施例,所述句子“所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号的MCS和所述第二信号的MCS是否相同有关,所述第一信号的MCS和所述第二信号的MCS是否相同与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述句子“所述第一信号的MCS和所述第二信号的MCS是否相同与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的MCS和所述第二信号的MCS相同;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的MCS和所述第二信号的MCS相同或者不同。
作为一个实施例,所述句子“所述第一信号的MCS和所述第二信号的MCS是否相同与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS。
作为一个实施例,所述句子“所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号的MCS和所述第二信号的MCS是否相同有关”的意思包括:当所述第一信号的MCS和所述第二信号的MCS相同时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同;当所述第一信号的MCS和所述第二信号的MCS不同时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同或者不同。
作为一个实施例,所述句子“所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号的MCS和所述第二信号的MCS是否相同有关”的意思包括:当所述第一信号的MCS和所述第二信号的MCS相同时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同;当所述第一信号的MCS和所述第二信号的MCS不同时,所述第一参考信号的时间密度和所述第二参考信号的时间密度不同。
作为一个实施例,所述句子“所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号的MCS和所述第二信号的MCS是否相同有关”的意思包括:当所述第一信号的MCS和所述第二信号的MCS相同时,所述第一参考信号的时间密度和所述第二参考信号的时间密度相同;当所述第一信号的MCS和所述第二信号的MCS不同时,所述第一信号的MCS被用于确定所述第一参考信号的时间密度,所述第二信号的MCS被用于确定所述第二参考信号的时间密度。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网 服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还 包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一参考信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二参考信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一解调参考信号和所述第二解调参考信号生成于所述PHY301,或所述PHY351。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以 恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令;在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令;在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参 考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述目标时频资源块中发送所述第一信号、所述第二信号、所述第一参考信号和所述第二参考信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述目标时频资源块中接收所述第一信号、所述第二信号、所述第一参考信号和所述第二参考信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述目标时频资源块中发送所述第一解调参考信号和所述第二解调参考信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述目标时频资源块中接收所述第一解调参考信号和所述第二解调参考信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01和第二节点N02分别是通过空中接口传输的两个通信节点;附图5中,方框F1中的步骤是可选的。
对于第一节点U01,在步骤S5101中接收第一信令;在步骤S5102中在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;在步骤S5103中在目标时频资源块中发送第一解调参考信号和第二解调参考信号;
对于第二节点N02,在步骤S5201中发送第一信令;在步骤S5202中在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;在步骤S5203中在目标时频资源块中接收第一解调参考信号和第二解调参考信号。
在实施例5中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联;所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联。
作为一个实施例,句子“所述目标MCS被用于确定目标时间密度”的意思包括:根据所述目标MCS通过查表得到目标时间密度;句子“所述第一MCS被用于确定所述第一参考信号的时间密度”的意思包括: 根据所述第一MCS通过查表得到所述第一参考信号的时间密度;句子“所述第二MCS被用于确定所述第二参考信号的时间密度”的意思包括:根据所述第二MCS通过查表得到所述第二参考信号的时间密度;句子“所述第一信号的MCS被用于确定所述第一参考信号的时间密度”的意思包括:根据所述第一信号的MCS通过查表得到所述第一参考信号的时间密度;句子“所述第二信号的MCS被用于确定所述第二参考信号的时间密度”的意思包括:根据所述第二信号的MCS通过查表得到所述第二参考信号的时间密度;句子“所述第一MCS被用于确定第一时间密度”的意思包括:根据所述第一MCS通过查表得到第一时间密度;句子“所述第二MCS被用于确定第二时间密度”的意思包括:根据所述第二MCS通过查表得到第二时间密度。
作为一个实施例,句子“所述目标MCS被用于确定目标时间密度”的意思包括:根据所述目标MCS通过函数运算得到目标时间密度;句子“所述第一MCS被用于确定所述第一参考信号的时间密度”的意思包括:根据所述第一MCS通过函数运算得到所述第一参考信号的时间密度;句子“所述第二MCS被用于确定所述第二参考信号的时间密度”的意思包括:根据所述第二MCS通过函数运算得到所述第二参考信号的时间密度;句子“所述第一信号的MCS被用于确定所述第一参考信号的时间密度”的意思包括:根据所述第一信号的MCS通过函数运算得到所述第一参考信号的时间密度;句子“所述第二信号的MCS被用于确定所述第二参考信号的时间密度”的意思包括:根据所述第二信号的MCS通过函数运算得到所述第二参考信号的时间密度;句子“所述第一MCS被用于确定第一时间密度”的意思包括:根据所述第一MCS通过函数运算得到第一时间密度;句子“所述第二MCS被用于确定第二时间密度”的意思包括:根据所述第二MCS通过函数运算得到第二时间密度。
作为一个实施例,句子“所述目标MCS被用于确定目标时间密度”的意思包括:根据所述目标MCS通过映射关系得到目标时间密度;句子“所述第一MCS被用于确定所述第一参考信号的时间密度”的意思包括:根据所述第一MCS通过映射关系得到所述第一参考信号的时间密度;句子“所述第二MCS被用于确定所述第二参考信号的时间密度”的意思包括:根据所述第二MCS通过映射关系得到所述第二参考信号的时间密度;句子“所述第一信号的MCS被用于确定所述第一参考信号的时间密度”的意思包括:根据所述第一信号的MCS通过映射关系得到所述第一参考信号的时间密度;句子“所述第二信号的MCS被用于确定所述第二参考信号的时间密度”的意思包括:根据所述第二信号的MCS通过映射关系得到所述第二参考信号的时间密度;句子“所述第一MCS被用于确定第一时间密度”的意思包括:根据所述第一MCS通过映射关系得到第一时间密度;句子“所述第二MCS被用于确定第二时间密度”的意思包括:根据所述第二MCS通过映射关系得到第二时间密度。
作为一个实施例,句子“所述目标MCS被用于确定目标时间密度”的意思包括:N个MCS集合分别和N个时间密度一一对应,N是大于1的正整数;所述N个MCS集合中包括所述目标MCS的一个MCS集合与所述目标时间密度对应,所述目标时间密度是所述N个时间密度中之一。
作为一个实施例,句子“所述第一MCS被用于确定所述第一参考信号的时间密度”的意思包括:N1个MCS集合分别和N1个时间密度一一对应,N1是大于1的正整数;所述N1个MCS集合中包括所述第一MCS的一个MCS集合与所述第一参考信号的时间密度对应,所述第一参考信号的时间密度是所述N1个时间密度中之一;句子“所述第二MCS被用于确定所述第二参考信号的时间密度”的意思包括:N2个MCS集合分别和N2个时间密度一一对应,N2是大于1的正整数;所述N2个MCS集合中包括所述第二MCS的一个MCS集合与所述第二参考信号的时间密度对应,所述第二参考信号的时间密度是所述N2个时间密度中之一。
作为一个实施例,句子“所述第一信号的MCS被用于确定所述第一参考信号的时间密度”的意思包括:N1个MCS集合分别和N1个时间密度一一对应,N1是大于1的正整数;所述N1个MCS集合中包括所述第一信号的MCS的一个MCS集合与所述第一参考信号的时间密度对应,所述第一参考信号的时间密度是所述N1个时间密度中之一;句子“所述第二信号的MCS被用于确定所述第二参考信号的时间密度”的意思包括:N2个MCS集合分别和N2个时间密度一一对应,N2是大于1的正整数;所述N2个MCS集合中包括所述第二信号的MCS的一个MCS集合与所述第二参考信号的时间密度对应,所述第二参考信号的时间密度是所述N2个时间密度中之一。
作为一个实施例,句子“所述第一MCS被用于确定第一时间密度”的意思包括:N1个MCS集合分别和N1个时间密度一一对应,N1是大于1的正整数;所述N1个MCS集合中包括所述第一MCS的一个MCS集合 与所述第一时间密度对应,所述第一时间密度是所述N1个时间密度中之一;句子“所述第二MCS被用于确定第二时间密度”的意思包括:N2个MCS集合分别和N2个时间密度一一对应,N2是大于1的正整数;所述N2个MCS集合中包括所述第二MCS的一个MCS集合与所述第二时间密度对应,所述第二时间密度是所述N2个时间密度中之一。
作为一个实施例,所述N、所述N1和所述N2都相同。
作为一个实施例,所述N、所述N1和所述N2中至少两个不同。
作为一个实施例,针对所述第一解调参考信号和所述第二解调参考信号的测量被用于所述第一信号和所述第二信号的解调。
作为一个实施例,针对所述第一解调参考信号和所述第二解调参考信号的测量估计出的信道被用于所述第一信号和所述第二信号的解调。
作为一个实施例,针对所述第一解调参考信号的测量被用于所述第一信号的解调,针对所述第二解调参考信号的测量被用于所述第二信号的解调。
作为一个实施例,针对所述第一解调参考信号或者所述第二解调参考信号中的至少所述第一解调参考信号的测量被用于所述第一信号的解调,针对所述第一解调参考信号或者所述第二解调参考信号中的至少所述第二解调参考信号的测量被用于所述第二信号的解调。
作为一个实施例,针对所述第一解调参考信号的测量估计出的信道被用于所述第一信号的解调,针对所述第二解调参考信号的测量估计出的信道被用于所述第二信号的解调。
作为一个实施例,所述第一解调参考信号包括所述第一信号的DMRS(DeModulation Reference Signals,解调参考信号),所述第二解调参考信号包括所述第二信号的DMRS。
作为一个实施例,所述第一参考信号资源组被用于确定所述第一解调参考信号经过预编码后的天线端口(port(s)),所述第二参考信号资源组被用于确定所述第二解调参考信号经过预编码后的天线端口。
作为一个实施例,所述第一参考信号资源组的天线端口被用于发送所述第一解调参考信号,所述第二参考信号资源组的天线端口被用于发送所述第二解调参考信号。
作为一个实施例,发送所述第一信号的所述天线端口和所述第一解调参考信号经过预编码后的天线端口(port(s))相同,发送所述第二信号的所述天线端口和所述第二解调参考信号经过预编码后的天线端口(port(s))相同。
作为一个实施例,发送所述第一信号的所述天线端口被用于发送所述第一解调参考信号,发送所述第二信号的所述天线端口被用于发送所述第二解调参考信号。
作为一个实施例,所述第一信令指示所述第一参考信号的天线端口与所述第一解调参考信号的哪个天线端口相关联,以及所述第二参考信号的天线端口与所述第二解调参考信号的哪个天线端口相关联。
作为一个实施例,所述第一信令指示所述第一参考信号的天线端口与所述第一解调参考信号的哪个天线端口相关联。
作为一个实施例,所述第一信令包括第五域,所述第一信令包括的所述第五域指示所述第一参考信号的天线端口与所述第一解调参考信号的哪个天线端口相关联;所述第五域包括至少一个比特。
作为一个实施例,所述第一信令包括第五域,所述第一信令包括的所述第五域指示所述第一参考信号的天线端口与所述第一解调参考信号的哪个天线端口相关联以及所述第二参考信号的天线端口与所述第二解调参考信号的哪个天线端口相关联;所述第五域包括至少一个比特。
作为一个实施例,所述第一信令包括第五域和第六域,所述第一信令包括的所述第五域指示所述第一参考信号的天线端口与所述第一解调参考信号的哪个天线端口相关联,所述第一信令包括的所述第六域指示所述第二参考信号的天线端口与所述第二解调参考信号的哪个天线端口相关联;所述第五域包括至少一个比特,所述第六域包括至少一个比特。
作为一个实施例,所述第五域是PTRS-DMRS association域。
作为一个实施例,所述第六域是PTRS-DMRS association域。
作为一个实施例,所述PTRS-DMRS association域的具体定义参见3GPP TS38.212的第7.3章节。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号占用的频域资源属于所述第一解调参考信号的一个天线端口所占 用的频域资源;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第二参考信号占用的频域资源属于所述第二解调参考信号的一个天线端口所占用的频域资源。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号占用的子载波属于所述第一解调参考信号的一个天线端口所占用的子载波;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第二参考信号占用的子载波属于所述第二解调参考信号的一个天线端口所占用的子载波。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号的天线端口被用于补偿所述第一解调参考信号的相位噪声;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第二参考信号的天线端口被用于补偿所述第二解调参考信号的相位噪声。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号的天线端口被用于补偿所述第一信号的相位噪声;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第二参考信号的天线端口被用于补偿所述第二信号的相位噪声。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号经过预编码后的天线端口(port(s))和所述第一解调参考信号经过预编码后的天线端口相同;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第二参考信号经过预编码后的天线端口(port(s))和所述第二解调参考信号经过预编码后的天线端口相同。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号和所述第一解调参考信号具有相同的预编码;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第一参考信号和所述第二解调参考信号具有相同的预编码。
作为一个实施例,所述句子“所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联”的意思包括:所述第一解调参考信号的一个天线端口所经历的小尺度信道衰落参数能被用于推断出所述第一参考信号的天线端口所经历的小尺度信道衰落参数;所述句子“所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联”的意思包括:所述第二解调参考信号的一个天线端口所经历的小尺度信道衰落参数能被用于推断出所述第二参考信号的天线端口所经历的小尺度信道衰落参数。
实施例6
实施例6示例了根据本申请的一个实施例的所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关的示意图;如附图6所示。
在实施例6中,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
作为一个实施例,所述第一信号占用的时频资源包括所述第二参考信号占用的部分或全部时频资源。
作为一个实施例,所述第二信号占用的时频资源包括所述第一参考信号占用的部分或全部时频资源。
作为一个实施例,所述第一信号占用的时频资源包括所述第二参考信号占用的部分或全部时频资源,所述第二信号占用的时频资源包括所述第一参考信号占用的部分或全部时频资源。
作为一个实施例,所述第一信号占用的时频资源与所述第二参考信号占用的时频资源正交。
作为一个实施例,所述第二信号占用的时频资源与所述第一参考信号占用的时频资源正交。
作为一个实施例,所述第一信号占用的时频资源与所述第二参考信号占用的时频资源正交,所述第二 信号占用的时频资源与所述第一参考信号占用的时频资源正交。
作为一个实施例,所述第一信令指示所述目标MCS的索引。
作为一个实施例,所述第一信号包括第七域,所述第一信号中的所述第七域指示目标MCS;所述第七域包括至少一个比特。
作为一个实施例,所述第七域包括5个比特。
作为一个实施例,所述第七域是Modulation and coding scheme域。
作为一个实施例,所述Modulation and coding scheme域的具体定义参见3GPP TS38.212的第7.3章节。
典型的,所述MCS包括调制阶数(modulation order)、目标码率(target code rate)。
典型的,所述MCS包括调制阶数(modulation order)、目标码率(target code rate)和频谱效率(spectral efficiency)。
作为一个实施例,所述第一信令指示所述第一MCS的索引和所述第二MCS的索引。
作为一个实施例,所述第一信号包括第七域和第八域,所述第一信号中的所述第七域指示第一MCS,所述第一信号中的所述第八域指示第二MCS;所述第七域包括至少一个比特,所述第八域包括至少一个比特。
作为一个实施例,所述第七域包括5个比特。
作为一个实施例,所述第八域包括5个比特。
作为一个实施例,所述第七域是Modulation and coding scheme域,所述第八域是Modulation and coding scheme域。
实施例7
实施例7示例了根据本申请的另一个实施例的所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关的示意图;如附图7所示。
在实施例7中,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
作为一个实施例,所述第一时间密度是正整数,所述第二时间密度是正整数。
作为一个实施例,所述句子“所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度”的意思包括:所述第一时间密度或所述第二时间密度被用于确定所述目标时间密度。
作为一个实施例,所述句子“所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度”的意思包括:所述目标时间密度是所述第一时间密度或者所述第二时间密度。
作为一个实施例,所述句子“所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度”的意思包括:所述第一时间密度和所述第二时间密度的大小关系被用于确定所述目标时间密度。
作为一个实施例,所述句子“所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度”的意思包括:所述目标时间密度是所述第一时间密度和所述第二时间密度中的较小者。
作为上述实施例的一个子实施例,当所述第一时间密度和所述第二时间密度相同时,所述目标时间密度是所述第一时间密度。
作为上述实施例的一个子实施例,当所述第一时间密度小于所述第二时间密度相同时,所述目标时间密度是所述第一时间密度。
作为上述实施例的一个子实施例,当所述第一时间密度大于所述第二时间密度相同时,所述目标时间密度是所述第二时间密度。
作为一个实施例,所述句子“所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目 标时间密度”的意思包括:当所述第一时间密度和所述第二时间密度相同时,所述目标时间密度等于所述第一时间密度;当所述第一时间密度和所述第二时间密度不同时,所述目标时间密度等于参考时间密度。
作为上述实施例的一个子实施例,所述参考时间密度是正整数。
作为上述实施例的一个子实施例,所述参考时间密度是1。
作为上述实施例的一个子实施例,所述参考时间密度不大于所述第一时间密度和所述第二时间密度。
作为上述实施例的一个子实施例,所述参考时间密度是预定义的。
作为上述实施例的一个子实施例,所述参考时间密度是固定的。
作为上述实施例的一个子实施例,所述参考时间密度是可配置的。
作为一个实施例,所述句子“所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度”的意思包括:所述第一时间密度和所述第二时间密度共同被用于确定所述目标时间密度。
作为一个实施例,所述句子“所述第一时间密度和所述第二时间密度共同被用于确定所述目标时间密度”的意思包括:所述第一时间密度和所述第二时间密度的大小关系被用于确定所述目标时间密度。
作为一个实施例,所述句子“所述第一时间密度和所述第二时间密度共同被用于确定所述目标时间密度”的意思包括:所述目标时间密度是所述第一时间密度和所述第二时间密度中的较小者。
作为一个实施例,所述句子“所述第一时间密度和所述第二时间密度共同被用于确定所述目标时间密度”的意思包括:根据所述第一时间密度和所述第二时间密度通过查表得到所述目标时间密度。
作为一个实施例,所述句子“所述第一时间密度和所述第二时间密度共同被用于确定所述目标时间密度”的意思包括:根据所述第一时间密度和所述第二时间密度通过函数运算得到所述目标时间密度。
作为一个实施例,所述句子“所述第一时间密度和所述第二时间密度共同被用于确定所述目标时间密度”的意思包括:根据所述第一时间密度和所述第二时间密度通过映射关系得到所述目标时间密度。
作为一个实施例,所述函数运算是线性变换。
作为一个实施例,所述函数运算是非线性变换。
实施例8
实施例8示例了根据本申请的一个实施例的所述第一参考信号在每RE上的发送功率和所述第二参考信号在每RE上的发送功率的示意图;如附图8所示。
在实施例8中,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
典型的,所述第一目标因子是正实数,所述第二目标因子是正实数。
典型的,所述第一目标因子的单位是dB(分贝),所述第二目标因子的单位是dB。
典型的,所述第一目标因子等于所述第一目标因子的线性值的以10为底的对数再乘以10,所述第二目标因子等于所述第二目标因子的线性值的以10为底的对数再乘以10。
典型的,所述第一目标因子的线性值是c,所述第一目标因子是10log10c。
典型的,所述第二目标因子的线性值是c,所述第二目标因子是10log10c。
典型的,所述第一目标因子是α,所述第一目标因子的线性值是
典型的,所述第二目标因子是α,所述第二目标因子的线性值是
作为一个实施例,所述第一目标因子是
作为一个实施例,所述第二目标因子是
作为一个实施例,所述的具体定义参见3GPP TS38.214的第6章节。
典型的,所述第一参考信号在每RE上的所述发送功率的单位是mW(milliwatt,毫瓦),所述第二参考信号在每RE上的所述发送功率的单位是mW(milliwatt,毫瓦)。
作为一个实施例,所述第一参考信号在每RE上的所述发送功率等于第一参考功率与所述第一目标因子的线性值的乘积,所述第二参考信号在每RE上的所述发送功率等于第二参考功率与所述第一目标因子 的线性值的乘积。
作为一个实施例,所述第一参考功率是所述第一信号在每层(layer)每RE上的发送功率,所述第二参考功率是所述第二信号在每层(layer)每RE上的发送功率。
作为一个实施例,所述第一参考功率是所述第一解调参考信号的每天线端口每RE的发送功率,所述第二参考功率是所述第二解调参考信号的每天线端口每RE的发送功率。
作为一个实施例,所述第一参考功率是预定义的或者可配置的,所述第二参考功率是预定义的或者可配置的。
典型的,所述第一参考功率的单位是mW,所述第二参考功率的单位是mW。
作为一个实施例,所述第一参考信号在每RE上的发送功率与所述第一信号在每层(layer)每RE上的发送功率的比值等于第一目标因子的线性值,所述第二参考信号在每RE上的发送功率与所述第二信号在每层每RE上的发送功率的比值等于第二目标因子的线性值。
典型的,所述第一信号在每层(layer)每RE上的发送功率的单位是mW,所述第二信号在每层(layer)每RE上的发送功率的单位是mW。
典型的,“所述第一参考信号在每RE上的发送功率与所述第一信号在每层(layer)每RE上的发送功率的比值”是所述第一参考信号在每RE上的发送功率除以所述第一信号在每层(layer)每RE上的发送功率得到的数值。
作为一个实施例,“所述第一信号在每层每RE上的发送功率”等于所述第一信号的总发送功率除以所述第一信号的层数再除以占用的RE数量之后得到的数值;“所述第二信号在每层每RE上的发送功率”等于所述第二信号的总发送功率除以所述第二信号的层数再除以占用的RE数量之后得到的数值。
作为一个实施例,“所述第一信号在每层每RE上的发送功率”等于所述第一信号在每RE上的发送功率除以所述第一信号的层数得到的数值;“所述第二信号在每层每RE上的发送功率”等于所述第二信号在每RE上的发送功率除以所述第二信号的层数得到的数值。
作为一个实施例,所述句子“所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否空分复用有关,所述第一信号和所述第二信号是否承载相同的传输块与所述第一信号和所述第二信号是否空分复用有关。
作为一个实施例,所述句子“所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号和所述第二信号是时分复用时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号是空分复用时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
作为一个实施例,所述句子“所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:所述第一目标因子和所述第二目标因子与所述第一信号的MCS和所述第二信号的MCS是否相同有关,所述第一信号的MCS和所述第二信号的MCS是否相同与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述句子“所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关”的意思包括:当所述第一信号的MCS和所述第二信号的MCS相同并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信令指示第一MCS和第二MCS,并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
实施例9
实施例9示例了根据本申请的一个实施例的所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关的示意图;如附图9所示。
在实施例9中,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
典型的,所述第二因子是正实数,所述第三因子是正实数,所述第四因子是正实数,所述第五因子是正实数。
典型的,所述第二因子的单位是dB(分贝),所述第三因子的单位是dB(分贝),所述第四因子的单位是dB,所述第五因子的单位是dB(分贝)。
作为一个实施例,所述句子“所述第二因子与所述第一信号的层数有关”的意思包括:所述第二因子的线性值等于所述第一信号的层数;所述句子“所述第四因子与所述第二信号的层数有关”的意思包括:所述第四因子的线性值等于所述第二信号的层数。
作为一个实施例,所述第二因子还与所述第一信号的传输方案有关,所述第四因子还与所述第二信号的传输方案有关。
作为上述实施例的一个子实施例,所述第二因子至少还与所述第一信号的传输方案是函数关系,所述第四因子至少还与所述第二信号的传输方案是函数关系。
作为上述实施例的一个子实施例,所述第二因子至少还与所述第一信号的传输方案是映射关系,所述第四因子至少还与所述第二信号的传输方案是映射关系。
作为上述实施例的一个子实施例,所述第一节点根据至少所述第一信号的传输方案通过查表得到所述第二因子,所述第一节点根据至少所述第二信号的传输方案通过查表得到所述第四因子。
作为一个实施例,句子“给定因子与给定信号的层数有关”的意思包括:所述给定因子至少与所述给定信号的层数是函数关系。
作为一个实施例,句子“给定因子与给定信号的层数有关”的意思包括:所述给定因子至少与所述给定信号的层数是映射关系。
作为一个实施例,句子“给定因子与给定信号的层数有关”的意思包括:所述第一节点根据至少所述给定信号的层数通过查表得到所述给定因子。
作为一个实施例,所述句子“给定因子与给定信号的层数有关”的意思包括:当所述给定信号的层数分别等于1、2、3、4时,所述给定因子分别等于0、3、4.77和6。
作为一个实施例,所述句子“给定因子与给定信号的层数有关”的意思包括:所述给定信号的传输方案是全相关的(full coherent)基于码本的上行传输;当所述给定信号的层数分别等于1、2、3、4时,所述给定因子分别等于0、3、4.77和6。
作为一个实施例,所述句子“给定因子与给定信号的层数有关”的意思包括:所述给定信号的传输方案是部分相关的(partial coherent)基于码本的上行传输;当所述给定信号的层数分别等于1、2、3、4时,所述给定因子分别等于0、3Qp-3、3Qp-3和3Qp
作为一个实施例,所述句子“给定因子与给定信号的层数有关”的意思包括:所述给定信号的传输方案是非相关的(non-coherent)基于码本的上行传输或者基于非码本的上行传输;当所述给定信号的层数分别等于1、2、3、4时,所述给定因子分别等于0、3Qp-3、3Qp-3和3Qp-3。
作为一个实施例,句子“给定因子与给定信号的层数有关”的意思包括:所述给定因子等于所述给定信号的层数的dB值。
作为上述实施例的一个子实施例,所述给定信号的传输方案是全相关的(full coherent)基于码本的上行传输。
作为一个实施例,句子“给定因子与给定信号的层数有关”的意思包括:所述给定因子与所述给定信号的层数的dB值是线性相关的。
作为上述实施例的一个子实施例,所述给定信号的传输方案是全相关的(full coherent)基于码本的上行传输。
作为一个实施例,所述给定因子是所述第二因子,所述给定信号是所述第一信号。
作为一个实施例,所述给定因子是所述第四因子,所述给定信号是所述第二信号。
作为一个实施例,P1是所述第一参考信号的天线端口数量,P2是所述第二参考信号的天线端口数量,P等于所述P1和所述P2之和;所述第三因子与P和所述P1有关,所述第五因子与P和所述P2有关。
作为一个实施例,P1是所述第一参考信号的天线端口数量,P2是所述第二参考信号的天线端口数量,P等于所述P1和所述P2之和;所述第三因子与P和所述P1的比值有关,所述第五因子与P和所述P2的比值有关。
作为一个实施例,所述句子“所述第三因子与P和所述P1有关”的意思包括:所述第三因子与所述P和所述P1的比值有关;所述句子“所述第五因子与P和所述P2有关”的意思包括:所述第五因子与所述P和所述P2的比值有关。
作为一个实施例,所述句子“所述第三因子与P和所述P1有关”的意思包括:所述第三因子与所述P和所述P1是函数关系;所述句子“所述第五因子与P和所述P2有关”的意思包括:所述第五因子与所述P和所述P2是函数关系。
作为一个实施例,所述句子“所述第三因子与P和所述P1有关”的意思包括:所述第三因子与所述P和所述P1是映射关系;所述句子“所述第五因子与P和所述P2有关”的意思包括:所述第五因子与所述P和所述P2是映射关系。
作为一个实施例,所述句子“所述第三因子与P和所述P1有关”的意思包括:所述第一节点根据所述P和所述P1通过查表得到所述第三因子;所述句子“所述第五因子与P和所述P2有关”的意思包括:所述第一节点根据所述P和所述P2通过查表得到所述第五因子。
作为一个实施例,所述句子“所述第三因子与所述P和所述P1的比值有关”的意思包括:所述第三因子与所述P和所述P1的比值线性相关;所述句子“所述第五因子与所述P和所述P2的比值有关”的意思包括:所述第五因子与所述P和所述P2的比值线性相关。
作为一个实施例,所述句子“所述第三因子与所述P和所述P1的比值有关”的意思包括:所述第三因子等于所述P和所述P1的比值;所述句子“所述第五因子与所述P和所述P2的比值有关”的意思包括:所述第五因子等于所述P和所述P2的比值。
作为一个实施例,所述句子“所述第三因子与所述P和所述P1的比值有关”的意思包括:所述第三因子与所述P和所述P1的比值是函数关系;所述句子“所述第五因子与所述P和所述P2的比值有关”的意思包括:所述第五因子与所述P和所述P2的比值是函数关系。
作为一个实施例,所述句子“所述第三因子与所述P和所述P1的比值有关”的意思包括:所述第三因子与所述P和所述P1的比值是映射关系;所述句子“所述第五因子与所述P和所述P2的比值有关”的意思包括:所述第五因子与所述P和所述P2的比值是映射关系。
作为一个实施例,所述句子“所述第三因子与所述P和所述P1的比值有关”的意思包括:所述第一节点根据所述P和所述P1的比值通过查表得到所述第三因子;所述句子“所述第五因子与所述P和所述P2的比值有关”的意思包括:所述第一节点根据所述P和所述P2的比值通过查表得到所述第五因子。
作为一个实施例,P1是所述第一参考信号的天线端口数量,P2是所述第二参考信号的天线端口数量;所述第三因子与所述P1和所述P2有关,所述第五因子与所述P1和所述P2有关。
作为一个实施例,所述句子“所述第三因子与所述P1和所述P2有关”的意思包括:所述第三因子与所述P1和所述P2是函数关系;所述句子“所述第五因子与所述P1和所述P2有关”的意思包括:所述第五因子与所述P1和所述P2是函数关系。
作为一个实施例,所述句子“所述第三因子与所述P1和所述P2有关”的意思包括:所述第三因子与所述P1和所述P2是映射关系;所述句子“所述第五因子与所述P1和所述P2有关”的意思包括:所述第五因子与所述P1和所述P2是映射关系。
作为一个实施例,所述句子“所述第三因子与所述P1和所述P2有关”的意思包括:所述第一节点根据所述P1和所述P2通过查表得到所述第三因子;所述句子“所述第五因子与所述P1和所述P2有关”的意思包括:所述第一节点根据所述P1和所述P2通过查表得到所述第五因子。
作为一个实施例,当所述第一信号的层数等于1、所述P1等于1并且所述P2等于1时,所述第二因子等于0,所述第三因子等于3。
作为一个实施例,当所述第二信号的层数等于1、所述P1等于1并且所述P2等于1时,所述第四因子等于0,所述第五因子等于3。
作为一个实施例,当所述第一信号的层数等于1、所述P1等于2并且所述P2等于1时,所述第二因子等于0,所述第三因子等于1.76。
作为一个实施例,当所述第二信号的层数等于1、所述P1等于2并且所述P2等于1时,所述第四因子等于0,所述第五因子等于4.77。
作为一个实施例,当所述第一信号的层数等于1、所述P1等于1并且所述P2等于2时,所述第二因子等于0,所述第三因子等于4.77。
作为一个实施例,当所述第二信号的层数等于1、所述P1等于1并且所述P2等于2时,所述第四因子等于0,所述第五因子等于1.76。
作为一个实施例,当所述第一信号的层数等于1、所述P1等于2并且所述P2等于2时,所述第二因子等于0,所述第三因子等于3。
作为一个实施例,当所述第二信号的层数等于1、所述P1等于2并且所述P2等于2时,所述第四因子等于0,所述第五因子等于3。
作为一个实施例,当所述第一信号的层数等于2、所述P1等于1并且所述P2等于1时,所述第二因子等于3,所述第三因子等于3。
作为一个实施例,当所述第二信号的层数等于2、所述P1等于1并且所述P2等于1时,所述第四因子等于3,所述第五因子等于3。
作为一个实施例,当所述第一信号的层数等于2、所述P1等于2并且所述P2等于1时,所述第二因子等于3,所述第三因子等于1.76。
作为一个实施例,当所述第二信号的层数等于2、所述P1等于2并且所述P2等于1时,所述第四因子等于3,所述第五因子等于4.77。
作为一个实施例,当所述第一信号的层数等于2、所述P1等于1并且所述P2等于2时,所述第二因子等于3,所述第三因子等于4.77。
作为一个实施例,当所述第二信号的层数等于2、所述P1等于1并且所述P2等于2时,所述第四因子等于3,所述第五因子等于1.76。
作为一个实施例,当所述第一信号的层数等于2、所述P1等于2并且所述P2等于2时,所述第二因子等于3,所述第三因子等于3。
作为一个实施例,当所述第二信号的层数等于2、所述P1等于2并且所述P2等于2时,所述第四因子等于3,所述第五因子等于3。
实施例10
实施例10示例了根据本申请的一个实施例的所述第一信号的层数和所述第二信号的层数的示意图;如附图10所示。
在实施例10中,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
作为一个实施例,所述第一信号的层数、所述第二信号的层数和参考层数之间的关系与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,所述参考层数是PUSCH的最大层数。
作为一个实施例,所述参考层数是固定的。
作为一个实施例,所述参考层数是预定义的。
作为一个实施例,所述参考层数是由更高层参数配置的。
作为一个实施例,所述参考层数是由更高层参数maxMIMO-Layers配置的。
作为一个实施例,被用于配置所述参考层数的更高层参数的名称包括maxMIMO-Layers。
作为一个实施例,所述参考层数不大于4。
作为一个实施例,所述参考层数等于4。
作为一个实施例,所述参考层数是正整数。
实施例11
实施例11示例了根据本申请的一个实施例的所述第一信号和所述第二信号的关系的示意图;如附图11所示。
在实施例11中,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的MCS和所述第二信号的MCS相同。
作为一个实施例,所述句子“所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠”的意思包括:所述第一信号占用的时频资源和所述第二信号占用的时频资源完全重叠。
作为一个实施例,所述句子“所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠”的意思包括:所述第一信号占用的时频资源和所述第二信号占用的时频资源部分或完全重叠。
作为一个实施例,所述句子“所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠”的意思包括:所述第一信号占用的时频资源和所述第二信号占用的时频资源包括至少一个相同的RE。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图12所示。在附图12中,第一节点设备中的处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1201,接收第一信令;
第一发射机1202,在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;
在实施例12中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
作为一个实施例,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确 定所述目标时间密度。
作为一个实施例,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
作为一个实施例,所述第一发射机1202在所述目标时频资源块中发送第一解调参考信号和第二解调参考信号;其中,所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联;所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第二节点设备中的处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1301,发送第一信令;
第二接收机1302,在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;
在实施例13中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
作为一个实施例,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度, 所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
作为一个实施例,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
作为一个实施例,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
作为一个实施例,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
作为一个实施例,所述第二接收机1302在所述目标时频资源块中接收第一解调参考信号和第二解调参考信号;其中,所述第一参考信号的天线端口与所述第一解调参考信号的一个天线端口相关联;所述第二参考信号的天线端口与所述第二解调参考信号的一个天线端口相关联。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。

Claims (28)

  1. 一种用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令;
    第一发射机,在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;
    其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
  2. 根据权利要求1所述的第一节点设备,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
  3. 根据权利要求1所述的第一节点设备,其特征在于,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
  5. 根据权利要求4所述的第一节点设备,其特征在于,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
  7. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
  8. 一种用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信令;
    第二接收机,在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;
    其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参 考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
  9. 根据权利要求8所述的第二节点设备,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
  10. 根据权利要求8所述的第二节点设备,其特征在于,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
  11. 根据权利要求8至10中任一权利要求所述的第二节点设备,其特征在于,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
  12. 根据权利要求11所述的第二节点设备,其特征在于,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
  13. 根据权利要求8至12中任一权利要求所述的第二节点设备,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
  14. 根据权利要求8至11中任一权利要求所述的第二节点设备,其特征在于,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
  15. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令;
    在目标时频资源块中发送第一信号、第二信号、第一参考信号和第二参考信号;
    其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
  16. 根据权利要求15所述的方法,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
  17. 根据权利要求15所述的方法,其特征在于,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
  18. 根据权利要求15至17中任一权利要求所述的方法,其特征在于,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
  19. 根据权利要求18所述的方法,其特征在于,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
  20. 根据权利要求15至19中任一权利要求所述的方法,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
  21. 根据权利要求15至18中任一权利要求所述的方法,其特征在于,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
  22. 一种用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令;
    在目标时频资源块中接收第一信号、第二信号、第一参考信号和第二参考信号;
    其中,所述第一信令被用于指示所述目标时频资源块;所述第一信令被用于指示第一参考信号资源组和第二参考信号资源组,所述第一参考信号资源组被用于确定发送所述第一信号的天线端口,所述第二参考信号资源组被用于确定发送所述第二信号的天线端口;所述第一参考信号被关联到所述第一参考信号资源组,所述第二参考信号被关联到所述第二参考信号资源组;所述第一参考信号的时间密度和所述第二参考信号的时间密度与所述第一信号和所述第二信号是否承载相同的传输块有关。
  23. 根据权利要求22所述的方法,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定目标时间密度,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定所述第一参考信号的时间密度,所述第二MCS被用于确定所述第二参考信号的时间密度。
  24. 根据权利要求22所述的方法,其特征在于,所述第一参考信号的时间密度和所述第二参考信号的时间密度都等于目标时间密度;当所述第一信号和所述第二信号承载相同的传输块时,所述第一信令指示目标MCS,所述第一信号的MCS和所述第二信号的MCS都是所述目标MCS,所述目标MCS被用于确定所述目标时间密度;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信令指示第一MCS和第二MCS,所述第一信号的MCS是所述第一MCS,所述第二信号的MCS是所述第二MCS,所述第一MCS被用于确定第一时间密度,所述第二MCS被用于确定第二时间密度,所述第一时间密度或所述第二时间密度中的至少之一被用于确定所述目标时间密度。
  25. 根据权利要求22至24中任一权利要求所述的方法,其特征在于,所述第一参考信号在每RE上的发送功率与第一目标因子的线性值线性相关,所述第二参考信号在每RE上的发送功率与第二目标因子的线性值线性相关;所述第一目标因子和所述第二目标因子与所述第一信号和所述第二信号是否承载相同的传输块有关。
  26. 根据权利要求25所述的方法,其特征在于,当所述第一信号和所述第二信号承载相同的传输块并且所述第一信号和所述第二信号在时域正交时,所述第一目标因子等于第二因子,所述第二目标因子等于第四因子;当所述第一信号和所述第二信号承载不同的传输块并且所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠时,所述第一目标因子等于第二因子和第三因子之和,所述第二目标因子等于第四因子和第五因子之和;所述第二因子与所述第一信号的层数有关,所述第四因子与所述第二信号的层数有关。
  27. 根据权利要求22至26中任一权利要求所述的方法,其特征在于,当所述第一信号和所述第二信号承载相同的传输块时,所述第一信号的层数和所述第二信号的层数都不大于参考层数;当所述第一信号和所述第二信号承载不同的传输块时,所述第一信号的层数和所述第二信号的层数之和不大于所述参考层数。
  28. 根据权利要求22至25中任一权利要求所述的方法,其特征在于,所述第一信号和所述第二信号承载相同的传输块,所述第一信号占用的时域资源和所述第二信号占用的时域资源正交;或者,所述第一信号和所述第二信号承载不同的传输块,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
PCT/CN2023/072521 2022-01-21 2023-01-17 一种被用于无线通信的节点中的方法和装置 WO2023138555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210071464.6A CN116827496A (zh) 2022-01-21 2022-01-21 一种被用于无线通信的节点中的方法和装置
CN202210071464.6 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023138555A1 true WO2023138555A1 (zh) 2023-07-27

Family

ID=87347815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072521 WO2023138555A1 (zh) 2022-01-21 2023-01-17 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116827496A (zh)
WO (1) WO2023138555A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160088512A1 (en) * 2014-09-23 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) Reference signal density adaptation
CN111490861A (zh) * 2019-01-26 2020-08-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113162736A (zh) * 2020-01-07 2021-07-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160088512A1 (en) * 2014-09-23 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) Reference signal density adaptation
CN111490861A (zh) * 2019-01-26 2020-08-04 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113162736A (zh) * 2020-01-07 2021-07-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116827496A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113162736B (zh) 一种被用于无线通信的节点中的方法和装置
CN113258968B (zh) 一种被用于无线通信的节点中的方法和装置
CN113207163B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113271193A (zh) 一种被用于无线通信的节点中的方法和装置
WO2019144264A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113541898A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020156246A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112074009B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138555A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134736A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160320A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023169323A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023279981A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030349A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022242613A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023024964A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742870

Country of ref document: EP

Kind code of ref document: A1