WO2024099240A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024099240A1
WO2024099240A1 PCT/CN2023/129821 CN2023129821W WO2024099240A1 WO 2024099240 A1 WO2024099240 A1 WO 2024099240A1 CN 2023129821 W CN2023129821 W CN 2023129821W WO 2024099240 A1 WO2024099240 A1 WO 2024099240A1
Authority
WO
WIPO (PCT)
Prior art keywords
power value
target
value
power
coefficient
Prior art date
Application number
PCT/CN2023/129821
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024099240A1 publication Critical patent/WO2024099240A1/zh

Links

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for wireless signals in a wireless communication system supporting a cellular network.
  • both base stations and terminal devices will be equipped with multiple antenna panels.
  • the NR Rel-16 standard can already support base stations to send wireless signals through multiple antenna panels at the same time, but even if the terminal device is equipped with multiple antenna panels, it only supports transmission based on antenna panel selection, that is, wireless transmission is only allowed on one antenna panel at a time.
  • supporting terminal devices to send wireless signals on multiple antenna panels at the same time is an important evolution direction.
  • the inventors have discovered through research that how to determine the transmission power of a wireless signal is a key issue.
  • the present application discloses a solution. It should be noted that in the description of the present application, the multi-antenna panel is only used as a typical application scenario or example; the present application can also be applied to the application scenario of a single antenna panel. Furthermore, the use of a unified design scheme for different scenarios (including but not limited to multi-antenna panels, single antenna panels, etc.) can also help reduce hardware complexity and cost. In the absence of conflict, the embodiments and features in any node of the present application can be applied to any other node. In the absence of conflict, the embodiments and features in the embodiments of the present application can be arbitrarily combined with each other.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • a first receiver receives a first signaling
  • a first transmitter sends a first signal in a first time-frequency resource group
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; the first target reference signal resource is used to determine the antenna port of the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of the linear value of the first target power value and the first target coefficient is used to determine the linear value of the transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is the first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is the second coefficient.
  • the problem to be solved by the present application includes: how to determine the transmission power of a wireless signal.
  • the first power value and the second power value are used to determine whether the second signal is sent in the first time-frequency resource group.
  • the present application it is characterized in that whether the sum of the first power value and the second power value is greater than a first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the first power value and the second power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the first power value and the second power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the first power value is less than or equal to a first power threshold, and the second power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient,
  • the second target power value is a power value other than the first target power value in the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient in the first coefficient and the second coefficient.
  • the linear value of the third power value is the product of the linear value of the first power value and the first coefficient
  • the linear value of the fourth power value is the product of the linear value of the second power value and the second coefficient
  • whether the sum of the third power value and the fourth power value is greater than the first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the third power value and the fourth power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the third power value is less than or equal to the first power threshold, and the fourth power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient, or the linear value of the transmit power of the first signal is equal to the minimum value of the product of the linear value of the first target power value and the first target coefficient, and the linear value of the first power threshold;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient, the second target power value is a power value other than the first target power value between the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient between the first coefficient and the second coefficient.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes at least the second index
  • the first transmission block is mapped to a first codeword
  • the second transmission block is mapped to a second codeword
  • the size relationship between the index of the first codeword and the index of the second codeword is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the first reference information block is used to indicate a first TPMI set
  • the second reference information block is used to indicate a second TPMI set
  • the first signaling is used to indicate a first TPMI and a second TPMI
  • whether the first TPMI belongs to the first TPMI set is used to determine the first coefficient
  • whether the second TPMI belongs to the second TPMI set is used to determine the second coefficient.
  • the first coefficient and the second coefficient depend on the first information block set.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; the first target reference signal resource is used to determine the antenna port of the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of the linear value of the first target power value and the first target coefficient is used to determine the linear value of the transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is the first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is the second coefficient.
  • the first power value and the second power value are used to determine whether the second signal is sent in the first time-frequency resource group.
  • the present application it is characterized in that whether the sum of the first power value and the second power value is greater than a first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the first power value and the second power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the first power value and the second power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the first power value is less than or equal to a first power threshold, and the second power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient,
  • the second target power value is a power value other than the first target power value in the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient in the first coefficient and the second coefficient.
  • the linear value of the third power value is the product of the linear value of the first power value and the first coefficient
  • the linear value of the fourth power value is the product of the linear value of the second power value and the second coefficient
  • whether the sum of the third power value and the fourth power value is greater than the first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the third power value and the fourth power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the third power value is less than or equal to the first power threshold, and the fourth power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient, or the linear value of the transmit power of the first signal is equal to the minimum value of the product of the linear value of the first target power value and the first target coefficient, and the linear value of the first power threshold;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient, the second target power value is a power value other than the first target power value between the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient between the first coefficient and the second coefficient.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes at least the second index
  • the first transmission block is mapped to a first codeword
  • the second transmission block is mapped to a second codeword
  • the size relationship between the index of the first codeword and the index of the second codeword is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the first reference information block is used to indicate a first TPMI set
  • the second reference information block is used to indicate a second TPMI set
  • the first signaling is used to indicate a first TPMI and a second TPMI
  • whether the first TPMI belongs to the first TPMI set is used to determine the first coefficient
  • whether the second TPMI belongs to the second TPMI set is used to determine the second coefficient.
  • the first coefficient and the second coefficient depend on the first information block set.
  • the present application discloses a first node device used for wireless communication, characterized in that it includes:
  • a first receiver receives a first signaling
  • a first transmitter sends a first signal in a first time-frequency resource group
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; a first The product of the linear value of the target power value and the first target coefficient is used to determine the linear value of the transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is the first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is the second coefficient.
  • the present application discloses a second node device used for wireless communication, characterized in that it includes:
  • a second transmitter sends a first signaling
  • a second receiver receives a first signal in a first time-frequency resource group
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; the first target reference signal resource is used to determine the antenna port of the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of the linear value of the first target power value and the first target coefficient is used to determine the linear value of the transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is the first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is the second coefficient.
  • this application has the following advantages:
  • FIG1 shows a flow chart of a first signaling and a first signal according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flow chart of transmission according to an embodiment of the present application
  • FIG6 is a schematic diagram showing a method of determining whether the second signal is sent in the first time-frequency resource group according to an embodiment of the present application
  • FIG7 is a schematic diagram showing the transmission power of a first signal and the transmission power of a second signal according to an embodiment of the present application
  • FIG8 is a schematic diagram showing a method of determining whether the second signal is sent in the first time-frequency resource group according to another embodiment of the present application.
  • 9A-9B are schematic diagrams showing the transmission power of a first signal and the transmission power of a second signal respectively according to another embodiment of the present application;
  • FIG10 shows a schematic diagram of a first target reference signal resource according to an embodiment of the present application
  • 11A-11D are schematic diagrams respectively showing a first target reference signal resource according to another embodiment of the present application.
  • FIG12 is a schematic diagram showing a first coefficient and a second coefficient according to an embodiment of the present application.
  • FIG13 is a schematic diagram showing a first coefficient and a second coefficient according to another embodiment of the present application.
  • FIG14 is a schematic diagram showing a first power value and a second power value according to an embodiment of the present application.
  • FIG15 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • FIG16 shows a structural block diagram of a processing device for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first signaling and a first signal according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step.
  • the first node in the present application receives a first signaling in step 101; and sends a first signal in a first time-frequency resource group in step 102; wherein the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is a first coefficient, or the first target reference signal resource is
  • the first signaling is higher layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is MAC CE signaling.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first signaling is a DCI signaling used to schedule PUSCH (Physical Uplink Shared CHannel).
  • the first signaling is transmitted on PDCCH (Physical Downlink Control CHannel).
  • PDCCH Physical Downlink Control CHannel
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal is transmitted on an uplink physical channel.
  • the first signal is transmitted on a physical channel.
  • the first signal is transmitted on PUSCH.
  • the first signal carries a positive integer number of transport blocks (TB).
  • the first signal carries a transmission block.
  • the first signal includes a partial layer of the PUSCH.
  • the first signal includes all layers of the PUSCH in which it is located.
  • the first signal includes part or all layers of the PUSCH.
  • the first signal is transmitted on a codebook based PUSCH.
  • the first signaling schedules PUSCH of N layers, and the first signal carries N1 layer of the N layers, where N1 is a positive integer less than N, and N is a positive integer.
  • the first signaling schedules the PUSCH of N layers, and the first signal carries the N layers.
  • the first signal carries at least one code block group (Code Block Group, CBG).
  • CBG Code Block Group
  • the first signaling indicates scheduling information of the first signal.
  • the scheduling information of the first signal includes at least one of occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), DMRS (DeModulation Reference Signal) configuration information, HARQ (Hybrid Automatic Repeat reQuest) process number (Process Number), RV (Redundancy version), NDI (New Data Indicator), number of layers (Number of Layer(s)), antenna port, TCI status, SRS (Sounding Reference Signal) resource (resource) indicator (indicator), and PMI (Precoding Matrix Indicator).
  • the first signaling indicates the symbols included in the first time-frequency resource group in the time domain and the RBs (Resource Blocks) included in the first time-frequency resource group in the frequency domain.
  • the first signaling includes a third field and a fourth field
  • the third field in the first signaling indicates the first time
  • the fourth field in the first signaling indicates the symbols included in the first time-frequency resource group in the time domain, and the fourth field in the first signaling indicates the RBs included in the first time-frequency resource group in the frequency domain;
  • the third field includes at least one bit, and the fourth field includes at least one bit.
  • the third domain is the Time domain resource assignment domain
  • the fourth domain is the Frequency domain resource assignment domain
  • the specific definitions of the Time domain resource assignment field and the Frequency domain resource assignment field refer to Chapter 7.3.1 of 3GPP TS38.212.
  • the same field in the first signaling indicates the first index and the second index, and one field includes at least one bit.
  • different fields in the first signaling respectively indicate the first index and the second index, and one field includes at least one bit.
  • the first signaling includes a first field
  • the first field in the first signaling indicates a first index and a second index
  • the first field includes at least one bit
  • the first signaling includes a first field and a second field, the first field in the first signaling indicates a first index, and the second field in the first signaling indicates a second index; the first field includes at least one bit, and the second field includes at least one bit.
  • the first signaling includes a first field and a second field, the value of the first field in the first signaling is a first index, and the value of the second field in the first signaling is a second index; the first field includes at least one bit, and the second field includes at least one bit.
  • the first signaling includes a first field and a second field; the value of the first field and the value of the second field in the first signaling are respectively the first index and the second index, or the value of the first field and the value of the second field in the first signaling are respectively the second index and the first index; the first field includes at least one bit, and the second field includes at least one bit.
  • the first domain is an SRS resource indicator.
  • the second domain is a Second SRS resource indicator.
  • the first index and the second index are two different integers among 0, 1, ..., K-1, respectively, and K is a positive integer greater than 1.
  • the first index and the second index are two different integers among 1, 2, ..., K, respectively, where K is a positive integer greater than 1.
  • the first index and the second index are both non-negative integers.
  • the first index and the second index are both positive integers.
  • the first index and the second index are the same.
  • the first index and the second index are different.
  • the first index and the second index correspond to two different antenna panels (Antenna Panel) respectively.
  • the first index and the second index are indexes of two different antenna panels respectively.
  • the first index and the second index correspond to two different reference signal resource sets respectively, and the first reference signal resource and the second reference signal resource are SRS resources in the two different reference signal resource sets respectively.
  • an antenna panel typically includes a positive integer number of antennas.
  • the first index explicitly indicates a first reference signal resource.
  • the first index implicitly indicates a first reference signal resource.
  • the first index corresponds to a first reference signal resource
  • the second index corresponds to a second reference signal resource
  • the second index explicitly indicates a second reference signal resource.
  • the second index implicitly indicates a second reference signal resource.
  • the first index is the index of the first reference signal resource in the first reference signal resource set; the first reference signal resource set includes one or more reference signal resources; the second index is the index of the second reference signal resource in the second reference signal resource set; the second reference signal resource set includes one or more reference signal resources.
  • the first index is used to indicate the first reference signal resource from a first reference signal resource set
  • the second index is used to indicate the second reference signal resource from a second reference signal resource set.
  • the first reference signal resource set and the second reference signal resource set are both SRS resource sets configured for codebook-based transmission.
  • the first reference signal resource includes an uplink reference signal resource.
  • the first reference signal resource includes a downlink reference signal resource.
  • the first reference signal resource includes an SRS resource.
  • the first reference signal resources include CSI-RS (Channel State Information-Reference Signal) resources.
  • CSI-RS Channel State Information-Reference Signal
  • the first reference signal resource includes an SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast CHannel
  • the first reference signal resource includes at least one of SRS, CSI-RS or SS/PBCH blocks.
  • the second reference signal resource includes an uplink reference signal resource.
  • the second reference signal resource includes a downlink reference signal resource.
  • the second reference signal resource includes an SRS resource.
  • the second reference signal resources include CSI-RS (Channel State Information-Reference Signal) resources.
  • CSI-RS Channel State Information-Reference Signal
  • the second reference signal resource includes an SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast CHannel
  • the second reference signal resource includes at least one of an SRS resource, a CSI-RS resource or a SS/PBCH block.
  • the first reference signal resource is an SRS resource
  • the second reference signal resource is an SRS resource
  • the first reference signal resource and the second reference signal resource are both SRS resources configured for codebook-based transmission.
  • the first reference signal resource set includes at least one of SRS resources, CSI-RS resources or SS/PBCH blocks
  • the second reference signal resource set includes at least one of SRS resources, CSI-RS resources or SS/PBCH blocks.
  • the first reference signal resource set includes one or more SRS resources
  • the second reference signal resource set includes one or more SRS resources
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes at least the second index
  • the first signaling indicates scheduling information of the first transmission block and scheduling information of the second transmission block.
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes the second index
  • the scheduling information of the first transport block includes at least the first index and the first TPMI; the scheduling information of the second transport block includes the second index and the second TPMI.
  • TPMI Transmitted Precoding Matrix Indicator.
  • the full name of TPMI is Transmitting Precoding Matrix Indicator.
  • TPMI Transmission Precoding Matrix Indicator
  • TPMI Transmit Precoding Matrix Indicator.
  • the scheduling information of the first transport block includes at least the first index, the first TPMI and the first MCS; the scheduling information of the second transport block includes the second index, the second TPMI and the second MCS.
  • the first index is for a first transmission block
  • the second index is for a second transmission block
  • the sentence "the first index is for a first transmission block, and the second index is for a second transmission block” means that the first index is used to determine the antenna port (antenna port(s)) for transmitting the first transmission block, and the second index is used to determine the antenna port for transmitting the second transmission block.
  • the sentence “the first index is for a first transport block, and the second index is for a second transport block” means that: the first signaling indicates scheduling information of the first transport block and scheduling information of the second transport block, and the scheduling information of the first transport block includes The scheduling information of the second transmission block includes the first index, and the scheduling information of the second transmission block includes the second index.
  • the sentence "the first index is used to determine the antenna port for transmitting the first transmission block” means that the antenna port (antenna port(s) of the first transmission block is the same as the antenna port (antenna port(s) of the first reference signal resource; the sentence “the second index is used to determine the antenna port for transmitting the second transmission block” means that the antenna port (antenna port(s) of the second transmission block is the same as the antenna port (antenna port(s) of the second reference signal resource.
  • the sentence "the first index is used to determine the antenna port for transmitting the first transmission block” means that the transmission of the first transmission block uses the same antenna port as the first reference signal resource; the sentence “the second index is used to determine the antenna port for transmitting the second transmission block” means that the transmission of the second transmission block uses the same antenna port as the second reference signal resource.
  • the sentence "the first index is used to determine the antenna port for transmitting the first transport block” means that the first reference signal resource is an SRS resource, and the transmission of the first transport block adopts the same antenna port (antenna port(s)) as the SRS port (port(s)) in the first reference signal resource.
  • the sentence "the first index is used to determine the antenna port for transmitting the first transport block” means: the first reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the first transport block adopts the same spatial filter (spatial filter) or spatial parameter (spatial parameter) as that for receiving the first reference signal resource.
  • the sentence "the first index is used to determine the antenna port for transmitting the first transmission block” means: the first reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the first transmission block adopts the same precoder as that for receiving the first reference signal resource.
  • the sentence "the second index is used to determine the antenna port for transmitting the second transport block” means that the second reference signal resource is an SRS resource, and the transmission of the second transport block adopts the same antenna port (antenna port(s)) as the SRS port (port(s)) in the second reference signal resource.
  • the sentence "the second index is used to determine the antenna port for transmitting the second transport block” means that the second reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the second transport block adopts the same spatial filter (spatial filter) or spatial parameter (spatial parameter) as that for receiving the second reference signal resource.
  • the sentence "the second index is used to determine the antenna port for transmitting the second transport block” means: the second reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the second transport block adopts the same precoder as that for receiving the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource
  • the first target power value is the first power value
  • the first target coefficient is the first coefficient
  • the first target power value is the second power value
  • the first target coefficient is the second coefficient
  • the first target reference signal resource is the first reference signal resource
  • the first target power value is the first power value
  • the first target coefficient is a first coefficient
  • the first target reference signal resource is the second reference signal resource
  • the first target power value is the second power value
  • the first target coefficient is the second coefficient
  • whether the first target reference signal resource is the first reference signal resource or the second reference signal resource is predefined.
  • whether the first target reference signal resource is the first reference signal resource or the second reference signal resource is configurable.
  • whether the first target reference signal resource is the first reference signal resource or the second reference signal resource is indicated by the first signaling.
  • whether the first target reference signal resource is the first reference signal resource or the second reference signal resource is determined by the first signaling.
  • the sentence "a first target reference signal resource is used to determine an antenna port (antenna port(s)) of the first signal means that the antenna port (antenna port(s) of the first signal is the same as the antenna port (antenna port(s) of the first target reference signal resource.
  • the sentence “a first target reference signal resource is used to determine the antenna port of the first signal” means Including: the first signal uses the same antenna port as the first target reference signal resource.
  • the sentence "the first target reference signal resource is used to determine the antenna port of the first signal” means: the first target reference signal resource is an SRS resource, and the first signal uses the same antenna port (antenna port(s)) as the SRS port (port(s)) in the first target reference signal resource.
  • the sentence "the first target reference signal resource is used to determine the antenna port of the first signal” means: the first target reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the first signal adopts the same spatial filter (spatial filter) or spatial parameter (spatial parameter) as that for receiving the first target reference signal resource.
  • the sentence "the first target reference signal resource is used to determine the antenna port of the first signal” means: the first target reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the first signal adopts the same precoder as that for receiving the first target reference signal resource.
  • the index of the first transport block is smaller than the index of the second transport block, and the first target reference signal resource is the first reference signal resource.
  • the index of the first transport block is smaller than the index of the second transport block, and the first target reference signal resource is the second reference signal resource.
  • the index of the first transmission block is 0, the index of the second transmission block is 1, and the first target reference signal resource is the first reference signal resource.
  • the index of the first transport block is 0, the index of the second transport block is 1, and the first target reference signal resource is the second reference signal resource.
  • the index of the first transport block is 1, the index of the second transport block is 2, and the first target reference signal resource is the first reference signal resource.
  • the index of the first transport block is 1, the index of the second transport block is 2, and the first target reference signal resource is the second reference signal resource.
  • the linear value of the transmission power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient.
  • the linear value of the transmission power of the first signal is equal to the minimum value of the product of the linear value of the first target power value and the first target coefficient, and the linear value of the first power threshold.
  • the transmission power of the first signal is less than or equal to a first power threshold.
  • the linear value of the transmission power of the first signal is less than or equal to the product of the linear value of the first target power value and the first target coefficient.
  • the first power value is less than or equal to a first power threshold
  • the second power value is less than or equal to the first power threshold
  • the index of the first reference signal resource set is smaller than the size of the index of the first reference signal resource set, and the first target reference signal resource is the first reference signal resource.
  • the index of the first reference signal resource set is smaller than the size of the index of the first reference signal resource set, and the first target reference signal resource is the second reference signal resource.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2 .
  • FIG2 illustrates a network architecture 200 for LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced) and future 5G systems.
  • the network architecture 200 for LTE, LTE-A and future 5G systems is referred to as EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable terminology.
  • 5GS/EPS200 may include one or more UEs (User Equipment) 201, a UE 241 communicating with UE 201 through a sidelink, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and Internet service 230.
  • 5GS/EPS200 may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, 5GS/EPS200 provides packet switching services, but technicians in the field will readily understand that the various concepts presented throughout this application can be extended. To a network that provides circuit switching services.
  • NG-RAN202 includes NR (New Radio) Node B (gNB) 203 and other gNBs204.
  • gNB203 provides user and control plane protocol terminations toward UE201.
  • gNB203 can be connected to other gNBs204 via an Xn interface (e.g., backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive point), or some other suitable term.
  • gNB203 provides an access point to 5GC/EPC210 for UE201.
  • Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 via S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF214, S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes operator-specific Internet protocol services, which may include Internet, Intranet, IMS (IP Multimedia Subsystem) and Packet switching services.
  • the first node in the present application includes the UE201.
  • the first node in the present application includes the UE241.
  • the second node in the present application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X), or between two UEs, using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
  • a network layer e.g., IP layer
  • an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first reference information block and the second reference information block are generated in the RRC sublayer 306.
  • the first reference information block and the second reference information block are generated in the MAC sublayer 302 or the MAC sublayer 352.
  • the first information block set is generated in the RRC sublayer 306.
  • the first information block set is generated in the MAC sublayer 302.
  • the first information block set is generated in the MAC sublayer 352.
  • the first signaling in the present matter is generated in the PHY301.
  • the first signaling in the present matter is generated by the PHY351.
  • the first signal is generated by the PHY301.
  • the first signal is generated by the PHY351.
  • the second signal is generated by the PHY301.
  • the second signal is generated by the PHY351.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as constellation mapping based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any parallel stream destined for the second communication device 450.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer. Controller/processor
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • DL DownLink
  • the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using confirmation (ACK) and/or negative confirmation (NACK) protocols to support HARQ operations.
  • ACK confirmation
  • NACK negative confirmation
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the first communication device 410, and implements L2 layer functions for the user plane and the control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 that stores program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the second communication device 450 device at least: receives a first signaling; sends a first signal in a first time-frequency resource group; wherein the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power of the first
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: receiving a first signaling; sending a first signal in a first time-frequency resource group; wherein the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value
  • the first communication device 410 includes: at least one processor and at least one memory, wherein the at least one The memory includes computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the first communication device 410 device at least: sends a first signaling; receives a first signal in a first time-frequency resource group; wherein the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: sending a first signaling; receiving a first signal in a first time-frequency resource group; wherein the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power
  • the first node in the present application includes the second communication device 450.
  • the second node in the present application includes the first communication device 410.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first information block set in the present application; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first information block set in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first signaling in the present application; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first signaling in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ is used to send the first signal in the first time-frequency resource group in the present application; at least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first signal in the first time-frequency resource group in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ is used to send the second signal in the first time-frequency resource group in the present application; at least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the second signal in the first time-frequency resource group in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ is used to abandon sending the second signal in the first time-frequency resource group in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ is used to monitor the second signal in the first time-frequency resource group in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, and the memory 460 ⁇ is used to send the first reference information block and the second reference information block in the present application; at least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, and the memory 476 ⁇ is used to receive the first reference information block and the second reference information block in the present application.
  • Embodiment 5 illustrates a flowchart of wireless transmission according to an embodiment of the present application, as shown in Figure 5.
  • the first node U01 and the second node N02 are two communication nodes transmitted through the air interface, wherein the steps in blocks F1 and F2 are alternative.
  • a first reference information block and a second reference information block are sent; in step S5102, a first information block set is received; in step S5103, a first signaling is received; in step S5104, a first signal is sent in a first time-frequency resource group; in step S5105, a second signal is sent in the first time-frequency resource group; in step S5106, sending the second signal in the first time-frequency resource group is abandoned;
  • step S5201 For the second node N02 , in step S5201, a first reference information block and a second reference information block are received; in step S5202, a first information block set is sent; in step S5203, a first signal is sent; in step S5204, a first signal is received in a first time-frequency resource group; in step S5205, a second signal is monitored in the first time-frequency resource group;
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used by the first node U01 to determine a first power value, and the second index is used by the first node U01 to determine a second power value; the first target reference signal resource is used to determine the antenna port of the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of the linear value of the first target power value and the first target coefficient is used by the first node U01 to determine the linear value of the transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is the first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is the second coefficient.
  • the behavior of "receiving a first signal in a first time-frequency resource group” and the behavior of "monitoring a second signal in the first time-frequency resource group” are performed simultaneously.
  • the behavior of "receiving a first signal in a first time-frequency resource group” and the behavior of "monitoring a second signal in the first time-frequency resource group” are not performed simultaneously.
  • the first node monitors a first signal group in the first time-frequency resource group; the first signal group includes the first signal and the second signal; the behavior of "monitoring the first signal group in the first time-frequency resource group” includes the behavior of "receiving a first signal in the first time-frequency resource group” and the behavior of "monitoring a second signal in the first time-frequency resource group”.
  • the time-frequency resources occupied by the first signal overlap with the time-frequency resources occupied by the second signal.
  • the time domain resources occupied by the first signal overlap with the time domain resources occupied by the second signal.
  • the frequency domain resources occupied by the first signal are orthogonal to the frequency domain resources occupied by the second signal, and the time domain resources occupied by the first signal are overlapping to the time domain resources occupied by the second signal.
  • the overlapping means partial or complete overlapping.
  • it includes:
  • the first transmitter sends a second signal in the first time-frequency resource group
  • the sum of the transmission power of the first signal and the transmission power of the second signal is less than or equal to a first power threshold.
  • the behavior of "monitoring the second signal in the first time-frequency resource group" includes: receiving the second signal in the first time-frequency resource group.
  • the behavior of "monitoring the second signal in the first time-frequency resource group” includes: receiving the second signal in the first time-frequency resource group.
  • the behavior of "monitoring the second signal in the first time-frequency resource group” includes: monitoring whether the second signal is sent in the first time-frequency resource group.
  • the behavior of "monitoring the second signal in the first time-frequency resource group” includes: judging whether the second signal is sent in the first time-frequency resource group based on the power of the received signal in the first time-frequency resource group.
  • the second signal is not sent in the first time-frequency resource group; otherwise, it is considered that the second signal is sent in the first time-frequency resource group.
  • the reference power threshold is configured by the base station device itself.
  • the behavior of "monitoring the second signal in the first time-frequency resource group” includes: judging whether the second signal is sent in the first time-frequency resource group based on the correlation between the received signal and the second signal in the first time-frequency resource group.
  • the correlation between the received signal in the first time-frequency resource group and the second signal is low, it is considered that the second signal is sent in the first time-frequency resource group; otherwise, it is considered that the second signal is sent in the first time-frequency resource group.
  • the reference correlation threshold is configured by the base station device itself.
  • the behavior of "monitoring the second signal in the first time-frequency resource group” includes: measuring the received signal in the first time-frequency resource group according to the configuration parameters of the second signal to estimate the channel, and determining whether the second signal is sent in the first time-frequency resource group according to the estimated channel.
  • the second signal is not sent in the first time-frequency resource group; otherwise, it is considered that the second signal is sent in the first time-frequency resource group.
  • the reference channel energy threshold is configured by the base station device itself.
  • the second signal is not sent in the first time-frequency resource group; otherwise, it is considered that the second signal is sent in the first time-frequency resource group.
  • the reference channel power threshold is configured by the base station itself.
  • the second signal is not sent in the first time-frequency resource group; otherwise, it is considered that the second signal is sent in the first time-frequency resource group.
  • a second target reference signal resource is used to determine an antenna port of the second signal, and the second target reference signal resource is a reference signal resource other than the first target reference signal resource in the first reference signal resource and the second reference signal resource.
  • the first target reference resource is the first reference signal resource
  • the reference signal resource other than the first target reference signal resource among the first reference signal resource and the second reference signal resource is the second reference signal resource
  • the first target reference resource is the second reference signal resource
  • the reference signal resource other than the first target reference signal resource in the first reference signal resource and the second reference signal resource is the first reference signal resource
  • the sentence "a second target reference signal resource is used to determine the antenna port (antenna port(s)) of the second signal means that the antenna port (antenna port(s) of the second signal is the same as the antenna port (antenna port(s) of the second target reference signal resource.
  • the sentence "a second target reference signal resource is used to determine an antenna port for the second signal” means that the second signal uses the same antenna port as the second target reference signal resource.
  • the sentence "the second target reference signal resource is used to determine the antenna port of the second signal” means: the second target reference signal resource is an SRS resource, and the second signal uses the same antenna port (antenna port(s)) as the SRS port (port(s)) in the second target reference signal resource.
  • the sentence "the second target reference signal resource is used to determine the antenna port of the second signal” means: the second target reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the second signal adopts the same spatial filter (spatial filter) or spatial parameter (spatial parameter) as that for receiving the second target reference signal resource.
  • the sentence "the second target reference signal resource is used to determine the antenna port of the second signal” means: the second target reference signal resource is a CSI-RS resource or an SS/PBCH block, and the antenna port of the second signal adopts the same precoder as that for receiving the second target reference signal resource.
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal is transmitted on an uplink physical channel.
  • the second signal is transmitted on a physical channel.
  • the second signal is transmitted on PUSCH.
  • the second signal carries a positive integer number of transport blocks (TB).
  • the second signal carries a transmission block.
  • the second signal includes a partial layer of the PUSCH.
  • the second signal includes all layers of the PUSCH in which it is located.
  • the second signal includes part or all layers of the PUSCH.
  • the second signal is transmitted on a codebook based PUSCH.
  • the first signaling schedules PUSCH of N layers, the first signal carries N1 layer among the N layers, the second signal carries N2 layer among the N layers, the sum of N1 and N2 is equal to N, and N1, N2 and N are all positive integers.
  • the first signal and the second signal respectively include different layers of the PUSCH scheduled by the first signaling.
  • the first signal and the second signal are respectively used to carry different layers of the PUSCH scheduled by the first signaling.
  • the first signal and the second signal are respectively two PUSCH repetitions scheduled by the first signaling.
  • a PUSCH includes the first signal and the second signal.
  • the first signal and the second signal respectively carry different transmission blocks.
  • the first signal and the second signal jointly carry the same transmission block.
  • the first signal and the second signal respectively include different transmission blocks of the PUSCH scheduled by the first signaling.
  • the first signal and the second signal jointly carry the same transmission block.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block; one of the first transmission block and the second transmission block is carried by the first signal; when the second signal is sent, the other of the first transmission block and the second transmission block is carried by the second signal.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block; one of the first transmission block and the second transmission block is carried by the first signal; and the other of the first transmission block and the second transmission block is carried by the second signal.
  • the first signal and the second signal are transmitted on the same PUSCH.
  • the first signal and the second signal together constitute a PUSCH repetition.
  • the second signal carries at least one code block group (Code Block Group, CBG).
  • CBG Code Block Group
  • the first signaling indicates scheduling information of the second signal.
  • the first signaling indicates scheduling information of the first signal and scheduling information of the second signal.
  • the scheduling information of the first signal includes one of the scheduling information of the first transmission block and the scheduling information of the second transmission block
  • the scheduling information of the second signal includes the other of the scheduling information of the first transmission block and the scheduling information of the second transmission block.
  • the scheduling information of the second signal includes occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), DMRS (DeModulation Reference Signal) configuration information, HARQ (Hybrid Automatic Repeat reQuest) process number (Process Number), RV (Redundancy version), NDI (New Data Indicator), number of layers (Number of Layer(s)), At least one of an antenna port, a TCI state, an SRS (Sounding Reference Signal) resource indicator, and a PMI (Precoding Matrix Indicator).
  • the scheduling information of the second signal includes at least one of MCS (Modulation and Coding Scheme), configuration information of DMRS (DeModulation Reference Signal), HARQ (Hybrid Automatic Repeat reQuest) process number, RV (Redundancy version), NDI (New Data Indicator), number of layers (Number of Layer(s)), antenna port, TCI status, SRS (Sounding Reference Signal) resource indication (resource) indicator, and PMI (Precoding Matrix Indicator).
  • MCS Modulation and Coding Scheme
  • DMRS DeModulation Reference Signal
  • HARQ Hybrid Automatic Repeat reQuest
  • RV Redundancy version
  • NDI New Data Indicator
  • number of layers Number of Layer(s)
  • antenna port TCI status
  • SRS Sounding Reference Signal
  • resource indication resource indication
  • PMI Precoding Matrix Indicator
  • the first target coefficient is the first coefficient or the second coefficient
  • the first target power value is the first power value or the second power value
  • the first target coefficient and the first target power value depend on whether the first target reference signal resource is the first reference signal resource or the second reference signal resource.
  • whether the first target coefficient is the first coefficient or the second coefficient depends on whether the first target reference signal resource is the first reference signal resource or the second reference signal resource.
  • whether the first target power value is the first power value or the second power value depends on whether the first target reference signal resource is the first reference signal resource or the second reference signal resource.
  • the unit of the first power value is dBm (millibel)
  • the unit of the second power value is dBm
  • the unit of the first power threshold is dBm (millibel)
  • the unit of the transmit power of the first signal is dBm (millibel)
  • the unit of the transmit power of the second signal is dBm (millidecibel)
  • the unit of the linear value of the first power value is mW (milliwatt)
  • the unit of the linear value of the second power value is mW
  • the unit of the linear value of the first power threshold is mW
  • the unit of the linear value of the transmit power of the first signal is mW
  • the unit of the linear value of the transmit power of the second signal is mW.
  • the first power value is equal to the logarithm to the base 10 of the linear value of the first power value multiplied by 10
  • the second power value is equal to the logarithm to the base 10 of the linear value of the second power value multiplied by 10
  • the first power threshold is equal to the logarithm to the base 10 of the linear value of the first power threshold multiplied by 10
  • the transmission power of the first signal is equal to the logarithm to the base 10 of the linear value of the transmission power of the first signal multiplied by 10
  • the transmission power of the second signal is equal to the logarithm to the base 10 of the linear value of the transmission power of the second signal multiplied by 10.
  • the linear value of the given power value is p, and the given power value is 10lg(p).
  • the given power is the first power value.
  • the given power is the second power value.
  • the given power is the first power threshold.
  • the given power is the transmission power of the first signal.
  • the given power is the transmission power of the second signal.
  • the first target coefficient is 1.
  • the first target coefficient is a positive real number not greater than 1.
  • the first target coefficient is a positive real number that is 1 or less than 1.
  • the first target coefficient is the number of antenna ports with non-zero power of the first signal divided by the number of ports of the first target reference signal resource.
  • the first coefficient is 1.
  • the first coefficient is a positive real number not greater than 1.
  • the first coefficient is a positive real number that is 1 or less than 1.
  • the second coefficient is 1.
  • the second coefficient is a positive real number not greater than 1.
  • the second coefficient is a positive real number that is 1 or less than 1.
  • the first coefficient and the second coefficient are determined separately.
  • the first coefficient and the second coefficient are respectively determined by the TPMI of the corresponding transport block.
  • the first coefficient and the second coefficient are respectively determined by the TPMI of the corresponding codeword. Determined.
  • the first coefficient and the second coefficient are configured separately.
  • the first signaling indicates a first TPMI and a second TPMI
  • the first TPMI is used to determine the first coefficient
  • the second TPMI is used to determine the second coefficient
  • the first signaling indicates a first TPMI and a second TPMI
  • the first coefficient is the number of non-all-zero rows of the first TPMI divided by the number of ports of the first reference signal resource
  • the second coefficient is the number of non-all-zero rows of the second TPMI divided by the number of ports of the second reference signal resource.
  • the first signaling indicates a first TPMI and a second TPMI
  • the first coefficient is the number of antenna ports with non-zero power of the first TPMI divided by the number of ports of the first reference signal resource
  • the second coefficient is the number of antenna ports with non-zero power of the second TPMI divided by the number of ports of the second reference signal resource.
  • the first signaling indicates a first TPMI and a second TPMI
  • the first coefficient is the number of antenna ports with non-zero power of the first TPMI divided by the total number of ports of the first TPMI
  • the second coefficient is the number of antenna ports with non-zero power of the second TPMI divided by the total number of ports of the second TPMI.
  • the first signaling indicates a first TPMI and a second TPMI
  • the first coefficient is the number of non-all-zero rows of the first TPMI divided by the total number of rows of the first TPMI
  • the second coefficient is the number of non-all-zero rows of the second TPMI divided by the total number of rows of the second TPMI.
  • the two fields in the first signaling respectively indicate the first TPMI and the second TPMI.
  • the names of the two fields in the first signaling both include Precoding.
  • the same field in the first signaling indicates the first TPMI and the second TPMI.
  • the name of the same domain in the first signaling includes Precoding.
  • the Precoding information and number of layers field in the first signaling indicates a first TPMI
  • the Second Precoding information field in the first signaling indicates a second TPMI
  • the Precoding information and number of layers field in the first signaling indicates a first TPMI
  • the Second Precoding information field in the first signaling indicates a second TPMI
  • the Precoding information and number of layers field in the first signaling indicates the second TPMI
  • the Second Precoding information field in the first signaling indicates the first TPMI
  • the sum of the first power value and the second power value is used to determine whether the second signal is sent in the first time-frequency resource group.
  • the relationship between the first power value and the second power value is used to determine whether the second signal is sent in the first time-frequency resource group; when the first power value is equal to or greater than the second power value, the second signal is abandoned from being sent in the first time-frequency resource group.
  • the first power value is used to determine a third power value
  • the second power value is used to determine a fourth power value
  • the third power value and the fourth power value are used to determine whether the second signal is sent in the first time-frequency resource group.
  • the first power value is used to determine a third power value
  • the second power value is used to determine a fourth power value
  • whether the sum of the third power value and the fourth power value is greater than a first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group
  • the first power value is used to determine a third power value
  • the second power value is used to determine a fourth power value
  • whether the sum of the third power value and the fourth power value is greater than a first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the third power value and the fourth power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • Embodiment 6 illustrates a schematic diagram of determining whether the second signal is sent in the first time-frequency resource group according to an embodiment of the present application; as shown in FIG6 .
  • Embodiment 6 whether the sum of the first power value and the second power value is greater than a first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the first power value and the second power value is greater than the first power threshold When the sum of the first power value and the second power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the first signal and the second signal correspond to a first transmission block and a second transmission block respectively, and the first signaling is used to indicate scheduling information of the first transmission block and scheduling information of the second transmission block.
  • Embodiment 7 illustrates a schematic diagram of the transmission power of a first signal and the transmission power of a second signal according to an embodiment of the present application; as shown in FIG7 .
  • the first power value is less than or equal to a first power threshold
  • the second power value is less than or equal to the first power threshold
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient
  • the second target power value is a power value other than the first target power value between the first power value and the second power value
  • the second target coefficient is a coefficient other than the first target coefficient between the first coefficient and the second coefficient.
  • the first target power value is the first power value
  • the power value other than the first target power value among the first power value and the second power value is the second power value
  • the first target power value is the second power value
  • the power value other than the first target power value among the first power value and the second power value is the first power value
  • the first target power value is the first power value
  • the second target power value is the second power value
  • the first target power value is the second power value
  • the second target power value is the first power value
  • the first target power value is the first power value
  • the second target power value is the second power value
  • the first target power value is the second power value
  • the second target power value is the first power value
  • the first target coefficient is the first coefficient
  • the coefficient other than the first target coefficient among the first coefficient and the second coefficient is the second coefficient
  • the first target coefficient is the second coefficient
  • the coefficient other than the first target coefficient among the first coefficient and the second coefficient is the first coefficient
  • the first target coefficient is the first coefficient
  • the second target coefficient is the second coefficient
  • the first target coefficient is the second coefficient
  • the second target coefficient is the first coefficient
  • the first target coefficient is the first coefficient
  • the second target coefficient is the second coefficient
  • the first target coefficient is the second coefficient
  • the second target coefficient is the first coefficient
  • Embodiment 8 illustrates a schematic diagram of determining whether the second signal is sent in the first time-frequency resource group according to another embodiment of the present application; as shown in FIG8 .
  • the linear value of the third power value is the product of the linear value of the first power value and the first coefficient
  • the linear value of the fourth power value is the product of the linear value of the second power value and the second coefficient
  • whether the sum of the third power value and the fourth power value is greater than the first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the third power value and the fourth power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • Embodiments 9A-9B respectively illustrate schematic diagrams of the transmission power of a first signal and the transmission power of a second signal according to another embodiment of the present application; as shown in Figures 9A-9B.
  • the third power value is less than or equal to the first power threshold, and the fourth power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient, and the second target power value is the first power threshold.
  • a power value other than the first target power value among the power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient among the first coefficient and the second coefficient.
  • the third power value is less than or equal to the first power threshold, and the fourth power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the minimum value of the product of the linear value of the first target power value and the first target coefficient, and the linear value of the first power threshold;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient,
  • the second target power value is a power value other than the first target power value between the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient between the first coefficient and the second coefficient.
  • Embodiment 10 illustrates a schematic diagram of a first target reference signal resource according to an embodiment of the present application; as shown in FIG10 .
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes at least the second index
  • the first transmission block is mapped to a first codeword
  • the second transmission block is mapped to a second codeword
  • the size relationship between the index of the first codeword and the index of the second codeword is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the index of the first codeword and the index of the second codeword are two different non-negative integers.
  • the index of the first codeword is 0, and the index of the second codeword is 1.
  • the index of the first codeword is 1, and the index of the second codeword is 0.
  • the index of the first codeword is 0, and the index of the second codeword is 1; or, the index of the first codeword is 1, and the index of the second codeword is 0.
  • the index of the first codeword is smaller than the index of the second codeword, and the first target reference signal resource is the first reference signal resource.
  • the index of the first codeword is smaller than the index of the second codeword, and the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first codeword is greater than the index of the second codeword, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first codeword is less than the index of the second codeword, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first codeword is 1 and the index of the second codeword is 0, the first target reference signal resource is the second reference signal resource.
  • the index of the first codeword is 0, the index of the second codeword is 1, and the first target reference signal resource is the first reference signal resource.
  • the index of the first codeword is 0, the index of the second codeword is 1, and the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the second reference signal resource; when the index of the first codeword is 1 and the index of the second codeword is 0, the first target reference signal resource is the first reference signal resource.
  • Embodiments 11A-11D respectively illustrate schematic diagrams of a first target reference signal resource according to another embodiment of the present application; as shown in Figures 11A-11D.
  • the first index is for a first transport block
  • the second index is for a second transport block
  • the index of the first transport block and the index of the second transport block are used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the index of the first transport block and the index of the second transport block are two different non-negative integers.
  • the index of the first transport block and the index of the second transport block are two different positive integers.
  • the index of the first transmission block is 0, and the index of the second transmission block is 1.
  • the index of the first transmission block is 1, and the index of the second transmission block is 0.
  • the index of the first transmission block is 0, and the index of the second transmission block is 1; or, the index of the first transmission block is 1, and the index of the second transmission block is 0.
  • the index of the first transmission block is 1, and the index of the second transmission block is 2.
  • the index of the first transmission block is 2, and the index of the second transmission block is 1.
  • the index of the first transmission block is 1, and the index of the second transmission block is 2; or, the index of the first transmission block is 2, and the index of the second transmission block is 1.
  • the first target reference signal resource is the first reference signal resource; when the index of the first transmission block is greater than the index of the second transmission block, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first transmission block is less than the index of the second transmission block, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first transmission block is 1 and the index of the second transmission block is 0, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the second reference signal resource; when the index of the first transmission block is 1 and the index of the second transmission block is 0, the first target reference signal resource is the first reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first transmission block is 2 and the index of the second transmission block is 1, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the second reference signal resource; when the index of the first transmission block is 2 and the index of the second transmission block is 1, the first target reference signal resource is the first reference signal resource.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least a first MCS
  • the scheduling information of the second transmission block includes at least a second MCS
  • the first MCS and the second MCS are used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the size relationship between the index of the first MCS and the index of the second MCS is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first MCS is greater than the index of the second MCS, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource when the index of the first MCS is greater than the index of the second MCS, the first target reference signal resource is the first reference signal resource; when the index of the first MCS is less than the index of the second MCS, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource.
  • the first target reference signal resource is the second reference signal resource.
  • the relationship between the spectral efficiency of the first MCS and the spectral efficiency of the second MCS is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the first target reference signal resource when the spectrum efficiency of the first MCS is greater than the spectrum efficiency of the second MCS, the first target reference signal resource is the first reference signal resource; when the spectrum efficiency of the first MCS is less than the spectrum efficiency of the second MCS, the first target reference signal resource is the first reference signal resource.
  • the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the spectral efficiency of the first MCS is greater than the spectral efficiency of the second MCS, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource.
  • the first target reference signal resource is the second reference signal resource.
  • the first index is the index of the first reference signal resource in the first reference signal resource set; the first reference signal resource set includes one or more SRS resources, and the first reference signal resource is an SRS resource; the second index is the index of the second reference signal resource in the second reference signal resource set; the second reference signal resource set includes one or more SRS resources, and the second reference signal resource is an SRS resource; the size relationship between the index of the first reference signal resource set and the index of the first reference signal resource set is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource; when the index of the first reference signal resource set is larger than the size of the index of the first reference signal resource set, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource when the index of the first reference signal resource set is greater than the size of the index of the first reference signal resource set, the first target reference signal resource is the first reference signal resource; when the index of the first reference signal resource set is less than the size of the index of the first reference signal resource set, the first target reference signal resource is the second reference signal resource.
  • Example 11D the CORESET (COntrol REsource SET) where the PDCCH occupied by the first signaling is located is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • COntrol REsource SET COntrol REsource SET
  • the CORESET where the PDCCH occupied by the first signaling is located belongs to the first CORESET pool or the second CORESET pool, the first CORESET pool includes at least one CORESET, and the second CORESET pool includes at least one CORESET; when the CORESET where the PDCCH occupied by the first signaling is located belongs to the first CORESET pool, the first target reference signal resource is the first reference signal resource; when the CORESET where the PDCCH occupied by the first signaling is located belongs to the second CORESET pool, the first target reference signal resource is the second reference signal resource.
  • the first target reference signal resource is the first reference signal resource
  • the first target reference signal resource is the second reference signal resource
  • the third CORESET pool includes at least one CORESET.
  • the first target reference signal resource is the first reference signal resource; when the CORESET where the PDCCH occupied by the first signaling is located belongs to the third CORESET pool, the first target reference signal resource is the second reference signal resource; the third CORESET pool includes at least one CORESET.
  • Embodiment 12 illustrates a schematic diagram of the first coefficient and the second coefficient according to an embodiment of the present application; as shown in FIG. 12 .
  • the first node in the present application sends a first reference information block and a second reference information block; wherein the first reference information block is used to indicate a first TPMI set, and the second reference information block is used to indicate a second TPMI set; the first signaling is used to indicate the first TPMI and the second TPMI; whether the first TPMI belongs to the first TPMI set is used to determine the first coefficient, and whether the second TPMI belongs to the second TPMI set is used to determine the second coefficient.
  • the first reference information block and the second reference information block are carried by RRC signaling.
  • the first reference information block and the second reference information block are carried by MAC CE signaling.
  • the first reference information block and the second reference information block are user equipment capability parameters.
  • the first reference information block includes part or all of the fields in the user equipment capability (capability) IE
  • the second reference information block includes part or all of the fields in the user equipment capability (capability) IE.
  • the first reference information block includes part or all of the fields in IE FeatureSetUplink.
  • the first reference information block includes ul-FullPwrMode2-TPMIGroup-r16.
  • the name of the first reference information block includes ul-FullPwrMode2-TPMIGroup.
  • the name of the first reference information block includes ul-FullPwr.
  • the name of the first reference information block includes TPMIGroup.
  • the second reference information block includes ul-FullPwrMode2-TPMIGroup-r16.
  • the name of the second reference information block includes ul-FullPwrMode2-TPMIGroup.
  • the name of the second reference information block includes ul-FullPwr.
  • the name of the second reference information block includes TPMIGroup.
  • the first TPMI set delivers full power.
  • the second TPMI set delivers full power.
  • the precoded PUSCH indicated by any TPMI in the first TPMI set is transmitted at full power.
  • the first TPMI set supports full power.
  • the second TPMI set supports full power.
  • ul-FullPwrMode2-TPMIGroup-r16 refers to 3GPP TS38.306.
  • the first target TPMI indicates the precoding of the first signal
  • the first target TPMI is the first TPMI or the second TPMI
  • the first target reference signal resource is the first reference signal resource
  • the first target TPMI is the first TPMI
  • the first target reference signal resource is the second reference signal resource
  • the first target TPMI is the second TPMI.
  • the first signaling indicates scheduling information of a first transport block and scheduling information of a second transport block
  • the scheduling information of the first transport block includes at least a first TPMI
  • the scheduling information of the second transport block includes at least a second TPMI
  • the first TPMI indicates the precoding of the first signal; when the first TPMI belongs to the first TPMI set, the first coefficient is equal to 1; when the first TPMI does not belong to the first TPMI set, the first coefficient is the number of antenna ports with non-zero power of the first signal divided by the number of ports of the first reference signal resource.
  • the second TPMI indicates the precoding of the second signal; when the second TPMI belongs to the second TPMI set, the first coefficient is equal to 1; when the second TPMI does not belong to the second TPMI set, the second coefficient is the number of antenna ports with non-zero power of the second signal divided by the number of ports of the second reference signal resource.
  • the second TPMI indicates the precoding of the first signal; when the second TPMI belongs to the second TPMI set, the second coefficient is equal to 1; when the second TPMI does not belong to the second TPMI set, the second coefficient is the number of antenna ports with non-zero power of the first signal divided by the number of ports of the second reference signal resource.
  • the first TPMI indicates the precoding of the first signal; when the first TPMI belongs to the first TPMI set, the second coefficient is equal to 1; when the first TPMI does not belong to the first TPMI set, the first coefficient is the number of antenna ports with non-zero power of the first signal divided by the number of ports of the first reference signal resource.
  • the first coefficient when the first TPMI belongs to the first TPMI set, the first coefficient is equal to 1; when the first TPMI does not belong to the first TPMI set, the first coefficient is the number of non-all-zero rows of the first TPMI divided by the number of ports of the first reference signal resource.
  • the first coefficient when the first TPMI belongs to the first TPMI set, the first coefficient is equal to 1; when the first TPMI does not belong to the first TPMI set, the first coefficient is the number of non-zero power antenna ports of the first TPMI divided by the number of ports of the first reference signal resource.
  • the first coefficient when the first TPMI belongs to the first TPMI set, the first coefficient is equal to 1; when the first TPMI does not belong to the first TPMI set, the first coefficient is the number of non-zero power antenna ports of the first TPMI divided by the total number of ports of the first TPMI.
  • the first coefficient when the first TPMI belongs to the first TPMI set, the first coefficient is equal to 1; When the TPMI does not belong to the first TPMI set, the first coefficient is the number of non-all-zero rows of the first TPMI divided by the total number of rows of the first TPMI.
  • Embodiment 13 illustrates a schematic diagram of the first coefficient and the second coefficient according to another embodiment of the present application; as shown in FIG13 .
  • the first node in the present application receives a first set of information blocks; wherein the first coefficient and the second coefficient depend on the first set of information blocks.
  • the first information block set is carried by RRC signaling.
  • the first information block set is carried by MAC CE signaling.
  • the first information block set includes ul-FullPowerTransmission.
  • the first information block set indicates fullpowerMode1.
  • the first information block set indicates fullpowerMode2.
  • the first information block set indicates full power.
  • the first information block set is used to determine the first coefficient and the second coefficient.
  • the first information block set includes a first information block and a second information block, the first information block is used to determine the first coefficient, and the second information block is used to determine the second coefficient.
  • the first information block set includes a first information block and a second information block, the first coefficient depends on the first information block, and the second coefficient depends on the second information block.
  • the name of the first information block includes ul-FullPowerTransmission.
  • the name of the second information block includes ul-FullPowerTransmission.
  • the first information block indicates fullpowerMode1.
  • the first information block indicates fullpowerMode2.
  • the first information block indicates full power.
  • the second information block indicates fullpowerMode1.
  • the second information block indicates fullpowerMode2.
  • the second information block indicates full power.
  • Embodiment 14 illustrates a schematic diagram of a first power value and a second power value according to an embodiment of the present application; as shown in FIG. 14 .
  • the first index is used to determine a first power value
  • the second index is used to determine a second power value
  • the first index is used to indicate a first P0 value
  • the second index is used to indicate a second P0 value
  • the first index is used to indicate a first path loss reference signal resource and a first Alpha value
  • the second index is used to indicate a second path loss reference signal resource and a second Alpha value
  • the first index is used to indicate a first P0 value
  • the second index is used to indicate a second P0 value
  • the first index is used to indicate a first path loss reference signal resource, a first P0 value and a first Alpha value
  • the second index is used to indicate a second path loss reference signal resource, a second P0 value and a second Alpha value.
  • the first index is used to indicate a first power control configuration, which is used to determine a first power value
  • the second index is used to indicate a second power control configuration, which is used to determine a second power value.
  • the first index explicitly indicates a first power control configuration.
  • the first index implicitly indicates a first power control configuration.
  • the first index is mapped to a first power control configuration.
  • the first index corresponds to a first power control configuration.
  • the first index is an index of a first power control configuration.
  • the first index corresponds to an identifier of a first power control configuration.
  • the first index is an index or identifier of a first power control configuration.
  • the first power control configuration is SRI-PUSCH-PowerControl
  • the index of the first power control configuration is The reference or identifier is sri-PUSCH-PowerControlId.
  • the second index explicitly indicates a second power control configuration.
  • the second index implicitly indicates a second power control configuration.
  • the second index is mapped to a second power control configuration.
  • the second index corresponds to a second power control configuration.
  • the second index is an index of a second power control configuration.
  • the second index corresponds to an identifier of a second power control configuration.
  • the second index is an index or identifier of a second power control configuration.
  • the second power control configuration is SRI-PUSCH-PowerControl
  • the index or identifier of the second power control configuration is sri-PUSCH-PowerControlId.
  • the first power control configuration is SRI-PUSCH-PowerControl
  • the index or identifier of the first power control configuration is sri-PUSCH-PowerControlId
  • the first index is the value of the SRS resource indicator field in the first signaling.
  • the second power control configuration is SRI-PUSCH-PowerControl
  • the index or identifier of the second power control configuration is sri-PUSCH-PowerControlId
  • the second index is the value of the Second SRS resource indicator field in the first signaling.
  • the first index is the value of the SRS resource indicator field in the first signaling
  • the second index is the value of the Second SRS resource indicator field in the first signaling
  • the second index is the value of the SRS resource indicator field in the first signaling
  • the first index is the value of the Second SRS resource indicator field in the first signaling.
  • the value of the SRS resource indicator field of the first signaling is a codepoint of the SRS resource indicator field.
  • the value of the Second SRS resource indicator field of the first signaling is a codepoint of the Second SRS resource indicator field.
  • the first power value is equal to the minimum value of a first reference power value and a first reference power threshold.
  • the second power value is equal to the minimum value of the second reference power value and the second reference power threshold.
  • the unit of the first reference power value is dBm
  • the unit of the first reference power threshold is dBm
  • the unit of the second reference power value is dBm
  • the unit of the second reference power threshold is dBm
  • the first reference power threshold is predefined.
  • the first reference power threshold is configurable.
  • the first reference power threshold is the maximum transmission power of a wireless signal using the same antenna port (s) as the first reference signal resource on the corresponding carrier, transmission occasion (Transmission Occasion) and service cell.
  • the second reference power threshold is predefined.
  • the second reference power threshold is configurable.
  • the second reference power threshold is the maximum transmission power of a wireless signal using the same antenna port (s) as the second reference signal resource on the corresponding carrier, transmission occasion (Transmission Occasion) and service cell.
  • the first power control configuration includes an index of the first power control configuration, an index of a first path loss reference signal resource, a first P0 value, a first Alpha value, and a first closed loop index;
  • the second power control configuration includes an index of the second power control configuration, an index of a second path loss reference signal resource, a second P0 value, a second Alpha value, and a second closed loop index.
  • the first power control configuration includes an index of a first path loss reference signal resource, a first P0 value and a first Alpha value;
  • the second power control configuration includes an index of a second path loss reference signal resource, a second P0 value and a second Alpha value.
  • the unit of the first P0 value is dBm
  • the unit of the second P0 value is dBm
  • the first reference power value and the first P0 value are linearly correlated, and the linear correlation coefficient between the first reference power value and the first P0 value is 1; the second reference power value and the second P0 value are linearly correlated, and the first reference power value and the second P0 value are linearly correlated.
  • the linear correlation coefficient between the second reference power value and the second P0 value is 1.
  • the first path loss is the path loss obtained by measuring a first path loss reference signal resource, and the first reference power value and the first path loss are linearly correlated;
  • the second path loss is the path loss obtained by measuring a second path loss reference signal resource, and the second reference power value and the second path loss are linearly correlated.
  • the first path loss is the path loss obtained by measuring a first path loss reference signal resource, the first reference power value and the first path loss are linearly correlated, and the coefficient of the linear correlation between the first reference power value and the first path loss is the first Alpha value;
  • the second path loss is the path loss obtained by measuring a second path loss reference signal resource, the second reference power value and the second path loss are linearly correlated, and the coefficient of the linear correlation between the second reference power value and the second path loss is the second Alpha value.
  • the unit of the first path loss is dB
  • the unit of the second path loss is dB
  • the first path loss is equal to the transmission power of the first path loss reference signal resource minus the RSRP (Reference Signal Received Power) of the first path loss reference signal resource
  • the second path loss is equal to the transmission power of the second path loss reference signal resource minus the RSRP of the second path loss reference signal resource.
  • the first reference power value is P PUSCH,b,f,c (i,j,q d ,l)
  • the first reference power threshold is PC MAX,f,c (i)
  • the first P0 value is P O_PUSCH,b,f,c (j)
  • the first path loss is PL b,f,c (q d )
  • the linear coefficient between the first reference power value and the first path loss is ⁇ b,f,c (j).
  • the second reference power value is P PUSCH,b,f,c (i,j,q d ,l)
  • the second reference power threshold is PCMAX,f,c (i)
  • the second P0 value is P O_PUSCH,b,f,c (j)
  • the second reference power value is the second path loss is PL b,f,c (q d )
  • the linear coefficient between the second reference power value and the second path loss is ⁇ b,f,c (j).
  • the specific definitions of the P PUSCH,b,f,c (i,j,q d ,l), the PCMAX,f,c (i), the PO_PUSCH,b,f,c (j), the PL b,f,c (q d ) and the ⁇ b,f,c (j) refer to Section 7.1 of TS38.213.
  • the first power value and the first P0 value are linearly related, and the coefficient of the linear correlation between the first power value and the first P0 value is 1; the second power value and the second P0 value are linearly related, and the coefficient of the linear correlation between the second power value and the second P0 value is 1.
  • the first path loss is the path loss obtained by measuring a first path loss reference signal resource, and the first power value and the first path loss are linearly correlated;
  • the second path loss is the path loss obtained by measuring a second path loss reference signal resource, and the second power value and the second path loss are linearly correlated.
  • the first path loss is the path loss obtained by measuring a first path loss reference signal resource, the first power value and the first path loss are linearly correlated, and the coefficient of the linear correlation between the first power value and the first path loss is the first Alpha value;
  • the second path loss is the path loss obtained by measuring a second path loss reference signal resource, the second power value and the second path loss are linearly correlated, and the coefficient of the linear correlation between the second power value and the second path loss is the second Alpha value.
  • the unit of the first path loss is dB
  • the unit of the second path loss is dB
  • the first path loss is equal to the transmission power of the first path loss reference signal resource minus the RSRP (Reference Signal Received Power) of the first path loss reference signal resource
  • the second path loss is equal to the transmission power of the second path loss reference signal resource minus the RSRP of the second path loss reference signal resource.
  • the first power value is P PUSCH,b,f,c (i,j,q d ,l)
  • the first reference power threshold is PC MAX,f,c (i)
  • the first P0 value is P O_PUSCH,b,f,c (j)
  • the first path loss is PL b,f,c (q d )
  • the linear coefficient between the first power value and the first path loss is ⁇ b,f,c (j).
  • the second power value is P PUSCH,b,f,c (i,j,q d ,l)
  • the second reference power threshold is PCMAX,f,c (i)
  • the second P0 value is P O_PUSCH,b,f,c (j)
  • the second power value is the second path loss is PL b,f,c (q d )
  • the linear coefficient between the second power value and the second path loss is ⁇ b,f,c (j).
  • Embodiment 15 illustrates a structural block diagram of a processing device in a first node device according to an embodiment of the present application, as shown in FIG15.
  • the processing device 1200 in the first node device includes a first receiver 1201 and a first transmitter 1202.
  • the first node device is a user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • the first transmitter 1202 includes at least one of ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • a first receiver 1201 receives a first signaling
  • a first transmitter 1202 sends a first signal in a first time-frequency resource group
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is a first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is a second coefficient.
  • the first transmitter 1202 sends a second signal in the first time-frequency resource group, or gives up sending the second signal in the first time-frequency resource group;
  • the first power value and the second power value are used to determine whether the second signal is sent in the first time-frequency resource group.
  • the second signal is abandoned in the first time-frequency resource group; when the sum of the first power value and the second power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the first power value is less than or equal to a first power threshold, and the second power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient,
  • the second target power value is a power value other than the first target power value in the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient in the first coefficient and the second coefficient.
  • the linear value of the third power value is the product of the linear value of the first power value and the first coefficient
  • the linear value of the fourth power value is the product of the linear value of the second power value and the second coefficient
  • whether the sum of the third power value and the fourth power value is greater than the first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the sum of the third power value and the fourth power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the third power value is less than or equal to the first power threshold, and the fourth power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient, or the linear value of the transmit power of the first signal is equal to the minimum value of the product of the linear value of the first target power value and the first target coefficient, and the linear value of the first power threshold;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient, the second target power value is a power value other than the first target power value between the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient between the first coefficient and the second coefficient.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes at least the second index
  • the first transmission block is mapped to a first codeword
  • the second transmission block is mapped to a second codeword
  • the size relationship between the index of the first codeword and the index of the second codeword is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the first transmitter 1202 sends a first reference information block and a second reference information block
  • the first reference information block is used to indicate a first TPMI set
  • the second reference information block is used to indicate a second TPMI set
  • the first signaling is used to indicate a first TPMI and a second TPMI
  • whether the first TPMI belongs to the first TPMI set is used to determine the first coefficient
  • whether the second TPMI belongs to the second TPMI set is used to determine the second coefficient.
  • the first receiver 1201 receives a first information block set
  • the first coefficient and the second coefficient depend on the first information block set.
  • Embodiment 16 illustrates a structural block diagram of a processing device in a second node device according to an embodiment of the present application, as shown in FIG16.
  • the processing device 1300 in the second node device includes a second transmitter 1301 and a second receiver 1302.
  • the second node device is a base station.
  • the second node device is a user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes at least one of ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second receiver 1302 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second transmitter 1301 sends a first signaling
  • a second receiver 1302 receives a first signal in a first time-frequency resource group
  • the first signaling is used to indicate the first time-frequency resource group; the first signaling is used to indicate a first index and a second index, the first index is used to indicate a first reference signal resource, and the second index is used to indicate a second reference signal resource; the first index is used to determine a first power value, and the second index is used to determine a second power value; a first target reference signal resource is used to determine an antenna port for the first signal, and the first target reference signal resource is the first reference signal resource or the second reference signal resource; the product of a linear value of a first target power value and a first target coefficient is used to determine a linear value of a transmit power of the first signal; the first target reference signal resource is the first reference signal resource, the first target power value is the first power value, and the first target coefficient is a first coefficient, or the first target reference signal resource is the second reference signal resource, the first target power value is the second power value, and the first target coefficient is a second coefficient.
  • the second receiver 1302 monitors a second signal in the first time-frequency resource group
  • the first power value and the second power value are used to determine whether the second signal is sent in the first time-frequency resource group.
  • the second signal is abandoned in the first time-frequency resource group; when the sum of the first power value and the second power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the first power value is less than or equal to a first power threshold, and the second power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient,
  • the second target power value is a power value other than the first target power value in the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient in the first coefficient and the second coefficient.
  • the linear value of the third power value is the product of the linear value of the first power value and the first coefficient
  • the linear value of the fourth power value is the product of the linear value of the second power value and the second coefficient
  • whether the sum of the third power value and the fourth power value is greater than the first power threshold is used to determine whether the second signal is sent in the first time-frequency resource group; when the When the sum of the third power value and the fourth power value is greater than the first power threshold, the second signal is abandoned in the first time-frequency resource group; when the sum of the third power value and the fourth power value is less than or equal to the first power threshold, the second signal is sent in the first time-frequency resource group.
  • the third power value is less than or equal to the first power threshold, and the fourth power value is less than or equal to the first power threshold;
  • the linear value of the transmit power of the first signal is equal to the product of the linear value of the first target power value and the first target coefficient, or the linear value of the transmit power of the first signal is equal to the minimum value of the product of the linear value of the first target power value and the first target coefficient, and the linear value of the first power threshold;
  • the linear value of the transmit power of the second signal is equal to the product of the linear value of the second target power value and the second target coefficient, the second target power value is a power value other than the first target power value between the first power value and the second power value, and the second target coefficient is a coefficient other than the first target coefficient between the first coefficient and the second coefficient.
  • the first signaling indicates scheduling information of a first transmission block and scheduling information of a second transmission block
  • the scheduling information of the first transmission block includes at least the first index
  • the scheduling information of the second transmission block includes at least the second index
  • the first transmission block is mapped to a first codeword
  • the second transmission block is mapped to a second codeword
  • the size relationship between the index of the first codeword and the index of the second codeword is used to determine the first target reference signal resource from the first reference signal resource and the second reference signal resource.
  • the second receiver 1302 receives a first reference information block and a second reference information block
  • the first reference information block is used to indicate a first TPMI set
  • the second reference information block is used to indicate a second TPMI set
  • the first signaling is used to indicate a first TPMI and a second TPMI
  • whether the first TPMI belongs to the first TPMI set is used to determine the first coefficient
  • whether the second TPMI belongs to the second TPMI set is used to determine the second coefficient.
  • the second transmitter 1301 sends a first information block set
  • the first coefficient and the second coefficient depend on the first information block set.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • the base stations or system equipment in this application include but are not limited to macro cellular base stations, micro cellular base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,在第一时频资源组中发送第一信号。所述第一信令被用于指示第一索引和第二索引;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G NR(New Radio,新无线)系统中,无论是基站还是终端设备,均将会配置多个天线面板(Panel)。NR Rel-16标准已经可以支持基站通过多个天线面板同时发送无线信号,但是终端设备即使配置了多个天线面板也只支持基于天线面板选择的传输,即同一时刻只允许在一个天线面板上进行无线发送。在5G NR系统的未来演进中,为了提高系统容量,支持终端设备在多个天线面板上同时发送无线信号是一个重要的演进方向。
发明内容
发明人通过研究发现,如何确定一个无线信号的发送功率是一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将多天线面板作为一个典型应用场景或者例子;本申请也能应用于单天线面板的应用场景,进一步的,对不同场景(包括但不限于多天线面板,单天线面板等)采用统一的设计方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
第一接收机,接收第一信令;
第一发射机,在第一时频资源组中发送第一信号;
其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,本申请要解决的问题包括:如何确定无线信号的发送功率。
根据本申请的一个方面,其特征在于,包括:
在所述第一时频资源组中发送第二信号,或者,在所述第一时频资源组中放弃发送第二信号;
其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
根据本申请的一个方面,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
根据本申请的一个方面,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
根据本申请的一个方面,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
根据本申请的一个方面,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
根据本申请的一个方面,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
根据本申请的一个方面,其特征在于,包括:
发送第一参考信息块和第二参考信息块;
其中,所述第一参考信息块被用于指示第一TPMI集合,所述第二参考信息块被用于指示第二TPMI集合;所述第一信令被用于指示第一TPMI和第二TPMI;所述第一TPMI是否属于所述第一TPMI集合被用于确定所述第一系数,所述第二TPMI是否属于所述第二TPMI集合被用于确定所述第二系数。
根据本申请的一个方面,其特征在于,包括:
接收第一信息块集合;
其中,所述第一系数和所述第二系数依赖所述第一信息块集合。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令;
在第一时频资源组中接收第一信号;
其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
根据本申请的一个方面,其特征在于,包括:
在所述第一时频资源组中监测第二信号;
其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
根据本申请的一个方面,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
根据本申请的一个方面,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
根据本申请的一个方面,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
根据本申请的一个方面,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
根据本申请的一个方面,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
根据本申请的一个方面,其特征在于,包括:
接收第一参考信息块和第二参考信息块;
其中,所述第一参考信息块被用于指示第一TPMI集合,所述第二参考信息块被用于指示第二TPMI集合;所述第一信令被用于指示第一TPMI和第二TPMI;所述第一TPMI是否属于所述第一TPMI集合被用于确定所述第一系数,所述第二TPMI是否属于所述第二TPMI集合被用于确定所述第二系数。
根据本申请的一个方面,其特征在于,包括:
发送第一信息块集合;
其中,所述第一系数和所述第二系数依赖所述第一信息块集合。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令;
第一发射机,在第一时频资源组中发送第一信号;
其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一 目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信令;
第二接收机,在第一时频资源组中接收第一信号;
其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在确定无线信号的发送功率时,考虑了不同的应用场景,比如不同的天线端口、不同的波束、不同的天线、不同的空间特性等等。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的确定所述第二信号是否在所述第一时频资源组中被发送的示意图;
图7示出了根据本申请的一个实施例的第一信号的发送功率和第二信号的发送功率的示意图;
图8示出了根据本申请的另一个实施例的确定所述第二信号是否在所述第一时频资源组中被发送的示意图;
图9A-9B分别示出了根据本申请的另一个实施例的第一信号的发送功率和第二信号的发送功率的示意图;
图10示出了根据本申请的一个实施例的第一目标参考信号资源的示意图;
图11A-11D分别示出了根据本申请的另一个实施例的第一目标参考信号资源的示意图;
图12示出了根据本申请的一个实施例的第一系数和第二系数的示意图;
图13示出了根据本申请的另一个实施例的第一系数和第二系数的示意图;
图14示出了根据本申请的一个实施例的第一功率值和第二功率值的示意图;
图15示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图16示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令;在步骤102中在第一时频资源组中发送第一信号;其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是MAC CE信令。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是被用于调度PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)的DCI信令。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control CHannel,物理下行控制信道)上传输。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号在上行物理信道上传输。
作为一个实施例,所述第一信号在物理信道上传输。
作为一个实施例,所述第一信号在PUSCH上传输。
作为一个实施例,所述第一信号携带正整数个传输块(Transport Block,TB)。
作为一个实施例,所述第一信号携带一个传输块。
作为一个实施例,所述第一信号包括所在的PUSCH的部分层。
作为一个实施例,所述第一信号包括所在的PUSCH的全部层。
作为一个实施例,所述第一信号包括所在的PUSCH的部分或全部层。
作为一个实施例,所述第一信号在基于码本的(codebook based)PUSCH上传输。
作为一个实施例,所述第一信令调度N层(layer)的PUSCH,所述第一信号承载所述N层中的N1层,N1是小于所述N的正整数,N是正整数。
作为一个实施例,所述第一信令调度N层的PUSCH,所述第一信号承载所述N层。
作为一个实施例,所述第一信号携带至少一个码块组(Code Block Group,CBG)。
作为一个实施例,所述第一信令指示所述第一信号的调度信息。
作为一个实施例,所述第一信号的所述调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signal,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(Process Number),RV(Redundancy version,冗余版本),NDI(New Data Indicator,新数据指示),层数(Number of Layer(s)),天线端口、TCI状态、SRS(Sounding Reference Signal,探测参考信号)资源(resource)指示(indicator),PMI(Precoding Matrix Indicator,预编码矩阵指示)中的至少之一。
作为一个实施例,所述第一信令指示所述第一时频资源组在时域包括的符号和所述第一时频资源组在频域包括的RB(Resource Block,资源块)。
作为一个实施例,所述第一信令包括第三域和第四域,所述第一信令中的所述第三域指示所述第一时 频资源组在时域包括的符号,所述第一信令中的所述第四域指示所述第一时频资源组在频域包括的RB;所述第三域包括至少一个比特,所述第四域包括至少一个比特。
作为一个实施例,所述第三域是Time domain resource assignment域,所述第四域是Frequency domain resource assignment域。
作为一个实施例,所述Time domain resource assignment域,所述Frequency domain resource assignment域的具体定义参见3GPP TS38.212的第7.3.1章节。
作为一个实施例,所述第一信令中的同一个域指示第一索引和第二索引,一个域包括至少一个比特。
作为一个实施例,所述第一信令中的不同域分别指示第一索引和第二索引,一个域包括至少一个比特。
作为一个实施例,所述第一信令包括第一域,所述第一信令中的所述第一域指示第一索引和第二索引,所述第一域包括至少一个比特。
作为一个实施例,所述第一信令包括第一域和第二域,所述第一信令中的所述第一域指示第一索引,所述第一信令中的所述第二域指示第二索引;所述第一域包括至少一个比特,所述第二域包括至少一个比特。
作为一个实施例,所述第一信令包括第一域和第二域,所述第一信令中的所述第一域的值是第一索引,所述第一信令中的所述第二域的值是第二索引;所述第一域包括至少一个比特,所述第二域包括至少一个比特。
作为一个实施例,所述第一信令包括第一域和第二域;所述第一信令中的所述第一域的值和所述第二域的值分别是第一索引和第二索引,或者所述第一信令中的所述第一域的值和所述第二域的值分别是第二索引和第一索引;所述第一域包括至少一个比特,所述第二域包括至少一个比特。
作为一个实施例,所述第一域是SRS resource indicator。
作为一个实施例,所述第二域是Second SRS resource indicator。
作为一个实施例,所述第一索引和所述第二索引分别是0,1,…,K-1中的两个不同的整数,K是大于1的正整数。
作为一个实施例,所述第一索引和所述第二索引分别是1,2,…,K中的两个不同的整数,K是大于1的正整数。
作为一个实施例,所述第一索引和所述第二索引都是非负整数。
作为一个实施例,所述第一索引和所述第二索引都是正整数。
作为一个实施例,所述第一索引和所述第二索引相同。
作为一个实施例,所述第一索引和所述第二索引不同。
作为一个实施例,所述第一索引和所述第二索引分别对应两个不同的天线面板(Antenna Panel)。
作为一个实施例,所述第一索引和所述第二索引分别是两个不同的天线面板的索引。
作为一个实施例,所述第一索引和所述第二索引分别对应两个不同的参考信号资源集合(set),所述第一参考信号资源和所述第二参考信号资源分别是所述两个不同的参考信号资源集合中的SRS资源。
典型的,一个天线面板包括正整数个天线。
作为一个实施例,所述第一索引显式的指示第一参考信号资源。
作为一个实施例,所述第一索引隐式的指示第一参考信号资源。
作为一个实施例,所述第一索引对应第一参考信号资源,所述第二索引对应第二参考信号资源。
作为一个实施例,所述第二索引显式的指示第二参考信号资源。
作为一个实施例,所述第二索引隐式的指示第二参考信号资源。
作为一个实施例,所述第一索引是第一参考信号资源在第一参考信号资源集合中的索引;所述第一参考信号资源集合包括一个或多个参考信号资源;所述第二索引是第二参考信号资源在第二参考信号资源集合中的索引;所述第二参考信号资源集合包括一个或多个参考信号资源。
作为一个实施例,所述第一索引是第一参考信号资源在第一参考信号资源集合中的索引;所述第一参考信号资源集合包括一个或多个SRS资源,所述第一参考信号资源是一个SRS资源;所述第二索引是第二参考信号资源在第二参考信号资源集合中的索引;所述第二参考信号资源集合包括一个或多个SRS资源,所述第二参考信号资源是一个SRS资源。
作为一个实施例,所述第一索引被用于从第一参考信号资源集合中指示所述第一参考信号资源,所述第二索引被用于从第二参考信号资源集合中指示所述第二参考信号资源。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合都是被配置用于基于码本的传输的SRS资源集合。
作为一个实施例,所述第一参考信号资源包括上行参考信号资源。
作为一个实施例,所述第一参考信号资源包括下行参考信号资源。
作为一个实施例,所述第一参考信号资源包括SRS资源。
作为一个实施例,所述第一参考信号资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源。
作为一个实施例,所述第一参考信号资源包括SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)块。
作为一个实施例,所述第一参考信号资源包括SRS,CSI-RS或SS/PBCH块中的至少之一。
作为一个实施例,所述第二参考信号资源包括上行参考信号资源。
作为一个实施例,所述第二参考信号资源包括下行参考信号资源。
作为一个实施例,所述第二参考信号资源包括SRS资源。
作为一个实施例,所述第二参考信号资源包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)资源。
作为一个实施例,所述第二参考信号资源包括SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)块。
作为一个实施例,所述第二参考信号资源包括SRS资源,CSI-RS资源或SS/PBCH块中的至少之一。
作为一个实施例,所述第一参考信号资源是SRS资源,所述第二参考信号资源是SRS资源。
作为一个实施例,所述第一参考信号资源和所述第二参考信号资源都是被配置用于基于码本的传输的SRS资源。
作为一个实施例,所述第一参考信号资源集合包括SRS资源,CSI-RS资源或SS/PBCH块中的至少之一,所述第二参考信号资源集合包括SRS资源,CSI-RS资源或SS/PBCH块中的至少之一。
作为一个实施例,所述第一参考信号资源集合包括一个或多个SRS资源,所述第二参考信号资源集合包括一个或多个SRS资源。
作为一个实施例,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引。
作为一个实施例,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息。
作为一个实施例,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息包括所述第二索引。
作为一个实施例,所述第一传输块的调度信息至少包括所述第一索引和第一TPMI;所述第二传输块的调度信息包括所述第二索引和第二TPMI。
作为一个实施例,TPMI的全称是Transmitted Precoding Matrix Indicator(发送预编码矩阵指示)。
作为一个实施例,TPMI的全称是Transmitting Precoding Matrix Indicator(发送预编码矩阵指示)。
作为一个实施例,TPMI的全称是Transmission Precoding Matrix Indicator(发送预编码矩阵指示)。
作为一个实施例,TPMI的全称是Transmit Precoding Matrix Indicator(发送预编码矩阵指示)。
作为一个实施例,所述第一传输块的调度信息至少包括所述第一索引、第一TPMI和第一MCS;所述第二传输块的调度信息包括所述第二索引、第二TPMI和第二MCS。
作为一个实施例,所述第一索引针对第一传输块,所述第二索引针对第二传输块。
作为一个实施例,所述句子“所述第一索引针对第一传输块,所述第二索引针对第二传输块”的意思包括:所述第一索引被用于确定传输第一传输块的天线端口(antenna port(s)),所述第二索引被用于确定传输第二传输块的天线端口。
作为一个实施例,所述句子“所述第一索引针对第一传输块,所述第二索引针对第二传输块”的意思包括:所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息包 括所述第一索引,所述第二传输块的调度信息包括所述第二索引。
作为一个实施例,所述句子“所述第一索引被用于确定传输第一传输块的天线端口”的意思包括:所述第一传输块的天线端口(antenna port(s)和所述第一参考信号资源的天线端口(antenna port(s)相同;所述句子“所述第二索引被用于确定传输第二传输块的天线端口”的意思包括:所述第二传输块的天线端口(antenna port(s)和所述第二参考信号资源的天线端口(antenna port(s)相同。
作为一个实施例,所述句子“所述第一索引被用于确定传输第一传输块的天线端口”的意思包括:所述第一传输块的传输采用和所述第一参考信号资源相同的天线端口;所述句子“所述第二索引被用于确定传输第二传输块的天线端口”的意思包括:所述第二传输块的传输采用和所述第二参考信号资源相同的天线端口。
作为一个实施例,所述句子“所述第一索引被用于确定传输第一传输块的天线端口”的意思包括:所述第一参考信号资源是SRS资源,所述第一传输块的传输采用和所述第一参考信号资源中的SRS端口(port(s))相同的天线端口(antenna port(s)。
作为一个实施例,所述句子“所述第一索引被用于确定传输第一传输块的天线端口”的意思包括:所述第一参考信号资源是CSI-RS资源或SS/PBCH块,所述第一传输块的天线端口采用和接收所述第一参考信号资源相同的空间滤波器(spatial filter)或空间参数(spatial parameter)。
作为一个实施例,所述句子“所述第一索引被用于确定传输第一传输块的天线端口”的意思包括:所述第一参考信号资源是CSI-RS资源或SS/PBCH块,所述第一传输块的天线端口采用和接收所述第一参考信号资源相同的预编码(precoder)。
作为一个实施例,所述句子“所述第二索引被用于确定传输第二传输块的天线端口”的意思包括:所述第二参考信号资源是SRS资源,所述第二传输块的传输采用和所述第二参考信号资源中的SRS端口(port(s))相同的天线端口(antenna port(s)。
作为一个实施例,所述句子“所述第二索引被用于确定传输第二传输块的天线端口”的意思包括:所述第二参考信号资源是CSI-RS资源或SS/PBCH块,所述第二传输块的天线端口采用和接收所述第二参考信号资源相同的空间滤波器(spatial filter)或空间参数(spatial parameter)。
作为一个实施例,所述句子“所述第二索引被用于确定传输第二传输块的天线端口”的意思包括:所述第二参考信号资源是CSI-RS资源或SS/PBCH块,所述第二传输块的天线端口采用和接收所述第二参考信号资源相同的预编码(precoder)。
作为一个实施例,当所述第一目标参考信号资源是所述第一参考信号资源时,所述第一目标功率值是所述第一功率值,所述第一目标系数是第一系数;当所述第一目标参考信号资源是所述第二参考信号资源时,所述第一目标功率值是所述第二功率值,所述第一目标系数是第二系数。
作为一个实施例,所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数。
作为一个实施例,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源是预定义的。
作为一个实施例,所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源是可配置的。
作为一个实施例,所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源是所述第一信令指示的。
作为一个实施例,所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源是被所述第一信令确定的。
作为一个实施例,所述句子“第一目标参考信号资源被用于确定所述第一信号的天线端口(antenna port(s))”的意思包括:所述第一信号的天线端口(antenna port(s)和第一目标参考信号资源的天线端口(antenna port(s)相同。
作为一个实施例,所述句子“第一目标参考信号资源被用于确定所述第一信号的天线端口”的意思 包括:所述第一信号采用和第一目标参考信号资源相同的天线端口。
作为一个实施例,所述句子“第一目标参考信号资源被用于确定所述第一信号的天线端口”的意思包括:第一目标参考信号资源是SRS资源,所述第一信号采用和第一目标参考信号资源中的SRS端口(port(s))相同的天线端口(antenna port(s)。
作为一个实施例,所述句子“第一目标参考信号资源被用于确定所述第一信号的天线端口”的意思包括:第一目标参考信号资源是CSI-RS资源或SS/PBCH块,所述第一信号的天线端口采用和接收所述第一目标参考信号资源相同的空间滤波器(spatial filter)或空间参数(spatial parameter)。
作为一个实施例,所述句子“第一目标参考信号资源被用于确定所述第一信号的天线端口”的意思包括:第一目标参考信号资源是CSI-RS资源或SS/PBCH块,所述第一信号的天线端口采用和接收所述第一目标参考信号资源相同的预编码(precoder)。
作为一个实施例,所述第一传输块的索引小于所述第二传输块的索引,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第一传输块的索引小于所述第二传输块的索引,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一传输块的索引是0,所述第二传输块的索引是1,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第一传输块的索引是0,所述第二传输块的索引是1,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一传输块的索引是1,所述第二传输块的索引是2,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第一传输块的索引是1,所述第二传输块的索引是2,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一信号的发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积。
作为一个实施例,所述第一信号的发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积、第一功率阈值的线性值中的最小值。
作为一个实施例,所述第一信号的发送功率小于或等于第一功率阈值。
作为一个实施例,所述第一信号的发送功率的线性值小于或等于所述第一目标功率值的线性值和所述第一目标系数的乘积。
作为一个实施例,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值。
作为一个实施例,所述第一参考信号资源集合的索引小于所述第一参考信号资源集合的索引的大小,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第一参考信号资源集合的索引小于所述第一参考信号资源集合的索引的大小,所述第一目标参考信号资源是所述第二参考信号资源。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展 到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通 信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一参考信息块和所述第二参考信息块生成于所述RRC子层306。
作为一个实施例,所述第一参考信息块和所述第二参考信息块生成于所述MAC子层302或MAC子层352。
作为一个实施例,所述第一信息块集合生成于所述RRC子层306。
作为一个实施例,所述第一信息块集合生成于所述MAC子层302。
作为一个实施例,所述第一信息块集合生成于所述MAC子层352。
作为一个实施例,本事情中的所述第一信令生成于所述PHY301。
作为一个实施例,本事情中的所述第一信令生成于所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301。
作为一个实施例,所述第一信号生成于所述PHY351。
作为一个实施例,所述第二信号生成于所述PHY301。
作为一个实施例,所述第二信号生成于所述PHY351。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理 器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL(DownLink,下行)中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令;在第一时频资源组中发送第一信号;其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;在第一时频资源组中发送第一信号;其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个 存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令;在第一时频资源组中接收第一信号;其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;在第一时频资源组中接收第一信号;其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信息块集合;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块集合。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述第一时频资源组中发送所述第一信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时频资源组中接收所述第一信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述第一时频资源组中发送所述第二信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时频资源组中接收所述第二信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述第一时频资源组中放弃发送所述第二信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时频资源组中监测所述第二信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于发送本申请中的所述第一参考信息块和第二参考信息块;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一参考信息块和第二参考信息块。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01和第二节点N02分别是通过空中接口传输的两个通信节点,其中方框F1和F2中的步骤是二选一的。
对于第一节点U01,在步骤S5101中发送第一参考信息块和第二参考信息块;在步骤S5102中接收第一信息块集合;在步骤S5103中接收第一信令;在步骤S5104中在第一时频资源组中发送第一信号;在步骤S5105中在所述第一时频资源组中发送第二信号;在步骤S5106中在所述第一时频资源组中放弃发送第二信号;
对于第二节点N02,在步骤S5201中接收第一参考信息块和第二参考信息块;在步骤S5202中发送第一信息块集合;在步骤S5203中发送第一信令;在步骤S5204中在第一时频资源组中接收第一信号;在步骤S5205中在所述第一时频资源组中监测第二信号;
在实施例5中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被所述第一节点U01用于确定第一功率值,所述第二索引被所述第一节点U01用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被所述第一节点U01用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,所述行为“在第一时频资源组中接收第一信号”和所述行为“在所述第一时频资源组中监测第二信号”是同时进行的。
作为一个实施例,所述行为“在第一时频资源组中接收第一信号”和所述行为“在所述第一时频资源组中监测第二信号”不是同时进行的。
作为一个实施例,所述第一节点在所述第一时频资源组中监测第一信号组;所述第一信号组包括所述第一信号和所述第二信号;所述行为“在所述第一时频资源组中监测第一信号组”包括所述行为“在第一时频资源组中接收第一信号”和所述行为“在所述第一时频资源组中监测第二信号”。
作为一个实施例,所述第一信号占用的时频资源和所述第二信号占用的时频资源交叠。
作为一个实施例,所述第一信号占用的时域资源和所述第二信号占用的时域资源交叠。
作为一个实施例,所述第一信号占用的频域资源和所述第二信号占用的频域资源正交,所述第一信号占用的时域资源和所述第二信号占用的时域资源交叠。
典型的,所述交叠的意思是指:部分或全部重叠。
作为一个实施例,包括:
所述第一发射机,在所述第一时频资源组中发送第二信号;
其中,所述第一信号的发送功率和所述第二信号的发送功率的和小于或等于第一功率阈值。
作为一个实施例,当所述第二节点检测到所述第二信号被发送时,所述行为“在所述第一时频资源组中监测第二信号”包括:在所述第一时频资源组中接收所述第二信号。
作为一个实施例,当所述第二信号被发送时,所述行为“在所述第一时频资源组中监测第二信号”包括:在所述第一时频资源组中接收第二信号。
作为一个实施例,所述行为“在所述第一时频资源组中监测第二信号”包括:在所述第一时频资源组中监测第二信号是否被发送。
作为一个实施例,所述行为“在所述第一时频资源组中监测第二信号”包括:根据所述第一时频资源组中的接收信号的功率以判断第二信号在所述第一时频资源组中是否被发送。
作为上述实施例的一个子实施例,如果所述第一时频资源组中的接收信号的功率较低,认为所述第二信号在所述第一时频资源组中上未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送。
作为上述实施例的一个子实施例,如果所述第一时频资源组中的接收信号的功率低于参考功率阈值,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送;所述参考功率阈值由所述基站设备自行配置。
作为一个实施例,所述行为“在所述第一时频资源组中监测第二信号”包括:根据所述第一时频资源组中的接收信号和第二信号的相关性以判断所述第二信号在所述第一时频资源组中是否被发送。
作为上述实施例的一个子实施例,如果所述第一时频资源组中的接收信号和所述第二信号的相关性较低,认为所述第二信号在所述第一时频资源组中被发送,否则,认为所述第二信号在所述第一时频资源组中被发送。
作为上述实施例的一个子实施例,如果所述第一时频资源组中的接收信号和所述第二信号的相关性低于参考相关性阈值,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送;所述参考相关性阈值由所述基站设备自行配置。
作为一个实施例,所述行为“在所述第一时频资源组中监测第二信号”包括:根据第二信号的配置参数对所述第一时频资源组中的接收信号进行测量从而估计出信道,根据估计出的所述信道判断所述第二信号在所述第一时频资源组中是否被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的能量较低,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的能量低于参考信道能量阈值,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送;所述参考信道能量阈值由所述基站设备自行配置。
作为上述实施例的一个子实施例,如果估计出的所述信道的功率较低,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的功率低于参考信道功率阈值,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送;所述参考信道功率阈值由所述基站自行配置。
作为上述实施例的一个子实施例,如果估计出的所述信道的特性不符合认为应有的特性,认为所述第二信号在所述第一时频资源组中未被发送,否则,认为所述第二信号在所述第一时频资源组中被发送。
作为一个实施例,第二目标参考信号资源被用于确定所述第二信号的天线端口,所述第二目标参考资源是所述第一参考信号资源和所述第二参考信号资源中的所述第一目标参考信号资源之外的参考信号资源。
作为一个实施例,所述第一目标参考资源是所述第一参考信号资源,所述第一参考信号资源和所述第二参考信号资源中的所述第一目标参考信号资源之外的参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一目标参考资源是所述第二参考信号资源,所述第一参考信号资源和所述第二参考信号资源中的所述第一目标参考信号资源之外的参考信号资源是所述第一参考信号资源。
作为一个实施例,所述句子“第二目标参考信号资源被用于确定所述第二信号的天线端口(antenna port(s))”的意思包括:所述第二信号的天线端口(antenna port(s)和第二目标参考信号资源的天线端口(antenna port(s)相同。
作为一个实施例,所述句子“第二目标参考信号资源被用于确定所述第二信号的天线端口”的意思包括:所述第二信号采用和第二目标参考信号资源相同的天线端口。
作为一个实施例,所述句子“第二目标参考信号资源被用于确定所述第二信号的天线端口”的意思包括:第二目标参考信号资源是SRS资源,所述第二信号采用和第二目标参考信号资源中的SRS端口(port(s))相同的天线端口(antenna port(s)。
作为一个实施例,所述句子“第二目标参考信号资源被用于确定所述第二信号的天线端口”的意思包括:第二目标参考信号资源是CSI-RS资源或SS/PBCH块,所述第二信号的天线端口采用和接收所述第二目标参考信号资源相同的空间滤波器(spatial filter)或空间参数(spatial parameter)。
作为一个实施例,所述句子“第二目标参考信号资源被用于确定所述第二信号的天线端口”的意思包括:第二目标参考信号资源是CSI-RS资源或SS/PBCH块,所述第二信号的天线端口采用和接收所述第二目标参考信号资源相同的预编码(precoder)。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号在上行物理信道上传输。
作为一个实施例,所述第二信号在物理信道上传输。
作为一个实施例,所述第二信号在PUSCH上传输。
作为一个实施例,所述第二信号携带正整数个传输块(Transport Block,TB)。
作为一个实施例,所述第二信号携带一个传输块。
作为一个实施例,所述第二信号包括所在的PUSCH的部分层。
作为一个实施例,所述第二信号包括所在的PUSCH的全部层。
作为一个实施例,所述第二信号包括所在的PUSCH的部分或全部层。
作为一个实施例,所述第二信号在基于码本的(codebook based)PUSCH上传输。
作为一个实施例,所述第一信令调度N层(layer)的PUSCH,所述第一信号承载所述N层中的N1层,所述第二信号承载所述N层中的N2层,N1和N2之和等于N,所述N1、所述N2和所述N都是正整数。
作为一个实施例,所述第一信号和所述第二信号分别包括所述第一信令调度的PUSCH的不同层。
作为一个实施例,所述第一信号和所述第二信号分别被用于承载所述第一信令调度的PUSCH的不同层。
作为一个实施例,所述第一信号和所述第二信号分别是所述第一信令调度的两个PUSCH重复。
作为一个实施例,一个PUSCH包括所述第一信号和所述第二信号。
作为一个实施例,所述第一信号和所述第二信号分别携带不同的传输块。
作为一个实施例,所述第一信号和所述第二信号共同携带同一个传输块。
作为一个实施例,所述第一信号和所述第二信号分别包括所述第一信令调度的PUSCH的不同传输块。
作为一个实施例,当所述第二信号被发送时,所述第一信号和所述第二信号共同携带同一个传输块。
作为一个实施例,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息;所述第一传输块和所述第二传输块中的一个传输块被所述第一信号携带;当所述第二信号被发送时,所述第一传输块和所述第二传输块中的另一个传输块被所述第二信号携带。
作为一个实施例,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息;所述第一传输块和所述第二传输块中的一个传输块被所述第一信号携带;所述第一传输块和所述第二传输块中的另一个传输块被所述第二信号携带。
作为一个实施例,所述第一信号和所述第二信号在同一个PUSCH上传输。
作为一个实施例,所述第一信号和所述第二信号共同组成一个PUSCH重复。
作为一个实施例,所述第二信号携带至少一个码块组(Code Block Group,CBG)。
作为一个实施例,所述第一信令指示所述第二信号的调度信息。
作为一个实施例,所述第一信令指示所述第一信号的调度信息和所述第二信号的调度信息。
作为一个实施例,所述第一信号的调度信息包括所述第一传输块的调度信息和所述第二传输块的调度信息中的一个,所述第二信号的调度信息包括所述第一传输块的调度信息和所述第二传输块的调度信息中的另一个。
作为一个实施例,所述第二信号的所述调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signal,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(Process Number),RV(Redundancy version,冗余版本),NDI(New Data Indicator,新数据指示),层数(Number of Layer(s)), 天线端口、TCI状态、SRS(Sounding Reference Signal,探测参考信号)资源(resource)指示(indicator),PMI(Precoding Matrix Indicator,预编码矩阵指示)中的至少之一。
作为一个实施例,所述第二信号的所述调度信息包括MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signal,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(Process Number),RV(Redundancy version,冗余版本),NDI(New Data Indicator,新数据指示),层数(Number of Layer(s)),天线端口、TCI状态、SRS(Sounding Reference Signal,探测参考信号)资源(resource)指示(indicator),PMI(Precoding Matrix Indicator,预编码矩阵指示)中的至少之一。
作为一个实施例,所述第一目标系数是所述第一系数或所述第二系数,所述第一目标功率值是所述第一功率值或所述第二功率值。
典型的,所述第一目标系数和所述第一目标功率值依赖所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源。
典型的,所述第一目标系数是所述第一系数还是所述第二系数依赖所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源。
典型的,所述第一目标功率值是所述第一功率值还是所述第二功率值依赖所述第一目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源。
典型的,所述第一功率值的单位是dBm(毫分贝),所述第二功率值的单位是dBm,所述第一功率阈值的单位是dBm(毫分贝),所述第一信号的发送功率的单位是dBm(毫分贝),所述第二信号的发送功率的单位是dBm(毫分贝),所述第一功率值的线性值的单位是mW(毫瓦),所述第二功率值的线性值的单位是mW,所述第一功率阈值的线性值的单位是mW,所述第一信号的发送功率的线性值的单位是mW,所述第二信号的发送功率的线性值的单位是mW。
作为一个实施例,所述第一功率值等于所述第一功率值的线性值的以10为底的对数再乘以10,所述第二功率值等于所述第二功率值的线性值的以10为底的对数再乘以10,所述第一功率阈值等于所述第一功率阈值的线性值的以10为底的对数再乘以10,所述第一信号的发送功率等于所述第一信号的发送功率的线性值的以10为底的对数再乘以10,所述第二信号的发送功率等于所述第二信号的发送功率的线性值的以10为底的对数再乘以10。
作为一个实施例,给定功率值的线性值是p,所述给定功率值是10lg(p)。
作为上述实施例的一个子实施例,所述给定功率是所述第一功率值。
作为上述实施例的一个子实施例,所述给定功率是所述第二功率值。
作为上述实施例的一个子实施例,所述给定功率是所述第一功率阈值。
作为上述实施例的一个子实施例,所述给定功率是所述第一信号的发送功率。
作为上述实施例的一个子实施例,所述给定功率是所述第二信号的发送功率。
作为一个实施例,所述第一目标系数是1。
作为一个实施例,所述第一目标系数是不大于1的正实数。
作为一个实施例,所述第一目标系数是1或者小于1的正实数。
作为一个实施例,所述第一目标系数是所述第一信号的非零功率的天线端口数除以所述第一目标参考信号资源的端口数。
作为一个实施例,所述第一系数是1。
作为一个实施例,所述第一系数是不大于1的正实数。
作为一个实施例,所述第一系数是1或者小于1的正实数。
作为一个实施例,所述第二系数是1。
作为一个实施例,所述第二系数是不大于1的正实数。
作为一个实施例,所述第二系数是1或者小于1的正实数。
作为一个实施例,所述第一系数和所述第二系数是分别被确定的。
作为一个实施例,所述第一系数和所述第二系数是分别被所对应的传输块的TPMI确定的。
作为一个实施例,所述第一系数和所述第二系数是分别被所对应的码字(codeword)的TPMI确 定的。
作为一个实施例,所述第一系数和所述第二系数是分别被配置的。
作为一个实施例,所述第一信令指示第一TPMI和第二TPMI,所述第一TPMI被用于确定所述第一系数,所述第二TPMI被用于确定所述第二系数。
作为一个实施例,所述第一信令指示第一TPMI和第二TPMI,所述第一系数是第一TPMI的非全零的行数除以所述第一参考信号资源的端口数,所述第二系数是第二TPMI的非全零的行数除以所述第二参考信号资源的端口数。
作为一个实施例,所述第一信令指示第一TPMI和第二TPMI,所述第一系数是第一TPMI的非零功率的天线端口数除以所述第一参考信号资源的端口数,所述第二系数是第二TPMI的非零功率的天线端口数除以所述第二参考信号资源的端口数。
作为一个实施例,所述第一信令指示第一TPMI和第二TPMI,所述第一系数是第一TPMI的非零功率的天线端口数除以所述第一TPMI的总端口数,所述第二系数是第二TPMI的非零功率的天线端口数除以所述第二TPMI的总端口数。
作为一个实施例,所述第一信令指示第一TPMI和第二TPMI,所述第一系数是第一TPMI的非全零的行数除以所述第一TPMI的总行数,所述第二系数是第二TPMI的非全零的行数除以所述第二TPMI的总行数。
作为一个实施例,所述第一信令中的两个域分别指示所述第一TPMI和所述第二TPMI。
作为上述实施例的一个子实施例,所述第一信令中的所述两个域的名称都包括Precoding。
作为一个实施例,所述第一信令中的同一个域指示所述第一TPMI和所述第二TPMI。
作为上述实施例的一个子实施例,所述第一信令中的所述同一个域的名称包括Precoding。
作为一个实施例,所述第一信令中的Precoding information and number of layers域指示第一TPMI,所述第一信令中的Second Precoding information域指示第二TPMI。
作为一个实施例,所述第一信令中的Precoding information and number of layers域指示第一TPMI,所述第一信令中的Second Precoding information域指示第二TPMI;或者,所述第一信令中的Precoding information and number of layers域指示第二TPMI,所述第一信令中的Second Precoding information域指示第一TPMI。
作为一个实施例,所述第一功率值和所述第二功率值的和被用于确定所述第二信号是否在所述第一时频资源组中被发送。
作为一个实施例,所述第一功率值和所述第二功率值的大小关系被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值等于或大于所述第二功率值时,所述第二信号在所述第一时频资源组中被放弃发送。
作为一个实施例,所述第一功率值被用于确定第三功率值,所述第二功率值被用于确定第四功率值,所述第三功率值和所述第四功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
作为一个实施例,所述第一功率值被用于确定第三功率值,所述第二功率值被用于确定第四功率值,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;
作为一个实施例,所述第一功率值被用于确定第三功率值,所述第二功率值被用于确定第四功率值,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
实施例6
实施例6示例了根据本申请的一个实施例的确定所述第二信号是否在所述第一时频资源组中被发送的示意图;如附图6所示。
在实施例6中,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值 时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
作为一个实施例,所述第一信号和所述第二信号分别对应第一传输块和第二传输块,所述第一信令被用于指示所述第一传输块的调度信息和所述第二传输块的调度信息。
实施例7
实施例7示例了根据本申请的一个实施例的第一信号的发送功率和第二信号的发送功率的示意图;如附图7所示。
在实施例7中,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
作为一个实施例,所述第一目标功率值是所述第一功率值,所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值是所述第二功率值。
作为一个实施例,所述第一目标功率值是所述第二功率值,所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值是所述第一功率值。
作为一个实施例,所述第一目标功率值是所述第一功率值,所述第二目标功率值是所述第二功率值;或者,所述第一目标功率值是所述第二功率值,所述第二目标功率值是所述第一功率值。
作为一个实施例,所述第一目标功率值是所述第一功率值,所述第二目标功率值是所述第二功率值。
作为一个实施例,所述第一目标功率值是所述第二功率值,所述第二目标功率值是所述第一功率值。
作为一个实施例,所述第一目标系数是所述第一系数,所述第一系数和所述第二系数中的所述第一目标系数之外的系数是所述第二系数。
作为一个实施例,所述第一目标系数是所述第二系数,所述第一系数和所述第二系数中的所述第一目标系数之外的系数是所述第一系数。
作为一个实施例,所述第一目标系数是所述第一系数,所述第二目标系数是所述第二系数;或者,所述第一目标系数是所述第二系数,所述第二目标系数是所述第一系数。
作为一个实施例,所述第一目标系数是所述第一系数,所述第二目标系数是所述第二系数。
作为一个实施例,所述第一目标系数是所述第二系数,所述第二目标系数是所述第一系数。
实施例8
实施例8示例了根据本申请的另一个实施例的确定所述第二信号是否在所述第一时频资源组中被发送的示意图;如附图8所示。
在实施例8中,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
实施例9A-9B
实施例9A-9B分别示例了根据本申请的另一个实施例的第一信号的发送功率和第二信号的发送功率的示意图;如附图9A-9B所示。
在实施例9A中,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功 率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
在实施例9B中,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
实施例10
实施例10示例了根据本申请的一个实施例的第一目标参考信号资源的示意图;如附图10所示。
在实施例10中,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一码字的索引和所述第二码字的索引是两个不同的非负整数。
作为一个实施例,所述第一码字的索引是0,所述第二码字的索引是1。
作为一个实施例,所述第一码字的索引是1,所述第二码字的索引是0。
作为一个实施例,所述第一码字的索引是0,所述第二码字的索引是1;或者,所述第一码字的索引是1,所述第二码字的索引是0。
作为一个实施例,所述第一码字的索引小于所述第二码字的索引,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第一码字的索引小于所述第二码字的索引,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一码字的索引小于所述第二码字的索引时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一码字的索引大于所述第二码字的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一码字的索引大于所述第二码字的索引时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一码字的索引小于所述第二码字的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一码字的索引是0,所述第二码字的索引是1时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一码字的索引是1,所述第二码字的索引是0时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一码字的索引是0,所述第二码字的索引是1,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,所述第一码字的索引是0,所述第二码字的索引是1,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一码字的索引是0,所述第二码字的索引是1时,所述第一目标参考信号资源是所述第二参考信号资源;当所述第一码字的索引是1,所述第二码字的索引是0时,所述第一目标参考信号资源是所述第一参考信号资源。
实施例11A-11D
实施例11A-11D分别示例了根据本申请的另一个实施例的第一目标参考信号资源的示意图;如附图11A-11D所示。
在实施例11A中,所述第一索引针对第一传输块,所述第二索引针对第二传输块;所述第一传输块的索引和所述第二传输块的索引被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一传输块的索引和所述第二传输块的索引是两个不同的非负整数。
作为一个实施例,所述第一传输块的索引和所述第二传输块的索引是两个不同的正整数。
作为一个实施例,所述第一传输块的索引是0,所述第二传输块的索引是1。
作为一个实施例,所述第一传输块的索引是1,所述第二传输块的索引是0。
作为一个实施例,所述第一传输块的索引是0,所述第二传输块的索引是1;或者,所述第一传输块的索引是1,所述第二传输块的索引是0。
作为一个实施例,所述第一传输块的索引是1,所述第二传输块的索引是2。
作为一个实施例,所述第一传输块的索引是2,所述第二传输块的索引是1。
作为一个实施例,所述第一传输块的索引是1,所述第二传输块的索引是2;或者,所述第一传输块的索引是2,所述第二传输块的索引是1。
作为一个实施例,当所述第一传输块的索引小于所述第二传输块的索引时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一传输块的索引大于所述第二传输块的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一传输块的索引大于所述第二传输块的索引时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一传输块的索引小于所述第二传输块的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一传输块的索引是0,所述第二传输块的索引是1时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一传输块的索引是1,所述第二传输块的索引是0时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一传输块的索引是0,所述第二传输块的索引是1时,所述第一目标参考信号资源是所述第二参考信号资源;当所述第一传输块的索引是1,所述第二传输块的索引是0时,所述第一目标参考信号资源是所述第一参考信号资源。
作为一个实施例,当所述第一传输块的索引是1,所述第二传输块的索引是2时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一传输块的索引是2,所述第二传输块的索引是1时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一传输块的索引是1,所述第二传输块的索引是2时,所述第一目标参考信号资源是所述第二参考信号资源;当所述第一传输块的索引是2,所述第二传输块的索引是1时,所述第一目标参考信号资源是所述第一参考信号资源。
在实施例11B中,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括第一MCS,所述第二传输块的调度信息至少包括第二MCS,所述第一MCS和所述第二MCS被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一MCS的索引和所述第二MCS的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的索引小于所述第二MCS的索引时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一MCS的索引大于所述第二MCS的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的索引大于所述第二MCS的索引时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一MCS的索引小于所述第二MCS的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的索引等于所述第二MCS的索引时,所述第一目标参考信号资源是所述第一参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的索引等于所述第二MCS的索引时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一MCS的频谱效率(Spectral efficiency)和所述第二MCS的频谱效率的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的频谱效率大于所述第二MCS的频谱效率时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一MCS的频谱效率小于所述第二MCS的频 谱效率时,所述第一目标参考信号资源是所述第二参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的频谱效率小于所述第二MCS的频谱效率时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一MCS的频谱效率大于所述第二MCS的频谱效率时,所述第一目标参考信号资源是所述第二参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的频谱效率等于所述第二MCS的频谱效率时,所述第一目标参考信号资源是所述第一参考信号资源。
作为上述实施例的一个子实施例,当所述第一MCS的频谱效率等于所述第二MCS的频谱效率时,所述第一目标参考信号资源是所述第二参考信号资源。
在实施例11C中,所述第一索引是所述第一参考信号资源在第一参考信号资源集合中的索引;所述第一参考信号资源集合包括一个或多个SRS资源,所述第一参考信号资源是一个SRS资源;所述第二索引是所述第二参考信号资源在第二参考信号资源集合中的索引;所述第二参考信号资源集合包括一个或多个SRS资源,所述第二参考信号资源是一个SRS资源;所述第一参考信号资源集合的索引和所述第一参考信号资源集合的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,当所述第一参考信号资源集合的索引小于所述第一参考信号资源集合的索引的大小时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一参考信号资源集合的索引大于所述第一参考信号资源集合的索引的大小时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一参考信号资源集合的索引大于所述第一参考信号资源集合的索引的大小时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一参考信号资源集合的索引小于所述第一参考信号资源集合的索引的大小时,所述第一目标参考信号资源是所述第二参考信号资源。
在实施例11D中,所述第一信令占用的PDCCH所在的CORESET(COntrol REsource SET,控制资源集合)被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一信令占用的PDCCH所在的CORESET属于第一CORESET池或者第二CORESET池,所述第一CORESET池包括至少一个CORESET,所述第二CORESET池包括至少一个CORESET;当所述第一信令占用的PDCCH所在的所述CORESET属于所述第一CORESET池时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一信令占用的PDCCH所在的所述CORESET属于所述第二CORESET池时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,当所述第一信令占用的PDCCH所在的所述CORESET属于第三CORESET池时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一信令占用的PDCCH所在的所述CORESET不属于所述第三CORESET池时,所述第一目标参考信号资源是所述第二参考信号资源;所述第三CORESET池包括至少一个CORESET。
作为一个实施例,当所述第一信令占用的PDCCH所在的所述CORESET不属于第三CORESET池时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一信令占用的PDCCH所在的所述CORESET属于所述第三CORESET池时,所述第一目标参考信号资源是所述第二参考信号资源;所述第三CORESET池包括至少一个CORESET。
实施例12
实施例12示例了根据本申请的一个实施例的第一系数和第二系数的示意图;如附图12所示。
在实施例12中,本申请中的所述第一节点发送第一参考信息块和第二参考信息块;其中,所述第一参考信息块被用于指示第一TPMI集合,所述第二参考信息块被用于指示第二TPMI集合;所述第一信令被用于指示第一TPMI和第二TPMI;所述第一TPMI是否属于所述第一TPMI集合被用于确定所述第一系数,所述第二TPMI是否属于所述第二TPMI集合被用于确定所述第二系数。
作为一个实施例,所述第一参考信息块和所述第二参考信息块由RRC信令承载。
作为一个实施例,所述第一参考信息块和所述第二参考信息块由MAC CE信令承载。
作为一个实施例,所述第一参考信息块和所述第二参考信息块是用户设备能力参数。
作为一个实施例,所述第一参考信息块包括用户设备能力(capability)IE中的部分或全部域,所述第二参考信息块包括用户设备能力(capability)IE中的部分或全部域。
作为一个实施例,所述第一参考信息块包括IE FeatureSetUplink中的部分或全部域。
作为一个实施例,所述第一参考信息块包括ul-FullPwrMode2-TPMIGroup-r16。
作为一个实施例,所述第一参考信息块的名称包括ul-FullPwrMode2-TPMIGroup。
作为一个实施例,所述第一参考信息块的名称包括ul-FullPwr。
作为一个实施例,所述第一参考信息块的名称包括TPMIGroup。
作为一个实施例,所述第二参考信息块包括ul-FullPwrMode2-TPMIGroup-r16。
作为一个实施例,所述第二参考信息块的名称包括ul-FullPwrMode2-TPMIGroup。
作为一个实施例,所述第二参考信息块的名称包括ul-FullPwr。
作为一个实施例,所述第二参考信息块的名称包括TPMIGroup。
作为一个实施例,所述第一TPMI集合运载(deliver)满功率(full power)。
作为一个实施例,所述第二TPMI集合运载(deliver)满功率(full power)。
作为一个实施例,采用所述第一TPMI集合中的任一TPMI指示的预编码的PUSCH是满功率(full power)传输的。
作为一个实施例,所述第一TPMI集合支持满功率(full power)。
作为一个实施例,所述第二TPMI集合支持满功率(full power)。
作为一个实施例,所述ul-FullPwrMode2-TPMIGroup-r16的具体定义参见3GPP TS38.306。
作为一个实施例,所述IE FeatureSetUplink,所述ul-FullPwrMode2-TPMIGroup-r16的具体定义参见3GPP TS38.331。
作为一个实施例,第一目标TPMI指示所述第一信号的预编码,所述第一目标TPMI是所述第一TPMI或者所述第二TPMI;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标TPMI是所述第一TPMI,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标TPMI是所述第二TPMI。
作为一个实施例,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括第一TPMI,所述第二传输块的调度信息至少包括第二TPMI。
作为一个实施例,第一TPMI指示所述第一信号的预编码;当所述第一TPMI属于所述第一TPMI集合时,所述第一系数等于1;当所述第一TPMI不属于所述第一TPMI集合时,所述第一系数是所述第一信号的非零功率的天线端口数除以所述第一参考信号资源的端口数。
作为上述实施例的一个子实施例,第二TPMI指示所述第二信号的预编码;当所述第二TPMI属于所述第二TPMI集合时,所述第一系数等于1;当所述第二TPMI不属于所述第二TPMI集合时,所述第二系数是所述第二信号的非零功率的天线端口数除以所述第二参考信号资源的端口数。
作为一个实施例,第二TPMI指示所述第一信号的预编码;当所述第二TPMI属于所述第二TPMI集合时,所述第二系数等于1;当所述第二TPMI不属于所述第二TPMI集合时,所述第二系数是所述第一信号的非零功率的天线端口数除以所述第二参考信号资源的端口数。
作为上述实施例的一个子实施例,第一TPMI指示所述第一信号的预编码;当所述第一TPMI属于所述第一TPMI集合时,所述第二系数等于1;当所述第一TPMI不属于所述第一TPMI集合时,所述第一系数是所述第一信号的非零功率的天线端口数除以所述第一参考信号资源的端口数。
作为一个实施例,当所述第一TPMI属于所述第一TPMI集合时,所述第一系数等于1;当所述第一TPMI不属于所述第一TPMI集合时,所述第一系数是第一TPMI的非全零的行数除以所述第一参考信号资源的端口数。
作为一个实施例,当所述第一TPMI属于所述第一TPMI集合时,所述第一系数等于1;当所述第一TPMI不属于所述第一TPMI集合时,所述第一系数是第一TPMI的非零功率的天线端口数除以所述第一参考信号资源的端口数。
作为一个实施例,当所述第一TPMI属于所述第一TPMI集合时,所述第一系数等于1;当所述第一TPMI不属于所述第一TPMI集合时,所述第一系数是第一TPMI的非零功率的天线端口数除以所述第一TPMI的总端口数。
作为一个实施例,当所述第一TPMI属于所述第一TPMI集合时,所述第一系数等于1;当所述第一 TPMI不属于所述第一TPMI集合时,所述第一系数是第一TPMI的非全零的行数除以所述第一TPMI的总行数。
实施例13
实施例13示例了根据本申请的另一个实施例的第一系数和第二系数的示意图;如附图13所示。
在实施例13中,本申请中的所述第一节点接收第一信息块集合;其中,所述第一系数和所述第二系数依赖所述第一信息块集合。
作为一个实施例,所述第一信息块集合由RRC信令承载。
作为一个实施例,所述第一信息块集合由MAC CE信令承载。
作为一个实施例,所述第一信息块集合包括ul-FullPowerTransmission。
作为一个实施例,所述第一信息块集合指示fullpowerMode1。
作为一个实施例,所述第一信息块集合指示fullpowerMode2。
作为一个实施例,所述第一信息块集合指示fullpower。
作为一个实施例,所述第一信息块集合被用于确定所述第一系数和所述第二系数。
作为一个实施例,所述第一信息块集合包括第一信息块和第二信息块,所述第一信息块被用于确定所述第一系数,所述第二信息块被用于确定所述第二系数。
作为一个实施例,所述第一信息块集合包括第一信息块和第二信息块,所述第一系数依赖所述第一信息块,所述第二系数依赖所述第二信息块。
作为一个实施例,所述第一信息块的名称包括ul-FullPowerTransmission。
作为一个实施例,所述第二信息块的名称包括ul-FullPowerTransmission。
作为一个实施例,所述第一信息块指示fullpowerMode1。
作为一个实施例,所述第一信息块指示fullpowerMode2。
作为一个实施例,所述第一信息块指示fullpower。
作为一个实施例,所述第二信息块指示fullpowerMode1。
作为一个实施例,所述第二信息块指示fullpowerMode2。
作为一个实施例,所述第二信息块指示fullpower。
作为一个实施例,ul-FullPowerTransmission,fullpowerMode1,fullpowerMode2,fullpower的具体定义参见3GPP TS38.213的第7.1章节。
实施例14
实施例14示例了根据本申请的一个实施例的第一功率值和第二功率值的示意图;如附图14所示。
在实施例14中,所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值。
作为一个实施例,所述第一索引被用于指示第一P0值,所述第二索引被用于指示第二P0值。
作为一个实施例,所述第一索引被用于指示第一路损参考信号资源和第一Alpha值,所述第二索引被用于指示第二路损参考信号资源和第二Alpha值。
作为一个实施例,所述第一索引被用于指示第一P0值,所述第二索引被用于指示第二P0值。
作为一个实施例,所述第一索引被用于指示第一路损(path loss)参考信号资源,第一P0值和第一Alpha值,所述第二索引被用于指示第二路损(path loss)参考信号资源,第二P0值和第二Alpha值。
作为一个实施例,所述第一索引被用于指示第一功率控制配置,所述第一功率控制配置被用于确定第一功率值;所述第二索引被用于指示第二功率控制配置,所述第二功率控制配置被用于确定第二功率值。
作为一个实施例,所述第一索引显式的指示第一功率控制配置。
作为一个实施例,所述第一索引隐式的指示第一功率控制配置。
作为一个实施例,所述第一索引被映射到第一功率控制配置。
作为一个实施例,所述第一索引对应第一功率控制配置。
作为一个实施例,所述第一索引是第一功率控制配置的索引。
作为一个实施例,所述第一索引对应第一功率控制配置的标识。
作为一个实施例,所述第一索引是第一功率控制配置的索引或标识。
作为一个实施例,所述第一功率控制配置是SRI-PUSCH-PowerControl,所述第一功率控制配置的索 引或标识是sri-PUSCH-PowerControlId。
作为一个实施例,所述第二索引显式的指示第二功率控制配置。
作为一个实施例,所述第二索引隐式的指示第二功率控制配置。
作为一个实施例,所述第二索引被映射到第二功率控制配置。
作为一个实施例,所述第二索引对应第二功率控制配置。
作为一个实施例,所述第二索引是第二功率控制配置的索引。
作为一个实施例,所述第二索引对应第二功率控制配置的标识。
作为一个实施例,所述第二索引是第二功率控制配置的索引或标识。
作为一个实施例,所述第二功率控制配置是SRI-PUSCH-PowerControl,所述第二功率控制配置的索引或标识是sri-PUSCH-PowerControlId。
作为一个实施例,所述第一功率控制配置是SRI-PUSCH-PowerControl,所述第一功率控制配置的索引或标识是sri-PUSCH-PowerControlId,所述第一索引是所述第一信令中的SRS resource indicator域的值。
作为一个实施例,所述第二功率控制配置是SRI-PUSCH-PowerControl,所述第二功率控制配置的索引或标识是sri-PUSCH-PowerControlId,所述第二索引是所述第一信令中的Second SRS resource indicator域的值。
作为一个实施例,所述第一索引是所述第一信令中的SRS resource indicator域的值,所述第二索引是所述第一信令中的Second SRS resource indicator域的值;或者,所述第二索引是所述第一信令中的SRS resource indicator域的值,所述第一索引是所述第一信令中的Second SRS resource indicator域的值。
典型的,所述第一信令的SRS resource indicator域的值是SRS resource indicator域的一个码点(codepoint)。
典型的,所述第一信令的Second SRS resource indicator域的值是Second SRS resource indicator域的一个码点(codepoint)。
作为一个实施例,所述第一功率值等于第一参考功率值和第一参考功率阈值中的最小值。
作为一个实施例,所述第二功率值等于第二参考功率值和第二参考功率阈值中的最小值。
作为一个实施例,所述第一参考功率值的单位是dBm,所述第一参考功率阈值的单位是dBm,所述第二参考功率值的单位是dBm,所述第二参考功率阈值的单位是dBm。
作为一个实施例,所述第一参考功率阈值是预定义的。
作为一个实施例,所述第一参考功率阈值是可配置的。
作为一个实施例,所述第一参考功率阈值是在所对应的载波、发送时机(Transmission Occasion)和服务小区上的采用和所述第一参考信号资源相同的天线端口(antenna port(s)的无线信号的最大发送功率。
作为一个实施例,所述第二参考功率阈值是预定义的。
作为一个实施例,所述第二参考功率阈值是可配置的。
作为一个实施例,所述第二参考功率阈值是在所对应的载波、发送时机(Transmission Occasion)和服务小区上的采用和所述第二参考信号资源相同的天线端口(antenna port(s)的无线信号的最大发送功率。
作为一个实施例,所述第一功率控制配置包括所述第一功率控制配置的索引,第一路损(path loss)参考信号资源的索引,第一P0值,第一Alpha值,第一闭环索引(closed loop index);所述第二功率控制配置包括所述第二功率控制配置的索引,第二路损(path loss)参考信号资源的索引,第二P0值,第二Alpha值,第二闭环索引。
作为一个实施例,所述第一功率控制配置包括第一路损(path loss)参考信号资源的索引,第一P0值和第一Alpha值;所述第二功率控制配置包括第二路损(path loss)参考信号资源的索引,第二P0值和第二Alpha值。
作为一个实施例,所述第一P0值的单位是dBm,所述第二P0值的单位是dBm。
作为一个实施例,所述第一参考功率值和所述第一P0值是线性相关的,所述第一参考功率值和所述第一P0值的线性相关的系数是1;所述第二参考功率值和所述第二P0值是线性相关的,所述第 二参考功率值和所述第二P0值的线性相关的系数是1。
作为一个实施例,第一路损是针对第一路损参考信号资源的测量得到的路径损耗,所述第一参考功率值和所述第一路损是线性相关的;第二路损是针对第二路损参考信号资源的测量得到的路径损耗,所述第二参考功率值和所述第二路损是线性相关的。
作为一个实施例,第一路损是针对第一路损参考信号资源的测量得到的路径损耗,所述第一参考功率值和所述第一路损是线性相关的,所述第一参考功率值和所述第一路损的线性相关的系数是所述第一Alpha值;第二路损是针对第二路损参考信号资源的测量得到的路径损耗,所述第二参考功率值和所述第二路损是线性相关的,所述第二参考功率值和所述第二路损的线性相关的系数是所述第二Alpha值。
作为一个实施例,所述第一路损的单位是dB,所述第二路损的单位是dB。
作为一个实施例,所述第一路损等于所述第一路损参考信号资源的发送功率减去所述第一路损参考信号资源的RSRP(Reference Signal Received Power,参考信号接收功率),所述第二路损等于所述第二路损参考信号资源的发送功率减去所述第二路损参考信号资源的RSRP。
作为一个实施例,所述第一参考功率值是PPUSCH,b,f,c(i,j,qd,l),所述第一参考功率阈值是PCMAX,f,c(i),所述第一P0值是PO_PUSCH,b,f,c(j),所述第一路损是PLb,f,c(qd),所述第一参考功率值与所述第一路损之间的线性系数是αb,f,c(j)。
作为一个实施例,所述第二参考功率值是PPUSCH,b,f,c(i,j,qd,l),所述第二参考功率阈值是PCMAX,f,c(i),所述第二P0值是PO_PUSCH,b,f,c(j),所述第二参考功率值是所述第二路损是PLb,f,c(qd),所述第二参考功率值与所述第二路损之间的线性系数是αb,f,c(j)。
作为一个实施例,所述PPUSCH,b,f,c(i,j,qd,l),所述PCMAX,f,c(i),所述PO_PUSCH,b,f,c(j),所述PLb,f,c(qd)和所述αb,f,c(j)的具体定义参见TS38.213中的第7.1章节。
作为一个实施例,所述第一功率值和所述第一P0值是线性相关的,所述第一功率值和所述第一P0值的线性相关的系数是1;所述第二功率值和所述第二P0值是线性相关的,所述第二功率值和所述第二P0值的线性相关的系数是1。
作为一个实施例,第一路损是针对第一路损参考信号资源的测量得到的路径损耗,所述第一功率值和所述第一路损是线性相关的;第二路损是针对第二路损参考信号资源的测量得到的路径损耗,所述第二功率值和所述第二路损是线性相关的。
作为一个实施例,第一路损是针对第一路损参考信号资源的测量得到的路径损耗,所述第一功率值和所述第一路损是线性相关的,所述第一功率值和所述第一路损的线性相关的系数是所述第一Alpha值;第二路损是针对第二路损参考信号资源的测量得到的路径损耗,所述第二功率值和所述第二路损是线性相关的,所述第二功率值和所述第二路损的线性相关的系数是所述第二Alpha值。
作为一个实施例,所述第一路损的单位是dB,所述第二路损的单位是dB。
作为一个实施例,所述第一路损等于所述第一路损参考信号资源的发送功率减去所述第一路损参考信号资源的RSRP(Reference Signal Received Power,参考信号接收功率),所述第二路损等于所述第二路损参考信号资源的发送功率减去所述第二路损参考信号资源的RSRP。
作为一个实施例,所述第一功率值是PPUSCH,b,f,c(i,j,qd,l),所述第一参考功率阈值是PCMAX,f,c(i),所述第一P0值是PO_PUSCH,b,f,c(j),所述第一路损是PLb,f,c(qd),所述第一功率值与所述第一路损之间的线性系数是αb,f,c(j)。
作为一个实施例,所述第二功率值是PPUSCH,b,f,c(i,j,qd,l),所述第二参考功率阈值是PCMAX,f,c(i),所述第二P0值是PO_PUSCH,b,f,c(j),所述第二功率值是所述第二路损是PLb,f,c(qd),所述第二功率值与所述第二路损之间的线性系数是αb,f,c(j)。
实施例15
实施例15示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图15所示。在附图15中,第一节点设备中的处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1201,接收第一信令;
第一发射机1202,在第一时频资源组中发送第一信号;
在实施例15中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,其特征在于,包括:
所述第一发射机1202,在所述第一时频资源组中发送第二信号,或者,在所述第一时频资源组中放弃发送第二信号;
其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
作为一个实施例,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
作为一个实施例,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
作为一个实施例,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
作为一个实施例,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
作为一个实施例,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参 考信号资源。
作为一个实施例,其特征在于,包括:
所述第一发射机1202,发送第一参考信息块和第二参考信息块;
其中,所述第一参考信息块被用于指示第一TPMI集合,所述第二参考信息块被用于指示第二TPMI集合;所述第一信令被用于指示第一TPMI和第二TPMI;所述第一TPMI是否属于所述第一TPMI集合被用于确定所述第一系数,所述第二TPMI是否属于所述第二TPMI集合被用于确定所述第二系数。
作为一个实施例,其特征在于,包括:
所述第一接收机1201,接收第一信息块集合;
其中,所述第一系数和所述第二系数依赖所述第一信息块集合。
实施例16
实施例16示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图16所示。在附图16中,第二节点设备中的处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备是基站备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1301,发送第一信令;
第二接收机1302,在第一时频资源组中接收第一信号;
在实施例16中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
作为一个实施例,其特征在于,包括:
所述第二接收机1302,在所述第一时频资源组中监测第二信号;
其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
作为一个实施例,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
作为一个实施例,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
作为一个实施例,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述 第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
作为一个实施例,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
作为一个实施例,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,其特征在于,包括:
所述第二接收机1302,接收第一参考信息块和第二参考信息块;
其中,所述第一参考信息块被用于指示第一TPMI集合,所述第二参考信息块被用于指示第二TPMI集合;所述第一信令被用于指示第一TPMI和第二TPMI;所述第一TPMI是否属于所述第一TPMI集合被用于确定所述第一系数,所述第二TPMI是否属于所述第二TPMI集合被用于确定所述第二系数。
作为一个实施例,其特征在于,包括:
所述第二发射机1301,发送第一信息块集合;
其中,所述第一系数和所述第二系数依赖所述第一信息块集合。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。

Claims (28)

  1. 一种用于通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令;
    第一发射机,在第一时频资源组中发送第一信号;
    其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
  2. 根据权利要求1所述的第一节点设备,其特征在于,包括:
    所述第一发射机,在所述第一时频资源组中发送第二信号,或者,在所述第一时频资源组中放弃发送第二信号;
    其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
  3. 根据权利要求2所述的第一节点设备,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  4. 根据权利要求3所述的第一节点设备,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  5. 根据权利要求2所述的第一节点设备,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
  8. 一种用于通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信令;
    第二接收机,在第一时频资源组中接收第一信号;
    其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
  9. 根据权利要求8所述的第二节点设备,其特征在于,包括:
    所述第二接收机,在所述第一时频资源组中监测第二信号;
    其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
  10. 根据权利要求9所述的第二节点设备,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  11. 根据权利要求10所述的第二节点设备,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  12. 根据权利要求9所述的第二节点设备,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  13. 根据权利要求12所述的第二节点设备,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  14. 根据权利要求8至13中任一权利要求所述的第二节点设备,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
  15. 一种用于通信的第一节点中的方法,其特征在于,包括:
    接收第一信令;
    在第一时频资源组中发送第一信号;
    其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
  16. 根据权利要求15所述的方法,其特征在于,包括:
    在所述第一时频资源组中发送第二信号,或者,在所述第一时频资源组中放弃发送第二信号;
    其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
  17. 根据权利要求16所述的方法,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  18. 根据权利要求17所述的方法,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  19. 根据权利要求16所述的方法,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  20. 根据权利要求19所述的方法,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  21. 根据权利要求15至20中任一权利要求所述的方法,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
  22. 一种用于通信的第二节点中的方法,其特征在于,包括:
    发送第一信令;
    在第一时频资源组中接收第一信号;
    其中,所述第一信令被用于指示所述第一时频资源组;所述第一信令被用于指示第一索引和第二索引,所述第一索引被用于指示第一参考信号资源,所述第二索引被用于指示第二参考信号资源;所述第一索引被用于确定第一功率值,所述第二索引被用于确定第二功率值;第一目标参考信号资源被用于确定所述第一信号的天线端口,所述第一目标参考信号资源是所述第一参考信号资源或所述第二参考信号资源;第一目标功率值的线性值和第一目标系数的乘积被用于确定所述第一信号的发送功率的线性值;所述第一目标参考信号资源是所述第一参考信号资源,所述第一目标功率值是所述第一功率值,并且所述第一目标系数是第一系数,或者,所述第一目标参考信号资源是所述第二参考信号资源,所述第一目标功率值是所述第二功率值,并且所述第一目标系数是第二系数。
  23. 根据权利要求22所述的方法,其特征在于,包括:
    在所述第一时频资源组中监测第二信号;
    其中,所述第一功率值和所述第二功率值被用于确定所述第二信号是否在所述第一时频资源组中被发送。
  24. 根据权利要求23所述的方法,其特征在于,所述第一功率值和所述第二功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第一功率值和所述第二功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  25. 根据权利要求24所述的方法,其特征在于,所述第一功率值小于或等于第一功率阈值,所述第二功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积;当所述第一功率值和所述第二功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  26. 根据权利要求23所述的方法,其特征在于,第三功率值的线性值是所述第一功率值的线性值和所述第一系数的乘积,第四功率值的线性值是所述第二功率值的线性值和所述第二系数的乘积,所述第三功率值和所述第四功率值的和是否大于第一功率阈值被用于确定所述第二信号是否在所述第一时频资源组中被发送;当所述第三功率值和所述第四功率值的和大于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被放弃发送;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号在所述第一时频资源组中被发送。
  27. 根据权利要求26所述的方法,其特征在于,所述第三功率值小于或等于所述第一功率阈值,所述第四功率值小于或等于所述第一功率阈值;所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,或者,所述第一信号的所述发送功率的线性值等于所述第一目标功率值的线性值和所述第一目标系数的乘积,和所述第一功率阈值的线性值中的最小值;当所述第三功率值和所述第四功率值的和小于或等于所述第一功率阈值时,所述第二信号的发送功率的线性值等于第二目标功率值的线性值和第二目标系数的乘积,所述第二目标功率值是所述第一功率值和所述第二功率值中的所述第一目标功率值之外的功率值,所述第二目标系数是所述第一系数和所述第二系数中的所述第一目标系数之外的系数。
  28. 根据权利要求22至27中任一权利要求所述的方法,其特征在于,所述第一信令指示第一传输块的调度信息和第二传输块的调度信息,所述第一传输块的调度信息至少包括所述第一索引,所述第二传输块的调度信息至少包括所述第二索引,所述第一传输块被映射到第一码字,所述第二传输块被映射到第二码字,所述第一码字的索引和所述第二码字的索引的大小关系被用于从所述第一参考信号资源和所述第二参考信号资源中确定所述第一目标参考信号资源。
PCT/CN2023/129821 2022-11-12 2023-11-04 一种被用于无线通信的节点中的方法和装置 WO2024099240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211416048.1 2022-11-12
CN202211416048.1A CN118042570A (zh) 2022-11-12 2022-11-12 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024099240A1 true WO2024099240A1 (zh) 2024-05-16

Family

ID=90999287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129821 WO2024099240A1 (zh) 2022-11-12 2023-11-04 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (2) CN118042571A (zh)
WO (1) WO2024099240A1 (zh)

Also Published As

Publication number Publication date
CN118042570A (zh) 2024-05-14
CN118042571A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112436873B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020216015A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021031950A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138555A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023169323A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160320A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024017079A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099210A1 (zh) 一种被用于无线通信的方法和装置
WO2024046153A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027693A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005963A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088257A1 (zh) 一种被用于无线通信的方法和装置