WO2024093883A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024093883A1
WO2024093883A1 PCT/CN2023/127600 CN2023127600W WO2024093883A1 WO 2024093883 A1 WO2024093883 A1 WO 2024093883A1 CN 2023127600 W CN2023127600 W CN 2023127600W WO 2024093883 A1 WO2024093883 A1 WO 2024093883A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
resource set
identity
frequency domain
configuration information
Prior art date
Application number
PCT/CN2023/127600
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024093883A1 publication Critical patent/WO2024093883A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for uplink wireless signals in a wireless communication system supporting a cellular network.
  • a service cell can be configured with a PCI corresponding to the service cell and multiple Additional PCIs to achieve more flexible configuration and scheduling.
  • SBFD is only used as a typical application scenario or example; the present application is also applicable to other scenarios facing similar problems, such as non-SBFD scenarios, or to different technical fields, such as other technical fields other than resource configuration, such as measurement reporting fields, power control and other non-resource configuration fields to achieve similar technical effects.
  • the use of a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the present application discloses a method in a first node for wireless communication, comprising:
  • the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set;
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP;
  • the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity;
  • the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively;
  • the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity;
  • the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the above method is characterized in that: two independent frequency domain resources for uplink transmission are configured for the first identity and the second identity respectively, thereby ensuring flexibility.
  • the above method is characterized in that: the first identity and the second identity share the same first time domain resource. Source aggregation, thereby ensuring the performance of mobility management.
  • the first BWP is a downlink BWP
  • the first frequency domain resource set and the second frequency domain resource set are both reserved for uplink transmission.
  • the above method is characterized in that: the first frequency domain resource set and the second frequency domain resource set are both subbands capable of uplink transmission configured in a downlink BWP.
  • the first identity is a PCI
  • the second identity is a PCI other than the PCI corresponding to the first identity
  • the first signal and the target reference signal resource are quasi-co-located, and the target reference signal resource is the first reference signal resource or the second reference signal resource; the first reference signal resource and the second reference signal resource are associated with the first identity and the second identity, respectively; the target reference signal resource is the first reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set, or the target reference signal resource is the second reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the above method is characterized in that: the first signal determines, based on a spatial relationship, to use a frequency band resource corresponding to one of the first identity and the second identity for uplink transmission.
  • the first time domain resource set includes a first time domain resource subset and a second time domain resource subset, and the first time domain resource subset and the second time domain resource subset are respectively associated with the first identity and the second identity; whether the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set or the second frequency domain resource set depends on whether the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset or the second time domain resource subset.
  • the above method is characterized in that: two independent time domain resources for uplink transmission are respectively configured for the first identity and the second identity, thereby further ensuring flexibility.
  • the first serving cell configuration information includes first downlink BWP configuration information
  • the first downlink BWP configuration information is used to configure the first BWP
  • the first downlink BWP configuration information is associated with target uplink configuration information
  • the target uplink configuration information includes at least one of pucch-Config, pusch-Config, configuredGrantConfig or srs-Config
  • the first signal adopts the target uplink configuration information.
  • the above method is characterized in that: the configuration about uplink transmission is embedded in the configuration information of a downlink BWP.
  • the target uplink configuration information is one of the first uplink configuration information or the second uplink configuration information, the first uplink configuration information is associated with the first identity, and the second uplink configuration information is associated with the second identity; the TCI corresponding to the first signal is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • the above method is characterized in that: two groups of configurations about uplink transmission are embedded in the configuration information of a downlink BWP to associate two identities respectively.
  • the present application discloses a method in a second node for wireless communication, comprising:
  • Target information set is used to determine a first frequency domain resource set and a second frequency domain resource set
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP;
  • the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity;
  • the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively;
  • the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity;
  • the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the first BWP is a downlink BWP
  • the first frequency domain resource set and the second frequency domain resource set are both reserved for uplink transmission.
  • the first identity is a PCI
  • the second identity is the PCI corresponding to the first identity. PCI outside.
  • the first signal and the target reference signal resource are quasi-co-located, and the target reference signal resource is the first reference signal resource or the second reference signal resource; the first reference signal resource and the second reference signal resource are associated with the first identity and the second identity, respectively; the target reference signal resource is the first reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set, or the target reference signal resource is the second reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the first time domain resource set includes a first time domain resource subset and a second time domain resource subset, and the first time domain resource subset and the second time domain resource subset are respectively associated with the first identity and the second identity; whether the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set or the second frequency domain resource set depends on whether the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset or the second time domain resource subset.
  • the first serving cell configuration information includes first downlink BWP configuration information
  • the first downlink BWP configuration information is used to configure the first BWP
  • the first downlink BWP configuration information is associated with target uplink configuration information
  • the target uplink configuration information includes at least one of pucch-Config, pusch-Config, configuredGrantConfig or srs-Config
  • the first signal adopts the target uplink configuration information.
  • the target uplink configuration information is one of the first uplink configuration information or the second uplink configuration information, the first uplink configuration information is associated with the first identity, and the second uplink configuration information is associated with the second identity; the TCI corresponding to the first signal is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • the present application discloses a first node for wireless communication, comprising:
  • a first receiver receives a target information set, where the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set;
  • a first transmitter sends a first signal in a first time-frequency resource set
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP;
  • the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity;
  • the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively;
  • the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity;
  • the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the present application discloses a second node for wireless communication, comprising:
  • a second transmitter sends a target information set, where the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set;
  • a second receiver receives a first signal in a first time-frequency resource set
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP;
  • the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity;
  • the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively;
  • the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity;
  • the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the benefit of the solution in the present application is to optimize resource allocation to improve performance.
  • FIG1 shows a processing flow chart of a first node according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flow chart of target information collection according to an embodiment of the present application
  • FIG6 shows a schematic diagram of a target information set according to an embodiment of the present application.
  • FIG7 shows a schematic diagram of a first frequency domain resource set and a second frequency domain resource set according to an embodiment of the present application
  • FIG8 shows a schematic diagram of a first time domain resource set according to an embodiment of the present application
  • FIG9 shows a schematic diagram of first downlink BWP configuration information according to an embodiment of the present application.
  • FIG10 is a schematic diagram showing first downlink BWP configuration information according to another embodiment of the present application.
  • FIG11 is a schematic diagram showing an application scenario according to an embodiment of the present application.
  • FIG12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • FIG13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in FIG1.
  • each box represents a step.
  • the first node in the present application receives a target information set in step 101, and the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set; and sends a first signal in a first time-frequency resource set in step 102.
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP; the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity; the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the target information set includes RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the target information set includes an RRC signaling.
  • the target information set includes multiple RRC signalings.
  • the target information set includes one field (Field) in an IE (Information Element) in TS 38.331.
  • the target information set includes multiple fields in an IE in TS 38.331.
  • the target information set includes BWP-Downlink IE in TS 38.331.
  • the target information set includes one domain or multiple domains in BWP-Downlink.
  • the target information set includes BWP-DownlinkCommon IE in TS 38.331.
  • the target information set includes one or more fields in BWP-DownlinkCommon.
  • the target information set includes BWP-DownlinkDedicated IE in TS 38.331.
  • the target information set includes one or more fields in BWP-DownlinkDedicated.
  • the name of the RRC signaling included in the target information set includes BWP.
  • the name of the RRC signaling included in the target information set includes Downlink.
  • the name of the RRC signaling included in the target information set includes Common.
  • the name of the RRC signaling included in the target information set includes Dedicated.
  • the target information set is cell-specific.
  • the target information set is UE-specific.
  • the first frequency domain resource set includes multiple RB (Resource Blocks) sets.
  • the first frequency domain resource set includes an RB set (Set).
  • the RB set included in the first frequency domain resource set includes a positive integer number of RBs.
  • the RBs included in the RB set included in the first frequency domain resource set are continuous in the frequency domain.
  • the second frequency domain resource set includes multiple RB sets.
  • the second frequency domain resource set includes an RB set.
  • the RB set included in the second frequency domain resource set includes a positive integer number of RBs.
  • the RBs included in the RB set included in the second frequency domain resource set are continuous in the frequency domain.
  • the first frequency domain resource set includes a positive integer number of subcarriers greater than 1.
  • the second frequency domain resource set includes a positive integer number of subcarriers greater than 1.
  • the target information set is used to indicate the first frequency domain resource set.
  • the target information set is used to explicitly indicate the first frequency domain resource set.
  • the target information set is used to implicitly indicate the first frequency domain resource set.
  • the target information set is used to indicate the second frequency domain resource set.
  • the target information set is used to explicitly indicate the second frequency domain resource set.
  • the target information set is used to implicitly indicate the second frequency domain resource set.
  • the first time-frequency resource set occupies a positive integer number of REs greater than 1.
  • the first time-frequency resource set occupies a frequency bandwidth corresponding to a positive integer number of RBs in the frequency domain, and occupies a positive integer number of multi-carrier symbols in the time domain.
  • the physical layer channel occupied by the first signal includes PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the physical layer channel occupied by the first signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the physical layer channel occupied by the first signal includes PRACH (Physical Random Access Channel).
  • the first signal includes CSI-RS (Channel State Information Reference Signal).
  • CSI-RS Channel State Information Reference Signal
  • the first signal includes SRS (Sounding Reference Signal).
  • the transmission channel corresponding to the first signal includes UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first signal corresponds to a dynamically authorized PUSCH (with dynamic grant).
  • the first signal corresponds to a PUSCH with a configured grant (Configured Grant).
  • the first BWP is a downlink BWP.
  • the first BWP includes a downlink BWP.
  • the first serving cell configuration information includes ServingCellConfig IE in TS 38.331.
  • the first serving cell configuration information includes ServingCellConfigCommon IE in TS 38.331.
  • the first service cell configuration information includes SCellConfig in TS 38.331.
  • the first service cell configuration information includes sCellConfigCommon in TS 38.331.
  • the first serving cell configuration information includes sCellConfigDedicated in TS 38.331.
  • the first service cell configuration information is used to configure a first service cell, and the first service cell includes the first BWP.
  • the first serving cell corresponds to a serving cell (Serving Cell) of the first node.
  • the first serving cell corresponds to the first identity.
  • the first serving cell is associated with the second identity.
  • the first identity corresponds to a non-negative integer.
  • the second identity corresponds to a non-negative integer.
  • the first identity corresponds to a PCI.
  • the second identity corresponds to a PCI.
  • the first identity and the second identity are different.
  • the first identity corresponds to a Serving Cell PCI.
  • the second identity corresponds to an AdditionalPCI.
  • the first identity is associated with the first frequency domain resource set.
  • the second identity is associated with the second frequency domain resource set.
  • the first identity corresponds to the first frequency domain resource set.
  • the second identity corresponds to the second frequency domain resource set.
  • the spatial transmission parameters corresponding to the first signal are associated with the first identity, and the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set.
  • the spatial transmission parameters corresponding to the first signal are associated with the second identity, and the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the first serving cell configuration information is used to indicate the first time domain resource set.
  • the first time domain resource set includes a time unit set, and the first serving cell configuration information is used to indicate the time unit set.
  • the first serving cell configuration information is used to indicate a time unit in the time unit set used for downlink transmission.
  • the first serving cell configuration information is used to indicate a time unit in the time unit set used for uplink transmission.
  • the first serving cell configuration information is used to indicate a time unit configured as "flexible" in the time unit set.
  • the time unit set includes K1 time units, K1 is a positive integer greater than 1, and the K1 time units correspond to K1 time slots respectively.
  • the time unit set includes K1 time units, K1 is a positive integer greater than 1, and the K1 time units correspond to K1 multi-carrier symbols respectively.
  • the time unit set includes K1 time units, where K1 is a positive integer greater than 1, and the K1 time units correspond to K1 subframes respectively.
  • part or all of the time domain resources in the first time domain resource set are associated with the first identity.
  • part or all of the time domain resources in the first time domain resource set are associated with the second identity.
  • At least one time domain resource in the first time domain resource set is associated with the first identity and the second identity at the same time.
  • the first time domain resource set is associated with the first identity and the second identity at the same time.
  • the first time domain resource set includes a first time domain resource subset and a second time domain resource subset, and the first time domain resource subset and the second time domain resource subset are associated with the first identity and the second identity respectively.
  • the first time domain resource set includes K2 time domain resources, where K2 is a positive integer greater than 1, and the K2 time domain resources correspond to K2 time slots respectively.
  • the first time domain resource set includes K2 time domain resources, where K2 is a positive integer greater than 1.
  • K2 time domain resources correspond to K2 subframes respectively.
  • the first time domain resource set includes K2 time domain resources, where K2 is a positive integer greater than 1, and the K2 time domain resources correspond to K2 multi-carrier symbols respectively.
  • the first time domain resource set corresponds to TDD-UL-DL-ConfigDedicated.
  • the first time domain resource set corresponds to TDD-UL-DL-ConfigCommon
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the first identity includes: the first time domain resource set is applied to the service cell corresponding to the first identity.
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the first identity includes: the first time domain resource set is used to determine the uplink/downlink (Uplink/Downlnk) TDD configuration (configuration) of the service cell corresponding to the first identity.
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the first identity includes: the first time domain resource set is used to determine the uplink/downlink TDD (Time Division Duplexing) configuration of the TRP (transmitting and receiving node) corresponding to the first identity.
  • TDD Time Division Duplexing
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the first identity includes: the first time domain resource set is used to determine the uplink/downlink TDD configuration adopted by the nodes associated with the SSBs (Synchronization Signal/physical broadcast channel Blocks) corresponding to the first identity.
  • SSBs Synchronization Signal/physical broadcast channel Blocks
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the second identity includes: the first time domain resource set is applied to the service cell corresponding to the second identity.
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the second identity includes: the first time domain resource set is used to determine the uplink/downlink TDD configuration of the service cell corresponding to the second identity.
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the second identity includes: the first time domain resource set is used to determine the uplink/downlink TDD configuration of the TRP corresponding to the second identity.
  • the meaning that at least one time domain resource in the first time domain resource set is associated with the second identity includes: the first time domain resource set is used to determine the uplink/downlink TDD configuration adopted by the node associated with the SSBs corresponding to the second identity.
  • the multi-carrier symbol in the present application is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol in the present application is a SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the multi-carrier symbol in the present application is a DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol in the present application is an IFDMA (Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access
  • the first identity corresponds to a TRP of a service cell of the first node
  • the second identity corresponds to a TRP other than the TRP corresponding to the first identity
  • the first identity corresponds to an SRS resource set.
  • the second identity corresponds to an SRS resource set.
  • the first identity corresponds to a CORESET (control resource set) Pool Index.
  • the second identity corresponds to a CORESET Pool Index.
  • the first signal includes a wireless signal.
  • the first signal includes a baseband signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 for a 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved EPS 200 may include a UE (User Equipment) 201, NR-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) 210, HSS (Home Subscriber Server) 220, and Internet Service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol terminations toward UE 201.
  • gNB 203 can be connected to other gNBs 204 via an Xn interface (e.g., backhaul).
  • Xn interface e.g., backhaul
  • the gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive node), or some other suitable term.
  • the gNB 203 provides an access point to the EPC/5G-CN 210 for the UE 201.
  • Examples of UE 201 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop computer, a personal digital assistant (PDA), a satellite radio, non-terrestrial base station communications, satellite mobile communications, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband Internet of Things device, a machine type communication device, a land vehicle, an automobile, a wearable device, or any other similarly functional device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications a global positioning system
  • a multimedia device e.g., a digital audio player (e.g., an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband Internet of Things device, a machine type communication device, a land vehicle, an automobile, a
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • the gNB 203 is connected to the EPC/5G-CN 210 via an S1/NG interface.
  • the EPC/5G-CN 210 includes an MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is a control node that processes signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, which is itself connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE201 corresponds to the first node in the present application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE 201 is a terminal (ender).
  • the UE201 supports an unpaired spectrum scenario.
  • the UE201 supports frequency domain resource configuration of Flexible Duplex.
  • the UE201 supports full-duplex transmission.
  • the UE201 supports dynamic adjustment of uplink and downlink transmission directions.
  • the UE 201 supports SBFD.
  • the node 203 corresponds to the second node in the present application.
  • the node 203 is a base station (BS).
  • BS base station
  • the node 203 is a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the node 203 is a NodeB (NB), or a gNB, or an eNB, or an ng-eNB, or an en-gNB, or a user equipment, or a relay, or a gateway (Gateway), or at least one TRP.
  • NB NodeB
  • eNB eNodeB
  • ng-eNB eNodeB
  • en-gNB eNodeB
  • a user equipment e.gNodeB
  • a gateway Gateway
  • the node 203 includes at least one TRP.
  • the node 203 includes a TRP identified by the first identity, and the node 203 includes a TRP identified by the second identity.
  • the node 203 is a logical node.
  • the different structures in the node 203 are located in the same entity.
  • different structures in the node 203 are located in different entities.
  • the node 203 corresponds to the second node in the present application.
  • the node 203 supports an asymmetric spectrum scenario.
  • the node 203 supports flexible duplex frequency domain resource configuration.
  • the node 203 supports full-duplex transmission.
  • the node 203 supports dynamic adjustment of uplink and downlink transmission directions.
  • the node 203 supports SBFD.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of a non-terrestrial network (Terrestrial Network).
  • Terrestrial Network a non-terrestrial network
  • the user equipment supports transmission in a network with a large delay difference.
  • the user equipment supports dual connection (DC) transmission.
  • DC dual connection
  • the user equipment supports NR.
  • the user equipment supports UTRA.
  • the user equipment supports EUTRA.
  • the user equipment includes a device supporting low-latency and high-reliability transmission.
  • the user equipment includes an aircraft, or a vehicle-mounted terminal, or a ship, or an Internet of Things terminal, or an industrial Internet of Things terminal, or a test device, or a signaling tester.
  • the base station device supports transmission in a non-terrestrial network.
  • the base station device supports transmission in a network with a large delay difference.
  • the base station device supports transmission of a terrestrial network.
  • the base station device includes a base station device that supports a large delay difference.
  • the base station device includes a macro cellular (Marco Cellular) base station, or a micro cell (Micro Cell) base station, or a pico cell (Pico Cell) base station, or a home base station (Femtocell).
  • a macro cellular (Marco Cellular) base station or a micro cell (Micro Cell) base station, or a pico cell (Pico Cell) base station, or a home base station (Femtocell).
  • the base station device includes a flying platform device, or a satellite device, or a TRP (Transmitter Receiver Point), or a CU (Centralized Unit), or a DU (Distributed Unit), or a test device, or a signaling tester, or an IAB (Integrated Access and Backhaul)-node, or an IAB-donor, or an IAB-donor-CU, or an IAB-donor-DU, or an IAB-DU, or an IAB-MT.
  • a flying platform device or a satellite device, or a TRP (Transmitter Receiver Point), or a CU (Centralized Unit), or a DU (Distributed Unit), or a test device, or a signaling tester, or an IAB (Integrated Access and Backhaul)-node, or an IAB-donor, or an IAB-donor-CU, or an IAB-donor-DU, or an IAB-DU, or an IAB-MT.
  • TRP Transmitter Receiver Point
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture for a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB, or RSU in V2X) and a second communication node device (gNB, UE, or RSU in V2X) using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides inter-zone mobility support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., The IP layer) and the application layer terminated at the other end of the connection (e.g., a remote UE, server, etc.).
  • a network layer e.g., The IP layer
  • the application layer terminated at the other end of the connection e.g., a remote UE, server, etc.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the PDCP 304 of the second communication node device is used to generate the scheduling of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the target information set is generated by the MAC302 or MAC352.
  • the target information set is generated in the RRC306.
  • the first signal is generated by the RRC306.
  • the first signal is generated by the MAC302 or MAC352.
  • the first signal is generated by the RRC306.
  • the first node is a terminal.
  • the first node is a relay.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point).
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network are provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to a subcarrier, multiplexes with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier, and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the communication device 450 is any spatial stream of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between the transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, and implements L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for the retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor, and the first communication device 450 apparatus at least: first receives a target information set, the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set; then sends a first signal in a first time-frequency resource set; the first frequency domain resource set and the second frequency domain resource set both belong to a first BWP; first service cell configuration information is used to determine the first BWP, the first service cell configuration information is used to indicate a first identity and a second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine a first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: first receiving a target information set, the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set; then sending a first signal in a first time-frequency resource set; the first frequency domain resource set and the second frequency domain resource set both belong to a first BWP; first service cell configuration information is used to determine the first BWP, the first service cell configuration information is used to indicate a first identity and a second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine a first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity; the frequency domain resources occupied by the first time-frequency resource set Belongs
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the second communication device 410 device at least: first sends a target information set, the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set; then receives a first signal in a first time-frequency resource set; the first frequency domain resource set and the second frequency domain resource set both belong to a first BWP; the first service cell configuration information is used to determine the first BWP, the first service cell configuration information is used to indicate a first identity and a second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine a first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the
  • the second communication device 410 apparatus includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: first sending a target information set, the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set; then receiving a first signal in a first time-frequency resource set; the first frequency domain resource set and the second frequency domain resource set both belong to a first BWP; first service cell configuration information is used to determine the first BWP, the first service cell configuration information is used to indicate a first identity and a second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine a first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity; the frequency domain resources occupied by the first time-frequency resource set belong to
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • the second communication device 410 includes multiple TRPs.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to receive a target information set; and at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to send a target information set.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to send a first signal in a first set of time-frequency resources; and at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive a first signal in a first set of time-frequency resources.
  • Embodiment 5 illustrates a flow chart of a target information set, as shown in FIG5.
  • the first node U1 communicates with the second node N2 via a wireless link. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • a target information set is received in step S10; and a first signal is sent in a first time-frequency resource set in step S11.
  • a target information set is sent in step S20; and a first signal is received in a first time-frequency resource set in step S21.
  • the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set; the first frequency domain resource set and the second frequency domain resource set both belong to a first BWP; the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate a first identity and a second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine a first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity; the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the first BWP is a downlink BWP, and both the first frequency domain resource set and the second frequency domain resource set are reserved for uplink transmission.
  • the first frequency domain resource set is reserved for uplink transmission when the first identity is adopted, and the second frequency domain resource set is reserved for uplink transmission when the second identity is adopted.
  • the first frequency domain resource set is reserved for uplink transmission when the first identity is associated with scheduling
  • the second frequency domain resource set is reserved for uplink transmission when the second identity is associated with scheduling
  • the first identity is a PCI
  • the second identity is a PCI other than the PCI corresponding to the first identity
  • the first identity is a PCI of the first serving cell
  • the second identity is a PCI other than the PCI of the first serving cell
  • the first identity corresponds to a positive integer.
  • the second identity corresponds to a positive integer.
  • the first identity and the second identity are different.
  • the first signal and the target reference signal resource are quasi-co-located, and the target reference signal resource is the first reference signal resource or the second reference signal resource; the first reference signal resource and the second reference signal resource are associated with the first identity and the second identity, respectively; the target reference signal resource is the first reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set, or the target reference signal resource is the second reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the target reference signal resource includes SSB.
  • the target reference signal resource corresponds to an SSB-Index.
  • the target reference signal resource includes a CSI-RS resource.
  • the target reference signal resource corresponds to an NZP-CSI-RS-ResourceId.
  • the target reference signal resource includes an SRS resource.
  • the target reference signal resource corresponds to an SRS-ResourceId.
  • the target reference signal resource is associated with a TCI.
  • the target reference signal resource is associated with a TCI-State.
  • the target reference signal resource is associated with a TCI-State-Id.
  • the target reference signal resource is associated with a TCI-UL-State-Id.
  • the first reference signal resource includes SSB.
  • the first reference signal resource corresponds to an SSB-Index.
  • the first reference signal resource includes a CSI-RS resource.
  • the first reference signal resource corresponds to an NZP-CSI-RS-ResourceId.
  • the first reference signal resource includes an SRS resource.
  • the first reference signal resource corresponds to an SRS-ResourceId.
  • the first reference signal resource is associated with a TCI.
  • the first reference signal resource is associated with a TCI-State.
  • the first reference signal resource is associated with a TCI-State-Id.
  • the first reference signal resource is associated with a TCI-UL-State-Id.
  • the second reference signal resource includes SSB.
  • the second reference signal resource corresponds to an SSB-Index.
  • the second reference signal resource includes a CSI-RS resource.
  • the second reference signal resource corresponds to an NZP-CSI-RS-ResourceId.
  • the second reference signal resource includes an SRS resource.
  • the second reference signal resource corresponds to an SRS-ResourceId.
  • the second reference signal resource is associated with a TCI (Transmission Configuration Indication).
  • TCI Transmission Configuration Indication
  • the second reference signal resource is associated with a TCI-State.
  • the second reference signal resource is associated with a TCI-State-Id.
  • the second reference signal resource is associated with a TCI-UL-State-Id.
  • whether the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set or the second frequency domain resource set depends on whether the target reference signal resource is the first reference signal resource or the second reference signal resource.
  • the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set; when the target reference signal resource is the second reference signal resource, the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the RRC signaling used to determine the first reference signal resource is also used to indicate the first identity.
  • the RRC signaling used to determine the TCI-State corresponding to the first reference signal resource is also used to indicate the first identity.
  • the RRC signaling used to determine the TCI-UL-State corresponding to the first reference signal resource is also used to indicate the first identity.
  • the same RRC signaling is used to simultaneously determine the QCL (Quasi Co-located) relationship corresponding to the first reference signal resource and the first identity.
  • the RRC signaling used to determine the second reference signal resource is also used to indicate the second identity.
  • the RRC signaling used to determine the TCI-State corresponding to the second reference signal resource is also used to indicate the second identity.
  • the RRC signaling used to determine the TCI-UL-State corresponding to the second reference signal resource is also used to indicate the second identity.
  • the same RRC signaling is used to simultaneously determine the QCL relationship corresponding to the second reference signal resource and the second identity.
  • the first time domain resource set includes a first time domain resource subset and a second time domain resource subset, and the first time domain resource subset and the second time domain resource subset are associated with the first identity and the second identity, respectively; whether the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set or the second frequency domain resource set depends on whether the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset or the second time domain resource subset.
  • the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set; when the time domain resources occupied by the first time-frequency resource set belong to the second time domain resource subset, the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • whether the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset or the second time domain resource subset depends on whether the target reference signal resource is the first reference signal resource or the second reference signal resource.
  • the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset; when the target reference signal resource is the second reference signal resource, The time domain resources occupied by the first time-frequency resource set belong to the second time domain resource subset.
  • the first time domain resource subset includes K3 time domain resources, where K3 is a positive integer greater than 1, and the K3 time domain resources correspond to K3 time slots respectively.
  • the first time domain resource subset includes K3 time domain resources, where K3 is a positive integer greater than 1, and the K3 time domain resources correspond to K3 subframes respectively.
  • the first time domain resource subset includes K3 time domain resources, where K3 is a positive integer greater than 1, and the K3 time domain resources correspond to K3 multi-carrier symbols respectively.
  • the second time domain resource subset includes K4 time domain resources, where K4 is a positive integer greater than 1, and the K4 time domain resources correspond to K4 time slots respectively.
  • the second time domain resource subset includes K4 time domain resources, where K4 is a positive integer greater than 1, and the K4 time domain resources correspond to K4 subframes respectively.
  • the second time domain resource subset includes K4 time domain resources, where K4 is a positive integer greater than 1, and the K4 time domain resources correspond to K4 multi-carrier symbols respectively.
  • the first service cell configuration information includes first downlink BWP configuration information
  • the first downlink BWP configuration information is used to configure the first BWP
  • the first downlink BWP configuration information is associated with target uplink configuration information
  • the target uplink configuration information includes at least one of pucch-Config, pusch-Config, configuredGrantConfig or srs-Config
  • the first signal adopts the target uplink configuration information.
  • the target uplink configuration information is one of the first uplink configuration information or the second uplink configuration information, the first uplink configuration information is associated with the first identity, and the second uplink configuration information is associated with the second identity; the TCI corresponding to the first signal is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • Embodiment 6 illustrates a schematic diagram of a target information set, as shown in Figure 6.
  • the first service cell configuration information includes first downlink BWP configuration information, the target information set includes first information and second information, the first downlink BWP configuration information includes the first information and the second information;
  • the first service cell configuration information includes third information, the third information is used to indicate a first time domain resource set; the first information and the second information are used to indicate the first frequency domain resource set and the second frequency domain resource set, respectively;
  • the first service cell configuration information includes a first identity and a second identity; the first information and the second information are associated with the first identity and the second identity, respectively.
  • the first serving cell configuration information corresponds to ServingCellConfig IE in TS 38.331.
  • the first service cell configuration information corresponds to the sCellConfigCommon IE in TS 38.331.
  • the first service cell configuration information corresponds to the sCellConfigDedicated IE in TS 38.331.
  • the first downlink BWP configuration information corresponds to BWP-DownlinkCommon IE in TS 38.331.
  • the first downlink BWP configuration information corresponds to BWP-DownlinkDedicated IE in TS 38.331.
  • the third information corresponds to TDD-UL-DL-ConfigCommon IE in TS 38.331.
  • the third information corresponds to TDD-UL-DL-ConfigDedicated IE in TS 38.331.
  • Embodiment 7 illustrates a schematic diagram of a first frequency domain resource set and a second frequency domain resource set, as shown in Figure 7.
  • the first BWP in the present application includes the first frequency domain resource set and the second frequency domain resource set.
  • the first frequency domain resource set and the second frequency domain resource set are independently configured.
  • the first frequency domain resource set and the second frequency domain resource set are orthogonal in the frequency domain.
  • the first frequency domain resource set and the second frequency domain resource set overlap in the frequency domain.
  • Embodiment 8 illustrates a schematic diagram of a first time domain resource set, as shown in Figure 8.
  • the first time domain resource set in the present application includes a first time domain resource subset and a second time domain resource subset.
  • the first time domain resource subset and the second time domain resource subset are independently configured.
  • the first time domain resource subset and the first time domain resource subset are orthogonal in the time domain.
  • the first time domain resource subset and the second time domain resource subset overlap in the frequency domain.
  • Embodiment 9 illustrates a schematic diagram of a first downlink BWP configuration information, as shown in FIG9.
  • the first downlink BWP configuration information includes target uplink configuration information
  • the target uplink configuration information includes at least one of pucch-Config, pusch-Config, configuredGrantConfig or srs-Config
  • the first signal adopts the target uplink configuration information.
  • the first downlink BWP configuration information includes the target uplink configuration information.
  • the first downlink BWP configuration information is associated with an uplink BWP configuration information
  • the uplink BWP configuration information includes the target uplink configuration information
  • the target uplink configuration information includes pucch-Config IE.
  • the physical layer channel occupied by the first signal includes PUCCH.
  • the target uplink configuration information includes pusch-Config IE.
  • the target uplink configuration information includes configuredGrantConfig IE.
  • the physical layer channel occupied by the first signal includes PUSCH.
  • the target uplink configuration information includes srs-Config IE.
  • the first signal includes an SRS.
  • the first downlink BWP configuration information includes target downlink configuration information.
  • the target downlink configuration information includes at least one of pdcch-Config, pdsch-Config or sps-Config.
  • Embodiment 10 illustrates a schematic diagram of first downlink BWP configuration information, as shown in Figure 10.
  • the first downlink BWP configuration information includes first uplink configuration information and second uplink configuration information, the first uplink configuration information is associated with the first identity, and the second uplink configuration information is associated with the second identity; the TCI corresponding to the first signal is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • the target uplink configuration information is the first uplink configuration information; when the TCI corresponding to the first signal is associated with the second identity, the target uplink configuration information is the second uplink configuration information.
  • the first uplink configuration information is for the first identity.
  • the second uplink configuration information is for the second identity.
  • the same RRC signaling is used to indicate the first uplink configuration information and the first identity.
  • the RRC signaling includes ServingCellConfig IE.
  • the same RRC signaling is used to indicate the second uplink configuration information and the second identity.
  • the RRC signaling includes ServingCellConfig IE.
  • the same RRC signaling is used to indicate the first uplink configuration information and the second uplink configuration information.
  • the first signal and the target reference signal resource are quasi-co-located, and the target reference signal resource is associated with one of the first identity or the second identity; which of the first identity and the second identity the target reference signal resource is associated with is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • the first uplink configuration information includes pucch-Config IE.
  • the first uplink configuration information includes pusch-Config IE.
  • the first uplink configuration information includes configuredGrantConfig IE.
  • the first uplink configuration information includes srs-Config IE.
  • the second uplink configuration information includes pucch-Config IE.
  • the second uplink configuration information includes pusch-Config IE.
  • the second uplink configuration information includes configuredGrantConfig IE.
  • the second uplink configuration information includes srs-Config IE.
  • Embodiment 11 illustrates a schematic diagram of an application scenario, as shown in FIG11.
  • TRP-1 and TRP-2 shown in the figure are both managed by the second node in the present application; the first identity in the present application is associated with the TRP-1, and the first identity in the present application is associated with the TRP-2.
  • the second identity is associated with the TRP-2; the first node moves within the coverage range of the TRP-1 and the coverage range of the TRP-2; the beam corresponding to the first reference signal resource shown in the figure corresponds to the first identity, and the beam corresponding to the second reference signal resource shown corresponds to the second identity.
  • the first frequency domain resource set is configured to the TRP-1.
  • the second frequency domain resource set is configured to the TRP-2.
  • Embodiment 12 illustrates a structural block diagram of a first node, as shown in FIG12 .
  • the first node 1200 includes a first receiver 1201 and a first transmitter 1202 .
  • a first receiver 1201 receives a target information set, where the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set;
  • a first transmitter 1202 sends a first signal in a first time-frequency resource set
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP; the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity; the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the first BWP is a downlink BWP
  • the first frequency domain resource set and the second frequency domain resource set are both reserved for uplink transmission.
  • the first identity is a PCI
  • the second identity is a PCI other than the PCI corresponding to the first identity
  • the first signal and the target reference signal resource are quasi-co-located, and the target reference signal resource is the first reference signal resource or the second reference signal resource; the first reference signal resource and the second reference signal resource are associated with the first identity and the second identity, respectively; the target reference signal resource is the first reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set, or the target reference signal resource is the second reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the first time domain resource set includes a first time domain resource subset and a second time domain resource subset, and the first time domain resource subset and the second time domain resource subset are respectively associated with the first identity and the second identity; whether the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set or the second frequency domain resource set depends on whether the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset or the second time domain resource subset.
  • the first service cell configuration information includes first downlink BWP configuration information
  • the first downlink BWP configuration information is used to configure the first BWP
  • the first downlink BWP configuration information is associated with target uplink configuration information
  • the target uplink configuration information includes at least one of pucch-Config, pusch-Config, configuredGrantConfig or srs-Config
  • the first signal adopts the target uplink configuration information.
  • the target uplink configuration information is one of the first uplink configuration information or the second uplink configuration information, the first uplink configuration information is associated with the first identity, and the second uplink configuration information is associated with the second identity; the TCI corresponding to the first signal is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • the first receiver 1201 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in Embodiment 4.
  • the first transmitter 1202 includes at least the first four of the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, and controller/processor 459 in Embodiment 4.
  • Embodiment 13 illustrates a structural block diagram of a second node, as shown in FIG13 .
  • the second node 1300 includes a second transmitter 1301 and a second receiver 1302 .
  • the second transmitter 1301 sends a target information set, where the target information set is used to determine a first frequency domain resource set and a second frequency domain resource set;
  • a second receiver 1302 receives a first signal in a first time-frequency resource set
  • the first frequency domain resource set and the second frequency domain resource set both belong to the first BWP; the first service cell configuration information is used to determine the first BWP, and the first service cell configuration information is used to indicate the first identity and the second identity; the first identity and the second identity are associated with the first frequency domain resource set and the second frequency domain resource set, respectively; the first service cell configuration information is used to determine the first time domain resource set, at least one time domain resource in the first time domain resource set is associated with the first identity, and at least one time domain resource in the first time domain resource set is associated with the second identity; the frequency domain resources occupied by the first time-frequency resource set belong to one of the first frequency domain resource set or the second frequency domain resource set, and the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource set.
  • the first BWP is a downlink BWP
  • the first frequency domain resource set and the second frequency domain resource set are both reserved for uplink transmission.
  • the first identity is a PCI
  • the second identity is a PCI other than the PCI corresponding to the first identity
  • the first signal and the target reference signal resource are quasi-co-located, and the target reference signal resource is the first reference signal resource or the second reference signal resource; the first reference signal resource and the second reference signal resource are associated with the first identity and the second identity, respectively; the target reference signal resource is the first reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set, or the target reference signal resource is the second reference signal resource and the frequency domain resources occupied by the first time-frequency resource set belong to the second frequency domain resource set.
  • the first time domain resource set includes a first time domain resource subset and a second time domain resource subset, and the first time domain resource subset and the second time domain resource subset are respectively associated with the first identity and the second identity; whether the frequency domain resources occupied by the first time-frequency resource set belong to the first frequency domain resource set or the second frequency domain resource set depends on whether the time domain resources occupied by the first time-frequency resource set belong to the first time domain resource subset or the second time domain resource subset.
  • the first service cell configuration information includes first downlink BWP configuration information
  • the first downlink BWP configuration information is used to configure the first BWP
  • the first downlink BWP configuration information is associated with target uplink configuration information
  • the target uplink configuration information includes at least one of pucch-Config, pusch-Config, configuredGrantConfig or srs-Config
  • the first signal adopts the target uplink configuration information.
  • the target uplink configuration information is one of the first uplink configuration information or the second uplink configuration information, the first uplink configuration information is associated with the first identity, and the second uplink configuration information is associated with the second identity; the TCI corresponding to the first signal is used to determine the target uplink configuration information from the first uplink configuration information and the second uplink configuration information.
  • the second transmitter 1301 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 414, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1302 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the first node in the present application includes but is not limited to mobile phones, tablet computers, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, transportation tools, vehicles, RSU (Road Side Unit, road side unit), aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • RSU Rotary Side Unit, road side unit
  • aircraft aircraft
  • drones remote control aircraft and other wireless communication equipment.
  • the second node in the present application includes but is not limited to macro cell base stations, micro cell base stations, small cell base stations, home base stations, relay base stations, eNB, gNB, transmission and reception nodes TRP, GNSS (Global Navigation Satellite System, Global Navigation Satellite System), relay satellites, satellite base stations, air base stations, RSU, drones, test equipment, such as transceivers or signaling testers that simulate some functions of base stations, and other wireless communication equipment.
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • relay satellites satellite base stations, air base stations, RSU, drones
  • test equipment such as transceivers or signaling testers that simulate some functions of base stations, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;随后在第一时频资源集合中发送第一信号;所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务配置信息被用于确定第一时域资源集合,所述第一时域资源集合被关联到所述第一身份和所述第二身份。本申请改进子带非交叠全双工的资源配置方式,以提升系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的上行无线信号的传输方法和装置。
背景技术
在现有的NR(New Radio,新无线)系统中,频谱资源被静态地划分为FDD(Frequency Division Duplexing,频分双工)频谱和TDD(Time Division Duplexing,时分双工)频谱。而对于TDD频谱,基站和用户设备都工作在半双工模式。这种半双工模式避免了自干扰并能够缓解跨链路(Cross Link)干扰的影响,但是也带来了资源利用率的下降和延时的增大。针对这些问题,在TDD频谱或FDD频谱上支持灵活的双工模式成为一种可能的解决方案。在3GPP RAN(Radio Access Network,无线接入网)1#103e次会议同意了针对双工技术的研究工作,其中SBFD(Subband Non-overlapping Full Duplex,子带非交叠全双工)被提出,即支持基站设备在两个子带上同时进行发送和接收。在这个模式下的通信会受到严重的干扰,包括自干扰和跨链路干扰。与此同时,目前R-17系统支持Additional PCI(Physical Cell Identity,物理小区身份)的引入,一个服务小区可以配置一个服务小区对应的PCI以及多个Additional PCI以实现更加灵活的配置和调度。
发明内容
在未来R18以及后续技术演进的讨论中,当SBFD和Additional PCI相结合时,会存在更为复杂的配置方式和应用场景,针对上述场景,现有的关于BWP(Bandwidth Part,带宽部分)以及目前讨论的关于SBFD的配置,需要被重新设计。
针对上述SBFD和Additional PCI相结合的问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将SBFD作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景,例如非SBFD的场景,或者针对不同的技术领域,比如除了资源配置之外的其它技术领域,例如测量上报领域,功率控制等其它非资源配置领域以取得类似的技术效果。此外,不同场景(包括但不限于SBFD的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
在第一时频资源集合中发送第一信号;
其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,上述方法的特征在于:为所述第一身份和所述第二身份分别配置两个独立的用于上行传输的频域资源,进而保证灵活性。
作为一个实施例,上述方法的特征在于:所述第一身份和所述第二身份共享相同的所述第一时域资 源集合,进而保证移动性管理的性能。
根据本申请的一个方面,所述第一BWP是一个下行BWP,所述第一频域资源集合和所述第二频域资源集合均被预留用于上行传输。
作为一个实施例,上述方法的特征在于:所述第一频域资源集合和所述第二频域资源集合均是配置在一个下行BWP中的能够进行上行传输的子带。
根据本申请的一个方面,所述第一身份是一个PCI,所述第二身份是所述第一身份所对应的PCI之外的PCI。
根据本申请的一个方面,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源是第一参考信号资源或第二参考信号资源;所述第一参考信号资源和所述第二参考信号资源分别与所述第一身份和所述第二身份相关联;所述目标参考信号资源是所述第一参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合,或者所述目标参考信号资源是所述第二参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
作为一个实施例,上述方法的特征在于:所述第一信号根据空间关系确定采用所述第一身份和所述第二身份中的一个身份所对应的频带资源进行上行传输。
根据本申请的一个方面,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份;所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集。
作为一个实施例,上述方法的特征在于:为所述第一身份和所述第二身份分别配置两个独立的用于上行传输的时域资源,进而进一步保证灵活性。
根据本申请的一个方面,所述第一服务小区配置信息包括第一下行BWP配置信息,所述第一下行BWP配置信息被用于配置所述第一BWP,所述第一下行BWP配置信息被关联到目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
作为一个实施例,上述方法的特征在于:在一个下行BWP的配置信息中嵌入关于上行传输的配置。
根据本申请的一个方面,所述目标上行配置信息是第一上行配置信息或第二上行配置信息中的之一,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
作为一个实施例,上述方法的特征在于:在一个下行BWP的配置信息中嵌入两组关于上行传输的配置,以分别关联两个身份。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
在第一时频资源集合中接收第一信号;
其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
根据本申请的一个方面,所述第一BWP是一个下行BWP,所述第一频域资源集合和所述第二频域资源集合均被预留用于上行传输。
根据本申请的一个方面,所述第一身份是一个PCI,所述第二身份是所述第一身份所对应的PCI 之外的PCI。
根据本申请的一个方面,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源是第一参考信号资源或第二参考信号资源;所述第一参考信号资源和所述第二参考信号资源分别与所述第一身份和所述第二身份相关联;所述目标参考信号资源是所述第一参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合,或者所述目标参考信号资源是所述第二参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
根据本申请的一个方面,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份;所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集。
根据本申请的一个方面,所述第一服务小区配置信息包括第一下行BWP配置信息,所述第一下行BWP配置信息被用于配置所述第一BWP,所述第一下行BWP配置信息被关联到目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
根据本申请的一个方面,所述目标上行配置信息是第一上行配置信息或第二上行配置信息中的之一,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
第一发射机,在第一时频资源集合中发送第一信号;
其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
第二接收机,在第一时频资源集合中接收第一信号;
其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,本申请中的方案的好处在于:优化资源分配方式,以提升性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的目标信息集合的流程图;
图6示出了根据本申请的一个实施例的目标信息集合的示意图;
图7示出了根据本申请的一个实施例的第一频域资源集合和第二频域资源集合的示意图;
图8示出了根据本申请的一个实施例的第一时域资源集合的示意图;
图9示出了根据本申请的一个实施例的第一下行BWP配置信息的示意图;
图10示出了根据本申请的另一个实施例的第一下行BWP配置信息的示意图;
图11示出了根据本申请的一个实施例的应用场景的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;在步骤102中在第一时频资源集合中发送第一信号。
实施例1中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述目标信息集合包括RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述目标信息集合包括一个RRC信令。
作为一个实施例,所述目标信息集合包括多个RRC信令。
作为一个实施例,所述目标信息集合包括TS 38.331中的一个IE(Information Element)中的1个域(Field)。
作为一个实施例,所述目标信息集合包括TS 38.331中的一个IE中的多个域。
作为一个实施例,所述目标信息集合包括TS 38.331中的BWP-Downlink IE。
作为该实施例的一个子实施例,所述目标信息集合包括BWP-Downlink中的一个域或多个域。
作为一个实施例,所述目标信息集合包括TS 38.331中的BWP-DownlinkCommon IE。
作为该实施例的一个子实施例,所述目标信息集合包括BWP-DownlinkCommon中的一个域或多个域。
作为一个实施例,所述目标信息集合包括TS 38.331中的BWP-DownlinkDedicated IE。
作为该实施例的一个子实施例,所述目标信息集合包括BWP-DownlinkDedicated中的一个域或多个域。
作为一个实施例,所述目标信息集合所包括的RRC信令的名字包括BWP。
作为一个实施例,所述目标信息集合所包括的RRC信令的名字包括Downlink。
作为一个实施例,所述目标信息集合所包括的RRC信令的名字包括Common。
作为一个实施例,所述目标信息集合所包括的RRC信令的名字包括Dedicated。
作为一个实施例,所述目标信息集合是小区专属的。
作为一个实施例,所述目标信息集合是UE专属的。
作为一个实施例,所述第一频域资源集合包括多个RB(Resource Blocks,资源块)集合。
作为一个实施例,所述第一频域资源集合包括一个RB集合(Set)。
作为该实施例的一个子实施例,所述第一频域资源集合所包括的所述RB集合包括正整数个RB。
作为该实施例的一个子实施例,所述第一频域资源集合所包括的所述RB集合所包括的RB在频域是连续的。
作为一个实施例,所述第二频域资源集合包括多个RB集合。
作为一个实施例,所述第二频域资源集合包括一个RB集合。
作为该实施例的一个子实施例,所述第二频域资源集合所包括的所述RB集合包括正整数个RB。
作为该实施例的一个子实施例,所述第二频域资源集合所包括的所述RB集合所包括的RB在频域是连续的。
作为一个实施例,所述第一频域资源集合包括大于1的正整数个子载波。
作为一个实施例,所述第二频域资源集合包括大于1的正整数个子载波。
作为一个实施例,所述目标信息集合被用于指示所述第一频域资源集合。
作为一个实施例,所述目标信息集合被用于显性指示所述第一频域资源集合。
作为一个实施例,所述目标信息集合被用于隐性指示所述第一频域资源集合。
作为一个实施例,所述目标信息集合被用于指示所述第二频域资源集合。
作为一个实施例,所述目标信息集合被用于显性指示所述第二频域资源集合。
作为一个实施例,所述目标信息集合被用于隐性指示所述第二频域资源集合。
作为一个实施例,所述第一时频资源集合占用大于1的正整数个RE。
作为一个实施例,所述第一时频资源集合在频域占用正整数个RB所对应的频带宽度,且在时域占用正整数个多载波符号。
作为一个实施例,所述第一信号所占用的物理层信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PRACH(Physical Random Access Channel,物理随机接入信道)。
作为一个实施例,所述第一信号包括CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第一信号所对应的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一信号对应一个动态授权的PUSCH(with dynamic grant)。
作为一个实施例,所述第一信号对应一个配置授权(Configured Grant)的PUSCH。
作为一个实施例,所述第一BWP是一个下行BWP。
作为一个实施例,所述第一BWP包括下行BWP。
作为一个实施例,所述第一服务小区配置信息包括TS 38.331中的ServingCellConfig IE。
作为一个实施例,所述第一服务小区配置信息包括TS 38.331中的ServingCellConfigCommon IE。
作为一个实施例,所述第一服务小区配置信息包括TS 38.331中的SCellConfig。
作为一个实施例,所述第一服务小区配置信息包括TS 38.331中的sCellConfigCommon。
作为一个实施例,所述第一服务小区配置信息包括TS 38.331中的sCellConfigDedicated。
作为一个实施例,所述第一服务小区配置信息被用于配置第一服务小区,所述第一服务小区包括所述第一BWP。
作为该实施例的一个子实施例,所述第一服务小区对应所述第一节点的一个服务小区(Serving Cell)。
作为该实施例的一个子实施例,所述第一服务小区对应所述第一身份。
作为该实施例的一个子实施例,所述第一服务小区被关联到所述第二身份。
作为一个实施例,所述第一身份对应一个非负整数。
作为一个实施例,所述第二身份对应一个非负整数。
作为一个实施例,所述第一身份对应一个PCI。
作为一个实施例,所述第二身份对应一个PCI。
作为一个实施例,所述第一身份和所述第二身份不同。
作为一个实施例,所述第一身份对应一个Serving Cell PCI。
作为一个实施例,所述第二身份对应一个AdditionalPCI。
作为一个实施例,所述第一身份被关联到所述第一频域资源集合。
作为一个实施例,所述第二身份被关联到所述第二频域资源集合。
作为一个实施例,所述第一身份对应所述第一频域资源集合。
作为一个实施例,所述第二身份对应所述第二频域资源集合。
作为一个实施例,所述第一信号所对应的空间发送参数被关联到所述第一身份,所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合。
作为一个实施例,所述第一信号所对应的空间发送参数被关联到所述第二身份,所述第一时频资源集合所占用的频域资源属于所述第二频域资源集合。
作为一个实施例,所述第一服务小区配置信息被用于指示所述第一时域资源集合。
作为一个实施例,所述第一时域资源集合包括一个时间单元集合,所述第一服务小区配置信息被用于指示所述时间单元集合。
作为该实施例的一个子实施例,所述第一服务小区配置信息被用于指示所述时间单元集合中用于下行传输的时间单元。
作为该实施例的一个子实施例,所述第一服务小区配置信息被用于指示所述时间单元集合中用于上行传输的时间单元。
作为该实施例的一个子实施例,所述第一服务小区配置信息被用于指示所述时间单元集合中配置为“灵活的(Flexible)”的时间单元。
作为该实施例的一个子实施例,所述时间单元集合包括K1个时间单元,所述K1是大于1的正整数,所述K1个时间单元分别对应K1个时隙。
作为该实施例的一个子实施例,所述时间单元集合包括K1个时间单元,所述K1是大于1的正整数,所述K1个时间单元分别对应K1个多载波符号。
作为该实施例的一个子实施例,所述时间单元集合包括K1个时间单元,所述K1是大于1的正整数,所述K1个时间单元分别对应K1个子帧。
作为一个实施例,所述第一时域资源集合中的部分或全部时域资源被关联到所述第一身份。
作为一个实施例,所述第一时域资源集合中的部分或全部时域资源被关联到所述第二身份。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被同时关联到所述第一身份和所述第二身份。
作为一个实施例,所述第一时域资源集合被同时关联到所述第一身份和所述第二身份。
作为一个实施例,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份。
作为一个实施例,所述第一时域资源集合包括K2个时域资源,所述K2是大于1的正整数,所述K2个时域资源分别对应K2个时隙。
作为一个实施例,所述第一时域资源集合包括K2个时域资源,所述K2是大于1的正整数,所述 K2个时域资源分别对应K2个子帧。
作为一个实施例,所述第一时域资源集合包括K2个时域资源,所述K2是大于1的正整数,所述K2个时域资源分别对应K2个多载波符号。
作为一个实施例,所述第一时域资源集合对应TDD-UL-DL-ConfigDedicated。
作为一个实施例,所述第一时域资源集合对应TDD-UL-DL-ConfigCommon
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份的意思包括:所述第一时域资源集合被应用于所述第一身份所对应的服务小区。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份的意思包括:所述第一时域资源集合被用于确定所述第一身份所对应的服务小区的上行/下行(Uplink/Downlnk)TDD配置(configuration)。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份的意思包括:所述第一时域资源集合被用于确定所述第一身份所对应的TRP(发送接收节点)的上行/下行TDD(Time Division Duplexing,时分双工)配置。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份的意思包括:所述第一时域资源集合被用于确定所述第一身份所对应的SSBs(Synchronization Signal/physical broadcast channel Blocks,同步信号/物理广播信道块)所关联的节点所采用的上行/下行TDD配置。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份的意思包括:所述第一时域资源集合被应用于所述第二身份所对应的服务小区。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份的意思包括:所述第一时域资源集合被用于确定所述第二身份所对应的服务小区的上行/下行TDD配置。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份的意思包括:所述第一时域资源集合被用于确定所述第二身份所对应的TRP的上行/下行TDD配置。
作为一个实施例,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份的意思包括:所述第一时域资源集合被用于确定所述第二身份所对应的SSBs所关联的节点所采用的上行/下行TDD配置。
作为一个实施例,本申请中的所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波-频分多址)符号。
作为一个实施例,本申请中的所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用)符号。
作为一个实施例,本申请中的所述多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述第一身份对应所述第一节点的服务小区的一个TRP,所述第二身份对应所述第一身份所对应的TRP之外的一个TRP。
作为一个实施例,所述第一身份对应一个SRS资源集合。
作为一个实施例,所述第二身份对应一个SRS资源集合。
作为一个实施例,所述第一身份对应一个CORESET(控制资源集合)Pool Index。
作为一个实施例,所述第二身份对应一个CORESET Pool Index。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括基带信号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved  Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个终端(ender)。
作为一个实施例,所述UE201支持非对称频谱(Unpaired Spectrum)场景。
作为一个实施例,所述UE201支持灵活双工(Flexible Duplex)的频域资源配置。
作为一个实施例,所述UE201支持全双工(Full Duplex)传输。
作为一个实施例,所述UE201支持动态调整上下行传输方向。
作为一个实施例,所述UE201支持SBFD。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备(BaseStation,BS)。
作为一个实施例,所述节点203是一个基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述节点203是一个节点B(NodeB,NB),或者gNB,或者eNB,或者ng-eNB,或者en-gNB,或者用户设备,或者中继,或者网关(Gateway),或者至少一个TRP。
作为一个实施例,所述节点203包括至少一个TRP。
作为一个实施例,所述节点203包括被所述第一身份标识的一个TRP,并且所述节点203包括被所述第二身份标识的一个TRP。
作为一个实施例,所述节点203是一个逻辑节点。
作为一个实施例,所述节点203中的不同结构位于同一个实体。
作为一个实施例,所述节点203中的不同结构位于不同实体。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203支持非对称频谱场景。
作为一个实施例,所述节点203支持灵活双工的频域资源配置。
作为一个实施例,所述节点203支持全双工(Full Duplex)传输。
作为一个实施例,所述节点203支持动态调整上下行传输方向。
作为一个实施例,所述节点203支持SBFD。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备支持NR。
作为一个实施例,所述用户设备支持UTRA。
作为一个实施例,所述用户设备支持EUTRA。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括飞行器,或者车载终端,或者船只,或者物联网终端,或者工业物联网的终端,或者测试设备,或者信令测试仪。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站,或者微小区(Micro Cell)基站,或者微微小区(Pico Cell)基站,或者家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括飞行平台设备,或者卫星设备,或者TRP(Transmitter Receiver Point,发送接收节点),或者CU(Centralized Unit,集中单元),或者DU(Distributed Unit,分布单元),或者测试设备,或者信令测试仪,或者IAB(Integrated Access and Backhaul)-node,或者IAB-donor,或者IAB-donor-CU,或者IAB-donor-DU,或者IAB-DU,或者IAB-MT。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如, IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述目标信息集合生成于所述MAC302或者MAC352。
作为一个实施例,所述目标信息集合生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一 通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;随后在第一时频资源集合中发送第一信号;所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;随后在第一时频资源集合中发送第一信号;所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源 属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;随后在第一时频资源集合中接收第一信号;所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;随后在第一时频资源集合中接收第一信号;所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述第二通信设备410包括多个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收目标信息集合;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送目标信息集合。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第一时频资源集合中发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于在第一时频资源集合中接收第一信号。
实施例5
实施例5示例了一个目标信息集合的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U1,在步骤S10中接收目标信息集合;在步骤S11中在第一时频资源集合中发送第一信号。
对于第二节点N2,在步骤S20中发送目标信息集合;在步骤S21中在第一时频资源集合中接收第一信号。
实施例5中,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
典型的,所述第一BWP是一个下行BWP,所述第一频域资源集合和所述第二频域资源集合均被预留用于上行传输。
作为一个实施例,所述第一频域资源集合在所述第一身份被采用时被预留用于上行传输,所述第二频域资源集合在所述第二身份被采用时被预留用于上行传输。
作为一个实施例,所述第一频域资源集合在所述第一身份被关联到调度时被预留用于上行传输,所述第二频域资源集合在所述第二身份被关联到调度时被预留用于上行传输。
典型的,所述第一身份是一个PCI,所述第二身份是所述第一身份所对应的PCI之外的PCI。
典型的,所述第一身份是所述第一服务小区的PCI,所述第二身份是所述第一服务小区的所述PCI之外的一个PCI。
作为一个实施例,所述第一身份对应一个正整数。
作为一个实施例,所述第二身份对应一个正整数。
作为一个实施例,所述第一身份和所述第二身份不同。
典型的,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源是第一参考信号资源或第二参考信号资源;所述第一参考信号资源和所述第二参考信号资源分别与所述第一身份和所述第二身份相关联;所述目标参考信号资源是所述第一参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合,或者所述目标参考信号资源是所述第二参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
作为一个实施例,所述目标参考信号资源包括SSB。
作为一个实施例,所述目标参考信号资源对应一个SSB-Index。
作为一个实施例,所述目标参考信号资源包括CSI-RS资源。
作为一个实施例,所述目标参考信号资源对应一个NZP-CSI-RS-ResourceId。
作为一个实施例,所述目标参考信号资源包括SRS资源。
作为一个实施例,所述目标参考信号资源对应一个SRS-ResourceId。
作为一个实施例,所述目标参考信号资源被关联到一个TCI。
作为一个实施例,所述目标参考信号资源被关联到一个TCI-State。
作为一个实施例,所述目标参考信号资源被关联到一个TCI-State-Id。
作为一个实施例,所述目标参考信号资源被关联到一个TCI-UL-State-Id。
作为一个实施例,所述第一参考信号资源包括SSB。
作为一个实施例,所述第一参考信号资源对应一个SSB-Index。
作为一个实施例,所述第一参考信号资源包括CSI-RS资源。
作为一个实施例,所述第一参考信号资源对应一个NZP-CSI-RS-ResourceId。
作为一个实施例,所述第一参考信号资源包括SRS资源。
作为一个实施例,所述第一参考信号资源对应一个SRS-ResourceId。
作为一个实施例,所述第一参考信号资源被关联到一个TCI。
作为一个实施例,所述第一参考信号资源被关联到一个TCI-State。
作为一个实施例,所述第一参考信号资源被关联到一个TCI-State-Id。
作为一个实施例,所述第一参考信号资源被关联到一个TCI-UL-State-Id。
作为一个实施例,所述第二参考信号资源包括SSB。
作为一个实施例,所述第二参考信号资源对应一个SSB-Index。
作为一个实施例,所述第二参考信号资源包括CSI-RS资源。
作为一个实施例,所述第二参考信号资源对应一个NZP-CSI-RS-ResourceId。
作为一个实施例,所述第二参考信号资源包括SRS资源。
作为一个实施例,所述第二参考信号资源对应一个SRS-ResourceId。
作为一个实施例,所述第二参考信号资源被关联到一个TCI(Transmission Configuration Indication,传输配置指示)。
作为一个实施例,所述第二参考信号资源被关联到一个TCI-State。
作为一个实施例,所述第二参考信号资源被关联到一个TCI-State-Id。
作为一个实施例,所述第二参考信号资源被关联到一个TCI-UL-State-Id。
作为一个实施例,所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源。
作为一个实施例,当所述目标参考信号资源是所述第一参考信号资源时,所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合;当所述目标参考信号资源是所述第二参考信号资源时,所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
作为一个实施例,被用于确定所述第一参考信号资源的RRC信令被同时用于指示所述第一身份。
作为一个实施例,被用于确定所述第一参考信号资源所对应的TCI-State的RRC信令被同时用于指示所述第一身份。
作为一个实施例,被用于确定所述第一参考信号资源所对应的TCI-UL-State的RRC信令被同时用于指示所述第一身份。
作为一个实施例,同一个RRC信令被用于同时确定所述第一参考信号资源所对应的QCL(Quasi Co-located,准共址)关系和所述第一身份。
作为一个实施例,被用于确定所述第二参考信号资源的RRC信令被同时用于指示所述第二身份。
作为一个实施例,被用于确定所述第二参考信号资源所对应的TCI-State的RRC信令被同时用于指示所述第二身份。
作为一个实施例,被用于确定所述第二参考信号资源所对应的TCI-UL-State的RRC信令被同时用于指示所述第二身份。
作为一个实施例,同一个RRC信令被用于同时确定所述第二参考信号资源所对应的QCL关系和所述第二身份。
典型的,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份;所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集。
作为一个实施例,当所述第一时频资源集合所占用的时域资源属于所述第一时域资源子集时,所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合;当所述第一时频资源集合所占用的时域资源属于所述第二时域资源子集时,所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
作为一个实施例,所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集依赖所述目标参考信号资源是所述第一参考信号资源还是所述第二参考信号资源。
作为一个实施例,当所述目标参考信号资源是所述第一参考信号资源时,所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集;当所述目标参考信号资源是所述第二参考信号资源时, 所述第一时频资源集合所占用的时域资源是属于所述第二时域资源子集。
作为一个实施例,所述第一时域资源子集包括K3个时域资源,所述K3是大于1的正整数,所述K3个时域资源分别对应K3个时隙。
作为一个实施例,所述第一时域资源子集包括K3个时域资源,所述K3是大于1的正整数,所述K3个时域资源分别对应K3个子帧。
作为一个实施例,所述第一时域资源子集包括K3个时域资源,所述K3是大于1的正整数,所述K3个时域资源分别对应K3个多载波符号。
作为一个实施例,所述第二时域资源子集包括K4个时域资源,所述K4是大于1的正整数,所述K4个时域资源分别对应K4个时隙。
作为一个实施例,所述第二时域资源子集包括K4个时域资源,所述K4是大于1的正整数,所述K4个时域资源分别对应K4个子帧。
作为一个实施例,所述第二时域资源子集包括K4个时域资源,所述K4是大于1的正整数,所述K4个时域资源分别对应K4个多载波符号。
典型的,所述第一服务小区配置信息包括第一下行BWP配置信息,所述第一下行BWP配置信息被用于配置所述第一BWP,所述第一下行BWP配置信息被关联到目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
典型的,所述目标上行配置信息是第一上行配置信息或第二上行配置信息中的之一,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
实施例6
实施例6示例了一个目标信息集合的示意图,如附图6所示。在附图6中,第一服务小区配置信息包括第一下行BWP配置信息,所述目标信息集合包括第一信息和第二信息,所述第一下行BWP配置信息包括所述第一信息和所述第二信息;所述第一服务小区配置信息包括第三信息,所述第三信息被用于指示第一时域资源集合;所述第一信息和所述第二信息分别被用于指示所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息包括第一身份和第二身份;所述第一信息和所述第二信息分别被关联到所述第一身份和所述第二身份。
作为一个实施例,所述第一服务小区配置信息对应TS 38.331中的ServingCellConfig IE。
作为一个实施例,所述第一服务小区配置信息对应TS 38.331中的sCellConfigCommon IE。
作为一个实施例,所述第一服务小区配置信息对应TS 38.331中的sCellConfigDedicated IE。
作为一个实施例,所述第一下行BWP配置信息对应TS 38.331中BWP-DownlinkCommon IE。
作为一个实施例,所述第一下行BWP配置信息对应TS 38.331中BWP-DownlinkDedicated IE。
作为一个实施例,所述第三信息对应TS 38.331中TDD-UL-DL-ConfigCommon IE。
作为一个实施例,所述第三信息对应TS 38.331中TDD-UL-DL-ConfigDedicated IE。
实施例7
实施例7示例了一个第一频域资源集合和第二频域资源集合的示意图,如附图7所示。在附图7中,本申请中的所述第一BWP包括所述第一频域资源集合和所述第二频域资源集合。
作为一个实施例,所述第一频域资源集合和所述第二频域资源集合是独立配置的。
作为一个实施例,所述第一频域资源集合和所述第二频域资源集合在频域是正交的。
作为一个实施例,所述第一频域资源集合和所述第二频域资源集合在频域是存在交叠的。
实施例8
实施例8示例了一个第一时域资源集合的示意图,如附图8所示。在附图8中,本申请中的所述第一时域资源集合包括第一时域资源子集和第二时域资源子集。
作为一个实施例,所述第一时域资源子集和所述第二时域资源子集是独立配置的。
作为一个实施例,所述第一时域资源子集和所述第一时域资源子集在时域是正交的。
作为一个实施例,所述第一时域资源子集和所述第二时域资源子集在频域是存在交叠的。
实施例9
实施例9示例了一个第一下行BWP配置信息的示意图,如附图9所示。在附图9中,所述第一下行BWP配置信息包括目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
作为一个实施例,所述第一下行BWP配置信息包括所述目标上行配置信息。
作为一个实施例,所述第一下行BWP配置信息被关联到一个上行BWP配置信息,所述上行BWP配置信息包括所述目标上行配置信息。
作为一个实施例,所述目标上行配置信息包括pucch-Config IE。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PUCCH。
作为一个实施例,所述目标上行配置信息包括pusch-Config IE。
作为一个实施例,所述目标上行配置信息包括configuredGrantConfig IE。
作为上述两个实施例的一个子实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述目标上行配置信息包括srs-Config IE。
作为该实施例的一个子实施例,所述第一信号包括SRS。
作为一个实施例,所述第一下行BWP配置信息包括目标下行配置信息。
作为该实施例的一个子实施例,所述目标下行配置信息包括pdcch-Config、pdsch-Config或sps-Config中的至少之一。
实施例10
实施例10示例了一个第一下行BWP配置信息的示意图,如附图10所示。在附图10中,所述第一下行BWP配置信息包括第一上行配置信息和第二上行配置信息,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
作为一个实施例,当所述第一信号所对应的所述TCI被关联到所述第一身份时,所述目标上行配置信息是所述第一上行配置信息;当所述第一信号所对应的所述TCI被关联到所述第二身份时,所述目标上行配置信息是所述第二上行配置信息。
作为一个实施例,所述第一上行配置信息针对所述第一身份。
作为一个实施例,所述第二上行配置信息针对所述第二身份。
作为一个实施例,同一个RRC信令被用于指示所述第一上行配置信息和所述第一身份。
作为该实施例的一个子实施例,所述RRC信令包括ServingCellConfig IE。
作为一个实施例,同一个RRC信令被用于指示所述第二上行配置信息和所述第二身份。
作为该实施例的一个子实施例,所述RRC信令包括ServingCellConfig IE。
作为一个实施例,同一个RRC信令被用于指示所述第一上行配置信息和所述第二上行配置信息。
作为一个实施例,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源与所述第一身份或所述第二身份中之一相关联;所述目标参考信号资源是与所述第一身份和所述第二身份中的哪个相关联被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
作为一个实施例,所述第一上行配置信息包括pucch-Config IE。
作为一个实施例,所述第一上行配置信息包括pusch-Config IE。
作为一个实施例,所述第一上行配置信息包括configuredGrantConfig IE。
作为一个实施例,所述第一上行配置信息包括srs-Config IE。
作为一个实施例,所述第二上行配置信息包括pucch-Config IE。
作为一个实施例,所述第二上行配置信息包括pusch-Config IE。
作为一个实施例,所述第二上行配置信息包括configuredGrantConfig IE。
作为一个实施例,所述第二上行配置信息包括srs-Config IE。
实施例11
实施例11示例了一个应用场景的示意图,如附图11所示。在附图11中,图中所示的TRP-1和TRP-2均由本申请中的所述第二节点管理;本申请中的所述第一身份被关联到所述TRP-1,本申请中 的所述第二身份被关联到所述TRP-2;所述第一节点在所述TRP-1的覆盖范围和所述TRP-2的覆盖范围中移动;图中所示的所述第一参考信号资源对应的波束对应所述第一身份,所示的所述第二参考信号资源对应的波束对应所述第二身份。
作为一个实施例,所述第一频域资源集合被配置给所述TRP-1。
作为一个实施例,所述第二频域资源集合被配置给所述TRP-2。
实施例12
实施例12示例了一个第一节点中的结构框图,如附图12所示。附图12中,第一节点1200包括第一接收机1201和第一发射机1202。
第一接收机1201,接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
第一发射机1202,在第一时频资源集合中发送第一信号;
实施例12中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述第一BWP是一个下行BWP,所述第一频域资源集合和所述第二频域资源集合均被预留用于上行传输。
作为一个实施例,所述第一身份是一个PCI,所述第二身份是所述第一身份所对应的PCI之外的PCI。
作为一个实施例,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源是第一参考信号资源或第二参考信号资源;所述第一参考信号资源和所述第二参考信号资源分别与所述第一身份和所述第二身份相关联;所述目标参考信号资源是所述第一参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合,或者所述目标参考信号资源是所述第二参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
作为一个实施例,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份;所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集。
作为一个实施例,所述第一服务小区配置信息包括第一下行BWP配置信息,所述第一下行BWP配置信息被用于配置所述第一BWP,所述第一下行BWP配置信息被关联到目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
作为一个实施例,所述目标上行配置信息是第一上行配置信息或第二上行配置信息中的之一,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1202包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例13
实施例13示例了一个第二节点中的结构框图,如附图13所示。附图13中,第二节点1300包括第二发射机1301和第二接收机1302。
第二发射机1301,发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
第二接收机1302,在第一时频资源集合中接收第一信号;
实施例13中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
作为一个实施例,所述第一BWP是一个下行BWP,所述第一频域资源集合和所述第二频域资源集合均被预留用于上行传输。
作为一个实施例,所述第一身份是一个PCI,所述第二身份是所述第一身份所对应的PCI之外的PCI。
作为一个实施例,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源是第一参考信号资源或第二参考信号资源;所述第一参考信号资源和所述第二参考信号资源分别与所述第一身份和所述第二身份相关联;所述目标参考信号资源是所述第一参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合,或者所述目标参考信号资源是所述第二参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
作为一个实施例,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份;所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集。
作为一个实施例,所述第一服务小区配置信息包括第一下行BWP配置信息,所述第一下行BWP配置信息被用于配置所述第一BWP,所述第一下行BWP配置信息被关联到目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
作为一个实施例,所述目标上行配置信息是第一上行配置信息或第二上行配置信息中的之一,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
作为一个实施例,所述第二发射机1301包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1302包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU(Road Side Unit,路侧单元),飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS(Global Navigation Satellite System,全球导航卫星系统),中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种用于无线通信中的第一节点,其特征在于,包括:
    第一接收机,接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
    第一发射机,在第一时频资源集合中发送第一信号;
    其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一BWP是一个下行BWP,所述第一频域资源集合和所述第二频域资源集合均被预留用于上行传输。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一身份是一个PCI,所述第二身份是所述第一身份所对应的PCI之外的PCI。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一信号与目标参考信号资源是准共址的,所述目标参考信号资源是第一参考信号资源或第二参考信号资源;所述第一参考信号资源和所述第二参考信号资源分别与所述第一身份和所述第二身份相关联;所述目标参考信号资源是所述第一参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第一频域资源集合,或者所述目标参考信号资源是所述第二参考信号资源且所述第一时频资源集合所占用的所述频域资源属于所述第二频域资源集合。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一时域资源集合包括第一时域资源子集和第二时域资源子集,所述第一时域资源子集和所述第二时域资源子集分别被关联到所述第一身份和所述第二身份;所述第一时频资源集合所占用的所述频域资源是属于所述第一频域资源集合还是属于所述第二频域资源集合依赖所述第一时频资源集合所占用的时域资源是属于所述第一时域资源子集还是属于所述第二时域资源子集。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一服务小区配置信息包括第一下行BWP配置信息,所述第一下行BWP配置信息被用于配置所述第一BWP,所述第一下行BWP配置信息被关联到目标上行配置信息,所述目标上行配置信息包括pucch-Config、pusch-Config、configuredGrantConfig或srs-Config中的至少之一,所述第一信号采用所述目标上行配置信息。
  7. 根据权利要求6所述的第一节点,其特征在于,所述目标上行配置信息是第一上行配置信息或第二上行配置信息中的之一,所述第一上行配置信息被关联到所述第一身份,所述第二上行配置信息被关联到所述第二身份;所述第一信号所对应的TCI被用于从所述第一上行配置信息和所述第二上行配置信息中确定所述目标上行配置信息。
  8. 一种用于无线通信中的第二节点,其特征在于,包括:
    第二发射机,发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
    第二接收机,在第一时频资源集合中接收第一信号;
    其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
  9. 一种用于无线通信中的第一节点中的方法,其特征在于,包括:
    接收目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
    在第一时频资源集合中发送第一信号;
    其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
  10. 一种用于无线通信中的第二节点中的方法,其特征在于,包括:
    发送目标信息集合,所述目标信息集合被用于确定第一频域资源集合和第二频域资源集合;
    在第一时频资源集合中接收第一信号;
    其中,所述第一频域资源集合和所述第二频域资源集合都属于第一BWP;第一服务小区配置信息被用于确定所述第一BWP,所述第一服务小区配置信息被用于指示第一身份和第二身份;所述第一身份和所述第二身份分别被关联到所述第一频域资源集合和所述第二频域资源集合;所述第一服务小区配置信息被用于确定第一时域资源集合,所述第一时域资源集合中的至少一个时域资源被关联到所述第一身份,所述第一时域资源集合中的至少一个时域资源被关联到所述第二身份;所述第一时频资源集合所占用的频域资源属于所述第一频域资源集合或所述第二频域资源集合中的之一,且所述第一时频资源集合所占用的时域资源属于所述第一时域资源集合。
PCT/CN2023/127600 2022-11-04 2023-10-30 一种被用于无线通信的节点中的方法和装置 WO2024093883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211379368.4A CN117998617A (zh) 2022-11-04 2022-11-04 一种被用于无线通信的节点中的方法和装置
CN202211379368.4 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093883A1 true WO2024093883A1 (zh) 2024-05-10

Family

ID=90896140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127600 WO2024093883A1 (zh) 2022-11-04 2023-10-30 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117998617A (zh)
WO (1) WO2024093883A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210400654A1 (en) * 2020-06-18 2021-12-23 Qualcomm Incorporated Coreset and search space association with resource bandwidth
CN114938260A (zh) * 2019-10-29 2022-08-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115150035A (zh) * 2021-03-29 2022-10-04 中国电信股份有限公司 信息传输方法和系统以及基站
CN115190434A (zh) * 2021-04-07 2022-10-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114938260A (zh) * 2019-10-29 2022-08-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210400654A1 (en) * 2020-06-18 2021-12-23 Qualcomm Incorporated Coreset and search space association with resource bandwidth
CN115150035A (zh) * 2021-03-29 2022-10-04 中国电信股份有限公司 信息传输方法和系统以及基站
CN115190434A (zh) * 2021-04-07 2022-10-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (CMCC): "Summary#1 of email discussion on evaluation of NR duplex evolution", 3GPP DRAFT; R1-2205311, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 15 May 2022 (2022-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191946 *

Also Published As

Publication number Publication date
CN117998617A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113543357B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11109374B2 (en) Method and device in UE and base station for wireless communication
WO2024093883A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099211A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024067798A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
WO2024017068A1 (zh) 一种用于无线通信的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
WO2024088394A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
WO2023165344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023036040A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024109570A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083155A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024114347A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151671A1 (zh) 一种被用于无线通信的节点中的方法和装置